Polygonization of Quasi-Convolutionally

Smoothed Polyhedra

Burkhard Wunsche and Richard Lobb
University of Auckland

April 7, 1997

Abstract

The smoothing of a polyhedral model is an important task in Com-
puter Graphics. Richard Lobb [Lob96] introduced quasi-convolution-
al smoothing, a fast rounding scheme approximating convolutional
smoothing. For a fast interactive display of the model its surface must
be polygonized. We introduce here Triage Polygonization, a new fast
polygonization method for quasi-convolutionally smoothed polyhedra.
The polygonization method exploits the property that quasi-convolu-
tionally smoothed polyhedra usually have predominantly planar sur-
faces with only edges and corners rounded.

A quasi-convolutionally smoothed polyhedron is represented im-
plicitly as a density field isosurface. Triage Polygonization subdivides
the density field in a BSP-like manner and classifies the resulting cells
as inside, outside, or intersected by the isosurface. Planar surface
areas usually lie on the boundary of cells and are extracted directly
from the subdivided density field with minimal fragmentation. For
cells intersected by the isosurface a more general polygonization is
performed. For quasi-convolutionally smoothed scenes with a small
rounding radius Triage Polygonization is 20-30 times faster and out-
puts only 1-2% of the polygons of the Marching Cubes algorithm
without compromising the approximation. The approach taken for
Triage Polygonization can be extended to related problems.

1 Introduction

A large proportion of computer graphics scenes are modeled with polyhedra.
However, natural polyhedra usually have smoothed edges and corners con-
necting adjacent planes. Many methods exist to replace sharp edges and
corners with rounded surfaces, but most prove computationally difficult.
Lobb [Lob96] introduced quasi-convolutional smoothing as a solution. In
his method polyhedral objects are represented by CSG-like structures with
arithmetic operators as internal nodes rather then set membership operators.
An object is rounded by approximating the process of true convolutional fil-
tering. The smoothed object’s surface is defined as an isosurface in a density
field.

Quasi-convolutionally smoothed objects have some special properties.
The most important is that they usually consist of large planar surfaces
connected by relatively small areas of smooth curved surfaces.

In Lobb’s original work scenes were rendered by ray-tracing. The results
are good but may easily need several hours computation time. Especially
during the modeling process this is not acceptable. A solution is to polygonize
the scene. Existing polygonization algorithms, however, do not exploit the
special properties of quasi-convolutionally smoothed objects and hence lead
to fragmentation and unnecessarily long computation time.

Triage Polygonization is a fast, high-quality polygonization method espe-
cially designed for quasi-convolutionally smoothed objects. It first generates
a special BSP-like space subdivision of the object. Potential regions of cur-
vature are identified and most planar regions of the rounded object are ex-
tracted in a subsequent step. A subspace polygonization process polygonizes
the remaining parts of the object surface. The method is fast and results in
only a small fragmentation of the surface.

2 Quasi-convolutional smoothing

2.1 Rounding Methods

Real world objects that are approximately polyhedral usually have rounded
edges and corners. In modeling such objects, the rounded surfaces are not
usually functionally important. In CAD/CAM technology these surfaces are
called blends. The principle difficulty is to shape and position blends so as
to achieve tangency to primary (unrounded) surfaces. A good overview of
blending methods is given by Hoschek and Lasser [HL92].

Most existing blending methods are complex and often require user inter-
action. Furthermore they have practical limitations when more than three
surfaces influence the shape of the blend at any given point. Colburn [Col90]
presents a solution by introducing a spherical test volume with a radius equal
to the desired blend radius. The surface of the smoothed object is defined as
all points such that when a sphere of the specified radius is positioned at the
point, exactly half of the volume of the sphere is inside the polyhedron and
half is outside. Figure 1 shows the two dimensional equivalent: a polygon
and its smoothed version.

a Polygon

D Convolutionally smoothed polygon

Smoothing filter

Figure 1: A convolutionally smoothed polygon.

Note that now the shape of the blend at any given point is influenced
only by the portion of the unblended model that falls inside the sphere. The
process can be understood as a low pass filtering with a spherical filter of
radius r and is mathematically expressed by a convolution.

2.2 Quasi-convolutional smoothing

Though the true convolutional smoothing process is easy to understand and
mathematically simple, it is computationally expensive to find points on
the object surface. To render or to polygonize the smoothed object a large
number of surface points must be found. Also for a non-convex object the
surface of the smoothed volume can lie outside the volume. This makes it
difficult to know where to search for the surface of the rounded object.

Lobb addresses these problems with an approximation to convolutional
smoothing called quasi-convolutional smoothing. Quasi-convolutional smooth-
ing requires that a polyhedral object be represented as a Constructive Solid
Geometry (CSG) tree whose internal nodes denote regular set operations
[Req80] and whose leaves are convex polyhedral solids. The convex polyhe-
dral primitives are themselves regarded as intersections of halfspaces defined
by all the polyhedral faces (Figure 2). The whole object is defined by ap-
plying the set operations recursively to the child objects. Lobb defines a
global rounding radius r for the polyhedron and replaces the set operations
union, intersection, and set difference by the arithmetic operations addition,
multiplication, and subtraction. He then convolves only the leaf halfspaces
with a spherical filter of radius 7.

Figure 2: A square modeled as the intersection of four halfspaces. In 3-space
six halfspaces define a cube.

The density field pi(p) of a smoothed halfspace H" is defined as the
convolution of the halfspace with a spherical filter of radius . The halfspace
is regarded as a density field with a value 1 inside the halfspace and a value
0 outside H. The value of the convolution at any point p is then equal to the
volume of the sphere centered at p intersected with the halfspace, for which
the answer is

a>1

0
Pu(p) =4 1 a<—1 (1)
(1—a)?* (24 a)/4 otherwise

where oo =

=

and d is the distance of point p to the halfspace H.
The density field pj;;(p) of a quasi-convolutionally smoothed CSG object
can than be defined as

P (p) if obj is a halfspace H
" pa(r) + pp(r) ifobj=AUB
Pos; () phy(x) * plg(x) ifobj = ANB 2)
pa(z) — pp(z) if obj = A\ B

where “\” denotes the set difference.
Finally the surface of the quasi-convolutionally smoothed object Obj" is
all points z € R? for which

Pgbj () =0.5
For this scheme to be a workable approximation to convolutional smooth-
ing, the original CSG object is restricted in two important ways:

1. the union operation can be applied only to non-intersecting objects,
and

2. the set difference can be applied only to objects that completely inter-
sect.

