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AbstractImplicitly de�ned surfaces of scalar �elds (isosurfaces) are a com-mon entity in scienti�c and engineering science. Polygonizing an iso-surface allows storing it conventionally and permits hardware assistedrendering, an essential condition to achieve real-time display. In ad-dition the polygonal approximation of an isosurface is used for sim-pli�ed geometric operations such as collision detection and surfaceanalysis. Optimization Techniques are frequently employed to speedup the polygonization algorithm or to reduce the size of the resultingpolygon mesh. 1



1 IntroductionIn this paper we review popular polygonization methods for implicitly de-�ned surfaces (isosurfaces), which are important in scienti�c and engineer-ing science. Isosurfaces are used to visualize scalar �elds [Bli82, DK91]and, by reduction to scalar quantities, vector �elds and tensor �elds [DH93,PvW94]. Brill et al. use isosurfaces to de�ne streamballs for 
ow visualization[BHR+94].Isosurfaces are also common in geometric modeling. Several blendingmethods use implicitly de�ned surfaces [HH87, War89, HH91, HL92]. Inaddition implicitly de�ned surfaces prove useful to de�ne \blobby models".These models use a scalar �eld composed of many �eld generating primi-tives [Bli82, WMW86b, Mur91, BW90, BS91]. Colburn de�nes a smoothedobject as isosurface in a scalar �eld obtained by convolving the object's char-acteristic function with a spherical �lter [Col90]. Lobb presents an e�cientapproximation to the convolutional smoothing process [Lob96].The polygonization of implicitly de�ned surfaces is essential for hardwareassisted real-time rendering. Additionally the polygonized approximation fa-cilitates geometric operations such as collision detection and surface analysis.A practical introduction to polygonization methods for implicitly de�nedsurfaces is provided by Bloomenthal who also gives working C code [Blo94].Ning and Bloomenthal give a good evaluation of polygonization algorithm[NB93]. Kalvin [Kal92] presents an extensive survey of algorithms for con-structing surfaces from 3D volume data. He assumes as input a regular gridof sample points and that no resampling is possible. Allgower and Gnutzman[AG87] give a more theoretical approach for a polygonization method andyield error bounds based on the mesh size. Dobkin et al. [DLTW90] gives acontouring algorithm for general dimensions. Finally Gelder and Wilhelms[vGW94] give a thorough discussion of design-objectives of isosurface algo-rithms, isosurface generation and solving of ambiguities.This paper gives an overview and analysis of popular polygonizationmethods for implicitly de�ned surfaces and possible optimization methods.To get a basis for discussion we �rst introduce some notations. Wethen explain four speci�c methods, which demonstrate useful principles inmore detail. We discover a common framework for a general polygonizationmethod for implicitly de�ned surfaces. Next we list some general qualitycriteria and review how the presented methods relate to them. We conclude2



with a review of optimization methods, both to improve speed and to reducethe size of a polygonization.
2 Notations & De�nitionsAn implicit surface is given as all points x 2 IR3 such that �(x) = c for ascalar �eld � : IR3 ! IR and a constant c 2 IR. The resulting surface is calleda c-isosurface. Note that the c-isosurface of a function �(x) is equal to the0-isosurface of the function �(x)� c. Without loss of generality we use c = 0and don't mention the c value explicitly.A polygonization method approximates an implicit surface with a mesh ofpolygons. The implicit surface is either given as a function or as a set of sam-ple values. In the following we assume that the isosurface is a 2-manifold, i.e.,that it is locally homeomorphic to IR2. Bloomenthal and Ferguson publishedrecently a polygonization method for non-manifold isosurfaces and explainthe inherent problems [BF95].All reviewed polygonization methods take data samples in the volume ofinterest and compute or approximate from them points on the isosurface.Those isosurface points are connected to form a polygon mesh. To avoidconfusion we introduce here a set of notations that we use throughout thispaper.A data sample is referred to as a voxel. A convex polyhedral regionbounded by voxels is called a computational cell, and voxels at the cell'scorners are called vertices. Generation of the isosurface involves samplingof the scalar �eld and de�ning computational cells. For each cell determinewhether the underlying function takes on the threshold value within the cell,and if so, approximate where the isosurface lies. We shall call a vertex valuepositive if its value is greater than or equal to the threshold, and negative ifnot.An intersection point is the point at which the isosurface is estimated tocross the edge connecting two adjacent cell vertices that have di�erent sign.Such intersection points become vertices of one or more topological polygons.These polygons specify the topology of the approximated surface but areusually not planar. 3



We de�ne the center of a set Sn of n points p1 : : : pn ascenter(Sn) = Pni=1 pinThe central estimate of a scalar �eld � at the center of a set Sn of n pointsp1 : : : pn is de�ned ascentral estimate(Sn) = Pni=1 �(pi)nThe center of a face is the center of the face's vertices, the center of a cellis the center of the cell's vertices. Similarly for the central estimate.We use the word cell edge for an edge of a polyhedral cell, and polygonedge for an edge of a polygonal approximation of the isosurface.3 Four Common Polygonization MethodsMany published methods exist for �nding a polygonal approximation to animplicitly de�ned surface. Though often written with a speci�c applicationin mind all methods that we review in this paper can be used to approximatea general isosurface.In the following subsections we present four selected algorithms in moredetail. First we choose theMarching Cubes method because it is popular andfast. Next we analyze the Soft Object method from Wyvill et al. [WMW86b].This method is fast and eliminates the ambiguities of the original MarchingCubes method. Hall's and Warren's algorithm [HW90] and Bloomenthal'smethod [Blo88] are good examples for adaptive solutions. The former algo-rithm performs a tetrahedral subdivision of space, whereas the latter one isinteresting because it uses an octree representation.3.1 Marching Cubes: A High Resolution 3D SurfaceConstruction AlgorithmThe Marching Cubes algorithm combines simplicity with high speed. Inthe original implementation [LC87, CLL+88] the Marching Cubes algorithm4



assumes discrete input data such as results from computed tomography (CT),magnetic resonance (MR), and single-photon emission computed tomography(SPECT). The scalar �eld � is unknown. The algorithm processes the 3Ddata in scan-line order and builds a logical array of cubes. Each cube iscreated from eight voxels; four each from two adjacent slices. The algorithmdetermines how the surface intersects this cube, then moves to the next cube.The isosurface intersection is determined by the sign of the scalar �eld atthe cube's vertices. Each edge with vertex values of di�erent sign is assumedto intersect the isosurface once. The intersection point is approximated bylinearly interpolating the scalar �eld values between the vertices.Since there are eight vertices in each cube and two values, positive andnegative, there are 28 = 256 ways the surface can intersect the cube. Lorensenand Cline use symmetries to reduce the number of patterns to 15 which areshown in �gure 11.
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Figure 1: Triangulated Cubes.The algorithm can be summarized as� Scan two adjacent slices and create cubical cells between them.1The cases 12 and 15 are re
ective with respect to the xy-plane. This leaves 14 topo-logically distinct patterns (22 without inversed patterns) [LVG80].5



