
Construction of Time-Relaxed Minimal Broadcast NetworksMichael J. Dinneen� Jose A. Venturay Mark C. Wilsonz Golbon ZakerixAbstractIn broadcasting, or one-to-all communication, a message originally held in one node of thenetwork must be transmitted to all the other nodes. A minimal broadcast network is a commu-nication network that can transmit a message originated at any node to all other nodes of thenetwork in minimum time. In this paper, we present a compound method to construct sparse,time-relaxed, minimal broadcast networks (t-mbn), in which broadcasting can be accomplishedin slightly more than the minimum time. The proposed method generates a new network byconnecting a subset of nodes from several copies of a t1-mbn using the structure of anothert2-mbn. The objective is to construct a network as sparse as possible satisfying the desiredbroadcasting time constraint. Computational results illustrate the e�ectiveness of the proposedmethod.1 IntroductionA communication network can be modeled as a connected graph G = (V;E) without loops or paralleledges, consisting of a set of nodes V = V (G) with cardinality v(G) = jV j, and a set of undirectededges E = E(G) with cardinality e(G) = jEj.In communication networks, broadcasting is a special type of information transmission in whicha single message, originated at a node of the network, must be transmitted to all the other nodes.Broadcasting is usually required to be completed as rapidly as possible by a sequence of transmissionsthrough the communication lines. It is assumed that broadcasting is carried out under the followingthree constraints [7, 8]: (i) each transmission requires one time unit, (ii) a node can make at most onetransmission in one time unit, and (iii) a node can only transmit the message to its adjacent nodes.Thus, in one time unit, the number of informed nodes can at most be doubled. This implies thatafter m time units the number of nodes that have received the message is bounded by 2m, includingthe originator. As a result, the minimum number of time units required to broadcast a message ina network G is dlg v(G)e. A minimal broadcast network (mbn) is de�ned to be a communicationnetwork in which a message, originated at any node, can be broadcast in minimum time.Let the receiving time of a node be the time at which the node receives the message. Supposethat a node u in a network G is the originator of a message. Let b(u;G) be the minimum timerequired to broadcast a message from node u to all other nodes of G. A broadcast protocol P (u;G)is a rooted spanning tree in which the originator u is the root and all the nodes are labeled by theirreceiving times, all of which are at most b(u;G). In a broadcast protocol, each edge is used exactlyonce and the message is always transmitted from parent to child, with the child's label being greater�Department of Computer Science, University of Auckland, Private Bag 92019 Auckland, New Zealandmjd@cs.auckland.ac.nzyDepartment of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park,Pennsylvania 16802, USA jav1@psu.eduzDepartment of Mathematics, University of Auckland, Private Bag 92019 Auckland, New Zealandwilson@math.auckland.ac.nzxDepartment of Engineering Science, University of Auckland, Private Bag 92019 Auckland, New Zealandg.zakeri@auckland.ac.nz 1