For a discussion of these constraints and other properties of quasi-convolu-
tionally smoothed objects refer to [Lob96].

Figure 3 shows in (a) the product of two unsmoothed halfspaces. The re-
sulting density field has a density of one for all points inside both halfspaces
and a density of zero otherwise. Part (b) of the figure shows the product of
two convolutionally smoothed halfspaces. The 0.5 isosurface of the resulting
density field (the black line) forms a quasi-convolutionally smoothed version
of the object in (a). The surface is virtually indistinguishable from that ob-
tained by true convolutionally smoothing. For a discussion of the properties
of quasi-convolutional smoothing see the original paper [Lob96].

b)

Figure 3: The product (intersection) of two unsmoothed (a) and smoothed
halfspaces (b).

3 Polygonization Methods for Implicit Sur-
faces

Our polygonization problem is to approximate the isosurface of the densi-
ty field of the quasi-convolutionally smoothed polyhedron. Many published
methods exist for finding a polygonal approximation to such an implicitly
defined surface. A practical introduction to polygonization methods for im-
plicitly defined surfaces is provided by Bloomenthal who also gives working
C code [Blo94]. Ning and Bloomenthal give a good evaluation of polygo-
nization algorithm [NB93]. Gelder and Wilhelms [vGW94]| give a thorough
discussion of design objectives of isosurface algorithms, isosurface generation
and solving of ambiguities.

The well known Marching Cubes method of Lorensen and Cline [LC87]
involves creating an array of cubes and evaluating the density field at each
vertex. For each cube that contains the isosurface the method constructs
a polygonal approximation to the surface, using a precomputed table of 15
topologically distinct high-low patterns of cell vertices. This table lookup
method is devised for speed, at the occasional expense of a correct topology.
In the original implementation the authors did not recognize ambiguities.

Diiurst [Diu88] showed that this could yield a discontinuity between cells.

Wyvill et al. [WMW86] also use a cubical cell array. Their method dis-
ambiguates by using the facial average value.

Ambiguities can be resolved implicitly by decomposition into simplices.
This approach is taken by Koide et al. [KDK86] and Doi and Koide [DK91].
They decompose a cell into tetrahedra and interpolate linearly on each tetra-
hedral edge.

All the above methods are fast but assume no knowledge about the implic-
itly defined surface. In order to detect fine surface detail the above methods
need to use a fine sampling grid, which results in a high fragmentation of
planar surface areas.

Adaptive methods give less fragmentation. Bloomenthal [Blo88, BW90]
extends the method of Koide et al. to an adaptive subdivision based on
cubes. Hall and Warren [HW90] use an adaptive subdivision technique which
maintains a tetrahedral honeycomb at all times. Adaptive sampling means
that in areas of high curvature the sampling rate is increased. However, in
order not to miss small surface details a fine initial mesh is still required.

Alternatively a fine sampling grid can be used and then a mesh optimiza-
tion method can be employed to find large planar or nearly planar surface
areas (e.g. [HH93, KT96|). Montani et al. [MSS94| uses a discretized Mar-
ching Cubes algorithm such that nearly planar faces are coplanar and can be
easily merged. However, it is clear that it is more efficient to extract directly
large planar surface areas.

Our approach solves these problems by detecting areas of curvature from
the definition of the quasi-convolutionally smoothed objects. Planar surface
areas are extracted without fragmentation, which results in a higher speed
and far fewer polygons as compared to the above methods.

4 'Triage Polygonization

4.1 Overview of Triage Polygonization

Triage Polygonization is defined in three steps, illustrated in Figure 4. The
figure shows a simple scene constructed by quasi-convolutionally smoothing

the set difference of a large and a small cube. The resulting object is shown
in part (h) of the figure.

The first step of Triage Polygonization is a polyhedral subdivision of the
density field into regions completely inside and completely outside the iso-
surface (low and high cells, respectively). Some regions can not be classified
and might be intersected by the isosurface. They are called unclassified cells.
Figure 4 (a) — (c) show the low, high, and unclassified cells, respectively, of
the resulting subdivision. Note the small size of the unclassified cells in part
(c) of the figure as compared to the size of the object. Only for these cells
must an implicit surface polygonization be performed.

The second step of Triage Polygonization is the extraction of tree polygons,
which separate low from high cells. These are shown in (d). Back facing
polygons are illuminated only with an ambient light source and are hence
shaded in dark red.

The third and last step of Triage Polygonization, the subspace polygoniza-
tion, is the polygonization of the density field inside unclassified cells The
resulting subspace polygons are shown in (e).

The complete polygonization output by Triage Polygonization is given
in (f) flat shaded, in (g) as a wire-frame representation and in (h) Gouraud
shaded. In Figure 4 (g) and in all subsequent wire-frame representations the
back-facing polygons are removed.

4.2 Polyhedral Subdivision of Space

The density field p}; of a quasi-convolutionally smoothed halfspace partitions
IR? into four parts (Figure 5). We denote with h the halfspace plane of
halfspace H and define two parallel planes h, (outer halfspace plane) and
h_, (inner halfspace plane) at distances of r and —r, as shown in the figure.
Then for all points outside h, the density field is constant zero. Similarly
inside h_, the density field is constant one. Between the two planes are a
low region (density values smaller than 0.5) and a high region (density values
greater than or equal to 0.5) separated by the halfspace plane h. Note that
all points on h_, have a density value of one, all points on A, have a density
value of zero, and all points on h have a density value of 0.5.