� Calculate an 8-bit index for the cube from the sign of the eight scalar�eld values at the cube vertices.� Using the index, look up the list of edges forming triangles from aprecalculated table.� Using the scalar �eld values at each edge vertex linearly interpolate theisosurface intersection.The main disadvantage of the algorithm is that some patterns in �gure 1are topologically ambiguous as noted by van Gelder and Wilhelms [vGW94,pages 343 { 344]. This may produce a surface with a hole as pointed out byD�uurst [D�uu88] (see �gure 2).
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Figure 3: An ambiguous face.Nielson and Hamann [NH91a] present a solution to the problem. Theyrecognize that the ambiguities in the cube patterns are caused by ambiguous6



faces of the cube. Figure 3 shows a face with an ambiguous connection ofits edge intersections. The authors achieve a disambiguation by bilinearlyinterpolating the scalar �eld � over the face:B(s; t) = (1� s; s) �(p00) �(p01)�(p10) �(p11) ! 1� tt ! (1)The topology of the isosurface of the bilinear interpolant is determinedby interpolant's value at the intersection of its asymptotes dBds jt=T� � 0 anddBdt js=S� � 0 : B(S�; T�) = �(p00)�(p11)� �(p10)�(p01)�(p00) + �(p11)� �(p01)� �(p10) (2)Figure 4 shows the bilinear interpolant for a face with the scalar �eldvalues �(p00) = �(p11) = 0:75 and �(p01) = �(p10) = �1:25. The bilinearinterpolant at the intersection of its asymptotes is B(S�; T�) = �0:25. Sincethe value has the same sign as �(p01) and �(p10) the isosurface of the bilinearinterpolant (the bold curves in the �gure) can not cross the diagonal p01p10.
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Figure 4: The bilinear interpolant over a face with its isosurface (face inter-section) and its asymptotes dBds jt=T� � 0 and dBdt js=S� � 0.7



The authors take the isosurface of the bilinear interpolant as an approxi-mation to the isosurface of the scalar �eld �. If the value B(S�; T�) is negativethe topology of �gure 3 (a) is correct, otherwise the topology of (b) is correct.Mackerras shows that the test with equation 2 can be replaced by sortingthe four intersection points along one coordinate [Mac92]. The �rst pair andthe last pair of the sorted points are connected.The number of possible topologically di�erent triangulations for a patternfrom �gure 1 depends on its number of ambiguous faces. As an exampleconsider the pattern 4, where only the front face is ambiguous. The twopossible triangulations are shown in �gure 5.
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Figure 5: Two topologically di�erent triangulations for an ambiguous pat-tern.The above presented method of Nielson and Hamann is in the spirit ofthe original Marching Cubes algorithm (i.e., no additional sample points arenecessary) but considerably more complicated. The pattern 14 in �gure 1,e.g., has 6 ambiguous faces and therefore 26 = 64 topologically di�erenttriangulizations, which however, similar to the Marching Cubes table canbe reduced to 10 distinct cases. Another disadvantage is that some of thepatterns can only be triangulized by inserting an extra point.The Marching Cubes algorithm can be simpli�ed by keeping all 255 pat-tern in memory and accesing them directly [HH92, Mac92]. This saves thetime for computing the correct pattern in �gure 1. The resulting memoryoverhead is on insigni�cant on modern machines.Several interesting modi�cations of the Marching Cubes algorithm exist.Montani et al. [MSS94] discretize the Marching Cubes algorithm to facilitatea mesh reduction postprocessing step (see subsection 5.2). Gallagher andNagtegaal [GN89] generalize the Marching Cubes algorithm for irregular gridsof sample points as often occur in �nite-element analysis. They use bicubic8



polynomials to approximate the isosurface and polygonize the bicubic patchesonly for rendering. Howie and Blake [HB94] provide the same generalization,but use a cell propagation method to approximate the isosurface with trianglestrips. They do not solve the ambiguity problem but instead �ll the holesresulting from discontinuities between adjacent cells.
3.2 Data Structure for Soft ObjectsWyvill, McPheeters and Wyvill report a polygonization method designedfor soft objects [WMW86b, WMW86a, WWM87, BW90] but which can bereadily applied to polygonize general isosurfaces.The authors construct a polygon mesh in two distinct stages. In a �rststep they partition the space occupied by the isosurface with a three dimen-sional cubic grid. In the original application the authors start with a set ofseed cubes, at least one for every disconnected component. Starting at theseed cubes, they track the surface by cell propagation: if a cube is inter-sected by the isosurface the process continues for each cube neighboring anintersected face. A hash table is used to prevent cells being revisited duringrecursion.In general for a given scalar �eld and an isovalue a set of seed cubes isnot known and therefore the whole grid must be scanned.In the second stage the authors deal only with cubes that are intersectedby the surface. They construct a local polygonal approximation to the iso-surface by linearly interpolating the intersection points of the isosurface withthe edges of the cube. The intersection points on a face are connected to givepolygon edges. Ambiguities are resolved by considering the center point of aface. The scalar �eld value at the center is estimated as the average of thevertex values of a face. Figure 6 illustrates the seven possible cases.This calculation is consistent across adjacent cubes with shared edges.By tracing the natural successors of each polygon edge the authors constructtopological polygons. Since the resulting topological polygons are in generalnot planar the authors divide them into triangles by connecting each polygonvertex to the central average of the topological polygon.9
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Figure 6: Seven di�erent cases for connecting intersection points.3.3 Adaptive Polygonization of Implicitly De�ned Sur-facesHall and Warren [HW90] report an adaptive polygonization method thatperforms a tetrahedral subdivision of space. The authors maintain a tetra-hedral honeycomb of space at all time. A polyhedral subdivision of spaceforms a honeycomb if every face is shared by at most two polyhedra. Becausethe recursive subdivision of a single tetrahedron might cause the honeycombproperty to be lost, the method partially subdivides the neighbors of thattetrahedron to maintain the property. The adaptive subdivision algorithmdecides independently for each tetrahedron in the honeycomb whether itshould be recursively subdivided. The algorithm defers processing of tetra-hedra not recursively subdivided until it has considered all tetrahedra. Itthen makes a second pass through the list of unsubdivided tetrahedra. Foreach tetrahedron, the algorithm checks each edge to see if it must be sub-divided. The faces and polyhedra are then split according to the number ofsubdivided edges of each face.In the second stage of the algorithm for each polyhedron the isosurfaceinside it is approximated by polygons. The authors determine �rst for eachedge of a polyhedron the intersection point with the isosurface by succes-10



sive linear interpolation. The resulting intersection points are connected byone or two triangles. To ensure continuity the authors compute the edgeintersections once and store them into a hash table.3.4 Polygonization of Implicit SurfacesBloomenthal [Blo88] detects an isosurface by partitioning the domain of theimplicit function with an octree, which may either converge to the surfaceor track it. The polygonal surface approximation is derived from the octree.Bloomenthal reports three steps:� Spatial partitioning: Bloomenthal considers two methods for samplingthe implicit surface. The �rst method represents the implicit surfaceas an octree, which is a hierarchical partitioning of space formed bysubdivision of cubes, beginning with a cube that bounds the surface.The octree converges to the surface by subdivision of those cubes thatintersect the surface. A disadvantage is that small surface details maybe missed by a large cube, resulting in a premature termination inthe subdivision of the cube. This drawback is overcome by the secondmethod which tracks the surface by cell propagation. This is the sametechnique as used by Wyvill et al. (see subsection 3.2).In both cases, the author evaluates the scalar �eld � at each of thecell's vertices. Only those cells that intersect the surface are retainedin the partitioning. Bloomenthal determines the intersection points ofthe cell's edges with the isosurface by root search. To ensure continuitybetween polygons Bloomenthal refers to Wyvill's method of storing theintersection points in a hash table. Alternatively he suggests keepingfor each cell eight pointers to its vertices. As new cells are created,they must point correctly to shared vertices.� Adaptive re�nement of the octree: Bloomenthal improves the estima-tion of the surface by subdividing those cubes containing elements ofhigh curvature.� Polygonization of the octree nodes: The �nal surface approximationis obtained by polygonizing the octree nodes (�nal subdivision cells).11



