
On the Limits of Software WatermarkingTechical Report #164Christian Collberg Clark ThomborsonDepartment of Computer ScienceThe University of AucklandPrivate Bag 92019Auckland, New Zealand.Phone: +64-9-373-7599fcollberg,cthomborg@cs.auckland.ac.nzAugust 26, 1998AbstractWatermarking embeds a secret message into a cover mes-sage. In media watermarking the secret is usually a copy-right notice and the cover a digital image. Watermarking anobject discourages intellectual property theft, or when suchtheft has occurred, allows us to prove ownership.The Software Watermarking problem can be described asfollows. Embed a structure W into a program P such that:W can be reliably located and extracted from P even after Phas been subjected to semantics preserving transformationssuch as code optimization and obfuscation; W is stealthy; Whas a high data rate; embeddingW into P does not adverselya�ect the performance of P; and W has a mathematicalproperty that allows us to argue that its presence in P isthe result of deliberate actions.In the �rst part of the paper we construct an informaltaxonomy of software watermarking techniques. In the sec-ond part we formalize these results. Finally, we propose anew software watermarking technique in which a dynamicgraphic watermark is stored in the execution state of a pro-gram.1 IntroductionApart from Grover [15] and a few recent US patents [10,20,27,32], very little (publicly available) information seems toexist on software watermarking in which a copyright messageis embedded into a program. This is in contrast to mediawatermarking which is a very active area of research [4,6,21,29].In the present paper we will try to bring together whatlittle information does exist in the form of a taxonomy ofsoftware watermarking techniques, provide a formalizationof software watermarking, and present new results on dy-namic data structure watermarking.1.1 Attacks on Watermarking SystemsThe strength of any steganographic system is a function ofits data-rate, stealth, and resilience. The data-rate expressesthe quantity of hidden data that can be embedded within thecover message, the stealth expresses how imperceptible the

embedded data is to an observer, and the resilience expressesthe hidden message's degree of immunity to attack by anadversary. All steganographic systems exhibit a trade-o�between these three metrics in that a high data-rate implieslow stealth and resilience. For example, the resilience of awatermark can easily be increased by exploiting redundancy(i.e. including it several times in the host message) but thiswill result in a reduction in bandwidth.To evaluate the quality of a watermarking scheme wemust also know how well it stands up to di�erent types ofattacks. In general, no steganographic scheme is immune toall attacks, and often several techniques have to be employedsimultaneously to attain the required degree of resilience.In [6] Bender writes about media watermarking: \[] all ofthe proposed methods have limitations. The goal of achievingprotection of large amounts of embedded data against inten-tional attempts at removal may be unobtainable".To illustrate these concepts we will assume the followingscenario. Alice watermarks a host object O with watermarkW and keyK, and then sellsO to Bob. Before Bob can sellOon to Douglas he must ensure that the watermark has beenrendered useless, or else Alice will be able to prove that herintellectual property rights have been violated. There arethree principal kinds of attacks Bob can launch against thewatermark:subtractive attack If Bob can detect the presence and(approximate) location of W, he may try to crop it outof O. An e�ective subtractive attack is one where thecropped object has retained enough original content tostill be of value to Bob.distortive attack If Bob is willing to accept some degra-dation in quality of O, he can distort it so that it be-comes impossible for Alice to detect the presence of Win O. An e�ective distortive attack is one where thedegraded watermark can no longer be detected but thedegraded object still has value to Bob.additive attack Finally, Bob can augment O by insertinghis own watermark W' (or several such marks). Ane�ective additive attack is one in which Bob's markcompletely overrides Alice's original mark so that itcan no longer be extracted, or where it is impossible todetect that Alice's mark temporally precedes Bob's.



Alice might, in some cases, be able to tamperproof her ob-ject against attacks from Bob. Tamper-proo�ng is any tech-nique used by Alice speci�cally to render de-watermarkingattacks ine�ective. Figure 1 (a) illustrates these attacks andcounter-measures.Most media watermarking schemes seem vulnerable toattack by distortion. For example, image transforms (suchas cropping and lossy compression) will distort the imageenough to render many watermarks unrecoverable [4,29].1.2 Attacks on Fingerprinting SystemsFingerprinting is similar to watermarking, except a di�erentwatermark is embedded in every cover message. This mayallow us to not only detect that theft has occurred, butalso to trace the copyright violator. Fingerprinting objectsmake them vulnerable to collusion attacks. As shown inFigure 1 (b), an adversary might attempt to gain access toseveral �ngerprinted copies of an object, compare them todetermine the location of the �ngerprints, and, as a result,be able to reconstruct the original object.1.3 Software WatermarkingOur interest is the watermarking and �ngerprinting of soft-ware. Although much has been written about protectionagainst software piracy [2,17{19,25,26,33], software water-marking is an area that has received very little attention.This is unfortunate since software piracy is estimated to bea 15 billion dollar per year business [3,23,24,34].The choice of software watermarking technique will de-pend in part on the kind of object code we want to protect.In this paper we will assume that Alice's object O is an ap-plication distributed to Bob as a collection of Java class �les.As we shall see, watermarking Java class �les is at the sametime easier and harder than watermarking stripped nativeobject code. It is harder because class �les are simple foran adversary to decompile [31] and analyze. It is easier be-cause Java's strong typing allows us to rely on the integrityof heap-allocated data structures.In order to be able to watermark her code there are sev-eral questions Alice has to answer:� In what kind of language structure should the water-mark be embedded?� How do we locate a suitable place within the applica-tion where we can store the watermark?� How do we extract the watermark and prove that it isours?� How do we prevent Bob from removing or distortingthe watermark?� How do we prevent Bob from adding his own water-mark?The purpose of this paper is to examine these questions indetail and to survey the watermarking techniques availableto Alice and the de-watermarking techniques available toBob.In particular, we will show that software watermarksare vulnerable to distortive attacks by semantics preservingtransformations. Some simple watermarks that are storedin the code section of an executable can be destroyed bycommon optimizing transformations. Obfuscating transfor-mations such as presented in [7{9], will, at some time/space