Figure 6 shows the density field of the intersection of two halfspaces.
The two halfspaces H; and Hs are smoothed with rounding radii r; and 7o,

Figure 4: The three steps of Triage Polygonization: first the polyhedral
subdivision partitions a density field into low cells (a), high cells (b), and
unclassified cells (c). The second step extracts tree polygons (d), which
separate low cells and high cells. Finally subspace polygons are obtained by
applying a subspace polygonization to the unclassified cells in (c). The final
polygonization is shown flat shaded in (f), as a wire-frame representation
with removed back-faces in (g), and Gouraud shaded in (h).

Figure 5: A quasi-convolutionally smoothed halfspace partitions the eu-
clidean space into four regions.

respectively?.

According to equation 2 the resulting density field is the product of the
density fields of the halfspaces. For example, the density value at the point
p1 is computed as

prynm, (P1) = p5,(p1) * P, (p1) = 0.5x 1 =0.5

since p; lies on both the planes h; and hy _,,. Whole regions can be classified
in a similar manner as follows.

4.2.1 Density Classification

In Figure 6 the planes h; and hy and the corresponding halfspace planes
displaced by the rounding radius partition IR® into 16 regions. By using
interval arithmetic [Duf92, Sny92] it is possible to compute the density values
for a whole region of the density field. As an example consider region R;
bounded by the planes hi, hi,,, he, and hy _,.

'We have chosen two different rounding radii for the halfspaces. This extension is
explained in section 4.5.

10

Figure 6: Intersection of two halfspaces.

Since R; is bounded by the planes h; and hy,, the contribution of the
density field of H{! to this region varies between zero and 0.5. We express
this as

i () = (0.0,0.5)

Similarly, since R; is bounded by hy and hy,_,,, we have
i, (1) = (0.5, 1.0)
and obtain
P (R1) = pg, (R1) * pH, (R1) = (0.0,0.5) 7 (0.5,1.0) = (0.0,0.5)

where %) is the multiplication operator for two intervals. Hence all density
values in the region R; lie in the (open) interval (0.0,0.5) and therefore the
region R; lies outside the 0.5 isosurface.

The above interval computations can be simplified by replacing intervals
with density classes. We denote with low any subinterval of the half-open in-
terval [0.0,0.5) and with high any subinterval of the closed interval [0.5,1.0].
All other intervals are called unclassified. An unclassified interval is a subin-
terval of [0.0,1.0]. For computational efficiency we introduce a zero interval

11

[0.0,0.0] and a one interval [1.0,1.0]. Note that the constraints placed on
the CSG object in section 2 ensure that the density field is between 0 and 1
everywhere.

Table 1 summarizes the rules for the multiplication of two density classes.
Similar tables can be defined for addition and subtraction.

| * | zero | low | unclassified | high | one |
zero Zero | zero zero zero zero
low zero | low low low low
unclassified || zero | low | unclassified | unclassified | unclassified
high zero | low | unclassified | unclassified high
one zero | low | unclassified high one

Table 1: Multiplication of density classes

Note that by replacing the intervals with density classes some information
is lost. However, we found that for our objective (the detection of regions
intersected by the 0.5 isosurface) this information loss was insignificant and
therefore we preferred this simpler approach.

4.2.2 BSP Trees

A polyhedral subdivision suitable for the polygonization process must iden-
tify planar and curved regions of the surface. Figure 5 gave an example of
how such a subdivision is achieved for the quasi-convolutionally smoothed in-
tersection of two halfspaces. The process can be generalized for an arbitrary
quasi-convolutionally smoothed object.

To do this we first introduce a special type of Binary Space Partition-
ing (BSP) tree to partition and classify a density field into density classes.
The fundamental methodology underlying BSP trees is spatial partitioning
[FKBS80, Nay81]. Planes are used to recursively subdivide IR® to create a
disjoint set of convex cells. Each cell is then designated as either interior or
exterior to the set. The boundary need not be represented explicitly as it is
derivable from the cells.

12

Rin Rout @ Rout

Rin,in Rin,out

Figure 7: Constructing a BSP tree.

The construction of a BSP tree is illustrated in Figure 7. One begins with
a region of space R, chooses some plane h that intersects R, and then uses h
to induce a binary partitioning of R. If H;, and H,,; denote the inside and
outside open halfspaces of h two new regions are derived: R;, = RN H;, and
Rout = RN Hoyy.

Both children can in turn be partitioned, and so on, to produce a binary
tree of regions. We make the convention that R;, and R,,; are always the
left and right child (IN tree and OUT tree), respectively, of the current node.
We introduce a density BSP tree, simply called BSP tree from now on, that
differs from the standard definition in that the resulting cells are classified
into density classes.

Our polyhedral subdivision algorithm transforms the density field of a
quasi-convolutionally smoothed CSG object into a BSP tree. The algorithm,
which is similar to the standard algorithm for the conversion of a CSG object
into a BSP tree (e.g. [TN87, NAT90]), is discussed in section 4.2.4.

4.2.3 Replacing Polyhedral Primitives with Classified Cells

Since we want to achieve a partitioning of the density field of the whole quasi-
convolutionally smoothed CSG object we first partition the density field of

13

the convex polyhedral primitives, which are the building bocks for more
complex polyhedra. Every such primitive is replaced by a union of classified
cells that together represent the non-zero density field of the primitive. Again
the process is best explained by an example.

Figure 8 shows a quasi-convolutionally smoothed object (a) defined as a
rounded set difference of two cuboids (b). Each cuboid has a density field
(c). In order to subdivide these density fields into non-zero regions we define
for every halfspace plane of the primitive object the corresponding inner and
outer halfspace planes (d), which partition the density fields of the polyhedral
primitives as shown in (e).

A primitive object is an intersection of halfspaces. As with the intersec-
tion of two halfspaces in Figure 6, we classify each region with respect to each
halfspace into zero, low, high, or one and then compute its density class by
multiple applications of table 1. The definition of the partition guarantees
that the density class in the centre of a region is equal to the density class of
the whole region. Figure 9 gives pseudocode for this algorithm.

