
The Feasibility and Use
of a Minor Containment Algorithm

Liu Xiong and Michael J. Dinneen
(lxiong@xtra.co.nz & mjd@cs.auckland.ac.nz)

Dept. of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand

Febuary 16, 2000

Abstract

We present a general algorithm for checking whether one graph is a minor
of another. Although this algorithm is not polynomial-time, it is quite practical
for small graphs. For all connected graphs with 5 vertices or less we count how
many connected graphs of order at most 9 are above them in the minor order.
Our computed tables may be useful in the design of heuristic algorithms for
minor closed families of graphs.

1 Introduction

We are primarily interested in the minor order of graphs for two reasons. First, many
families of graphs can be characterized by a finite set of forbidden minors (i.e., struc-
tural properties that succinctly express what the members can not possess). Second,
the minor relationship between graphs provides us a natural graph (combinatorial)
embedding problem.

The general minor containment problem (explained below) to decide for two input
graphs G and H, ifH is a minor of G is known to be anNP -complete problem [GJ79].
Whenever H is fixed, Robertson and Seymour have recently proven the following
theorem [RS90, RS95]:

Theorem 1. For any fixed graph H, there is an algorithm to decide if H is a minor
of an input graph G that runs in time O(n3), where n is the number of vertices of G.

1

This theorem states that the minor containment problem for any fixed graph H
has polynomial-time complexity. Unfortunately, Robertson and Seymour’s algorithm
is not practical, since the actual polynomial-time bound has a large hidden constant.

Robertson and Seymour also showed that any family of graphs closed under the
minor order (lower ideal) has a finite number of forbidden minors (obstructions)
[RS85]. This follows immediately from the following theorem:

Theorem 2 (Graph Minor Theorem). The minor order of graphs is a well par-
tial order.

For a lower ideal F , if a finite set of obstructions O = {O1, O2, . . . , Ok} is known,
then the decision problem for F can be solved in a polynomial time using the set
of obstructions. Here to check whether a graph G is in F one simply checks that
each Oi ∈ O is not a minor of G; this procedure runs in time O(kn

3) = O(n3).
However, this method is currently not practical because obstruction sets are frequently
enormously large and, again, the only known polynomial-time algorithm (Theorem 1)
has huge constants. Also finding the obstructions may be infeasible since the proof of
Theorem 2 is non-constructive. An additional result by Bodlaender shows that there
exists a linear-time algorithm (with fixed H) for the minor containment problem when
the input has bounded treewidth [Bod93]. This algorithm also has extremely large
constants. His theoretical result implies that if F excludes at least one planar graph
then membership in F can be decided in linear time.

Fortunately, for many lower ideals with a large number of obstructions, it seems
that a few of them are sufficient to detect most non-family graphs. For example, most
non-planar graphs seem to containK3,3 as a minor. Thus almost all useful information
comes from those “approximate” obstruction sets. (Langston and his students have
done some work with the immersion order along these lines [Lan93, GLR94].) If we
have fast (or feasible!) minor containment algorithms for a few select graphs, we have
the potential to design simple heuristic algorithms for these lower ideals. We believe
the simple general minor containment algorithm, presented in this paper, may be
helpful in finding these approximating obstructions.

1.1 Preliminary definitions

We are now ready to formally define the graph problems of interest. In this paper
only simple undirected graphs are considered (i.e., with no loops or multiple edges).
A graph G = (V,E) is represented as a finite set of vertices V and a set of edges E,
where each edge is an unordered pair of vertices. Let u, v be any two vertices in a
simple undirected graph G, we use uv to denote an edge between u and v in G.

For finite graphs there are many simple local operations that can be applied to
change its structure. The following are some operations which are commonly used.

1. Delete an isolated vertex.

2

2. Delete an edge.

3. Contract an edge. In our definition, the contraction of an edge does not create
loops or multiple edges.

4. Remove a subdivision. This is the same as contracting an edge incident to a
vertex of degree 2 which is not contained on a cycle of length 3.

5. Lift an edge off a vertex. Here one replaces the two edges of a path uwv with
a single edge uv.

The graph operations (3) and (5) are illustrated below in Figure 1.

x

w

⇒ w u

w

v

⇒

v

u

w

Figure 1: Contracting an edge xw of a graph G and lifting an edge off vertex w of G.

A partial order is a reflexive, transitive and antisymmetric binary relation. A well
partial order is a partial order in which each infinite subset of its elements has at
least two comparable elements. Four common graph partial orders are listed below.

Definition 3. A graph H is a subgraph of a graph G if a graph isomorphic to H
can be obtained from G by a sequence of operations chosen from (1) and (2). We let
H ≤s G denote the subgraph order.

