
Heuristics for Fuzzy Constraint SatisfactionHans W. Guesgen Anne PhilpottComputer Science Report No. 123July 1995

Heuristics for Fuzzy Constraint SatisfactionHans W. GuesgenComputer Science DepartmentUniversity of AucklandPrivate Bag 92019Auckland, New Zealandhans@cs.auckland.ac.nz
Anne PhilpottProgrammable State Controller SectionProduction Machinery LimitedFisher & PaykelUnit 4, Fencible House, 18 Fencible DriveHowick, Auckland, New Zealandphilpota@fp.co.nzAbstractWork in the �eld of AI over the past twenty years has shown that many problems can berepresented as constraint satisfaction problems and e�ciently solved by constraint satisfac-tion algorithms. However, constraint satisfaction in its pure form isn't always suitable forreal world problems, as they often tend to be inconsistent, which means the correspondingconstraint satisfaction problems don't have solutions.A way to handle inconsistent constraint satisfaction problems is to make them fuzzy.The idea is to associate fuzzy values with the elements of the constraints, and to combinethese fuzzy values in a reasonable way, i.e., a way that directly corresponds to the way howcrisp constraint problems are handled.The purpose of this paper is to brie
y introduce a framework for fuzzy constraint satis-faction problems and to discuss some heuristics for solving them e�ciently.1 IntroductionOne of the research areas in AI that has gained increasing interest during recent years is con-straint satisfaction, mainly because many problems like searching, scheduling, planning, etc.can be formulated as constraint satisfaction problems (CSPs) and can be solved by constraintsatisfaction methods in an e�cient way. A constraint satisfaction problem can be de�ned asfollows: Given a set of variables V1; : : : ; Vm over domains D1; : : : ;Dm, respectively, and a set ofconstraints C1; : : : ; Cn, each constraint ranging over a subset of V1; : : : ; Vm, �nd an assignmentof values (d1; : : : ; dm) 2 D1 � � � � �Dm such that C1; : : : ; Cn are satis�ed.Solving a problem by using constraint satisfaction methods assumes, however, that the un-derlying problem is solvable at all, which isn't necessarily the case. On the contrary, experiencehas taught us that many real-world problems are inconsistent and thus do not have a solution.Nevertheless, we as human beings are able to cope with this situation. The way we usually dealwith inconsistent problems is the following: 1

1. Find a problem that is both consistent and closely related to the original problem.2. Solve the related problem.3. Take the solution of the related problem as an `almost' solution for the original problem.In particular, if it is not possible to satisfy the entire set of constraints, the overconstrainedproblem can be relaxed by switching o� or weakening some constraints in such a way that therelaxed problem is closely related to the original problem and has a solution.Without additional knowledge, it is almost impossible to automatically transform an over-strained constraint satisfaction problem into a weaker problem in an intuitively plausible man-ner. In particular, the question is which constraints to relax and how to relax them.There are several approaches to constraint relaxation, ranging from theoretical formulationsas in [11, 18] to practical applications as in [5, 9]. All these approaches have in common thatthey attack a given CSP by �nding a solution of a relaxed CSP that di�ers only minimally fromthe original CSP. The di�erence is expressed in terms of a metric.There are various ways to de�ne a metric on a given CSPs, i.e., to state how far a relaxedCSP is from the original CSP and with this how far away the approximate solution is fromthe ideal one. In [15], for example, we have used the concept of penalties. Values not being inthe original constraint relations are marked by natural numbers greater than 0. More recently,fuzzy set theory has been used to capture the idea of constraint relaxation [7, 23].In principle, fuzzy constraint satisfaction provides us with a powerful framework for con-straint relaxation. However, fuzzy constraint satisfaction is also computationally expensive, asit converts a classical constraint satisfaction problem into an optimization problem. Heuristicsearch is an option to cope with the additional complexity.The �eld of constraint satisfaction o�ers a variety of heuristic search methods. This paperinvestigates how heuristic search methods for classical constraint satisfaction can be appliedto fuzzy constraint satisfaction. In particular, the rest of this paper is structured as follows.Section 2 starts with an introduction of the underlying concepts, like fuzzy constraints, fuzzyconstraint networks, �-solutions, etc. Section 3 sketches a branch and bound algorithm forfuzzy CSPs. Sections 6 and 7 discuss heuristics for fuzzy constraint satisfaction. Section 8summarizes the paper.2 Fuzzy ConstraintsTo keep this paper self-contained, we brie