Note that a region lying outside any outer halfspace plane has a zero den-
sity class. It is therefore sufficient to subdivide the polyhedron defined as the
intersection of all outer halfspaces. Note, too, that the density class of a cell is
the product of its classifications in all different halfspaces. Hence its density
class can be computed by counting the number of times it is classified by the
planes into each of the density classes (function ClassifyAgainstAllPlanes).
For example, if at least one density class is zero then the product is zero.

4.2.4 Polyhedral Subdivision with a BSP Tree

Figure 10 gives the algorithm to transform the whole CSG object into a BSP
tree (Figure 8 (g)). If the CSG object is not a primitive we transform the
left child object recursively to a BSP tree and insert the right child object
according to the corresponding set operation. A primitive CSG object, i.e.
a classified cell, is transformed into a linear tree where the enclosed region
has the same density class as the cell and the outside regions are classified as
zero. A non-primitive CSG object is converted to a BSP tree by recursively
converting the left subtree of the object to a BSP tree and then inserting
into that the right CSG subtree. The insertion is under control of the CSG
set operation using the algorithm of Figure 11.

14

Figure 8: A quasi-convolutionally smoothed object (a) is defined by a CSG
object with a rounding attribute (b). The halfspace planes of the primitive
objects are displaced by the rounding radius (d) and are used to subdivide
the density field of the corresponding primitive (c). The resulting object (e)
can be transformed into a BSP tree (g) classifying the density field of the
quasi-convolutionally smoothed CSG object (f).

15

function ClassifiedCells(r :Real /* rounding radius */,
planes :List of Plane /* halfspace planes */
) :List of ClassifiedCell
/* Subdivides non-zero density field of a polyhedral primitive

into classified cells */

outerPlanes = TranslateInNormalDirection(r , planes)
innerPlanes = TranslateInNormalDirection(-r , planes)
boundingPolyhedron = Intersection of halfspaces of outerPlanes
cells = Subdivide(boundingPolyhedron, planes | innerPlanes)
classifiedCells = ()

For each cell € cells do
(Mzeros Miows Mhighs Mone) = ClassifyAgainstAllPlanes (cell , planes)
if MNjero > O then densityClass = zero
elsif My, > O then densityClass = low
elsif Npigp == 0 then densityClass = one

high

elsif Npigp == 1 then densityClass
else densityClass = unclassified
classifiedCell = classifiedCell U (cell,densityClass)

return classifiedCells

Figure 9: Transforming a polyhedral primitive into classified cells

16

function CSG2BSP(obj:CSGObject) :BSPTree
/* Transforms a CSG object into a BSP tree */

if obj is a classified cell then
return LinearBSPTree(obj.densityClass, obj.faceList)
else /* obj is not a classified (convex) cell */
return InsertCSGinBSP(obj.right, CSG2BSP(obj.left), obj.op)

function LinearBSPTree(class:DensityClass, faces:List of Faces):BSPTree

/* Computes linear BSP tree for a convex CSG object */

if faces is empty then
return MakeLeaf (class)
else
plane = Plane of HeadOfList(faces)
inTree = LinearBSPTree(class, TailOfList(faces))

return MakeNode(plane, inTree, MakeLeaf(zero))

Figure 10: Transforming a CSG object into a BSP tree

17

Function InsertCSGinBSP involves splitting the CSG object by the parti-
tioning plane of the root of the BSP tree. The resulting portions are then
recursively inserted in the two subtrees of the BSP tree. If the CSG object
reaches a leaf node, it is transformed recursively into a BSP tree and the
density classes of the BSP tree are updated according to the density class of
the leaf node and the involved set operation.

4.3 'Tree Polygons

The BSP tree partitions the density field of a quasi-convolutionally smoothed
object into cells with density classes zero, low, unclassified, high, and one. It
can be seen that the density field on a face between a low and a high cell is
constant 0.5. These faces are therefore part of the polygonized surface and
can be extracted directly. The algorithm for this step is similar to the surface
extraction step for BSP trees [TN87] and is given in Figure 12.

For each partitioning plane we get a candidate tree polygon by intersect-
ing a bounding box with the partitioning plane. The bounding box must
enclose all high and one regions and can be computed efficiently from the
primitives of the original CSG object. The definition of our BSP tree guar-
antees that all unsmoothed parts of the object’s surface lie on a partitioning
plane, that is a halfspace plane of the original CSG object.

For each BSP node the candidate polygon is pushed down the IN and
OUT trees to find the bits of it facing a high cell on their inside and a low
cell on their outside. Note that it is sufficient to push the face down the
subtrees because the candidate face is obtained from a bounding box which
has already been clipped on the partitioning planes of all parent nodes of the
current BSP node.

The same process is executed for the flipped candidate face. The density
field outside the flipped candidate face is now given by the IN tree and the
density field inside the face is given by the OUT tree. After finding the tree
polygons of a BSP node the algorithm is called recursively for the subtrees
of the node until a cell is reached.

Note that the density field of a quasi-convolutionally smoothed object is
continuous and therefore no part of the 0.5 isosurface neighbors a zero or a

18

function InsertCSGinBSP(obj:CSGObject, tree:BSPTree, op:SetOperation) :BSPTree

/* Insert a GSG object into a BSP tree using a given set operation */

if tree is not a leaf
(inObj,out0bj) = SplitCSGObj(tree.plane, obj)

inTree

InsertCSGinBSP(in0Obj, tree.inTree, op)
outTree = InsertCSGinBSP(outObj, tree.outTree, op)
return MakeNode(tree.plane, inTree, outTree)
else /* tree is a leaf with a density class */
if op ==
if tree.densityClass == one then return tree /* no change */
if tree.densityClass == zero then return CSG2BSP(obj)
return UpdateDensityClasses(CSG2BSP(obj), tree.densityClass, op)
if op ==
if tree.densityClass == zero then return tree /* no change */
if tree.densityClass == one then return CSG2BSP(obj)
return UpdateDensityClasses(CSG2BSP(obj), tree.densityClass, op)
if op ==
if tree.densityClass == zero then return tree /* no change */

return UpdateDensityClasses(CSG2BSP(obj), tree.densityClass, op)

