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Abstract

Gibbs random �elds with multiple pairwise pixel interactions have good potentialities in modeling

natural image textures because allow for learning both the structure and strengths of pixel inter-

actions from a given training sample. The learning scheme is based on the maximum likelihood

estimate (MLE) of Gibbs potentials that specify the interaction strenghts. This scheme is ampli�ed

here by deducing an explicit, to scaling factors, analytic form of the potentials from an additional

feasible top rank principle. It suggests that the training sample may possess a feasible top rank in

its total Gibbs energy within the parent population. Under this condition, only the scaling factors

have to be learnt using their MLE. As a result, the introduced conditional MLE of the potentials

extends capabilities of the Gibbs image models under consideration.
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1: Models with multiple pair-

wise pixel interactions

Gibbs random �eld models describe images in
terms of an explicit geometric structure and
quantitative strengths of pixel interactions
(see, for instance, [2, 4, 9]). The pixel inter-

action depends on how probabilities of the
signals (that is, gray levels) relate to those of
the independent random �eld (IRF): the more
probable a particular spatial signal con�gu-
ration, the stronger the interaction between
these signals.

We restrict the consideration only to transla-
tion invariant pairwise pixel interactions and,
therefore, to a speci�c class of spatially ho-
mogeneous image textures called stochastic

textures in [6, 7]. The stochastic texture
has pixels and pixel pairs as (primitive) el-
ements and its interaction structure is given

by a �rst-order family of the pixels them-
selves and by several second-order families of
the translation invariant pixel pairs. In the
Markov/Gibbs models these pairs are cliques,
or complete subgraphs of the neighbourhood
graph [2]. For brevity, the terms \clique" and
\clique family" are preserved in [7] also for
the non-Markov Gibbs models taking account
of admissible gray range changes.

The interaction strength for a given clique
family is speci�ed by a (Gibbs) potential being
a scalar function of the signals in the clique:
the stronger the interaction, the higher the
potential value.

Traditional Gibbs models, in particular, auto-
binomial and auto-normal ones [2, 4, 9], pos-
sess mostly pre-de�ned interaction structures
and potentials. Thus they have rather re-
stricted potentialities in modeling di�erent



natural and arti�cial image textures. Models
with multiple pairwise pixel interactions in-
troduced in [6, 7] are adapted more easily to
various textures because both the interaction
structure and the potentials are learnt from a
given training sample using the MLE of the
potentials. The learning scheme involves three
steps: (i) an analytic �rst approximation of
the potentials, (ii) a search for most charac-
teristic clique families, and (iii) a stochastic
approximation re�nement of the potentials for
the chosen families.

This learning scheme is ampli�ed here by us-
ing an additional feasible top rank principle.
It suggests that the training sample may pos-
sess a feasible top rank in its total Gibbs en-
ergy within the parent population. This con-
dition results in an explicit, to scaling factors
(one per a clique family), analytic form of the
potentials so that only the MLE of the fac-
tors has to be approximated. Such a learning
scheme with the conditional MLE of the po-
tentials extends capabilities of the models with
multiple pairwise pixel interactions.

1.1: Assumptions and notation

Let R = f(m;n) : m = 0; : : : ;M � 1; n =
0; : : : ; N � 1g be a 2D �nite rectangular lat-
tice with M � N pixels i = (m;n) supporting
digital grayscale images g : R ! Q. Here,
Q = f0; : : : ; qmaxg is a set of gray values.

Let A be an index set for the pairwise clique
families and Ca = f(i; j) : i; j 2 R; i � j =
constag denote a particular family with a 2 A.
This family has a speci�c pixel arrangement
in the pairs speci�ed by a �xed 2D inter-
pixel shift consta � (�a; �a): if i = (m;n) and
j = (m0; n0) then m0�m = �a and n

0�n = �a.

Let the following assumptions hold for the
stochastic textures.

� Grayscale images g 2 fg1; g2; : : :g that
di�er only by gray ranges should have
the same Gibbs probability as their ref-
erence image grf obtained by normalisa-
tion. This latter maps initial gray ranges
[min
i2R

g(i); max
i2R

g(i)] onto the maximum

range [0; qmax].

� The interaction strength over the �rst-
order clique familyR is given by a Gibbs

potential function V : R ! R of a gray
level (GL) in the pixel. Here, R denotes
the set of real numbers.

