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Abstract

In broadcasting, or one-to-all communication, a message originally held in one node of the
network must be transmitted to all the other nodes. A minimal broadcast network is a commu-
nication network that can transmit a message originated at any node to all other nodes of the
network in minimum time. In this paper, we present a compound method to construct sparse,
time-relaxed, minimal broadcast networks (t-mbn), in which broadcasting can be accomplished
in slightly more than the minimum time. The proposed method generates a new network by
connecting a subset of nodes from several copies of a ¢1-mbn using the structure of another
to-mbn. The objective is to construct a network as sparse as possible satisfying the desired
broadcasting time constraint. Computational results illustrate the effectiveness of the proposed
method.

1 Introduction

A communication network can be modeled as a connected graph G = (V, E') without loops or parallel
edges, consisting of a set of nodes V' = V(@) with cardinality v(G) = |V, and a set of undirected
edges E = E(G) with cardinality e(G) = |E|.

In communication networks, broadcasting is a special type of information transmission in which
a single message, originated at a node of the network, must be transmitted to all the other nodes.
Broadcasting is usually required to be completed as rapidly as possible by a sequence of transmissions
through the communication lines. It is assumed that broadcasting is carried out under the following
three constraints [7, 8]: (i) each transmission requires one time unit, (ii) a node can make at most one
transmission in one time unit, and (iii) a node can only transmit the message to its adjacent nodes.
Thus, in one time unit, the number of informed nodes can at most be doubled. This implies that
after m time units the number of nodes that have received the message is bounded by 2™, including
the originator. As a result, the minimum number of time units required to broadcast a message in
a network G is [lgv(G)]. A minimal broadcast network (mbn) is defined to be a communication
network in which a message, originated at any node, can be broadcast in minimum time.

Let the receiving time of a node be the time at which the node receives the message. Suppose
that a node u in a network G is the originator of a message. Let b(u,G) be the minimum time
required to broadcast a message from node u to all other nodes of G. A broadcast protocol P(u,Q)
is a rooted spanning tree in which the originator u is the root and all the nodes are labeled by their
receiving times, all of which are at most b(u, G). In a broadcast protocol, each edge is used exactly
once and the message is always transmitted from parent to child, with the child’s label being greater
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than the parent’s and different from any of its siblings’. Let b(G) = max{b(u,G) | u € V(G)} be the
broadcast time of G. Thus, a network G is an mbn if and only if 5(G) = [lgv(G)]. The problem
of recognizing whether an arbitrary network is an mbn is N'P-complete [7]. An optimal broadcast
network (obn) is defined as an mbn with the minimum number of edges, and the broadcast function
B(n) is defined to be the number of edges of an obn with n nodes. There is no known efficient
method for determining B(n) for an arbitrary value of n. Farley et al. showed that hypercubes are
obn’s, i.e. B(2™) = m(2™1), for m > 1 [8]. Khachatrian and Harutounian [11] and Dinneen et
al. [5] proved independently that B(2™ — 2) = (k — 1)(2¥=! — 1), for m > 2. Farley et al. also
determined the values of B(n), for 1 <n < 15. Recently, Bermond et al. [1], Weng and Ventura [15]
and Dinneen et al. [6] Jhave reported known values of B(n), for n up to 127. Figure 1 shows the
Heawood graph, an example of an obn with 14 nodes, together with one of its broadcast protocols.
Since this obn is vertex symmetric, all the nodes have similar originating broadcast protocols.

Figure 1: Obn with 14 nodes and its broadcast protocol.

In 1979 Farley proposed a recursive algorithm to construct sparse mbn’s with an arbitrary number
of nodes [7]. Since then, several additional algorithms have been developed [3, 9, 4, 10, 2, 14]. These
algorithms use different strategies to produce larger mbn’s by combining small known obn’s or mbn’s
using as few edges as possible without violating the broadcasting time constraint. Recently, a new
class of methods using graph compounding has been developed. The compound of a graph G into
another graph H relative to a set S C V(G), denoted by Gs[H], is the graph obtained by replacing
each node of H with a copy of G, and connecting together the v(H) copies of each node s € S
to form a copy of H. Here V(Gs[H]) = V(G) x V(H). Compound methods have been studied
by Khachatrian and Harutounian [11] and Bermond et al. [1]. Figure 2 illustrates the compound
method by generating an obn with 10 nodes from two copies of an obn with five nodes. Weng and
Ventura [15] and Dinneen et al. [6] have developed generalized compounding algorithms which allow
for node deletion.