than the parent's and di�erent from any of its siblings'. Let b(G) = maxfb(u;G) j u 2 V (G)g be thebroadcast time of G. Thus, a network G is an mbn if and only if b(G) = dlg v(G)e. The problemof recognizing whether an arbitrary network is an mbn is NP -complete [7]. An optimal broadcastnetwork (obn) is de�ned as an mbn with the minimum number of edges, and the broadcast functionB(n) is de�ned to be the number of edges of an obn with n nodes. There is no known e�cientmethod for determining B(n) for an arbitrary value of n. Farley et al. showed that hypercubes areobn's, i.e. B(2m) = m(2m�1), for m � 1 [8]. Khachatrian and Harutounian [11] and Dinneen etal. [5] proved independently that B(2m � 2) = (k � 1)(2k�1 � 1), for m � 2. Farley et al. alsodetermined the values of B(n), for 1 � n � 15. Recently, Bermond et al. [1], Weng and Ventura [15]and Dinneen et al. [6] ]have reported known values of B(n), for n up to 127. Figure 1 shows theHeawood graph, an example of an obn with 14 nodes, together with one of its broadcast protocols.Since this obn is vertex symmetric, all the nodes have similar originating broadcast protocols.1 0 22 33 44 33 4 444Figure 1: Obn with 14 nodes and its broadcast protocol.In 1979 Farley proposed a recursive algorithm to construct sparse mbn's with an arbitrary numberof nodes [7]. Since then, several additional algorithms have been developed [3, 9, 4, 10, 2, 14]. Thesealgorithms use di�erent strategies to produce larger mbn's by combining small known obn's or mbn'susing as few edges as possible without violating the broadcasting time constraint. Recently, a newclass of methods using graph compounding has been developed. The compound of a graph G intoanother graph H relative to a set S � V (G), denoted by GS [H ], is the graph obtained by replacingeach node of H with a copy of G, and connecting together the v(H) copies of each node s 2 Sto form a copy of H . Here V (GS [H ]) = V (G) � V (H). Compound methods have been studiedby Khachatrian and Harutounian [11] and Bermond et al. [1]. Figure 2 illustrates the compoundmethod by generating an obn with 10 nodes from two copies of an obn with �ve nodes. Weng andVentura [15] and Dinneen et al. [6] have developed generalized compounding algorithms which allowfor node deletion.Shastri studied the problem of constructing the sparsest possible networks in which broadcastingcan be accomplished in slightly more than dlg v(G)e time. A t-relaxed minimal broadcast network(t-mbn) G is a network in which broadcasting can be accomplished in dlg v(G)e+ t time units fromany node [12, 13]. De�ne Bt(n) to be the minimum number of edges of a network with n nodesin which broadcasting can be accomplished in dlgne + t time units. A t-relaxed optimal broadcastnetwork (t-obn) with n nodes is a t-mbn with Bt(n) edges. Obviously, a 0-mbn is an mbn and a0-obn is an obn by these de�nitions.Shastri presented several elementary constructions of t-mbn's for t � 4, leading to upper boundson Bt(n) for n � 65. The main objective of this paper is to extend and utilize the compound methodsin [15] and [6] to construct the sparsest possible t-mbn's. The concepts of o�cial broadcastingand center node sets de�ned in these two papers is also adapted to the new context. We present2



(a) Obn with 5 nodes. (b) Obn with 10 nodes.Figure 2: Constructing an obn with 10 nodes by compounding.computational results that provide all of the best-known upper bounds on Bt(n), for 1 � t � 3 andn � 128. The proofs of our generated bounds are concisely speci�ed by a table of graph compounds.2 O�cial Broadcasting and Center Node SetsThe compound methods proposed in [15] and [6] are based on the concept of o�cial broadcastingwith respect to a center node set. In o�cial broadcasting, it is assumed that a message, originated atany node, must be o�cialized by a certain type of node in the network, and the o�cial message mustbe transmitted to all the nodes of the network. Nodes that possess the ability to o�cialize a messageare called center nodes. A transmitted message is o�cial if it has been