y review in this section the basic concepts of fuzzyconstraint satisfaction as introduced in [14]. These concepts are closely related to the ones in[7], the main idea of which is to ignore constraints in the network, if they can't be satis�ed.Some constraints can be ignored more easily than others. To express how easy it is to ignore aconstraint, each constraint C is associated with a priority degree �C ranging in the scale [0; 1].1� �C then indicates to what extend it is possible to violate C.Given a network of constraints with priorities, an assignment of values (d1; : : : ; dm) to thevariables V1; : : : ; Vm of the constraint network can be associated with some fuzzy membershipgrade. This membership grade is computed from the priorities of the constraints. If a constraintC is not satis�ed by (d1; : : : ; dm), then 1� �C limits the membership grade of the solution.2

Unlike [7], we don't associate a �xed priority with each constraint of the network but de�nea constraint as being more or less satis�ed by some given assignment of values. For example,instead of stating The color of the object is supposed to be red with priority 0.75 and thenreturning a membership grade of 1 if the object is indeed red or 1� 0:75 = 0:25 if the object isnot red, we proceed as follows: There is a constraint The color of the object must be red whichhas the same priority as the other constraints in the networks. However, this constraint may bemore or less satis�ed. If the color of the object is red, then the constraint is satis�ed with degree1; if the color of the object is burgundy, then the constraint might be satis�ed with degree 0.75;if the color is pink, then with degree 0.5; and so on.In other words, a fuzzy constraint network ~N consists of a set of fuzzy variables ~V1; : : : ; ~Vmin the (crisp) domains D1; : : : ;Dm, respectively, and a set of fuzzy constraints ~C1; : : : ; ~Cn, each~Ci (i = 1; : : : ; n) ranging over a subset of ~V1; : : : ; ~Vm. The relation of ~Ci is a fuzzy relation inthe product space of the subset of D1; : : : ;Dm that corresponds to the fuzzy variables of ~Ci.(See [14] for more details.)The main operations performed on the relations represented by a constraint network areunion and intersection: A constraint may be viewed as the union of one-element sets, eachelement in such a set representing a possible choice of values for the variables of the constraint,i.e., an assignment that satis�es the constraint. A constraint network, on the other hand, maybe viewed as the intersection of the relations represented by the constraints of the network.There are several ways to de�ne the intersection and union of fuzzy sets. For the reasonsdiscussed in [14], we adopted the original min/max combination scheme [25] for combiningfuzzy constraint relations, i.e., for de�ning the relation that is represented by a fuzzy constraintnetwork. The heuristics introduced in this paper assume that the min/max combination schemeis used.In most cases, we are not interested in computing the entire relation represented by a fuzzyconstraint network, but want to obtain an element of this relation whose membership grade isbeyond a certain threshold �. Such an element is called an �-solution of the fuzzy constraintnetwork.During the recent years, a great diversity of methods has been developed for solving tradi-tional CSPs. They can generally be divided into two broad categories:1. Consistency propagation algorithms which attempt to achieve various levels of consistency,progressing from local consistency to eventual network consistency (see, for example, [19]and follow-up papers).2. Constructive heuristic search methods. These are commonly grounded in a basic backtrack(BT) search and enhanced by strategies for making choices about forward or backwardmoves, avoiding redundant checking, or ordering variables or values in a way that mightexpedite search (see, for example, [22]).In the following sections, we will look at some of these methods. In particular, we willaddress variable and value ordering heuristics, forward checking as an example of a strategyfor making forward moves, and arc consistency as an example of a consistency propagationalgorithm.