penalty, e�ectively destroy most any kind of program struc-ture. As a consequence, any software watermarking tech-nique must be evaluated with respect to its resilience toattack from optimizing and obfuscating transformations.The rest of the paper is structured as follows. In Chap-ter 2 we discuss static watermarking, in which marks arestored directly into the data or code sections of a binaryexecutable or class �le. In Chapter 3 we turn to dynamicwatermarking, in which marks are stored in the run-timestructures of a program. In Chapter 4 we construct a formalmodel of software watermarking. In Chapter 5 we presenta new dynamic watermarking method that encodes water-marks in dynamic linked data structures. We show that thismethod, when properly tamperproofed, is resilient againstmany types of de-watermarking attacks. In Chapter 6 wesummarize our results.2 Static Software WatermarkingStatic watermarks are stored in the application executableitself. In a Unix environment this is typically within theinitalized data section (where static strings are stored), thetext section (executable code), or the symbol section (de-bugging information) of the executable. In the case of Java,information could be hidden in any of the many sections ofthe class �le format: constant pool table, method table, linenumber table, etc.In our software watermark taxonomy we will distinguishbetween two basic types of static watermarks (see Figure 2):code watermarks which are stored in the section of the ex-ecutable that contains instructions, and data watermarkswhich are stored in any other section, including headers,string sections, debugging information sections, etc.O switch e fchar V;case 1 : V = 'C'case 5 : V = 'O'case 6 : V = 'P'case 8 : V = 'Y'case 9 : V = 'R'.......gswitch e fchar V;case 1 : V = 'C'2
 case 5 : V = 'O'case 6 : V = 'P'case 8 : V = 'Y'case 9 : V = 'R'.......g
O'O'O'CONST C = "Copyright (C)..."1


Figure 2: Static watermarks. In 1
 Alice embeds a water-mark in the initialized data (string) section of her program.In 2
 the watermark is embedded in the text (code) sectionof the program.2.1 Static Data WatermarksData watermarks (Figure 2 1
) are very common since theyare easy to construct and recognize. For example, the JPEGgroup's copyright notice can be easily extracted from theNetscape binary:> strings /usr/local/bin/netscape | \grep -i copyrightCopyright (C) 1995, Thomas G. Lane
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Figure 1: (a) shows attacks on watermarks and counter-measures against such attacks. At 1
 Alice adds a watermark Wusing key K to her object O to make O'. At 2
 Bob steals a copy of O' and Charles extracts the watermark using the key Kto show that O' is owned by Alice. 3
 shows an e�ective subtractive attack, where Bob successfully removes W from O. 4
shows an e�ective additive attack, where Bob adds new watermarks W1 and W2 to make it hard for Charles to prove that Wis Alice's original watermark. At 5
 shows an e�ective distortive attack, where Bob transforms O' (andW) to make it di�cultfor Charles to detect or extract W. At 6
 Charles attempts to extract the watermark from the distorted object, and eitherfails completely or gets a distorted watermark. At 7
 Alice adds tamperproo�ng T to O. 8
 shows an ine�ective subtractiveattack, where Bob tries to remove W from O', but, due to the tamper-proo�ng, O"' is rendered useless. (b) shows collusiveattacks on �ngerprints. At 1
 Alice creates several versions of her object O, each with a di�erent �ngerprint (serial-number)F . At 2
 Bob steals three copies of O and by comparing them is able to extract the original object, minus the �ngerprint.