Definition 4. A graph H is a minor of a graph G if a graph isomorphic to H can
be obtained from G by a sequence of a operations chosen from (1), (2) and (3). We
write H ≤m G to denote the minor order.

Definition 5. A graph H is topologically (homeomorphically) contained in a graph
G if a graph isomorphic to H can be obtained from G by the using the operations (1),
(2) and (4). We write H ≤t G to denote the topological order.

Definition 6. A graph H is immersed in a graph G if a graph isomorphic to H can
be obtained from G by the using the operations (1), (2) and (5). We write H ≤i G to
denote the immersion order.

3

Both the minor and immersion orders are well partial orders as proven recently
by Robertson and Seymour [RS85, RSa, RSb]. The topological order is a well partial
order for trees (see [Kru60]) but not, in general, for graphs. It is easy to see that
the subgraph order is not a well partial order (e.g., consider the set of simple cy-
cles). Thus, the minor (and immersion) order is a convenient partial order for giving
structural characterizations of graph families. In other words, the Graph Minor The-
orem implies that any set of graphs has a finite set of minimal elements in the minor
ordering. Here a finite set of minimal elements is also called an obstruction set.

Below we give formal definitions about minor order lower ideals and obstructions.

Definition 7. For two graphs G and H, a family F of graphs is a lower ideal (under
the minor order) if G ∈ F implies that H ∈ F for any minor H of G.

Definition 8. A graph H is a forbidden minor (obstruction) for a lower ideal F if
H is a minor-order minimal graph not in F . That is, if we delete or contract any
edge of H, then the resulting graph must be in F . An obstruction set for a lower
ideal F is the set of all the forbidden minors.

We know that several popular graph families are minor order lower ideals, such
as the planar graphs and those with small vertex covers and feedback vertex sets (see
[CD94, CDF95]). Many of these lower ideals have been characterized by obstruction
sets.

1.2 Graph containment problems

Our main objective is to design an useful minor order containment algorithm. We
now formally list some partial order containment problems that correspond to the
graph partial orders mentioned above.

Problem 9. Minor Containment
Input: Graphs G = (V1, E1), H = (V2, E2).
Question: Does G contain a minor which is isomorphic to H, that is if a graph
isomorphic to H is obtainable from G by the following operations: delete an isolated
vertex, delete an edge, or contract an edge?

Problem 10. Topological Containment
Input: Graph G = (V1, E1), H = (V2, E2).
Question: Does G topologically contain a graph that is isomorphic to H, i.e. if a
graph isomorphic to H is obtainable from G by the following operations: delete an
isolated vertex, delete an edge, or remove a subdivision)?

Problem 11. Subgraph (Isomorphism) Containment
Input: Graphs G = (V1, E1), H = (V2, E2).

4

Question: Does G contain a subgraph isomorphic to H, i.e., a subset V ⊆ V1 and a
subset E ⊆ E1 such that |V | = |V2|, |E| = |E2|, and there exists a one-to-one function
f : V2 → V satisfying uv ∈ E2 if and only if f(u)f(v) ∈ E1?

Problem 12. Immersion Containment
Input: Graphs G = (V1, E1), H = (V2, E2).
Question: Does G contain an immersed graph isomorphic to H, i.e. if a graph iso-
morphic to H is obtainable from G by the following operations: delete an isolated
vertex, delete an edge, or lift an edge)?

1.3 Outline of the paper

In this paper, we will focus on developing a simple usable algorithm for the minor
order. Other partial order containment problems such as subgraph (isomorphism)
containment and topological containment will also be discussed. We start our study
with a simple subgraph containment algorithm. This is then followed in Section 3
with our development of a minor containment algorithm. Next in Section 4 we use
this algorithm to generate a table of minor order counts. The last section concludes
with some desirable areas for future work.

2 Subgraph Containment Problem

If a graph H is a subgraph of a graph G, then we know H is also a minor of G.
Hence exploring the subgraph containment problem may be helpful in understanding
the minor containment problem. There is a recently published algorithm for sub-
graph containment in [ESI98]. This algorithm is based on decomposing graphs to be
matched into smaller subgraphs and has average computational complexity of O(n4)
for a fixed H. More recently a linear-time algorithm for planar graphs G and H
has been developed [Epp99]. Here, we only discuss a simple combinatorial algorithm
to solve the subgraph containment problem which will be used as a foundation for
our later developed minor containment algorithm. Before starting to discuss this
algorithm, we define the notion of a vertex map.

Definition 13. For two graph G1 = (V1, E1) and G2 = (V2, E2), a vertex map is a
function which maps V1 to V2. A vertex map M for graphs G1 and G2 is expressed
asM : V1 → V2.