o�cialized by a center node;otherwise, it is uno�cial. It is assumed that an uno�cial message becomes o�cial immediatelyafter it arrives at a center node. In o�cial broadcasting, where all the nodes must receive an o�cialmessage, a center node will only receive one message, so that if the incoming message is uno�cial, itwill be o�cialized immediately after its arrival. A non-center node may receive one or two messages.In the �rst case, the message must be o�cial. In the second case, the �rst message must be uno�cialand the second one o�cial. In addition, in o�cial broadcasting, it is possible for a non-center nodeto send an uno�cial message to a neighbor and receive an o�cial message during the same timeunit. This is allowed in the broadcast model since within the underlying broadcast protocol a nodewill only receive one message from one of its neighbors and then transmit the message to some ofits other neighbors. Therefore, any subsequent simultaneous reception and transmission of messagesin the o�cial protocol do not violate the constraints of broadcasting. For o�cial broadcasting in anetwork G, let b(u;G;S) be the minimum time required to broadcast a message from node u withrespect to a center node set S � V (G) and b(G;S) = maxfb(u;G;S) j u 2 V (G)g be the o�cialbroadcast time of G with respect to S.An o�cial broadcast protocol for a node u with respect to a set S � V (G) in a network G,denoted by P (G; u;S), is a connected spanning subnetwork of G, in which the nodes are labeled byone or two receiving times, all of which are at most b(G;S). If a node has two receiving times, itmust not belong to S; the �rst receiving time is for the uno�cial message and the second one forthe o�cial message. If u 2 S, each node is labeled by one single receiving time, and the o�cialbroadcast protocol is simply a spanning-tree broadcast protocol rooted at u.Given a network G with n nodes, o�cial broadcasting with respect to a set S � V (G) can becompleted in b(G;S) time units regardless of the originator, where b(G;S) � b(G). The set S iscalled a t-relaxed center node set (t-cns) of G, where t = b(G;S)� dlgne. In addition, if S has thesmallest cardinality among all the t-cns's of G, then S is called a t-relaxed optimal center node set(t-ocns) of G. If b(G;S) = b(G), then we simply call S a center node set (cns) of G. There may existmultiple t-ocns's for a given network, and the cardinality of the t-ocns's of non-isomorphic networkswith n nodes and m edges with the same o�cial broadcast time may be di�erent. There is no knownpolynomial-time algorithm for computing (the cardinality of) a t-ocns for an arbitrary network G.3



Figure 3 shows the three di�erent o�cial broadcast protocols for a 1-obn with 5 nodes, where thetwo black nodes de�ne a 1-ocns (ocns). Figure 4 shows o�cial broadcast protocols with the 1-ocnsof Figure 3 replaced with a single node 2-ocns.0,3 1 2 3 41 0 2 3 42 1 0,4 2 3Figure 3: O�cial protocols for a 5 node 1-obn w.r.t. a 1-ocns.0,5 1,4 2 3 44 0,3 12 1 0 2 32 3
Figure 4: O�cial protocols for a 5 node 1-obn w.r.t. a 2-ocns.3 The Generalized Compound MethodThe proposed method for constructing t-mbn's includes two steps:i. Let G be a network and �x S � V (G). If S � V (G) choose a node v 2 V (G) n S of minimumdegree; otherwise, choose v 2 S of minimum degree. Construct a network Gv by deletingv and all its incident edges from G, and adding the required edges to form a clique amongthe neighbors of v. The subset of nodes Sv = S n fvg is a center node set for Gv such thatb(Gv; Sv) � b(G;S) (see [15]).ii. Let H be a network and pick T � V (H). For a �xed integer i with 0 � i � v(H)�1, constructa network G by connecting v(H) � i