
A Taxonomy of Obfuscating TransformationsChristian Collberg Clark Thomborson Douglas LowTechnical Report #148Department of Computer ScienceThe University of AucklandPrivate Bag 92019Auckland, New Zealand.fcollberg,cthombor,dlow001g@cs.auckland.ac.nzAbstractIt has become more and more common to distributesoftware in forms that retain most or all of the informa-tion present in the original source code. An importantexample is Java bytecode. Since such codes are easy todecompile, they increase the risk of malicious reverseengineering attacks.In this paper we review several techniques for tech-nical protection of software secrets. We will argue thatautomatic code obfuscation is currently the most viablemethod for preventing reverse engineering. We thendescribe the design of a code obfuscator, a tool whichconverts a program into an equivalent one that is moredi�cult to understand and reverse engineer.The obfuscator is based on the application of codetransformations, in many cases similar to those usedby compiler optimizers. We describe a large number ofsuch transformations, classify them, and evaluate themwith respect to their potency (To what degree is a hu-man reader confused?), resilience (How well are auto-matic deobfuscation attacks resisted?), and cost (Howmuch overhead is added to the application?).We �nally discuss some possible deobfuscation tech-niques (such as program slicing) and possible counter-measures an obfuscator could employ against them.1 IntroductionGiven enough time, e�ort and determination, a compe-tent programmer will always be able to reverse engineerany application. Having gained physical access to theapplication, the reverse engineer can decompile it (us-ing disassemblers or decompilers [4]) and then analyzeits data structures and control 
ow. This can either bedone manually or with the aid of reverse engineeringtools such as program slicers [28].

This is not a new problem. Until recently, however,it is a problem that has received relatively little at-tention from software developers. The reason is thatmost programs are large, monolithic, and shipped asstripped, native code, making them di�cult (althoughnever impossible) to reverse engineer.This situation is changing. It is becoming more andmore common to distribute software in forms that areeasy to decompile and reverse engineer. Important ex-amples include Java bytecode [7] and the ArchitectureNeutral Distribution Format (ANDF) [18]. Java appli-cations in particular pose a problem to software de-velopers. They are distributed over the Internet asJava class �les, a hardware-independent virtual ma-chine code that retains virtually all the information ofthe original Java source. Hence, these class �les are easyto decompile. Moreover, because much of the compu-tation takes place in standard libraries, Java programsare often small in size and therefore relatively easy toreverse engineer.The main concern of Java developers is not outrightreengineering of entire applications. There is relativelylittle value in such behavior since it clearly violatescopyright law [26], and can be handled through liti-gation. Rather, developers are mostly frightened bythe prospect of a competitor being able to extract pro-prietary algorithms and data structures from their ap-plications in order to incorporate them into their ownprograms. Not only does it give the competitor a com-mercial edge (by cutting development time and cost),but it is also di�cult to detect and pursue legally. Thelast point is particularly valid for small developers whomay ill a�ord lengthy legal battles against powerful cor-porations [19] with unlimited legal budgets.The purpose of this paper is to discuss the variousforms of technical protection of intellectual propertywhich are available to software developers. We will re-
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Figure 1: Classi�cation of (a) kinds of protection against malicious reverse engineering, (b) the quality of an obfuscatingtransformation, (c) information targeted by an obfuscating transformation, (d) layout obfuscations, (e) data obfuscations, (f)control obfuscations, and (g) preventive obfuscations.strict our discussion to Java programs distributed overthe Internet as Java class-�les, although most of ourresults will apply to other languages and architecture-neutral formats as well. We will argue that the onlyreasonable approach to the protection of mobile code iscode obfuscation. We will furthermore present a numberof obfuscating transformations, classify them accordingto e�ectiveness and e�ciency, and show how they canbe put to use in an automatic obfuscation tool.The remainder of the paper is structured as follows.In Section 2 we give an overview of di�erent formsof technical protection against software theft and ar-gue that code obfuscation currently a�ords the mosteconomical prevention. In Section 3 we give a briefoverview of the design of Kava, a code obfuscator forJava, which is currently under construction. Sections 4and 5 describe the criteria we use to classify and evalu-

ate di�erent types of obfuscating transformations. Themain contributions of the paper are contained in Sec-tions 6, 7, 8, and 9, which present a catalogue of ob-fuscating transformations. In Section 10 we give moredetailed obfuscation algorithms. We conclude with asummary of our results and a discussion of future direc-tions of code obfuscation (Section 11).2 Protecting Intellectual PropertyConsider the following scenario. Alice is a small soft-ware developer who wants to make her applicationsavailable to users over the Internet, presumably at acharge. Bob is a rival developer who feels that he couldgain a commercial edge over Alice if he had access toher application's key algorithms and data structures.This can be seen as a two-player game between two2



adversaries: the software developer (Alice) who tries toprotect her code from attack, and the reverse engineer(Bob) whose task it is to analyze the application andconvert it into a form that is easy to read and under-stand. Note that it is not necessary for Bob to convertthe application back to something close to Alice's origi-nal source; all that is necessary is that the reverse engi-neered code be understandable by Bob and his program-mers. Note also that it may not be necessary for Aliceto protect her entire application from Bob; it probablyconsists mostly of \bread-and-butter code" that is of noreal interest to a competitor.Alice can protect her code from Bob's attack usingeither legal or technical protection. While copyright lawdoes cover software artifacts, economic realities makeit di�cult for a small company like Alice's to enforcethe law against a larger and more powerful competi-tor. A more attractive solution is for Alice to protecther code by making reverse engineering so technicallydi�cult that it becomes impossible or at the very leasteconomically inviable. Some early attempts at technicalprotection are described by Gosler [6].The most secure approach is for Alice not to sellher application at all, but rather sell its services. Inother words, users never gain access to the applicationitself but rather connect to Alice's site to run the pro-gram remotely (Figure 2(a)), paying a small amountof electronic money every time. The advantage to Al-ice is that Bob will never gain physical access to theapplication and hence will not be able to reverse engi-neer it. The downside is of course that, due to limitson network bandwidth and latency, the application willperform much worse than if it had run locally on theuser's site. A partial solution is to break the applicationinto two parts: a public part that runs locally on theuser's site, and a private part (that contains the algo-rithms that Alice wants to protect) that is run remotely(Figure 2(b)).Another approach would be for Alice to encrypther code before it is sent o� to the users (Fig-ure 3). Unfortunately, this only works if the entiredecryption/execution process takes place in hardware.Such systems are described in Herzberg [11] and Wil-helm [31]. If the code is executed in software by a virtualmachine interpreter (as is most often the case with Javabytecodes), then it will always be possible for Bob tointercept and decompile the decrypted code.Java has gained popularity mainly because of its ar-chitecture neutral bytecode. While this clearly facili-tates mobile code, it does decrease the performance byan order of magnitude in comparison to native code.Predictably, this has lead to the development of just-in-time compilers that translate Java bytecodes to nativecode on-the-
y. Alice could make use of such translators

to create native code versions of her application for allpopular architectures. When downloading the applica-tion, the user's site would have to identify the architec-ture/operating system combination it is running, andthe corresponding version would be transmitted (Fig-ure 4). Only having access to the native code will makeBob's task more di�cult, although not impossible.There is a further complication with transmittingnative code. The problem is that | unlike Java byte-codes which are subjected to bytecode veri�cation beforeexecution | native codes cannot be run with completesecurity on the user's machine. If Alice is a trustedmember of the community, the user may accept herassurances that the application does not do anythingharmful at the user's end. To make sure that no onetries to contaminate the application, Alice would haveto digitally sign the codes as they are being transmit-ted, to prove to the user that the code was the originalone written by her.The �nal approach we are going to consider is codeobfuscation (Figure 5). The basic idea is for Alice torun her application through an obfuscator, a programthat transforms the application into one that is func-tionally identical to the original but which is much moredi�cult for Bob to understand. It is our belief that ob-fuscation is a viable technique for protecting softwaretrade secrets, that has yet to receive the attention thatit deserves.Unlike server-side execution, code obfuscation cannever completely protect an application from maliciousreverse engineering e�orts. Given enough time and de-termination, Bob will always be able to dissect Alice'sapplication to retrieve its important algorithms anddata structures. To aid this e�ort, Bob may try to runthe obfuscated code through an automatic deobfuscatorthat attempts to undo the obfuscating transformations.Hence, the level of security from reverse engineeringthat an obfuscator adds to an application depends on(a) the sophistication of the transformations employedby the obfuscator, (b) the power of the available deob-fuscation algorithms, and (c) the amount of resources(time and space) available to the deobfuscator. Ide-ally, we would like to mimic the situation in currentpublic-key cryptosystems, where there is a dramatic dif-ference in the cost of encryption (�nding large primesis easy) and decryption (factoring large numbers is dif-�cult). Later on in the paper we will see that there are,in fact, obfuscating transformations that can be appliedin polynomial time but which require exponential timeto deobfuscate.
3
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Figure 2: Protection by (a) Server-side and (b) Partial Server-side execution.3 The Design of a Java ObfuscatorFigure 6 outlines the design of the Java obfuscation toolKava (Konfused Java1) which is currently under devel-opment. Input to the tool is a Java application, givenas a set of Java class �les. The user also selects the re-quired level of obfuscation (the potency) and the maxi-mum execution time/space penalty that the obfuscatoris allowed to add to the application (the cost). Kavareads and parses the class �les along with any library�les referenced directly or indirectly. A complete in-heritance tree is constructed, as well as a symbol tablegiving type information for all symbols, and control 
owgraphs for all methods.Kava contains a large pool of code transformationswhich will be described later in this paper. Before thesecan be applied, however, a preprocessing pass must col-lect various types of information about the application.Some kinds of information can be gathered using stan-dard compiler techniques such as inter-procedural data-
ow analysis and data dependence analysis, some can beprovided by the user, and some are gathered using spe-1Kava, made from the Kava root (Piper Methysticum), is aceremonial, slightly intoxicating, drink of the south paci�c.

cialized techniques. Pragmatic analysis, for example,analyses the application to see what sort of languageconstructs and programming idioms it contains.The information gathered during the preprocessingpass is used to select and apply appropriate code trans-formations. All types of language constructs in the ap-plication can be the subject of obfuscation: classes canbe split or merged, methods can be changed or created,new control- and data structures can be created andoriginal ones modi�ed, etc. New constructs added tothe application are selected to be as similar as possi-ble to the ones in the source application, based on thepragmatic information gathered during the preprocess-ing pass.The transformation process is repeated until the re-quired potency has been achieved or the maximum costhas been exceeded. The output of the tool is a new ap-plication { functionally equivalent to the original one {normally given as a set of Java class �les. The tool willalso be able to produce Java source �les annotated withinformation about which transformations have been ap-plied, and how the obfuscated code relates to the orig-inal source. The annotated source will be useful fordebugging.4
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Figure 6: Architecture of Kava, the Java obfuscator. The main input to the tool is a set of Java class �les and the obfuscationlevel required by the user. The user may optionally provide �les of pro�ling data, as generated by Java pro�ling tools. Thisinformation can be used to guide the obfuscator to make sure that frequently executed parts of the application are notobfuscated by very expensive transformations.4 Classifying Obfuscating TransformationsIn the remainder of this paper we will describe, classify,and evaluate various obfuscating transformations. Westart by formalizing the notion of an obfuscating trans-formation:Definition 1 (Obfuscating Transformation)Let P T�! P 0 be a transformation of a source programP into a target program P 0.P T�! P 0 is an obfuscating transformation, if P andP 0 have the same observable behavior. More precisely,in order for P T�! P 0 to be a legal obfuscating trans-formation the following conditions must hold:� If P fails to terminate or terminates with an errorcondition, then P 0 may or may not terminate.� Otherwise, P 0 must terminate and produce thesame output as P . 2Observable behavior is de�ned loosely as \behavior asexperienced by the user." This means that P 0 may haveside-e�ects (such as creating �les, sending messages over

the Internet, etc) that P does not, as long as these sidee�ects are not experienced by the user. Note that we donot require P and P 0 to equally e�cient. In fact, manyof our transformations will result in P 0 being slower orusing more memory than P .The main dividing line between di�erent classes ofobfuscation techniques is shown in Figure 1(c). We pri-marily classify an obfuscating transformation accordingto the kind of information it targets. Some simple trans-formations target the lexical structure (the layout) ofthe application, such as source code formatting, namesof variables, etc. In this paper, the more sophisticatedtransformations that we are interested target either thedata structures used by the application or its 
ow ofcontrol.Secondly, we classify a transformation according tothe kind of operation it performs on the targeted in-formation. As can be seen from Figures 1(d{g), thereare several transformations that manipulate the aggre-gation of control or data. Such transformations typ-ically break up abstractions created by the program-mer, or construct new bogus abstractions by bundlingtogether unrelated data or control.6