We now mention a simple procedure to solve the subgraph containment problem
for graphs G = (V1, E1) and H = (V2, E2), where |V1| = n and |V2| = k. To test
whether H is a subgraph of G, we need to consider each subset V from V1 such that
|V | = |V2| = k. With a one-to-one map chosen between V to V2, if all edges in H
exist in the induced graph G[V] then we know that H is a subgraph of G.

5

1 2

3 4 5

6 7 8

1

2 3 4

5 6

G H

Figure 2: An example of the subgraph containment problem.

Figure 2 shows a vertex map between two graphs. Here V1 = {1, 2, 3, 4, 5, 6, 7, 8}
and V2 = {1, 2, 3, 4, 5, 6}. If one chooses a subset V = {2, 3, 4, 5, 6, 7} of V1, a subgraph
isomorphic to H is found by the one-to-one mapping between the vertices in V and
the vertices in V2 as follows:

M(2) = 1,M(3) = 4,M(4) = 3,M(5) = 2,M(6) = 6, andM(7) = 5

As a summary, the pseudo code for an algorithm to solve the subgraph contain-
ment problem can be given as follows.

Procedure IsSubgraph(Graph G = (V1, E1), Graph H = (V2, E2))
n = |V1|
k = |V2|

if n < k then return false
if |E1| < |E2| then return false

Choose k vertices out of V1 and store them in array V .
That is, we generate all

(

n

k

)

combinations.
SetLoop: while next V from V1 is obtained do

Generate all the permutations P of V in lexicographic order.
PermLoop: while next Permutation P of V is obtained do

Get a vertex map.
for i = 1 to k do

M [V2[i]] = P [i]
end for

EdgeLoop: foreach edge uv in E2 do
w =M [u]
x =M [v]

6

if not wx is an edge in E1 then Next PermLoop
end foreach

return true
end while

end while
return false

end

For this simple algorithm, the time bound in this algorithm is:
(

n

k

)

k!|E1||E2|. Thus
when k is fixed, the time complexity for this algorithm is O

((

n

k

)

m
)

, where m = |E1|.

3 Minor Order Containment Problem

We now extend the previous method for solving the subgraph containment problem
to partially solve the minor containment problem. We first restrict the host graph
G to be a connected graph. Later in Section 3.6 we show how to handle arbitrary
graphs.

For a fixed graph H, Robertson and Seymour gave an algorithm for the minor
containment problem based on an algorithm for the disjoint connecting paths problem
[RS85]. Although Robertson and Seymour proved that this algorithm runs in time
O(n3), the actual running time is not very practical because of the large hidden
constants. We plan to design a simple and practical algorithm (for arbitrary H) to
solve the minor containment problem even though the time bound is greater than
O(n3). To begin let us give an equivalent definition for the minor order.

Definition 14. A graph H is a minor of a graph G if H is a subgraph of G′, where
G′ is obtained by contracting edges from G.

By this definition, a straight forward method is provided to decide if a graph H
is a minor of a graph G, where G is a connected graph:

• Step 1: Generate all feasable vertex maps from G onto H.

• Step 2: For a vertex map, contract edges in G where the endpoints have the
same image in H. This gives a resulting graph G′.

• Step 3: Test if H ≤s G′. If it is, return true, otherwise iterate step 2.

• Step 4: Return false.

This method can only be applied for connected G since the order of G is reduced
to the order of H only by edge contractions. The algorithm for disconnected input
graphs can be solved easily by taking this algorithm as a subroutine.

7

1 2

3

4 5

2

4 5

1

3

6 87

G H

Figure 3: An example of a minor containment embedding.

The hardest part of this minor containment method is generating all vertex maps
(as listed in Step 1), which we now explain how to do.

Let G = (V1, E1) and H = (V2, E2), where |V1| = n and |V2| = k. For a connected
graph G, the minor containment problem can be solved in time O(knn2) by checking
all mappings from the vertices in G to the vertices in H, where subgraph containment
for each mapping can be checked in O(n2) time. However, the time bound can be
slightly reduced if only surjective vertex maps are generated. For example, if V1 =
{1, 2, 3, . . . , n} and V2 = {1, 2, . . . , k − 1}. The two vertex maps M1 = {1, 1, . . . , 1}
and M2 = {2, 2, 3, 3, . . . , 3} are impossible. Thus, in the next subsection, we discuss
what is a necessary vertex map for solving the minor containment problem.