function UpdateDensityClasses(tree:BSPTree, class:DensityClass, op:SetOperation):BSPTree
/* Perform for the density classes of all cells of the given

tree a set operation with the given density class */

if tree is a leaf

then newTree = MakeNode(Apply(op, tree.densityClass, class))

else
inTree = UpdateDensityClasses(tree.inTree, class, op)
outTree = UpdateDensityClasses(tree.outTree, class, op)
newTree = MakeNode(tree.plane, inTree, outTree)

return newTree

Figure 11: Insert a CSG object into a BSP tree

19

function TreePolygons(tree:BSPTree, boundingBox:Polyhedron) :List of Polygons
/* Compute all tree polygons, i.e. polygons separating low from high cells,

for a given BSP tree and a given bounding box of its non-zero cells /*

if tree is a leaf then return ()
else
(inBox, outBox)= SplitBoundingBox(boundingBox, tree.plane)
candidatePoly = Intersection(boundingBox, tree.plane)
resultPolys =0
highOnInsidePolys = SelectedBits0fPoly(candidatePoly, High, inTree)
for each polygon p in highOnInsidePolys
lowOnOutsidePolys = SelectedBits0fPoly(p, Low, outTree)
resultPolys = resultPolys U lowOnOutsidePolys

highOnInsidePolys = SelectedBits0fPoly(FlippedFace(candidatePoly), High, outTree)

for each polygon p in highOnInsidePolys
lowOnOutsidePolys = SelectedBits0fPoly (p, Low, inTree)
resultPolys = resultPolys U lowOnOutsidePolys
polysInInTree = TreePolygons(tree.inTree, inBox)
polysInOutTree = TreePolygons(tree.outTree, outBox)
return resultPolys U polysInInTree U polysInQutTree

function SelectedBits0fPoly(poly:Polygon, class:DensityClass,
tree:BSPtree) :List of Polygons
/* Inserts the poly into the tree and returns all bits that reach

a leaf with the specified density class /*

if tree is a leaf then
if tree.class == class then return poly
else return @
else
(inBit, outBit)= SplitPolygon(poly, tree.plane)
retainedInBits = SelectedBits0fPoly(inBit, class, tree.inTree)
retainedOutBits= SelectedBits0fPoly(outBit, class, tree.outTree)

return retainedInBits U retainedOutBits

Figure 12: Extracting tree polygons from a BSP tree
20

one cell?.

4.4 Subspace Polygonization

After extracting the tree polygons it is known that the remaining object
surface lies inside or on the unclassified cells. We polygonize the 0.5 isosurface
inside an unclassified cell by approximating it as follows:

1. Compute the points on the isosurface where the cell edges intersect the
isosurface.

2. Connect the intersection points to form one or more topological poly-
gons.

3. Refine each edge of the polygon(s) by finding an additional point on
the isosurface near each edge midpoint.

4. Subdivide the topological polygon(s) into planar polygons.

Figure 13 illustrates this process.

4.4.1 Computing intersection points

A set of points on the isosurface is formed by computing for every face of an
unclassified cell the intersection points of its edges with the 0.5 isosurface.
Since we assume a smooth surface an intersection point exists if the end
points of an edge lie on different sides of the isosurface. The intersection
point is found by a rootfinder using a regula falsi method with interleaved
binary search.

2This is not true for the final implementation, where we achieve a fast clipping of the
object by clipping the density field.

21

|:| Cell @ Point on 0.5 iso-surface

Polygon edge

Figure 13: The subspace polygonization is performed in four steps. (a) The
isosurface intersections with the edges are found. (b) The intersections are
connected to create one or more polygons. (c¢) The polygon edges are refined
by adding new vertices. (d) The topological polygon(s) are subdivided into
planar polygons.

4.4.2 Connecting Intersection Points

Having determined the intersections of all edges of the cell with the isosurface,
the intersection of the isosurface with cell faces of the cell is approximated
by connecting appropriate pairs of intersection points by straight lines lying
in the faces of the cell.

Since each BSP tree contains arbitrarily shaped convex polyhedral cells,
the number of isosurface intersection points with a given face is unlimited.
For more than two intersection points the connection is ambiguous. To re-
solve ambiguities observe that only neighboring intersection points can be
connected (otherwise the isosurface would be self-intersecting or folded). The
density class of the centroid of the intersection points belonging to a cell face
is used to resolve the ambiguity. A pair of consecutive intersection points
around a face is connected by a polygon edge if and only if the density class
of the centroid differs from that of the cell face vertices lying between the
intersection points. The direction of the edge is chosen so that points inside
the isosurface have a high density value.

This is illustrated in Figures 14 (a) and (b). Figure 14 (c) shows that this
approach, like all polygonization methods, can in principle yield the wrong

22

topology. However, the inherent smoothness of the quasi-convolutionally
smoothed density field makes such an outcome very unlikely.

Centroid of
o intersection points —_ low density value
O Intersection point :' on 0.5 iso-surface
O Vertex | high density value

:l Sector
- Polygon edge
-~

0.5 iso-surface

Figure 14: Resolving edge connection ambiguities using the centroid of the
intersection points.

Once all edges have been determined for a cell, one or more topological
polygons are formed by connecting the edges. Those polygons approximate
the isosurface intersection with the cell.

4.4.3 Refining Edges

As can be seen from figure 4, a single BSP tree cell typically encompasses
the entire curvature of a rounded edge. As described so far, the algorithm
would replace a simple rounded edge with a single polygon. A better ap-
proximation is clearly desireable. Surprisingly, we have found that just two
polygons, Gouraud shaded, generally produce an entirely acceptable effect.
We subdivide each edge of a topological polygon into two, introducing a new
vertex that lies on the isosurface. The new point is initially created at the
midpoint of the edge and is then displaced along the line of the density field
gradient until the isosurface is found (Figure 15).

23

a) b))

O Point [low density value — Polygon edge
I on0.5iso-surface —— Areaof root search
o Vertex Il high density value —» Density gradient projected on face
/ 0.5 iso-surface

Figure 15: The line along the density field gradient through ppiq (a) defines
a linear search space for the edge refinement (b). The refined edge is shown
in (c).