3

3 BacktrackingWe will start our discussion of constructive heuristic search methods with a review of thebasic tree search algorithm that underpins many of the heuristically enhanced search processes:backtracking. Backtracking (BT) is an accepted classic algorithm for solving CSP. In BT searchvariables are instantiated one after the other. Each instantiation is validated by performingconsistency checks backwards against the past variables. If no consistent value can be found fora variable, then the previous variable is uninstantiated and a new value sought for that. BTsearch �nds the �rst consistent instantiation of all the variables, if such an instantiation exists,or can be continued to �nd all consistent instantiations.In fuzzy constraint satisfaction consistency is a matter of degree, and it is more than likelythat some level of optimality is sought in the consistency of an acceptable solution. This intro-duces major variations to BT search. Searching must continue after a consistent instantiation isfound, if the solution is not `good enough'. However, some savings can be made in any continuedsearch by pruning search paths that are provably no better than the current best instantiation.This is in fact the common optimization technique branch and bound (B&B). Freuder [13]adopted B&B as a natural choice in seeking an analogue of backtracking to �nd optimal solutionsfor partial CSPs. Ruttkay [23] suggests that in constructing solutions for fuzzy CSP heuristic,BT search can be replaced by B&B search.B&B search operates in the same way as BT search with the two variations previouslymentioned. The best solution so far is recorded, and a search path is abandoned when it isclear that it cannot lead to a better solution. Search stops when all search paths have beeneither explored or abandoned, or when a perfect solution has been found. In the case of fuzzyconstraint satisfaction a perfect solution would be a 1-solution. Search beyond this would bepointless as no better solution can exist. Thus the algorithm de�nes a depth �rst search, withchronological BT whenever any search path cannot improve on the best solution found so far.Empirical tests have shown that pure chronological BT isn't a feasible approach to solvingreal-world CSPs, and therefore many di�erent heuristics have at various times been combinedwith BT search to provide better solution methods for CSPs. We will address some of themin the following sections. A more detailed description of heuristic search methods for fuzzyconstraint satisfaction can be found elsewhere [21].4 Variable Ordering HeuristicsIt is generally accepted that the order in which variables are instantiated can have a tremendousimpact on the size of the search space a backtrack search will explore. The problem of �nding avariable ordering that minimizes the search space is very di�cult, so most research in this areahas been aimed at developing heuristics which reduce the search space.In this section, we will look �rst at some of the variable ordering heuristics which have beendeveloped and tested in the area of classical constraint satisfaction, as they are a good startingpoints in the development of e�ective variable ordering heuristics for fuzzy constraint solutionmethods. Then we will consider how they can be transferred from classical to fuzzy constraintsatisfaction.
4

4.1 Variable Ordering Heuristics for Classical CSPsA considerable amount of research exists on variable ordering heuristics for classical CSPs. Manyof these are based on the general idea of instantiating the most di�cult or constrained variables�rst. This is justi�ed by the fact that searching �rst in the most di�cult parts of the searchspace helps to make the failures appear early in the search. Giving less constrained variablevalues �rst can result in costly backtracking when failure due to the constrained variable isdiscovered late in the search.Variable ordering methods can be either static or dynamic. Static ordering methods ordervariables before the search starts. This has the advantage that no overhead during search isrequired. The disadvantage is, of course, that the orderings do not re
ect the changing situationas search progresses. Dynamic variable ordering heuristics overcome this problem by applyingthe selection methods during the search process, selecting the next variable to instantiate onsome basis that takes into account the current state of the search. Dynamic variable orderingmethods can add varying degrees of overhead to the search process.Both static and dynamic variable ordering heuristics have been developed. The followingare some of commonly applied variable ordering methods:Minimum width is a static ordering heuristic based on the connectivity of the network. Theheuristic is applied in a preprocessing phase to achieve an ordered list of variables. The list ofvariables is built from last to �rst by selecting at each stage a variable which has minimal degreein the subgraph restricted to unselected variables. This selection process results in a minimumwidth ordering. See [10] for details.Maximum degree is also a static ordering heuristic which uses the connectivity of the net-work. Maximum degree aims at a minimum width ordering. Though it may not necessarilyachieve such an ordering, it does less work than the minimum width heuristic. Variables aresimply ordered in decreasing order according to their degree (or connectivity) in the constraintgraph. See [24] for details.Maximum cardinality is used in a preprocessing phase to achieve a static ordering. Maxi-mum cardinality also exploits connectivity but in a rather di�erent way to minimum width andmaximum degree. Variables are selected on the basis of their connections with already selectedvariables. The �rst variable is selected randomly. Subsequently, a variable is selected if it isconnected to the largest set of already selected variables. See [3] for details.Depth �rst search generates a depth �rst search ordering by a depth �rst traversal of theconstraint graph. The advantage of using such an ordering occurs when search fails and mustbacktrack. A depth �rst search ordering ensures that the node backtracked to shares a constraintrelation with the node where search has failed. See [3] for details.Dynamic search rearrangement is, as the name suggests, a dynamic ordering strategy.It is a look ahead scheme which selects as the variable to be instantiated next, the one whichhas the minimal number of values consistent with the current partial solution. The look-aheadrequired to make this choice could involve considerable overhead, as it necessitates �ltering5