Similarly, some transformations a�ect the orderingof data or control. In many cases the order in whichtwo items are declared or two computations are per-formed has no e�ect on the observable behavior of theprogram. There can, however, be much useful informa-tion embedded in the chosen order, to the programmerwho wrote the program as well as to a reverse engineer.The closer two items or events are in space or time, thehigher the likelihood that they are related in one way oranother. Ordering transformations try to explore thisby randomizing the order of declarations or computa-tions.5 Evaluating Obfuscating TransformationsBefore we can attempt to design any obfuscating trans-formations, we need to be able to evaluate the qualityof such a transformation. In this section we will at-tempt to classify transformations according to severalcriteria: how much obscurity they add to the program,how di�cult they are to break for a deobfuscator, andhow much computational overhead they add to the ob-fuscated application.5.1 Measures of PotencyWe will �rst de�ne what it means for a program P 0 to bemore obscure (or complex or unreadable) than a programP . Any such metric will, by de�nition, be rather vague,since it must be based (in part) on human cognitiveabilities.Fortunately, we can draw upon the vast body ofwork in the Software Complexity Metrics branch of Soft-ware Engineering. In this �eld, metrics are designedwith the intent to aid the construction of readable, re-liable, and maintainable software. The metrics are fre-quently based on counting various textual properties ofthe source code and combining these counts into a mea-sure of complexity. While some of the formulas thathave been proposed have been derived from empiricalstudies of real programs, others have been purely spec-ulative.The detailed complexity formulas found in the met-rics' literature are of little interest to us, but they canbe used to derive general statements such as: \if pro-grams P and P 0 are identical except that P 0 containsmore of property q than P , then P 0 is more complexthan P ." Given such a statement, we can attempt toconstruct a transformation which adds more of the q-property to a program, knowing that this is likely toincrease its obscurity.In Table 1 we paraphrase some of the more pop-ular complexity measures. When used in a softwareconstruction project the goal is to minimize these mea-

sures. In contrast, when obfuscating a programwe wantto maximize the measures.The complexity metrics allow us to formalize theconcept of potency which will be used in the remain-der of this article as a measure of the usefulness of atransformation. Informally, a transformation is potentif it does a good job confusing Bob, by hiding the intentof Alice's original code. In other words, the potency ofa transformation measures how much more di�cult theobfuscated code is to understand (for a human) thanthe original code. This is formalized in the followingde�nition:Definition 2 (Transformation Potency) Let Tbe a behavior-conserving transformation, such thatP T�! P 0 transforms a source program P into a tar-get program P 0. Let E(P ) be the complexity of P , asde�ned by one of the metrics2 in Table 1.Tpot(P ), the potency of T with respect to a programP , is a measure of the extent to which T changes thecomplexity of P . It is de�ned asTpot(P ) def= E(P 0)=E(P )� 1:T is a potent obfuscating transformation if Tpot(P ) > 0.2For the purposes of this paper, we will measure potencyon a three-point scale, hlow, medium, highi.The observations in Table 1 make it possible for us tolist some desirable properties of a transformation T . Inorder for T to be a potent obfuscating transformation,it should� increase overall program size (�1) and introducenew classes and methods (�a7).� introduce new predicates (�2) and increase thenesting level of conditional and looping constructs(�3).� increase the number of method arguments (�5) andinter-class instance variable dependencies (�d7).� increase the height of the inheritance tree (�b,c7 ).� increase long-range variable dependencies (�4).5.2 Measures of ResilienceAt �rst glance it would seem that increasing Tpot(P )would be trivial. To increase the �2 metric, for example,all we have to do is to add some arbitrary if-statementsto P :2We are deliberately vague as to which particular metric (orcombination of metrics) to use since the exact choice is not criticalto our application.7



Metric Metric Name Citation�1 Program Length Halstead [8]E(P ) increases with the number of operators and operands in P .�2 Cyclomatic Complexity McCabe [20]E(F ) increases with the number of predicates in F .�3 Nesting Complexity Harrison [9]E(F ) increases with the nesting level of conditionals in F .�4 Data Flow Complexity Oviedo [23]E(F ) increases with the number of inter-basic block variable references in F .�5 Fan-in/out Complexity Henry [10]E(F ) increases with the number of formal parameters to F , and with the number of globaldata structures read or updated by F .�6 Data Structure Complexity Munson [21]E(P ) increases with the complexity of the static data structures declared in P . The complex-ity of a scalar variable is constant. The complexity of an array increases with the numberof dimensions and with the complexity of the element type. The complexity of a recordincreases with the number and complexity of its �elds.�7 OO Metric Chidamber [3]E(C) increases with (�a7) the number of methods in C, (�b7) the depth (distance from theroot) of C in the inheritance tree, (�c7) the number of direct subclasses of C, (�d7) the numberof other classes to which C is coupleda, (�e7) the number of methods that can be executed inresponse to a message sent to an object of C, (�f7) the degree to which C's methods do notreference the same set of instance variables. Note: �f7 measures cohesion; i.e. how stronglyrelated the elements of a module are.aTwo classes are coupled if one uses the methods or instance variables of the other.Table 1: Overview of some popular software complexity measures. E(X) is the complexity of a software component X. F isa function or method, C a class, and P a program.main() fS1;S2;g T) main() fS1;if (5==2) S1;S2;if (1>2) S2;gUnfortunately, such transformations are virtually use-less, since they can easily be undone by simple auto-matic techniques. It is therefore necessary to introducethe concept of resilience, which measures how well atransformation holds up under attack from an auto-matic deobfuscator. The resilience of a transformationT can be seen as the combination of two measures:Programmer E�ort: the amount of time required toconstruct an automatic deobfuscator that is ableto e�ectively reduce the potency of T , andDeobfuscator E�ort: the execution time and spacerequired by such an automatic deobfuscator to ef-fectively reduce the potency of T .It is important to distinguish between resilience andpotency. A transformation is potent if it manages to

confuse a human reader, but it is resilient if it confusesan automatic deobfuscator.We measure resilience on a scale from trivial to one-way, as shown in Figure 7 (a). One-way transformationsare special, in the sense that they can never be undone.This is typically because they remove information fromthe program that was useful to the human program-mer, but which is not necessary in order to execute theprogram correctly. Examples include transformationsthat remove formatting, scramble variable names, etc.Other transformations typically add useless informationto the program that does not change its observable be-havior, but which increases the \information load" ona human reader. These transformations can be undonewith varying degrees of di�culty.Figure 7 (b) shows that deobfuscator e�ort is classi-�ed as either polynomial time or exponential time. Pro-grammer e�ort, the work required to automate the de-obfuscation of a transformation T , is measured as afunction of the scope of T . This is based on the in-tuition that it is easier to construct counter-measuresagainst an obfuscating transformation that only a�ectsa small part of a procedure, than against one that maya�ect an entire program.8
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Figure 7: The resilience of an obfuscating transformation.The scope of a transformation is de�ned using ter-minology borrowed from code optimization theory: Tis a local transformation if it a�ects a single basic blockof a control 
ow graph (CFG), it is global if it a�ectsan entire CFG, it is inter-procedural if it a�ects the 
owof information between procedures, and it is an inter-process transformation if it a�ects the interaction be-tween independently executing threads of control.Definition 3 (Transformation Resilience) LetT be a behavior-conserving transformation, such thatP T�! P 0 transforms a source program P into a targetprogram P 0. Tres(P ) is the resilience of T with respectto a program P .Tres(P )=one-way if information is removed from Psuch that P cannot be reconstructed from P 0. Other-wise,TRes def= Resilience(TDeobfuscatoreffort ; TProgrammereffort );where Resilience is the function de�ned in the matrixin Figure 7 (b). 25.3 Measures of Execution CostIn Figure 1(b) we see that potency and resilience aretwo of the three components describing the quality ofa transformation. The third component, the cost ofa transformation, is the execution time/space penaltywhich a transformation incurs on an obfuscated appli-cation. We classify the cost on a four-point scale hfree,cheap, costly, deari, where each point is de�ned below:Definition 4 (Transformation Cost) Let T be abehavior-conserving transformation, such that P T�!P 0 transforms a source program P into a target program

P 0. Tcost(P ) is the extra execution time/space of P 0compared to P .
Tcost(P ) def= 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

dear if executing P 0 requires expo-nentially more resources thanP .costly if executing P 0 requiresO(np), p > 1, more resourcesthan P .cheap if executing P 0 requires O(n)more resources than P .free if executing P 0 requires O(1)more resources than P . 2It should be noted that the actual cost associatedwith a transformation depends on the environment inwhich it is applied. For example, a simple assignmentstatement pa=5q inserted at the topmost level of a pro-gram will only incur a constant overhead. The samestatement inserted inside an inner loop will have a sub-stantially higher cost. Unless noted otherwise, we al-ways give the cost of a transformation as if it had beenapplied at the outermost nesting level of the source pro-gram.5.4 Measures of QualityWe can now give a formal de�nition of the quality of anobfuscating transformation:Definition 5 (Transformation Quality)Tqual(P ), the quality of a transformation T , isde�ned as the combination of the potency, resilience,and cost of T :Tqual(P ) = (Tpot(P ); Tres(P ); Tcost(P )): 29



5.5 Layout TransformationsBefore we explore novel transformations, we will brie
yconsider the trivial layout transformations which aretypical of current Java obfuscators such as Crema [29].The �rst transformation removes the source code for-matting information sometimes available in Java class�les. This is a one-way transformation because once theoriginal formatting is gone it cannot be recovered; it is atransformation with low potency, because there is verylittle semantic content in formatting, and no great con-fusion is introduced when that information is removed;�nally, this is a free transformation since the space andtime complexity of the application is not a�ected.Scrambling identi�er names is also a one-way andfree transformation. However, it has a much higher po-tency than formatting removal since identi�ers containa great deal of pragmatic information.6 Control TransformationsIn this and the next few sections we will present a cat-alogue of obfuscating transformations. Some have beenderived from well-known transformations used in otherareas such as compiler optimization and software reengi-neering, others have been developed for the sole purposeof obfuscation and are presented here for the �rst time.In this section we will discuss transformations thatattempt to obscure the control-
ow of the source appli-cation. As indicated in Figure 1(f), we classify thesetransformations as a�ecting the aggregation, ordering,or computations of the 
ow of control. Control aggrega-tion transformations break up computations that logi-cally belong together or merge computations that donot. Control ordering transformations randomize theorder in which computations are carried out. Compu-tation transformations, �nally, insert new (redundant ordead) code, or make algorithmic changes to the sourceapplication.For transformations that alter the 
ow of control, acertain amount of computational overhead will be un-avoidable. For Alice this means that she may have tochoose between a highly e�cient program, and one thatis highly obfuscated. Typically, an obfuscator will assisther in this trade-o� by allowing her to choose betweencheap and expensive transformations.6.1 Opaque PredicatesThe real challenge when designing control-alteringtransformations is to make them not only cheap, butalso resistant to attack from deobfuscators. To achievethis, many transformations rely on the existence ofopaque variables and opaque predicates. Informally, avariable V is opaque if it has some property q which is

