
Polygonization of Quasi-ConvolutionallySmoothed PolyhedraBurkhard W�unsche and Richard LobbUniversity of AucklandApril 7, 1997AbstractThe smoothing of a polyhedral model is an important task in Com-puter Graphics. Richard Lobb [Lob96] introduced quasi-convolution-al smoothing, a fast rounding scheme approximating convolutionalsmoothing. For a fast interactive display of the model its surface mustbe polygonized. We introduce here Triage Polygonization, a new fastpolygonization method for quasi-convolutionally smoothed polyhedra.The polygonization method exploits the property that quasi-convolu-tionally smoothed polyhedra usually have predominantly planar sur-faces with only edges and corners rounded.A quasi-convolutionally smoothed polyhedron is represented im-plicitly as a density �eld isosurface. Triage Polygonization subdividesthe density �eld in a BSP-like manner and classi�es the resulting cellsas inside, outside, or intersected by the isosurface. Planar surfaceareas usually lie on the boundary of cells and are extracted directlyfrom the subdivided density �eld with minimal fragmentation. Forcells intersected by the isosurface a more general polygonization isperformed. For quasi-convolutionally smoothed scenes with a smallrounding radius Triage Polygonization is 20{30 times faster and out-puts only 1{2% of the polygons of the Marching Cubes algorithmwithout compromising the approximation. The approach taken forTriage Polygonization can be extended to related problems.1

1 IntroductionA large proportion of computer graphics scenes are modeled with polyhedra.However, natural polyhedra usually have smoothed edges and corners con-necting adjacent planes. Many methods exist to replace sharp edges andcorners with rounded surfaces, but most prove computationally di�cult.Lobb [Lob96] introduced quasi-convolutional smoothing as a solution. Inhis method polyhedral objects are represented by CSG-like structures witharithmetic operators as internal nodes rather then set membership operators.An object is rounded by approximating the process of true convolutional �l-tering. The smoothed object's surface is de�ned as an isosurface in a density�eld.Quasi-convolutionally smoothed objects have some special properties.The most important is that they usually consist of large planar surfacesconnected by relatively small areas of smooth curved surfaces.In Lobb's original work scenes were rendered by ray-tracing. The resultsare good but may easily need several hours computation time. Especiallyduring the modeling process this is not acceptable. A solution is to polygonizethe scene. Existing polygonization algorithms, however, do not exploit thespecial properties of quasi-convolutionally smoothed objects and hence leadto fragmentation and unnecessarily long computation time.Triage Polygonization is a fast, high-quality polygonization method espe-cially designed for quasi-convolutionally smoothed objects. It �rst generatesa special BSP-like space subdivision of the object. Potential regions of cur-vature are identi�ed and most planar regions of the rounded object are ex-tracted in a subsequent step. A subspace polygonization process polygonizesthe remaining parts of the object surface. The method is fast and results inonly a small fragmentation of the surface.2 Quasi-convolutional smoothing
2

2.1 Rounding MethodsReal world objects that are approximately polyhedral usually have roundededges and corners. In modeling such objects, the rounded surfaces are notusually functionally important. In CAD/CAM technology these surfaces arecalled blends. The principle di�culty is to shape and position blends so asto achieve tangency to primary (unrounded) surfaces. A good overview ofblending methods is given by Hoschek and Lasser [HL92].Most existing blending methods are complex and often require user inter-action. Furthermore they have practical limitations when more than threesurfaces inuence the shape of the blend at any given point. Colburn [Col90]presents a solution by introducing a spherical test volume with a radius equalto the desired blend radius. The surface of the smoothed object is de�ned asall points such that when a sphere of the speci�ed radius is positioned at thepoint, exactly half of the volume of the sphere is inside the polyhedron andhalf is outside. Figure 1 shows the two dimensional equivalent: a polygonand its smoothed version.
Polygon

Convolutionally smoothed polygon

Smoothing filterFigure 1: A convolutionally smoothed polygon.Note that now the shape of the blend at any given point is inuencedonly by the portion of the unblended model that falls inside the sphere. Theprocess can be understood as a low pass �ltering with a spherical �lter ofradius r and is mathematically expressed by a convolution.
3

2.2 Quasi-convolutional smoothingThough the true convolutional smoothing process is easy to understand andmathematically simple, it is computationally expensive to �nd points onthe object surface. To render or to polygonize the smoothed object a largenumber of surface points must be found. Also for a non-convex object thesurface of the smoothed volume can lie outside the volume. This makes itdi�cult to know where to search for the surface of the rounded object.Lobb addresses these problems with an approximation to convolutionalsmoothing called quasi-convolutional smoothing. Quasi-convolutional smooth-ing requires that a polyhedral object be represented as a Constructive SolidGeometry (CSG) tree whose internal nodes denote regular set operations[Req80] and whose leaves are convex polyhedral solids. The convex polyhe-dral primitives are themselves regarded as intersections of halfspaces de�nedby all the polyhedral faces (Figure 2). The whole object is de�ned by ap-plying the set operations recursively to the child objects. Lobb de�nes aglobal rounding radius r for the polyhedron and replaces the set operationsunion, intersection, and set di�erence by the arithmetic operations addition,multiplication, and subtraction. He then convolves only the leaf halfspaceswith a spherical �lter of radius r.
∩ ∩ ∩ =Figure 2: A square modeled as the intersection of four halfspaces. In 3-spacesix halfspaces de�ne a cube.The density �eld �rH(p) of a smoothed halfspace Hr is de�ned as theconvolution of the halfspace with a spherical �lter of radius r. The halfspaceis regarded as a density �eld with a value 1 inside the halfspace and a value0 outside H. The value of the convolution at any point p is then equal to thevolume of the sphere centered at p intersected with the halfspace, for whichthe answer is 4