Shastri studied the problem of constructing the sparsest possible networks in which broadcasting
can be accomplished in slightly more than [lgv(G)] time. A t-relazed minimal broadcast network
(t-mbn) G is a network in which broadcasting can be accomplished in [lgv(G)] + ¢ time units from
any node [12, 13]. Define B,(n) to be the minimum number of edges of a network with n nodes
in which broadcasting can be accomplished in [lgn] + ¢ time units. A t¢-relazed optimal broadcast
network (t-obn) with n nodes is a t-mbn with By(n) edges. Obviously, a 0-mbn is an mbn and a
0-obn is an obn by these definitions.

Shastri presented several elementary constructions of t-mbn’s for ¢ < 4, leading to upper bounds
on By(n) for n < 65. The main objective of this paper is to extend and utilize the compound methods
in [15] and [6] to construct the sparsest possible t-mbn’s. The concepts of official broadcasting
and center node sets defined in these two papers is also adapted to the new context. We present



(a) Obn with 5 nodes. (b) Obn with 10 nodes.

Figure 2: Constructing an obn with 10 nodes by compounding.

computational results that provide all of the best-known upper bounds on By (n), for 1 <t < 3 and
n < 128. The proofs of our generated bounds are concisely specified by a table of graph compounds.

2 Official Broadcasting and Center Node Sets

The compound methods proposed in [15] and [6] are based on the concept of official broadcasting
with respect to a center node set. In official broadcasting, it is assumed that a message, originated at
any node, must be officialized by a certain type of node in the network, and the official message must
be transmitted to all the nodes of the network. Nodes that possess the ability to officialize a message
are called center nodes. A transmitted message is official if it has been officialized by a center node;
otherwise, it is unofficial. It is assumed that an unofficial message becomes official immediately
after it arrives at a center node. In official broadcasting, where all the nodes must receive an official
message, a center node will only receive one message, so that if the incoming message is unofficial, it
will be officialized immediately after its arrival. A non-center node may receive one or two messages.
In the first case, the message must be official. In the second case, the first message must, be unofficial
and the second one official. In addition, in official broadcasting, it is possible for a non-center node
to send an unofficial message to a neighbor and receive an official message during the same time
unit. This is allowed in the broadcast model since within the underlying broadcast protocol a node
will only receive one message from one of its neighbors and then transmit the message to some of
its other neighbors. Therefore, any subsequent simultaneous reception and transmission of messages
in the official protocol do not violate the constraints of broadcasting. For official broadcasting in a
network G, let b(u,G;S) be the minimum time required to broadcast a message from node v with
respect to a center node set S C V(G) and b(G;S) = max{b(u,G;S) | u € V(G)} be the official
broadcast time of G with respect to S.

An official broadcast protocol for a node u with respect to a set S C V(G) in a network G,
denoted by P(G,u;S), is a connected spanning subnetwork of G, in which the nodes are labeled by
one or two receiving times, all of which are at most b(G; S). If a node has two receiving times, it
must not belong to S; the first receiving time is for the unofficial message and the second one for
the official message. If u € S, each node is labeled by one single receiving time, and the official
broadcast protocol is simply a spanning-tree broadcast protocol rooted at w.