known a priori to the obfuscator, but which is di�cultfor the deobfuscator to deduce. Similarly, a predicate P(a boolean expression) is opaque if a deobfuscator candeduce its outcome only with great di�culty, while thisoutcome is well known to the obfuscator.Being able to create opaque variables and predi-cates which are di�cult for an obfuscator to crack isa major challenge to a creator of obfuscation tools,and the key to highly resilient control transforma-tions. We measure the resilience of an opaque vari-able or predicate (i.e. its resistance to deobfusca-tion attacks) on the same scale as transformation re-silience, i.e. htrivial,weak,strong,full,one-wayi. Simi-larly, we measure the added cost of an opaque con-struct on the same scale as transformation cost, i.e.hfree,cheap,costly,deari.Definition 6 (Opaque Constructs) A variable Vis opaque at a point p in a program, if V has a propertyq at p which is known at obfuscation time. We writethis as V qp or V q if p is clear from context.A predicate P is opaque at p if its outcome is knownat obfuscation time. We write PFp (P Tp ) if P alwaysevaluates to False (True) at p, and P ?p if P sometimesevaluates to True and sometimes to False. See Fig-ure 8. Again, p will be omitted if clear from context.2 PTT FPF FT F P ?T
Figure 8: Di�erent types of opaque predicates. Solid linesindicate paths that may sometimes be taken, dashed linespaths that will never be taken.Below we give some examples of simple opaque con-structs. These are easy to construct for the obfuscator,and equally easy to crack for the deobfuscator. Sec-tion 8 give examples of opaque constructs with muchhigher resilience.6.1.1 Trivial and Weak Opaque ConstructsAn opaque construct is trivial if a deobfuscator cancrack it (deduce its value) by a static local analysis.An analysis is local if it is restricted to a single basicblock of a control 
ow graph. Figure 9(a) gives someexamples.We also consider an opaque variable to be triv-ial if it is computed from calls to library functionswith simple, well-understood semantics. For a lan-guage like Java which requires all implementations to10



support a standard set of library classes, such opaquevariables are easy to construct. A simple example ispint v2[1;5]=random(1,5)q, where random(a; b) is a li-brary function that returns an integer in the rangea � � � b. Unfortunately, such opaque variables are equallyeasy to deobfuscate. All that is required is for thedeobfuscator-designer to tabulate the semantics of allsimple library functions, and then pattern-match on thefunction calls in the obfuscated code.An opaque construct is weak if a deobfuscator cancrack it by a static global analysis. An analysis is globalif it is restricted to a single control 
ow graph. Fig-ure 9(b) gives some examples.6.2 Computation TransformationsComputation Transformations fall into three categories:hide the real control-
ow behind irrelevant statementsthat do not contribute to the actual computations, in-troduce code sequences at the object code level forwhich there exist no corresponding high-level languageconstructs, or remove real control-
ow abstractions orintroduce spurious ones.6.2.1 Insert Dead or Irrelevant CodeThe �2 and �3 metrics suggest that there is a strongcorrelation between the perceived complexity of a pieceof code and the number of predicates it contains. For-tunately, the existence of opaque predicates makes iteasy for us to devise transformations that introduce newpredicates in a program.Consider the basic block S = S1 � � �Sn in Figure 10.In Figure 10(a) we insert an opaque predicate P T intoS, essentially splitting it in half. The P T predicate isirrelevant code since it will always evaluate to True.In Figure 10(b) we again break S into two halves,and then proceed to create two di�erent obfuscated ver-sions Sa and Sb of the second half. Sa and Sb will becreated by applying di�erent sets of obfuscating trans-formations to the second half of S. Hence, it will not bedirectly obvious to a reverse engineer that Sa and Sb infact perform the same function. We use a predicate P ?to select between Sa and Sb at runtime.Figure 10(c) is similar to Figure 10(b), but this timewe introduce a bug into Sb. The P T predicate alwaysselects the correct version of the code, Sa.6.2.2 Extend Loop ConditionsFigure 11 shows how we can obfuscate a loop by mak-ing the termination condition more complex. The basicidea is to extend the loop condition with a P T or PFpredicate which will not a�ect the number of times the

loop will execute. The predicate we have added in Fig-ure 11(d), for example, will always evaluate to Truesince x2(x+ 1)2 � 0 (mod 4).6.2.3 Convert a Reducible to a Non-Reducible FlowGraphOften, a programming language is compiled to a nativeor virtual machine code which is more expressive thanthe language itself. When this is the case, it allows usto device language-breaking transformations. A trans-formation is language-breaking if it introduces virtualmachine (or native code) instruction sequences whichhave no direct correspondence with any source languageconstruct. When faced with such instruction sequencesa deobfuscator will either have to try to synthesize anequivalent (but convoluted) source language program,or give up altogether.For example, the Java bytecode has a goto instruc-tion while the Java language has no corresponding goto-statement. This means that the Java bytecode can ex-press arbitrary control 
ow, whereas the Java languagecan only (easily) express structured control 
ow. Tech-nically [1], we say that the control 
ow graphs producedfrom Java programs will always be reducible, but theJava bytecode can express non-reducible 
ow graphs.Since expressing non-reducible 
ow graphs becomesvery awkward in languages without gotos, we constructa transformation which converts a reducible 
ow graphto a non-reducible one. This can be done by turning astructured loop into a loop with multiple headers. InFigure 12(a) we add an opaque predicate PF to a whileloop, to make it appear that there is a jump into themiddle of the loop. In fact, this branch will never betaken.A Java decompiler would have to turn a non-reducible 
ow graph into one which either duplicatescode or which contains extraneous boolean variables.Alternatively, a deobfuscator could guess that all non-reducible 
ow graphs have been produced by an ob-fuscator, and simply remove the opaque predicate. Tocounter this we can sometimes use the alternative trans-formation shown in Figure 12(b). If a deobfuscatorblindly removes PF , the resulting code will be incor-rect.6.2.4 Remove Library Calls and Programming Id-iomsMost programs written in Java rely heavily on calls tothe standard libraries. Since the semantics of the libraryfunctions are well known, such calls can provide usefulclues to a reverse engineer. The problem is exacerbatedby the fact that references to Java library classes arealways by name, and these names cannot be obfuscated.11



f int v, a=5; b=6;v=11 = a + b;if (b > 5)T � � �if (random(1; 5) < 0)F � � �g f int v, a=5; b=6;if (� � �) � � �... (b is unchanged)if (b < 7)T a++;v=36 = (a > 5)?v=b*b:v=bg(a) (b)Figure 9: Examples of trivial (a) and weak (b) opaque constructs.
S1; � � � ;SjP ?S1; � � � ;Sj

Sj+1; � � � ;Sn
S1; � � � ;Sj Sa(b)(a) TSaj+1; � � � ;San Sbj+1; � � � ;SbnF

f(Si) 6= f(Sbi )
(c) PTTSaj+1; � � � ;San Sbj+1; � � � ;SbnF

f(Si) = f(Sai ) = f(Sbi )PTT F f(Si) = f(Sai )
S1;S2; � � � ;Sn

Sa Sb Sb
Figure 10: The Branch Insertion transformation.
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FP (k)T Sk f(k)
Sk f(k)Sk f(k)j  g(k; j)i=1;while (i<100) f� � �i++;g T) i=1; j=100;while ((i<100) && (j � j � (j+ 1) � (j+ 1)%4 == 0)T) f� � �i++;j=j*i+3;g(c) (d)Figure 11: The Loop Condition Insertion transformation.12
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Figure 12: Reducible to Non-Reducible Flow graphs. In (a) we split the loop body S2 into two parts (Sa2 and Sb2), and inserta bogus jump to the beginning of Sb2. In (b) we also break S1 into two parts, Sa1 and Sb1. Sb1 is moved into the loop and anopaque predicate P T ensures that Sb1 is always executed before the loop body. A second predicate QF ensures that Sb1 is onlyexecuted once.In many cases the obfuscator will be be able tocounter this by simply providing its own versions ofthe standard libraries. For example, calls to the JavaDictionary class (which uses a hash table implementa-tion) could be turned into calls to a class with identicalbehavior, but implemented as (say) a red-black tree.The cost of this transformation is not so much in exe-cution time, but in the size of the program.A similar problem occurs with clich�es (or patterns),common programming idioms that occur frequently inmany applications. An experienced reverse engineerwill search for such patterns to jump-start his under-standing of an unfamiliar program. As an example, con-sider linked lists in Java. The Java library has no stan-dard class that provides common list operations suchas insert, delete, enumerate, etc. Instead, most Javaprogrammers will construct lists of objects in an ad hocfashion by linking them together on a next �eld. Iterat-ing through such lists is a very common pattern in Javaprograms. Techniques invented in the �eld automaticprogram recognition [32] can be used to identify com-

mon patterns and replace them with less obvious ones.In the linked list case, for example, we might representthe standard list data structure with a less common one,such as cursors into an array of elements.6.2.5 Table InterpretationOne of the most e�ective (and expensive) transforma-tions is table interpretation.3 The idea is to convert asection of code (Java bytecode in our case) into a dif-ferent virtual machine code. This new code is then exe-cuted by a virtual machine interpreter included with theobfuscated application. Obviously, a particular applica-tion can contain several interpreters, each accepting adi�erent language and executing a di�erent section ofthe obfuscated application.Since there is usually an order of magnitude slow-down for each level of interpretation, this transforma-tion should be reserved for sections of code that makeup a small part of the total runtime or which need a3Thanks to Buz Uzgalis for pointing this out.13



very high level of protection.6.2.6 Add Redundant OperandsOnce we have constructed some opaque variables wecan use algebraic laws to add redundant operands toarithmetic expressions. This will increase the �1 metric.Obviously, this technique works best with integer ex-pressions where numerical accuracy is not an issue. Inthe obfuscated statement (1') below we make use of anopaque variable P whose value is 1. In statement (2')we construct an opaque subexpression P/Q whose valueis 2. Obviously, we can let P and Q take on di�erentvalues during the execution of the program, as long astheir quotient is 2 whenever statement (2') is reached.(1) X=X+V;(2) Z=L+1; T) (1') X=X+V*P=1;(2') Z=L+(P=2Q/Q=P=2)/2;6.2.7 Parallelize CodeAutomatic parallelization is an important compiler op-timization used to increase the performance of applica-tions running on multi-processormachines. Our reasonsfor wanting to parallelize a program, of course, are dif-ferent. We want to increase parallelism not to increaseperformance, but to obscure the actual 
ow of control.There are two possible operations available to us:1. We can create dummy processes that perform nouseful task, and2. we can split a sequential section of the applicationcode into multiple sections executing in parallel.If the application is running on a single-processor ma-chine, we can expect these transformations to have asigni�cant execution time penalty. This may be accept-able in many situations, since the resilience of thesetransformations is high: static analysis of parallel pro-grams is very di�cult since the number of possible ex-ecution paths through a program grows exponentiallywith the number of executing processes. Parallelizationalso yields high levels of potency: a reverse engineerwill �nd a parallel program much more di�cult to un-derstand than a sequential one.A section of code can be easily parallelized if it con-tains no data dependencies (Wolfe [33]). For example,if S1 and S2 are two data-independent statements theycan be run in parallel:S2S1 S2T) S1

In a programming language like Java that has no ex-plicit parallel constructs, programs will have to be par-allelized using calls to thread (lightweight process) li-braries.A section of code that contains data dependenciescan be split into concurrent threads by inserting ap-propriate synchronization primitives such as await andadvance [33]. Such a program will essentially be run-ning sequentially, but the 
ow of control will be shiftingfrom one thread to the next:S2S3
S1 T) advanceadvanceS1 S2 await(2)S3await(1)

6.3 Aggregation TransformationsProgrammers overcome the inherent complexity of pro-gramming by introducing abstractions. There is ab-straction on many levels of a program, but the proce-dural abstraction is the most important one. For thisreason, obscuring procedure and method calls is of theutmost importance to the obfuscator. Below, we willconsider several ways in which methods and methodinvocations can be obscured: inlining, outlining, inter-leaving, and cloning. The basic idea behind all of theseis the same: (1) code which the programmer aggregatedinto a method (presumably because it logically belongedtogether) should be broken up and scattered over theprogram and (2) code which seems not to belong to-gether should be aggregated into one method.6.3.1 Inline and Outline MethodsInlining is, of course, a important compiler optimiza-tion. It is also an extremely useful obfuscation trans-formation since it removes procedural abstractions fromthe program. Inlining is a highly resilient transforma-tion (it is essentially one-way), since once a procedurecall has been replaced with the body of the called pro-cedure and the procedure itself has been removed, thereis no trace of the abstraction left in the code.Outlining (turning a sequence of statements into asubroutine) is a very useful companion transformationto inlining. Figure 13 shows how procedures P and Qare inlined at their call-sites, and then removed fromthe code. Subsequently, we create a bogus proceduralabstraction by extracting the beginning of Q's code andthe end of P 's code into a new procedure R.14



call n:Q()call m:P () PkQ1Q2Q3P2...PkP1...Q1Q2Ql QlQ4� � �
P2P1Pk�1� � �P2PkP1 call R� � �Q1Q2Ql� � �

Inline OutlineQ's code
P's code R's code

Figure 13: Inlining and outlining transformations.In object-oriented languages such as Java, inliningmay, in fact, not always be a fully one-way transforma-tion. Consider a method invocation m:P (). The actualprocedure called will depend on the run-time type of m.In cases when more than one method can be invoked ata particular call site, we have to inline all possible meth-ods [5] and select the appropriate code by branching onthe type of m (see Figure 14). Hence, even after inlin-ing and removal of methods, the obfuscated code maystill contain some traces of the original abstractions.
code forclass2::Pcode forclass1::Pcall m:P () Inline m.type = class1m.type = class2T F FTFigure 14: Inlining method calls. Unless we can stati-cally determine the type of m, all possible methods to whichpm.P()q could be bound must be inlined at the call site.6.3.2 Interleave MethodsThe detection of interleaved code is an important anddi�cult reverse engineering task. Rugaber [25] writes:One of the factors that can make a programdi�cult to understand is that code responsiblefor accomplishing more than one purpose maybe woven together in a single section. We callthis interleaving [� � �]Figure 15 shows how we can easily interleave two meth-ods declared in the same class. The idea is to mergethe bodies and parameter lists of the methods and addan extra parameter (or global variable) to discriminatebetween calls to the individual methods. Ideally, the

methods should be similar in nature to allow mergingof common code and parameters. This is the case inFigure 15, where the �rst parameter of M1 and M2 havethe same type.6.3.3 Clone MethodsWhen trying to understand the purpose of a subroutinea reverse engineer will of course examine its signatureand body. However, equally important to understand-ing the behavior of the routine are the di�erent envi-ronments in which it is being called. We can make thisprocess more di�cult by obfuscating a method's callsites to make it appear that di�erent routines are beingcalled, when, in fact, this is not the case.Figure 16 shows how we can create several di�erentversions of a method by applying di�erent sets of ob-fuscating transformations to the original code. We usemethod dispatch to select between the di�erent versionsat runtime.Method cloning is similar to the predicate insertiontransformations in Figure 10, except that here we areusing method dispatch rather than opaque predicatesto select between di�erent versions of the code.6.3.4 Loop TransformationsA large number of loop transformations have been de-signed with the intent to improve the performance of (inparticular) numerical applications. See Bacon [2] for acomprehensive survey. Some of these transformationsare useful to us since they also increase the complex-ity metrics of Table 1. Loop Blocking (Figure 17(a)) isused to improve the cache behavior of a loop by break-ing up the iteration space so that the inner loop �ts inthe cache. Loop unrolling (Figure 17(b)) replicates thebody of a loop one or more times. If the loop boundsare known at compile time the loop can be unrolledin its entirety. Loop �ssion (Figure 17(c)) turns a loop15



class C fmethod M1 (T1 a) fSM11 ; � � �SM1k ;gmethod M2 (T1 b; T2 c) fSM21 ; � � �SM2m ;ggf C x=new C;x.M1(a); x.M2(b, c); g
T) class C' fmethod M (T1 a; T2 c; int V ) fif (V == p) fSM11 ; � � �SM1k ;gelse fSM21 ; � � �SM2m ;gggf C' x=new C';x.M(a, c, V =p);x.M(b, c, V =q); gFigure 15: Interleaving methods. An opaque variable V is passed to the interleaved method to discriminate between callsto M1 and M2. There is, of course, nothing stopping us from merging the bodies in less obvious ways, possibly using severalopaque predicates Pi(V ): pif (P1(V )) SM11 else SM21 ; if (P2(V )) SM12 else SM22 ; � � �q

class C fmethod m (int x)f S1 � � �Sk ggf C x = new C;x.m(5); � � � x.m(7);g T)
class C1 fmethod m (int x)f Sa1 � � �Sak gmethod m1 (int x)f Sc1 � � �Sck ggclass C2 inherits C1 fmethod m (int x)f Sb1 � � �Sbk ggf C1 x ;if (PF) x=new C1 else x=new C2;x.m(5); � � �; x.m1(7);gFigure 16: Cloning methods. C2::m and C1::m1 have been generated by applying di�erent obfuscating transformations to thebody of C::m. The calls px.m(5)q and px.m1(7)q look as if they were made to two di�erent methods, while in fact they go todi�erent-looking methods with identical behavior. C1::m is a buggy version of C::m that is never called.with a compound body into several loops with the sameiteration space.All three transformations increase the �1 and �2metrics, since they increase the source application's to-tal code size and number of conditions. The loop block-ing transformation also introduces extra nesting, andhence also increases the �3 metric.Applied in isolation, the resilience of these transfor-mations is quite low. It does not require much staticanalysis for a deobfuscator to reroll an unrolled loop.However, when the transformations are combined, theresilience rises dramatically. For example, given thesimple loop in Figure 17(b), we could �rst apply un-rolling, then �ssion, and �nally blocking. Returningthe resulting loop to its original form would require afair amount of analysis for the deobfuscator.

6.4 Ordering TransformationsProgrammers tend to organize their source code to max-imize its locality. The idea is that a program is easierto read and understand if two items that are logicallyrelated are also physically close in the source text. Thiskind of locality works on every level of the source: thereis locality among terms within expressions, statementswithin basic blocks, basic blocks within methods, meth-ods within classes, classes within �les, etc. All kinds ofspatial locality can provide useful clues to a reverse engi-neer. Therefore, whenever possible, we randomize theplacement of any item in the source application. Forsome types of items (methods within classes, for exam-ple) this is trivial. In other cases (such as statementswithin basic blocks) a data dependency analysis (see16



(a) for(i=1,i<=n,i++)for(j=1,j<=n,j++)a[i,j]=b[j,i] T) for(I=1,I<=n,I+=64)for(J=1,J<=n,J+=64)for(i=I,i<=min(I+63,n),i++)for(j=J,j<=min(J+63,n),j++)a[i,j]=b[j,i](b) for(i=2,i<(n-1),i++)a[i] += a[i-1]*a[i+1] T) for(i=2,i<(n-2),i+=2) fa[i] += a[i-1]*a[i+1];a[i+1] += a[i]*a[i+2];g;if (((n-2) % 2) == 1)a[n-1] += a[n-2]*a[n](c) for(i=1,i<n,i++) fa[i] += c;x[i+i]=d+x[i+1]*a[i]g T) for(i=1,i<n,i++)a[i] += c;for(i=1,i<n,i++)x[i+i]=d+x[i+1]*a[i]Figure 17: Loop transformation examples. Loop blocking (a), loop unrolling (b), and loop �ssion (c). These examples wereadapted from [2].[2, 33]) will have to be performed to determine whichreorderings are legal.These transformations have low potency (they donot add much obscurity to the program) but their re-silience is high, in many cases one-way. For example,when the placement of statements within a basic blockhas been randomized, there will be no traces of the orig-inal order left in the resulting code.Ordering transformations can be particularly usefulcompanions to the \Inline-Outline" transformation ofSection 6.3.1. The potency of that transformation canbe enhanced by (1) inlining several procedure calls ina procedure P , (2) randomizing the order of the state-ments in P , and (3) outlining contiguous sections ofP 's statements. This way, unrelated statements thatwere previously part of several di�erent procedures arebrought together into bogus procedural abstractions.In certain cases it is also possible to reorder loops,for example by running them backwards. Such loop re-versal transformations are common in high-performancecompilers [2].7 Data TransformationsIn this section we will discuss transformations that ob-scure the data structures used in the source application.As indicated in Figure 1(e), we classify these transfor-mations as a�ecting the storage, encoding, aggregation,or ordering of the data.7.1 Storage and Encoding TransformationsIn many cases there is a \natural" way to store a par-ticular data item in a program. For example, to iterate

through the elements of an array we probably wouldchoose to allocate a local integer variable of the ap-propriate size as the iteration variable. Other variabletypes might be possible, but they would be less naturaland probably less e�cient.Furthermore, there is also often a \natural" interpre-tation of the bit-patterns that a particular variable canhold which is based on the type of the variable. For ex-ample, we would normally assume that a 16-bit integervariable storing the bit-pattern p0000000000001100qwould represent the integer value 12. Of course, theseare mere conventions and other interpretations are pos-sible.Obfuscating storage transformations attempt tochoose unnatural storage classes for dynamic as wellas static data. Similarly, encoding transformations at-tempt to choose unnatural encodings for common datatypes. Storage and encoding transformations often gohand-in-hand, but they can sometimes be used in isola-tion.7.1.1 Change EncodingAs a simple example of an encoding transforma-tion we will replace an integer variable i byi0 = c1 � i + c2, where c1 and c2 are constants.For e�ciency, we could choose c1 to be a power oftwo. In the example below, we let c1 = 8 and c2 = 3:int i=1;while (i < 1000) f� � � A[i] � � �;i++;g T) int i=11;while (i<8003) f� � � A[(i-3)/8] � � �;i+=8;gObviously, over
ow (and, in case of 
oating point vari-17



ables, accuracy) issues need to be addressed. Wecould either determine that because of the range ofthe variable4 in question no over
ow will occur, or wecould change to a larger variable type.There will be a trade-o� between resilience and po-tency on one hand, and cost on the other. A simpleencoding function such as i0 = c1 � i + c2 in the ex-ample above, will add little extra execution time butcan be deobfuscated using common compiler analysistechniques [33, 2].7.1.2 Promote VariablesThere are a number of simple storage transformationsthat promote variables from a specialized storage classto a more general class. Their potency and resilienceare generally low, but used in conjunction with othertransformations they can be quite e�ective.For example, in Java, an integer variable can bepromoted to an integer object. The same is true ofthe other scalar types which all have corresponding\packaged" classes. Since Java supports garbagecollection, the objects will be automatically removedwhen they are no longer referenced. Here is an example:int i=1;while (i < 9) f� � � A[i] � � �;i++;g T) Int i = new Int(1);while (i.value < 9) f� � � A[i.value] � � �;i.value++;gIt is also possible to change the lifetime of a variable.The simplest such transform turns a local variable intoa global one which is then shared between independentprocedure invocations. For example, if procedures Pand Q both reference a local integer variable, and Pand Q cannot both be active at the same time5 then thevariable can be made global and shared between them:void P() fint i; � � � i � � �gvoid Q() fint k; � � � k � � �g T) int C;void P() f� � � C � � �gvoid Q() f� � � C � � �gThis transformation increases the �5 metric since thenumber of global data structures referenced by P andQ is increased.7.1.3 Split VariablesBoolean variables and other variables of restricted rangecan be split into two or more variables. We will write4The range can be determined using static analysis techniquesor by querying the user.5Unless the program contains threads this can be determinedby examining the static call graph.