�rH(p) = 8><>: 0 � � 11 � � �1(1� �)2 � (2 + �)=4 otherwise (1)where � = drand d is the distance of point p to the halfspace H.The density �eld �robj(p) of a quasi-convolutionally smoothed CSG objectcan than be de�ned as�rObj(x) = 8>>><>>>: �rH(p) if obj is a halfspace H�rA(x) + �rB(x) if obj = A [B�rA(x) � �rB(x) if obj = A \ B�rA(x)� �rB(x) if obj = A nB (2)where \n" denotes the set di�erence.Finally the surface of the quasi-convolutionally smoothed object Objr isall points x 2 R3 for which �rObj(x) = 0:5For this scheme to be a workable approximation to convolutional smooth-ing, the original CSG object is restricted in two important ways:1. the union operation can be applied only to non-intersecting objects,and2. the set di�erence can be applied only to objects that completely inter-sect.For a discussion of these constraints and other properties of quasi-convolu-tionally smoothed objects refer to [Lob96].Figure 3 shows in (a) the product of two unsmoothed halfspaces. The re-sulting density �eld has a density of one for all points inside both halfspacesand a density of zero otherwise. Part (b) of the �gure shows the product oftwo convolutionally smoothed halfspaces. The 0.5 isosurface of the resultingdensity �eld (the black line) forms a quasi-convolutionally smoothed versionof the object in (a). The surface is virtually indistinguishable from that ob-tained by true convolutionally smoothing. For a discussion of the propertiesof quasi-convolutional smoothing see the original paper [Lob96].5

x

x =

=

a)

b)

Figure 3: The product (intersection) of two unsmoothed (a) and smoothedhalfspaces (b).3 Polygonization Methods for Implicit Sur-facesOur polygonization problem is to approximate the isosurface of the densi-ty �eld of the quasi-convolutionally smoothed polyhedron. Many publishedmethods exist for �nding a polygonal approximation to such an implicitlyde�ned surface. A practical introduction to polygonization methods for im-plicitly de�ned surfaces is provided by Bloomenthal who also gives workingC code [Blo94]. Ning and Bloomenthal give a good evaluation of polygo-nization algorithm [NB93]. Gelder and Wilhelms [vGW94] give a thoroughdiscussion of design objectives of isosurface algorithms, isosurface generationand solving of ambiguities.The well known Marching Cubes method of Lorensen and Cline [LC87]involves creating an array of cubes and evaluating the density �eld at eachvertex. For each cube that contains the isosurface the method constructsa polygonal approximation to the surface, using a precomputed table of 15topologically distinct high-low patterns of cell vertices. This table lookupmethod is devised for speed, at the occasional expense of a correct topology.In the original implementation the authors did not recognize ambiguities.6

D�uurst [D�uu88] showed that this could yield a discontinuity between cells.Wyvill et al. [WMW86] also use a cubical cell array. Their method dis-ambiguates by using the facial average value.Ambiguities can be resolved implicitly by decomposition into simplices.This approach is taken by Koide et al. [KDK86] and Doi and Koide [DK91].They decompose a cell into tetrahedra and interpolate linearly on each tetra-hedral edge.All the above methods are fast but assume no knowledge about the implic-itly de�ned surface. In order to detect �ne surface detail the above methodsneed to use a �ne sampling grid, which results in a high fragmentation ofplanar surface areas.Adaptive methods give less fragmentation. Bloomenthal [Blo88, BW90]extends the method of Koide et al. to an adaptive subdivision based oncubes. Hall and Warren [HW90] use an adaptive subdivision technique whichmaintains a tetrahedral honeycomb at all times. Adaptive sampling meansthat in areas of high curvature the sampling rate is increased. However, inorder not to miss small surface details a �ne initial mesh is still required.Alternatively a �ne sampling grid can be used and then a mesh optimiza-tion method can be employed to �nd large planar or nearly planar surfaceareas (e.g. [HH93, KT96]). Montani et al. [MSS94] uses a discretized Mar-ching Cubes algorithm such that nearly planar faces are coplanar and can beeasily merged. However, it is clear that it is more e�cient to extract directlylarge planar surface areas.Our approach solves these problems by detecting areas of curvature fromthe de�nition of the quasi-convolutionally smoothed objects. Planar surfaceareas are extracted without fragmentation, which results in a higher speedand far fewer polygons as compared to the above methods.4 Triage Polygonization4.1 Overview of Triage PolygonizationTriage Polygonization is de�ned in three steps, illustrated in Figure 4. The�gure shows a simple scene constructed by quasi-convolutionally smoothing7

the set di�erence of a large and a small cube. The resulting object is shownin part (h) of the �gure.The �rst step of Triage Polygonization is a polyhedral subdivision of thedensity �eld into regions completely inside and completely outside the iso-surface (low and high cells, respectively). Some regions can not be classi�edand might be intersected by the isosurface. They are called unclassi�ed cells.Figure 4 (a) { (c) show the low, high, and unclassi�ed cells, respectively, ofthe resulting subdivision. Note the small size of the unclassi�ed cells in part(c) of the �gure as compared to the size of the object. Only for these cellsmust an implicit surface polygonization be performed.The second step of Triage Polygonization is the extraction of tree polygons,which separate low from high cells. These are shown in (d). Back facingpolygons are illuminated only with an ambient light source and are henceshaded in dark red.The third and last step of Triage Polygonization, the subspace polygoniza-tion, is the polygonization of the density �eld inside unclassi�ed cells Theresulting subspace polygons are shown in (e).The complete polygonization output by Triage Polygonization is givenin (f) at shaded, in (g) as a wire-frame representation and in (h) Gouraudshaded. In Figure 4 (g) and in all subsequent wire-frame representations theback-facing polygons are removed.4.2 Polyhedral Subdivision of SpaceThe density �eld �rH of a quasi-convolutionally smoothed halfspace partitionsIR3 into four parts (Figure 5). We denote with h the halfspace plane ofhalfspace H and de�ne two parallel planes hr (outer halfspace plane) andh�r (inner halfspace plane) at distances of r and �r, as shown in the �gure.Then for all points outside hr the density �eld is constant zero. Similarlyinside h�r the density �eld is constant one. Between the two planes are alow region (density values smaller than 0.5) and a high region (density valuesgreater than or equal to 0.5) separated by the halfspace plane h. Note thatall points on h�r have a density value of one, all points on hr have a densityvalue of zero, and all points on h have a density value of 0.5.Figure 6 shows the density �eld of the intersection of two halfspaces.The two halfspaces H1 and H2 are smoothed with rounding radii r1 and r2,8