Given a network G with n nodes, official broadcasting with respect to a set S C V(G) can be
completed in b(G;S) time units regardless of the originator, where b(G;S) > b(G). The set S is
called a t-relaxed center node set (t-cns) of G, where t = b(G; S) — [lgn]. In addition, if S has the
smallest, cardinality among all the ¢-cns’s of G, then S is called a t-relaxed optimal center node set
(t-ocns) of G. If b(G; S) = b(G), then we simply call S a center node set (cns) of G. There may exist
multiple t-ocns’s for a given network, and the cardinality of the -ocns’s of non-isomorphic networks
with n nodes and m edges with the same official broadcast time may be different. There is no known
polynomial-time algorithm for computing (the cardinality of) a t-ocns for an arbitrary network G.



Figure 3 shows the three different official broadcast protocols for a 1-obn with 5 nodes, where the
two black nodes define a 1-ocns (ocns). Figure 4 shows official broadcast protocols with the 1-ocns
of Figure 3 replaced with a single node 2-ocns.
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Figure 3: Official protocols for a 5 node 1-obn w.r.t. a l-ocns.
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Figure 4: Official protocols for a 5 node 1-obn w.r.t. a 2-ocns.

3 The Generalized Compound Method

The proposed method for constructing ¢t-mbn’s includes two steps:

i

ii.

Let G be a network and fix S C V(G). If S C V(G) choose a node v € V(G) \ S of minimum
degree; otherwise, choose v € S of minimum degree. Construct a network GV by deleting
v and all its incident edges from G, and adding the required edges to form a clique among
the neighbors of v. The subset of nodes S = S\ {v} is a center node set for GV such that
b(GY,S") < b(G;S) (see [15]).

Let H be a network and pick ' C V(H). For a fixed integer ¢ with 0 < i < v(H)—1, construct
a network G by connecting v(H) — i copies of G and i copies of GV as follows. For each fixed
s € SY, connect all v(H) copies of s to form a copy Hs of H with corresponding copy Ts of T'.
If v € S, the v(H) — i copies of v are connected to form a network H* with v(H) — i nodes
and b(H*) < b(H); otherwise, let H* be an edgeless network. If v € S choose U C V(H*) so
that b(H*;U) < b(H;T); otherwise, let U = . Finally, define S = J, .. Ts UU.

The structure of the network G generated by the generalized compound method is illustrated in

Figure 5. Note that given an official protocol P for G with respect to S, there is an appropriate
modification PV of P which is official for G? with respect to S.
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Figure 5: Tllustrating the generalized compound method.

Theorem 1 The network G generated by the generalized compound method satisfies b(G) < b(G; S)+
b(H) and b(G;S) < b(G;S) + b(H;T).

PRrOOF. Let u be a node of G. We consider several cases depending on the location of u. First we
recall some notation from [6], for which we refer for the definitions. For a given official broadcast
protocol P for G, P,, P, denote respectively the unofficial and official parts of P, while V., (P)
denotes the set of center nodes which receive an unofficial message in P.

First suppose that u belongs to some H;. First broadcast in Hs which takes b(H) time units. In
the next b(G) time units, each node in Hy broadcasts vertically inside its copy of G or G. By this
time, all nodes in G are informed, so b(G) + b(H) time units suffice for ordinary broadcasting. For
official broadcasting, we need only ensure that the initial broadcasting in Hy is official with respect
to Ts, which takes b(H;T') time units, so b(G) + b(H;T) time units suffice in this case.

Next suppose that u is a node of H*. Then all nodes of G are center nodes and so all nodes in
G belong to H* or some Hy. Also u belongs to a unique copy G; of G. First broadcast vertically
in G;, which takes b(G) = b(G; S) time units. Now broadcast horizontally in the appropriate Hs or
H*. This can be done in b(H) time units and officially in b(H;T') time units and so all nodes are
informed by time b(G; S) + b(H) and officially informed by time b(G;S) + b(H; T).

Suppose now that u is a node of some copy G; of G but not a node of any Hg. Broadcast
according to the unofficial part P, of some official protocol P, ending at V., (P). Each center node
in V., (P) broadcasts horizontally in its corresponding copy of H, taking b(H) time units for ordinary
broadcasting and b(H; T') for official broadcasting. Once this is over, each copy w of a node in V., (P)
continues according to P, or (PV), according as w belongs to a copy of G or G". Since it takes
b(G;S) time units to perform official broadcasting in G' according to P, and P,, all nodes of G are
informed by time b(G; S) + b(H) and officially informed by time b(G;S) + b(H;T).