Since the density gradient in p,,;4 usually does not lie in the face plane
we take instead its projection Vp,,;.p on the face given by

Vrojep = Vp — (np - Vp)ng

where nr is the face normal.

We intersect the line along the density field gradient with the face edges
and compare the density classes of the intersection points Sgier¢ and Senq
with the density class of pyq (Figure 15 (a)). The two lines SygriPmiq and
SendPmia are candidates for a root search. If either S qq¢ Or Seng 1S On the
side of the isosurface opposite to p;q we perform a root search between that
point and ppiqa (Figure 15 (b)). If both the former points are on the side of
the isosurface opposite to p.iq, we search in the direction of the density field
gradient. Otherwise we assume that no isosurface intersection exists and do
not refine the edge.

24

4.4.4 Flattening Topological Polygons

The last step of the subspace polygonization divides each topological polygon
into planar polygons by connecting each vertex to the centroid of the topo-
logical polygon, thus triangulating the topological polygon. The polygonal
approximation of the isosurface is improved by moving the centroid in the
direction of the density gradient until the 0.5 isosurface intersection is found
(Figure 13). This again is a root search. The search space is restricted to the
volume of the cell to ensure that the approximation to the isosurface stays
within the cell.

4.5 Improvements

4.5.1 Local Density Field

The subspace polygonization involves repeated evaluation of the density field
at points inside the unclassified cell. To make this calculation more efficient,
a local density field is defined for each unclassified cell. This is effectively a
pruned version of the original quasi-convolutionally smoothed density field,
involving only those halfspaces that have a non-constant contribution to the
densities within the cell. The local density field can be computed during the
computation of density classes with a table similar to table 1. We found
that the local density fields usually have a constant size whereas the global
density field grows linearly in the size of the object.

4.5.2 Intersection of Two Halfspaces

We inspected the results of our polyhedral subdivision algorithm and found
that on average 30% of the unclassified cells contained a local density field
from the intersection of two halfspaces. It can be show [Wiin96| that the den-
sity field is then a convex swept surface. Figure 16 shows that for these cells
an improved subspace polygonization is given as part of the convex hull of all
isosurface intersection points. An efficient algorithm, which finds polygons
of maximum size, is given in [Wiin96].

25

a) ! b)

c . .
) o Intersection point

-4— Polyline

T 1 o0.5iso-surface
T 1 Polygon

Figure 16: (a) Cell containing a quasi-convolutionally smoothed intersection
of two halfspaces. (b) The subspace polygonization leads to fragmentation.
(c) Desired result of the subspace polygonization.

26

4.5.3 Variable Rounding Radius

Another desirable feature is to define different rounding radii for the different
edges of an object. Though this effect is not possible for quasi-convolution-
ally smoothed objects, a similar effect can often be obtained by defining
different smoothing radii for the halfspaces which form a polyhedral prim-
itive. This technique was used to produce the cylindrical metal pins with
smoothly flattened ends in Figure 18 (see also the enlargements).

5 Rendering

For Gouraud or Phong shading the vertex normals of the polygons are re-
quired. The vertex normals of tree polygons, which always describe a planar
area of the isosurface, are given simply by the surface normal of the polygon.
The vertex normal 7,, of a vertex p; of a subspace polygon is given by the
gradient of the density field at the vertex

" Vo(p:)

ry
" Vel

The density gradient is computed by differentiating the arithmetic tree
defining the density field (see section 2.2).

6 Results

We implemented our algorithm in the functional language CLEAN 1.0, on
a POWER MACINTOSH 9500/120. The polygonized scenes were rendered
using QUICKDRAW3D.

6.1 Images

Figure 17 shows a hole punch modelled as a simple unsmoothed CSG object
with polyhedral primitives. By specifying a few rounding radii we obtain a
much better looking smoothed hole punch shown in Figure 18. The base of

27

the hole punch is rounded with a smoothing radius considerably smaller than
the base itself. As a result Triage Polygonization extracts most of the ob-
ject’s surface as large rectangles. A smoothed edge and corner is represented
with two long rectangles and 6 triangles, respectively. The Gouraud shaded
picture in Figure 18 (b) shows that the produced polygons are sufficient to
achieve the visual impression of a smoothed surface.

Figure 17: The unsmoothed “Hole Figure 18: The “Hole Punch” scene
Punch” scene. The result is shown as polygonized with Triage Polygoni-
a wire-frame representation (a) and zation. The result is shown as
Gouraud shaded (b). a wire-frame representation (a) and

Gouraud shaded (b).

The enlargements of Figure 18 depict the punch, part of the hinges, and
some metal pins in detail. The punch is modeled as a rounded cuboid.

28

Note that the punch pin has a sharp edge at the top. We achieve this
very easily by applying a clipping plane to the rounded cuboid. An efficient
implementation is achieved by directly clipping the density field of an object
before polygonization. Details are given in [W{in96.

The two metal pins at the bottom right corner of the enlargement are
constructed from halfspaces with different rounding radii. This gives the
impression of a cylinder with a smoothly flattened end. Observe that the
cylindrical part of a smoothed metal pin is approximated with rectangles
whereas the more complicated end of a pin is represented by triangles.

Figure 19 and 20 show a model of a stapler before and after applying
our algorithm, respectively. Note that wherever possible the polygonization
method finds long triangles and rectangles. Also it can be seen that very
thin objects such as the side plates of the hinge are polygonized without
problems.

Figure 21 shows a scene modeled as a union of six objects each derived by
applying various combinations of rounding operations and a set operation to
a cube and a small cuboid. Two interesting cases are shown as enlargements.
The top enlargements of both parts of the figure depicts a clipped quasi-
convolutionally smoothed small cube subtracted from a bigger unsmoothed
cube. We model set operations on polygonized objects by merging BSP trees
[TN87, NAT90].

The bottom enlargements of Figure 21 (a) and (b) give an example of a
concave three plane corner. The corner results from a quasi-convolutionally
smoothed union of a big cube and a small cuboid. It can be seen that the
corner is nicely polygonized with only 26 triangles.

