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Abstract: Alexandro� T0-spaces have been studied as topological models of the supports of digital images

and as discrete models of continuous spaces in theoretical physics. In this paper we discuss three di�erent

dimension functions for this class of spaces, namely the Alexandro� dimension, the Order dimension and the

Krull dimension and we outline a proof of the equality of these dimension functions in this class. The �rst of

these is essentially the small inductive dimension well-known in topology, the second has been studied in the

theory of posets while the third has been studied extensively as a dimension function for lattices and rings and

was �rst applied to topological spaces by Vinokurov in 1966. Since the category of Alexandro� T0-spaces is

known to be isomorphic to the category of posets, these results could be formulated in this latter category as

well.

1. Introduction

In digital image processing and computer graphics, it is necessary to describe topo-

logical properties of n-dimensional digital image arrays, hence the search for models of the

supports of such images. Recently, topological models have been constructed. Based on the

Khalimsky topology � on the integers, given by the subbase ff2n�1; 2n; 2n+1g : n 2 ZZg,

digital n-space was de�ned as a product of n copies of (ZZ; �) and Jordan curve (surface)

theorems were proved for digital 2-space [8] and digital 3-space [10]. A more general con-

struction of a digital space was proposed in [12] where a collection of locally �nite disjoint

open subsets of IRn, whose union is dense in IRn, is used to de�ne a partition of IRn giving

a digital image which is a locally �nite T0-space, that is, a space in which each point x has
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a �nite, and hence also a minimal, neighbourhood which we will denote by U(x). Spaces in

which every point has a minimal neighbourhood are called Alexandro�; such spaces were

�rst considered by Alexandro� [1] under the name of discrete spaces and are the objects

of study in this article; thus our de�nition of a digital space generalizes those considered

previously. Other approaches to digital topology, which lead to locally �nite spaces are for

example, the models based on cellular complexes developed by Kovalevsky [11] and Lee

and Rosenfeld [13] or the model of molecular spaces developed by Ivashchenko [5,6]. These

latter papers apply discrete topological models in theoretical physics as well.

A problem on which research has been focused recently, is that of the dimension of a

digital space. A digital image which is obtained by discretization of an image de�ned on

IRn, should be modeled by an n-dimensional topological space. A dimension function for

Alexandro� spaces called Alexandro� dimension, which is essentially the small inductive

dimension of [14], was studied in [17] and later by Ivashchenko et al. in [6]. An Alexandro�

T0-space (X; �) is completely determined by a poset (X;�), where � is de�ned by x �

y , x 2 cl(fyg), y 2 U(x). The partial order � was �rst introduced in [1] and has been

called the specialization order by [7], [9] and others. The partial order dimension or poset

dimension of a poset (X;�) is de�ned as the supremum of all lengths of chains in (X;�)

(see [2]). It was shown in [17] that for any Alexandro� T0-space, its Alexandro� dimension

equals its poset dimension. This implies immediately that digital n-space has Alexandro�

dimension n. In another context the same poset dimension was de�ned in [6] for transitive

graphs, and the same equality was proved. In [6] it was also proved, that both dimensions

coincide with a third dimension function, which is de�ned inductively for directed graphs,

and which was studied previously by Ivashchenko [5] in relation to his model of molecular

space.

In this article we consider not only the two previously studied dimension functions

for digital spaces, but also a third, the Krull dimension, �rst applied to topological spaces

in [16], but previously known in algebra as a dimension function for rings and lattices. In

general spaces, this dimension is di�cult to calculate, but it is interesting to note that the
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Krull dimension agrees with other dimension functions in one well-known class of space:

In [16] it was proved that the Krull dimension is equal to the small inductive and to the

covering dimensions for separable metrizable spaces. Here we outline the proofs of a series

of theorems which show that for any Alexandro� T0-space, the Krull dimension coincides

with its Alexandro� dimension and its poset dimension. Our results generalize those of [4]

and [15] for �nite spaces, but we note that in [4], Krull dimension is de�ned di�erently in

terms of chains of irreducible closed sets and coincides with the de�nition used here in the

case of �nite spaces.

