The
University
of Auckland

Heuristics for Fuzzy Constraint Satisfaction
Hans W. Guesgen Anne Philpott

Computer Science Report No. 123
July 1995



Heuristics for Fuzzy Constraint Satisfaction

Hans W. Guesgen Anne Philpott
Computer Science Department Programmable State Controller Section
University of Auckland Production Machinery Limited
Private Bag 92019 Fisher & Paykel
Auckland, New Zealand Unit 4, Fencible House, 18 Fencible Drive
hans@cs.auckland.ac.nz Howick, Auckland, New Zealand

philpota@fp.co.nz

Abstract

Work in the field of AI over the past twenty years has shown that many problems can be
represented as constraint satisfaction problems and efficiently solved by constraint satisfac-
tion algorithms. However, constraint satisfaction in its pure form isn’t always suitable for
real world problems, as they often tend to be inconsistent, which means the corresponding
constraint satisfaction problems don’t have solutions.

A way to handle inconsistent constraint satisfaction problems is to make them fuzzy.
The idea is to associate fuzzy values with the elements of the constraints, and to combine
these fuzzy values in a reasonable way, i.e., a way that directly corresponds to the way how
crisp constraint problems are handled.

The purpose of this paper is to briefly introduce a framework for fuzzy constraint satis-
faction problems and to discuss some heuristics for solving them efficiently.

1 Introduction

One of the research areas in Al that has gained increasing interest during recent years is con-
straint satisfaction, mainly because many problems like searching, scheduling, planning, etc.
can be formulated as constraint satisfaction problems (CSPs) and can be solved by constraint
satisfaction methods in an efficient way. A constraint satisfaction problem can be defined as
follows: Given a set of variables Vi,...,V,, over domains D,,...,D,,, respectively, and a set of
constraints C4, ..., C,, each constraint ranging over a subset of Vi,...,V,,, find an assignment
of values (dy,...,d,,) € D, x --- x D,, such that Cy,...,C, are satisfied.

Solving a problem by using constraint satisfaction methods assumes, however, that the un-
derlying problem is solvable at all, which isn’t necessarily the case. On the contrary, experience
has taught us that many real-world problems are inconsistent and thus do not have a solution.
Nevertheless, we as human beings are able to cope with this situation. The way we usually deal
with inconsistent problems is the following:



1. Find a problem that is both consistent and closely related to the original problem.
2. Solve the related problem.
3. Take the solution of the related problem as an ‘almost’ solution for the original problem.

In particular, if it is not possible to satisfy the entire set of constraints, the overconstrained
problem can be relaxed by switching off or weakening some constraints in such a way that the
relaxed problem is closely related to the original problem and has a solution.

Without additional knowledge, it is almost impossible to automatically transform an over-
strained constraint satisfaction problem into a weaker problem in an intuitively plausible man-
ner. In particular, the question is which constraints to relax and how to relax them.

There are several approaches to constraint relaxation, ranging from theoretical formulations
as in [11, 18] to practical applications as in [5, 9]. All these approaches have in common that
they attack a given CSP by finding a solution of a relaxed CSP that differs only minimally from
the original CSP. The difference is expressed in terms of a metric.

There are various ways to define a metric on a given CSPs, i.e., to state how far a relaxed
CSP is from the original CSP and with this how far away the approximate solution is from
the ideal one. In [15], for example, we have used the concept of penalties. Values not being in
the original constraint relations are marked by natural numbers greater than 0. More recently,
fuzzy set theory has been used to capture the idea of constraint relaxation [7, 23].

In principle, fuzzy constraint satisfaction provides us with a powerful framework for con-
straint relaxation. However, fuzzy constraint satisfaction is also computationally expensive, as
it converts a classical constraint satisfaction problem into an optimization problem. Heuristic
search is an option to cope with the additional complexity.

The field of constraint satisfaction offers a variety of heuristic search methods. This paper
investigates how heuristic search methods for classical constraint satisfaction can be applied
to fuzzy constraint satisfaction. In particular, the rest of this paper is structured as follows.
Section 2 starts with an introduction of the underlying concepts, like fuzzy constraints, fuzzy
constraint networks, «-solutions, etc. Section 3 sketches a branch and bound algorithm for
fuzzy CSPs. Sections 6 and 7 discuss heuristics for fuzzy constraint satisfaction. Section 8
summarizes the paper.