Finally, suppose that u is a node of some GG¥ and not a node of any H,. Note that in this case v
is not a center node of GG. Let P be an official protocol for v in G. Broadcast in GV according to P?,
ending in V., (P). Let @ be the subprotocol followed so far. Let Vj (respectively V3) be the subset



of V.,.(P) consisting of nodes which have (respectively do not have) v as an ancestor. For nodes in
V> then, we have so far followed only (P?),, and this is precisely P, for such nodes. However, if
w € Vi then w may have descendants in V., (P) which are not in V., (P?). Thus @ will include a
part of (PY), for nodes in V; and their descendants.

Now broadcast horizontally in the appropriate Hg, which takes b(H) time units, or b(H;T) if
done officially. Each copy of each w € V., (P) then follows this with broadcasting until the end of P
or PV as appropriate. Now @) takes the same time as (P"),, for nodes in V5. This is the same as the
time taken by P, for such nodes. Also @) takes the same time as P, for nodes in V. Hence () takes
the same time as P, for all nodes in V., (P). Since PV takes at most b(G, S) time units and P, and
P, together also use this many time units, all nodes in G are informed by time b(G;S) + b(H) and
officially informed by time b(G;S) + b(H;T). ad

The following hold for G, where d = degv.

v(G) = v(Gv(H)—i
v(H)e(G) +id(d—3)/2+|S°|e(H) + e(H")
S| = IS"IT]+ U]
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Two examples of this compounding method is given in Figure 6, where G = H and ¢ = 2. The
center node sets for G and H are taken from Figures 3 and 4. The left 3-mbn [right 4-mbn] of the
figure is obtained by using the 1-ocns for G [for H] and the 2-ocns for H [for G]. The boxed nodes
of these two compounds are both 4-cns’s (i.e., the S obtained by the compounding method). One
generated official protocol, as dictated by the proof of Theorem 1, is also given for each case.

8 8 8
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Figure 6: Two ¢t-mbn’s with 23 nodes obtained by compounding with different center node sets.

4 Computational Results

This section describes and justifies our computed bounds on B;(n), for 1 < ¢ < 3 and n < 128. For
convenience we also include our bounds for By(n) = B(n) that were presented in [6].

We have implemented the construction method given in Section 3. Our time-relaxed programs
use the same input format that is discussed in [6]. That is, we do not actually store each ¢-mbn as
a graph but only enough data (which is seven integer parameters) as a basis for obtaining edge and
center node bounds of the compounds. For the B;(n) problem, an additional integer value ¢ is kept
for each input or generated ¢-mbn.

We now discuss our initial input data.

For By (n), Ba(n) and Bs(n) we used the t-obn’s (and ¢-cns’s) of Figures 7, 8 and 9. Each optimal
center node set of these t-obn’s is displayed using black nodes. The exception being the two 3-obn’s
(which are also 2-obn’s) of Figure 7. Here the two smaller center node sets are indicated by boxed
nodes. To generate the Bg(n) bounds we used a complete set of best-known mbn’s, which is a
superset of the obn’s listed in the first column of Figure 7 and is completely documented in [6].



The tree t-obn’s of Figures 8 and 9 are symmetric trees of odd diameter created by joining two
roots of bounded-depth rooted maximal broadcast trees. We can verify that two center nodes are
sufficient in these cases. Here any originating node needs at most ‘depth’+1 time units to inform
the two attached roots and then [lgn/2] = [lgn] — 1 more time units to send the official message
throughout the tree. Also one can easily see that at least two center nodes are required.

In Table 2 at the end of this section contains the compound constructions that yield the best-
known upper bounds for B;(n). The entries in bold indicate when the bound T;(n) is the best
possible. These bounds are achieved by the compound constructions that are specified under the
columns labeled “compound”. Each empty compound specification indicates that the bound was
obtained from an input ¢-mbn. The notation (vg,vs,%):tgty represents how each t-mbn is con-
structed, with the node-deletion variable i being omitted if it is 0. Using the notation of Section 3,
ve = v(G) and vy = v(H), where G is a tg-mbn and H is a ty-mbn. (Note 0 < tg,ty < 3 for our
computations.)