copies of G and i copies of Gv as follows. For each �xeds 2 Sv, connect all v(H) copies of s to form a copy Hs of H with corresponding copy Ts of T .If v 2 S, the v(H) � i copies of v are connected to form a network H� with v(H) � i nodesand b(H�) � b(H); otherwise, let H� be an edgeless network. If v 2 S choose U � V (H�) sothat b(H�;U) � b(H ;T ); otherwise, let U = ;. Finally, de�ne S = Ss2Sv Ts [ U .The structure of the network G generated by the generalized compound method is illustrated inFigure 5. Note that given an o�cial protocol P for G with respect to S, there is an appropriatemodi�cation P v of P which is o�cial for Gv with respect to Sv.4
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Gv GvFigure 5: Illustrating the generalized compound method.Theorem 1 The network G generated by the generalized compound method satis�es b(G) � b(G;S)+b(H) and b(G;S) � b(G;S) + b(H ;T ).Proof. Let u be a node of G. We consider several cases depending on the location of u. First werecall some notation from [6], for which we refer for the de�nitions. For a given o�cial broadcastprotocol P for G, Pu; Po denote respectively the uno�cial and o�cial parts of P , while Vcu(P )denotes the set of center nodes which receive an uno�cial message in P .First suppose that u belongs to some Hs. First broadcast in Hs which takes b(H) time units. Inthe next b(G) time units, each node in Hs broadcasts vertically inside its copy of G or Gv . By thistime, all nodes in G are informed, so b(G) + b(H) time units su�ce for ordinary broadcasting. Foro�cial broadcasting, we need only ensure that the initial broadcasting in Hs is o�cial with respectto Ts, which takes b(H ;T ) time units, so b(G) + b(H ;T ) time units su�ce in this case.Next suppose that u is a node of H�. Then all nodes of G are center nodes and so all nodes inG belong to H� or some Hs. Also u belongs to a unique copy Gi of G. First broadcast verticallyin Gi, which takes b(G) = b(G;S) time units. Now broadcast horizontally in the appropriate Hs orH�. This can be done in b(H) time units and o�cially in b(H ;T ) time units and so all nodes areinformed by time b(G;S) + b(H) and o�cially informed by time b(G;S) + b(H ;T ).Suppose now that u is a node of some copy Gi of G but not a node of any Hs. Broadcastaccording to the uno�cial part Pu of some o�cial protocol P , ending at Vcu(P ). Each center nodein Vcu(P ) broadcasts horizontally in its corresponding copy of H , taking b(H) time units for ordinarybroadcasting and b(H ;T ) for o�cial broadcasting. Once this is over, each copy w of a node in Vcu(P )continues according to Po or (P v)o according as w belongs to a copy of G or Gv . Since it takesb(G;S) time units to perform o�cial broadcasting in G according to Po and Pu, all nodes of G areinformed by time b(G;S) + b(H) and o�cially informed by time b(G;S) + b(H ;T ).Finally, suppose that u is a node of some Gv and not a node of any Hs. Note that in this case vis not a center node of G. Let P be an o�cial protocol for u in G. Broadcast in Gv according to P v,ending in Vcu(P ). Let Q be the subprotocol followed so far. Let V1 (respectively V2) be the subset5