2 Fuzzy Constraints

To keep this paper self-contained, we briefly review in this section the basic concepts of fuzzy
constraint satisfaction as introduced in [14]. These concepts are closely related to the ones in
[7], the main idea of which is to ignore constraints in the network, if they can’t be satisfied.
Some constraints can be ignored more easily than others. To express how easy it is to ignore a
constraint, each constraint C' is associated with a priority degree a¢ ranging in the scale [0, 1].
1 — a¢ then indicates to what extend it is possible to violate C.

Given a network of constraints with priorities, an assignment of values (di,...,d,,) to the
variables Vi,...,V,, of the constraint network can be associated with some fuzzy membership
grade. This membership grade is computed from the priorities of the constraints. If a constraint
C' is not satisfied by (dy,...,d,,), then 1 — a¢ limits the membership grade of the solution.



Unlike [7], we don’t associate a fixed priority with each constraint of the network but define
a constraint as being more or less satisfied by some given assignment of values. For example,
instead of stating The color of the object is supposed to be red with priority 0.75 and then
returning a membership grade of 1 if the object is indeed red or 1 — 0.75 = 0.25 if the object is
not red, we proceed as follows: There is a constraint The color of the object must be red which
has the same priority as the other constraints in the networks. However, this constraint may be
more or less satisfied. If the color of the object is red, then the constraint is satisfied with degree
1; if the color of the object is burgundy, then the constraint might be satisfied with degree 0.75;
if the color is pink, then with degree 0.5; and so on.

In other words, a fuzzy constraint network N consists of a set of fuzzy variables V;,...,V,,
in the (crisp) domains Dy, ..., D,,, respectively, and a set of fuzzy constraints Ci,...,C,, each
C; (i = 1,...,n) ranging over a subset of V;,...,V,,. The relation of C; is a fuzzy relation in
the product space of the subset of Dy,...,D,, that corresponds to the fuzzy variables of C,.
(See [14] for more details.)

The main operations performed on the relations represented by a constraint network are
union and intersection: A constraint may be viewed as the union of one-element sets, each
element in such a set representing a possible choice of values for the variables of the constraint,
i.e., an assignment that satisfies the constraint. A constraint network, on the other hand, may
be viewed as the intersection of the relations represented by the constraints of the network.

There are several ways to define the intersection and union of fuzzy sets. For the reasons
discussed in [14], we adopted the original min/max combination scheme [25] for combining
fuzzy constraint relations, i.e., for defining the relation that is represented by a fuzzy constraint
network. The heuristics introduced in this paper assume that the min/max combination scheme
is used.

In most cases, we are not interested in computing the entire relation represented by a fuzzy
constraint network, but want to obtain an element of this relation whose membership grade is
beyond a certain threshold «. Such an element is called an a-solution of the fuzzy constraint
network.

During the recent years, a great diversity of methods has been developed for solving tradi-
tional CSPs. They can generally be divided into two broad categories:

1. Consistency propagation algorithms which attempt to achieve various levels of consistency,
progressing from local consistency to eventual network consistency (see, for example, [19]
and follow-up papers).

2. Constructive heuristic search methods. These are commonly grounded in a basic backtrack
(BT) search and enhanced by strategies for making choices about forward or backward
moves, avoiding redundant checking, or ordering variables or values in a way that might
expedite search (see, for example, [22]).

In the following sections, we will look at some of these methods. In particular, we will
address variable and value ordering heuristics, forward checking as an example of a strategy
for making forward moves, and arc consistency as an example of a consistency propagation
algorithm.



3 Backtracking

We will start our discussion of constructive heuristic search methods with a review of the
basic tree search algorithm that underpins many of the heuristically enhanced search processes:
backtracking. Backtracking (BT) is an accepted classic algorithm for solving CSP. In BT search
variables are instantiated one after the other. Each instantiation is validated by performing
consistency checks backwards against the past variables. If no consistent value can be found for
a variable, then the previous variable is uninstantiated and a new value sought for that. BT
search finds the first consistent instantiation of all the variables, if such an instantiation exists,
or can be continued to find all consistent instantiations.