� The interaction strength over each
second-order family Ca is a function
Va : D ! R of a gray level di�er-
ence (GLD) d = g(i) � g(j) 2 D =
f�qmax; : : : ; 0; : : : ; qmaxg in the clique
(i; j) 2 Ca.

1.2: Non-Markov Gibbs model

This model proposed in [7] embeds the gray
range normalisation g ! grf directly into the
Gibbs potentials. For brevity, indices \rf" will
be omitted below. The Gibbs probability dis-
tribution (GPD) for the model is as follows:

Pr(gjV) =
1

ZV
� exp (E(gjV)) : (1)

where E(gjV) = e(gjV )+
X

a2A

ea(gjVa) is a to-

tal Gibbs energy of pixel interactions in the im-
age g under the potentialsV = (V; Va : a 2 A)

for all the clique families, e(gjV ) =
X

i2R

V (g(i))

denotes a partial energy of the pixelwise in-

teractions, ea(gjVa) =
X

(i;j)2Ca

Va(g(i) � g(j))

is a partial energy of pairwise pixel interac-
tions for the clique family Ca, and ZV =X

g2G

exp(E(gjV)) denotes a scaling factor.

Here, G is the parent population of all the
grayscale images supported by the lattice R.

1.3: Su�cient statistics

The partial interaction energy can be repre-
sented as a dot product of the centered poten-
tial vector and the vector of relative sample
GL or GLD frequencies, that is, of normalised
GL or GLD histogram (H) collected over the
reference image g (see [6, 7]):

e(gjV ) = jRj �
X

q2Q

V (q) � F (qjg);

ea(gjVa) = jRj � �a �
X

d2D

Va(d) � Fa(djg): (2)

Here, F (qjg) = 1
jRj

�
X

i2R

�(q � g(i)) and

Fa(djg) =
1

jCaj
�
X

(i;j)2Ca

�(d� (g(i)� g(j))) are



the normalised GLH and GLDH, respectively,

j : : : j denotes the set cardinality, �a =
jCaj

jRj
,

and �() is the Kronecker function.

The potential centering

X

q2Q

V (q) = 0; 8a 2 A
X

d2D

Va(d) = 0 (3)

can be deduced from the unique represen-
tation of the Gibbs probability distribution
(GPD) by relative Hamiltonian [5]. This cen-
tering implies the similar centering of the
histograms in (2). Below, both the potentials
and histograms are assumed to be centered.

The resulting exponential family representa-
tion of the GPD [1] shows that the centered
GLH and GLDHs for all the clique families
form su�cient statistics for the model. It can
be proven that conditions imposed in [1] to en-
sure strict log-concavity of the GPD (or uni-
modality of the likelihood function) hold for
the model.

1.4: Learning the parameters

Both the characteristic clique families and the
potentials are learnt from a given training
sample g� using analytic and stochastic ap-
proximation of the MLE of the potentials.
This learning scheme introduced in [6, 7] is
as follows:

(i) Analytic �rst approximation:

8q 2 Q V[0](q) = �[0] � F (qjg
�);

8a 2 A; 8d 2 D Va;[0](d) =
�[0] � (Fa(djg

�)�Mdif(d))
(4)

where Mdif(d) denotes the centered
marginal probabilities of the GLD for
the IRF (it is easily shown that

Mdif(d) =
1+qmax�jdj

(1+qmax)2
� 1

1+2�qmax
) and the

factor �[0] is computed from the same
centered normalised GLH and GLDHs,
too (see [6] for more details).

(ii) Search for most characteristic interac-
tion structure using approximate partial
Gibbs energies (2) with the potentials
(4) for comparing a big many possible
clique families.

(iii) Re�nement of the potential estimates for
the chosen families by stochastic approx-
imation techniques (see [10]).

This approach gives good results in simulat-
ing natural textures that may be considered
as the stochastic ones [6, 7]. Figures 1 and 2
present samples 128� 128 of natural stochas-
tic textures from [3] simulated by the pro-
posed approach. But, such a learning involves
rather big number of parameters to be re�ned
by stochastic approximation, namely, all the
centered potential values V, that is, in total
qmax � (2 � jAj+ 1) scalar values.

T-D4 G-D4 T-D5 G-D5 T-D9 G-D9

T-D29 G-D29 T-D50 G-D50 T-D57 G-D57

Figure 1: Training (T) and simulated (G) samples of natural textures.