of Vcu(P ) consisting of nodes which have (respectively do not have) v as an ancestor. For nodes inV2 then, we have so far followed only (P v)u, and this is precisely Pu for such nodes. However, ifw 2 V1 then w may have descendants in Vcu(P ) which are not in Vcu(P v). Thus Q will include apart of (P v)o for nodes in V1 and their descendants.Now broadcast horizontally in the appropriate Hs, which takes b(H) time units, or b(H ;T ) ifdone o�cially. Each copy of each w 2 Vcu(P ) then follows this with broadcasting until the end of Por P v as appropriate. Now Q takes the same time as (P v)u for nodes in V2. This is the same as thetime taken by Pu for such nodes. Also Q takes the same time as Pu for nodes in V1. Hence Q takesthe same time as Pu for all nodes in Vcu(P ). Since P v takes at most b(G;S) time units and Pu andPo together also use this many time units, all nodes in G are informed by time b(G;S) + b(H) ando�cially informed by time b(G;S) + b(H ;T ). 2The following hold for G, where d = deg v.v(G) = v(G)v(H) � ie(G) = v(H)e(G) + id(d� 3)=2 + jSvje(H) + e(H�)jSj = jSvjjT j+ jU jTwo examples of this compounding method is given in Figure 6, where G = H and i = 2. Thecenter node sets for G and H are taken from Figures 3 and 4. The left 3-mbn [right 4-mbn] of the�gure is obtained by using the 1-ocns for G [for H ] and the 2-ocns for H [for G]. The boxed nodesof these two compounds are both 4-cns's (i.e., the S obtained by the compounding method). Onegenerated o�cial protocol, as dictated by the proof of Theorem 1, is also given for each case.
0,81,678
9 9872,58

96738 7748 8758 0,91,82,57
8 87389

87489 7589 7689Figure 6: Two t-mbn's with 23 nodes obtained by compounding with di�erent center node sets.4 Computational ResultsThis section describes and justi�es our computed bounds on Bt(n), for 1 � t � 3 and n � 128. Forconvenience we also include our bounds for B0(n) = B(n) that were presented in [6].We have implemented the construction method given in Section 3. Our time-relaxed programsuse the same input format that is discussed in [6]. That is, we do not actually store each t-mbn asa graph but only enough data (which is seven integer parameters) as a basis for obtaining edge andcenter node bounds of the compounds. For the Bt(n) problem, an additional integer value t is keptfor each input or generated t-mbn.We now discuss our initial input data.For B1(n), B2(n) and B3(n) we used the t-obn's (and t-cns's) of Figures 7, 8 and 9. Each optimalcenter node set of these t-obn's is displayed using black nodes. The exception being the two 3-obn's(which are also 2-obn's) of Figure 7. Here the two smaller center node sets are indicated by boxednodes. To generate the B0(n) bounds we used a complete set of best-known mbn's, which is asuperset of the obn's listed in the �rst column of Figure 7 and is completely documented in [6].6



The tree t-obn's of Figures 8 and 9 are symmetric trees of odd diameter created by joining tworoots of bounded-depth rooted maximal broadcast trees. We can verify that two center nodes aresu�cient in these cases. Here any originating node needs at most `depth'+1 time units to informthe two attached roots and then dlg n=2e = dlgne � 1 more time units to send the o�cial messagethroughout the tree. Also one can easily see that at least two center nodes are required.In Table 2 at the end of this section contains the compound constructions that yield the best-known upper bounds for Bt(n). The entries in bold indicate when the bound Tt(n) is the bestpossible. These bounds are achieved by the compound constructions that are speci�ed under thecolumns labeled \compound". Each empty compound speci�cation indicates that the bound wasobtained from an input t-mbn. The notation (vG; vH ; i):tGtH represents how each t-mbn is con-structed, with the node-deletion variable i being omitted if it is 0. Using the notation of Section 3,vG = v(G) and vH = v(H), where G is a tG-mbn and H is a tH -mbn. (Note 0 � tG; tH � 3 for ourcomputations.)We now justify the optimal bounds of our table. These proofs are based on the Shastri's broadcasttree bounds [12, 13]. The smallest broadcast times T (n) for various trees of order n up to 128 nodesare summarized in Table 1. (In