In fuzzy constraint satisfaction consistency is a matter of degree, and it is more than likely
that some level of optimality is sought in the consistency of an acceptable solution. This intro-
duces major variations to BT search. Searching must continue after a consistent instantiation is
found, if the solution is not ‘good enough’. However, some savings can be made in any continued
search by pruning search paths that are provably no better than the current best instantiation.

This is in fact the common optimization technique branch and bound (B&B). Freuder [13]
adopted B&B as a natural choice in seeking an analogue of backtracking to find optimal solutions
for partial CSPs. Ruttkay [23] suggests that in constructing solutions for fuzzy CSP heuristic,
BT search can be replaced by B&B search.

B&B search operates in the same way as BT search with the two variations previously
mentioned. The best solution so far is recorded, and a search path is abandoned when it is
clear that it cannot lead to a better solution. Search stops when all search paths have been
either explored or abandoned, or when a perfect solution has been found. In the case of fuzzy
constraint satisfaction a perfect solution would be a 1-solution. Search beyond this would be
pointless as no better solution can exist. Thus the algorithm defines a depth first search, with
chronological BT whenever any search path cannot improve on the best solution found so far.

Empirical tests have shown that pure chronological BT isn’t a feasible approach to solving
real-world CSPs, and therefore many different heuristics have at various times been combined
with BT search to provide better solution methods for CSPs. We will address some of them
in the following sections. A more detailed description of heuristic search methods for fuzzy
constraint satisfaction can be found elsewhere [21].

4 Variable Ordering Heuristics

It is generally accepted that the order in which variables are instantiated can have a tremendous
impact on the size of the search space a backtrack search will explore. The problem of finding a
variable ordering that minimizes the search space is very difficult, so most research in this area
has been aimed at developing heuristics which reduce the search space.

In this section, we will look first at some of the variable ordering heuristics which have been
developed and tested in the area of classical constraint satisfaction, as they are a good starting
points in the development of effective variable ordering heuristics for fuzzy constraint solution
methods. Then we will consider how they can be transferred from classical to fuzzy constraint
satisfaction.



4.1 Variable Ordering Heuristics for Classical CSPs

A considerable amount of research exists on variable ordering heuristics for classical CSPs. Many
of these are based on the general idea of instantiating the most difficult or constrained variables
first. This is justified by the fact that searching first in the most difficult parts of the search
space helps to make the failures appear early in the search. Giving less constrained variable
values first can result in costly backtracking when failure due to the constrained variable is
discovered late in the search.

Variable ordering methods can be either static or dynamic. Static ordering methods order
variables before the search starts. This has the advantage that no overhead during search is
required. The disadvantage is, of course, that the orderings do not reflect the changing situation
as search progresses. Dynamic variable ordering heuristics overcome this problem by applying
the selection methods during the search process, selecting the next variable to instantiate on
some basis that takes into account the current state of the search. Dynamic variable ordering
methods can add varying degrees of overhead to the search process.

Both static and dynamic variable ordering heuristics have been developed. The following
are some of commonly applied variable ordering methods:

Minimum width is a static ordering heuristic based on the connectivity of the network. The
heuristic is applied in a preprocessing phase to achieve an ordered list of variables. The list of
variables is built from last to first by selecting at each stage a variable which has minimal degree
in the subgraph restricted to unselected variables. This selection process results in a minimum
width ordering. See [10] for details.

Maximum degree is also a static ordering heuristic which uses the connectivity of the net-
work. Maximum degree aims at a minimum width ordering. Though it may not necessarily
achieve such an ordering, it does less work than the minimum width heuristic. Variables are
simply ordered in decreasing order according to their degree (or connectivity) in the constraint
graph. See [24] for details.

Maximum cardinality is used in a preprocessing phase to achieve a static ordering. Maxi-
mum cardinality also exploits connectivity but in a rather different way to minimum width and
maximum degree. Variables are selected on the basis of their connections with already selected
variables. The first variable is selected randomly. Subsequently, a variable is selected if it is
connected to the largest set of already selected variables. See [3] for details.

Depth first search generates a depth first search ordering by a depth first traversal of the
constraint graph. The advantage of using such an ordering occurs when search fails and must
backtrack. A depth first search ordering ensures that the node backtracked to shares a constraint
relation with the node where search has failed. See [3] for details.