We now justify the optimal bounds of our table. These proofs are based on the Shastri’s broadcast
tree bounds [12, 13]. The smallest broadcast times T'(n) for various trees of order n up to 128 nodes
are summarized in Table 1. (In our table we also added a column, |CNS|, that indicates the size of
the smallest ¢-cns for the largest tree in each range.) By inspecting the column labeled ¢, we see that
for instance By(4),...,B1(6), B2(7), B2(8), B1(9) and By(10),...,B>(14) are all optimal because
there exist t-obn’s which are trees. Since the minimum broadcast times are known for trees of these
orders, we can conclude for each n > 4 that T;_1(n) > n where t = T'(n) — [lgn]. For example,
B»(28) > 28 since any tree with 28 nodes (27 edges) must be a t-mbn for ¢ > 3; that is, the smallest
broadcast time of any such tree is 8 while [lg28] = 5 so the difference is ¢ = 3. Besides the sharp
By (n) cases, these two simple observations show optimality for all but the five bold entries B (13),
By (14), B1(19), B1(20) and B;(21), which are presented by Shastri in [13].

Table 1: Smallest broadcast times T'(n) for trees of order n (see [12]).

n [lgn] | T(n) | t=T(n)—[lgn] | |CNS|
1 0 0 0 1
2 1 1 0 2
3 2 2 0 2
4 2 3 1 1
5-6 3 4 1 1
7-8 3 ) 2 2
9 4 ) 1 1
10-11 4 6 2 1
12-14 4 6 2 2
15-16 4 7 3 2
17-22 ) 7 2 2
23-32 ) 8 3 2
33 6 8 2 2
34-52 6 9 3 2
53-64 6 10 4 2
65-84 7 10 3 2
85-128 7 11 4 2
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Figure 7: Some t-obn’s (and their minimum center nodes sets) for n up to 10.
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Figure 8: A planar 1-mbn with 15 nodes and a tree 2-obn with 22 nodes.

Figure 9: Two maximal tree 3-obn’s (52 nodes and 84 nodes).



Table 2: Some B;(n) < T;(n) bounds (bold entries indicates optimal)

n | To(n) compound | Ti(n) compound | T5(n) compound | T3(n) compound
1 0

2 1

3 2

4| 4 (2,2) 3

) 5 4

6 6 5

7 8 7 6

8 | 12 (2,4) 8 7

9 | 10 8 (3,3):10

10 | 12 (5,2) 10 (2,5):10 9

11| 13 11 (2,6,1):10 | 10

12| 15 (6.,2) 12 (26):10 | 11 (2,6):11

13| 18 14 (2,7,1):10 | 12

14| 21 15 (2,710 | 13

15| 24 18 15 (35):10 | 14  (3,5):11
16 | 32 (2.8) 19 (82010 | 16 (2811 | 15  (2,8):12
17| 22 17 (36,1):10 | 16  (6,3,1):20

18 | 23 (9,2) 18 (3,6):10 17

19| 25 20 (3,7,2):10 | 18

20 | 26 21 (3,7,1):10 | 19

21 | 28 22 (3,7:10 | 20

22 | 31 (11,2) 24 (211):10 | 21

23 | 34 26 (2,12,1):10 | 23 (212,111 | 22 (2,12,1):12
24| 36 27 (2,12):10 | 24 (2,12):11 | 23 (2,12):12
25 | 40 30 (213,110 | 25 (13,21)20 | 24 (2,13,1):12
2 | 42 31 (213):10 | 26 (132)20 | 25  (2,13):12
27 | 44 34 (214,110 | 27 (14,21)20 | 26 (2,14,1):12
28 | 48 35 (2,14):10 | 28 (14,220 | 27 (2,14):12
20 | 52 38 (2,151):10 | 31 (3,10,1):10 | 28  (10,3,1):20
30 | 60 390 (2,15):10 | 32 (3,100:10 | 29  (10,3):20
31| 65 43 (8,4,1):10 | 33 (3,11,2:10 | 30  (11,3,2):20
32| 80 (2,16) 44 (84):10 | 34 (3,1L,1):10| 31 (11,3,1):20
33| 48 (3,11) 35 (311):10 | 32 (11,3):20