our table we also added a column, jCNSj, that indicates the size ofthe smallest t-cns for the largest tree in each range.) By inspecting the column labeled t, we see thatfor instance B1(4); : : : ; B1(6), B2(7), B2(8), B1(9) and B2(10); : : : ; B2(14) are all optimal becausethere exist t-obn's which are trees. Since the minimum broadcast times are known for trees of theseorders, we can conclude for each n � 4 that Tt�1(n) � n where t = T (n) � dlgne. For example,B2(28) � 28 since any tree with 28 nodes (27 edges) must be a t-mbn for t � 3; that is, the smallestbroadcast time of any such tree is 8 while dlg 28e = 5 so the di�erence is t = 3. Besides the sharpB0(n) cases, these two simple observations show optimality for all but the �ve bold entries B1(13),B1(14), B1(19), B1(20) and B1(21), which are presented by Shastri in [13].Table 1: Smallest broadcast times T (n) for trees of order n (see [12]).n dlgne T (n) t = T (n)� dlgne jCNSj1 0 0 0 12 1 1 0 23 2 2 0 24 2 3 1 15-6 3 4 1 17-8 3 5 2 29 4 5 1 110-11 4 6 2 112-14 4 6 2 215-16 4 7 3 217-22 5 7 2 223-32 5 8 3 233 6 8 2 234-52 6 9 3 253-64 6 10 4 265-84 7 10 3 285-128 7 11 4 2
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Figure 7: Some t-obn's (and their minimum center nodes sets) for n up to 10.8



Figure 8: A planar 1-mbn with 15 nodes and a tree 2-obn with 22 nodes.

Figure 9: Two maximal tree 3-obn's (52 nodes and 84 nodes).
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Table 2: Some Bt(n) � Tt(n) bounds (bold entries indicates optimal)n T0(n) compound T1(n) compound T2(n) compound T3(n) compound1 02 13 24 4 (2,2) 35 5 46 6 57 8 7 68 12 (2,4) 8 79 10 8 (3,3):1010 12 (5,2) 10 (2,5):10 911 13 11 (2,6,1):10 1012 15 (6,2) 12 (2,6):10 11 (2,6):1113 18 14 (2,7,1):10 1214 21 15 (2,7):10 1315 24 18 15 (3,5):10 14 (3,5):1116 32 (2,8) 19 (8,2):10 16 (2,8):11 15 (2,8):1217 22 17 (3,6,1):10 16 (6,3,1):2018 23 (9,2) 18 (3,6):10 1719 25 20 (3,7,2):10 1820 26 21 (3,7,1):10 1921 28 22 (3,7):10 2022 31 (11,2) 24 (2,11):10 2123 34 26 (2,12,1):10 23 (2,12,1):11 22 (2,12,1):1224 36 27 (2,12):10 24 (2,12):11 23 (2,12):1225 40 30 (2,13,1):10 25 (13,2,1):20 24 (2,13,1):1226 42 31 (2,13):10 26 (13,2):20 25 (2,13):1227 44 34 (2,14,1):10 27 (14,2,1):20 26 (2,14,1):1228 48 35 (2,14):10 28 (14,2):20 27 (2,14):1229 52 38 (2,15,1):10 31 (3,10,1):10 28 (10,3,1):2030 60 39 (2,15):10 32 (3,10):10 29 (10,3):2031 65 43 (8,4,1):10 33 (3,11,2):10 30 (11,3,2):2032 80 (2,16) 44 (8,4):10 34 (3,11,1):10 31 (11,3,1):2033 48 (3,11) 35 (3,11):10 32 (11,3):2034 49 (17,2) 37 (3,12,2):10 34 (2,17):11 33 (2,17):1235 51 (5,7) 38 (3,12,1):10 35 (2,18,1):11 34 (2,18,1):1236 52 (9,4) 39 (3,12):10 36 (2,18):11 35 (2,18):1237 56 42 (3,13,2):10 37 (10,4,3):20 36 (2,19,1):1238 57 (19,2) 43 (3,13,1):10 38 (10,4,2):20 37 (2,19):1239 59 44 (3,13):10 39 (10,4,1):20 38 (2,20,1):1240 60 (20,2) 46 (2,20):10 40 (10,4):20 39 (2,20):1241 65 (6,7,1) 48 (3,14,1):10 41 (11,4,3):20 40 (2,21,1):12
10



n T0(n) compound T1(n) compound T2(n) compound T3(n) compound42 66 (6,7) 49 (3,14):10 42 (11,4,2):20 41 (2,21):1243 70 (43,1) 52 (2,22,1):10 43 (11,4,1):20 42 (2,22,1):1244 72 (11,4) 53 (2,22):10 44 (11,4):20 43 (2,22):1245 78 (23,2,1) 54 (3,15):10 48 (2,23,1):11 4446 79 (23,2) 57 (2,23):10 49 (2,23):11 4547 83 (24,2,1) 59 (2,24,1):10 50 (2,24,1):11 4648 83 (24,2) 60 (2,24):10 51 (2,24):11 4749 94 64 (2,25,1):10 53 (13,4,3):20 4850 95 (25,2) 65 (2,25):10 54 (13,4,2):20 4951 99 (26,2,1) 67 (2,26,1):10 55 (13,4,1):20 5052 99 (26,2) 68 (2,26):10 56 (13,4):20 5153 103 (27,2,1) 70 (2,27,1):10 57 (14,4,3):20 53 (11,5,2):2054 103 (27,2) 71 (2,27):10 58 (14,4,2):20 54 (11,5,1):2055 111 (28,2,1) 75 (2,28,1):10 59 (14,4,1):20 55 (11,5):2056 