from the domain of all uninstantiated variables any values not consistent with the currentpartial solution. See [17] for details.4.2 Variable Ordering Heuristics for Fuzzy CSPsThe idea behind variable ordering heuristics in a crisp domain transfer directly to a fuzzydomain. To avoid the need to backtrack, the search should attempt to instantiate the most con-strained, or most restricting variables �rst. Some variations on the de�nition of most restricting,however, may be worth considering for a fuzzy domain.Grade greater than lower bound is a variation that only counts values with a membershipgrade greater than some current lower bound. Sharing a constraint relation with a large numberof other variables still makes a variable restricting, as does the availability of few values for thevariable. However, domain size ordering of variables in a fuzzy environment should not considera value if its membership grade is below the current lower bound. The same applies if dynamicsearch rearrangement is transferred to a fuzzy network. The next variable to be instantiatedwould be the one with the smallest number of values, with consistency greater than the currentlower bound, which are consistent with the current partial solution.Sum of satisfaction ratings is an entirely di�erent alternative [23]. It de�nes the di�cultyof a variable as the sum of the best possible satisfaction ratings for each of the values in thevariable domain. Low sums are an indication of availability of few good values for the variable.Values with maximum consistency less than or equal to the current lower bound can be excludedfrom the summation.Lowest maximum satisfaction rating looks at the variables from a di�erent viewpoint:The most limiting variables are those which limit the upper bound on the consistency of asolution. These are the variables which participate in the constraint with the lowest maximumsatisfaction rating. Instantiating such variables early ensures that search has a realistic measureof the consistency of the solution being built and allows upper bounds to be adjusted right fromthe start. It is also likely that checking variables with less consistent instantiations early in thesearch would increase the chances that the lower bound is reached higher in the search tree, andmore fruitless search is pruned.5 Value Ordering HeuristicsConsiderably fewer heuristics have been applied to the task of ordering the values available forselection within the domain of a variable. Dechter and Pearl [4] suggest this is partly because if aBT search for all solutions is being performed, the search tree produced is invariant on the valueselection. They point out, however, that the situation di�ers considerably if only one solutionis required. In this case the ordering in which values are selected can have a profound e�ect onthe performance of the algorithm. Dechter and Pearl tested the e�ects of using di�erent levelsof information to order the values for selection. They found out that more bene�t was obtainedfrom a fairly weak level of look-ahead. 6

5.1 Value Ordering Heuristics for Fuzzy CSPsValue ordering in a fuzzy domain may not necessarily have the same aims as value orderingin crisp CSPs. It is true that maximizing future options is still a worthwhile goal but it isimportant to remember that fuzzy CSPs are optimization problems. Unlike the values in crispdomains, the fuzzy values that are to be ordered already have in their membership grade a metricindicating their suitability. In solving a fuzzy CSP, the sooner a solution with a consistencyclose to optimality is found, the more the search space is able to be pruned. This means thatvalues are to be ordered according to some measure of their contribution to the optimality of asolution. This can be done either statically or dynamically.Static maximum consistency �ts in very well with consistency �ltering [7]. After a fuzzyconstraint network has been �ltered for local consistency, the membership grade attached toeach value in a variable domain is the consistency obtained with that value from the best possiblesatisfaction of the individual constraints referring to that variable. Ordering values accordingto this measure therefore requires no extra work if the network has been �ltered to a locallyconsistent state. Values can simply be selected in reducing order of their membership grade.This method provides a static ordering of values before search commences.Dynamic maximum consistency is a variant of the previous heuristic. In some searchsituations it may make more sense to order values only when the variable is about to be instan-tiated. This would have the advantage of tailoring the ordering to the partial solution alreadyinstantiated, but is only of bene�t if the domains themselves change during the search process.Such a situation occurs if, for example, a forward checking heuristic [22] is being used. Againordering by decreasing membership grades is sensible as this aims at a best solution �rst.It is worth noting, however, that there may be some situations in which ordering values forselection is of no bene�t. For example, if there exists an partial �-solution, all values in thedomain of any uninstantiated variables whose membership grades are greater than � are equal.The grade of the partial solution cannot be increased beyond �, so value ordering can onlysensibly be applied to values which are known to a�ect the grade of the solution, i.e., those witha maximum possible grade less than �.The domain membership grade only provides information about the best possible satisfactionlevel. Nothing is known about the range of membership grades available and how they varyfrom this maximum. If this situation proves to be common, a heuristic incorporating a littlemore information about range and variance might be useful. Two obvious possibilities are:Sum of grades orders values according to the sum of the membership grades obtainable fromeach constraint in which the variable participates, i.e., sums the grades associated with everytuple which includes the value in any particular constraint and minimizes the sum over all ofthe constraints by which the variable is restricted.Average satisfaction rating uses the average of the membership grades that result fromchecking the constraints (rather than the best possible).