Figure 4: The three steps of Triage Polygonization: �rst the polyhedralsubdivision partitions a density �eld into low cells (a), high cells (b), andunclassi�ed cells (c). The second step extracts tree polygons (d), whichseparate low cells and high cells. Finally subspace polygons are obtained byapplying a subspace polygonization to the unclassi�ed cells in (c). The �nalpolygonization is shown at shaded in (f), as a wire-frame representationwith removed back-faces in (g), and Gouraud shaded in (h).
9

}
}r

r

zero

low

high

one

h-r

hr

h

H1

Figure 5: A quasi-convolutionally smoothed halfspace partitions the eu-clidean space into four regions.respectively1.According to equation 2 the resulting density �eld is the product of thedensity �elds of the halfspaces. For example, the density value at the pointp1 is computed as�H1\H2(p1) = �r1H1(p1) � �r2H2(p1) = 0:5 � 1 = 0:5since p1 lies on both the planes h1 and h2;�r2 . Whole regions can be classi�edin a similar manner as follows.4.2.1 Density Classi�cationIn Figure 6 the planes h1 and h2 and the corresponding halfspace planesdisplaced by the rounding radius partition IR3 into 16 regions. By usinginterval arithmetic [Duf92, Sny92] it is possible to compute the density valuesfor a whole region of the density �eld. As an example consider region R1bounded by the planes h1, h1;r1 , h2, and h2;�r2.1We have chosen two di�erent rounding radii for the halfspaces. This extension isexplained in section 4.5. 10

}
}

}
}

r1

r1

r2
r2

h1

h1,-r1

h1,r1

h2

h2,r2

R1
R2

R3

p1
p2

h2,-r2

H1

H2

Figure 6: Intersection of two halfspaces.Since R1 is bounded by the planes h1 and h1;r1 the contribution of thedensity �eld of Hr11 to this region varies between zero and 0:5. We expressthis as �r1H1(R1) = (0:0; 0:5)Similarly, since R1 is bounded by h2 and h2;�r2 , we have�r2H2(R1) = (0:5; 1:0)and obtain�H1\H2(R1) = �r1H1(R1) �[] �r2H2(R1) = (0:0; 0:5) �[] (0:5; 1:0) = (0:0; 0:5)where �[] is the multiplication operator for two intervals. Hence all densityvalues in the region R1 lie in the (open) interval (0:0; 0:5) and therefore theregion R1 lies outside the 0.5 isosurface.The above interval computations can be simpli�ed by replacing intervalswith density classes. We denote with low any subinterval of the half-open in-terval [0:0; 0:5) and with high any subinterval of the closed interval [0:5; 1:0].All other intervals are called unclassi�ed. An unclassi�ed interval is a subin-terval of [0:0; 1:0]. For computational e�ciency we introduce a zero interval11

[0:0; 0:0] and a one interval [1:0; 1:0]. Note that the constraints placed onthe CSG object in section 2 ensure that the density �eld is between 0 and 1everywhere.Table 1 summarizes the rules for the multiplication of two density classes.Similar tables can be de�ned for addition and subtraction.� zero low unclassi�ed high onezero zero zero zero zero zerolow zero low low low lowunclassi�ed zero low unclassi�ed unclassi�ed unclassi�edhigh zero low unclassi�ed unclassi�ed highone zero low unclassi�ed high oneTable 1: Multiplication of density classesNote that by replacing the intervals with density classes some informationis lost. However, we found that for our objective (the detection of regionsintersected by the 0.5 isosurface) this information loss was insigni�cant andtherefore we preferred this simpler approach.4.2.2 BSP TreesA polyhedral subdivision suitable for the polygonization process must iden-tify planar and curved regions of the surface. Figure 5 gave an example ofhow such a subdivision is achieved for the quasi-convolutionally smoothed in-tersection of two halfspaces. The process can be generalized for an arbitraryquasi-convolutionally smoothed object.To do this we �rst introduce a special type of Binary Space Partition-ing (BSP) tree to partition and classify a density �eld into density classes.The fundamental methodology underlying BSP trees is spatial partitioning[FKB80, Nay81]. Planes are used to recursively subdivide IR3 to create adisjoint set of convex cells. Each cell is then designated as either interior orexterior to the set. The boundary need not be represented explicitly as it isderivable from the cells. 12

h2

h1h1

Rin Rout

Rin,in Rin,out

Rout

h1

Rin

Rout Rout
h1

Rin,in
Rin,out

h2

Figure 7: Constructing a BSP tree.The construction of a BSP tree is illustrated in Figure 7. One begins witha region of space R, chooses some plane h that intersects R, and then uses hto induce a binary partitioning of R. If Hin and Hout denote the inside andoutside open halfspaces of h two new regions are derived: Rin = R\Hin andRout = R \Hout.Both children can in turn be partitioned, and so on, to produce a binarytree of regions. We make the convention that Rin and Rout are always theleft and right child (IN tree and OUT tree), respectively, of the current node.We introduce a density BSP tree, simply called BSP tree from now on, thatdi�ers from the standard de�nition in that the resulting cells are classi�edinto density classes.Our polyhedral subdivision algorithm transforms the density �eld of aquasi-convolutionally smoothed CSG object into a BSP tree. The algorithm,which is similar to the standard algorithm for the conversion of a CSG objectinto a BSP tree (e.g. [TN87, NAT90]), is discussed in section 4.2.4.4.2.3 Replacing Polyhedral Primitives with Classi�ed CellsSince we want to achieve a partitioning of the density �eld of the whole quasi-convolutionally smoothed CSG object we �rst partition the density �eld of13