Moskowitz [27] describes a data watermarking method inwhich the watermark is embedded in an image (or otherdigital media such as audio or video) using one of the manymedia watermarking algorithms. This image is then storedin the static data section of the program.Unfortunately, static data watermarks are highly suscep-tible to distortive attacks by obfuscation. In the simplestcase, an automatic obfuscator might break up all strings(and other static data) into substrings which are then scat-tered over the executable. This makes watermark recogni-tion nearly impossible.An even more sophisticated de-watermarking attack isto convert all static data into a program that produces thedata [8], as shown in Figure 3.2.2 Code WatermarksMedia watermarks are commonly embedded in redundantbits, bits which we cannot detect due to the imperfection ofour human perception. Code watermarks can be constructedin a similar way, since object code also contains redundantinformation. For example, if there are no data or controldependencies between two adjacent statements S1;S2, theycan be 
ipped in either order. A watermarking bit couldthen be encoded in whether S1;S2 are in lexicographic orderor not (Figure 4 1
).There are many variations of this technique. When liti-gating against software pirates who had copied their PC-ATROM, IBM [12] argued that the order in which registers werepushed and popped constituted a signature of their software.Similarly, by reordering the branches of an m-branch case-statement we can encode log2(m!) � log2(p2�m(m=e)m) =O(m logm) watermarking bits (Figure 4 2
).1
 S2S3S4 S1S4S3S2 S1S3S4S1 S2S1 )S2 S3S42
 g case 2 : S2 |case 1 : S1 |case 3 : S3 |case e of fcase e of f )case 1 : S1 |g case 2 : S2 |case 3 : S3 |Figure 4: In 1
 four statements are reordered subject todata- and control-dependency constraints. In 2
 we showone possible reordering of three switch-statement cases.Davidson [10] describes a similar code watermark 5 inwhich a software serial number is encoded in the basic blocksequence of a program's control 
ow graphs.Many code watermarks are susceptible to simple dis-tortive de-watermarking attacks. For example, David-son's [10] method is easily destroyed by many locality-improving optimizations, such as described in Davidson [11].This method also provides no protection against additive at-tacks; if we reorganize the basic block structure to encodeour own watermark it is clear the original watermark can nolonger be retrieved.Many code obfuscation techniques [8,9] will also success-fully thwart the recognition of code watermarks. For exam-ple, it is easy to destroy the apparent 
ow-of-control of a
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� � � � � �goto B2� � � � � �Figure 5: Encoding a signature into the control 
ow graph ofa procedure [10]. Many simple optimizing transformations(inlining, outlining, etc.) will destroy the signature.routine by inserting bogus predicated branches which breakup basic blocks (see Figure 6).
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Aint x=rand(0,1)int y=rand(0,1)(7y2 � 1 6= x2)TAB

Figure 6: Splitting a basic block consisting of two statementsA and B by inserting bogus predicates. In the example anopaque predicate (y2� 1 6= x2)T is inserted. This particularpredicate is always true although this is di�cult to work outstatically.2.3 Tamperproo�ng Static WatermarksOur experience with obfuscation tells us that all static struc-tures of a program can be successfully scrambled by obfus-



main() fString S1,S2,S3,S4;S1 = "AAA";S2 = "BAAA";S3 = "CCB";S4 = "CCB";g T)+Tmain() fString S1,S2,S3,S4,S5;S1 = G(1);S2 = G(2);S3 = G(3);S4 = G(5);g

static String G (int n) fint i=0;int k;char[] S = new char[20];while (true) fL1: if (n==1) fS[i++]='A'; k=0; goto L6g;L2: if (n==2) fS[i++]='B'; k=-2; goto L6g;L3: if (n==3) fS[i++]='C'; goto L9g;L4: if (n==4) fS[i++]='X'; goto L9g;L5: if (n==5) fS[i++]='C'; goto L11g;if (n>12) goto L1;L6: if (k++<=2) fS[i++]='A'; goto L6gelse goto L8;L8: return String.valueOf(S);L9: S[i++]='C'; goto L10;L10: S[i++]='B'; goto L8;L11: S[i++]='C'; goto L12;L12: goto L10;ggFigure 3: De-watermarking static data watermarks. To obfuscate the static strings "AAA", "BAAAA", and "CCB" we constructa function G which produces the values G(1)="AAA", G(2)="BAAAA", G(3)=G(5)="CCB", and G(4)="XCB".cating transformations. And, in cases where obfuscationis deemed too expensive, inlining and outlining [8], variousforms of loop transformations [5] and code motion are allwell-known optimization techniques that will easily destroystatic code watermarks.A further complication is that it is very di�cultto tamperproof code watermarks against these types ofsemantics-preserving transformations. This is particularlytrue in Java, since, for security reasons, Java programsare not able to inspect their own code. Hence, we can-not write pif (instruction #99 != "add") die()q. Evenin languages like C where this is possible, such code wouldbe highly unusual (since it examines the code rather thanthe data segment of the executing program) and unstealthy.As a result, in spite of their simplicity and popularity,we believe static watermarks to be inherently 
awed.3 Dynamic Software WatermarkingAs we have seen, static watermarks su�er from being eas-ily attacked by semantics-preserving transformations. Wetherefore now turn to dynamic watermarks which have re-ceived even less attention than static ones. Dynamic wa-termarks are stored in a program's execution state, ratherthan in the program code itself. As we shall see, this makes(some of) them easier to tamperproof against obfuscatingtransformations.There are three kinds of dynamic watermarks. In eachcase, the application O is run with a predetermined inputsequence I=I1� � �Ik which makes the application enter astate which represents the watermark. The methods di�erin which part of the program state the watermark is stored,and in the way it is extracted.In our taxonomy we will distinguish between threedynamic watermarking techniques (see Figure 7): DataStructure Watermark, Execution Trace Watermark,and Easter Egg Watermark. While Easter Egg water-marks are very popular [28], there seems to be no publishedaccounts of data structure or execution trace watermarks.