a variable V split into k variables p1; � � � ; pk as V =[p1; � � � ; pk]. Typically, the potency of this transforma-tion will grow with k. Unfortunately, so will the cost ofthe transformation, so we usually restrict k to 2 or 3.To allow a variable V of type T to be split into twovariables p and q of type U requires us to provide threepieces of information: (1) a function f(p; q) that mapsthe values of p and q into the corresponding value of V ,(2) a function g(V ) that maps the value of V into thecorresponding values of p and q, and (3) new operations(corresponding to the primitive operations on values oftype T ) cast in terms of operations on p and q. In theremainder of this section we will assume that V is oftype boolean, and p and q are small integer variables.Figure 18(a) shows a possible choice of representa-tion for split boolean variables. The table indicates thatif V has been split into p and q, and if, at some pointin the program, p = q = 0 or p = q = 1, then thatcorresponds to V being False. Similarly, p = 0; q = 1or p = 1; q = 0 corresponds to True.Given this new representation, we have to devicesubstitutions for the built-in boolean operations (&, |,~, ^). The easiest way is simply to provide a run-timelookup table for each operator. Tables for & and | areshown in Figure 18(c) and (d), respectively. Given twoboolean variables V1 = [p; q] and V2 = [r; s], V1&V2 iscomputed as AND[2p+ q; 2r + s].In Figure 18(e) we show the result of splittingthree boolean variables A=[a1,a2], B=[b1,b2], andC=[c1,c2]. An interesting aspect of our chosen rep-resentation is that there are several possible ways tocompute the same boolean expression. Statements (3')and (4') in Figure 18(e), for example, look di�erent, al-though they both assign False to a variable. Similarly,while statements (5') and (6') are completely di�erent,they both compute A & B.The potency, resilience, and cost of this transforma-tion all grow with the number of variables into whichthe original variable is split. The resilience can be fur-ther enhanced by selecting the encoding at run-time. Inother words, the run-time look-up tables of Figure 18(b-d) are not constructed at compile-time (which wouldmake them susceptible to static analyses) but by algo-rithms included in the obfuscated application. This, ofcourse, would prevent us from using in-line code to com-pute primitive operations, as done in statement (6') inFigure 18(e).7.1.4 Convert Static to Procedural DataStatic data, particularly character strings, contain muchuseful pragmatic information to a reverse engineer. Asimple way of obfuscating a static string is to convert itinto a program that produces the string. The program18



g(V ) f(p; q)p q V 2p+ q0 0 False 00 1 True 11 0 True 21 1 False 3 pVAL[p,q] 0 1q 0 0 11 1 0 AAND[A,B] 0 1 2 30 3 0 0 0B 1 3 1 2 32 0 2 1 33 3 0 0 3
AOR[A,B] 0 1 2 30 3 1 2 3B 1 1 1 2 22 2 2 1 13 0 1 2 0(a) (b) (c) (d)

(e) (1) bool A,B,C;(2) A = True;(3) B = False;(4) C = False;(5) C = A & B;(6) C = A & B;(7) C = A | B;(8) if (A) � � �;(9) if (B) � � �;(10) if (C) � � �;
T) (1') short a1,a2,b1,b2,c1,c2;(2') a1=0; a2=1;(3') b1=0; b2=0;(4') c1=1; c2=1;(5') x=AND[2*a1+a2,2*b1+b2]; c1=x/2; c2=x%2;(6') c1=(a1 ^ a2) & (b1 ^ b2); c2=0;(7') x=OR[2*a1+a2,2*b1+b2]; c1=x/2; c2=x%2;(8') x=2*a1+a2; if ((x==1) || (x==2)) � � �;(9') if (b1 ^ b2) � � �;(10') if (VAL[c1,c2]) � � �;Figure 18: Variable splitting example. Tables (b-d) are used to compute boolean operations. They are either constructedby the obfuscator and stored in the as static data in the obfuscated application, or generated at run-time by the obfuscatedapplication itself.{ which could be a DFA, a Trie traversal, etc. { couldpossibly produce other strings as well.As an example, consider the function G in Figure 19.This function was constructed to obfuscate the strings"AAA", "BAAAA", and "CCB". The values produced byG are G(1)="AAA", G(2)="BAAAA", G(3)=G(5)="CCB",and G(4)="XCB" (which is not actually used in the pro-gram). For other argument values, G may or may notterminate.Aggregating the computation of all static string datainto just one function is, of course, highly undesirable.Much higher potency and resilience is achieved if theG-function was broken up into smaller components thatwere embedded into the \normal" control 
ow of thesource program.It is interesting to note that we can combine thistechnique with the table interpretation transformationof Section 6.2.5. The intent of that obfuscation is toconvert a section of Java bytecode into code for anothervirtual machine. The new code will typically be storedas static string data in the obfuscated program. Foreven higher levels of potency and resilience, however,the strings could be converted to programs that producethem, as explained above.7.2 Aggregation TransformationsIn contrast to imperative and functional languages,object-oriented languages are more data-oriented thancontrol-oriented. In other words, in an object-oriented

program, the control is organized around the data struc-tures, rather than the other way around. This meansthat an important part of reverse-engineering an object-oriented application is trying to restore the program'sdata structures. Conversely, it is important for an ob-fuscator to try to hide these data structures.In most object-oriented languages, there are just twoways to aggregate data: in arrays and in objects. In thenext three sections we will examine ways in which thesedata structures can be obfuscated.7.2.1 Merge Scalar VariablesTwo or more scalar variables V1 � � �Vk can be mergedinto one variable VM , provided the combined ranges ofV1 � � �Vk will �t within the precision of VM . For exam-ple, two 32-bit integer variables could be merged intoone 64-bit variable. Arithmetic on the individual vari-ables would be transformed into arithmetic on VM . Asa simple example, consider merging two 32-bit integervariables X and Y into a 64-bit variable Z. Using themerging formula Z(X; Y) = 232 � Y+ Xwe get the arithmetic identities in Figure 20(a). Somesimple examples are given in Figure 20(b).The resilience of variable merging is quite low. Adeobfuscator only needs to examine the set of arith-metic operations being applied to a particular variablein order to guess that it actually consists of two merged19



String G (int n) fint i=0,k;String S;while (1) fL1: if (n==1) fS[i++]="A";k=0;goto L6g;L2: if (n==2) fS[i++]="B";k=-2;goto L6g;L3: if (n==3) fS[i++]="C";goto L9g;L4: if (n==4) fS[i++]="X";goto L9g;L5: if (n==5) fS[i++]="C";goto L11g;if (n>12) goto L1;L6: if (k++<=2) fS[i++]="A";goto L6g else goto L8;L8: return S;L9: S[i++]="C"; goto L10;L10: S[i++]="B"; goto L8;L11: S[i++]="C"; goto L12;L12: goto L10;ggFigure 19: A function producing the the strings "AAA", "BAAAA", and "CCB".(a) Z(X+ r; Y) = 232 � Y+ (r + X) = Z(X; Y) + rZ(X; Y+ r) = 232 � (Y+ r) + X = Z(X; Y) + r � 232Z(X � r; Y) = 232 � Y+ X � r = Z(X; Y) + (r � 1) � XZ(X; Y � r) = 232 � Y � r + X = Z(X; Y) + (r � 1) � 232 � Y(b) (1) int X=45,Y=95;(2) X += 5;(3) Y += 11;(4) X *= c;(5) Y *= d; T) (1') long Z=167759086119551045;(2') Z += 5;(3') Z += 47244640256;(4') Z += (c-1)*(Z & 4294967295);(5') Z += (d-1)*(Z & 18446744069414584320);Figure 20: Merging two 32-bit variables X and Y into one 64-bit variable Z. Y occupies the top 32 bits of Z, X the bottom 32bits. If the actual range of either X or Y can be deduced from the program, less intuitive merges could be used. (a) gives rulesfor addition and multiplication with X and Y. (b) shows some simple examples. The example could be further obfuscated, forexample by merging (2') and (3') into pZ+=47244640261q.variables. We can increase the resilience by introduc-ing bogus operations that could not correspond to anyreasonable operations on the individual variables. Inthe example in Figure 20(b) we could insert operationsthat appear to merge Z's two halves, for example byrotation: pif (PF) Z = rotate(Z,5)q.A variant of this transformation is to merge V1 � � �Vkinto an array VA = 1 � � � kV1 � � � Vk of the appropriatetype. If V1 � � �Vk are object reference variables, for ex-ample, then the element type of VA can be any classthat is higher in the inheritance hierarchy than any ofthe types of V1 � � �Vk.
7.2.2 Restructure ArraysA number of transformations can be devised for ob-scuring operations performed on arrays: we can split anarray into several sub-arrays, merge two or more arraysinto one array, fold an array (increasing the number ofdimensions), or 
atten an array (decreasing the numberof dimensions).Figure 21 shows some examples of array restructur-ing. In statements (1-2) an array A is split up into twosub-arrays A1 and A2. A1 holds the elements of A thathave even indices, and A2 holds the elements with oddindices.Statements (3-4) of Figure 21 show how two integerarrays B and C can be interleaved into a resulting arrayBC. The elements from B and C are evenly spread over20



the resulting array.Statements (6-7) demonstrate how a one-dimensional array D can be folded into a two-dimensional array D1. Statements (8-9), �nally,demonstrate the reverse transformation: a two-dimensional array E is 
attened into a one-dimensionalarray E1.Array splitting and folding increase the �6 data com-plexity metric. Array merging and 
attening, on theother hand, seem to decrease this measure. While thismay seem to indicate that these transformations haveonly marginal or even negative potency, this, in fact, isdeceptive. The problem is that the complexity metricsof Table 1 fail to capture an important aspect of somedata structure transformations: they introduce struc-ture where there was originally none or they removestructure from the original program. This can greatlyincrease the obscurity of the program. For example, aprogrammer who declares a two-dimensional array doesso for a purpose: the chosen structure somehow mapscleanly to the data that is being manipulated. If thatarray is folded into a one-dimensional structure, a re-verse engineer will have been deprived of much valuablepragmatic information.7.2.3 Modify Inheritance RelationsIn current object-oriented language such as Java, themain modularization and abstraction concept is theclass. Classes are essentially abstract data typesthat encapsulate data (instance variables) and control(methods). We write a class as C = (V;M), where V isthe set of C's instance variables and M its methods.In contrast to the traditional notion of abstract datatypes, two classes C1 and C2 can be composed by aggre-gation (C2 has an instance variable of type C1) as well asby inheritance (C2 extends C1 by adding new methodsand instance variables). Borrowing the notation usedin [27], we write inheritance as C2 = C1 ��C2. C2 issaid to inherit from C1, its super- or parent class. The�operator is the function that combines the parent classwith the new properties de�ned in �C2. The exact se-mantics of � depends on the particular programminglanguage. In languages such as Java, � is usually inter-preted as union when applied to the instance variablesand as overriding when applied to methods.According to metric �7, the complexity of a classC1 grows with its depth (distance from the root) inthe inheritance hierarchy, and the number of its directdescendants. There are two basic ways in which wecan increase this complexity: we can split up (factor) aclass (Figure 22(a)) or insert a new, bogus, class (Fig-ure 22(b)).A problem with class factoring is its low resilience;

there is nothing stopping a deobfuscator from simplymerging the factored classes. To prevent this, factoringand insertion are normally combined as shown in Fig-ure 22(d). Another way of increasing the resilience ofthese types of transformations is to make sure that newobjects are created of all introduced classes.Figure 22(c) shows a variant of class insertion, calledfalse refactoring. Refactoring is a (sometimes auto-matic) technique for restructuring object-oriented pro-grams whose structure has deteriorated [22]. Refactor-ing is a two-step process. First, it is detected that two,apparently independent classes, in fact implement simi-lar behavior. Secondly, features common to both classesare moved into a new (possibly abstract) parent class.False refactoring is a similar operation, only it is per-formed on two classes C1 and C2 that have no commonbehavior. If both classes have instance variables of thesame type, these can be moved into the new parent classC3. C3's methods can be buggy versions of some of themethods from C1 and C2.7.3 Ordering TransformationsIn Section 6.4 we argued that (when possible) random-izing the order in which computations are performed isa useful obfuscation. Similarly, it is useful to random-ize the order of declarations in the source application.Particularly, we randomize the order of methods andinstance variables within classes and formal parameterswithin methods. In the latter case, the correspond-ing actuals will of course have to be reordered as well.The potency of these transformations is low and theresilience is one-way.In many cases it will also be possible to re-order the elements within an array. Simply put,we provide an opaque encoding function f(i)which maps the i:th element in the original ar-ray into its new position of the reordered array:int i=1, A[1000];while (i < 1000) f� � � A[i] � � �;i++;g T) int i=1, A[1000];while (i < 1000) f� � � A[f(i)] � � �;i++;g8 Opaque Values and PredicatesAs we have seen, opaque predicates are the major build-ing block in the design of transformations that obfuscatecontrol 
ow. In fact, the quality of most control trans-formations is directly dependent on the quality of suchpredicates.In Section 6.1 we gave examples of simple opaquepredicates with trivial and weak resilience. This meansthat the opaque predicates can be broken (an automatic21



(1) int A[9];(2) A[i] = � � �;� � �� � �(3) int B[9],C[19];(4) B[i] = � � �;(5) C[i] = � � �;� � �(6) int D[9];(7) for(i=0;i<=8;i++)D[i]=2*D[i+1];� � �� � �� � �(8) int E[2,2];(9) for(i=0;i<=2;i++)for(j=0;i<=2;i++)swap(E[i,j], E[j,i]);
T)