the convex polyhedral primitives, which are the building bocks for morecomplex polyhedra. Every such primitive is replaced by a union of classi�edcells that together represent the non-zero density �eld of the primitive. Againthe process is best explained by an example.Figure 8 shows a quasi-convolutionally smoothed object (a) de�ned as arounded set di�erence of two cuboids (b). Each cuboid has a density �eld(c). In order to subdivide these density �elds into non-zero regions we de�nefor every halfspace plane of the primitive object the corresponding inner andouter halfspace planes (d), which partition the density �elds of the polyhedralprimitives as shown in (e).A primitive object is an intersection of halfspaces. As with the intersec-tion of two halfspaces in Figure 6, we classify each region with respect to eachhalfspace into zero, low, high, or one and then compute its density class bymultiple applications of table 1. The de�nition of the partition guaranteesthat the density class in the centre of a region is equal to the density class ofthe whole region. Figure 9 gives pseudocode for this algorithm.Note that a region lying outside any outer halfspace plane has a zero den-sity class. It is therefore su�cient to subdivide the polyhedron de�ned as theintersection of all outer halfspaces. Note, too, that the density class of a cell isthe product of its classi�cations in all di�erent halfspaces. Hence its densityclass can be computed by counting the number of times it is classi�ed by theplanes into each of the density classes (function ClassifyAgainstAllPlanes).For example, if at least one density class is zero then the product is zero.4.2.4 Polyhedral Subdivision with a BSP TreeFigure 10 gives the algorithm to transform the whole CSG object into a BSPtree (Figure 8 (g)). If the CSG object is not a primitive we transform theleft child object recursively to a BSP tree and insert the right child objectaccording to the corresponding set operation. A primitive CSG object, i.e.a classi�ed cell, is transformed into a linear tree where the enclosed regionhas the same density class as the cell and the outside regions are classi�ed aszero. A non-primitive CSG object is converted to a BSP tree by recursivelyconverting the left subtree of the object to a BSP tree and then insertinginto that the right CSG subtree. The insertion is under control of the CSGset operation using the algorithm of Figure 11.14

Figure 8: A quasi-convolutionally smoothed object (a) is de�ned by a CSGobject with a rounding attribute (b). The halfspace planes of the primitiveobjects are displaced by the rounding radius (d) and are used to subdividethe density �eld of the corresponding primitive (c). The resulting object (e)can be transformed into a BSP tree (g) classifying the density �eld of thequasi-convolutionally smoothed CSG object (f).15

function ClassifiedCells(r :Real /* rounding radius */,planes :List of Plane /* halfspace planes */) :List of ClassifiedCell/* Subdivides non-zero density field of a polyhedral primitiveinto classified cells */outerPlanes = TranslateInNormalDirection(r , planes)innerPlanes = TranslateInNormalDirection(-r , planes)boundingPolyhedron = Intersection of halfspaces of outerPlanescells = Subdivide(boundingPolyhedron, planes [innerPlanes)classifiedCells = ;For each cell 2 cells do(nzero, nlow, nhigh, none) = ClassifyAgainstAllPlanes (cell , planes)if nzero > 0 then densityClass = zeroelsif nlow > 0 then densityClass = lowelsif nhigh == 0 then densityClass = oneelsif nhigh == 1 then densityClass = highelse densityClass = unclassifiedclassifiedCell = classifiedCell [(cell,densityClass)return classifiedCellsFigure 9: Transforming a polyhedral primitive into classi�ed cells
16

function CSG2BSP(obj:CSGObject):BSPTree/* Transforms a CSG object into a BSP tree */if obj is a classified cell thenreturn LinearBSPTree(obj.densityClass, obj.faceList)else /* obj is not a classified (convex) cell */return InsertCSGinBSP(obj.right, CSG2BSP(obj.left), obj.op)function LinearBSPTree(class:DensityClass, faces:List of Faces):BSPTree/* Computes linear BSP tree for a convex CSG object */if faces is empty thenreturn MakeLeaf(class)elseplane = Plane of HeadOfList(faces)inTree = LinearBSPTree(class, TailOfList(faces))return MakeNode(plane, inTree, MakeLeaf(zero))Figure 10: Transforming a CSG object into a BSP tree

17

Function InsertCSGinBSP involves splitting the CSG object by the parti-tioning plane of the root of the BSP tree. The resulting portions are thenrecursively inserted in the two subtrees of the BSP tree. If the CSG objectreaches a leaf node, it is transformed recursively into a BSP tree and thedensity classes of the BSP tree are updated according to the density class ofthe leaf node and the involved set operation.4.3 Tree PolygonsThe BSP tree partitions the density �eld of a quasi-convolutionally smoothedobject into cells with density classes zero, low, unclassi�ed, high, and one. Itcan be seen that the density �eld on a face between a low and a high cell isconstant 0.5. These faces are therefore part of the polygonized surface andcan be extracted directly. The algorithm for this step is similar to the surfaceextraction step for BSP trees [TN87] and is given in Figure 12.For each partitioning plane we get a candidate tree polygon by intersect-ing a bounding box with the partitioning plane. The bounding box mustenclose all high and one regions and can be computed e�ciently from theprimitives of the original CSG object. The de�nition of our BSP tree guar-antees that all unsmoothed parts of the object's surface lie on a partitioningplane, that is a halfspace plane of the original CSG object.For each BSP node the candidate polygon is pushed down the IN andOUT trees to �nd the bits of it facing a high cell on their inside and a lowcell on their outside. Note that it is su�cient to push the face down thesubtrees because the candidate face is obtained from a bounding box whichhas already been clipped on the partitioning planes of all parent nodes of thecurrent BSP node.The same process is executed for the ipped candidate face. The density�eld outside the ipped candidate face is now given by the IN tree and thedensity �eld inside the face is given by the OUT tree. After �nding the treepolygons of a BSP node the algorithm is called recursively for the subtreesof the node until a cell is reached.Note that the density �eld of a quasi-convolutionally smoothed object iscontinuous and therefore no part of the 0.5 isosurface neighbors a zero or a18

