
When Virtual Memory Isn't EnoughComputer Science Report No. 136Clark D. ThomborsonComputer Science DepartmentUniversity of AucklandPrivate Bag 92019, AucklandNew Zealandcthombor@cs.auckland.ac.nzNovember 14, 1996AbstractVirtual memory, even on the largest and fastest contemporary comput-ers, is neither large enough nor fast enough for all applications. Some datastructures must be held in the �le system, and some \performance hints"must be given to the memory-management runtime routines. For these rea-sons, most large-memory application codes are littered with system-speci�cnames, constants, �le-migration policies, pragmas and hints. Such codes arevery di�cult to develop, maintain, and port.I propose a new paradigm for the design of large-memory codes, provid-ing many of the performance advantages and few of the drawbacks of system-speci�c coding techniques. In my paradigm, programmers must organizetheir data structures into a series of (nesting) data blocks, with blocksizesBh increasing in a fractal (power-law) progression Bh = RB�h�1; B1 = 1.Furthermore, the larger blocks must be referenced much less frequently thanthe smaller blocks. I argue that e�cient algorithms for several importantproblems on workstations and PCs are found at � � 3=2 and R = 8. Isketch a model of memory performance that explains why non-hierarchicallarge-memory codes require system-speci�c tuning for e�cient execution.1 IntroductionMost algorithmic theorists, computer architects, compiler designers, andperformance programmers are aware that memory latency and bandwidthare very important issues. The main di�culty, from a theorist's point ofview, is to �nd an appropriate model for the study of these issues. Themodel must be analytically tractable and widely applicable.From the practitioner's point of view, it would be helpful to have a sim-ple model to guide the design and use of existing and future computers. Thetheorist can guide the practitioner by pointing out the algorithmic implica-tions of design choices, i.e. demonstrating an intrinsic latency or bandwidthbottleneck in an architecture, with a proof that no algorithm for some in-teresting problem can run e�ciently on this architecture. The practitioners1

can guide the theoreticians toward an appropriate model, i.e. by pointingout the most common bottlenecks in existing systems. If these bottleneckscan not be observed in a theoretician's model, then clearly this model isinappropriate for studying performance of existing systems.The four-parameter model for memory performance proposed in this pa-per is greatly inuenced by previous research into hierarchical memory. Mymodel is, for the most part, a reparameterization of a subset of the systemsthat can be described by the Uniform Memory Hierarchy (UMH) of Alpern,Carter, Feig and Selker [3] and its parallelization[9]. Most importantly, Ido not allow latency to be an arbitrary function of the address. Instead, Irequire latency to be a power function. This allows me to write a compactdescription of the latency requirements of an algorithm, as a constraint onthe exponent � appearing in the latency function of the architecture.The UMHmodels discussed by Alpern et al. have only singly-exponentialgrowth in their memory capacities, corresponding to the limiting case of thelayer capacity parameter � = 1 in my model. My analysis indicates that� = 1 is only appropriate for memory architectures which are optimizedfor large-blocked computations such as matrix-matrix multiplication. Manyimportant computational problems, notably hash-table lookups and datastreaming from I/O devices, require an architecture with � > 1 for e�ciency.Note: the capacity Ch of the h-th layer of memory, in my model, is Ch =RC�h�1 with C1 = R. This recurrence dictates doubly-exponential growthin layer capacity for � > 1, but only singly-exponential growth for � = 1.Memory systems with � > 1 are thus quite \at," and therefore more suitedfor hashing, by comparison with those described by � = 1.I am aware of simpler but still very interesting models, such as the Hi-erarchical Memory Model (HMM) of Aggarwal, Alpern, Chandra and Snir[1] or the Block Transfer (BT) model of Aggarwal, Chandra and Snir [2].Indeed, the HMM model is a limiting case (� = 1, R = 2) of my LMH model;as indicated above, I believe it important to study systems with � > 1. Also,the scaling factor R should be 4 or 8, not 2 as in the HMM, in the computersystems I have analyzed. Similarly, the BT model is an unrealistic, limit-ing case, requiring = 0 in my model to give constant bandwidths acrossthe memory hierarchy. Bandwidths in real-world computer systems fall o�dramatically as one moves to higher addresses. For example, disk-DRAMbandwidths are a very small fraction of register-cache bandwidths in all con-temporary machines. I have found that a power law with exponent = 1=3is a good �t to the memory layer bandwidths in desktop machines.In summary, because I believe in the importance of the and � pa-rameters on algorithmic and system design, I am unwilling to work withinexisting models.There is a large body of work on two-level memory hierarchies, mostnotably a classic paper by Floyd [4], and recent publications by Vitter andShriver [8] and Vengro� [7]. In my view, such models are very useful whentuning codes to speci�c systems. They are also very helpful in exposing therelationships between latency, bandwidth, and capacity at a known bottle-neck in the memory hierarchy, such as the one between DRAM and diskon most contemporary systems. However, in my experience, algorithmsdesigned for two-level hierarchies can perform very poorly when executed2

under unexpected conditions, for example when given a small allocation ofDRAM. By contrast, algorithms designed for a multi-layer hierarchy can bemore graceful in their performance degradation on heavily-loaded systems.Indeed, this is one of the major goals of my research: to give a framework foralgorithmic design that is relatively insensitive to the exact values of systemperformance parameters. Or, to state the converse, I seek a small set ofsystem performance parameters such that, given approximate informationabout their values, I can design e�cient algorithms.The memory model proposed in this paper may be viewed as an exten-sion of Thiebaut's analytic model of cache behavior [5]. Thiebaut's modelis designed to predict cache miss rates from synthetic address traces, with-out the need for simulating the contents of cache. The address traces inThiebaut's model are modeled by a fractal process. Appropriate parame-ters for Thiebaut's fractal process are determined by best-�t approximationto a few observations of actual program behavior. The address-generatingprocess in Thiebaut's model has just one fractal dimension, describing bothits spatial and temporal locality.My memory model, in contrast, is given appropriate parameters by ob-serving the latency and bandwidth available at various memory layers inexisting systems. The address-generating process in my model has twofractal dimensions, � and , allowing temporal locality to be distinguishedfrom spatial locality. (Essentially, the distinction is between latency-limitedcomputations such as hashing, and bandwidth-limited ones such as matrix-matrix multiplication.) I am not aware of any prior work on analytic memorymodelling that makes this distinction.2 Motivation and BackgroundOver the past �ve years, I have been involved in the development, mainte-nance, and performance-enhancement of several large-memory codes. Oneof my goals in writing this paper is to start the process of translating my\practical" experience into a \theoretical" model of computer performance.Thus I believe it appropriate for me to outline my practical experience togive you, the reader, a sense of the types of bottlenecks and systems I amendeavoring to model in this paper.Some of my practical work was in the private sector. For example, Iworked on the memory-management routines of a PostScript interpreter fora wide-bed color printer manufactured by LaserMaster Inc. of Minnesota,USA. An uncompressed page image could require more than 500 MB, de-pending upon its dimension and color depth. Our interpreter was runningon a PC with only 64 MB of RAM. One of my tasks was to determinewhether its memory-management could be modi�ed so that the interpreterwould run e�ciently on a PC with 32 MB of RAM.As another example, with Larry Carter and Bowen Alpern of the IBMTJ Watson Research Laboratory, I developed a code for computing rec-tilinear Steiner minimal trees on k < 24 pins using the Dreyfus-Wagnerrecurrence[6]. Before storage optimization and data compression, our datastructures required 2k22k�1 16-bit integer words. For k = 23, this is 4.5 GB,or slightly more than the 32-bit addressing limit of the workstations (and3