3.1 Easter Egg WatermarkFigure 7 1
 shows a watermark encoded in an Easter Egg, apiece of code that gets activated for a highly unusual input tothe application. The de�ning characteristic of an Easter Eggwatermark is that it performs some action that is immedi-ately perceptible by the user, making watermark extractiontrivial. Typically, the code will display a copyright messageor an unexpected image on the screen. For example, enter-ing the URL pabout:mozillaq in Netscape 4.0 will make a�re-breathing creature appear [28].The main problem with Easter Egg watermarks is thatthey seem to be easy to locate. There are even several web-site repositories of such watermarks. Unless the e�ects of theEaster Egg are really subtle (in which case it will be hard toargue that they indeed constitute a watermark and are notthe consequence of bugs or random programmer choices),it is often immediately clear when a watermark has beenfound. Once the right input sequence has been discovered,standard debugging techniques will allow us to trace thelocation of the watermark in the executable and then removeor disable it completely.3.2 Dynamic Data Structure WatermarkFigure 7 2
 shows a watermark being embedded within thestate (global, heap, and stack data, etc.) of a program O asit is being run with a particular input I. The watermark isextracted by examining the current values held in O's vari-ables, after the end of the input sequence has been reached.This can be done using either a dedicated watermark extrac-tion routine which is linked in with the executing program,or by running the program under a debugger.Data structure watermarks have some nice properties.In particular, since no output is ever produced it is not im-mediately evident to an adversary when the special inputsequence I has been entered. This is in contrast to EasterEgg watermarks, where, at least in theory, it would be pos-sible to generate input sequences at random and wait forsome \unexpected" output to be produced. Furthermore,
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Figure 7: In 1
 the watermark is embedded in the unexpected behavior (an \Easter Egg") of the program when it is runwith input I. In 2
 the watermark gets embedded in a global variable V when the program is run with input I. In 3
 thewatermark is embedded in the execution trace when the program is run with input I.since the recognition routine is not shipped within the ap-plication (it is linked in during watermark extraction), thereis little information in the executable itself as to where thewatermark may be located.Unfortunately, data structure watermarks are also sus-ceptible to attacks by obfuscation. Several obfuscatingtransformations have been devised wich will e�ectively de-stroy the dynamic state and make watermark recognitionimpossible. For example, in [8] we show how one variablecan be split into several variables (Figure 8) and how severalvariables can be merged into one (Figure 9). Other trans-formations will merge or split arrays, modify the inheritancehierarchy of an object oriented program, etc.3.3 Dynamic Execution Trace WatermarkIn Figure 7 3
 a watermark is embedded within the trace(either instructions or addresses, or both) of the program asit is being run with a particular input I. The watermarkis extracted by monitoring some (possibly statistical) prop-erty of the address trace and/or the sequence of operatorsexecuted.Many of the same transformations that can be used toobfuscate code will also e�ectively obfuscate an instructiontrace. Figure 10 shows another, more potent, transforma-tion. The idea is to convert a section of code (Java bytecodein our case) into a di�erent virtual machine code. The newcode is then executed by a virtual machine interpreter in-cluded with the obfuscated application. The execution traceof the new virtual machine running the obfuscated programwill be completely di�erent from that of the original pro-gram. In most cases this will not be a practical attack be-cause of the extra overhead of interpretation.4 A Formal Model of WatermarkingIn the next section we will build construct new techniqueswhich are resilient to a variety of de-watermarking attacks.

Before we do so we will formalize our notion of a watermarkand what it means to recognize a watermark in a program.In order to be able to legally argue ownership of a water-marked program, we must be able to show that our recog-nition of the watermark is not a chance occurrence:Definition 1 (Software Watermark) Let W be a set ofmathematical structures, and p a predicate such that 8w 2W : p(w). We choose p and W such that the probability ofp(x) for a random x 62 W is small. 2As we have seen, watermarks can be embedded both inthe program text and in the state of the program as it is runwith a particular set of inputs. Furthermore, attacks can belaunched both on the program text and the state.Definition 2 (Programs) Let P be the set of programs.Pw is an embedding of a watermark w 2 W into P 2 P.Let dom(P ) be the set of input sequences accepted by P .Let out(P; I) be the output of P on input I.Let S(P; I) be the internal state of program P after hav-ing processed input I. Let jS(P; I)j be the size of this state,in accessible words. 2A program transformation is semantics preserving if itpreserves input-output behavior. It is state preserving ifinternal state is preserved.Definition 3 (Program Transformations) Let T bethe set of transformations from programs to programs.Tsem � T is the set of semantics preserving transforma-tions: Tsem = ft : T j P 2 P; I 2 dom(P );dom(P ) = dom(t(P ));out(P; I) = out(t(P ); I)g:Similarly, Tstat � T is the set of state preserving trans-formations:Tstat = ft : T j P 2 P; I 2 dom(P );S(P; I) = S(t(P ); I)g:



g(V ) f(p; q)p q V 2p+ q0 0 False 00 1 True 11 0 True 21 1 False 3 AAND[A,B] 0 1 2 30 3 0 0 0B 1 3 1 2 32 0 2 1 33 3 0 0 3(1) bool A,B,C;(2) B = False;(3) C = False;(4) C = A & B;(5) C = A & B;(6) if (A) � � �;(7) if (B) � � �; T) (1') short a1,a2,b1,b2,c1,c2;(2') b1=0; b2=0;(3') c1=1; c2=1;(4') x=AND[2*a1+a2,2*b1+b2]; c1=x/2; c2=x%2;(5') c1=(a1 ^ a2) & (b1 ^ b2); c2=0;(6') x=2*a1+a2; if ((x==1) || (x==2)) � � �;(7') if (b1 ^ b2) � � �;Figure 8: Variable splitting example. We show one possible choice of representation for split boolean variables. The tableindicates that boolean variable V has been split into two short integer variables p and q. If p = q = 0 or p = q = 1 then Vis False, otherwise, V is True. Given this new representation, we devise substitutions for the built-in boolean operations. Inthe example, we provide a run-time lookup table for each operator. Given two boolean variables V1 = [p; q] and V2 = [r; s],pV1&V2q is computed as pAND[2p+ q; 2r + s]q.Z(X+ r; Y) = 232 � Y+ (r + X) = Z(X; Y) + rZ(X; Y+ r) = 232 � (Y+ r) + X = Z(X; Y) + r � 232Z(X � r; Y) = 232 � Y+ X � r = Z(X; Y) + (r � 1) � XZ(X; Y � r) = 232 � Y � r + X = Z(X; Y) + (r � 1) � 232 � Y(1) int X=45;int Y=95;(2) X += 5;(3) Y += 11;(4) X *= c;(5) Y *= d; T) (1') long Z=167759086119551045;(2') Z += 5;(3') Z += 47244640256;(4') Z += (c-1)*(Z & 4294967295);(5') Z += (d-1)*(Z & 18446744069414584320);Figure 9: Merging two 32-bit variables X and Y into one 64-bit variable Z. Y occupies the top 32 bits of Z, X the bottom 32bits. If the actual range of either X or Y can be deduced from the program, less intuitive merges could be used. First we giverules for addition and multiplication with X and Y, then show some simple examples.
int Sum(int A[]) fint i, sum=0;int n=A.length;for (i=0;i<n;i++)sum += A[i];return sum;g T)

int Sum(int A[]) fint sum=0, i=0, pc=0;int s[]=new int[5], sp=-1;loop: while (true)switch("fcgabced".charAt(pc)) fcase 'a': sum += s[sp--]; pc++; break;case 'b': i++; pc++; break;case 'c': s[++sp] = i; pc++; break;case 'd': if (s[sp--] > s[sp--]) pc -= 6;else break loop; break;case 'e': s[++sp] = A.length; pc++; break;case 'f': pc += 5; break;case 'g': s[sp] = A[s[sp]]; pc++; break;greturn sum;gFigure 10: The Java method Sum on the left is obfuscated by translating it into the bytecode "fcgabced". This code is thenexecuted by a stack-based interpreter specialized to handle this particular virtual machine code. This technique is similar toProebsting's superoperators [30].



2In [29] Peticolas writes: \the problem [with watermark-ing] is not so much inserting the marks as recognizing themafterwards". Hence, watermark recognition is de�ned withrespect to the set of transformations under which the wa-termark can be extracted:Definition 4 (Watermark Recognizer)RT (Pw; S(Pw; I)) is a recognizer of w 2 W in Pw 2 Pwith input I wrt a set of transformations T � T, if,8t 2 T : p(R(t(Pw); S(Pw; I))) = p(w) 2This notation allows us to de�ne several useful recognizers:� R;(Pw; S(Pw; I)) is the trivial recognizer that cannotextract w if any transformations have been performedon Pw.� RT (Pw; ;) is a static recognizer that can only examinethe text of Pw, not its execution state.� RT (;; S(Pw; I)) is a pure dynamic recognizer that canonly examine the execution state of Pw, not its text.� RTsem(Pw; S(Pw; I)) is a strong recognizer that is re-silient to any semantics preserving transformation.Certain types of watermarks are vulnerable to attack bystatistical analysis. If the static or dynamic instruction mixof Pw is radically di�erent from what one would expect froma program of Pw's type, we may suspect that the watermarkmight be hidden in the more frequently occurring instruc-tions.Definition 5 (Watermark Stealth) A watermark w isstatically stealthy for program P wrt statistical measure M ,if M(P )�M(Pw) is insigni�cant.Similarly, a watermark w is dynamically stealthy ifM(S(P; I))�M(S(Pw; I)) is insigni�cant. 2It is essential that the watermark encodes as much in-formation as possible, while at the same time not increasingthe size of the program text or the working set size of theexecuting program.Definition 6 (Watermark Coding Efficiency)H(w) = log2 jW j is the entropy of w, in bits, when w isdrawn with uniform probability from W .Let jP j, P 2 P be the size (in words) of P as expressedin some encoding.Let jS(P )j = maxI2dom(P ) jS(P; I)j be the least upperbound on the size of P .An embedding of Pw of w in P has a high static data rateif H(w)jPwj � jP j � 1:An embedding Pw of w in P has a high dynamic datarate if H(w)jS(Pw)j � jS(P )j � 1: 2Note that data rate is measured in \hidden bits" per \extra"word added in the watermarking process.