Dynamic search rearrangement is, as the name suggests, a dynamic ordering strategy.
It is a look ahead scheme which selects as the variable to be instantiated next, the one which
has the minimal number of values consistent with the current partial solution. The look-ahead
required to make this choice could involve considerable overhead, as it necessitates filtering



from the domain of all uninstantiated variables any values not consistent with the current
partial solution. See [17] for details.

4.2 Variable Ordering Heuristics for Fuzzy CSPs

The idea behind variable ordering heuristics in a crisp domain transfer directly to a fuzzy
domain. To avoid the need to backtrack, the search should attempt to instantiate the most con-
strained, or most restricting variables first. Some variations on the definition of most restricting,
however, may be worth considering for a fuzzy domain.

Grade greater than lower bound is a variation that only counts values with a membership
grade greater than some current lower bound. Sharing a constraint relation with a large number
of other variables still makes a variable restricting, as does the availability of few values for the
variable. However, domain size ordering of variables in a fuzzy environment should not consider
a value if its membership grade is below the current lower bound. The same applies if dynamic
search rearrangement is transferred to a fuzzy network. The next variable to be instantiated
would be the one with the smallest number of values, with consistency greater than the current
lower bound, which are consistent with the current partial solution.

Sum of satisfaction ratings is an entirely different alternative [23]. It defines the difficulty
of a variable as the sum of the best possible satisfaction ratings for each of the values in the
variable domain. Low sums are an indication of availability of few good values for the variable.
Values with maximum consistency less than or equal to the current lower bound can be excluded
from the summation.

Lowest maximum satisfaction rating looks at the variables from a different viewpoint:
The most limiting variables are those which limit the upper bound on the consistency of a
solution. These are the variables which participate in the constraint with the lowest maximum
satisfaction rating. Instantiating such variables early ensures that search has a realistic measure
of the consistency of the solution being built and allows upper bounds to be adjusted right from
the start. It is also likely that checking variables with less consistent instantiations early in the
search would increase the chances that the lower bound is reached higher in the search tree, and
more fruitless search is pruned.

5 Value Ordering Heuristics

Considerably fewer heuristics have been applied to the task of ordering the values available for
selection within the domain of a variable. Dechter and Pearl [4] suggest this is partly because if a
BT search for all solutions is being performed, the search tree produced is invariant on the value
selection. They point out, however, that the situation differs considerably if only one solution
is required. In this case the ordering in which values are selected can have a profound effect on
the performance of the algorithm. Dechter and Pearl tested the effects of using different levels
of information to order the values for selection. They found out that more benefit was obtained
from a fairly weak level of look-ahead.



5.1 Value Ordering Heuristics for Fuzzy CSPs

Value ordering in a fuzzy domain may not necessarily have the same aims as value ordering
in crisp CSPs. It is true that maximizing future options is still a worthwhile goal but it is
important to remember that fuzzy CSPs are optimization problems. Unlike the values in crisp
domains, the fuzzy values that are to be ordered already have in their membership grade a metric
indicating their suitability. In solving a fuzzy CSP, the sooner a solution with a consistency
close to optimality is found, the more the search space is able to be pruned. This means that
values are to be ordered according to some measure of their contribution to the optimality of a
solution. This can be done either statically or dynamically.

Static maximum consistency fits in very well with consistency filtering [7]. After a fuzzy
constraint network has been filtered for local consistency, the membership grade attached to
each value in a variable domain is the consistency obtained with that value from the best possible
satisfaction of the individual constraints referring to that variable. Ordering values according
to this measure therefore requires no extra work if the network has been filtered to a locally
consistent state. Values can simply be selected in reducing order of their membership grade.
This method provides a static ordering of values before search commences.

Dynamic maximum consistency is a variant of the previous heuristic. In some search
situations it may make more sense to order values only when the variable is about to be instan-
tiated. This would have the advantage of tailoring the ordering to the partial solution already
instantiated, but is only of benefit if the domains themselves change during the search process.
Such a situation occurs if, for example, a forward checking heuristic [22] is being used. Again
ordering by decreasing membership grades is sensible as this aims at a best solution first.