most supercomputers) available until very recently.In reecting on my experience with large-memory codes, I have come toa number of conclusions, listed below.� No contemporary virtual memory system is large enough to satisfy allprogrammers. For some applications, we must construct data struc-tures that, even in compressed format, would greatly exceed the sizeof our paging disk. Indeed, we sometimes use data compression tech-niques to build data structures that, if decompressed, would overowall our �le systems. Thus even if we are willing to memory-map �lesinto our virtual memory system, using system-speci�c coding tech-niques, we may not have enough room in virtual memory for all ourdata structures.� Without careful design and implementation, large-memory codes tendto run at the speed of the paging device, i.e. one data reference every10 milliseconds.� The best way to avoid latency bottlenecks is to access data blockwise.The blocks must be large (64 KB) if the data structure will not beRAM-resident. The blocks must be very large (1 MB) if the datastructure is too large to �t on a local disk.� Some computational problems (e.g. hashing) are intrinsically latency-bottlenecked. To obtain good performance on large instances of suchproblems, you must organize your data by frequency-of-reference. Thevirtual memory manager will do some, but by no means all, of thisorganization for you.� Large-memory codes are rarely CPU-bottlenecked, unless they are verycarefully designed.� Data compression can increase the performance of codes, essentially bytrading CPU cycles for capacity in the critical memory resource. Thecritical memory resource is the layer (usually DRAM in contemporarysystems) just inside the latency or bandwidth bottleneck.� It is a poor idea to add data compression to a code before you knowits performance bottleneck on a given system.� If you know approximate values for just four system- and load-speci�cparameters for any uniprocessor workstation or PC, you can designe�cient large-memory codes for that system.The purpose of this paper is to explain, and justify, the last of the asser-tions listed above, that the value of four memory performance parametersare indeed enough to support e�cient coding practice on uniprocessor ma-chines. The current state of the art in performance programming is, in myexperience, quite far from this. Every code I have inspected, and all that Ihave written myself, contains dozens of system-speci�c parameters or codingtricks. All tricks and parameter values must be analyzed, and most seem torequire revision, every time the code is ported to a new system, or tuned toa new system con�guration. 4

In future research, I plan to address the multiprocessor case. I believethat a performance model with a small number of parameters (perhaps �ve)will cover most small-scale multiprocessing systems of commercial impor-tance, as soon as the design of such systems has \converged" su�ciently tosupport non-system-speci�c performance programming. Massively-parallelcomputation may also, someday soon, admit simple, generic performancemodels.Computation on uniprocessor desktop systems is at a very interestingjuncture. Memory system architecture on these systems has converged tothe point that, at least in theory, it is possible to write portable, high-performance, large-memory codes. My aim in this paper is to bring thistheory closer to practice.3 Existing Paradigms for Large-Memory Coding(Readers familiar with the problems involved in writing large-memory codesfor computers with hierarchical memory may wish to skip ahead to the nextsection.)I know of two paradigms for developing large-memory codes. The mostcommon paradigm is to make an assumption about the amount of RAMthat will be available at runtime, then write explicit �le accesses and bu�er-management routines that stay within the assumed RAM budget. Thisparadigm tends to lead to complex codes with deeply-embedded assumptionsabout RAM size and �le system speed.The second paradigm for large-memory codes is to assume that the vir-tual memory system is adequate to the task, within certain limits. Thetrick is to write codes that stay within these limits. A successful second-paradigm code achieves adequate performance without spilling any of itsdata structures into the �le system.In a simplistic example of second-paradigm coding, a programmer mightdeclare a 100000 � 100000 array of oating point numbers. A C-languageinner loop that forms a dot product on two rows of this array will run withmarginally-acceptable e�ciency on most workstations or PCs, due to thepredictive and blocking properties of most virtual memory systems. In theworst case, both rows are not resident in RAM, but they can be fetched intoRAM from the paging disk within a few tens of milliseconds. The computa-tion will thus proceed at approximately the peak bandwidth of the pagingdisk, typically 1{2 megabytes/second on a desktop computer, or about 105inner-loop operands per second. Because a modern CPU can complete onlyabout 108 inner-loop operations per second even if its operands are not de-layed, a simple large-memory code based on the second paradigm will run at0.1% CPU utilization. For many applications, this is more than adequate,but sometimes greater performance is required.Simple second-paradigm codes have the advantage of portability. Be-cause most virtual-memory systems make similar policy decisions aboutwhen to migrate a page from RAM to disk, second-paradigm codes often(but not always) run faster on higher-performance systems. For example, acomputer with a 10 MB/second paging device would run the code of the pre-vious paragraph with a 10-fold speedup over a computer with a 1 MB/second5

paging device.Second-paradigm code becomes problematic when the data structuresbecome too large. Traditional implementations of virtual memory becomeexpensive, and tend to become much slower, when their capacity is in-creased. At the present time, I believe the largest commercially-availablevirtual memory system is limited to 14 GB, in Digital Equipment Corpora-tion's VLM64 technology for their mainframe/database product line. Thisindeed provides a lot of space for a data structure, however it is not a desktoptechnology.If your desktop �le system is hierarchical, i.e. a 10 GB disk backed by a100 GB tape, then at least in principle you should be able to write a simplecode for a linear-time computation that builds a 50 GB data structure.This 50 GB computation need never even spill to tape if you can devise acompression algorithm that acheives at least 5:1 compression on the diskimages of your data structures.Regrettably, I know of no API that provides a standardized method ofcalling a special-purpose data compression algorithm whenever a block ofdata pages in RAM is ushed to disk. Some disk and tape drives providegeneral-purpose data compression routines, but in my experience these arerarely competitive, on non-textual data, with fairly straightforward special-purpose routines. When writing code in C/C++ under Unix-like operatingsystems, you could install signal handlers that call data compressors anddecompressors during page faults. This is a �rst-paradigm coding trick:rather non-portable, and certainly non-standard.For economic and practical reasons, then, you are forced into the �rstparadigm (of using the �le system and possibly special-purpose data com-pression routines) if you want to write codes accessing data structures largerthan your disk.Another major di�culty with second-paradigm codes arises when theyare pushed to their performance limit. The simple dot-product code outlinedpreviously in this section would run r times faster if each row is used r times(on average) in an inner-loop execution before it migrates back out to disk.The easiest way to increase the RAM-use factor r for a second-paradigm codeis to run it on a system with enough RAM to hold all the most-commonly-referenced data structures. In our example, the data structure is a 105 �105 array, or approximately a hundred gigabytes. No contemporary systemhas this much RAM. In general, large-memory codes must be designed toachieve a high RAM-use factor r when only a miniscule fraction of theirdata structures are RAM-resident. Sometimes this is trivial to arrange,sometimes it is di�cult, and sometimes it is impossible.I invite you to consider the problem of trying to write an e�cient second-paradigm code for the problem of calculating the sum s of a �xed subsetof all possible inner-products of rows of a matrix x with 105 rows and 105columns. For the moment, let us assume that you have managed to obtainaccess to a system providing more than 100 GB of virtual address space, sothat it is not necessary to use �rst-paradigm (�le-system) coding techniques.In algebraic notation, s is de�ned by a triple summation,s = X1�i�105 Xj2f(i) X1�k�105 xikxjk (1)6