(1') int A1[4],A2[4];(2') if ((i%2)==0) A1[i/2]=� � �else A2[i/2]=� � �;� � �(3') int BC[29];(4') BC[3*i] = � � �;(5') BC[i/2*3+1+i%2] = � � �;� � �(6') int D1[1,4];(7') for(j=0;j<=1;j++)for(k=0;k<=4;k++)if (k==4)D1[j,k]=2*D1[j+1,0];elseD1[j,k]=2*D1[j,k+1];� � �(8') int E1[8];(9') for(i=0;i<=8;i++)swap(E[i], E[3*(i%3)+i/3]);0 1 2 3 4 5 6 7 8 9A : A0 A1 A2 A3 A4 A5 A6 A7 A8 A90 1 2 3 4 5 6 7 8 9B : B0 B1 B2 B3 B4 B5 B6 B7 B8 B90 1 2 3 4 5 6 7 � � � 19C : C0 C1 C2 C3 C4 C5 C6 C7 � � � C190 1 2 3 4 5 6 7 8 9D : D0 D1 D2 D3 D4 D5 D6 D7 D8 D90 1 2E : 0 E0;0 E0;1 E0;21 E1;0 E1;1 E1;22 E2;0 E2;1 E2;2
T) 0 1 2 3 4A1 : A0 A2 A4 A6 A80 1 2 3 4A2 : A1 A3 A5 A7 A90 1 2 3 4 5 6 7 � � � 29BC : B0 C0 C1 B1 C2 C3 B2 C4 � � � C190 1 2 3 4D1 : 0 D0 D1 D2 D3 D41 D5 D6 D7 D8 D90 1 2 3 4 5 6 7 8E1 : E0;0 E0;1 E0;2 E1;0 E1;1 E1;2 E2;0 E2;1 E2;2Figure 21: Array Restructuring. Array splitting (statements (1-2)), array merging (statements (3-5)), array folding (statements(6-7)), and array 
attening (statements (8-9)).deobfuscator could determine their value) using local orglobal static analysis. Obviously, we generally require amuch higher resistance to attack. Ideally, we would liketo be able to construct opaque predicates that requireworst case exponential time (in the size of the program)to break but only polynomial time to construct. Inthis section we will present two such techniques. The�rst one is based on aliasing, the second on lightweightprocesses.8.1 Opaque Constructs Using Objects and AliasesInter-procedural static analysis is signi�cantly compli-cated whenever there is a possibility of aliasing. In fact,di�erent versions of precise static alias analysis havebeen shown to be NP-hard [12] or even undecidable [24].We can exploit this fact to construct opaque predicateswhich are di�cult to break. It should be noted that

there are many fast but imprecise alias analysis algo-rithms that will detect some aliases some of the time,but not all aliases all of the time.The basic idea is to construct a complex dynamicstructure and maintain a set of pointers into this struc-ture. Opaque predicates can then be designed whichask questions that can only be answered if an inter-procedural aliasing analysis has been performed.Consider the obfuscated method P in Figure 23. In-terspersed with P's original code are bogus method callsand redundant computations guarded by opaque predi-cates. The method calls manipulate two global pointersg and h which point into di�erent connected compo-nents (G and H) of a dynamic structure. The state-ment pg=g.Move()q will non-deterministically update gto point somewhere else within G. The statement ph =h.Insert(new Node)q inserts a new node into H andupdates h to point to some node within H. P (and other22



methods that P calls) is given an extra pointer argumentf which also refers to objects within G.This set-up allows us to construct opaque predicateslike those of statements 4 and 5 of Figure 23. The predi-cate f==gmay be either true or false since f and gmovearound within the same component. Conversely, g==hmust be false since g and h refer to nodes within di�er-ent components.Statements 6{9 in Figure 23 exploit aliasing. Thepredicate in statement 7 will be true or false depend-ing on whether f and g point to the same or di�erentobjects. The predicate in statement 8 must evaluate totrue since f and h cannot alias the same object.8.2 Opaque Constructs Using ThreadsParallel programs are more di�cult to analyze stati-cally than their sequential counterparts. The reasonis their interleaving semantics: n statements in a par-allel region pPAR S1; S2; � � �; Sn; ENDPARq canbe executed in n! di�erent ways. In spite of this, somestatic analyses over parallel programs can be performedin polynomial time [15], while others require all n! in-terleavings to be considered.In Java, parallel regions are constructed using light-weight processes known as threads. Java threads have(from our point of view) two very useful properties: (1)their scheduling policy is not speci�ed strictly by thelanguage speci�cation and will hence depend on the im-plementation, and (2) the actual scheduling of a threadwill depend on asynchronous events generated by userinteraction, network tra�c, etc. Combined with the in-herent interleaving semantics of parallel regions, thismeans that threads are very di�cult to analyze stati-cally.We will use these observations to create opaque pred-icates that will require worst-case exponential time tobreak. The basic idea is very similar to the one used inSection 8.1: a global data structure V is created and oc-casionally updated, but kept in a state such that opaquequeries can be made. The di�erence is that V is up-dated by concurrently executing threads.Obviously, V can be a dynamic data structure suchas the one created in Figure 23. The threads wouldrandomly move the global pointers g and h around intheir respective components, by asynchronously execut-ing calls to move and insert. This has the advantageof combining data races with interleaving and aliasinge�ects, for very high degrees of resilience.In Figure 24 we illustrate these ideas with a muchsimpler example where V is a pair of global integer vari-ables X and Y. It is based on the well-known fact fromelementary number theory that, for any integers x andy, 7y2 � 1 6= x2.

thread S fint R;while (1) fR = random(1,C);X = R*R;sleep(3);gg
thread T fint R;while (1) fR = random(1,C);Y = 7*R*R;sleep(2);X *= X;sleep(5);ggint X, Y;const C = sqrt(maxint)/10;main () fS.run(); T.run();� � �if ((Y� 1) == X)F( p� � �gFigure 24: In this example, the predicate at point p willalways evaluate to False. Two threads S and T occasionallywake up to update global variables X and Y with new randomvalues. Notice that S and T are involved in a data-race onX, but that this does not matter as long as assignments areatomic. Regardless of whether S or T wins the race, X willhold the square of a number.9 Deobfuscation and Preventive TransformationsMany of our obfuscating transformations (particularlythe control transformations of Section 6.2) can be saidto embed a bogus program within a real program. Inother words, an obfuscated application really consists oftwo programs merged into one: a real program whichperforms a useful task and a bogus program which com-putes useless information. The sole purpose of the bo-gus program is to confuse potential reverse engineers byhiding the real program behind irrelevant code.The opaque predicate is the main device the obfus-cator has at its disposal to prevent the bogus inner pro-gram from being easily identi�ed and removed. Forexample, in Figure 25(a), an obfuscator embeds boguscode protected by opaque predicates within three state-ments of a real program. A deobfuscator's task is toexamine the obfuscated application and automaticallyidentify and remove the inner bogus program. To ac-complish this, the deobfuscator must �rst identify andthen evaluate opaque constructs. This process is illus-trated in Figure 25(b-d).Figure 26 shows the anatomy of a semi-automaticdeobfuscation tool. It incorporates a number of tech-niques that are well known in the reverse engineeringcommunity. In the remainder of this section we will23



brie
y review some of these techniques and discuss var-ious counter-measures (so called preventive transforma-tions) that an obfuscator can employ to make deobfus-cation more di�cult.9.1 Preventive TransformationsPreventive transformations (Figure 1(g)) are quite dif-ferent in 
avor from control or data transformations.In contrast to these, their main goal is not to obscurethe program to a human reader. Rather, they are de-signed to make known automatic deobfuscation tech-niques more di�cult (inherent preventive transforma-tions), or to explore known problems in current deob-fuscators or decompilers (targeted preventive transfor-mations).9.1.1 Inherent Preventive TransformationsInherent preventive transformations will generally havelow potency and high resilience. Most importantly,they will have the ability to boost the resilience ofother transformations. As an example, assume thatwe have reordered a for-loop to run backwards, assuggested in section 6.4. We were able to applythis transformation only because we could determinethat the loop had no loop-carried data dependencies.Naturally, there is nothing stopping a deobfuscatorfrom performing the same analysis and then returningthe loop to forward execution. To prevent this, we canadd a bogus data dependency to the reversed loop:for(i=1;i<=10;i++)A[i]=i T) int B[50];for(i=10;i>=1;i--)fA[i]=i;B[i]+=B[i*i/2]gThe resilience this inherent preventive transformationadds to the loop reordering transformation dependson the complexity of the bogus dependency and thestate-of-the-art in dependency analysis [33].9.1.2 Targeted Preventive TransformationsAs an example of a targeted preventive transformation,consider the HoseMocha [16] program. It was designedspeci�cally to explore a weakness in the Mocha [30] de-compiler. HoseMocha inserts extra instructions after ev-ery return-statement in every method in the sourceprogram. This transformation has no e�ect on thebehavior of the application, but it is enough to makeMocha crash.

9.2 Identifying and Evaluating Opaque ConstructsThe most di�cult part of deobfuscation is identi-fying and evaluating opaque constructs. Note thatidenti�cation and evaluation are distinct activi-ties. An opaque construct can be local (containedwithin a single basic block), global (containedwithin a single procedure), or inter-procedural(distributed throughout the entire program).For example, pif (x � x == (7 � y � y� 1)F ) � � �qis a local opaque predicate, whereaspR=x*x;� � �;S=7*y*y-1;� � �;if (R == SF)� � �q isglobal. If the computation of R and S were per-formed in di�erent procedures, the construct would beinter-procedural. Obviously, identi�cation of a localopaque predicate is easier than identi�cation of aninter-procedural one.9.3 Identi�cation by Pattern MatchingA deobfuscator can use knowledge of the strategies em-ployed by known obfuscators to identify opaque pred-icates. A designer of a deobfuscator could exam-ine an obfuscator (either by decompiling it or sim-ply by examining the obfuscated code it generates)and construct pattern-matching rules that can iden-tify commonly used opaque predicates. This methodwill work best for simple local predicates, such aspx � x == (7 � y � y� 1)Fq or prandom(1; 5) < 0Fq.To thwart attempts at pattern matching, the obfus-cator should avoid using canned opaque constructs. Itis also important to choose opaque constructs that aresyntactically similar to the constructs used in the realapplication.9.4 Identi�cation by Program SlicingThe basic premise of this paper is that a program-mer will �nd the obfuscated version of a program moredi�cult to understand and reverse engineer than theoriginal one. The main reasons are that in the obfus-cated program (a) live \real" code will be interspersedwith dead bogus code and (b) logically related piecesof code will have been broken up and dispersed overthe program. Program slicing tools can be used by areverse engineer to counter these obfuscations. Suchtools can interactively aid the engineer to decompose aprogram into manageable chunks called slices. A sliceof a program P with respect to a point p and a vari-able v consists of all the statements of P that couldhave contributed to v's value at p. Hence, a programslicer would be able to extract from the obfuscated pro-gram the statements of the algorithm that computes anopaque variable v, even if the obfuscator has dispersedthese statements over the entire program.24