3.1 Vertex maps for the minor containment problem

We have discussed an algorithm to solve the subgraph containment problem. In this
algorithm, each vertex in H is mapped to a unique vertex of G. For the minor
containment problem, the number of vertices of G is greater than or equal to the
number of vertices of H, that is n ≥ k. Since extra vertices of G can be reduced by
edge contractions, the vertex map for this problem is a many-to-one map (from G to
H).

Figure 3 shows an example where H ≤m G. A successfully mapping can be made
with the mapping from G to H as follows.

M(3) =M(6) = 1,M(1) =M(2) = 2,M(4) = 3,M(7) = 4, andM(5) =M(8) = 5

This example illustrates that for graphs G = (V1, E1) and H = (V2, E2), a possible
set of vertex maps has the following properties.

i. Each vertex in V1 is map to only one vertex in V2 (by definition of vertex map).

ii. Each vertex in V2 must have a pre-image in V1 under the mapping (i.e., the
mapping must be surjective).

8

By these properties, in order to map vertices of V1 to vertices of V2, we can first
partition V1 to k non-empty disjoint subsets, then map each subset to a vertex in
V2. Therefore the combinatorial algorithm for generating all possible vertex maps is
equivalent to the algorithm for generating set partitions of n with k blocks.

3.2 Set partitions with exactly k blocks

In this section, we discuss the k–block set partitions problem since the algorithm
for generating all set partitions with k blocks is an important part of our minor
containment algorithm. Our implemented algorithm to generate all set partitions
with k blocks for a given vertex set will be based on these definitions (following the
notation of [KS99]).

Definition 15. A set partition of the set V = {1, 2, . . . , n} is a collection B1, B2, . . . , Bj
of disjoint subsets of V whose union is V . Each Bi is called a block.

For a given positive integer n, S(n) is used to denote the set of all partitions of
{1, 2, . . . , n} into non-empty subsets. For positive integers n and k where k ≤ n,
S(n, k) is used to denote the set of all partitions of {1, 2, . . . , n} into exactly k non-
empty subsets (set partitions of {1, 2, . . . , n} into k blocks).

Below we show all the partitions of the set {1, 2, 3, 4}, where periods separate
individual sets.

1 blocks: 1234
2 blocks: 123.4 124.3 134.2 1.234 12.34 13.24 14.23
3 blocks: 1.2.34 1.24.3 1.4.23 14.2.3 13.2.4 12.3.4
4 blocks: 1.2.3.4

Each partition above has its blocks listed in an increasing order of each block’s
smallest element. A set partition can be encoded into a string called a “restricted
growth string” based on this sort order.

Definition 16. A restricted growth string (or RG string) is a string a[1..n] where
a[i] is the block in which element i occurs.

Define R(n) to consist of all restricted growth strings for set {1, 2, 3, . . . , n} and
define R(n, k) to consist of all restricted growth strings corresponding to S(n, k).

Obviously and naturally, we have bijections between the sets R(n) and S(n) and
between the sets R(n, k) and S(n, k). We can say a restricted growth string is another
format of a set partition. Here are the RG strings corresponding to the partitions
shown above.

1 blocks: 1111
2 blocks: 1112 1121 1211 1222 1122 1212 1221
3 blocks: 1233 1232 1223 1231 1213 1123
4 blocks: 1234

9

In the above table, R(4, 3) is the third row.

Take two graphs G = (V1, E1) and H = (V2, E2) where n = |V1| and k = |V2| with
k ≤ n. To obtain a vertex map from G to H, we must first obtain a set partition
with k blocks of V1 and then map these k blocks onto the vertices of V2. It is known
that for positive integers n and k with n ≥ k, the Stirling number (of second kind) is

S(n, k) = |S(n, k)| =
1

k!

k
∑

j=1

(−1)k−j
(

k

j

)

jn . (1)

Therefore, to test all possible cases, our set partition algorithm must generate all
those partitions S(n, k). In the next subsection, we will develop an algorithm for
generating S(n, k) in restricted growth string format R(n, k) in lexicographic order.

3.3 An algorithm for generating S(n, k)

We begin with an example. Let n = 5 and k = 3. Then by the above formula,
S(n, k) = 25. All of the 25 RG strings for the set {1, 2, . . . , n} are given in Table 1 in
lexicographic order.

Table 1: All set partitions of S(5, 3).