Note: this triple summation is computationally similar to the kernelof the Dreyfus-Wagner method for rectilinear Steiner tree minimization,although the basic operation of the Dreyfus-Wagner computation is de�nedwith (ADD, MIN) as ring operations rather than the (MUL, ADD) suggestedby the notation of Equation 1. The set-valued function f(i) de�nes theindices j of the rows that should be combined, by dot-product, with row i.For concreteness, let us assume thatjf(i)j = 500 8i (2)Under this assumption, each row xi� appears as left-hand operand in exactly500 inner products of the formP1�k�105 xikxjk. The complete computationthen requires exactly 105 �500 �105 multiply-add steps, or 1013 oating-pointoperations, if performed using (MUL, ADD) on reals. We might hope tocomplete this computation in a couple of weeks (about 105 seconds) on adesktop machine capable of storing 100 GB of data, and capable of runningat 100 MFlop/sec.In naive second-paradigm C-code, we would write a triply-nested loopto compute s. Because C stores arrays in row-major format, it is \obvious"that k should be incremented in the innermost loop. If, instead, i wereincremented in the innermost loop, our code would make stride-105 accessesthrough our 100 GB array. Such a computation would obtain one inner-loop operand per page fault, thus it would run at about one mul-add stepevery 20 milliseconds. This is clearly unacceptable: at a rate of 2 Flop/20milliseconds = 102 Flop/sec, our 1013 Flop computation would take 1011seconds. Your paging device probably wouldn't survive even 105 seconds ofcontinuous operation, and even if it did, I doubt you'd want to wait morethan 108 seconds (a few years) for any single computation to complete.After some reection, then, we might settle on the following design for asecond-paradigm code in the C-language. I will call this the \naive" design.This code would have three nested loops. The outermost loop, iterating oni, would scan the matrix x sequentially by rows. The middle loop, iteratingon j, would scan the matrix x sparsely by rows, entering the inner looponce for each member of f(i). The inner loop would perform a dot-producton two row-vectors of length 105. Unless there is enough RAM to hold theentire matrix x, there is no reuse of the xj� operand: new rows will arrive atthe CPU at the bandwidth of the paging disk. The old rows will be paged-out long before they are referenced again as xj� operands. The xi� operandbehaves di�erently. Each row xi� can be stored in about 1 MB of RAM, andeach element in that row will be reused about once every 105 computationalsteps. The reuse count for the xik elements stored in RAM is thus 500, thecardinality of the set f(i). The reuse count for the xjk elements is close tozero, so this is clearly our bottleneck on contemporary systems.By the arguments above, the inner loop in our naive second-paradigmcode will execute at the rate of the xjk fetches from disk: (1 disk operand/ mul-add) (2 MB / sec) / (8 B / operand) = 0.25 mul-adds per secondon a system with a 2 MB/second paging disk and an 8-byte representationfor oating point numbers. This is 0.5 megaops, or about 0.5% of the 100MFlop/sec peak performance of our typical contemporary machine. A 0.5%7

CPU e�ciency is marginally acceptable for some applications, but in thiscase, our hoped-for ten-day computation would require years to complete.Some, perhaps most, readers of this paper will know an appropriatesecond-paradigm optimization for this example. The usual trick is to makean assumption about the capacity of RAM, then make an appropriate \blockstructure" in our code. For example, it is reasonable to assume that there isroom for a few dozen rows of our matrix x in RAM, that is, that our processwill have a few tens of megabytes of RAM-resident data structures. We canthen e�ciently access x in blocks of, say, c = 10 rows in our outermost loops.The resulting code has the following algebraic form:s = 105=cXu=1 105=cXv=1 cuXi=c(u�1)+1 Xj2g(v;i) 105Xk=1xikxjk (3)where c = 10 (4)and g(v; i) = fj : c(v � 1) + 1 � j � cv)g \ f(i) (5)To achieve computational e�ciency despite low disk bandwidth, we mustarrange our data for optimal reuse in the following sense. Each index-setg(v; i) arising in the computation should have either zero or max(c; 500) = 10members, so that the two innermost summations specify either a no-op or,for some v and i, a computation involving 10k mul-adds on 11 distinct k-vectors. Also, these computations on k-vectors should proceed in blocks of10, that is, we should have g(v; i) = g(v; i+1) for all i not divisible by c. Thethree innermost summations will then specify either a no-op or computationinvolving 100k mul-adds on just 20 distinct k-vectors in RAM. This wouldgive us 100k oating-point operations for every 20k words of data fetchedfrom RAM to disk, if none of the k-vectors were reused across invocationsof the three innermost loops. In fact, some of these operands will be reused;we will reuse the xik operands jf(i)j = 500 times before they migrate backto disk, as long as there is room for 20 k-vectors in RAM. So the reuse factoris very close to 100k=10k = 10.We achieved very close to optimal reuse in our Dreyfus-Wagner compu-tation, for all c simultaneously, by carefully arranging the rows in our array.Note: for arbitrary f() and c, it is di�cult and sometimes even impossibleto obtain high blocking density through computational rearrangement, sothis optimization technique is not always appropriate.As argued above, our revised code for computing s will reuse each inner-loop operand at least ten times before it migrates out to disk, acheivinga ten-fold speedup over our simple second-paradigm code. This is roughly5 megaops, or about 5% of the 100 MFlop/sec peak performance of ourdesktop machine. Our hoped-for ten-day computation will require months.Possibly it will complete, although I wouldn't recommend trying it. I doubtthe paging device on my computer would withstand a few months of contin-uous use. (Would yours? Would you dare to run this code to completion,in order to �nd out?)If we changed the blocking factor in our code to c = 20 instead of c = 10,we might acheive a twenty-fold speedup over our naive code. We must be8