5 Dynamic Graph WatermarkingAs we have seen from the previous discussion, all soft-ware watermarking techniques (with the exception of EasterEgg watermarks) are susceptible to distortive attacks bysemantics-preserving transformations. We should thereforeconcentrate on constructing watermarks that are likely tosurvive under a variety of threat models, rather than set-ting our sights on methods that are completely resistant toall kinds of attack. This is similar to the situation in mediawatermarking.In this section we will discuss, in detail, new techniquesfor embedding software watermarks in dynamic data struc-tures. It is our belief that these techniques are the mostpromising for withstanding distortive and subtractive de-watermarking attacks. In particular, we will see that it ispossible to exactly describe the types of attacks that arepossible against this method, and devise counter-measuresthat will protect against reasonable levels of attack.5.1 OverviewThe central idea of Dynamic Graph Watermarking is to em-bed a watermark in the topology of a dynamically built graphstructure. Because of pointer aliasing e�ects, code whichmanipulates dynamic graph structures is hard to analyze.As a result, semantics-preserving transformations that makefundamental changes to a graph will be hard to construct.Moreover, it is easier to tamperproof such structures thantamperproo�ng code or scalar data.Figure 11 illustrates our technique. The signature prop-erty p(w) we propose to embed in a graph-watermark wis that the topology of the graph represents the product nof two large primes P and Q. To prove the legal originof the Pw, the recognizer extracts n from Pw, and factorsn. A similar static watermarking scheme base on public-keycryptography has been proposed by Samson [32]. Obviously,p(w) can be based on other hard graph problems, such asthe lattice problems described in [1,13].As always, the main problem of watermarking is recog-nizing and extracting the mark. To extract w from Pw ourrecognizer RT (;; S(Pw; I)) will primarily examine the run-time object heap as the program is being run with the water-mark key input sequence I. When the end of this sequenceis reached we know that one of the (possibly many) linkedobject structures on the heap will represent w. The maindi�culty will be to recognize our graph out of the manyother structures on the heap. In the next few sections wewill discuss this issue in more detail.5.2 Embedding the WatermarkIn this section we show two ways of embedding a numbern in the topology of a graph G. There are obviously manyways of doing this, and, in fact, a watermarking tool shouldhave a library of many such techniques to choose from toprevent attacks by pattern-matching.5.2.1 Radix-k EncodingFigure 12 illustrates a Radix-6 encoding. The structure ofthe graph is a circular linked list with an extra pointer �eldwhich encodes a base-k digit. A null-pointer encodes a 0, aself-pointer a 1, a pointer to the next node encodes a 2, etc.A list of length m can encode any integer in the range0 : : : (m+ 1)m � 1. The list requires 2m+ 1 extra words, ifwe assume no overhead heap cells. The bit-rate is log2(m+
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Figure 11: At 1
 Alice selects two large primes P and Q, and computes their product n. At 2
 she embeds n in the topologyof a graph. This graph is her watermarkW. At 3
W is converted to a program which builds the graph. At 4
 the program isembedded into the original program O, such that when O0 is run with I as input, W is built. Also, a recognizer program Ris constructed, which is able to identify W on the heap, and extract n from it. At 5
 tamperproo�ng is added, to prevent anadversary to transform the graph to such an extent that R cannot identify it. At 6
 the application (including the watermark,tamperproo�ng code, and recognizer) is obfuscated to prevent a attacks by pattern-matching. At 7
 the recognizer is removedfrom the application. O3 is the version of Alice's program that is distributed. At 8
 Charles links in the recognizer programR with O3. At 9
 the application is run with I as input, and the recognizer R produces n. Since Charles is the only one whocan factor n, he can prove the legal origin of Alice's program.