34| 49 (17,2) 37 (3,12,2):10 | 34  (2,17):11 | 33  (2,17):12
35| 51 (5,7) 38 (3,12,1):10 | 35  (2,181):11| 34  (2,18,1):12
36 | 52 (9,4) 39 (3,12):10 | 36  (2,18):11 | 35  (2,18):12
37| 56 42 (3132):10 | 37  (104,3):20 | 36  (2,19,1):12
38 | 57 (19,2) 43 (3,13,1):10 | 38  (10,4,2):20 | 37 (2,19):12
39| 59 44 (313):10 | 39  (10,4,1):20 | 38  (2,20,1):12
40 | 60 (20,2) 46 (2,20):10 | 40  (10,4)20 | 39  (2,20):12
41| 65 (6,7,1) 48 (3,14,1):10 | 41  (11,4,3):20 | 40  (2,21,1):12
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n | To(n) compound | Ti(n) compound | T5(n) compound | T3(n) compound
2| 66 6,7) 19 (3,14):10 | 42 (114,220 | 41 (2,21):12

43 | 70 (43,1) 52 (2,22,1):10 | 43 (114,1):20 | 42 (2,22,1):12
44| 72 (11,4) 53 (2,22):10 | 44 (114)20 | 43 (2,22):12

45| 78 (2321) | 54 (3,15):10 | 48  (2,23,1):11 | 44

46 | 79 (23,2) 57 (2,23):10 | 49 (223):11 | 45

47| 83 (2421) | 59 (224,1:10 | 50  (2,24,1):11 | 46

48 | 83 (24,2) 60  (224):10 | 51 (2.24):11 | 47

49| o4 64  (2,251):10 | 53 (13,4,3):20 | 48

50 | 95 (25,2) 65 (2,25):10 54 (13,4,2):20 | 49

51| 99 (26,2,1) 67  (2,26,1):10 | 55  (13,4,1):20 | 50

52| 99 (26,2) 68 (2,26):10 56 (13,4):20 51

53| 103 (27.21) | 70 (227,1):10 | 57 (14,4,3):220 | 53  (11,5,2):20
54 | 103 (27,2) 71 (227):10 | 58 (144,2)20 | 54 (11,5,1):20
55| 111 (282,1) | 75 (2,28,1):10| 59  (14,4,1):220 | 55  (11,5):20

56 | 111 (28,2) 76 (2,28):10 | 60 (14,4)20 | 56  (10,6,4):20

57 | 121 (29,2,1) 80  (2,29,1):10 | 63 (3,19):10 57  (10,6,3):20

58 | 121 81 (2,20):10 | 64  (3,20,2):10 | 58  (10,6,2):20

59 | 124 89  (5,12,1):00 | 65  (3,20,1):10 | 59  (10,6,1):20

60 | 130 90 (5,12):00 66 (3,20):10 60 (10,6):20

61 | 136 92 (9,7,2):00 68 (321,210 | 61  (11,6,5):20
62 | 155 93 (9,7,1):00 | 69  (321,1):10 | 62  (11,6,4):20
63 | 162 94 (9,7):00 70 (3,21):10 63  (11,6,3):20
64 | 192 (2,32) 100 (5,13,1):00 | 73 (3,22,2):10 | 64  (11,6,2):20
65| 101  (513):00 | 74  (3,22,1):10 | 65  (11,6,1):20 | 64  (2,33,1):12
66 | 105 (6,11) 75 (3,22):10 | 66 (11,6)20 | 65  (2,33):12