careful, however, not to overrun the available RAM. If there is not room inRAM for forty rows of our matrix, our hoped-for twenty-fold speedup willin fact be a two-fold slowdown, because neither of the two row-operands inthe inner loop will be RAM-resident at the start of the loop.The point I'm trying to make is that tuned second-paradigm codes shouldnot be run on a lightly-con�gured system. Nor should they be run on arobustly-con�gured system that is under an unexpectedly-high multipro-cessing load. Tuned second-paradigm codes tend to perform catastrophicallywhen given insu�cient RAM.A clever second-paradigm programmer would transpose the matrix xbefore forming the sum s. The computation would decompose into the sumof the results of 105 independent computations, one for each column in theoriginal matrix. This optimization is not possible in the Dreyfus-Wagnerrecurrences, due to a sequencing constraint: in these recurrences, the valueof a row xi� is determined by a (simple, but required) computation that isonly possible after some of the inner-products on lower-indexed rows havebeen completed.Even in cases when transposition is possible, a second-paradigm pro-grammer must proceed cautiously. A transposition operation on a hugematrix must make blockwise accesses to the matrix, if it is to run at optimalspeed. This is not terribly di�cult to arrange if you know the pagesize,bandwidth, and latency of the paging device, as well as the amount of RAMallocated to your transposition process [8]. Unfortunately, all these quanti-ties, except the pagesize, are runtime variables depending on system load.Even the pagesize might change if you upgrade your computer.A really clever second-paradigm programmer might write a code thatadjusts its blocking factors to the current state of the virtual memory system.Such a programmer might hope for an operating system that would sendmessages to an application whenever its RAM allocation is changed. I canimagine, although I wouldn't want to implement, a code that respondedappropriately to such messages.Another possibility is to insist on an operating system that will guaran-tee some amount of RAM, and some performance from the paging device, toeach user-level process for its entire lifetime. Such guarantees are not avail-able on most desktop computing systems providing virtual memory, and Iam not sure they ever will be. (Note: most versions of DOS, and the MacOSSystem 7.5 with virtual memory disabled, will guarantee a RAM allocationto a user-level process; the DOS kernel of Windows 3.1, and MacOS 7.5, willallow the foreground process to \hog" most system resources including thepaging device; and most operating systems will guarantee RAM allocationsto device drivers and other protected-mode processes.A �nal possibility is to assume that the problem of tuning, or even writ-ing, second-paradigm codes will be solved by advances in optimizing compil-ers and/or precompiled libraries. There is certainly some merit to this view:at least in principle, each problem in large-memory, high-performance cod-ing need only be solved once. Each solution, once found, could be enshrinedin the library mounted on the systems for which it is appropriate. Clevercompilers, linkers, and runtime switches (to adapt to changes in system load)will surely su�ce for most people, most of the time. But! Someone has to9

�nd the solutions, that is to write the codes, in the �rst place. This paper isaddressed to exactly this problem, that of �nding a robust, general methodfor handling large data structures.4 A New ParadigmNowadays, when I design a large-memory code, my fundamental algorithmictool is recursion, not iteration. This is not because I am a LISP programmer.I would not write a recursion to solve a small-memory problem in linearalgebra. But I do �nd it an easier task to write a single recursive divide-and-conquer subroutine, than to write a deep loop nest for a clever second-paradigm code. And I am willing to insert a few generally-appropriateconstants in my recursive code, instead of trying to write a second-paradigmcode that would adapt to various, and variable, runtime environments.In the previous section, I discussed second-paradigm (virtual-memory,tiled) codes for computing a triple summation s of the forms = X1�i�n Xj2f(i) X1�k�mxikxjk (6)for the case that n = m = 105, given some set-valued f() obeying Equation 2.In my new paradigm, I would declare storage for the matrix x in a pairof recursively-nesting bu�ers. The smallest pair of bu�ers in my structurewould each hold one of the subarray operands in an inner loop kernel. Ona desktop system, a suitable kernel for this problem would bes(u0; v0; k0) = u0+du�1Xu=u0 v0+dv�1Xv=v0 cuXi=c(u�1)+1 Xj2g(v;i) k0+dk�1Xk=k0 xikxjk (7)where g(v; i) is de�ned in Equation 5, and where the tuning parameters c,du, dv, and dk are given appropriate values, typically small integers. Notethat this kernel must be invoked for many di�erent values of u0, v0, and k0,so that all the required inner-products will be taken.Number of registers R. It is impossible to write a good inner loopwithout making some assumption about the number R of CPU registers,so this is one of the four parameters in my model of workstation memory.Nominally, R = 8.Let us assume that each element xij occupies one machine word, andthat the data is optimally arranged for dense computation. This gives meenough information to choose appropriate values for the tuning parametersdiscussed above: du = 1, dv = 1, c = 2, and dk = 1. Each invocation of theresulting kernel would execute c2 = 4 mul-adds on data in �ve CPU registers,namely four entries from x, and one summation variable s. Note that it isinappropriate to evaluate g(v; i) in fully-optimized code for the CPU kernel:the kernel should not be called at all unless jg(v; i)j = c for all i in the rangec(u0� 1) < i � c(u0+ du� 1). A more-general \boundary case" code shouldbe called if 0 < jg(v; i)j < c for any i; such cases will arise, infrequently, ifthe data is very-nearly optimally arranged. During debugging, however, Ido include an evaluation of g() in the kernel. If jg(v; i)j < c, then my kernelcode will issue a message to a debugging trace.10

Capacity parameter �. It is impossible to write a memory-e�cient codewithout considering capacity constraints in all layers. In my model, layer hin the memory hierarchy has capacityCh = RC�h�1 (8)Layer h = 1 is the register layer: C1 = R. Nominally, � = 3=2.Note that I have de�ned C0 = 1 and C�1 = (1=R)1=� . These capacitiesdo not correspond to any layer in memory, but they are useful in theoreticalderivations later in this paper.Layer Name Capacity1 Register 82 Primary cache 1813 Secondary cache 194844 RAM 2.2E+075 Disk 8.1E+116 Tape 5.9E+18Table 1: Layer capacities for R = 8, � = 3=2.Table 1 lists the nominal capacities in my memory hierarchy, in units ofmachine words. The technologically-aware reader will note that my nominalregister and cache capacities are conservative estimates of the space that willbe available to any running process on any workstation. At the time of thiswriting (late 1996), however, my nominal RAM capacity is not available toprocesses running on lightly-con�gured or heavily-loaded desktop systems.If you want to design code that will run well on such a system, I suggest youdesign somewhat more conservatively. For example, at � = 1:4 and R = 8,the RAM capacity in my model drops dramatically, to C4 = 2:5 Mwords.(Of course, only highly-local algorithms will run e�ciently if given such asmall RAM footprint.)My nominal model is also slightly futuristic with respect to disk capaci-ties. Most desktop systems in late 1996 can provide only 109 words of diskspace to a running process, not the 0:81 � 1012 words asserted in Table 1.Furthermore, somewhat less than 108 words is available in virtual memoryon most systems, as typically con�gured; larger memory footprints wouldhave to be \simulated" with some sort of API that \extends" virtual mem-ory into the disk-based �le system and even to a tape library, if present.Such an API is currently under development in my research group.Readers who are familiar with exact models of cache and RAM sizes willno doubt be dismayed by the inaccuracies in my table. To such readers, Iemphasize that the primary purposes of my model are to study the algo-rithmic implications of contemporary memory designs, to support portablecode development, and to suggest a rationale for future designs of hierarchi-cal memory systems. I am not so rash as to expect my simple model to beexact for any existing system.Returning to our running example, if I design code to the nominal value� = 1:5, I would embed my kernel code in a loop nest that implements11