111 (28,2) 76 (2,28):10 60 (14,4):20 56 (10,6,4):2057 121 (29,2,1) 80 (2,29,1):10 63 (3,19):10 57 (10,6,3):2058 121 81 (2,29):10 64 (3,20,2):10 58 (10,6,2):2059 124 89 (5,12,1):00 65 (3,20,1):10 59 (10,6,1):2060 130 90 (5,12):00 66 (3,20):10 60 (10,6):2061 136 92 (9,7,2):00 68 (3,21,2):10 61 (11,6,5):2062 155 93 (9,7,1):00 69 (3,21,1):10 62 (11,6,4):2063 162 94 (9,7):00 70 (3,21):10 63 (11,6,3):2064 192 (2,32) 100 (5,13,1):00 73 (3,22,2):10 64 (11,6,2):2065 101 (5,13):00 74 (3,22,1):10 65 (11,6,1):20 64 (2,33,1):1266 105 (6,11) 75 (3,22):10 66 (11,6):20 65 (2,33):1267 107 (17,4,1) 78 (3,23,2):10 68 (10,7,3):20 6668 108 (17,4) 79 (3,23,1):10 69 (10,7,2):20 6769 111 (5,14,1) 80 (3,23):10 70 (10,7,1):20 6870 112 (5,14) 82 (3,24,2):10 71 (10,7):20 6971 115 (9,8,1) 83 (3,24,1):10 72 (11,7,6):20 7072 116 (9,8) 84 (3,24):10 73 (11,7,5):20 7173 121 (5,15,2) 88 (3,25,2):10 74 (11,7,4):20 7274 122 (5,15,1) 89 (3,25,1):10 75 (11,7,3):20 7375 123 (5,15) 90 (3,25):10 76 (11,7,2):20 7476 128 (19,4) 92 (3,26,2):10 77 (11,7,1):20 7577 131 (6,13,1) 93 (3,26,1):10 78 (11,7):20 7678 132 (6,13) 94 (3,26):10 82 (10,8,2):20 7779 135 (20,4,1) 96 (3,27,2):10 83 (10,8,1):20 7880 136 (20,4) 97 (3,27,1):10 84 (10,8):20 7981 142 (3,27) 98 (3,27):10 85 (11,8,7):20 8082 145 (6,14,2) 102 (3,28,2):10 86 (11,8,6):20 8183 146 (6,14,1) 103 (3,28,1):10 87 (11,8,5):20 8284 147 (6,14) 104 (3,28):10 88 (11,8,4):20 8385 157 (6,15,5) 108 (3,29,2):10 89 (11,8,3):20 85 (11,8,3):21
11



n T0(n) compound T1(n) compound T2(n) compound T3(n) compound86 158 (6,15,4) 109 (3,29,1):10 90 (11,8,2):20 86 (11,8,2):2187 159 (6,15,3) 110 (3,29):10 91 (11,8,1):20 87 (11,8,1):2188 160 (6,15,2) 116 (2,44):10 92 (11,8):20 88 (11,8):2189 161 (6,15,1) 119 (3,30,1):10 98 (13,7,2):20 89 (45,2,1):3090 162 (6,15) 120 (3,30):10 99 (13,7,1):20 90 (45,2):3091 179 (23,4,1) 124 (2,46,1):10 100 (13,7):20 91 (46,2,1):3092 180 (23,4) 125 (2,46):10 101 (14,7,6):20 92 (46,2):3093 188 (24,4,3) 127 (3,31):10 102 (14,7,5):20 93 (47,2,1):3094 188 (24,4,2) 129 (2,48,2):10 103 (14,7,4):20 94 (47,2):3095 188 (24,4,1) 130 (2,48,1):10 104 (14,7,3):20 95 (48,2,1):3096 188 (24,4) 131 (2,48):10 105 (14,7,2):20 96 (48,2):3097 203 (14,7,1) 139 (7,14,1):10 106 (14,7,1):20 97 (49,2,1):3098 203 (14,7) 140 (7,14):10 107 (14,7):20 98 (49,2):3099 220 (25,4,1) 144 (2,50,1):10 114 (3,33):10 99 (50,2,1):30100 220 (25,4) 145 (2,50):10 115 (3,34,2):10 100 (50,2):30101 228 (13,8,3) 148 (2,52,3):10 116 (3,34,1):10 101 (51,2,1):30102 228 (13,8,2) 149 (2,52,2):10 117 (3,34):10 102 (51,2):30103 228 (13,8,1) 150 (2,52,1):10 119 (3,35,2):10 103 (52,2,1):30104 228 (13,8) 151 (2,52):10 120 (3,35,1):10 104 (52,2):30105 236 (27,4,3) 153 (7,15):10 121 (3,35):10 107 (11,10,5):20106 236 (27,4,2) 155 (2,54,2):10 122 (3,36,2):10 108 (11,10,4):20107 236 (27,4,1) 156 (2,54,1):10 123 (3,36,1):10 109 (11,10,3):20108 236 (27,4) 157 (2,54):10 124 (3,36):10 110 (11,10,2):20109 252 (14,8,3) 164 (2,56,3):10 125 (14,8,3):20 111 (11,10,1):20110 252 (14,8,2) 165 (2,56,2):10 126 (14,8,2):20 112 (11,10):20111 252 (14,8,1) 166 (2,56,1):10 127 (14,8,1):20 113 (11,11,10):20112 252 (14,8) 167 (2,56):10 128 (14,8):20 114 (11,11,9):20113 276 (29,4,3) 176 (2,58,3):10 132 (3,38,1):10 115 (11,11,8):20114 276 (29,4,2) 177 (2,58,2):10 133 (3,38):10 116 (11,11,7):20115 276 (29,4,1) 178 (2,58,1):10 135 (3,39,2):10 117 (11,11,6):20116 275 (58,2) 179 (2,58):10 136 (3,39,1):10 118 (11,11,5):20117 285 (59,2,1) 182 (2,59,1):10 137 (3,39):10 119 (11,11,4):20118 283 (59,2) 183 (2,59):10 138 (3,40,2):10 120 (11,11,3):20119 292 (60,2,1) 189 (2,60,1):10 139 (3,40,1):10 121 (11,11,2):20120 290 (60,2) 190 (2,60):10 140 (3,40):10 122 (11,11,1):20121 317 (61,2,1) 196 (2,61,1):10 145 (3,41,2):10 123 (11,11):20122 315 (61,2) 197 (2,61):10 146 (3,41,1):10 125 (61,2):30123 346 (62,2,1) 200 (9,14,3):00 147 (3,41):10 126 (62,2,1):30124 341 (62,2) 201 (9,14,2):00 148 (3,42,2):10 127 (62,2):30125 379 (2,63,1) 202 (9,14,1):00 149 (3,42,1):10 128 (63,2,1):30126 378 203 (9,14):00 150 (3,42):10 129 (63,2):30127 417 (2,64,1) 213 (64,2,1):10 155 (32,4,1):20 130 (64,2,1):30128 448 (2,64) 214 (64,2):10 156 (32,4):20 131 (64,2):30