It is worth noting, however, that there may be some situations in which ordering values for
selection is of no benefit. For example, if there exists an partial a-solution, all values in the
domain of any uninstantiated variables whose membership grades are greater than « are equal.
The grade of the partial solution cannot be increased beyond «, so value ordering can only
sensibly be applied to values which are known to affect the grade of the solution, i.e., those with
a maximum possible grade less than a.

The domain membership grade only provides information about the best possible satisfaction
level. Nothing is known about the range of membership grades available and how they vary
from this maximum. If this situation proves to be common, a heuristic incorporating a little
more information about range and variance might be useful. Two obvious possibilities are:

Sum of grades orders values according to the sum of the membership grades obtainable from
each constraint in which the variable participates, i.e., sums the grades associated with every
tuple which includes the value in any particular constraint and minimizes the sum over all of
the constraints by which the variable is restricted.

Average satisfaction rating uses the average of the membership grades that result from
checking the constraints (rather than the best possible).



Both these heuristics, however, do have disadvantages. Sum of grades, while giving some
indication of the choice of future instantiations available, risks drowning quality with quantity.
If, for example, optimality is an important aim, six possibilities each with grades of 0.1 are
probably not considered equal to one at 0.6. Both methods also incur extra overheads which
would require justification by an improvement in search performance.

In conclusion, while value ordering heuristics may not have been widely applied in either
the domain of crisp CSP or combinatorial optimization problems, they certainly warrant inves-
tigation in devising solution methods for fuzzy CSP. Early discovery of solutions with are close
to optimal membership grades is influenced by the order in which values are selected. Such
early optimality is effective in both pruning the search space and in providing relatively good
solutions early if search is constrained by time.

6 Forward Checking

Another way of pruning the search space, and with that avoiding unnecessary backtracking,
is forward checking [17], which has been shown to be a particularly successful heuristic. Most
empirical studies of constructive heuristic search in constraint satisfaction credit this heuristic
with being the most effective [12, 22].

FC performs a consistency check each time a variable is instantiated. When a variable V;
is to be instantiated with a value d;, the algorithm looks at all the uninstantiated variables
which share a constraint with V; and removes from their domains any values inconsistent with
d;. If, in removing these values from the domain of some other variable V;, the domain becomes
empty, this signals the futility of extending the solution with this instantiation. Any changes
made to domains by forward checking must then be retracted, and a new instantiation for V;
can be tried.

The strategy of early identification of fruitless search paths by filtering the domains of
uninstantiated variables can be applied equally well to fuzzy CSPs. Freuder and Wallace [13]
suggest that prospective techniques like forward checking combine well with branch and bound
search. They provide a method of discovering the implications of proceeding from the current
search point, and thus increase the pruning potential of the branch and bound strategy. The
difference in a fuzzy environment arises from the fact that the domain we are filtering is a fuzzy
rather than a crisp set. In filtering a crisp set of values, a value is either consistent and can
remain in the set, or is inconsistent and can be deleted. Filtering a fuzzy set, however, can alter
the membership grade associated with a value by reducing it. If the membership grade reduces
to less than or equal to the current lower bound there is no point retaining that value in the
set, as it cannot participate in an improved solution.

Figure 1 sketches a forward checking algorithm for fuzzy CSPs.! Whenever BT has instanti-
ated a fuzzy variable V; with a fuzzy value (d;, ;u(d;)), forward_check is applied to any uninstanti-
ated variable V;. forward_check(V;,V;,d;) performs the filtering of the fuzzy domain of V; based
on the instantiation V; «— (d;, u(d;)). If there exists a constraint between V; and V; then the
membership grades of all values in D; are altered to reflect the instantiation V; « (d;, u(d;)).
Any values whose membership grades become less than or equal to some given lower bound are
deleted from the domain. To permit backtracking, FC must also maintain a record, restricted;,

For simplicity, we restrict ourselves here to binary constraint networks. This restriction isn’t necessary in
general.



forward_check(V;, V;, d;)
if constraint_exists(V;, V;)
new_D; —
domain_changed «— false
for each d; € D; do
new_grade — constraint_check(V;, V;, d, d;)
if new_grade < pu(d;)
domain_changed «— true
iof new_grade > lower _bound
new_D; — new_D; U {{d;, new_grade)}
if domain_changed
restricted; — restricted; U {V;}
D; — new_D;,
return D; # 0
else return true

Figure 1: Forward checking in fuzzy CSPs.

indicating which domains forward checking V; has altered. If the domain of f/] is altered in any
way by forward_check(V;,V;, d;) then V; is added to restricted;.