Equation 7 for du = dv = 2, c = 4, dk = 8. Note that I am employinga recursive (\self-similar") coding design here: my kernel implements thissame equation as its caller, but for smaller values of the tuning parameters.This is a key technique in third-paradigm coding, one that allows us todesign (and analyze) our loop nest once for all layers of the memory hierarchysimultaneously.Any computation de�ned by Equation 7 references at most cdu distinct(and contiguous) rows in its left operand xik. Similarly, it references atmost cdv distinct, contiguous rows in its right operand xjk. These boundsare tight in the case of data that is optimally arranged for computationaldensity.The row-lengths in a computation of Equation 7 are given by dk. Thecomputation thus produces one scalar result from two subarrays of x, one ofdimension cdu � dk and the other of dimension cdv � dk. The total amountof storage required to hold these operands is c(du + dv)dk + 1. The totalnumber of arithmetic operations, assuming the data is arranged for optimalcomputational density, is 2c2dudvdk. The re-use factor F for data held in amemory layer of size at least 1+c(du+dv)dk during this computation is thuslower-bounded by F � 2c2dudvdk=(c(du + dv)dk + 1) � 2cdudv=(du + dv).This lower bound is only tight if the computational operands are not re-used across evaluations of Equation 7 for di�erent values of the locationparameters u0, v0, and k0; and it is often easy, with the recursive structure ofthird-paradigm codes, to arrange for signi�cant re-use. For example, if onlyv0 is changed from one evaluation to the next, then all the xik operands arere-used.I had suggested, a few paragraphs before, that I would call the CPUkernel from a loop nest with tuning parameters du = dv = 2, c = 4,dk = 8. This loop nest would de�ne a cache-resident computation involving2c2dudvdk = 1024 arithmetic operations on any system providing at least1 + c(du + dv)dk = 129 words of cache data space to the currently-runningprocess. The re-use factor F on primary-cache operands in our nominalsystem will thus be at least seven. You may be tempted to tune these pa-rameters carefully, picking somewhat larger values of c, du or dk to obtainmaximal re-use. I would not recommend doing this. In my experience, smalladjustments in tuning constants for third-paradigm codes rarely make a no-ticeable di�erence in runtime. If the constants are slightly too small, thenyou will have too much control overhead; if they are slightly too large, youwon't notice it unless the memory layer you are overowing is the perfor-mance bottleneck.The next coding task is to design a recursive calling structure, evaluatingEquation 7 for, perhaps, du = dv = 2, c = 2z+1, dk = 2z+2 at level z � 2 inthe recursion. Note that these parameter choices give an eight-way recursion:we halve the span of the i, j, and k variables in the inner loop (Equation 7)with each recursive call. I say \perhaps" I would design the code in this waybecause, in the general case, computational density (controlled by g(v; i) inour running example) can become very di�cult to manage at higher levels ofthe recursion. For example, when I designed code to evaluate the Dreyfus-Wagner recurrence for rectilinear Steiner tree minimization, it seemed bestto increase dk much more rapidly than the other tuning parameters. By so12

doing, I obtained near-optimal computational density in higher layers of therecursion (i.e. at RAM and disk layers of memory) without running afoulof the sequencing constraints.In my experience, data rearrangement for computational density is themost important, and by far the most mentally-challenging, activity for aperformance programmer. The third-paradigm coding technique, and thesupporting API under development in my research group, will allow pro-grammers to concentrate their e�orts on this intrinsically-di�cult activity,instead of on \tuning" their code for speci�c computational platforms andloads.Maximum space S. It is impossible to design an e�cient large-memorycode without some knowledge of the maximum space S available in yourvirtual memory system. Nominally, a typical desktop installation providesjust S = 107 words of virtual memory, at the time of this writing. It isgenerally possible, at modest trouble and expense, to recon�gure a desktopoperating system so that S = 108 or even S = 109 words of disk storage areallocated to the paging device.The parameter S de�nes the boundary between the virtual memory sys-tem and the �le system. A third-paradigm code must compare the valueof S to the ending address p of a segment of a data structure, in order todetermine whether this segment is held in virtual memory or in a data �le.This comparison, along with a �le-based and data-compressed extension tovirtual memory, will be encapsulated in the API for third-paradigm codingcurrently under development in my research group. Once this API is de-veloped, there will be no need for the sizing parameter S to appear in anythird-paradigm application code. Note: our API will need a second sizingparameter S2 to de�ne the boundary between disk and tape storage, unlessit is installed on top of a hierarchical storage management system.As indicated above, in third-paradigm code, data structures are refer-enced by a scalar pointer p. If p > S, the data is stored in a �le; if p � S, thedata is stored in a one-dimensional memory array. The test p � S appearsin the prologue of the recursive procedure used to access the data structure.Also appearing in this prologue is a calculation of the e�ective address qof a localized copy of the data referenced by p. It is simplest to start byallocating one set of data bu�ers for each layer z of the recursion, with thebu�ers for layer z being allocated contiguously, and at higher addresses, tothose of layer z�1. The data from p should explicitly be copied into q if thepointers p and q straddle a memory layer boundary Ch, that is if q � Ch < pfor some integer h. If there is no layer crossing, the bu�ers at q will notbe used; therefore they should not be allocated, and the calculation of qfor higher-indexed recursive calls should be adjusted accordingly. Note: byEquation 8, a data word at p will cross O(log� logR p) layer boundaries, andthus be explicitly copied O(log� logR p) times, before it is available for usein a CPU kernel.Let us return to our running example to see how the explicit copy oper-ations will work out in practice. As indicated previously, I would write aneight-way divide-and-conquer routine for this computational problem. Thebase (z = 1) case of the recursion calls my CPU kernel eight times, eval-13