function InsertCSGinBSP(obj:CSGObject, tree:BSPTree, op:SetOperation):BSPTree/* Insert a GSG object into a BSP tree using a given set operation */if tree is not a leaf(inObj,outObj) = SplitCSGObj(tree.plane, obj)inTree = InsertCSGinBSP(inObj, tree.inTree, op)outTree = InsertCSGinBSP(outObj, tree.outTree, op)return MakeNode(tree.plane, inTree, outTree)else /* tree is a leaf with a density class */if op == [if tree.densityClass == one then return tree /* no change */if tree.densityClass == zero then return CSG2BSP(obj)return UpdateDensityClasses(CSG2BSP(obj), tree.densityClass, op)if op == \if tree.densityClass == zero then return tree /* no change */if tree.densityClass == one then return CSG2BSP(obj)return UpdateDensityClasses(CSG2BSP(obj), tree.densityClass, op)if op == nif tree.densityClass == zero then return tree /* no change */return UpdateDensityClasses(CSG2BSP(obj), tree.densityClass, op)function UpdateDensityClasses(tree:BSPTree, class:DensityClass, op:SetOperation):BSPTree/* Perform for the density classes of all cells of the giventree a set operation with the given density class */if tree is a leafthen newTree = MakeNode(Apply(op, tree.densityClass, class))elseinTree = UpdateDensityClasses(tree.inTree, class, op)outTree = UpdateDensityClasses(tree.outTree, class, op)newTree = MakeNode(tree.plane, inTree, outTree)return newTreeFigure 11: Insert a CSG object into a BSP tree19

function TreePolygons(tree:BSPTree, boundingBox:Polyhedron):List of Polygons/* Compute all tree polygons, i.e. polygons separating low from high cells,for a given BSP tree and a given bounding box of its non-zero cells /*if tree is a leaf then return ;else(inBox, outBox)= SplitBoundingBox(boundingBox, tree.plane)candidatePoly = Intersection(boundingBox, tree.plane)resultPolys = ;highOnInsidePolys = SelectedBitsOfPoly(candidatePoly, High, inTree)for each polygon p in highOnInsidePolyslowOnOutsidePolys = SelectedBitsOfPoly(p, Low, outTree)resultPolys = resultPolys [lowOnOutsidePolyshighOnInsidePolys = SelectedBitsOfPoly(FlippedFace(candidatePoly), High, outTree)for each polygon p in highOnInsidePolyslowOnOutsidePolys = SelectedBitsOfPoly (p, Low, inTree)resultPolys = resultPolys [lowOnOutsidePolyspolysInInTree = TreePolygons(tree.inTree, inBox)polysInOutTree = TreePolygons(tree.outTree, outBox)return resultPolys [polysInInTree [polysInOutTreefunction SelectedBitsOfPoly(poly:Polygon, class:DensityClass,tree:BSPtree):List of Polygons/* Inserts the poly into the tree and returns all bits that reacha leaf with the specified density class /*if tree is a leaf thenif tree.class == class then return polyelse return ;else(inBit, outBit)= SplitPolygon(poly, tree.plane)retainedInBits = SelectedBitsOfPoly(inBit, class, tree.inTree)retainedOutBits= SelectedBitsOfPoly(outBit, class, tree.outTree)return retainedInBits [retainedOutBitsFigure 12: Extracting tree polygons from a BSP tree20

one cell2.4.4 Subspace PolygonizationAfter extracting the tree polygons it is known that the remaining objectsurface lies inside or on the unclassi�ed cells. We polygonize the 0.5 isosurfaceinside an unclassi�ed cell by approximating it as follows:1. Compute the points on the isosurface where the cell edges intersect theisosurface.2. Connect the intersection points to form one or more topological poly-gons.3. Re�ne each edge of the polygon(s) by �nding an additional point onthe isosurface near each edge midpoint.4. Subdivide the topological polygon(s) into planar polygons.Figure 13 illustrates this process.4.4.1 Computing intersection pointsA set of points on the isosurface is formed by computing for every face of anunclassi�ed cell the intersection points of its edges with the 0.5 isosurface.Since we assume a smooth surface an intersection point exists if the endpoints of an edge lie on di�erent sides of the isosurface. The intersectionpoint is found by a root�nder using a regula falsi method with interleavedbinary search.2This is not true for the �nal implementation, where we achieve a fast clipping of theobject by clipping the density �eld.
21

a) b) c) d)

0.5 iso-surface

Point on 0.5 iso-surface

Polygon edge

CellFigure 13: The subspace polygonization is performed in four steps. (a) Theisosurface intersections with the edges are found. (b) The intersections areconnected to create one or more polygons. (c) The polygon edges are re�nedby adding new vertices. (d) The topological polygon(s) are subdivided intoplanar polygons.4.4.2 Connecting Intersection PointsHaving determined the intersections of all edges of the cell with the isosurface,the intersection of the isosurface with cell faces of the cell is approximatedby connecting appropriate pairs of intersection points by straight lines lyingin the faces of the cell.Since each BSP tree contains arbitrarily shaped convex polyhedral cells,the number of isosurface intersection points with a given face is unlimited.For more than two intersection points the connection is ambiguous. To re-solve ambiguities observe that only neighboring intersection points can beconnected (otherwise the isosurface would be self-intersecting or folded). Thedensity class of the centroid of the intersection points belonging to a cell faceis used to resolve the ambiguity. A pair of consecutive intersection pointsaround a face is connected by a polygon edge if and only if the density classof the centroid di�ers from that of the cell face vertices lying between theintersection points. The direction of the edge is chosen so that points insidethe isosurface have a high density value.This is illustrated in Figures 14 (a) and (b). Figure 14 (c) shows that thisapproach, like all polygonization methods, can in principle yield the wrong22

topology. However, the inherent smoothness of the quasi-convolutionallysmoothed density �eld makes such an outcome very unlikely.
a) b)

Intersection point

Centroid of
intersection points

Sector

Vertex

low density value

on 0.5 iso-surface

high density value

Polygon edge

}

0.5 iso-surface

c)

Figure 14: Resolving edge connection ambiguities using the centroid of theintersection points.Once all edges have been determined for a cell, one or more topologicalpolygons are formed by connecting the edges. Those polygons approximatethe isosurface intersection with the cell.4.4.3 Re�ning EdgesAs can be seen from �gure 4, a single BSP tree cell typically encompassesthe entire curvature of a rounded edge. As described so far, the algorithmwould replace a simple rounded edge with a single polygon. A better ap-proximation is clearly desireable. Surprisingly, we have found that just twopolygons, Gouraud shaded, generally produce an entirely acceptable e�ect.We subdivide each edge of a topological polygon into two, introducing a newvertex that lies on the isosurface. The new point is initially created at themidpoint of the edge and is then displaced along the line of the density �eldgradient until the isosurface is found (Figure 15).23