2. Preliminaries

Recall that if A(X) is the set of all closed sets of a topological space X, then (A(X);\;[)

is a distributive lattice with greatest and least elements X and ;, respectively. It is clear

that in the case of a discrete space this lattice is a Boolean algebra.

De�nition 1. Let (L;^;_) be a lattice; a non-empty subset F � L is said to be a �lter

if a; b 2 F; c 2 L implies that a ^ b; a _ c 2 F and F 6= L. A �lter F is said to be prime if

whenever a; b 2 L and a _ b 2 F then a 2 F or b 2 F .

It is clear that if F is a �lter in A(X) then X 2 F and ; 62 F .

De�nition 2. The Krull dimension of a non-empty lattice (L;^;_) is de�ned as

kdimL = supfn 2 ! : 9 a chain F0 � F1 � � � � � Fn of distinct prime �lters in Lg:

It is known that a lattice with a greatest and a least element has Krull dimension zero

if and only if it is a Boolean algebra [16]. Consequently, kdimA(X) = 0 if X is a discrete

space. In general the function kdim is not monotone with respect to sublattices, as the

following example shows.

Example 1. Let X be an in�nite discrete space. Clearly A(X) itself is a sublattice of

A(X), and kdimA(X) = 0. Now let B be the sublattice generated by fX n fxg; x 2

Xg [ f;; Xg. Then
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B = fX n F; F � X; F �nite or emptyg [ f;g:

Since B nf;g is closed under �nite intersections, it is a prime �lter in B. Moreover, for any

x 2 X,

Fx = fM 2 B : x 2Mg = fX n F; F � X; F �nite or empty; x 62 Fg

is a prime �lter in B, and Fx � (B n f;g) implies kdimB � 1.

De�nition 2 was �rst applied to the lattice of closed sets of a topological space by

Vinokurov [16]; the same de�nition was used in [15], although the term ideal was used

instead of �lter.

The Krull dimension of a space Y , will be de�ned in terms of the Krull dimensions

of bases of the lattice (A(Y );\;[), where again, A(Y ) is the set of all closed subsets of Y .

The following de�nitions and results are taken from [17].

De�nition 3. The Alexandro� dimension (adim) of an Alexandro� space (X; �) is de�ned

inductively in terms of a local dimension adil determined by the minimal neighbourhoods:

(i) adim (X) = �1 () X = ;:

(ii) If X 6= ; then de�ne

adim (X) = sup fadil (x); x 2 Xg;where for x 2 X and n 2 ! we de�ne

adil (x) � n() adim(FrU(x)) � n� 1;

adil (x) = n() adil (x) � n and adil (x) 6� n� 1;

adil (x) =1() adil (x) � n is false 8n:

Full details can be found in [17]. It is easy to see that a discrete space has Alexandro�

dimension 0, and for an Alexandro� T0-space the converse is also true. As mentioned in

the introduction, the function adim is essentially the small inductive dimension ind of [14].

De�nition 4. The poset dimension (odim) of a poset (X;�) is de�ned in terms of a local

poset dimension function odil as follows:
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odil (x) = supfl : 9a1; a2; � � � ; al 2 X such that al < al�1 < � � � < a0 = xg

odim (X) = supfodil (x); x 2 Xg

Again, full details may be found in [17] where the following two propositions were proved:

Proposition 1. If (X; �) is an Alexandro� T0-space and x 2 X is such that odil (y) � n

for all y 2 U(x), then adil (x) � n.

Proposition 2. If (X; �) is an Alexandro� T0-space, then

(i) If odil (x) � n and odil (y) � n for all y 2 U(x), then adil (x) = n.

(ii) If adil (x) = n then odil (x) � n and there is some y 2 U(x) such that odil (y) � n.

As an immediate corollary to these results we obtain:

Theorem 1. If (X; �) is an Alexandro� T0-space with specialization order �, then

adim (X; �) = odim (X;�):

Suppose now that (Y; �) is a topological space. In order to de�ne the Krull dimension

of the space (Y; �), we will need the concept of a base for the lattice A(Y ):

De�nition 5. A subset B of A(Y ) is said to be a lattice base of A(Y ) if it is a (topological)

base for the closed sets and additionally, is a sublattice of (A(Y );\;[) which contains ;

and Y .