6.2 Comparison with the Marching Cubes algorithm

The Marching Cubes algorithm is a popular method for implicit surface poly-
gonization, and provides a good basis for comparison with our new method.
To achieve comparable visual quality we applied the Marching Cubes algo-
rithm with a grid size of half the rounding radius of the quasi-convolutionally
smoothed scene.

Figure 22 shows the results of both algorithms for a “Variable Radius”
scene, which shows an object constructed as a set difference of a cube and
a small cuboid smoothed with several different rounding radii. The object

29

Figure 19: The unsmoothed “Sta-
pler” scene. The result is shown as
a wire-frame representation (a) and

Gouraud shaded (b).

30

Figure 20: The “Stapler” scene
polygonized with Triage Polygoni-
zation. The result is shown as
a wire-frame representation (a) and

Gouraud shaded (b).

Figure 21: The “CSG Example” scene polygonized with Triage Polygoniza-
tion. The result is shown as a wire-frame representation (a) and Gouraud
shaded (b).

31

in part (a) was polygonized with Triage Polygonization whereas for (b) the
Marching Cubes algorithm was used. Note that our algorithm achieves a
good polygonization for all objects, independent of the rounding radius. The
polygonization for the objects with small rounding radius can be considered
as optimal. For the objects rounded with a rather large smoothing radius
some “bands” are visible where the object is polygonized more finely. This is
due to small cells in the polyhedral subdivision of the density fields defining
the quasi-convolutionally smoothed objects.

Figure 22: Triage Polygonization and the Marching Cubes algorithm applied
to the “Variable Radius” scene. Part (a) shows the result of Triage Polygo-
nization as a wire-frame representation (left) and Gouraud shaded (right).
Part (b) shows the same representations for the result of the Marching Cubes
algorithm.

We found that on average Triage Polygonization is about 20-30 times
faster than the Marching Cubes algorithm and outputs only a fraction (~ 1-

32

2%) of its number of polygons. The results also confirm that Triage Polygoni-
zation produces arbitrarily complex polygons of vastly different size, whereas
the Marching Cubes algorithm produces only about equally-sized triangles.
Also note that Triage Polygonization yields for a rounding radius of zero the
b-rep of the unsmoothed object, whereas the Marching Cubes algorithm can
not polygonize sharp edges at all.

The Marching Cubes algorithm becomes superior if the rounding radius
reaches about a quarter of the object size (the bottom middle object in
Figure 22). In that case, however, the object no longer fulfills our design
objective that it is predominantly planar.

6.3 Complexity

The complexity of Triage Polygonization is governed by the subspace polygo-
nization step, which is a binary space partition. We have made measurements
on several scenes which suggest an average time complexity of about O(n'-?),
where n is the number of halfspaces in the unsmoothed CSG object. This
result could be improved to O(nlogn) by using the BSP tree algorithm of
Naylor, Amanatides, and William [NAT90]. Note that this complexity is
quite different from that for a conventional polygonization method, such as
the Marching Cubes algorithm. For this algorithm the time complexity is
O(m?), where m is the sample resolution.

As a result our algorithm can become less efficient for a complex object
with hundreds of vertices if compared to the Marching Cubes approach with
a low resolution. On the other hand our approach always guarantees that
rounded edges and corners are found, which is not the case for most conven-
tional algorithms. Also note that very complex objects are unlikely in the
intended application. Scenes like the stapler and the hole punch, with at
most a few tens of vertices per smoothed component, cause no problem.

6.4 Known Problems

As with all geometric algorithms, numerical robustness is an issue. The
subspace polygonization stage depends on classifying cell vertices as above
or below the isosurface, which leads to the question of how to treat vertices

33

that lie directly on the isosurface. That situation is rare with a Marching
Cubes algorithm but common with ours, since our partitioning planes lie
on the unsmoothed object’s faces. Extending the algorithm to handle such
vertices as special cases is complex. We have chosen instead largely to avoid
this problem by classifying vertices against a displaced 0.5 + € isosurface. We
determine which edges intersect the displaced isosurface, but then compute
the actual 0.5 isosurface during root searching. This strategy can lead to
holes in the isosurface in certain cases, but those cases are easily identified
and the missing polygons can be generated in a postprocessing step. See
[Wiin96] for details. We use a value for € of 0.001.

The more general issue of ensuring continuity of the polygonized isosur-
face is discussed at length in [Wiin96]. Our algorithm yields a continuous
surface if no vertices lie exactly on the displaced isosurface and if the polyhe-
dral subdivision of space has the honeycomb property®. While binary space
partitioning does not naturally lead to a honeycomb, it is possible to main-
tain a honeycomb property by use of a data structure, such as the hash table
used by Wyvill et al. [WMWS86], that enforces sharing of edge and face infor-
mation. Unfortunately, the language we have used for our implementation,
CLEAN 1.0, lacks a working array data type, and we have been unable to
implement complete sharing of face and edge information effciently. As a
consequence our implementation is occasionally unable to generate a contin-
uous surface, at which point it aborts with an error message. The situation is
rare and we have for example generated an animation of a robot figure being
gradually smoothed with a larger and larger radius filter until it vanishes
completely. Nonetheless, we acknowledge that difficulties remain, and these
are a topic for future research.

7 Conclusion

This paper has presented Triage Polygonization, a new polygonization method
specifically designed for quasi-convolutionally smoothed objects. Triage Poly-
gonization performs best for quasi-convolutionally smoothed objects smoothed
with a rounding radius small in comparison to their size. Such objects have

3A honeycomb is a polyhedral subdivison of space in which each internal face of each
polyhedral cell is entirely shared by exactly one other cell.

34

predominantly planar surfaces with only edges and corners rounded. Triage
Polygonization extracts planar surfaces by means of a BSP tree with mini-
mal fragmentation and approximates most rounded edges and corners with
a nearly minimal number of polygons. We believe that for the above case
Triage Polygonization is superior to all general polygonization methods for
implicit surfaces known to us.

Triage Polygonization also performs well for strongly rounded objects and
in such cases its performance is similar to general polygonization methods.