uating the sum s(u0; v0; k0) on various quadrants of two subarrays of x ofdimension 8 � 8. The two subarrays would be referenced by o�sets 64 and128, respectively, into a one-dimensional array. The next (z = 2) layer ofthe recursion would reference two subarrays of dimension 16�16, referencedby o�sets 384 and 640, respectively; these o�sets are computed from addingsubarray sizes to prior o�sets, 162 + 128 and 162 + 384. An explicit copyoperation would occur whenever the base case is entered because, underthe nominal memory capacity parameters � = 3=2 and R = 8, a 640-worddata structure would reside in layer 3 of memory (secondary cache) but a128-word data structure would reside in layer 2 (primary cache).Of course, all CPUs are designed to load their caches transparently.Explicit copy operations for loading cache need not appear, and arguablyshould not appear, in any source code. However, if you write code withoutexplicit copies, you run the risk of encountering associativity conicts incache. You also run the risk of \data sloshing" in shared-memory multipro-cessing systems, if your code is ever parallelized with insu�cient attentionto low-level details of cache and data structure. If your data structures arenot su�ciently compact, then explicit copies may in any event be requiredto obtain cache locality. For example, in our running example, the 8 � 8array subsections are not compactly allocated in a row-major n�n array inC or in a column-major n� n array in Fortran. Finally, if the segments aresu�ciently small and adjacent, several data structure segments may be tra-versed in an unrolled loop with a single pointer and constant o�sets, leadingto highly e�cient kernel codes on some CPUs. For these reasons, amongothers, I recommend that explicit copies be performed across layer bound-aries in my model, except in codes that are highly tuned for speci�c systemsand, perhaps, in codes without data reuse.It is usually easy to analyze the movement of data, and thus to estimateperformance, in a third-paradigm code. For example, let us focus on the two8 � 8 subarrays copied into primary cache at level z = 1 of the recursion.My recursive control structure reuses each of these 8 � 8 subarrays twiceduring the eight recursive calls made from level z = 2 of the recursion. Atlevel z = 3, each 8 � 8 subarray is referenced four times during sixty-fourevaluations of the inner-loop nest. The secondary cache in our nominalsystem is large enough to hold two 64 � 64 subarrays at level z = 4; each8 � 8 subarray has a reuse factor of 64=8 = 8 at this level. Roughly, then,7=8 of the primary cache misses will be satis�ed by our secondary cache.A similar analysis will reveal very high hit rates in RAM for data beingloaded into secondary cache, and extremely high hit rates on disk (instead oftape) whenever data is loaded into RAM. The recursive copying operations ofthird-paradigm code will expose and exploit whatever temporal and spatialdata locality is present in the underlying algorithm.Bandwidth parameter . It is impossible to write an e�cient large-memory code without some knowledge of latencies and bandwidths in thememory hierarchy. In my model, a (stride-1) block transfer of w wordsbetween layer h and any lower-indexed layer requires time T (w; h) = Lh +wGh, where Lh is the latency and Gh is the \cycle time" between words in14

a block-transfer, with Lh = (Ch�1=R)� (9)Gh = (Ch�1=R) (10)and � = 1=� + (11)I require � 0. Nominally, = 1=3 and � = 1. Note that � � 0, becauseof my prior assumption that � � 1.The reader may wonder why I haven't de�ned latency and cycle-timein terms of Ch, rather than Ch�1 as above. My reasoning is that that, insome cases and within limits, it is possible to add capacity to a memorylayer without a�ecting its latency or cycle time. For example, one can adda second disk drive or more DRAM chips to most PCs without a�ectinglatency or cycle time. It seems natural, then, to characterize a memorytechnology by its \minimum distance" to the CPU. In my parameterization,this minimum distance is equal to the capacity of the preceding layer ofmemory: the minimum distance of a storage cell in layer h is equal to the\maximum distance" Ch�1 of any storage cell at layer h� 1.There is a \natural blocksize" Bh for transfers into layer h from a lower-indexed layer, de�ned as follows:Bh = Gh=Lh (12)Note that Bh is the size of a transfer for which the latency Lh to startthe transfer is numerically equal to the total cycle time BhGh of all wordsinvolved in the transfer. This is an important point of design. If all trans-fers are of blocksize at least Bh, then the computation will not be latency-bottlenecked even if the CPU is stalled for the entire latency period Lh.In some contexts, it is convenient to model natural blocksizes directlywith the rule Bh = (Ch�1=R)� (13)where � = �� (14)With Equation 11, this implies � = 1=�.Above, I have de�ned four power-law exponents �, �, and �. Theirvalues are linked by Equations 11 and 14. Sometimes it is convenient tothink of � and as the independent variables, describing the latency andbandwidth of a memory hierarchy. In this view, � and � are dependentvariables, describing natural blocksize and capacity.The relationships between the power-law exponents support the follow-ing lemma. The total size Ch�2 of layer (h � 2) is equal to the size of theblocks on layer h:Lemma 1 If R � 1 and � > 0 then, for all h, Bh = Ch�2.
15

Proof. The capacity of layer h � 1 is Ch�1 = RC�h�2. We have Ch�2 =(Ch�1=R)1=� , and Ch�2Gh = (Ch�1=R)1=�+ = (Ch�1=R)� = Lh. ThusCh�2 = Lh=Gh = Bh. 2I call this the \swapping lemma" because it suggests that desktop sys-tems are designed to load all of secondary cache from a single disk fetch,and all of RAM from a single tape access. That is, the memory layers are aslarge as possible (maximizing �), subject to the constraint that the completecontext of a running job can be swapped e�ciently (� � 1=�, or equivalently,1=� � ��).Note: it is possible to design systems with � 6= 1=�, that is to say, systemsthat violate Equation 11. Indeed this may be necessary from time to time,due to technological constraints. My assumption that � = 1=� is based onobservations of existing desktop systems and on algorithmic considerations,one of which is outlined below.In a workstation with � = 2=3, if � were much greater than 1=� = 3=2,or smaller than 4/3, then the system would not be able to transpose asquare matrix in two passes. Here is a sketch of the proof. Apply thelower-bound argument from the two-layer model of Vitter and Shriver [8],for the case of problem size N = RM �, memory capacity M , parallelismP = 1, blocksize B = (M=R)� , and my model parameters R, � and �. Thenumber of passes made by any algorithm for transposing a square matrix isat least dlogM=B pNe, if B � pN . (If B > pN , then dlogM=B(N=B)e �dlogM=B pNe passes are required.) When 1=� = 3=2, the constraint B �pN is equivalent to (M=R)4=3 � RM �, which is satis�ed for � > 4=3 andR > 1, but is not satis�ed if � < 4=3 and R is small.Because B � pN , two passes will su�ce if dlogM=B pNe � 2, that is,if (M=B)4 � N . Substituting � = 2=3, we �nd the constraint M4=3R8=3 �RM �. Simpli�ed, this is R5=3 � M ��4=3. For � = 3=2 and R = 8, thisreduces to the requirement that 25 �M1=6 or M � 230. We conclude that atwo-pass transpose operation on a gigaword matrix is (barely) feasible on atypically-con�gured workstation. Larger matrices will require three passes.Alternatively, two-pass transposition is possible for multi-gigaword squarematrices on a robustly-con�gured workstation, that is, one with R > 8 orsmaller � (and thus larger �).Another implication of � = 1=� is that the natural blocksizes Bh inmy model grow with the same parameter � as do the layer capacities Ch:Bh = RB�h�1 and Ch = RC�h�1. Only the starting points di�er: C1 =R and B1 = 1. This relationship between blocksize and layer capacity isreminiscent of the �xed \aspect ratio" of the HMM and UMH models [3],yielding similar computational properties.Table 2 lists the latencies and bandwidths of the layers in a memoryhierarchy with nominal parameter values. The latencies are scaled to thenatural timebase of a desktop system, the frequency of the CPU clock,nominally 200 MHz. Bandwidths are de�ned as 1=Gh, scaled to the CPUclock and to an assumed wordlength of 8 bytes. Note that the de�nition ofLh and Gh guarantees that, for any positive value of R, �, and , transfersinto primary cache from registers, or from registers to primary cache, occurwith one clock of latency and at cycle time of one clock per word. That is, the16