67 | 107 (17,4,1) 78 (3,23,2):10 | 68  (10,7,3):20 | 66

68 | 108 (17,4) 79 (3,23,1):10 | 69  (10,7,2):20 | 67

69 | 111 (5,14,1) 80 (3,23):10 70 (10,7,1):20 | 68

70 | 112 (5,14) 82  (3242):10| 71 (10,7):20 | 69

71| 115 (9,8,1) 83  (324,1):10 | 72 (11,7,6):20 | 70

72| 116 (9,8) 84 (324):10 | 73 (11,7,5):20 | 71

73| 121 (5,152) | 88  (3252):10| 74  (11,7,4):20 | 72

74| 122 (5,15,1) 89  (3,25,1):10 | 75  (11,7,3):20 | 73

75 | 123 (5,15) 90 (3,25):10 76 (11,7,2):20 | 74

76 | 128 (19,4) 92 (3,262):10 | 77 (11,7,1)20 | 75

T 131 (6,13,1) 93  (3,26,1):10 | 78 (11,7):20 76

78 | 132 (6,13) 94 (326):10 | 82  (10,82):20 | 77

79| 135 (20,4,1) 9%  (3,27,2):10 | 83  (10,8,1):20 | 78

80 | 136 (20,4) 97  (3,27,1):10 | 84 (10,8):20 79

81| 142 (3,27) 98  (327):10 | 85  (11,8,7):20| 80

82| 145  (6,142) | 102 (3,282):10 | 86  (11,8,6):20 | 81

83| 146  (6,14,1) | 103 (3,28,1):10 | 87  (11,8,5):20 | 82

84 | 147 (6,14) 104 (3,28):10 | 88  (11,8,4):20 | 83

85 | 157 (6,15,5) 108 (3,29,2):10 | 89  (11,8,3):20 | 85  (11,8,3):21
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n | To(n) compound | Ti(n) compound | T>(n) compound | T3(n)  compound
86 | 158 (6,15,4) 109  (3,29,1):10 | 90  (11,8,2):20 | 86 (11,8,2):21
87 | 159 (6,15,3) 110 (3,29):10 91 (11,8,1):20 | 87 (11,8,1):21
88 | 160  (6,152) | 116  (244):10 | 92 (11,8):20 | 88 (11,8):21
89 | 161 (6,15,1) 119  (3,30,1):10 | 98  (13,7,2):20 | 89 (45,2,1):30
90 | 162 (6,15) 120 (3,30):10 99  (13,7,1):20 | 90 (45,2):30
91 179 (23,4,1) 124 (2,46,1):10 | 100 (13,7):20 91 (46,2,1):30
92 | 180 (23,4) 125 (246):10 | 101  (14,7,6):20 | 92 (46,2):30
93 | 188  (244,3) | 127  (3,31):10 | 102 (14,7,5):20 | 93  (47,2,1):30
04 | 188  (2442) | 129 (2482):10 | 103  (14,7,4):20 | 94 (47,2):30
95 | 188  (244,1) | 130 (248,1):10 | 104 (14,7,3):20 | 95  (48,2,1):30
96 | 188 (24,4) 131 (248):10 | 105 (14,7,2):20 | 96 (48,2):30
97 | 203  (14,7,1) | 139 (7,14,1):10 | 106 (14,7,1):20 | 97  (49,2,1):30
98 | 203 (14,7) 140 (7,14):10 107 (14,7):20 98 (49,2):30
99 | 220  (254,1) | 144 (2,50,1):10 | 114  (3,33):10 | 99  (50,2,1):30
100 | 220 (25,4) 145  (2,50):10 | 115 (3,34,2):10 | 100 (50,2):30
101 | 228  (138,3) | 148 (2,52,3):10 | 116  (3,34,1):10 | 101  (51,2,1):30
102 | 228  (138,2) | 149  (2,52,2):10 | 117 (3,34):10 | 102 (51,2):30
103 | 228  (138,1) | 150 (2,52,1):10 | 119  (3,35,2):10 | 103  (52,2,1):30
104 | 228 (13,8) 151 (2,52):10 | 120  (3,35,1):10 | 104 (52,2):30
105 | 236 (27,4,3) 153 (7,15):10 121 (3,35):10 107 (11,10,5):20
106 | 236 (27,4,2) | 155  (2,54,2):10 | 122 (3,36,2):10 | 108  (11,10,4):20
107 | 236 (27.4,1) | 156 (254,1):10 | 123 (3,36,1):10 | 109  (11,10,3):20
108 | 236 (27,4) 157 (2,54):10 | 124 (3,36):10 | 110  (11,10,2):20