}

pint2

pint1

pmid

send

sstart
pint2

pint1

pmid=send

sstart
pint2

pint1

pnew

Point

Vertex

low density value

on 0.5 iso-surface

high density value

Polygon edge

Area of root search

Density gradient projected on face

0.5 iso-surface

a) b) c)

Figure 15: The line along the density �eld gradient through pmid (a) de�nesa linear search space for the edge re�nement (b). The re�ned edge is shownin (c).Since the density gradient in pmid usually does not lie in the face planewe take instead its projection rprojF � on the face given byrprojF� = r�� (nF � r�)nFwhere nF is the face normal.We intersect the line along the density �eld gradient with the face edgesand compare the density classes of the intersection points sstart and sendwith the density class of pmid (Figure 15 (a)). The two lines sstartpmid andsendpmid are candidates for a root search. If either sstart or send is on theside of the isosurface opposite to pmid we perform a root search between thatpoint and pmid (Figure 15 (b)). If both the former points are on the side ofthe isosurface opposite to pmid, we search in the direction of the density �eldgradient. Otherwise we assume that no isosurface intersection exists and donot re�ne the edge.
24

4.4.4 Flattening Topological PolygonsThe last step of the subspace polygonization divides each topological polygoninto planar polygons by connecting each vertex to the centroid of the topo-logical polygon, thus triangulating the topological polygon. The polygonalapproximation of the isosurface is improved by moving the centroid in thedirection of the density gradient until the 0.5 isosurface intersection is found(Figure 13). This again is a root search. The search space is restricted to thevolume of the cell to ensure that the approximation to the isosurface stayswithin the cell.4.5 Improvements4.5.1 Local Density FieldThe subspace polygonization involves repeated evaluation of the density �eldat points inside the unclassi�ed cell. To make this calculation more e�cient,a local density �eld is de�ned for each unclassi�ed cell. This is e�ectively apruned version of the original quasi-convolutionally smoothed density �eld,involving only those halfspaces that have a non-constant contribution to thedensities within the cell. The local density �eld can be computed during thecomputation of density classes with a table similar to table 1. We foundthat the local density �elds usually have a constant size whereas the globaldensity �eld grows linearly in the size of the object.4.5.2 Intersection of Two HalfspacesWe inspected the results of our polyhedral subdivision algorithm and foundthat on average 30% of the unclassi�ed cells contained a local density �eldfrom the intersection of two halfspaces. It can be show [W�un96] that the den-sity �eld is then a convex swept surface. Figure 16 shows that for these cellsan improved subspace polygonization is given as part of the convex hull of allisosurface intersection points. An e�cient algorithm, which �nds polygonsof maximum size, is given in [W�un96].25

a) b)

Intersection point

Polyline

c)

0.5 iso-surface

PolygonFigure 16: (a) Cell containing a quasi-convolutionally smoothed intersectionof two halfspaces. (b) The subspace polygonization leads to fragmentation.(c) Desired result of the subspace polygonization.

26

4.5.3 Variable Rounding RadiusAnother desirable feature is to de�ne di�erent rounding radii for the di�erentedges of an object. Though this e�ect is not possible for quasi-convolution-ally smoothed objects, a similar e�ect can often be obtained by de�ningdi�erent smoothing radii for the halfspaces which form a polyhedral prim-itive. This technique was used to produce the cylindrical metal pins withsmoothly attened ends in Figure 18 (see also the enlargements).5 RenderingFor Gouraud or Phong shading the vertex normals of the polygons are re-quired. The vertex normals of tree polygons, which always describe a planararea of the isosurface, are given simply by the surface normal of the polygon.The vertex normal ~npi of a vertex pi of a subspace polygon is given by thegradient of the density �eld at the vertex~npi = r�(pi)kr�(pi)kThe density gradient is computed by di�erentiating the arithmetic treede�ning the density �eld (see section 2.2).6 ResultsWe implemented our algorithm in the functional language Clean 1.0, ona Power Macintosh 9500/120. The polygonized scenes were renderedusing Quickdraw3d.6.1 ImagesFigure 17 shows a hole punch modelled as a simple unsmoothed CSG objectwith polyhedral primitives. By specifying a few rounding radii we obtain amuch better looking smoothed hole punch shown in Figure 18. The base of27

the hole punch is rounded with a smoothing radius considerably smaller thanthe base itself. As a result Triage Polygonization extracts most of the ob-ject's surface as large rectangles. A smoothed edge and corner is representedwith two long rectangles and 6 triangles, respectively. The Gouraud shadedpicture in Figure 18 (b) shows that the produced polygons are su�cient toachieve the visual impression of a smoothed surface.

Figure 17: The unsmoothed \HolePunch" scene. The result is shown asa wire-frame representation (a) andGouraud shaded (b). Figure 18: The \Hole Punch" scenepolygonized with Triage Polygoni-zation. The result is shown asa wire-frame representation (a) andGouraud shaded (b).The enlargements of Figure 18 depict the punch, part of the hinges, andsome metal pins in detail. The punch is modeled as a rounded cuboid.28

Note that the punch pin has a sharp edge at the top. We achieve thisvery easily by applying a clipping plane to the rounded cuboid. An e�cientimplementation is achieved by directly clipping the density �eld of an objectbefore polygonization. Details are given in [W�un96].The two metal pins at the bottom right corner of the enlargement areconstructed from halfspaces with di�erent rounding radii. This gives theimpression of a cylinder with a smoothly attened end. Observe that thecylindrical part of a smoothed metal pin is approximated with rectangleswhereas the more complicated end of a pin is represented by triangles.Figure 19 and 20 show a model of a stapler before and after applyingour algorithm, respectively. Note that wherever possible the polygonizationmethod �nds long triangles and rectangles. Also it can be seen that verythin objects such as the side plates of the hinge are polygonized withoutproblems.Figure 21 shows a scene modeled as a union of six objects each derived byapplying various combinations of rounding operations and a set operation toa cube and a small cuboid. Two interesting cases are shown as enlargements.The top enlargements of both parts of the �gure depicts a clipped quasi-convolutionally smoothed small cube subtracted from a bigger unsmoothedcube. We model set operations on polygonized objects by merging BSP trees[TN87, NAT90].The bottom enlargements of Figure 21 (a) and (b) give an example of aconcave three plane corner. The corner results from a quasi-convolutionallysmoothed union of a big cube and a small cuboid. It can be seen that thecorner is nicely polygonized with only 26 triangles.6.2 Comparison with the Marching Cubes algorithmThe Marching Cubes algorithm is a popular method for implicit surface poly-gonization, and provides a good basis for comparison with our new method.To achieve comparable visual quality we applied the Marching Cubes algo-rithm with a grid size of half the rounding radius of the quasi-convolutionallysmoothed scene.Figure 22 shows the results of both algorithms for a \Variable Radius"scene, which shows an object constructed as a set di�erence of a cube anda small cuboid smoothed with several di�erent rounding radii. The object29