Layer Name Latency Natural Blocksize Bandwidth1 Register2 Primary cache 5 nsec 1 word 1.6 GB/sec3 Secondary cache 113 nsec 8 words 570 MB/sec4 RAM 12 usec 181 words 120 MB/sec5 Disk 14 msec 20K words 11 MB/sec6 Tape 500 sec 22M words 0.3 MB/secTable 2: Latency, blocksize, and bandwidth of transfers between layer h andlower-indexed layers, for = 1=3, � = 3=2, R = 8, on a 200 MHz computerwith 8-byte machine words.natural blocksize for these transfers is L2=G2 = 1 word in almost all desktopsystems. Only the most aggressively designed CPUs can transfer two wordsto register per clock, and almost all desktop systems can achieve one wordper clock on some CPU kernels. Also, vectorized CPUs are rarely found indesktop systems at the time of this writing, so each transfer from primarycache to register consists, almost universally, of a single word. (N.B.: ThePentium Pro provides vectorized operations on subword values, typicallyused to represent pixels or voxels, if these are packed in a single word in aCPU register.)The technologically-aware reader will note that the bandwidths in Ta-ble 2 are fairly accurate in all cases except the disk, but some latenciesmay seem too high. For example, it is not always necessary to transfer 181words from RAM to secondary cache to avoid a latency bottleneck. How-ever, please note from Table 1 that my RAM layer contains tens of millionsof words. A reference to an arbitrary page in RAM is liable to cause a TLBfault, that is, to encounter a few microseconds of latency while some virtualmemory translation tables are loaded. So, whenever possible, I try to ref-erence blocks of a few hundred words in each RAM reference, so that thelatency of the TLB fault is small in comparison to the total transfer time.A latency of 500 seconds for tape-to-disk transfers is very generous, al-lowing time for manual loading from tape libraries if desired.A disk bandwidth of 11 MB/sec may seem somewhat high, but is oftenacheivable on low-cost systems if we use data compression. The bandwidth�gures refer to uncompressed data; with 5.5:1 compression, even a 2 MB/secIDE disk drive can indeed deliver 11 MB/sec of uncompressed data to RAMon a sustained basis. If compression is infeasible or inappropriate, severalSCSI disk drives must be used in tandem to sustain 11 MB/sec of diskbandwidth in a desktop computer.Of course, data compression and decompression routines require CPUtime, so the use of compression on disk transfers is not appropriate unlessthe disk bandwidth is indeed a performance bottleneck that, if eased, o�ers apayback on coding e�ort and future software maintenance cost. This reectsanother design goal of my API for third-paradigm coding: choices in datacompression subroutines, and in their associated data structures, should beorthogonal to the main structure of the underlying code. An orthogonal17

design makes it easy to enable or disable data compression, and even toapply it to di�ering layers in the memory hierarchy, when appropriate.5 Algorithmic ClaimsSome years ago, I wrote a third-paradigm code for matrix-matrix multipli-cation: it ran at near-peak speed on a Sun-4 workstation. It also behavedvery well under heavy system load, for example, when three instances of mycode were running concurrently on matrices too large to �t in RAM, thesystem was still CPU-bottlenecked.In unpublished work, I have analyzed the performance of third-paradigmcode designs for the following problems: matrix transposition, matrix-matrixmultiplication, and �nding duplicates. I have included some notes on theseanalyses below.Matrix-matrix multiplication is an interesting case. A CPU-bottleneckedcomputation is possible when � 1=3. Otherwise the computation, even ifoptimally blocked, is bottlenecked on memory latency. Curiously, as notedin the previous section, the convergent desktop system has = 1=3, thatis, it provides just enough bandwidth to support e�cient matrix-matrixmultiplication. It would seem that the desktop computer is designed to runlarge matrix-matrix multiplication problems, or at least to perform well onLINPACK benchmarks!Matrix transposition is another interesting case. As observed in the pre-vious section, it is a very tight �t to the � = 3=2 observed (see Table 2) on acommon desktop system, if (as assumed in my model) � = 1=�. A straight-forward two-pass algorithm su�ces in this case, even when the matrix issquare and �lls half of some layer in memory. (A more complicated \in-place" algorithm would be appropriate if the matrix is slightly larger, thatis, if the matrix dimension n were in the range pCh=2 < n � pCh for someh, and if you were con�dent that this range of n were important enough todeserve special consideration for some particular system and system load.)In the �rst pass of the transposition of anm�nmatrix, withm � n, datais read in blocks of size Ch�2 and scattered into y = Ch=Ch�2 � 1 bu�ers.Here h is the smallest integer such that 2mn � Ch. Each of the y bu�ers willreceive the data for a Ch�2y=n� n=y submatrix. These submatrices shouldbe transposed with a recursive call to the transposition routine; note thatthis recursive call will require data movement only on layers 0; 1; � � � ; h � 1of the memory hierarchy. In the second pass, transposed data from the ybu�ers on layer h is reassembled into an n�m matrix.It seems that a third pass is required for the transposition of large ma-trices on systems with � = 1:4, if � = 1=�. The number of passes rises to asmall constant greater than three for some � < 1:4; but for � = 1 two passessu�ce. I intend to make a fuller study of the interaction between � and themaximum number of passes required for matrix transposition in the verynear future.The duplicate-�nding problem I consider in this report is a very simpleone, designed to illustrate the analysis of a latency-limited computation.The input to a duplicate-�nding routine is a series vi of key values; theoutput is a series yi of booleans. The output yi should be true i� there18