There are several strategies available to an obfusca-tor to make slicing a less useful identi�cation tool:Add parameter aliases A parameter alias is two for-mal parameters (or a formal parameter and a globalvariable) that refer to the same memory location.The cost of precise inter-procedural slicing growswith the number of potential aliases in a program,which in turn grows exponentially with the numberof formal parameters [13]. Hence, if the obfusca-tor adds aliased dummy parameters to a programit will either substantially slow down the slicer (ifprecise slices are required), or force the slicer toproduce imprecise slices (if fast slicing is required).Add variable dependencies Popular slicing toolssuch as Unravel [17] work well for small slices,but will sometimes require excessive time tocompute larger ones. For example, when workingon a 4000 line C program Unravel in some casesrequired over 30 minutes to compute a slice.To force this behavior, the obfuscator shouldattempt to increase slice sizes, by adding bogusvariable dependencies. In the example below, wehave increased the size of the slice computingx by adding two statements which apparentlycontribute to x's value, but which, in fact, do not.main() fint x=1;x = x * 3;g T) main() fint x=1;if (PF) x++;x = x + V 0;x = x * 3;g9.5 Statistical AnalysisA deobfuscator can instrument an obfuscated programto analyze the outcome of all predicates. We will callany deobfuscation method that examines the run-timecharacteristics of an obfuscated application in this wayStatistical Analysis. The deobfuscator would alert thereverse engineer to any predicate that always returnsthe same truth value over a large number of test runs,since they may turn out to be an opaque P T (PF ) pred-icate. The deobfuscator could not blindly replace suchpredicates with True (False), since this would be toodangerous. Many applications will contain \real" pred-icates that check for conditions that only happen underexceptional circumstances, and to the deobfuscator theywill appear to behave identically to an opaque predi-cate. As an example, consider pif (Leap Year) � � �q.Statistical analysis can also be used for evaluation.When a potential opaque predicate (P T , say) in a pro-gram M has been identi�ed, we guess its value (True),and make a version M' of the obfuscated program where

the opaque predicate has been replaced by the guessedvalue. We then run M and M' in parallel on the sameinput, and compare to see that they produce identicaloutput. If the outputs are the same, we can concludethat the predicate was part of the bogus, not the real,application:
Ident-ical?

program M';......if (True) � � �Output
Input......if (PT ) � � �end M. end M'.Output'program M;

Obviously, we have to make sure that our chosen in-puts adequately cover all paths in the program. Again,if the program contains paths that are rarely taken(pif (Leap Year) � � �q) this will be di�cult. Further-more, generating large numbers of correct input/outputdata is very di�cult, particularly when internal struc-ture of the application is unknown, or the input is en-tered (as is often the case with Java programs) througha complex graphical user interface.To prevent identi�cation by statistical analysis, theobfuscator may choose to favor transformations thatinsert P ? predicates (such as the one shown in Fig-ure 10(b)) over those that insert P T or PF predicates.Another possible counter-measure against statisticalanalysis is to design opaque predicates in such away that several predicates have to be cracked atthe same time. One way of doing this is to let theopaque predicates have side-e�ects. In the examplebelow the obfuscator has determined (through somesort of static 
ow analysis) that statements S1 andS2 must always execute the same number of times.The statements are obfuscated by introducing opaquepredicates which are calls to functions Q1 and Q2. Q1and Q2 increment and decrement a global variable k:f S1;� � �S2;g T) int k=0;bool Q1(x) fk+=231; return (P T1 )gbool Q2(x) fk-=231; return (P T2 )gfif (Q1(j)T) S1;� � �if (Q2(k)T) S2;gIf the deobfuscator tries to replace one (but not both)predicates with True, k will over
ow. As a result, the25



deobfuscated program will terminate with an errorcondition.9.6 Evaluation by Data-Flow AnalysisDeobfuscation is similar to many types of code op-timization. Removing pif (False) � � �q is dead codeelimination and moving identical code from if-statementbranches (e.g. S1 and S01 in Figure 25) is code hoisting,both common code optimization techniques.When an opaque construct has been identi-�ed we can attempt to evaluate it. In sim-ple cases constant propagation using a reach-ing de�nition data-
ow analysis can be su�cient:px=5;� � �;y=7;� � �;if (x*x==(7*y*y-1)) � � �q.9.7 Evaluation by Theorem ProvingIf data-
ow analysis is not powerful enough to break theopaque predicate, a deobfuscator can attempt to use atheorem prover. Whether this is doable or not dependson the power of state-of-the-art theorem provers (whichis di�cult to ascertain) and the complexity of the theo-rem that needs to be proven. Certainly, theorems thatcan be proved by induction (such as x2(x + 1)2 � 0(mod 4)), are well within reach of current theoremprovers.To make things more di�cult, we can use theoremswhich are know to be di�cult to prove, or for whichno known proof exists. In the example below the deob-fuscator will have to prove that the bogus loop alwaysterminates in order to determine that S2 is live code:fS1;S2;g T) fS1;n = random(1,2^32);do n = ((n%2)!=0)?3*n+1:n/2while (n>1);S2;gThis is known as the Collatz problem. A conjecturesays that the loop will always terminate. Althoughthere is no known proof of this conjecture, the code isknown to terminate for all numbers up to 7 �1011. Thusthis obfuscation is safe (the original and obfuscatedcode behave identically), but di�cult to deobfuscate.9.8 Deobfuscation and Partial EvaluationDeobfuscation also bears a striking resemblance to par-tial evaluation [14]. A partial evaluator splits a programinto two parts: the static part which can be precom-puted by the partial evaluator, and the dynamic partwhich is executed at runtime. The dynamic part wouldcorrespond to our original, unobfuscated, program. The

static part would correspond to our bogus inner pro-gram, which, if it were identi�ed, could be evaluatedand removed at deobfuscation time.Like all other static inter-procedural analysis meth-ods, partial evaluation is sensitive to aliasing. Hence,the same preventive transformations that were dis-cussed in relation to slicing also applies to partial eval-uation.10 Obfuscation AlgorithmsGiven the obfuscator architecture of Section 3, the def-inition of obfuscation quality in Section 5, and the dis-cussion of various obfuscating transformations in Sec-tions 6 to 9, we are now in a position to present moredetailed algorithms.The top-level loop of an obfuscation tool will havethis general structure:WHILE NOT Done(A) DOS := SelectCode(A);T := SelectTransform(S);A := Apply(T ,S);END;SelectCode returns the next source code object6 to beobfuscated. SelectTransform returns the transforma-tion which should be used to obfuscate the particularsource code object. Apply applies the transformationto the source code object and updates the applicationaccordingly. Done determines when the required levelof obfuscation has been attained. The complexity ofthese functions will depend on the sophistication of theobfuscation tool. At the simplistic end of the scale,SelectCode and SelectTransform could simply returnrandom source code object/transformations, and Donecould terminate the loop when the size of the applica-tion exceeds a certain limit. Normally, such behavior isinsu�cient.Algorithm 1 gives a description of a code obfuscationtool with a much more sophisticated selection and ter-mination behavior. The algorithm makes use of severaldata structures which are constructed by Algorithms 5,6, and 7:Ps For each source code object S, Ps(S) is the setof language constructs the programmer used in S.Ps(S) is used to �nd appropriate obfuscating trans-formations for S.A For each source code object S, A(S) = fTi 7!V1; � � � ; Tn 7! Vng is a mapping from transforma-tions Ti to values Vi, describing how appropriate6In the following, the term source code object will refer to theclasses, methods, basic blocks, etc. that make up an application,as well as the application itself.26



it would be to apply Ti to S. The idea is thatcertain transformations may be inappropriate for aparticular source code object S, because they in-troduce new code which is \unnatural" to S. Thenew code would look out of place in S and hencewould be easy to spot for a reverse engineer. Thehigher the appropriateness value Vi the better thecode introduced by transformation Ti will �t in.I For each source code object S, I(S) is the obfuscationpriority of S. I(S) describes how important it isto obfuscate the contents of S. If S contains animportant trade secret then I(S) will be high, if itcontains mainly \bread-and-butter" code I(S) willbe low.R For each routineM , R(M) is the execution time rankof M . R(M) = 1 if more time is spent executingM than any other routine.The primary input to Algorithm 1 is an application Aand a set of obfuscating transformations fT1; T2; � � �g.The algorithm also requires information regarding eachtransformation, particularly three quality functionsTres(S), Tpot(S), and Tcost(S) (similar to their name-sakes in Section 5, but returning numerical values) anda function Pt:Tres(S) returns a measure of the resilience of transfor-mation T when applied to source code object S,i.e. how well T will withstand an attack from anautomatic deobfuscator.Tpot(S) returns a measure of the potency of transfor-mation T when applied to source code object S,i.e. how much more di�cult S will be for a humanto understand after having been obfuscated by T .Tcost(S) returns a measure of the execution time andspace penalty added by T to S.Pt maps each transformation T to the set of languageconstructs that T will add to the application.Points 1 to 3 of Algorithm 1 load the application to beobfuscated, and builds appropriate internal data struc-tures. Point 4 builds Ps(S), A(S), I(S), and R(M).Point 5 applies obfuscating transformations until the re-quired obfuscation level has been attained or until themaximum execution time penalty is exceeded. Point 6,�nally, rewrites the new application A0.

Algorithm 1 (Code Obfuscation)input: a) An application A made up of sourcecode or object code �les C1; C2; � � �.b) The standard libraries L1; L2; � � � de-�ned by the language.c) A set of obfuscating transformationsfT1; T2; � � �g.d) A mapping Pt which, for each transfor-mation T gives the set of language con-structs that T will add to the applica-tion.e) Three functions Tres(S), Tpot(S), andTcost(S) expressing the quality of atransformation T with respect to asource code object S.f) A set of input data I = fI1; I2; � � �g toA.g) Two numeric values AcceptCost>0 andReqObf>0. AcceptCost is a mea-sure of the maximum extra executiontime/space penalty the user will accept.ReqObf is a measure of the amount ofobfuscation required by the user.output: An obfuscated application A0 made upof source code or object code �les.1. Load the application C1; C2; � � � to be obfuscated.The obfuscator could either(a) load source code �les, in which case the obfus-cator would have to contain a complete com-piler front-end performing lexical, syntactic,and semantic analysis,7 or(b) load object code �les. If the object code re-tains most or all of the information in thesource code (as is the case with Java class�les), this method is preferable.2. Load library code �les L1; L2; � � � referenced di-rectly or indirectly by the application.3. Build an internal representation of the application.The choice of internal representation depends onthe structure of the source language and the com-plexity of the transformations the obfuscator im-plements. A typical set of data structures mightinclude:(a) A control-
ow graph for each routine in A.(b) A call-graph for the routines in A.(c) An inheritance graph for the classes in A.7A less powerful obfuscator that restricts itself to purely syn-tactic transformations could manage without semantic analysis.27



4. Construct mappings R(M) and Ps(S) (using Al-gorithm 5), I(S) (using Algorithm 6), and A(S)(using Algorithm 7).5. Apply the obfuscating transformations to theapplication. At each step we select a sourcecode object S to be obfuscated and a suit-able transformation T to apply to S. Theprocess terminates when the required obfus-cation level has been reached or the accept-able execution time cost has been exceeded.REPEATS := SelectCode(I);T := SelectTransform(S,A);Apply T to S and update relevant datastructures from point 3;UNTIL Done(ReqObf, AcceptCost, S, T , I)6. Reconstitute the obfuscated source code objectsinto a new obfuscated application, A0. 2Algorithm 2 (SelectCode)input: The obfuscation priority mapping I ascomputed by Algorithm 6.output: A source code object S.I maps each source code object S to I(S), which isa measure of how important it is to obfuscate S. Toselect the next source code object to obfuscate, we cantreat I as a priority queue. In other words, we select Sso that I(S) is maximized. 2Algorithm 3 (SelectTransform)input: a) A source code object S.b) The appropriateness mapping A ascomputed by Algorithm 7.output: A transformation T .Any number of heuristics can be used to select the mostsuitable transformation to apply to a particular sourcecode object S. However, there are two importantissues to consider. Firstly, the chosen transformationmust blend in naturally with the rest of the code inS. This can be handled by favoring transformationswith a high appropriateness value in A(S). Secondly,we want to favor transformations which yield a high'bang-for-the-buck', i.e. high levels of obfuscation withlow execution time penalty. This is accomplished byselecting transformations that maximize potency andresilience, and minimize cost. These heuristics arecaptured by the following code, where !1; !2; !3 areimplementation-de�ned constants:Return a transform T , such thatT 7! V 2 A(S), and!1Tpot(S)+!2Tres(S)+!3VTcost(S) is maximized;