1 � 60 = 4453 = 61 � 73+3 � 64 2 � 63 + 3 � 62 + 4 � 61 +Figure 12: Radix-k encoding of a number into a graph structure. The structure is essentially a linked list where the rightmostpointer of each node is the next �eld. The leftmost pointer encodes a digit in the length of the path from the node back toitself. A null pointer represents 0, a self-pointer represents 1, a pointer to the next node represents 2, etc. This allows us toencode a value 61 � 73 = 445310 as the base-6 value 323416 .1)m=(2m + 1) � (log2m)=2. For m = 255 we can hide255 � 8 = 2040 bits in 511 words of storage, or 4 hidden bitsper word.5.2.2 Enumeration EncodingOur second embedding method uses results from graph enu-meration [16]. The idea is to let the watermark number n berepresented by the index of the watermark graph G in someconvenient enumeration. The requires us to be able to (a)given n, generate the n:th graph in the enumeration, and (b)given G, extract its index n in the enumeration. Both oper-ations must be e�cient, since we expect n to be large. Thisrules out many classes of graphs due to the intractability ofgraph isomorphism.Several restricted classes of graphs allow e�cient enu-meration and indexing. For example, we can let G0 be an ori-ented \parent-pointer" tree, in which case it is enumerableby the techniques described in Knuth [22, Section 2.3.4.4].The number am of oriented trees with m nodes isasymptotically am = c(1=�)n�1=n3=2 +O((1=�)n=n5=2) forc � 0:44 and 1=� � 2:956. Thus we can encode an ar-bitrary 1024-bit integer n in a graphic watermark with1024= log2 2:956 � 655 extra words. This is a bit-rate of1024=1:56 � 1:56 hidden bits per word.We construct an index n for any enumerable graph inthe usual way, that is, by ordering the operations in theenumeration. For example, we might index them-node treesin \largest subtree �rst" order, in which case the path oflength m� 1 would be assigned index 1. Indices 2 througham�1 would be assigned to the other trees in which there is asingle subtree connected to the root node. Indices am�1+1through am�1 + am�2 would be assigned to the trees withexactly two subtrees connected to the root node, such thatone of the subtrees has exactly m � 2 nodes. The nextam�3a2 = am�3 indices would be assigned to trees withexactly two subtrees connected to the root node, such thatone of the subtrees has exactly m� 3 nodes. See Figure 13for an example.5.3 Recognizing the WatermarkAt step 4
 of Figure 11 we select the length k of the inputsequence I and separate G into k components, W1 � � �Wk.The code to build these components is now inserted intothe application, such that when the end of the input se-quence I=I1� � �Ik is reached, all graph components have
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Figure 13: Some of the trees in the proposed enumerationof the oriented trees with seven vertices.been built and assembled into the complete watermark (seeFigure 14 (a)).It might seem that in order to identify G we whouldneed to examine all reachable heap objects, which, of course,would be intractable. In fact, Figure 14 (b) shows that wecan do better than that. If we assume that G has a dis-tinguished node (this is the case of the embeddings in theprevious section), and this root node is part of Wk, we onlyhave to examine the nodes built during the processing of Ik.5.4 Attacks Against the WatermarkOne nice consequence of our approach is that the types ofobfuscating transformations discussed in Section 2 and 3will have no e�ect on the dynamic structures that are beingbuilt. There are, however, other techniques which can ob-fuscate dynamic data, particularly for languages with typedobject code, like Java. There are four types of obfuscatingtransformations that we will need to tamperproof against.An adversary can1. add extra pointers to the nodes of linked structures.This will make it hard for the recognizer to identify thereal graph within a lot of extra bogus pointer �elds.



(a) if (input = I1) W1 = � � �;if (input = I2) W2 = � � �;if (input = I3) W3 =W2 �W3;� � � � � �if (input = Ik) W =W1 �W3 � � � �;
(b) W2 W1W3

W4Figure 14: Code to build the watermark graph (a) and thegraph and its components (b). The root node is black.2. rename and reorder the �elds in the node, again makingit hard to recognize the real watermark.3. add levels of indirection, for example by splitting nodesinto several linked parts.4. add extra bogus nodes pointing into our graph, pre-venting us from �nding the root.These transformations are illustrated in Figure 15.5.5 Tamperproo�ng the WatermarkA variety of techniques can be used to protect the water-mark graph against attack. The most attractive methodsare those where the structure of the graph itself renders cer-tain types of attacks ine�ective. The parent-pointer repre-sentation of Figure 13, for example, is resilient to renamingand reordering attacks since each node only has one pointer.Figure 16 shows another representation which is resilient tonode-splitting attacks.5.5.1 Tamperproo�ng by Re
ectionThe re
ection capabilities of Java (and other languages likeModula-3 and Icon) gives us a simple way of tamperproo�nga graph watermark against many types of attack. Assumethat we have a graph node Node:class C fpublic int a; public C car, cdr;gThen the Java re
ection class lets us check the integrity ofthis type at runtime:Field[] F = C.class.getFields();if (F.length != 3) die();if (F[1].getType() != Node.class) die();To prevent reordering and renaming attacks we can ac-cess watermark pointers through re
ection. For example,rather than pO.car=Vq, we let car be represented by the �rstrelevant pointer in the node O:

Field[] F = C.class.getFields();int n=0;for(int i=0; i<F.length; i++)if (F[i].getType().isAssignableFrom(C.class))f F[i].set(O, V); break; gObviously, this type of code is unstealthy in a program thatdoes not otherwise use re
ection.5.5.2 Non-Semantics-Preserving AttacksSo far, we have assumed that all attacks preserve the se-mantics of Pw. This is reasonable, since if the adversary hasno knowledge of the location of w he must apply obfusca-tion uniformly over all of Pw. If, however, the adversary canlocate the code that builds the watermarking graph G, hecan easily destroy it by inserting extra nodes or edges. Tothwart these sort of attacks, Pw should occasionally checkthe integrity of G. RLRL RL RLRLRL RL RL
Figure 17: A planted plane cubic tree on 2m = 8 nodes.For example, consider the class Gm of planted plane cubictrees (See Figure 17) on m leaf nodes v1; v2; :::vm, as enu-merated in [14]. Such trees have m� 1 internal nodes andone root node v0, so there are 2m nodes in each w 2 Gp.We would represent w by using 2m objects, where eachobject holds two pointers l and r; this data structure re-quires 4m words. A leaf node vi is recognizable by itsself-loop r(vi) = vi. The root node v0 can be found fromany leaf node by following l-links. Furthermore, the leafnode indices are discoverable by following an m-cycle on l-links: l(vi) = v(i+1) modm. This watermark has a bit-rateof (log2 jfw : w 2 Gmgj)=4m � (2m� 1:5 log2m)=4m � 0:5.The planarity restriction may be tested for each internalnode x by con�rming that the left-most child of its rightsubtree is l-linked to the right-most child of its left subtree.5.6 DiscussionObfuscating linked structures has some very serious conse-quences to the memory requirement of an adversary's de-watermarked program. For example, splitting a node costsone pointer cell plus the usual object overhead (2-3 words inJava). Furthermore, since we can assume that an adversarydoes not know in which dynamic structure our watermarkis hidden, he is going to have to obfuscate every dynamicmemory allocation in the entire program in order to be cer-tain the watermark has been obliterated. This could easilydouble the program's memory requirement.
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Figure 15: (a) shows various types of obfuscation attacks against linked structures. In 1
 we add bogus pointer �elds to allnodes of type T. In 2
 we rename and reorder �elds. In 3
 we add a level of indirection by splitting all nodes in two. In (b) wegive an example. 1
 shows our original watermark graph. In 2
 an adversary has renamed and reordered node pointer �elds.In 3
 each node has received a bogus pointer �eld B and bogus edges have been added. In 4
 each node has been split in twoby adding a bogus pointer �eld A. Finally, in 5
 bogus nodes have been allocated which point into the graph, obscuring whichnode is the root.
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Figure 16: Tamperproo�ng against node-splitting. At 1
 we expand each node of our original watermark tree into a 4-cycle.At 2
 an adversary splits two nodes. The structure of the graph ensures that these nodes will still fall on a cycle. At 3
 therecognizer shrinks the biconnected components of the underlying (undirected) graph. The result is a graph isomorphic to ouroriginal watermark.6 ConclusionSoftware watermarking is the process of embedding a largenumber into a program such that: (a) the number can bereliably retrieved after the program has been subjected tosemantics-preserving transformations, (b) the embedding isimperceptible to an adversary, and (c) the embedding doesnot degrade the performance of the program.This is a challenging problem that, to the best of ourknowledge, has not previously been addressed in the aca-demic literature. The few published accounts of whichwe are aware (mostly software patents) all describe trivialschemes in which copyright notices are embedded in the ob-ject code of a program. None of these methods are resilientto even the simplest program transformations.In this paper we have constructed a taxonomy of soft-ware watermarking techniques based on how marks are em-bedded, retrieved, and attacked. We have furthermore pro-vided a formalization of software watermarking that we be-lieve will form the basis for further research in the �eld. Themost interesting result, however, is a new family of practi-cal software watermarking techniques in which marks areembedded within the topology of dynamic heap data struc-tures.Acknowledgment: We would like to thank P. Gibbons,S. Cheng, and the members of STAR Lab for valuable in-put.References[1] Miklos Ajtai. Generating hard instances of lattice problems.In Proceedings of The Twenty-Eighth Annual ACM Sym-posium On The Theory Of Computing (STOC '96), pages99{108, New York, USA, May 1996. ACM Press.[2] D.J. Albert and S.P. Morse. Combating software piracy byencryption and key management. IEEE Computer, April1982.[3] Business Software Alliance. The cost of software piracy:BSA's global enforcement policy. http://www.rad.net.id/bsa/piracy/globalfact.html, 1996.[4] Ross J. Anderson and Fabien A.P. Peticolas. On the limitsof steganography. IEEE J-SAC, 16(4), May 1998.
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