Figure 19: The unsmoothed \Sta-pler" scene. The result is shown asa wire-frame representation (a) andGouraud shaded (b). Figure 20: The \Stapler" scenepolygonized with Triage Polygoni-zation. The result is shown asa wire-frame representation (a) andGouraud shaded (b).
30

Figure 21: The \CSG Example" scene polygonized with Triage Polygoniza-tion. The result is shown as a wire-frame representation (a) and Gouraudshaded (b).
31

in part (a) was polygonized with Triage Polygonization whereas for (b) theMarching Cubes algorithm was used. Note that our algorithm achieves agood polygonization for all objects, independent of the rounding radius. Thepolygonization for the objects with small rounding radius can be consideredas optimal. For the objects rounded with a rather large smoothing radiussome \bands" are visible where the object is polygonized more �nely. This isdue to small cells in the polyhedral subdivision of the density �elds de�ningthe quasi-convolutionally smoothed objects.

Figure 22: Triage Polygonization and the Marching Cubes algorithm appliedto the \Variable Radius" scene. Part (a) shows the result of Triage Polygo-nization as a wire-frame representation (left) and Gouraud shaded (right).Part (b) shows the same representations for the result of the Marching Cubesalgorithm.We found that on average Triage Polygonization is about 20{30 timesfaster than the Marching Cubes algorithm and outputs only a fraction (� 1{32

2%) of its number of polygons. The results also con�rm that Triage Polygoni-zation produces arbitrarily complex polygons of vastly di�erent size, whereasthe Marching Cubes algorithm produces only about equally-sized triangles.Also note that Triage Polygonization yields for a rounding radius of zero theb-rep of the unsmoothed object, whereas the Marching Cubes algorithm cannot polygonize sharp edges at all.The Marching Cubes algorithm becomes superior if the rounding radiusreaches about a quarter of the object size (the bottom middle object inFigure 22). In that case, however, the object no longer ful�lls our designobjective that it is predominantly planar.6.3 ComplexityThe complexity of Triage Polygonization is governed by the subspace polygo-nization step, which is a binary space partition. We have made measurementson several scenes which suggest an average time complexity of about O(n1:3),where n is the number of halfspaces in the unsmoothed CSG object. Thisresult could be improved to O(n logn) by using the BSP tree algorithm ofNaylor, Amanatides, and William [NAT90]. Note that this complexity isquite di�erent from that for a conventional polygonization method, such asthe Marching Cubes algorithm. For this algorithm the time complexity isO(m3), where m is the sample resolution.As a result our algorithm can become less e�cient for a complex objectwith hundreds of vertices if compared to the Marching Cubes approach witha low resolution. On the other hand our approach always guarantees thatrounded edges and corners are found, which is not the case for most conven-tional algorithms. Also note that very complex objects are unlikely in theintended application. Scenes like the stapler and the hole punch, with atmost a few tens of vertices per smoothed component, cause no problem.6.4 Known ProblemsAs with all geometric algorithms, numerical robustness is an issue. Thesubspace polygonization stage depends on classifying cell vertices as aboveor below the isosurface, which leads to the question of how to treat vertices33

that lie directly on the isosurface. That situation is rare with a MarchingCubes algorithm but common with ours, since our partitioning planes lieon the unsmoothed object's faces. Extending the algorithm to handle suchvertices as special cases is complex. We have chosen instead largely to avoidthis problem by classifying vertices against a displaced 0:5+ � isosurface. Wedetermine which edges intersect the displaced isosurface, but then computethe actual 0.5 isosurface during root searching. This strategy can lead toholes in the isosurface in certain cases, but those cases are easily identi�edand the missing polygons can be generated in a postprocessing step. See[W�un96] for details. We use a value for � of 0.001.The more general issue of ensuring continuity of the polygonized isosur-face is discussed at length in [W�un96]. Our algorithm yields a continuoussurface if no vertices lie exactly on the displaced isosurface and if the polyhe-dral subdivision of space has the honeycomb property3. While binary spacepartitioning does not naturally lead to a honeycomb, it is possible to main-tain a honeycomb property by use of a data structure, such as the hash tableused by Wyvill et al. [WMW86], that enforces sharing of edge and face infor-mation. Unfortunately, the language we have used for our implementation,Clean 1.0, lacks a working array data type, and we have been unable toimplement complete sharing of face and edge information e�ciently. As aconsequence our implementation is occasionally unable to generate a contin-uous surface, at which point it aborts with an error message. The situation israre and we have for example generated an animation of a robot �gure beinggradually smoothed with a larger and larger radius �lter until it vanishescompletely. Nonetheless, we acknowledge that di�culties remain, and theseare a topic for future research.7 ConclusionThis paper has presented Triage Polygonization, a new polygonizationmethodspeci�cally designed for quasi-convolutionally smoothed objects. Triage Poly-gonization performs best for quasi-convolutionally smoothed objects smoothedwith a rounding radius small in comparison to their size. Such objects have3A honeycomb is a polyhedral subdivison of space in which each internal face of eachpolyhedral cell is entirely shared by exactly one other cell.34