No. R(5, 3) S(5, 3)
1 11123 123.4.5
2 11213 124.3.5
3 11223 12.34.5
4 11231 125.3.4
5 11232 12.35.4
6 11233 12.3.45
7 12113 134.2.5
8 12123 13.24.5
9 12131 135.2.4

No. R(5, 3) S(5, 3)
10 12132 13.25.4
11 12133 13.2.45
12 12213 14.23.5
13 12223 1.234.5
14 12231 15.23.4
15 12232 1.235.4
16 12233 1.23.45
17 12311 145.2.3
18 12312 14.25.3

No. R(5, 3) S(5, 3)
19 12313 14.2.35
20 12321 15.24.3
21 12322 1.245.3
22 12323 1.24.35
23 12331 15.2.34
24 12332 1.25.34
25 12333 1.2.345

The question we solve is: “How can our algorithm generate exactly those RG
strings?”

The name “restricted growth” comes from the fact that RG strings are character-
ized by the following growth inequality:

a[i+ 1] ≤ (1 +max{a[1], a[2], ..., a[i]}) for i = 1, 2, . . . , n and a[1] = 1 . (2)

When R(n, k) is taken into account, each i = 1, 2, . . . , k must occur at least once
in a set partition. Thus we can use the above properties to design our algorithm.

10

We use S(5, 3) as an example to illustrate the algorithm. We know the smallest RG
string for S(5, 3) is 11123 (from Table 1). This is the first RG string. The next
string should be the smallest RG string which is greater than the previous one in
lexicographic order. Let a[1..n] be an integer array which stores the previous RG
string. Once the previous string is generated, we can use the following method to
find the next RG string.

• Step 1: Starting from the right most position of a[1..n], use Formula 2 to find
the lowest position pos in which a[pos] can be increased by one. If pos = 1,
then stop.

For example, if a[1..n] = 1, 1, 1, 2, 3, then in this case pos is 3 because the
position 3 is the lowest position in which a[3] can be increased to 2 and the
new string still satisfies Formula 2. This step ensures that the new RG string
is greater than the previous one. In our example, after finishing this step,
a[1..n] = 1, 1, 2, 2, 3.

• Step 2: Change each element which has more than one occurrence in the array
to 1 in the remaining part of the array (i.e., from a[pos+ 1] to a[n]).

Thus in our example, the tail of the array a[4..5] = {2, 3}. Let us use occ[1..k]
to count the number of occurrences for i = 1, 2, . . . , k in the array a[1..n]. Since
in our example, occ[2] = 2, then a[4] can be changed to 1. But occ[3] = 1, so
a[5] is keep unchanged. Now we have the next RG string a[1..5] = {1, 1, 2, 1, 3}.
This is the next string we want. But consider another example, if n = 6,
k = 4, the previous string a[1..6] = {1, 1, 2, 3, 4, 4}, then doing step 1 gives
a[1..6] = {1, 2, 2, 3, 4, 4}; doing step 2 gives a[1..6] = {1, 2, 1, 3, 1, 4}. Whoops!
Although this string is still a RG string, it is not the smallest one which is greater
than the previous one. Thus to get the smallest RG string so far, we have to
add one more step to sort the part of the array a[(pos + 1)..n] in increasing
order to make it as small as possible.

• Step 3: Sort the part of the array from pos+ 1 to n in increasing order.

This step ensures that the new RG string is the smallest one that is greater
than the previous generated RG string.

Here, we give a formal object-oriented description of this algorithm. The following
data structures and methods are used for implementing this algorithm.

• Structure SetPartitions
To create a SetPartitions object, a positive integer n and a position integer k
where n ≥ k must be taken as two parameters. The structure SetPartitions
contains some data members:

11

SetPartitions(n, k)

An integer array which stores the next partition. Initially set to
{1, 1, . . . , 1, 2, 3, . . . , k}, the smallest lexicographic partition.
partition[1..n]

A boolean flag for stopping.
finished

End SetPartitions

• procedure Reset
Reset is a procedure in the SetPartitions structure which initializes or resets
the set partition to the smallest RG string.

• procedure NextPartition
NextPartition is a procedure in the SetPartitions structure, which computes
the next partition and stores it into the integer array partition and returns a
boolean value to indicate if any more partitions are available. The algorithm is
essentially implemented here.

• procedure Item
Item is another procedure in the SetPartitions structure, which takes an
integer i as input parameter and returns the ith element in the integer array
partition. By combining procedure NextPartition and procedure Item, a new
set partition in S(n, k) is obtained.

The algorithm for generating the set partitions with exactly k subsets (k blocks)
of a given set {1, 2, . . . , n} is described as follows.