T-D68 G-D68 T-D69 G-D69 T-D76 G-D76

T-D77 G-D77 T-D79 G-D79 T-D80 G-D80

Figure 2: Training (T) and simulated (G) samples of natural textures.

2: Explicit form of the poten-

tials

Here, we consider a somewhat di�erent learn-
ing approach based on an explicit, to scaling
factors, form of the potentials. In this case
the number of parameters to be computed is
reduced to only the number jAj of the clique
families. This explicit form of the potentials is
deduced under a speci�c ranking of the train-
ing sample g� withinG. The desired potential
estimates are obtained using the MLE of the
scaling factors or, what is the same, the con-

ditional MLE of the potentials (CMLE) pro-
vided that the training sample g� may occupy
a feasible for it top rank within G in the total
Gibbs energy.

2.1: Ranking in Gibbs energies

Let us rank the images g 2 G in ascending
order of the partial Gibbs energy (in partic-
ular, e(gjV )) for the pixelwise family R or
ea(gjVa for the pairwise family Ca; a 2 A).
It is easily seen from (1) and (2) that this
ranking is invariant to potential (and energy)
normalisation that reduces the correspond-
ing potential vector V = (V (q) : q 2 Q) or
Va = (Va(d) : d 2 D) to the unit vector
v = V

jVj
or va =

Va

jVaj
, respectively.

Let F(g�) = (F (qjg�) : q 2 Q) and
Fa(g

�) = (Fa(djg
�) : q 2 Q) denote, re-

spectively, the centered vectors of marginal
GL sample frequencies and of marginal GLD

sample frequencies for the clique family Ca.
Then it is readily shown that unit vectors

v� = F(g�)

jF(g�)j
and v�a = Fa(g

�)

jFa(g�)j
maximise

the normalised partial energies e(g�jv) and
ea(g

�jva), respectively.

A particular potential vector obtained by ar-
bitrary scaling of such a unit vector ranks the
training sample g� in a corresponding partial
energy to the same top place that may be fea-
sible among the samples g 2 G as compared
to any other potential vector. Let this feasi-

ble top rank principle be applied to the rank-
ing in the partial energy for each the clique
family of the model (1). Then the potentials
V = (V; Va : a 2 A) ranking the training
sample to a feasible top place within G in the
total Gibbs energy have to possess the follow-
ing explicit, to scaling factors, form:

V�(�) = (� � F(g�); �a � Fa(g
�) : a 2 A): (5)

Here, � = (�; �a : a 2 A) is a vector of arbi-
trary positive scaling factors.

2.2: CMLE of the potentials

Therefore, the CMLE of the Gibbs potentials
V? � V�(�?) for the image model (1) is as
follows:

V? = (�? �F(g�); �?
a � Fa(g

�) : a 2 A) (6)

where the desired scaling factors are com-
puted by maximising the likelihood function
L(�jg�) = lnPr(g�jV�(�)):

�? = argmax
�

L(�jg�): (7)



Generally, this CMLE may di�er from the un-
conditional MLE of the potentials. But, for
the GPD (1) both the estimates are suppos-
edly fairy close if not equivalent. This con-
jecture that needs further theoretical inves-
tigations has some supporting considerations:
in particular, (i) the CMLE (6) and the ana-
lytic �rst approximation of the unconditional
MLE (4) have very similar forms, (ii) the re-
�ned potentials are usually close to their �rst
approximations, and (iii) the samples possess
�xed ranks not only under the uniform scal-
ing of the potentials but also, by symmetry,
under the like scaling of the centered sample
histograms.

2.3: Learning the factors

The desired factors (7) are learnt in a similar
way as the potentials themselves in [6, 7]: �rst,
by analytic �rst approximation and searching
for a characteristic interaction structure and
then by re�ning the factors for chosen clique
families using stochastic approximation.