predominantly planar surfaces with only edges and corners rounded. TriagePolygonization extracts planar surfaces by means of a BSP tree with mini-mal fragmentation and approximates most rounded edges and corners witha nearly minimal number of polygons. We believe that for the above caseTriage Polygonization is superior to all general polygonization methods forimplicit surfaces known to us.Triage Polygonization also performs well for strongly rounded objects andin such cases its performance is similar to general polygonization methods.Triage Polygonization is invariant under a�ne linear transformation andthe quality of the polygonization is independent of the rounding radius (if itis reasonably small).8 Future WorkAs mentioned in subsection 6.4 several problems still exist with our method.We would like to implement the algorithm in an imperative language (C/C++)using a data structure which allows us to generate a BSP tree modi�ed tomaintain a honeycomb property.An even better quality of polygonization should be achieved by makingthe re�nement process for edges and topological polygon dependent on thecurvature of the surface. An adaptive re�nement process similar to thatsuggested by Hall and Warren [HW90] or Bloomenthal [Blo88, BW90] couldbe employed.We have designed Triage Polygonization to polygonize quasi-convolution-ally smoothed objects. However, it should be adaptable to other polyhedralsmoothing schemes based on implicit surfaces. In particular we would like toinvestigate its use with true convolutional smoothing [Dan97].References[Blo88] Jules Bloomenthal. Polygonization of implicit surfaces.Computer-Aided Geometric Design, 5(4):341 { 355, November1988. 35

[Blo94] Jules Bloomenthal. An implicit surface polygonizer. In Paul S.Heckbert, editor, Graphic Gems, volume IV, chapter IV.8. Aca-demic Press, Cambridge, MA 02139, 1994.[BW90] Jules Bloomenthal and Brian Wyvill. Interactive techniques forimplicit modeling. Computer Graphics, 24(2):109 { 116, March1990. Special Issue on 1990 Symposium on Interactive 3D Graph-ics.[Col90] Steve Colburn. Solid modeling with global blending for machiningdies and patterns. SAE technical paper series, SAE International,400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A.,April 1990. 41st Annual Earthmoving Industry Conference.[Dan97] Peter John Dansted. Convolutional smoothing of polyhedra. Mas-ter's thesis, University of Auckland, 1997.[DK91] A. Doi and A. Koide. An e�cient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans. Com-mun. Elec. Inf. Syst., E-74(1):214 { 224, January 1991.[Duf92] Tom Du�. Interval arithmetic and recursive subdivision forimplicit functions and constructive solid geometry. ComputerGraphics, 26(2):131 { 138, July 1992.[D�uu88] Martin J. D�uurst. Additional reference to "marching cubes".Computer Graphics, 22(2):72, April 1988. Letter.[FKB80] H. Fuchs, Z. Kedem, and B.Naylor. On visible surface generationby a priority tree structure. Computer Graphics, 14(3):124{268,June 1980.[HH93] P. Hinker and C. Hansen. Geometric optimization. In G. M.Nielson and D. Bergeron, editors, Proceedings of Visualization'93, pages 189 { 195, Los Alamitos, California, 1993. IEEE, Com-puter Society Press.[HL92] Josef Hoschek and Dieter Lasser. Fundamentals of ComputerAided Geometric Design, chapter 14, pages 572 { 601. AK PetersLtd., Wellesley, MA 02181, second edition, 1992.36

[HW90] Mark Hall and Joe Warren. Adaptive polygonization of implic-itly de�ned surfaces. IEEE Computer Graphics and Applications,10(5):33 { 42, November 1990.[KDK86] A. Koide, A. Doi, and K. Kajioka. Polyhedral approximationapproach to molecular orbit graphics. J. Molec. Graph., 4:149 {156, 1986.[KT96] Alan D. Kalvin and Russell H. Taylor. Superfaces: Polygonalmesh simpli�cation with bounded error. IEEE Computer Graph-ics and Applications, 16(3):64{77, May 1996. ISSN 0272-1716.[LC87] W. Lorensen and H. Cline. Marching cubes: A high resolution 3Dsurface construction algorithm. Computer Graphics, 21(4):163 {169, July 1987. Proceedings of SIGGRAPH.[Lob96] Richard Lobb. Quasiconvolutional smoothing of polyhedra. TheVisual Computer, 12(8):373 { 389, 1996.[MSS94] C. Montani, R. Scateni, and R. Scopigno. Discretized marchingcubes. In D. Bergeron and A. Kaufman, editors, Proceedingsof Visualization '94, pages 281 { 286. IEEE, Computer SocietyPress, 1994.[NAT90] Bruce F. Naylor, John Amanatides, and William Thibault. Merg-ing BSP trees yields polyhedral set operations. Computer Graph-ics, 24(4):115 { 124, August 1990.[Nay81] Bruce F. Naylor. A Priori Based Techniques for Determining Vis-ibility Priority for 3-D Scenes. PhD thesis, University of Texas,Dallas, Texas, May 1981.[NB93] Paul Ning and Jules Bloomenthal. An evaluation of implict sur-face tilers. IEEE Computer Graphics and Applications, 13(6):33{ 41, November 1993.[Req80] Aristides A. G. Requicha. Representation for rigid solids: Theory,methods, and systems. ACM Computing Surveys, 12(4):437 {464, December 1980. 37

[Sny92] John M. Snyder. Interval analysis for computer graphics. Com-puter Graphics, 26(2):121 { 130, 1992.[TN87] W. C. Thibault and B. F. Naylor. Set operations on polyhe-dra using binary space partitioning trees. Computer Graphics,21(4):153 { 162, July 1987. Proceedings SIGGRAPH '87.[vGW94] Allen van Gelder and Jane Wilhelms. Topological considera-tions in isosurface generation. ACM Transactions on Graphics,13(4):337 { 375, October 1994.[WMW86] Geo� Wyvill, Craig McPheeters, and Brian Wyvill. A data struc-ture for soft objects. The Visual Computer, 2(4):227 { 234, Au-gust 1986.[W�un96] Burkhard C. W�unsche. A fast polygonization methodfor quasi-convolutionally smoothed polyhedra. Master'sthesis, University of Auckland, August 1996. URL:http://www.cs.auckland.ac.nz/~bwue001/Thesis/thesis.pdf.

38