For each cube to be processed, the intersection points are ordered,forming a convex polygon whose sides are each embedded in a cubeface [WMW86b]; the process is local to each cube. Bloomenthal intro-duces a simple algorithm, illustrated in �gure 7 to perform the three-dimensional ordering of intersection points. The ordering begins withany intersection point on the cube and proceeds towards the positivevertex and then clockwise about the face to the right until anotherintersection point is reached.
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Figure 7: Algorithm to order vertices.The (topological) polygons resulting from this method are decomposedinto triangles. Note that the adaptive subdivision may destroy the honey-comb property of the spatial partition. Bloomenthal ensures continuity be-tween subspace polygons, by tracking the edges of the topological polygonalong the more highly divided face (the light grey vertices in �gure 8). Heresolves ambiguities by taking the central average as an additional sample.12
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4 Analysis of Polygonization AlgorithmsIn this section we analyze the methods presented above and extract a commonframework. Three aspects are found:1. Polyhedral subdivision of space2. Subspace polygonization (approximating the isosurface inside a cell)3. Ensuring continuity4.1 Space SubdivisionDuring subdivision of space most methods maintain a honeycomb, the 3Danalog of a tessellation. The honeycomb guarantees that linear functionsde�ned over a polyhedron form a continuous surface.The simplest honeycomb used is an array of cubes (e.g., [LC87, WMW86b]).Bloomenthal [Blo88, BW90] and Ning and Hesselink [NH91b] use an octreeto achieve an adaptive subdivision based on cubes.As noted by Bloomenthal [Blo88] vertex locations and face planes arecomputed more simply if the cells are identical and similarly oriented. Inthree dimensions, the only such cell that �lls space is the cube. Also itenjoys a number of rotational symmetries, and divides into eight similarlyoriented cubes. Note though, that a honeycomb can be maintained only bydividing all cubes of the array. Bloomenthal [Blo88] avoids this problem bytracking the isosurface approximation along the more highly divided face.An additional disadvantage of a cubical cell is that its positive and nega-tive vertices can not be separated by a single plane. This may lead to ambigu-ities during the second stage of the corresponding polygonization algorithmand may ultimately result in discontinuities for the polygonized surface (seesubsection 3.1).In contrast, the vertices of a tetrahedron can always be separated by asingle plane, thereby avoiding ambiguities during the polygonization. Alsoa tetrahedron can be subdivided into tetrahedra without subdividing itsfaces. This allows for a local subdivision of a tetrahedral honeycomb. Theuse of tetrahedral subdivision for an adaptive polygonization is discussed in[HW90]. 14



An easy tetrahedral subdivision is achieved by using a grid of cubes anddividing each cube into 5 [PT90, HW90, DK91, NFHL91, GH95] or 6 tetra-hedra [KDK86, NFHL91]. Andr�e Gu�eziec and Robert Humme [GH95] sug-gest a compact data structure and e�cient look-up tables for tetrahedraresulting in an fast and topologically correct polygonization method. If the�ve-tetrahedral decomposition is chosen it must be mirrored between faceadjacent cubes. A resulting problem is, that if linear interpolation is used aspiky surface approximation may result as �gure 9 shows.
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Figure 9: An isosurface intersection with a cubic cell (a) is approximatedusing linear interpolation (b). Decomposing the cell into �ve tetrahedraleads to a spiky approximation. Part (c) of the pictures shows half a spike.The full spike becomes visible if mirroring the cube at its front face. The twopossible decompositions into six tetrahedra (d) and (e) lead to a smootherapproximation.The six-tetrahedral decomposition does not share this problem and canbe consistently applied to all cells, which will be an advantage for parallelexecution. Bloomenthal [Blo88] subdivides a cube into 12 tetrahedra bytaking the cell's center as an additional sample.A general tetrahedral subdivision in n-space is commonly called Delau-nay triangulation. Bowyer [Bow81] gives an e�cient solution which is used15



by Petersen et al. [PPW87]. A comprehensive bibliography of Voronoi dia-grams, the dual of Delaunay triangulation, and related structures is given byAurenhammer [Aur91].It is interesting that the existing literature hardly mentions the use ofa space subdivision with general polyhedra. W�unsche achieves such a sub-division in a specialized case with BSP trees [W�un96]. General polyhedrahave the advantage that every polyhedral partition of space can easily betransformed into a honeycomb. The transformation is done by subdividingeach face that faces more than one polyhedral face. After the subdivision ofthe face the resulting object is still a polyhedron, but has several coplanarfaces. Figure 10 gives an example.
Figure 10: Transforming a polyhedral subdivision into a honeycomb.

4.2 Subspace PolygonizationThe second step of a polygonization methods approximates the isosurfaceinside a polyhedral cell by polygons Two di�erent methods of this subspacepolygonization step are used by the reviewed algorithms.Lorensen and Cline [LC87] use a binary classi�cation of the cells' vertexvalues to index a precomputed table yielding a set of polygons for the cell.The polygon vertices are given by the intersection points of the cell's edgeswith the isosurface. The other methods �rst precompute these intersectionpoints and use them to determine the isosurface intersection with each face.By tracing the resulting edges topological polygons are formed. In a �nalstep the topological polygons are divided into planar polygons.16



The subspace polygonization can be simpli�ed and disambiguated by de-composing a cube into tetrahedra. Several authors [NB93, Nie95, GH95]report that this decomposition produces 150% { 250% more triangles thenthe original Marching Cubes method. Bloomenthal [Blo94] shows this witha graphical example.4.2.1 Computing intersection pointsAll reviewed polygonization methods compute intersection points of the cells'edges with the isosurface. An intersection point exists if the scalar �eld hasopposite sign at the end points of the edge.If binary vertex values are used or exactness is not important the in-tersection point is most easily approximated as the midpoint of the edge(e.g., [MSS94]). A more exact method is to use linear interpolation (e.g.,[LC87, WMW86b]). Bloomenthal [Blo94] shows that this can produce raggedunnatural approximations.If the sample values are computed from a known underlying function,an alternative to simple interpolation is to employ a root search. This iscomputationally more expensive but leads to a better polygonization forsmooth functions. Here a potential problem exists if an edge has multipleisosurface crossings. A unique edge isosurface intersection is achieved bycomputing each intersection point once and then referring to it by pointersor by a hash table [Blo88].If the dataset is available only as a discrete grid of sample values the un-derlying function must be approximated by using some form of interpolation.Marschner and Lobb [ML94] discuss a wide range of possible interpolationmethods (\reconstruction �lters"). This technique can be understood asgeneralization of the above mentioned linear interpolation of the intersectionpoint.Linear interpolation (or using the midpoint ) has the advantage that it issymmetric, which means neighboring cells, sharing the same edge, share thesame intersection point. However, even in this case computing an intersectionpoint only once is advisable for e�ciency reasons [WMW86b].Note that linear interpolation does not work if two adjacent cells havecollinear edges of di�erent lengths. However, polyhedral subdivisions withthis property are not common since they are prone to various discontinuity17



problems [W�un96].4.2.2 Forming a topological polygonTopological polygons are most easily formed by tracing the natural successorof an edge. For an e�cient implementation Wyvill [WMW86b] gives a poly-gon edge an orientation and stores it in an array indexed by its start point.The end point gives than the index for the start point of the next edge.Bloomenthal connects intersection points by tracing along the cell bound-aries [Blo88]. This method was explained in subsection 3.4 (see �gure 7).In both cases the orientation of a polygon edge is such that its start pointlies between a negative and positive vertex if traversing the face vertices inanticyclic order (see also [W�un96]).Savchenko and Pasko [SP95] use the edge intersections to form a connec-tion graph. The cycles in this graph give the topological polygons.If unoriented polygon edges are used the resulting topological polygonmight be falsely oriented. However, it is easy to check the sign of an out-side vertex and change the orientation of the polygon if necessary. Doi andKoide use a determinant test for tetrahedral cells [DK91], which Gu�eziec andHummel replace by a look-up table [GH95].4.2.3 Subdividing a topological polygonThe subdivision of a topological polygon is usually not unique. The easiestsolution is to triangulate the topological polygon with its center [WMW86b,W�un96]. Wallin [Wal91] connects two consecutive edges of the polygon toform triangles, removes them from the polygon, and applies the procedurerecursively to the remaining polygon until he encounters a triangle on thecell boundary. Then he connects the remaining vertices to their center. Ningand Bloomenthal present a short discussion of triangulation of topologicalpolygons [NB93]. Two good triangulation criteria to obtain a smooth surfaceare given in [CSYL88] and [Mat94].Finally for the Marching Cubes algorithm the triangulation of a topolog-ical polygon is de�ned implicitly by the triangulated cubes shown in �gure 1.18