Clearly, A(Y ) itself is a lattice base of A(Y ) and since a lattice base of A(Y ) is closed

under �nite intersections, A(Y ) is the unique lattice base in the case that Y is a �nite set.

De�nition 6. The Krull dimension of a topological space (Y; �) is de�ned by

kdim (Y ) = minfkdimB : B is a lattice base of A(Y )g:

It is a consequence of the remarks following De�nition 2, that if Y is a discrete space,

then kdim (Y ) = 0, since we may take A(Y ) = P(Y ) which is a Boolean algebra. In [15]

and [16], many properties of kdim were obtained; speci�cally, it was shown in [16] that
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kdim (Y ) = ind Y = dimY for any separable metrizable space Y (where ind; dim are the

small inductive and the covering dimension, respectively). However, in general spaces,

kdim is frequently di�cult to calculate.

Lemma 1. If L is an arbitrary sublattice of A(Y ) such that \L = ;, then

Fy;L = fM 2 L : cl(fyg) �Mg

is a prime �lter in L.

Proof: We leave the routine veri�cations to the reader and note only that if \L = ;, then

Fy;L 6= L. tu

3. The Krull dimension of an Alexandro� T0-space

In this section we outline a proof of the fact that if (X; �) is an Alexandro� T0-space, then

the Krull dimension of X coincides with the Alexandro� dimension of X, thus generalizing

a result of [15] for �nite spaces.

Throughout, � will denote the specialization order of the space (X; �). Note that

odil (x) = 0 if and only if fxg is closed, and x is maximal with respect to � if and only if

fxg is open.

The main theorem will be a consequence of the following two propositions.

Proposition 3. If (X; �) is an Alexandro� T0-space, and L is a topological base for the

closed sets which is also a sublattice of (A(X);\;[), then kdimL � adim (X).

Proof: From Theorem 1, it su�ces to show that kdimL � odim (X). Since L is a base

for the closed sets, it follows that \L = ;. Hence, by Lemma 1 we have that

Fa = fM 2 L : cl(fag) �Mg

is a prime �lter in L for any a 2 X.

We claim that if a1 < a2 for a1; a2 2 X, then Fa2 � Fa1 , and Fa2 6= Fa1 . For, if

M 2 Fa2 then cl(fa2g) �M ; but clearly, cl(fa1g) � cl(fa2g) �M , and so M 2 Fa1 . Now,

since (X; �) is a T0-space, cl(fa1g) 6= cl(fa2g) and so, since L is a base of A(X), there is

some closed set M 2 L such that cl(fa1g) �M and a2 62M . Thus M 2 Fa1 nFa2 and the

claim is proved.
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Consequently, for any a 2 X with odil (a) = k there exists a chain of prime �lters

Fak � Fak�1 � � � � � Fa0 (with ak = a). Therefore, if adim (X) = odim (X) � n then

there is x 2 X with odil (x) � n, implying kdimL � n. The result follows. tu

Corollary 1. If (X; �) is an Alexandro� T0-space, then kdim (X) � adim (X).

Proposition 4. If (X; �) is an Alexandro� T0-space, then kdimA(X) = adim (X).

From Proposition 3, we have kdimA(X) � adim (X); hence if adim (X) is in�nite,

then so is kdimA(X) and we are done. Thus we suppose that adim (X) = odim (X) = n

is �nite and in order to complete the proof it is necessary to show that kdimA(X) � n.

We omit the technical details of this proof which can be found in [18].

Combining this result with Corollary 1, we obtain:

Theorem 2. If X is an Alexandro� T0-space, then

kdim (X) = adim (X) = odim (X).

It is well known that the category of Alexandro� T0-spaces is isomorphic to the cate-

gory of partially ordered sets under the functor which takes the space (X; �) to the poset

(X;�), where � is the specialization order of (X; �) (see [3]). Thus if we de�ne the Krull

dimension of a poset to be the Krull dimension of the corresponding Alexandro� space,

Theorem 1 can be stated in the following order-theoretic form:

Theorem 3. If (X;�) is a poset, then

kdim (X;�) = odim (X;�).
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