7

Both these heuristics, however, do have disadvantages. Sum of grades, while giving someindication of the choice of future instantiations available, risks drowning quality with quantity.If, for example, optimality is an important aim, six possibilities each with grades of 0.1 areprobably not considered equal to one at 0.6. Both methods also incur extra overheads whichwould require justi�cation by an improvement in search performance.In conclusion, while value ordering heuristics may not have been widely applied in eitherthe domain of crisp CSP or combinatorial optimization problems, they certainly warrant inves-tigation in devising solution methods for fuzzy CSP. Early discovery of solutions with are closeto optimal membership grades is in
uenced by the order in which values are selected. Suchearly optimality is e�ective in both pruning the search space and in providing relatively goodsolutions early if search is constrained by time.6 Forward CheckingAnother way of pruning the search space, and with that avoiding unnecessary backtracking,is forward checking [17], which has been shown to be a particularly successful heuristic. Mostempirical studies of constructive heuristic search in constraint satisfaction credit this heuristicwith being the most e�ective [12, 22].FC performs a consistency check each time a variable is instantiated. When a variable Viis to be instantiated with a value di, the algorithm looks at all the uninstantiated variableswhich share a constraint with Vi and removes from their domains any values inconsistent withdi. If, in removing these values from the domain of some other variable Vj , the domain becomesempty, this signals the futility of extending the solution with this instantiation. Any changesmade to domains by forward checking must then be retracted, and a new instantiation for Vican be tried.The strategy of early identi�cation of fruitless search paths by �ltering the domains ofuninstantiated variables can be applied equally well to fuzzy CSPs. Freuder and Wallace [13]suggest that prospective techniques like forward checking combine well with branch and boundsearch. They provide a method of discovering the implications of proceeding from the currentsearch point, and thus increase the pruning potential of the branch and bound strategy. Thedi�erence in a fuzzy environment arises from the fact that the domain we are �ltering is a fuzzyrather than a crisp set. In �ltering a crisp set of values, a value is either consistent and canremain in the set, or is inconsistent and can be deleted. Filtering a fuzzy set, however, can alterthe membership grade associated with a value by reducing it. If the membership grade reducesto less than or equal to the current lower bound there is no point retaining that value in theset, as it cannot participate in an improved solution.Figure 1 sketches a forward checking algorithm for fuzzy CSPs.1 Whenever BT has instanti-ated a fuzzy variable ~Vi with a fuzzy value hdi; �(di)i, forward check is applied to any uninstanti-ated variable ~Vj . forward check(~Vi; ~Vj ; di) performs the �ltering of the fuzzy domain of ~Vj basedon the instantiation ~Vi hdi; �(di)i. If there exists a constraint between ~Vi and ~Vj then themembership grades of all values in ~Dj are altered to re
ect the instantiation ~Vi hdi; �(di)i.Any values whose membership grades become less than or equal to some given lower bound aredeleted from the domain. To permit backtracking, FC must also maintain a record, restricted i,1For simplicity, we restrict ourselves here to binary constraint networks. This restriction isn't necessary ingeneral. 8

forward check(~Vi; ~Vj ; di)if constraint exists(~Vi; ~Vj)new ~Dj ;domain changed falsefor each dj 2 Dj donew grade constraint check(~Vi; ~Vj ; di; dj)if new grade < �(dj)domain changed trueif new grade > lower boundnew ~Dj new ~Dj [fhdj ;new gradeigif domain changedrestricted i restricted i [f ~Vjg~Dj new ~Djreturn ~Dj 6= ;else return true Figure 1: Forward checking in fuzzy CSPs.indicating which domains forward checking ~Vi has altered. If the domain of ~Vj is altered in anyway by forward check(~Vi; ~Vj ; di) then ~Vj is added to restricted i.7 Arc ConsistencyForward checking can be taken a step further by applying it iteratively. As a result, we obtaina constraint network which is arc consistent, i.e., in which the domains of