7 Arc Consistency

Forward checking can be taken a step further by applying it iteratively. As a result, we obtain
a constraint network which is arc consistent, i.e., in which the domains of each pair of variables
are consistent with the constraint between the variables.

Mackworth [19] proposed several algorithms, one of which is AC3, to transform constraint
networks into arc consistent constraint networks. Since then, a considerable amount of research
has been devoted to improving Mackworth’s algorithms. Mohr and Henderson [20] developed
AC4 which improves on the worst case performance of AC3, though in fact often does worse in
the average case. AC5 [6] achieves improvements for special classes of constraints, and AC6 [2]
combines the optimal worst case behavior of AC4 and an average case behavior improved from
AC3. Most recently Freuder [12] has reduced constraint checks by using meta level knowledge to
infer support. He formulates a general arc consistency algorithm, AC7, which does not depend
on the special properties of a limited class of constraints.

Dubois et al. [8] adapted the AC3 algorithm to a fuzzy domain. Their algorithm, called
FAC3, suffers from the same redundancies as AC3, and should be amenable to the same sorts
of improvements apparent in AC4, AC6, and AC7. There is, however, one major difference
which makes support-based algorithms like AC6 and ACT less appropriate for transfer to a
fuzzy environment. Both these algorithms stop checking as soon as they find support for a
value, and only look for more support if the original support is deleted. This methodology does
not transfer to a fuzzy environment because, to achieve a consistency grade which reflects the
maximum achievable for any value in a fuzzy domain, every consistent pair must be checked.

Figure 2 displays a new fuzzy arc consistency algorithm which is proposed as an alternative
to FAC3. The aim in developing the algorithm is to incorporate some of the savings in constraint
checks achieved in AC4-7, but bearing in mind the need to check every pair with consistency



new_FAC(N)
Q — set of all constraints in N
while Q # ()
C;; — next(Q)
new_D; — ()
new_D; —
for each tuple (z,y) € Cy;
p(x,y) — min{p(z), p(y), p(z,y)}
if w(z,y) < lower_bound
delete (x,y) from C;
else
new_@i — new_li)i U {(z, pu(z))}
new_D; — new_Dy U {{y,1n(y)}
if new_D; # D;
Q — Q U all constraints involving @
D; — new_D;
if new_D; # D,
Q — Q U all constraints involving j
D]- — new_Dj

Figure 2: New fuzzy arc consistency algorithm.

greater than the lower bound, and without adding large and complex data structures to keep
track of information.

The algorithm is successful by using first upward then downward propagation of consistency
values. The information that needs to be recalled is stored by updating the explicit representa-
tion of the constraint, rather than introducing separate structures to store it. Tuples that have
their consistency grade reduced to less than the lower bound are deleted and do not need to
be reconsidered if the constraint is reconsidered because of changes elsewhere. The algorithm
builds new domains rather than updating the existing ones for two reasons:

1. This allows each checked value to be incorporated as a fuzzy union operation in a straight-
forward way and leaves the initial unary relations unchanged and available for intersection
with subsequent tuples involving the same values.

2. The fuzzy union operation itself requires less work if it starts with an empty set.

The algorithm provides some definite advantages over the fuzzy version of the AC3 algorithm.
One of the advantages is bidirectionality. As with AC7, this algorithm makes the property of
undirectedness explicit. Both domains are updated after each constraint check. The algorithm
therefore does not perform the redundant constraint check that FAC3 does to update the second
domain. This reduces the constraint checks performed by at least half.

Another advantage lies in how the consistency checks are performed. As each constraint is a
subset of the Cartesian product of the variable domains, the algorithm can save other constraint
checks also. By looking up each tuple of the constraint, it does at worst the same amount of
work as the other algorithms which look up every combination of the domain values. If the
constraints are more restrictive than the domains, it may however do considerably less work.
Domain values unsupported by the constraint relation are never checked at all.

10



8 Conclusion

In the first part of this paper, we briefly introduced a framework for fuzzy constraint satisfaction,
which provides a general basis for fuzzy constraint satisfaction algorithms. This framework has
also been applied in the area of spatial and temporal reasoning. In particular, we applied it to
Allen’s temporal logic [1] for reasoning about fuzzy spatial and temporal relations. This work
is described elsewhere [16].