Procedure NextPartition()
if finished = true then return false

occ is an integer array, occ[i] is used to store the number of occurrences of
i = 1, 2, . . . , k in the current partition.
occ[1..k] = {0, 0, 0, . . . , 0}

max is an integer array. max[i] is the maximum number
in partition[1..(i − 1)] and max[1] = 0.
max[1..n] = {0, 0, 0, . . . , 0}
pos = n

Compute occ[i] where i = 1, 2, . . . , k for current partition.
for i=1 to n do

12

occ[partition[i]] = occ[partition[i]] + 1
end for

Compute max[i] for i = 2, 3, . . . , n
for i=2 to n do

if max[i− 1] < partition[i− 1] then
max[i] = partition[i − 1]

else
max[i] = max[i − 1]

end if
end for

Find the lowest position pos in which partition[pos] can be increased by 1.
while (pos > 1) and

(partition[pos] = k or partition[pos] + 1 > 1 +max[pos]) do
pos = pos− 1

end while
if pos = 1 then Stop!

finished = true
return false

end if

partition[pos] = partition[pos] + 1
occ[partition[pos]] = occ[partition[pos]] + 1

Scan the subsequence of partition[pos + 1] to partition[n],
change every element to 1 such that this element has an
occ greater than 1.
for i = pos+ 1 to n do

if occ[partition[i]] > 1 then
occ[partition[i]] = occ[partition[i]] − 1
partition[i] = 1

end if
end for

Sort the subsequence of partition[pos+1] to partition[n]
to make it smallest.
Sort(partition[pos + 1], . . . , partition[n])
return true

end

Now, we prove that the above algorithm is correct.

Fact 17. The procedure NextPartition within the SetPartitions structure is cor-
rect. That is, it successfully generates all set partitions with exactly k blocks for a

13

given set {1, 2, . . . , n}, where n and k are positive integers.

Proof. To prove the algorithm is correct, we have to prove the following statements:

1. The algorithm will stop generating if no more partitions are available.

2. Each new generated partition is unique.

3. In the new partition, the number of occurrences of i = 1, 2, . . . , k must be at
least 1.

4. The new partition, as a RG string, must be the next lexicographic RG partition
string with k blocks.

We now prove that each new partition generated by the algorithm satisfies the
above statements.

Statement 1: Since the new set partition is obtained by incrementing (by 1) the lowest
position pos from the right. If pos is 1 (the leftmost position), this means the previous
set partition can not be increased. Thus the algorithm sets a flag to indicate no more
set partitions are available in this case. Thus statement (1) holds.

Statement 2: Since each generated partition is lexicographically greater than the
previous one by increasing some position, according to the Formula 2, each partition
is unique. Hence this statement holds.

Statement 3: In this algorithm, an integer array occ[1..k] is used to count the number
of occurrences for i = 1, 2, . . . , k in the new set partition. This ensures that the
number of blocks (subsets) in a set partition is k. Thus, statement 3 holds.

Statement 4: Let pos be the position in which the previous set partition can be
increased by 1. To ensure the new set partition is the smallest one which is greater
than the previous partition, the remaining part of the new partition p[(pos + 1)..n]
must be assigned as small as possible in lexicographic order. The algorithm sets
every element with more than one occurrence to be 1 (the smallest value) in this
subsequence and sort the subsequence of p[(pos + 1)..n] in increasing order. This
ensures that the new set partition is the smallest set partition with k blocks in S(n, k)
which is greater than the previous one. Thus any possible set partition in S(n, k) is
not skipped. Hence, the statement holds.

Therefore, the algorithm for generating all set partitions with exactly k blocks for
a given set {1, 2, ..., n} is correct. 2
In order to generate all set partitions, before calling the procedure NextPartition,

we reset the array partition to be the smallest set partition {1, 1, . . . , 1, 2, 3, . . . , k}.
By successively calling the procedure, all set partitions of S(n, k) will be generated
in lexicographic order. The time to generate next set partition depends on the time

14

of the sorting algorithm. If a linear-time bin-sort algorithm is applied, then this
algorithm runs in time O(n) per set partition.

We mention that this set partition algorithm was implemented and tested with the
GNU EGCS-2.91 C++ compiler on an Intel Pentium 400MHz CPU. Table 2 shows
some timing results based on this program.

Table 2: Timing results for generating set partitions (n = 12).

S(n, k) Time (secs)
S(n, k) by algorithm
and by Formula 1

S(12, 1) 0.00 1
S(12, 2) 0.00 2047
S(12, 3) 0.16 86536
S(12, 4) 1.12 611501
S(12, 5) 2.54 1379400
S(12, 6) 2.50 1323652
S(12, 7) 1.21 627396
S(12, 8) 0.32 159027
S(12, 9) 0.05 22275
S(12, 10) 0.00 1705
S(12, 11) 0.00 66
S(12, 12) 0.00 1

3.4 Implementing the minor containment algorithm
(connected graphs)

In the previous section, we have developed a combinatorial set partition algorithm
that generates all partitions with k blocks. Now we are ready to design an useful
minor containment algorithm for connected input graphs. Recall from page 7 the
four steps to decide, for two inputs G = (V1, E1) and H = (V2, E2), where G is
connected, if H ≤m G. Let n = |V1| and k = |V2|.