exists j < i such that vj = vi, that is, yi = 0 unless the key vi has occurredpreviously in the input. In the on-line version of this problem, analyzedhere, the output yi must be produced before the next input vi+1 is read.I assume there are at most m � Ch=2 distinct keys in the complete inputsequence v, for some layer h in the memory hierarchy.A simple third-paradigm code for the duplicate-�nding problem wouldinsert the �rst C2=2 unique values into a hash table of size C2, the next C3=2unique values into a hash table of size C3, etc. The largest table should haveroom for the remaining m �Pj<hCj=2 elements at a load factor of 1=2.With nominal memory performance parameters � = 1=� = 3=2, = 1=3,and R = 8, the latency Lj of a transfer from layer j+1 to layer j is linearlyrelated to its capacity: Lj = (Cj=R)�+ � Cj=4. On average, then, a well-designed hash probe algorithm would take at most 2Pk�j Lj+O(1) = O(Cj)time for a probe into our hash tables of size C1, C2, ..., Cj. If the probe issuccessful, we are done processing an input vi. If the probe is unsuccessful,and the table of size Cj is not full, we must insert a new entry at time costLj . If the table of size Cj is full, then we must probe the table of size Cj+1.Let us assume that the input values vi are Zip�an random variates, andthat enough distinct inputs have already been processed that our table ofsize Cj is full. Then the probability P (Cj) of an unsuccessful search intoour hash table of size Cj can be bounded as follows: P (Cj) � lnCj= lnCh.(N.B. I will prove this assertion in a later version of this report.) This is aconvenient, albeit loose, upper bound on the probability that our algorithmwill probe our hash table of size Cj+1, for j < h, while searching for a matchto a Zipf-law input vi, for any i.Our largest hash table will never overow. We will search this table withprobability P (m) � 1�lnCh�1= lnCh = 1�� ln(Ch=R)= lnCh � 1�� = 1=3.That is, for Zipf-law inputs, our hierarchical coding strategy has achievedno appreciable speedup over a naive code that maintains a single hash tablecapable of holding m elements. Both codes require O(m) time to processeach input, making O(1) probes into the h-th layer of memory.I conjecture that my O(m)-time duplicate-�nding code is optimal forcomputers with � = 1, within a logarithmic factor for Zipf-law inputs. Thex-th most probable Zip�an input value occurs with frequency 1=(x lnm) +O(1=x). Let us call this input value kx, bearing in mind that the relativefrequency x is generally not deducible from the value kx. An arguably-optimal but generally-infeasible code would keep track of occurrences byusing a di�erent boolean ag for each input value. The most-probable inputsshould have the lowest addresses; indeed, in an optimal code, the ag bx forthe value kx will be stored at memory location x and thus will be accessiblein O(x�) time. If, upon the event that the i-th input yi has the value kx,the relative frequency x is somehow deduced and then bx is accessed in justO(x�) time, then the average time per input would beP1�x�m(1=(x lnm))+O(1=x))O(x�) = O(m= lnm). It is an open problem whether an
(m) lowerbound can be proven, or for that matter, to prove an
(m= lnm) boundfor all possible codes. The lower-bound argument sketched above is onlyapplicable to codes using a boolean ag to keep track of input values in anaive way.The analytically-inclined reader will have noticed that our hierarchical,19

third-paradigm hashing code will run at comparable speed to the naive codefor any input distribution that is less \spatially local" than the Zip�andistribution assumed in our analysis above. If the inputs have more thanZip�an locality, then our hierarchical code will run signi�cantly faster. Also,Zip�an locality is su�cient to give speedups to third-paradigm codes overnaive codes, on computers with latency parameter � < 1.It is an open problem to analyze the runtime of an o�ine version of mysimple duplicate-�nding problem. For example, we might allow output yito be produced at any time before input vi+m is read. We may also requirethat the outputs be produced sequentially: output yi must be producedbefore output yi+1. I conjecture that hierarchical third-paradigm algorithmsfor o�ine duplicate-�nding will show signi�cant speedups over naive codes,even on Zipf-law inputs.It would be interesting to analyze and develop third-paradigm codes formore realistic problems involving hashing. In most real-world applications,key distributions are not stationary, and keys must be deleted.6 Conclusions and Future WorkI have sketched a new paradigm for large-memory programming, to sidestepthe capacity and performance constraints of virtual memory, and to avoidwriting complicated codes with many tuning parameters. My coding schemeis based on a four-parameter model of memory performance, so, at least inprinciple, all tuning parameters in such codes could be expressed as functionsof constants in the problem statement and my four memory-performanceparameters. In practice, performance programmers will not be so disciplinedin their use of constants, and some system-speci�c optimizations are surelyappropriate. But a simple model of performance, and a standardized codingmethod, would surely be helpful to performance programmers as well as tocompiler writers.In future work, I intend to develop an Application Programmer's Inter-face, or API, to simplify the task of developing third-paradigm codes. Inparticular, it would be very helpful to have a suite of bu�er-managementroutines as well as some standard, recursively-de�ned data structures suchas two-dimensional arrays that can be e�ciently accessed by quadrant.I also intend to extend my four-parameter model to some limited formsof parallelism in memory and processing. The approach I have in mindat present is to build a performance model for the data-parallel style ofprogramming. It may su�ce to have a single parameter P for availableparallelism at all layers, from register to tape, although I strongly suspectthat most supercomputers are not con�gured so robustly. It is probablymore accurate to assume that the available parallelism falls o� as one goesdeeper into the memory hierarchy. For example, a 1024-processor CM-5 orT3E may be con�gured with only ten or twenty disk channels.References[1] A. Aggarwal, B. Alpern, A.K. Chandra, and M. Snir. A model for20

hierarchical memory. In Proc. of the 19th Annual ACM Symp. on Theoryof Computing, pages 305{314, May 1987.[2] A. Aggarwal, A.K. Chandra, and M. Snir. Hierarchical memory withblock transfer. In Proc. of the 28th Annual IEEE Symp. on Foundationsof Computer Science, pages 204{216, October 1987.[3] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memoryhierarchy model of computation. Algorithmica, 12:72{109, 1994.[4] R.W. Floyd. Permuting information in idealized two-level storage. InR. Miller and J. Thatcher, editors, Complexity of Computer Calculations,pages 105{109. Plenum, New York, 1972.[5] D. Thiebaut. On the fractal dimension of computer programs and itsapplication to the prediction of the cache miss ratio. IEEE Trans. Com-puters, 38(7):1012{1026, 1989.[6] Clark Thomborson, Bowen Alpern, and Larry Carter. Rectilinear Steinertree minimization on a workstation. In N. Dean and G.E. Shannon,editors, Computational Support for Discrete Mathematics, volume 15of DIMACS Series in Discrete Mathematics and Theoretical ComputerScience, pages 119{136. American Mathematical Society, 1994.[7] Darren Vengro�. A transparent parallel I/O environment. In Proc.DAGS Symposium, 1994. ftp://cs.duke.edu:pub/dev/papers/tpie-dags94.ps.Z.[8] J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory, I: Two-level memories. Algorithmica, 12:110{147, 1994.[9] J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory, II:Hierarchical multilevel memories. Algorithmica, 12:148{169, 1994.

21