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5 ConclusionAlthough the time-relaxed minimal broadcast problem has not been studied in depth, we have shownthat graph compound constructions provide the best-known upper bounds on Bt(n) as the numberof nodes n increases for each t � 0. The main bene�t of associating center node sets and o�cialbroadcasting protocols to a t-mbn is that o�cial (and uno�cial) broadcast protocols are knownafter the generalized compound method is applied, thus allowing for the compounding process to berepeated.There are many open problems related to this paper, of which the following is a selection.� Besides the tree t-obn families of Shastri [12], do there exist other direct constructions oft-obn's for t > 0?� Is it bene�cial to use relaxed center node sets (i.e., t-cns's for t > b(G)) in the construction ofsparsest known t-mbn's by the compounding methods? (Using the two 3-cns's of Figure 7 didnot improve any of our generated Bt(n) bounds.)� The conjecture that B1(15) = 18 and B1(16) = 19 is still open [13].� Is it true that Bt(n+1) > Bt(n) for all t � 0 and n 6= 2k? Also, is it true that Bt(n) > Bt+1(n)whenever Bt(n) 6= n� 1?References[1] J.-C. Bermond, P. Fraigniaud and J.G. Peters, Antepenultimate Broadcasting, Networks 26(1995), 125-137.[2] J.-C. Bermond, P. Hell, A.L. Liestman and J.G. Peters, Sparse Broadcast Graphs, Discrete Appl.Math. 36 (1992), 97-130.[3] S.C. Chau and A.L. Liestman, Constructing Minimal Broadcast Networks, J. Combin. Inform.Syst. Sci. 10 (1985), 110-122.[4] X. Chen, An Upper Bound for the Broadcast Function B(n), Chinese J. Computers 13 (1990),605-611.[5] M.J. Dinneen, M.R. Fellows and V. Faber, Algebraic Constructions of E�cient Broadcast Net-works, in: Applied Algebra, Algebraic Algorithms and Error Correction Codes 9, Lecture Notesin Computer Science 539 (1991), 152-158.[6] M.J. Dinneen, J.A. Ventura, M.C. Wilson and G. Zakeri, Compound Constructions of Mini-mal Broadcast Networks, Centre for Discrete Mathematics and Theoretical Computer Science,University of Auckland, New Zealand, Report CDMTCS-026, January 1997.[7] A.M. Farley, Minimal Broadcast Networks, Networks 9 (1979), 313-332.[8] A.M. Farley, S.T. Hedetniemi, A. Proskurowski and S. Mitchell, Minimum Broadcast Graphs,Discrete Math. 25 (1979), 189-193.[9] L. Gargano and U. Vaccaro, On the Construction of Minimal Broadcast Networks, Networks 19(1989), 673-689.[10] M. Grigni and D. Peleg, Tight Bounds on Minimum Broadcast Networks, SIAM J. DiscreteMath. 4 (1991), 207-222.[11] L.H. Khachatrian and O.S. Harutounian, Construction of New Classes of Minimal BroadcastNetworks, Conference on Coding Theory, Armenia, 1990.[12] A. Shastri, Broadcasting in General Graphs I: Trees, Proceedings of COCOON'95-First Interna-tional Conference on Combinatorics and Computing, Xi'an, China, Lecture Notes in ComputerScience 959 (1995), 482-489.[13] A. Shastri, Time-relaxed Broadcasting in Communication Networks, Discrete Appl. Math., toappear.[14] J.A. Ventura and M.X. Weng, A New Method for Constructing Minimal Broadcast Networks,Networks 23 (1993), 481-497.[15] M.X. Weng, J.A. Ventura, A Doubling Procedure for Constructing Minimal Broadcast Networks,Telecommunication Systems 3 (1995), 259-293.13