109 | 252 (14,8,3) | 164 (2,56,3):10 | 125  (14,8,3):20 | 111  (11,10,1):20
110 | 252 (14,8,2) 165  (2,56,2):10 | 126  (14,8,2):20 | 112 (11,10):20
11| 252 (14,8,1) | 166  (2,56,1):10 | 127  (14,8,1):20 | 113  (11,11,10):20
12 | 252 (14,8) 167 (2,56):10 | 128  (14,8):20 | 114  (11,11,9):20
13| 276 (294,3) | 176  (2,58,3):10 | 132  (3,38,1):10 | 115  (11,11,8):20
114 | 276 (294,2) | 177 (2,58,2):10 | 133 (3,38):10 | 116  (11,11,7):20
115 | 276 (294,1) | 178 (2,58,1):10 | 135  (3,39,2):10 | 117  (11,11,6):20
116 | 275 (58,2) 179 (2,58):10 | 136 (3,39,1):10 | 118  (11,11,5):20
117 | 285 (59,2,1) | 182  (2,59,1):10 | 137  (3,39):10 | 119  (11,11,4):20
118 | 283 (59,2) 183 (2,59):10 | 138  (3,40,2):10 | 120  (11,11,3):20
119 | 202 (60,2,1) | 189  (2,60,1):10 | 139  (3,40,1):10 | 121  (11,11,2):20
120 | 290 (60,2) 190 (2,60):10 | 140  (3,40):10 | 122  (11,11,1):20
121 | 317 (61,21) | 196 (2,61,1):10 | 145 (3,41,2):10 | 123  (11,11):20
122 | 315 (61,2) 197 (2,61):10 | 146  (3,41,1):10 | 125  (61,2):30
123 | 346 (62,2,1) 200  (9,14,3):00 | 147 (3,41):10 126 (62,2,1):30
124 | 341 (62,2) 201 (9,14,2):00 | 148  (3,42,2):10 | 127  (62,2):30
125 | 379 (2,63,1) 202 (9,14,1):00 | 149  (3,42,1):10 | 128 (63,2,1):30
126 | 378 203 (9,14):00 | 150  (3,42):10 | 129 (63,2):30
127 | 417 (264,1) | 213 (64,2,1):10 | 155 (32,4,1):20 | 130  (64,2,1):30
128 | 448  (2,64) 214 (64,2):10 | 156  (32,4):20 | 131 (64,2):30
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5 Conclusion

Although the time-relaxed minimal broadcast problem has not been studied in depth, we have shown
that graph compound constructions provide the best-known upper bounds on Bi(n) as the number
of nodes n increases for each ¢ > 0. The main benefit of associating center node sets and official
broadcasting protocols to a t-mbn is that official (and unofficial) broadcast protocols are known
after the generalized compound method is applied, thus allowing for the compounding process to be

repeated.

There are many open problems related to this paper, of which the following is a selection.

e Besides the tree t-obn families of Shastri [12], do there exist other direct constructions of
t-obn’s for ¢t > 07

e Is it beneficial to use relaxed center node sets (i.e., t-cns’s for ¢ > b(G)) in the construction of
sparsest known t-mbn’s by the compounding methods? (Using the two 3-cns’s of Figure 7 did
not improve any of our generated B(n) bounds.)

e The conjecture that B (15) = 18 and B;(16) = 19 is still open [13].

e Isit true that B;(n+1) > By(n) for all t > 0 and n # 2*? Also, is it true that B;(n) > By11(n)
whenever Bi(n) #n — 17
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