Analytic �rst approximation of the fac-
tors is obtained by a truncated Taylor's series
expansion of the likelihood function L(�jg�)
about the zero point � = 0. This technique
that is quite similar to those proposed in [6, 7]
results in the following approximation:

�[0] = �[0] � "[0];

8a 2 A �a;[0] = �[0] � "a;[0]; (8)

where

"[0] =
X

q2Q

F 2(qjg�)

and

"a;[0] = �a �
X

d2D

(Fa(djg
�)�Mdif(d)) � Fa(djg

�)

are relative pixelwise and pairwise total Gibbs
energies about the zero point, respectively.
The scale factor �[0] is computed from these
energies as:

�[0] =

"2
[0]

+
X

a2A

"2
a;[0]

"2
[0]
� U[0] +

X

a2A

"2
a;[0]

� Ua;[0]

(9)

where

U[0] =
X

q2Q

�irf � F
2(qjg�);

Ua;[0] = �a �
X

d2D

�dif � F
2
a (djg

�); (10)

and �irf and �dif denote variances for the IRF
of the marginal frequencies of the GL and
GLD, respectively.

Search for the interaction structure ex-
ploits in this case the weighted relative par-
tial energies of pairwise pixel interactions:
e[0] =

�
!a;[0] � "a;[0] : a 2 Asrch

	
where the

weight !a;[0] = �a �
X

d2D

F 2
a (djg

�) and Asrch is

an index set for the clique families within a
large search window. The window is speci-
�ed by a given range of the intra-clique pixel
shifts j�aj � �max; j�aj � �max to be ex-
hausted during the search. The energies e[0]
over the search window form an interaction

map that allows to choose most characteristic
clique families using an appropriate threshold-
ing technique (see [6, 8] for more details).

Stochastic approximation re�nement

of the factors exploits the similar partial ener-
gies that depend on a proximity between the
marginal GL and GLD frequencies for each
clique family in the training image sample g�

and a sample generated by pixelwise stochas-
tic relaxation using the current factors. At
each step t of the stochastic approximation,
the current factors �t are updated as follows:

�[t+1] = �[t] + �[t] � "[t](g[t]);

8a 2 A �a;[t+1] = �a;[t] + �[t] � "a;[t](g[t]): (11)

Here, g[t] is the sample generated at this step,
�[t] denotes the current scaling factor decreas-

ing from the starting value �[0]in(9) as
c0+1

c1+c2�t

(see [10] for theoretical and empirical choices
of the control values c0, c1, and c2), and
"[t](g[t]) and "a;[t](g[t]) are the current di�er-
ential partial energies:

"[t](g[t]) =
X

q2Q

�(qjg[t]) � F (qjg
�);

"a;[t](g[t]) = �a �
X

d2D

�a(djg[t]) � Fa(djg
�): (12)

where �(qjg[t]) = F (qjg�) � F (qjg[t]) and
�a(djg[t]) = Fa(djg

�)� Fa(djg[t]).



3: Concluding remarks

The derived analytic form of the Gibbs poten-
tials, besides its theoretical value, allows not
only to reduce the number of the model pa-
rameters to be computed during the learning
stage but also to extend the number of signal
values jQj = qmax + 1 taken into account in
the image model (1).

The learning schemes of [6, 7] based on the
unconditional MLE of the potentials presume
that the marginal relative sample GL anf GLD
frequencies, obtained by normalising the sam-
ple GLH and GLDHs, give valid statistical
estimates of the corresponding marginal prob-
abilities under the given model (1). But, the
bigger the number jQj, the larger the size of
the training sample to obtain such the esti-
mates. To simplify a choice of the training
samples, for the texture simulation experi-
ments in [6, 7] this number has been restricted
to jQj = 16).

In practice the training samples have usually
relatively small sizes so that do not contain

all possible GLs and GLDs if there is su�-
ciently big number of the gray values, say,
jQj = 256. Of course, in this case one or an-
other known robust approximation to the un-
observed marginals from the obtained incom-
plete sample histograms may be implemented
for getting valid potential estimates based on
the proposed CMLE. Such way out is possible
because errors in the di�erential partial en-
ergies (12) due to approximation errors may
in
uence, during the re�nement process (11),
only the scaling factors but not the overall
form of the potentials.

But, when re�ning the unconditional MLE of
the potentials, each the potential value V[t](q)
for q 2 Q and Va;[t](d) for d 2 D and a 2 A is
updated independently using the distinctions
between corresponding marginal frequencies
for the training sample and for the current
generated one. Therefore, as opposed to the
CMLE, errors in the approximations of the
marginals at each stochastic approximation
step t (that is, for each currently generated
image g[t]) may result in unpredictable errors
in the �nal potential estimates.
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