each pair of variablesare consistent with the constraint between the variables.Mackworth [19] proposed several algorithms, one of which is AC3, to transform constraintnetworks into arc consistent constraint networks. Since then, a considerable amount of researchhas been devoted to improving Mackworth's algorithms. Mohr and Henderson [20] developedAC4 which improves on the worst case performance of AC3, though in fact often does worse inthe average case. AC5 [6] achieves improvements for special classes of constraints, and AC6 [2]combines the optimal worst case behavior of AC4 and an average case behavior improved fromAC3. Most recently Freuder [12] has reduced constraint checks by using meta level knowledge toinfer support. He formulates a general arc consistency algorithm, AC7, which does not dependon the special properties of a limited class of constraints.Dubois et al. [8] adapted the AC3 algorithm to a fuzzy domain. Their algorithm, calledFAC3, su�ers from the same redundancies as AC3, and should be amenable to the same sortsof improvements apparent in AC4, AC6, and AC7. There is, however, one major di�erencewhich makes support-based algorithms like AC6 and AC7 less appropriate for transfer to afuzzy environment. Both these algorithms stop checking as soon as they �nd support for avalue, and only look for more support if the original support is deleted. This methodology doesnot transfer to a fuzzy environment because, to achieve a consistency grade which re
ects themaximum achievable for any value in a fuzzy domain, every consistent pair must be checked.Figure 2 displays a new fuzzy arc consistency algorithm which is proposed as an alternativeto FAC3. The aim in developing the algorithm is to incorporate some of the savings in constraintchecks achieved in AC4{7, but bearing in mind the need to check every pair with consistency9

new FAC(~N)Q set of all constraints in ~Nwhile Q 6= ;~Cij next(Q)new ~Di ;new ~Dj ;for each tuple (x; y) 2 Cij�(x; y) minf�(x); �(y); �(x; y)gif �(x; y) < lower bounddelete (x; y) from ~Cijelsenew ~Di new ~Di [fhx; �(x)ignew ~Dj new ~Dj [fhy; �(y)igif new ~Di 6= ~DiQ Q [all constraints involving i~Di new ~Diif new ~Dj 6= ~DjQ Q [all constraints involving j~Dj new ~DjFigure 2: New fuzzy arc consistency algorithm.greater than the lower bound, and without adding large and complex data structures to keeptrack of information.The algorithm is successful by using �rst upward then downward propagation of consistencyvalues. The information that needs to be recalled is stored by updating the explicit representa-tion of the constraint, rather than introducing separate structures to store it. Tuples that havetheir consistency grade reduced to less than the lower bound are deleted and do not need tobe reconsidered if the constraint is reconsidered because of changes elsewhere. The algorithmbuilds new domains rather than updating the existing ones for two reasons:1. This allows each checked value to be incorporated as a fuzzy union operation in a straight-forward way and leaves the initial unary relations unchanged and available for intersectionwith subsequent tuples involving the same values.2. The fuzzy union operation itself requires less work if it starts with an empty set.The algorithm provides some de�nite advantages over the fuzzy version of the AC3 algorithm.One of the advantages is bidirectionality. As with AC7, this algorithm makes the property ofundirectedness explicit. Both domains are updated after each constraint check. The algorithmtherefore does not perform the redundant constraint check that FAC3 does to update the seconddomain. This reduces the constraint checks performed by at least half.Another advantage lies in how the consistency checks are performed. As each constraint is asubset of the Cartesian product of the variable domains, the algorithm can save other constraintchecks also. By looking up each tuple of the constraint, it does at worst the same amount ofwork as the other algorithms which look up every combination of the domain values. If theconstraints are more restrictive than the domains, it may however do considerably less work.Domain values unsupported by the constraint relation are never checked at all.10

8 ConclusionIn the �rst part of this paper, we brie