4.3 Ensuring ContinuityThe third aspect of a polygonization algorithm is to guarantee surface con-tinuity. We identify three places at which continuity is an issue: on sharededges, on shared faces and inside a cell.All reviewed algorithms proceed by ensuring the following su�cient con-ditions in this sequence:1. Cells that meet at a common edge share a common intersection point.2. Cells that meet along a common face share common polygon edges.3. The subspace polygonization inside a cell is continuous, i.e., every poly-gon edge inside a cell is shared by a neighbored polygon.The �rst condition can always be ful�lled (for a honeycomb) by comput-ing the edge intersections by linear interpolation (subsection 3.1). Anotherapproach, taken by the other three presented algorithms, is to precomputeedge intersections only once and use them for all cells sharing that edge.Given condition one, the second condition is trivially ful�lled for a tetra-hedral honeycomb (subsection 3.3). For a non-tetrahedral honeycomb theremay be more than two intersection points, leading to ambiguities. Wyvillet al. (subsection 3.2) solve the ambiguities explicitly by taking the centralestimate of a face (see �gure 6 case 6 and 7). W�unsche shows that thismethod can also be used for general convex polyhedra. However, in this casethe center of all intersection points with the face edges must be used fordisambiguation [W�un96].Lorensen and Cline overlook ambiguities in their original implementation,which results in possible discontinuities. Howie and Blake [HB94] �ll theresulting hole (see �gure 2) with two triangles. Since ambiguities are notresolved the resulting surface is not unique. Also for every ambiguous facethe neighboring cell must be checked for a hole.Nielson and Hamann [NH91a] present a better solution which is based onbilinear variation of � on an ambiguous face. Their disambiguation criterionwas further simpli�ed by Mackerras [Mac92] (see subsection 3.1). Matveyevgives a topologically correct approximation to the isosurface obtained bytrilinear interpolating over the cell. Natarajan also uses a trilinear interpolantand reports a 20 % slower execution time than the original Marching Cubesalgorithm [Nat91]. 19



A simple solution to solve ambiguities on a face is to use the centralestimate of the face [WMW86b, Wal91]. Baker [Bak88, Bak89] and Kalvin[Kal91] assume 6 adjacency for the positive vertices, and therefore alwaysconnect negative vertices. The same method is chosen by Lorensen [Lor96]and Oh and Park [OP96]. Their approach gives 6 additional con�gurationsto the 14 original Marching Cubes con�gurations.Kalvin reports that this method is best applied to binary and segmentedvolumes and is usually faster than methods based on resampling and inter-polation [Kal92].Van Gelder and Wilhelms show that disambiguation based on linear in-terpolation can fail for a quadratic scalar �eld. They suggests a compu-tationally rather expensive tricubic interpolation or two di�erent gradientheuristics [vGW94].W�unsche solves ambiguities for arbitrary convex faces by resampling atthe center of the intersection points with the face edges [W�un96].Bloomenthal (subsection 3.4) o�ers a di�erent solution. His subdivisiondoes not have the honeycomb property. However, he knows that two facesfacing each other are either the same or one is the subdivision of the other.By always computing the isosurface intersection for the more highly dividedface he gains continuity.Polygonization methods guaranteeing a surface without artifacts such asholes are called topologically consistent. Polygonization methods using a dis-ambiguation that matches some assumed interpolant are called topologicallycorrect.At this point the four reviewed algorithms result in a set of contours lyingon the cell faces. Condition one guarantees that they form closed topologicalpolygons. All of the above algorithms conclude by dividing the topologicalpolygons into planar polygons (triangles), maintaining the third continuitycondition.The properties of the reviewed algorithms are summarized in table 1. Theoriginal and modi�ed Marching Cubes algorithm are listed here separately.4.4 Quality CriteriaQuality criteria for polygonization algorithms are usually dependent on theapplication. However, van Gelder and Wilhelms [vGW94] suggest a set of20



Lorensen & Cline Nielson et al. Wyvill et al. Hall & Warren Bloomenthal(subsection 3.1) (subsection 3.1) (subsection 3.2) - (subsection 3.3) (subsection 3.4)Type of cells Cubes Cubes Cubes Tetrahedra Cubes1 Honeycomb Yes Yes Yes Yes NoAdaptive subdivision No No No Yes YesDiscretized input Yes Yes Yes No NoAmbiguities Yes No No No No2 Continuous surface No Yes Yes Yes YesComputation of linear linear linear root search root searchintersection points interpolation interpolation interpolation (regula falsi)Continuity at Interpolates Interpolates Compute edge Compute edge Compute edgeshared edge shared edge shared edge intersections intersections intersectionslinearly linearly only once only once only once3 Continuity at (no continuity) Has honeycomb Has honeycomb Has tetrahedral Computes faceshared face and resolves and resolves honeycomb intersectionsambiguities ambiguities only onceDisambiguation (not resolved) bilinear central estimate (no ambiguities) form tetrahedravariation with cell centerTable 1: Comparison of the reviewed polygonization algorithms.desirable features of a general-purpose polygonization method. We will re-peat them here because it is interesting to see how our analyzed algorithmsful�ll them:1. The algorithm should yield a continuous surface. Each polygon edgeshould be shared by exactly two polygons or lie in an external face ofthe entire volume.2. The isosurface should be topologically correct when the underlyingfunction is \smooth enough".3. The isosurface produced should be neutral with respect to positive andnegative sample data values (relative to threshold). Multiplying thesamples (and threshold) by �1 should not alter the surface.4. The algorithm should not create artifacts not implied by the data, suchas bums and holes.5. The algorithm should be fast.6'. The isosurface should be a continuous function of the input data. Asmall change in the threshold value or some data value should producea small change in the isosurface.We think the last point is di�cult to quantify, since it can not be ful�lledif the underlying scalar �eld undergoes a topological change. Instead in anattempt to capture the notion of algorithmic \elegance" we take the feature21



6. The algorithm should be easy to understand (and therefore easy toimplement).Table 2 shows which quality criteria the presented algorithms ful�ll. Theclassi�cation of the implementation di�culty should be understood as a rel-ative measure and is just our rough estimation based on our own experience.Quality 1. Lorensen & Cline 2. Nielson et al. 3. Wyvill et al. 4. Hall & Warren 5. Bloomenthalcriteria (subsection 3.1) (subsection 3.1) (subsection 3.2) (subsection 3.3) (subsection 3.4)1. Continuous No Yes Yes Yes Yessurface2. Topologically Yes Yes Yes Yes Yescorrecta3. Neutral to Nob No Yes (unknown)csample values4. Free from No Yes Yes Yes Yesartifacts5. Speed Van Gelder and Wilhelms [vGW94] (unknown) (unknown)report similar speed for 1. and 3.6. Implementation easy medium medium hard hardaBut what is \smooth enough"?bCase 12 in �gure 1.cWith some extra e�ort this property can be achieved.Table 2: Quality criteria of the reviewed polygonization algorithms.We conclude this section with some remarks regarding adaptive subdivi-sion. Adaptive subdivision results from the desire to approximate the isosur-face both accurately and e�ciently. This means the polygonization methodmust sample the function closely. In the process the algorithm may sampleheavily in areas where the function is nearly linear. The solution is to sam-ple adaptively, i.e., sampling more closely near highly curved portions of thesurface. This is achieved by recursively subdividing a cell if the isosurfacewithin the cell is more than some user-de�ned tolerance away from beingplanar.5 Optimization TechniquesAll above described polygonization methods subdivide a scalar �eld intocells. The resulting grid can consist of millions of cells and the resultingpolygonization can consists of hundreds of thousands of polygons. Three22