In the second part of the paper, we discussed some heuristics for solving fuzzy CSPs. We
selected those heuristics that are among the most promising ones. In particular, we presented
variable and value ordering heuristics, forward checking, and arc consistency in the context of
fuzzy constraint networks.

We implemented all heuristics in a Lisp environment and tested them with several fuzzy
constraint satisfaction problems [21]. As with the tests in [22], our tests are not exhaustive and
allow for further research.

Acknowledgements

Part of this work was supported by the University of Auckland Research Fund under the grant
number A18/XXXXX/62090/F3414025. Many thanks to Peter Gibbons for his comments on
an earlier version of this paper.

References

[1] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26:832-843, 1983.

[2] M. Cordier and C. Bessiere. Arc consistency and arc consistency again. In Proc. AAAI-93,
pages 108-113, Washington, DC, 1993.

[3] R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms for constraint
satisfaction problems. Artificial Intelligence, 68:211-241, 1994.

[4] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems.
Artificial Intelligence, 34:1-38, 1987.

[5] Y. Descotte and J.C. Latombe. Making compromises among antagonist constraints in a
planner. Artificial Intelligence, 27:183-217, 1985.

[6] Y. Deville and P. van Hentenryck. An efficient arc consistency algorithm for a class of csp
problems. In Proc. IJCAI-91, pages 325-330, Sidney, Australia, 1991.

[7] D. Dubois, H. Fargier, and H. Prade. Propagation and satisfaction of flexible constraints.
Rapport IRIT/92-59-R, IRIT, Toulouse Cedex, France, 1992.

[8] D. Dubois, H. Fargier, and H. Prade. Propagation et satisfaction de constraintes flexibles.
In R.R. Yager and L. Zadeh, editors, Fuzzy Sets, Neural Networks and Soft Computing.
Kluwer, Dordrecht, The Netherlands, 1993.

11



[9]

[10]

[11]

[12]

[17]

[18]

[19]

[20]

[25]

B.N. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint solver.
Communications of the ACM, 33:54-63, 1990.

E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM, 29:24—
32, 1982.

E.C. Freuder. Partial constraint satisfaction. In Proc. IJCAI-89, pages 278-283, Detroit,
Michigan, 1989.

E.C. Freuder. Using metalevel constraint knowledge to reduce constraint checking. In Proc.
ECAI-94 Workshop on Constraint Processing, pages 27-33, Amsterdam, The Netherlands,
1994.

E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial Intelligence,
58:21-70, 1992.

H.W. Guesgen. A formal framework for weak constraint satisfaction based on fuzzy sets.
In Proc. ANZIIS-94, pages 199-203, Brisbane, Australia, 1994.

H.W. Guesgen and J. Hertzberg. A constraint-based approach to spatiotemporal reasoning.
Applied Intelligence (Special Issue on Applications of Temporal Models), 3:71-90, 1993.

H.W. Guesgen, J. Hertzberg, and A. Philpott. Towards implementing fuzzy Allen relations.
In Proc. ECAI-94 Workshop on Spatial and Temporal Reasoning, pages 49-55, Amsterdam,
The Netherlands, 1994.

R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263-313, 1980.

J. Hertzberg, H.-W. Guesgen, A. Vof§, M. Fidelak, and H. Vof. Relaxing constraint networks
to resolve inconsistencies. In Proc. GWAI-88, pages 61-65, Eringerfeld, Germany, 1988.

A K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99-118,
1977.

R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intelligence,
28:225-233, 1986.

A. Philpott. Fuzzy constraint satisfaction. Master’s thesis, University of Auckland, Auck-
land, New Zealand, 1995.

P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational
Intelligence, 9:268-299, 1993.

7. Ruttkay. Fuzzy constraint satisfaction. In Proc. FUZZ-IEEE’94, Orlando, Florida, 1994.

H.S. Stone and J.M. Stone. Efficient search techniques: An empirical study of the n-
queens problem. Technical Report RC 12057 (#54343), IBM T.J. Watson Research Center,
Yorktown Heights, New York, 1986.

L.A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

12