2Algorithm 4 (Done)input: a) ReqObf, the remaining level of obfusca-tion.b) AcceptCost, the remaining acceptableexecution time penalty.c) A source code object S.d) A transformation T .e) The obfuscation priority mapping I .output: a) An updated ReqObf.b) An updated AcceptCost.c) An updated obfuscation priority map-ping I .d) A boolean return value which is TRUEif the termination condition has beenreached.The Done function serves two purposes. It updatesthe priority queue I to re
ect the fact that the sourcecode object S has been obfuscated, and should receivea reduced priority value. The reduction is based on acombination of the resilience and potency of the trans-formation. Done also updates ReqObf and AcceptCost,and determines whether the termination condition hasbeen reached. !1; !2; !3; !4 are implementation-de�nedconstants:I(S) := I(S)� (!1Tpot(S) + !2Tres(S));ReqObf := ReqObf - (!3Tpot(S) + !4Tres(S));AcceptCost := AcceptCost - Tcost(S);RETURN AcceptCost�0 OR ReqObf�0;2Algorithm 5 (Pragmatic Information)input: a) An application A.b) A set of input data I = fI1; I2; � � �g toA.output: a) A mapping R(M) which, for every rou-tine M in A, gives the execution timerank of M .b) A mapping Ps(S), which, for everysource code object S in A, gives the setof language constructs used in S.Compute pragmatic information. This information willbe used to choose the right type of transformation foreach particular source code object.1. Compute dynamic pragmatic information. I.e.run the application under a pro�ler on the in-put data set I provided by the user. ComputeR(M) (the execution time rank ofM) for each rou-tine/basic block, indicating where the applicationspends most of its time.2. Compute static pragmatic information Ps(S).Ps(S) provides statistics on the kinds of lan-28



guage constructs the programmer used in S.FOR S := each source code object in A DOO := The set of operators that S uses;C := The set of high-level languageconstructs (WHILE statements,exceptions, threads, etc.) that S uses;L := The set of library classes/routinesthat S references;Ps(S) := O [ C [ L;END FOR 2Algorithm 6 (Obfuscation Priority)input: a) An application A.b) R(M), the rank of M .output: A mapping I(S) which, for each sourcecode object S in A, gives the obfusca-tion priority of S.I(S) can be provided explicitly by the user, or it canbe computed using a heuristic based on the statisticaldata gathered in Algorithm 5. Possible heuristicsmight be:1. For any routineM in A, let I(M) be inversely pro-portional to the rank of M , R(M). I.e. the idea isthat \if much time is spent executing a routineM ,then M is probably an important procedure thatshould be heavily obfuscated."2. Let I(S) be the complexity of S, as de�ned byone of the software complexity metrics in Table 1.Again, the (possibly 
awed) intuition is that com-plex code is more likely to contain important tradesecrets than simple code. 2Algorithm 7 (Obfuscation Appropriateness)input: a) An application A.b) A mapping Pt which, for each transfor-mation T , gives the set of language con-structs T will add to the application.c) A mapping Ps(S) which, for each sourcecode object S in A, gives the set of lan-guage constructs used in S.output: A mapping A(S) which, for each sourcecode object S in A and each transfor-mation T , gives the appropriateness ofT with respect to S.Compute the appropriateness set A(S) for each sourcecode object S. The mapping is based primarily on thestatic pragmatic information computed in Algorithm 5.

FOR S := each source code object in A DOFOR T := each transformation DOV := degree of similarity betweenPt(T ) and Ps(S);A(S) := A(S) [ fT 7! V g;END FOREND FOR 211 Summary and DiscussionThe main contribution of this paper is the insight that itmay under many circumstances be acceptable for an ob-fuscated program to behave di�erently than the originalone. In particular, most of our obfuscating transforma-tions make the target program slower or larger than theoriginal. In special cases we even allow the target pro-gram to have di�erent side-e�ects than the original, ornot to terminate when the original program terminateswith an error condition. Our only requirement is thatthe observable behavior (the behavior as experienced bya user) of the two programs should be identical.Allowing such weak equivalence between original andobfuscated program is a novel and very exciting idea. Itis our belief that the current paper only identi�es someof the more obvious transformations, and that there isgreat potential for much future research. In particular,we would like to see the following areas investigated:1. New obfuscating transformations should be identi-�ed.2. The interaction and ordering between di�erenttransformations should be studied. This is similarto work in code optimization, where the orderingof a sequence of optimizing transformations has al-ways been a di�cult problem.3. The relationship between potency and cost shouldbe studied. For a particular kind of code we wouldlike to know which transformations would give thebest \bang-for-the-buck", i.e. the highest potencyat the lowest execution overhead.For an overview of all the transformations that havebeen discussed in the paper, see Tables 2 and 3. Foran overview of the opaque constructs that have beensuggested, see Table 4.11.1 The Power of ObfuscationEncryption and program obfuscation bear a striking re-semblance to each other. Not only do both try to hideinformation from prying eyes, they also purport to doso for a limited time only. An encrypted document hasa limited shelf-life: it is safe only for as long as the29



Obfuscation QualityTarget Operation Transformation Potency Resilience Cost Metrics SectionLayout Scramble Identi�ers medium one-way free 5.5Change Formatting low one-way free 5.5Remove Comments high one-way free 5.5Control Compu-tations Insert Dead or IrrelevantCode Depends on the quality ofthe opaque predicate and thenesting depth at which theconstruct is inserted. �1,�2,�3 6.2.1Extend Loop Condition �1,�2,�3 6.2.2Reducible to Non-Reducible �1,�2,�3 6.2.3Add Redundant Operands �1 6.2.6Remove Programming Id-ioms medium strong y �1 6.2.4Table Interpretation high strong costly �1 6.2.5Parallelize Code high strong costly �1,�2 6.2.7Aggre-gation Inline Method medium one-way free �1 6.3.1Outline Statements medium strong free �1 6.3.1Interleave Methods Depends on the quality ofthe opaque predicate. �1,�2,�5 6.3.2Clone Methods �1,�a-c,e7 6.3.3Block loop low weak free �1,�2 6.3.4Unroll Loop low weak cheap �1 6.3.4Loop Fission low weak free �1,�2 6.3.4Ordering Reorder Statements low one-way free 6.4Reorder Loops low one-way free 6.4Reorder Expression low one-way free 6.4Data Storage&Encoding Change Encoding Depends on the complexity ofthe encoding function. �1 7.1.1Promote Scalar to Object low strong free 7.1.2Change Variable Lifetime low strong free �4 7.1.2Split Variable Depends on the number ofvariables into which the orig-inal variable is split. �1 7.1.3Convert Static to Proce-dural Data Depends on the complexity ofthe generated function. �1,�2 7.1.4Aggre-gation Merge Scalar Variables low weak free �1 7.2.1Factor Class medium y free �1,�b,c,e7 7.2.3Insert Bogus Class medium y free �1,�b,c7 7.2.3Refactor Class medium y free �1,�b,c,e7 7.2.3Split Array y weak free �1,�2,�6 7.2.2Merge Arrays y weak free �1,�2 7.2.2Fold Array y weak cheap �1,�2,�6,�3 7.2.2Flatten Array y weak free 7.2.2Ordering Reorder Methods & In-stance Variables low one-way free 7.3Reorder Arrays low weak free 7.3Table 2: Table of Transformations (Part A). A y in any of the quality columns indicates that the measure is dependent oncircumstances which are discussed indepth in the corresponding section. The Metrics column lists the complexity measuresa�ected by each transformation. See Table 1 for descriptions of the measures.30



Obfuscation QualityTarget Operation Transformation Potency Resilience Cost Metrics SectionPreven-tive Targeted HoseMocha low trivial free �1 9Inherent Add Aliased Formals toPrevent Slicing medium strong free �1�5 9.4Add Variable Dependen-cies to Prevent Slicing Depends on the quality ofthe opaque predicate. �1 9.4Add Bogus Data Depen-dencies medium weak cheap �1 9.1.1Use Opaque Predicateswith Side-E�ects medium weak free �1 9.5Make Opaque Predicatesusing Di�cult Theorems y y y �1 9.5Table 3: Table of Transformations (Part B).QualityOpaque Construct Resilience Cost SectionCreated from calls to libraryfunctions. trivial Depends on the cost of the li-brary function. 6.1.1Created from local (intra-basicblock) information. trivial free : : : cheap 6.1.1Created from global (inter-basicblock) information. weak free : : : cheap 6.1.1Created from inter-proceduraland aliasing information full cheap : : : costly 8.1Created from process interactionand scheduling full cheap : : : costly 8.2Table 4: Table of opaque constructs.encryption algorithm itself withstands attack, and foras long as advances in hardware speed do not allowmessages for the chosen key-length to be routinely de-crypted. The same is true for an obfuscated application;it remains secret only for as long as su�ciently powerfuldeobfuscators have yet to be built.For evolving applications this will not be a problem,as long as the time between releases is shorter thanthe time it takes for the deobfuscator to catch up withthe obfuscator. If this is the case, then by the timean application can be automatically deobfuscated it isalready outdated and of no interest to a competitor.However, if an application contains trade secrets thatcan be assumed to survive several releases, then theseshould be protected by means other than obfuscation.Partial server-side execution (Figure 2(b)) seems the ob-vious choice, but has the drawback that the applicationwill execute slowly or (when the network connection isdown) not at all.

11.2 Other Uses of ObfuscationIt is interesting to note that there may be potentialapplications of obfuscation other than the obvious onewe have been discussing. One possibility is to use ob-fuscation in order to trace software pirates. The ideais simple: A vendor creates a new obfuscated versionof his application for every new customer8 and keeps arecord of to whom each version was sold. This is prob-ably only reasonable if the application is being sold anddistributed over the net. If the vendor �nds out that hisapplication is being pirated, all he needs to do is to get acopy of the pirated version, compare it against the database, and see who bought the original application.98We can generate di�erent obfuscated versions of the sameapplication by introducing an element of randomness into theSelectTransform algorithm (Algorithm 3). Di�erent seeds to therandom number generator will produce di�erent versions.9It is, in fact, not necessary to store a copy of every obfuscatedversion sold. It su�ces to keep the random number seed that was31
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Figure 22: Modi�cations of the inheritance hierarchy. Root is the root of the inheritance tree (Object in Java). Trianglesrepresent subtrees. There is an arrow from class C1 to C2 if C2 inherits from C1. The two basic operations, class factoringand class insertion, are shown in (a) and (b), respectively. After factoring class C, all references to C in the program shouldbe replaced by C1. Factoring and insertion are normally combined. This is done in (d), where the original class C is �rst splitinto C1 and C2, and then an extra child is created for C1.
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g.Move()G Node g, h;method P(� � �,Node f) f/* 1 */ g = g.Move();h = h.Move();/* 2 */ h = h.Insert(new Node);.../* 3 */ x.R(� � �, f.Move());.../* 4 */ if (f == g)? � � �/* 5 */ if (g == h)F � � �.../* 6 */ f.Token=False;g.Token=True;/* 7 */ if (f:Token)? � � �.../* 8 */ f.Token=True;h.Token=False;/* 9 */ if (f:Token)T � � �gFigure 23: Opaque predicates constructed from objects and aliases. We construct a dynamic structure made from Nodes.Each Node has a boolean �eld Token and two pointer �elds (represented by black dots) which can point to other nodes. Thestructure is designed to consist of two connected components, G and H. There are two global pointers, g and h, pointing intoG and H, respectively.
f S1 ;S2 ;S3 ;g (a))

f if (P ?)S1elseS01;if (QT)S2elseSbug2 ;if (RF)Sbug3 ;S3 ;g
(b))

f if (P ?)S1elseS01;if (True)S2elseSbug2 ;if (False)Sbug3 ;S3 ;g
(c))

f S1 ;if (P ?);else;if (True)S2elseSbug2 ;if (False)Sbug3 ;S3 ;g
(d)) f S1 ;S2 ;S3 ;g

Figure 25: Obfuscation vs. deobfuscation. (a) shows an original program consisting of three statements S1�3 being obfuscated.The real program statements have been boxed for clarity. The unboxed code represents the bogus \program-within-the-program". In (b) a deobfuscator identi�es \constant" opaque predicates (i.e. predicates that always evaluate to the sameresult) and replaces them with their computed value. In (c) the obfuscator determines that statements S1 and S01 in fact areidentical, and hoists the common code from the conditional. In (d) the deobfuscator applies some �nal simpli�cations, andreturns the program to its original form. 35
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Figure 26: Architecture of a Java deobfuscation tool. The main input to the tool is an application made up of a set ofobfuscated Java class �les. The reverse engineer may also provide �les of input data to allow statistical execution informationto be gathered. The tool is likely to require extensive user interaction. Most theorem provers, for example, need guidanceto �nd pro�table proof strategies. The output of the tool is a set of deobfuscated class �les which can be converted to Javasource by a decompiler.
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