optimization objectives exists: �rst it is desirable accelerate the polygoniza-tion method. Subsection 5.1 introduces three classes of speed-up methodswhich follow di�erent goals. Secondly, for a real-time interactive display ofthe polygonization, it is necessary to reduce the number of polygons. Thiscan be achieved by a mesh optimization technique as a post-processing. Sub-section 5.2 describes several techniques classi�ed by their design objective.Finally parallelization is an increasingly important optimization goal sincemodern supercomputers are often highly parallel. Some recent results aresummarized in subsection 5.3.5.1 Speed-up TechniquesConventional polygonization methods subdivide a scalar �eld � into O(n)cells and visit them all. For large volumes these methods become increasinglyine�cient, since the number of intersected cells for a 2-manifold isosurfaceis O(n 23 ). Van Gelder and Wilhelms [vGW94] report that between 30% and70% of the time spent in isosurface generation is spent examining empty cells.Several methods have been proposed to remedy this situation. We sub-divide them into three classes:1. Information based methods use information about the scalar �eld toavoid traversing cells that are not intersected by the isosurface.The most common information based method is cell propagation (alsocalled contour tracing) [AFH80, WMW86b, KDK86, Blo88, DLTW90,Blo94, IK94, HB94]. This algorithm needs seed cells intersecting theisosurface and follows the isovalues over the cell boundaries. In order toextract the complete isosurface one seed cell must be known for everydisconnected component of the isosurface.Artzy et al. [AFH80] obtain seed cubes by user input. Bloomenthal[Blo94] assumes a connected isosurface and �nds a seed cube by randomsearch. Wyvill et al. [WMW86b] assume a scalar �eld de�ned by aspecial geometric model. Each component of their model is enclosedby the isosurface. The authors �nd a seed cube for every disconnectedcomponent of the isosurface by casting a ray from every componentof the underlying model. Howie and Blake [HB94] optimize the cell23



propagation technique further by producing triangle strips wheneverpossible during the propagation. The authors report that triangle stripsare more compact in storage and are rendered 2.1 to 2.2 times fasterthan the corresponding discrete triangles.W�unsche [W�un96] polygonizes a scalar �eld de�ning a quasi-convolu-tionally smoothed object. He uses the information about the underlyinggeometric object to de�ne a BSP tree to subdivide the scalar �eld andto extract all cells intersected by the isosurface.2. Adaptive methods use a coarse and fast initial subdivision and re�neit only where the surface is interesting. Fine surface details might bemissed by the initial subdivision step.Bloomenthal [Blo88, BW90] constructs an initial cubic mesh by octreesubdivision or surface tracking (see subsection 3.4). He subdivides acube based upon object characteristics, such as tangency and curvature.Hall and Warren [HW90] construct an initial tetrahedral grid which onsubdivision remains a honeycomb property at all times. The subdivi-sion criteria is an estimate of the surface curvature.Beier [Bei90] uses a Marching Cubes style algorithm with a rathercoarse cubic grid. The resulting triangles are subdivided by dividingits edges. For edges that are relatively 
at, i.e., the angle betweenthe normals in its end point is small, the edge midpoint is chosen.Otherwise a new point on the isosurface is calculated.3. Preprocessing methods examine all cells in a preprocessing step andstore information about the subdivision in a suitable data structure.The information is used in the isosurface extraction step to avoid vis-iting non-intersected cells. The isosurface extraction step is thereforeusually an information based method. Preprocessing methods oftenhave a large memory overhead but prove useful if several isosurfacesmust be found in a scalar �eld.Itoh and Koyamada [IK94, IK95] construct an extrema graph for thescalar �eld �. For each isosurface value the extrema graph is used to�nd a number of seed cells. The isosurface is then be extracted by cellpropagation. The authors report a speed up of 2 { 10 compared withDoi and Koide [DK91]. 24



Giles and Haimes [GH90] form two ordered cell lists in a preprocess bysorting the cells' maximum and minimum values. For each isosurfacevalue they determine an active cell list containing intersected cells. Ifa new isosurface value is speci�ed only the active cell lists must beupdated. The algorithm exploits space coherence and is e�cient if theisosurface value changes smoothly.Gallagher [Gal91] groups the cells according to their range of scalarvalues and subdivides each group according to the cell's minimumvalue.For each isosurface value only subgroups of the resulting data structureare visited. The algorithm is sensitive to clustering and performs bestif the scalar �eld values are evenly distributed.Shen and Johnson [SJ95] order the cells by minimum and maximumvalues and identify for a given isovalue the minimum and maximumindex of the intersected cells in the ordered lists. If a new isosurface ischosen only a part of the cell list must be visited depending on the newisovalue and the current minimum and maximum index. The minimumand maximum index are updated for each new isovalue. This part ofthe algorithm is called the sweep algorithm and performs best if theisosurface value changes smoothly. To improve worst case performancethe authors recursively subdivide the list of cells into subgroups atdi�erent levels according to their range of vertex values. For each levelthe sweep algorithm is then only applied to the subgroup containingthe isovalue.Wilhelms and van Gelder [WvG92] use an octree for faster isosurfaceextraction. In a preprocessing step they store at each node the min-imum and maximum vertex values found in that node's subtree. Forisosurface extraction only branches are explored with the isosurfacevalue between the minimum and maximum value of the branch.Livnat, Shen, and Johnson [LSJ96] give an excellent overview of pre-processing methods. They classify the methods into algorithms thatdecompose the geometric space, i.e., the cells, and algorithms that de-compose the value space, i.e., the range of voxel values. (see table 3 forexamples).Algorithms decomposing the value space have the advantage that theunderlying geometric structure is of no importance and therefore the25



approach also works well for unstructured grids. Livnat et al. recognizethat the search in value space is equivalent to a search in two dimen-sions. To �nd cells intersected by the isosurface it is su�cient to knowthe minimum and maximum vertex value of a cell. These values de�nea point in a 2-D space, the so-called span space. Figure 11 shows thespan space for an isovalue c in grey shade and the cells as black dotsaccording to their minimum and maximum vertex values.

c min

max

Figure 11: Search over a span space.The authors now �nd a nearly optimal speed up method by subdividingthe span space with a Kd-tree (see [Ben75]). If n is the number of cellsin a given subdivision of space, and k is the number of intersectedcells, then the preprocessing step, i.e., subdivision with the Kd-tree,takes O(n logn) time and for any given isovalue the intersected cells arefound in at most O(pn+k) time. Note that the latter time complexityis for most cases optimal, since a 2-dimensional surface in 3-D spaceusually intersects O(n 23 ) cells and O(pn+ n 23 ) = O(n 23 )
5.1.1 ComparisonWe conclude this section with a comparison of preprocessing methods. Mostof our results are taken directly from Livnat et al. [LSJ96]. Again n gives26



the number of cells, and k the number of cells intersected by the isosur-face. Table 3 di�erentiates the algorithms introduced above by the followingcriteria:1. Type of the search space. As explained above a preprocessing methoddecomposes and searches either the geometric space or the value space.2. Is the method suitable for an unstructured grid?3. Time complexity of the preprocessing step.4. Time complexity of a search operation to identify all cells intersectedby an isosurface. For methods which only �nd seed cells (e.g., [IK94])this also includes a O(k) term re
ecting the minimal time needed forcell propagation.5. Space complexity of the preprocessing step.6. Can coherence between isosurfaces be exploited?Search Unstruc. tpreprocessing tsearch Space Coherencespace grid exploited[IK94] Geometric Yes O(n) best case O(n 23 ) best case O(n) NoO(n) worst case[GH90] Value Yes O(n logn) O(n) worst case O(n) Yes[Gal91] Value Yes O(n) best case O(n) worst Case O(n) No[SJ95] Value Yes O(n logn) O(n) O(n) Yes[WvG92] Geometric No O(n logn) O(k log nk ) O(n logn) Noworst case[LSJ96] Value Yes O(n logn) O(pn+ k) O(n) NoaaThe authors o�er a neighborhood search as an extension to their method, whichexploits coherence between isosurfaces, but mention several disadvantages of this approach.Table 3: Classi�cation of preprocessing methods.The above results indicate that subdividing the value search space mightgive better results than subdividing the geometric search space. Many pre-vious solutions in the former category, however, were di�cult to understand27