To implement step 1 (generation of all vertex maps from G onto H) we do the
following. The set partition algorithm can be employed to partition V1 into k blocks.
And then one-to-one map each block into each vertex in V2. Thus with respect to
one set partition, there are k! possible maps. Of course, all of them have to be tested.
Thus the algorithm for generating all permutations of a set has to be applied. The
C++ Standard Template Library (STL) contains a built in function that generates
all permutations of a given integer set. Therefore, by applying our set partition
generating algorithm and the standard permutation generating algorithm, all vertex
maps between two graphs can be obtained.

15

Once step 1 is completed, the other steps are simple. For each map, we first
pretest if those vertices in G which have the same image can be contracted (i.e., they
form a connected subgraph). If it is false, then we skip to the next map. If it is true,
then we check if each edge in H is embedded in the resulting graph G′. To do this,
we do not have to do any edge contractions in G since this operation is very time
consuming. Instead, we just test for each edge uv in H, if there is a corresponding
edge wx in G, such thatM(w) = u andM(x) = v. If all edges in H can be tested
successfully in this way, then the graph H is a minor of G and no more testing is
required. Otherwise, after trying all vertex maps, we can conclude that H is not a
minor of G.

This approach can be written as follows, where we assume NextPermutation is a
build-in function which generates the permutations of a set.

Procedure IsMinor1(Graph G = (V1, E1), Graph H = (V2, E2))

n = |V1|
k = |V2|

if n < k then return false
if |E1| < |E2| then return false

Make an initial SetPartitions object sps(n, k) for V1.

Permutations for V2 and vertex map.
P [1..k]
map[1..n]

setPLoop: while sps.NextPartition = true do
Initialize the permutation for V2 in P .
for i = 1 to k do

P [i] = i
end for

Pretest the set partition.
for i = 1 to k do

Test if all of the vertices in G which
in the same ith block can be contracted
(i.e., these vertices are connected).

if it is not true then Next setPLoop
end for

Get a map
permLoop: while NextPermutation(P []) = true do

16

for i = 1 to n do
map[i] = P [sps.Item[i]]

end for

for each edge uv in E2 do
if No edge wx can be found in E1 where,

map[w] = u and map[x] = v then Next permLoop
end foreach

We found the minor
return true

end while
end while

return false
end

Since our algorithm is derived from the definition of the minor order and we have
proved that our set partition algorithm is correct, this algorithm is correct.

3.5 Complexity analysis

The running time of the algorithm depends on the number of partitions of n into k
blocks, S(n, k) = |S(n, k)|, and the number of permutations of V2, where |V1| = n
and |V2| = k. Thus we have the following upper bound.

Lemma 18. The running time of the minor containment algorithm IsMinor1 is pro-
portional to

n2|E2|
k
∑

j=1

(−1)k−j
(

k

j

)

jn .

Proof. For two graphs G = (V1, E1) and H = (V2, E2), if H 6≤m G then we need to
search all possible S(n, k)k! vertex maps. For each edge e in H, it takes time O(n2)
to find if e is embedded in G. Thus it takes time O(|E2|n

2) to search all edges in H.
Therefore, in the worst case, the running time for our minor containment algorithm
to decide if H ≤m G is proportional to

n2|E2|S(n, k)k! = n
2|E2|

1

k!

k
∑

j=1

(−1)k−j
(

k

j

)

jnk! = n2|E2|
k
∑

j=1

(−1)k−j
(

k

j

)

jn,

where we used Formula 1 on page 10 for S(n, k). 2
When the graph H is fixed, k and |E2| are constants. Thus, we have the following.

17

Corollary 19. The algorithm IsMinor1 runs in time O
(

n2
∑k

j=1(−1)
k−j
(

k

j

)

jn
)

,

whenever H is fixed.

Although, the time bound is greater than O(n3) for a fixed H, it has a very
small hidden constant. Therefore, for small simple graphs (which we are interested),
this minor containment algorithm is useful. We compare the number of mappings
required for a brute-force algorithm, kn, against the set partition mappings required
by IsMinor1, S(n, k)k!, for a few small ranges in Table 3. As n and k increase, there
is a big difference.

3.6 Minor containment algorithm for disconnected graphs

For two graph G and H, our algorithm IsMinor1 that decides whether H ≤m G only
works if G is a connected graph. However, we can develop another algorithm which
works whenever G is disconnected.