Triage Polygonization is invariant under affine linear transformation and
the quality of the polygonization is independent of the rounding radius (if it
is reasonably small).

8 Future Work

As mentioned in subsection 6.4 several problems still exist with our method.
We would like to implement the algorithm in an imperative language (C/C++)
using a data structure which allows us to generate a BSP tree modified to
maintain a honeycomb property.

An even better quality of polygonization should be achieved by making
the refinement process for edges and topological polygon dependent on the
curvature of the surface. An adaptive refinement process similar to that
suggested by Hall and Warren [HW90] or Bloomenthal [Blo88, BW90] could
be employed.

We have designed Triage Polygonization to polygonize quasi-convolution-
ally smoothed objects. However, it should be adaptable to other polyhedral
smoothing schemes based on implicit surfaces. In particular we would like to
investigate its use with true convolutional smoothing [Dan97].

References

[Blo88] Jules Bloomenthal. Polygonization of implicit surfaces.
Computer-Aided Geometric Design, 5(4):341 — 355, November
1988.

35

[Blo94]

[BW90]

[Col90)]

[Dan97]

[DK91]

[Duf92]

[Diiuss]

[FKBS0]

[HH93]

[HLO2]

Jules Bloomenthal. An implicit surface polygonizer. In Paul S.
Heckbert, editor, Graphic Gems, volume IV, chapter IV.8. Aca-
demic Press, Cambridge, MA 02139, 1994.

Jules Bloomenthal and Brian Wyvill. Interactive techniques for
implicit modeling. Computer Graphics, 24(2):109 — 116, March
1990. Special Issue on 1990 Symposium on Interactive 3D Graph-
ics.

Steve Colburn. Solid modeling with global blending for machining
dies and patterns. SAE technical paper series, SAE International,
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A.,
April 1990. 41st Annual Earthmoving Industry Conference.

Peter John Dansted. Convolutional smoothing of polyhedra. Mas-
ter’s thesis, University of Auckland, 1997.

A. Doi and A. Koide. An efficient method of triangulating equi-
valued surfaces by using tetrahedral cells. IEICE Trans. Com-
mun. Elec. Inf. Syst., E-74(1):214 — 224, January 1991.

Tom Duff. Interval arithmetic and recursive subdivision for
implicit functions and constructive solid geometry. Computer
Graphics, 26(2):131 — 138, July 1992.

Martin J. Diiurst. Additional reference to ”marching cubes”.
Computer Graphics, 22(2):72, April 1988. Letter.

H. Fuchs, Z. Kedem, and B.Naylor. On visible surface generation
by a priority tree structure. Computer Graphics, 14(3):124-268,
June 1980.

P. Hinker and C. Hansen. Geometric optimization. In G. M.
Nielson and D. Bergeron, editors, Proceedings of Visualization
'93, pages 189 — 195, Los Alamitos, California, 1993. IEEE, Com-
puter Society Press.

Josef Hoschek and Dieter Lasser. Fundamentals of Computer
Avded Geometric Design, chapter 14, pages 572 — 601. AK Peters
Ltd., Wellesley, MA 02181, second edition, 1992.

36

[HW90]

[KDKS86]

[KT96]

[LC87]

[Lob96]

IMSS94]

[NAT0]

[Nay81]

[NB93]

[Req80]

Mark Hall and Joe Warren. Adaptive polygonization of implic-
itly defined surfaces. IEEE Computer Graphics and Applications,
10(5):33 — 42, November 1990.

A. Koide, A. Doi, and K. Kajioka. Polyhedral approximation
approach to molecular orbit graphics. J. Molec. Graph., 4:149 —
156, 1986.

Alan D. Kalvin and Russell H. Taylor. Superfaces: Polygonal
mesh simplification with bounded error. IEEE Computer Graph-
ics and Applications, 16(3):64-77, May 1996. ISSN 0272-1716.

W. Lorensen and H. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. Computer Graphics, 21(4):163 —
169, July 1987. Proceedings of SIGGRAPH.

Richard Lobb. Quasiconvolutional smoothing of polyhedra. The
Visual Computer, 12(8):373 — 389, 1996.

C. Montani, R. Scateni, and R. Scopigno. Discretized marching
cubes. In D. Bergeron and A. Kaufman, editors, Proceedings
of Visualization ’94, pages 281 — 286. IEEE, Computer Society
Press, 1994.

Bruce F. Naylor, John Amanatides, and William Thibault. Merg-
ing BSP trees yields polyhedral set operations. Computer Graph-
ics, 24(4):115 — 124, August 1990.

Bruce F. Naylor. A Priori Based Techniques for Determining Vis-
wility Priority for 3-D Scenes. PhD thesis, University of Texas,
Dallas, Texas, May 1981.

Paul Ning and Jules Bloomenthal. An evaluation of implict sur-
face tilers. IEEE Computer Graphics and Applications, 13(6):33
— 41, November 1993.

Aristides A. G. Requicha. Representation for rigid solids: Theory,
methods, and systems. ACM Computing Surveys, 12(4):437 —
464, December 1980.

37

[Sny92]

[TN87]

[vGW94]

[WMWS6]

[Wiin96]

John M. Snyder. Interval analysis for computer graphics. Com-
puter Graphics, 26(2):121 — 130, 1992.

W. C. Thibault and B. F. Naylor. Set operations on polyhe-
dra using binary space partitioning trees. Computer Graphics,
21(4):153 — 162, July 1987. Proceedings SIGGRAPH ’87.

Allen van Gelder and Jane Wilhelms. Topological considera-

tions in isosurface generation. ACM Transactions on Graphics,
13(4):337 — 375, October 1994.

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. A data struc-
ture for soft objects. The Visual Computer, 2(4):227 — 234, Au-
gust 1986.

Burkhard C. Wiinsche. A fast polygonization method
for quasi-convolutionally smoothed polyhedra. Master’s
thesis, University of Auckland, August 1996. URL:
http://www.cs.auckland.ac.nz/ " bwue001/Thesis/thesis.pdf.

38