and to implement. The solution from Livnat et al. [LSJ96] seems to representthe most e�cient solution without being too complex.5.2 Mesh Reduction TechniquesLarge meshes are common in computer graphics, for example when using de-vices such as CT, MRI, range cameras, or satellite data. Since large meshesput a strain on storage capacity, communication, and rendering hardwarea mesh reduction algorithm must often be applied. The chosen techniquedepends on the application. Whereas some techniques aim only to eliminatesmall and badly shaped polygons, other technique try to achieve a maximumreduction of polygons. Often the user wants to get a fast preview of the meshwith the choice of increasing resolution (multiresolution surface meshing) orthe user wants to see only selected parts of the model in a higher resolution(local level-of-detail control). The latter technique is used in digital terrainmodeling where far away objects can be approximated less accurately to im-prove rendering speed. An introduction into mesh reduction techniques isgiven by Schroeder [Sch95] and a short overview and classi�cation is con-tained in [Red96]. We identify �ve classes of mesh reduction techniques:I. Polygon merging combines coplanar or nearly coplanar polygons intobigger ones. The original topology of the mesh is not changed.Hinker and Hansen [HH93] merge nearly coplanar polygons and retracetheir boundary to eliminate collinear edges. The resulting polygonsare triangulated. The so=called Geometric Optimization algorithm isbest suited for objects with gradually changing gradient. The authorsmention that the algorithm is parallelizable and that its runtime isdominated by a O(n logn) function.Kalvin and Taylor [KT96] employ a similar technique but additionallylimit the approximation error. The authors start with an initial seedface and employ a greedy strategy to merge it with bordering faces.The borders of the resulting superfaces are then straightened and theresulting faces are triangulated. Kalvin and Taylor claim that theiralgorithm is more e�cient than Hinker and Hansen's because they em-28



ploy a O(n) greedy strategy to merge n faces in contrast to Hinker andHansen's O(n logn) merge step.Reddy [Red96] suggests a perceptually-driven polygon reduction. Thealgorithm collapses certain vertices so that they become co-linear withtwo neighboring vertices and then merges nearly coplanar polygons.The resulting color of a new polygon is found by an area-weighted av-eraging of the RGB colors of each component polygon. The error mea-sure for the vertex collapse is an approximation to the human ContrastSensitivity Function which considers both size of a polygon and surfacecurvature. The author segments the model into subvolumes such thatonly small details are eliminated.II. Modi�ed isosurface extraction modi�es the polygonization methodsuch that a simpli�ed or optimized mesh reduction technique can be em-ployed as a postprocessing step. We present here three algorithms thatproduce a surface topologically identical to the surface produced bythe (modi�ed) Marching Cubes algorithm with a distance error smallerthan grid size. A fourth method employs a specialized data structurefor a simpli�ed mesh optimization step.Montani et al. [MSS94] achieve a simpli�ed merging of coplanar facesby changing the isosurface extraction of the Marching Cubes algorithmstep in a way that it produces coplanar polygons for nearly planarsurface areas. The resulting algorithm is called Discretized MarchingCubes. The authors extract the isosurface with a Marching Cubes al-gorithm but allow only a �nite number of positions for the edge iso-surface intersections. For example, if a binary discretization is chosenthe isosurface can intersect an edge only at its midpoint. The sub-space polygonization therefore generates faces which lie on a �nite setof planes (13 for the binary approach), thus allowing simple mergingof the output faces into large coplanar polygons. The authors reportthat the merge step takes about 85% of computation time and that areduction of polygons of up to 90% is achieved.Oh and Park [OP96] also apply a modi�ed Marching Cubes algorithm.They classify the con�gurations of the Marching Cubes approach intotypes according to the orientation of the produced faces. Surfacepatches in neighboring cubes of the same type are merged to produce29



fewer and larger triangles. However, the authors mention that not allpossible faces are merged because the processing order is sometimes in-consistent with the merging direction of the cubes. The authors reportexecution time that is about 25% slower than the original MarchingCubes algorithm and a triangle reduction of about 50%, with compa-rable image quality.M�uller and Stark [MS93] present a Marching Cubes algorithm withinherent mesh reduction. They take as input a cuboidal regular gridand recursively subdivide the cuboid until a grid cell is reached. At eachstep they compute an isosurface approximation for the current cuboidby taking its eight vertex points and indexing the Marching Cubestable. If the isosurface approximation for a subsequent subdivisionis topologically di�erent inside a cuboid from the current isosurfaceapproximation the new approximation replaces the current one. Cracksbetween boxes of di�erent resolution are prevented by sharing polygonedges between adjacent cells. It is interesting to note that the authorschoose here the polygon edge on the least subdivided face if that istopologically correct and only otherwise take the polygon edges on themost subdivided face (as in �gure 8). Note that this method is not anadaptive speed-up method, like for example the octree partitioning ofBloomenthal (see subsection 3.4), since the recursion always proceedsto cell level.Kalvin et al. [KCHN91] use a winged-edge data structure to encode thepolygonized surface. The polygonization algorithm grows the isosurfaceslice by slice, in what seems to be a rather complicated process. In asecond step the authors merge coplanar faces meeting at a commonvertex. The authors report that the winged edge data structure notonly guarantees fast and topologically consistent face merging but italso allows e�cient manipulation and measuring of the surface.Cignoni et al. [CFM+94] achieve a polygonal approximation of an iso-surface by computing a multiresolution tetrahedralization of the un-derlying scalar �eld �. The local resolution of the tetrahedralizationdepends on the gradient of the scalar �eld and a distance measure.Each level of the tetrahedralization is used to de�ne a polygonal ap-proximation of the isosurface with a Marching Cubes like algorithme.g., [DK91, GH95] thereby de�ning a multiresolution mesh.30



III. Polygon elimination deletes polygons by collapsing their vertices tosingle points.Moore and Warren [MW91, MW92] provide a mesh reduction algo-rithm for polygonizationmethods using a polyhedral subdivision. Theirmethod is only valid for triangle meshes but can be extended to generalpolygon meshes. The motivation of the authors is that badly shaped(thin) polygons often cause undesirable shading artifacts in lightningmodels and degrade further processing steps (e.g., as input to a �niteelement method). The aim is to improve the quality of the polygonalmesh without changing its approximation error. The authors recordduring the subspace polygonization for each triangle vertex the closestcell vertex, called a satellite. A postprocessing step deletes all trianglesthat have two or three vertices with the same satellite (thin and smalltriangles, respectively). Mesh vertices with an identical satellite arereplaced by the average position of the corresponding satellites. Mooreand Warren report a polygon reduction of 40% { 60%.Bernd Hamann [Ham94] orders the set of triangles of a mesh by consid-ering the curvature at the mesh vertices. He then iteratively replacesa triangle with a point given as the origin of a bivariate interpolant.The de�nition of the bivariate function depends on the local geometryof the mesh, such that, for example, a triangle on the boundary of themesh is replaced by a point on the boundary. The hole resulting fromthe triangle removal is retriangulated with the new point.Reddy [Red96] reports two commercial systems in this class. The GE-NIE system removes polygons which projection on the screen lies undera given area threshold [Kem93]. The Viper system displays large tri-angles �rst and eliminates small triangles if the system becomes over-loaded [Hol91].IV. Vertex or edge elimination deletes vertices or edges and retriangu-lates the resulting holes.Schroeder et al. [SZL92] removes vertices that pass a minimum dis-tance (planarity) criterion. The resulting holes are triangulated witha recursive polygon splitting algorithm, which aims for triangles withmaximum aspect ratio. The authors also ensure that the topology ofthe mesh is preserved and they identify sharp edges and corners that31