y introduced a framework for fuzzy constraint satisfaction,which provides a general basis for fuzzy constraint satisfaction algorithms. This framework hasalso been applied in the area of spatial and temporal reasoning. In particular, we applied it toAllen's temporal logic [1] for reasoning about fuzzy spatial and temporal relations. This workis described elsewhere [16].In the second part of the paper, we discussed some heuristics for solving fuzzy CSPs. Weselected those heuristics that are among the most promising ones. In particular, we presentedvariable and value ordering heuristics, forward checking, and arc consistency in the context offuzzy constraint networks.We implemented all heuristics in a Lisp environment and tested them with several fuzzyconstraint satisfaction problems [21]. As with the tests in [22], our tests are not exhaustive andallow for further research.AcknowledgementsPart of this work was supported by the University of Auckland Research Fund under the grantnumber A18/XXXXX/62090/F3414025. Many thanks to Peter Gibbons for his comments onan earlier version of this paper.References[1] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,26:832{843, 1983.[2] M. Cordier and C. Bessiere. Arc consistency and arc consistency again. In Proc. AAAI-93,pages 108{113, Washington, DC, 1993.[3] R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms for constraintsatisfaction problems. Arti�cial Intelligence, 68:211{241, 1994.[4] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems.Arti�cial Intelligence, 34:1{38, 1987.[5] Y. Descotte and J.C. Latombe. Making compromises among antagonist constraints in aplanner. Arti�cial Intelligence, 27:183{217, 1985.[6] Y. Deville and P. van Hentenryck. An e�cient arc consistency algorithm for a class of cspproblems. In Proc. IJCAI-91, pages 325{330, Sidney, Australia, 1991.[7] D. Dubois, H. Fargier, and H. Prade. Propagation and satisfaction of
exible constraints.Rapport IRIT/92-59-R, IRIT, Toulouse Cedex, France, 1992.[8] D. Dubois, H. Fargier, and H. Prade. Propagation et satisfaction de constraintes
exibles.In R.R. Yager and L. Zadeh, editors, Fuzzy Sets, Neural Networks and Soft Computing.Kluwer, Dordrecht, The Netherlands, 1993.11

[9] B.N. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint solver.Communications of the ACM, 33:54{63, 1990.[10] E.C. Freuder. A su�cient condition for backtrack-free search. Journal of the ACM, 29:24{32, 1982.[11] E.C. Freuder. Partial constraint satisfaction. In Proc. IJCAI-89, pages 278{283, Detroit,Michigan, 1989.[12] E.C. Freuder. Using metalevel constraint knowledge to reduce constraint checking. In Proc.ECAI-94 Workshop on Constraint Processing, pages 27{33, Amsterdam, The Netherlands,1994.[13] E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Arti�cial Intelligence,58:21{70, 1992.[14] H.W. Guesgen. A formal framework for weak constraint satisfaction based on fuzzy sets.In Proc. ANZIIS-94, pages 199{203, Brisbane, Australia, 1994.[15] H.W. Guesgen and J. Hertzberg. A constraint-based approach to spatiotemporal reasoning.Applied Intelligence (Special Issue on Applications of Temporal Models), 3:71{90, 1993.[16] H.W. Guesgen, J. Hertzberg, and A. Philpott. Towards implementing fuzzy Allen relations.In Proc. ECAI-94 Workshop on Spatial and Temporal Reasoning, pages 49{55, Amsterdam,The Netherlands, 1994.[17] R.M. Haralick and G.L. Elliott. Increasing tree search e�ciency for constraint satisfactionproblems. Arti�cial Intelligence, 14:263{313, 1980.[18] J. Hertzberg, H.W. Guesgen, A. Vo�, M. Fidelak, and H. Vo�. Relaxing constraint networksto resolve inconsistencies. In Proc. GWAI-88, pages 61{65, Eringerfeld, Germany, 1988.[19] A.K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence, 8:99{118,1977.[20] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Arti�cial Intelligence,28:225{233, 1986.[21] A. Philpott. Fuzzy constraint satisfaction. Master's thesis, University of Auckland, Auck-land, New Zealand, 1995.[22] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. ComputationalIntelligence, 9:268{299, 1993.[23] Z. Ruttkay. Fuzzy constraint satisfaction. In Proc. FUZZ-IEEE'94, Orlando, Florida, 1994.[24] H.S. Stone and J.M. Stone. E�cient search techniques: An empirical study of the n-queens problem. Technical Report RC 12057 (#54343), IBM T.J. Watson Research Center,Yorktown Heights, New York, 1986.[25] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338{353, 1965.12