must be retained such that the resulting geometry closely resembles theoriginal. Note that the minimum distance criterion measures only thedeviation of the new mesh from the old mesh.Cohen et al. [CVM+96] remove vertices from the mesh and attempt to�ll the resulting hole by retriangulation. The authors bound the max-imum error of the approximation by restricting it to a Simpli�cationEnvelope (two modi�ed o�set surfaces). They additionally suggest aglobal algorithm, which �nds all three tuples of vertices (candidate tri-angles) that lie between the o�set surfaces. The algorithm orders thecandidate triangles in decreasing order and builds a triangulation witha greedy method (see [Var94] for details). The authors claim to achievea much improved solution for the same error bound if compared with[LDW94, EDD+95].Hoppe et al. [HDD+93a] collapse, swap, and split edges in order to op-timize the mesh. They use an energy function over a mesh to minimizeboth the distance of the approximating mesh from the original, as wellas the number of approximating vertices. In [HDD+93b] the authorsprove that their implementation does not change the topological typeof a mesh. To achieve a mesh reduction Hoppe et al. �rst randomlysample the original mesh with additional sample points at boundaryedges and then add these points to the original vertex set.Hoppe [Hop96] presents Progressive Meshes. A mesh is simpli�ed withan edge collapse operation similar to [HDD+93a]. A multiresolutionmesh is then stored as a base mesh with a number of detail recordsinverting the edge collapse operations. A soft transition between ap-proximations is achieved by a special morphing operation. The goal ofthe optimization procedure is not only to preserve the geometry of theoriginal mesh but also the overall appearance de�ned by its attributessuch as color, normals, and texture coordinates. Hoppe achieves thisgoal by using an energy metric such that an edge collapse for an edgewith di�erent attributes has a low priority. A modi�cation of this al-gorithm [Hop97] allows view-dependent re�nement based on view frus-tum, surface orientation, and screen-space geometric error. Popovi�cand Hoppe [PH97] generalize the Progressive Meshes to ProgressiveSimplicial Complexes which use a more general base model and allowtopological changes in the re�nement resulting in a better �delity.32



Ronfard and Rossignac [RR96] propose a fast multiresolution schemefor triangulated polyhedra. The authors merge vertices by moving oneend point of an edge onto the other. Edges are ordered according to alocal error function based on the maximum distance of one end point ofthe edge to the planes of the polygons containing the other end point ofthe edge. In order to collapse edges in the right order they are stored ina heap data structure. The authors make some adjustments to mergevertices without changing the shape of the object, but intentionallyallow the object topology to change. Ronfard and Rossignac estimatethe complexity of their method is N0 log2 N0NL for bringing the numberof vertices down from N0 to NL.Algorri and Schmitt [AS96] reduce the number of vertices in a meshby collapsing edges: each edge is replaced by a vertex at its center.The authors use a planarity-threshold for the dihedral angle betweentwo adjacent triangles to identify geometric features such as cornersand regions of high curvature. The identi�ed features are representedby characteristic lines and de�ne clusters in which the mesh is subse-quently locally reduced. In a last step the edges of the characteristiclines are reduced by using a collinearity-threshold for the angle betweentwo edges. The advantage of using clusters is that retriangulation op-erations are locally bounded and also that the geometry and topologyof the mesh is preserved. The authors mention that for many object adecimation limit of 80% { 90 % applies because otherwise dense meshobjects with little surface characteristics such as a dense sphere losetheir global shape characteristic.V. Mesh Approximation approximates the polygonization with a coarserone using some error criteria. The original polygonization is used onlyas an error measure.DeHaemer and Zyda [DZ91] assume a mesh obtained from a regulargrid of sample points. The authors �t trial polygons through a subsetof the corners of the mesh and recursively subdivide them into twoor four subpolygons until they lie within a given tolerance level to theoriginal mesh. Edges of neighboring polygons are likely to not coincide.The resulting gap is either �lled with a polygon (being nearly orthog-onal to the original polygons!) or extra vertices are inserted resulting33



in non-planar polygons. Both methods lead to shading artifacts. Theauthors suggest as a criterion for subdividing polygons a hybrid tech-nique by either subdividing at the location of the maximum error or atthe location of the maximum curvature.Turk [Tur91] distributes a set of points on a mesh by point repulsion,with density weighted by estimates of local curvature. The old verticesand new points are triangulated such that each polygon of the originalmodel is tiled with the new points lying on it. He then removes theold vertices and uses a greedy triangulation to �ll the resulting holes.Several constraints guarantee that the resulting triangulation does notchange the surface topology. If a topology preserving triangulation isnot possible the old vertex is retained. The method is best suited formodels with curved surfaces and is less suited for models with sharpcorners.VI. Multiresolution Wavelet Analysis is used to decompose a simplefunction into a low resolution part and so-called wavelet coe�cientsnecessary to recover the original function. To apply multiresolutionanalysis to mesh reduction the mesh is expressed as parametric func-tion. The low resolution part of the function gives then a reducedmesh in which the new vertices are weighted averages of the originalvertices. This technique is popular for multiresolution surface mesh-ing. An introduction to wavelets for computer graphics is given by[SDS95a, SDS95b, SDS96].Multiresolution wavelet analysis for mesh reduction was original intro-duced by Lounsbery et al. [Lou94, LDW94]. The authors present a newclass of wavelets based on subdivision surfaces which can be applied tofunctions on arbitrary topological domains. The input meshes, how-ever, must have subdivision connectivity, i.e., they are obtained froma base mesh by recursive 4-to-1 splitting. Eck et al. (see below) over-comes this shortcoming. Lounsbery et al. provide also an algorithm toswitch smoothly between models of di�erent resolution by treating thewavelet coe�cients as continuous function of the viewing distance.Eck et al. [EDD+95] describe how multiresolution analysis can be ap-plied to approximate an arbitrary mesh. The authors �rst approximatean arbitrary mesh M by a mesh MJ that has subdivision connectiv-34



ity and then convert MJ to a multiresolution representation using themethods of Lounsbery et al. . The method provides a guaranteed max-imum error to the original mesh.Gross, Gatti, and Staadt [GSG96, GGS95] present a method for reg-ular surface grids. They transform the initial surface data grid into aquadtree structure and then use a wavelet transform to decide whichvertices to remove. The resulting quadtree cells are retriangulated us-ing a table look up. The authors achieve a local level-of-detail controlby �ltering the wavelet space with a Gaussian ellipse.Certain et al. [CPD+96] deal with complex colored meshes and useseparate multiresolution representations for geometry and color thatare combined only at display time. The authors use the wavelet trans-form of Lounsbery [Lou94, LDW94] to decompose the shape and colorfunctions into a low resolution base mesh and correction terms at in-creasing resolution (wavelet coe�cients). An e�cient algorithm anddata structure is used to construct higher resolution approximationsfrom the base mesh at interactive rates.5.2.1 ComparisonWe have now introduced a variety of mesh reduction techniques. Unfortu-nately the literature gives only a few direct comparisons of above methods.In order to convey better understanding of the presented methods we �rstclassify the algorithms according to nine criteria and then summarize someevaluations and comparisons which we have found in the existing literature.Our criteria for a classi�cation are:1. Does the algorithm achieve the approximation with a given number ofvertices or polygons (bounded number approximation)?2. Does the algorithm achieve the approximation with a given maximumerror of � (bounded � approximation)? Note that in this case the erroris usually measured according to the removal criterion (point 9.).3. Does the algorithm provide multiresolution surface meshing to obtainmeshes of di�erent resolution? 35



4. Does the algorithm provide a geomorph to interpolate smoothly be-tween models?5. Does the algorithm use a subset of the original mesh vertices (vs. re-sampling)?6. Does the algorithm preserve the mesh topology? Note that in generaltopological changes are not desired. However, in order to achieve acoarse approximation a controlled change of the topology can be de-sirable. Consider for example a metal plate with many small holes. Ifviewed from a far distance an approximation of the plate without holesis su�cient. Methods which allow a controlled change of the topologyare marked with an asterix.7. Does the algorithm allow a local level-of-detail control? This is usefulif only selected parts of a model must be approximated in detail.8. Does the algorithm work for arbitrary meshes (i.e., for a triangular2-manifold mesh)?9. Which error measure/removal criteria is used: 1. Distance measure2. Polygon size 3. Surface curvature (estimated by normal angle) 4.Wavelet coe�cient.The results of classifying the presented algorithms with these criteria areshown in table 4.The mesh optimization algorithm from Hoppe et al. [HDD+93a] and themesh decimation method from Schroeder et al. [SZL92] currently appear themost popular. This is probably due to the fact that they are relative simpleand also have had time to become established. A lot of recent research hasgone into multiresolution wavelet analysis (group VI. in our classi�cation)and the results look very promising.Schroeder [Sch95] suggests that \Re-tiling" [Tur92] is best for curved,round objects and that \Mesh Optimization" [HDD+93a] appears to givebest results, but is much too slow for large meshes. The author mentions that\Mesh Decimation" [SZL92] and \Geometric Optimization" [HH93] appearto be fastest and that the best approach is probably to mix a high-speedalgorithm with the optimization approach.36



Criteria1. 2. 3. 4. 5. 6. 7. 8. 9.[HH93] No No No No Yes Yes No Yes 3I. [KT96] Yes No No No Yes Yes No Yes 1+3[Red96] No No No No Yes Yes No Yes 3+2[MSS94] No No No No Yes Yes No No 3II. [OP96] No No No No Yes Yes No No 3[MS93] No No No No No Yes No No 1[Kal91] No No No No Yes Yes No No 3[CFM+94] Yes No Yes No Yes No No No 1III. [MW91] No No No No No Yes No No 2[Ham94] Yes Yes No No No Yes No Yes 3[SZL92] Yes No No No Yes Yes No Yes 1[CVM+96] No Yes No No Yes Yes Yes Yes 1IV. [HDD+93a] Yes No No No No Yes No Yes 1[Hop96] Yes No Yes Yes No No* Yes Yes 1[RR96] Yes Yes Yes No Yes No* No Yes 1[AS96] No No No No No Yes No Yes 3V. [DZ91] No Yes No No No No No No 1+3[Tur91] Yes No No Yes No Yes No Yes -[LDW94] Yes Yes Yes Yes No Yes No No 4VI. [EDD+95] Yes Yes Yes Yes No Yes Yes Yes 4[GSG96] Yes Yes Yes No Yes Yes Yes No 4[CPD+96] Yes Yes Yes Yes No Yes No Yes 4Table 4: Comparison of mesh reduction techniques.
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Kalvin gives a listing of execution times of di�erent algorithms for dif-ferent meshes on di�erent machines [KT96]. As the author suggests a directcomparison of the results is not possible, but the indications are that \Super-faces" [KT96], \Mesh Decimation" [SZL92], and \Geometric Optimization"[HH93] are relatively fast and that \Mesh Optimization" [HDD+93a] is rel-atively slow.It is worth noting that in order to achieve an extreme reduction of themesh size a change of the topology might be necessary. A typical example isa plate with many small holes. Table 4 shows that only two algorithm allowa controlled change of the mesh topology.Note that any incremental mesh reduction algorithm (e.g., [HDD+93a] or[SZL92]) can be transformed to generate a multiresolution mesh with locallevel-of-detail control. De Floriani et al. [FMPB97] achieve this by encodinga set of mesh fragments and a partial order de�ned on such fragments. Thepartial order is described as a directed acyclic graph. Two special nodes, asource with no incoming arcs and a drain with no outgoing arcs, correspondto the highest and lowest resolution mesh, respectively. A mesh of the desiredresolution is de�ned by cutting the graph in a suitable way.David Luebke and Carl Erikson [LE97] suggest a framework for any meshoptimization algorithm based on vertex collapse operations to obtain a ro-bust view-dependent simpli�cation of polygonal scenes. The authors clustervertices together in a tree structure and extract from this only those polygonsimportant for the current view point. Subtrees de�ning a volume occupy-ing a screen-space smaller than a user de�ned tolerance are collapsed anddegenerated polygons are �ltered out.5.3 Parallel AlgorithmsNowadays many high performance computers have multiple CPUs. In orderto fully use the available computing power of such a machine a polygonizationalgorithm must be parallelized. We give here a short collection of availableliterature describing parallelized polygonization algorithms.Hansen and Hinker [HH92] present a SIMD implementation of the Mar-ching Cubes algorithm. To avoid complications with communication thealgorithm processes each voxel independently by assigning it a virtual pro-cessor. The authors report superlinear speed-up if the ratio of virtual to38



physical processors increases, which is due to improved e�ciency. They alsomention that the time spent in each virtual processor is constant regardlessof the number of polygons in a cell.Mackerras [Mac92] uses an MIMD implementation of the Marching Cubesalgorithm, which is based on an e�cient serial implementation. The volume ispartitioned into contiguous blocks. Every processor is allocated one or moreblocks and runs a serial Marching Cubes code on it. The author reports aspeed up larger than the number of processors and suggests that this is dueto cache e�ects.Gu�eziec and Humme [GH95] describe a parallel polygonization algorithmbased on the decomposition of a cubic cell into 5 tetrahedra. The authorsperform the subspace polygonization by table indexing and present a cod-ing scheme which allows to store vertex information local to the tetrahedrawithout duplications.Savchenko and Pasko [SP95] present an algorithm for a transputer net-work with a toroidal architecture, which has the advantage that the maximaldistance between two processors is of order O(pn). The authors use a samplegrid of cubic cells and divide the cells between processors. For each cell theisosurface intersection with the edges is computed by linear interpolation.The intersection points are used to form a connection graph. Face ambigu-ities are resolved with the bilinear interpolant over the face. The cycles inthe connection graph give the polygonal patches used to approximate theisosurface.6 ConclusionWe have reviewed four polygonization methods in detail and extracted threecommon aspects: polyhedral subdivision of space, subspace polygonizationand achievement of continuity. These aspects were discussed using the re-viewed polygonization methods and numerous alternative algorithms as ex-amples.This part of our work might form a good basis for the development ofnew both specialized and general polygonization algorithms.We then gave a set of quality criteria and classi�ed the reviewed polygo-nization methods accordingly. 39



Not surprisingly there is no optimal polygonization method, but themethod of choice usually depends on the application. In general a com-promise must be made between speed, accuracy and correctness and imple-mentation complexity. The Marching Cubes algorithm and its variants seemto be the most popular methods. Some ambiguities of the original MarchingCubes algorithm can be remedied by introducing additional complexity.Using a tetrahedral decomposition might simplify the implementation butleads to fragmentation and in certain cases to a spiky approximation. If seedcubes for the isosurface are known a surface tracking method such as thealgorithm from Wyvill et al. is recommended for improved speed.In the second part of our work we showed brie
y the need for improve-ments of both the speed and the result of a polygonization algorithm. Wediscussed several techniques to improve the speed of �nding an isosurface ap-proximation, classi�ed them into three classes and compared them. We thenlooked into the problem of optimizing a polygonal mesh. Several methodswere introduced, classi�ed into six classes, and compared.As a whole our work provides an overview of polygonization methodsand optimization techniques used in the scienti�c community. We hope thatour work forms a good basis for the decision making about which method toimplement and we hope that our results will prove helpful for the developmentof new both specialized and generalized polygonization algorithms.References[AFH80] Ehud Artzy, Gideon Frieder, and Gabor T. Herman. The theory,design, implementation, and evaluation of a three-dimensionalsurface detection algorithm. In Computer Graphics (SIG-GRAPH '80 Proceedings), pages 2{9, July 1980.[AG87] Eugene L. Allgower and Stefan Gnutzmann. An algorithmfor piecewise linear approximation of implicitly de�ned two-dimensional surfaces. SIAM Journal of Numerical Analysis,24(2):452 { 469, April 1987.[AS96] Mar��a-Elena Algorri and Francis Schmitt. Mesh simpli�ca-tion. In Jarek Rossignac and Fran�cois Sillion, editors, Com-40
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