An algorithm IsMinor2 for disconnected input graphs can be constructed as fol-
lows. Here we separate G andH into two sets of components CG and CH , respectively.
If a graphH is a minor of a graph G then the set CH needs to be mapped into CG. The
new algorithm IsMinor2 simply calls IsMinor1 for each possible mapping. Note that
more than one component of H may map to the same component of G. Fortunately,
the earlier algorithm IsMinor1, called as a subroutine, works in this case.

4 Minor Order Testing

In this section we use our minor containment algorithm IsMinor1 to explore the
popularity, as minors, of some small connected graphs. By “popularity” we mean
how frequent a graph is a minor of a (possibly random) set of graphs. If the goal is to
build an approximating membership algorithm for a (minor order) lower ideal, then
these results give us some guidance on which subset of the family’s obstructions to
use.

We used our minor containment algorithm to obtain a table of popular graphs,
which are independent of any particular lower ideal. The components of our testing
program is as follows.

i. A minor containment algorithm (e.g., IsMinor1) for connected input graphs.

ii. A set of fixed graphs SH .

iii. A set of connected input graphs for testing SG.

This general program counts for each graph H in SH how many of G in SG are
above H in the minor order. If the obstructions for a lower ideal are known and the

18

T
ab
le
3:
C
om
p
arin
g
th
e
grow

th
rate

of
S
(n
,k
)k
!
an
d
k
n
for
2
≤
k
≤
n
≤
10.

k

n

2 3 4 5 6 7 8 9 10

2
2

4

3
6

8

6

27

S(n, k)k!

kn

4
14

16

36

81

24

256

5
30

32

150

243

240

1024

120

3125

6
62

64

540

729

1560

4096

1800

15625

720

46656

7
126

128

1806

2187

8400

16384

16800

78125

15120

279936

5040

823543

8
254

256

5796

6561

40824

65536

126000

390625

191520

1679616

141120

5764801

40320

16777216

9
510

512

18150

19683

186480

262144

834120

1953125

1905120

10077696

2328480

40353607

1451520

134217728

362880

387420489

10
1022

1024

55980

59049

818520

1048576

5103000

9765625

16435440

60466176

29635200

282475249

30240000

1073741824

16329600

3486784401

3628800

10000000000

19

set is small then we can easily replace the set SH with it and possibly limit SG to
only non-family graphs.

For our experiment the set SH is the set of all non-isomorphic connected graphs
with orders 3 to 5. There are a total of 29 such graphs. The set of input graphs SG was
set of all non-isomorphic connected graphs with orders 3 to 9. Table 4 (starting on
page 23) shows our computational result, where n is the order of the input graphs SG
and the row entries represent the number of times a graph (of SH) is minor contained
in the set of connected graphs.

From the computed table, it can be seen that those graphs with large size (number
of edges) or large maximum degree are not popular.

5 Topological Order Containment Problem

In the previous two sections, algorithms are given to solve the subgraph containment
problem and the minor containment problem. In this section, we briefly discuss a
method for solving the topological containment problem. Although the topological
order is not a well partial order in general, it is still very important in combinatorial
graph theory. Since our main focus was on the minor order, here we only discuss one
simple idea about solving the topological containment problem. Recall the definition
of this problem: a graph H is topologically contained in a graph G if a graph isomor-
phic to H can be obtained from G by (1) deleting an isolated vertex, (2) deleting an
edge, or (3) removing any subdivision.

The topological containment problem seems more complex than the minor con-
tainment problem because the edge contraction operation of the topological order
is more restricted. Thus our minor containment algorithm can not be applied di-
rectly for the topological containment problem. To generate all graphs which are
topologically contained in a given graph G, the following method may be used:

i. Taking a subgraph H of G.

ii. If removing some subdivisions of H gives T , then T ≤t G.

Therefore a correct combinatorial algorithm to decide if a graph H is topologically
less than a graph G is presented as follows.

Procedure IsTopologicalOrder (Graph G, Graph H)
repeat

Take a subgraph G′ of G
repeat

Removing a set of subdivisions of G′ yielding a graph T .
if T is isomorphic to H then return true
Restore G′

20

until no other set of subdivisions can be removed
until no other subgraph of G exists
return false

end

The algorithm IsTopologicalOrder clearly runs in exponential time since there
are at least

∑n−k

i=0

(

n

i

)

possible subsets of vertices to consider when producing a sub-
graph G′, where |G| = n and |H| = k. We leave it as an open problem to find a more
practical algorithm.

6 Conclusion

We have developed an usable algorithm for the minor containment problem. Although
it is not theoretically the most efficient, it seems practical for graphs with about 10–
15 vertices. The simple design, based on set partition maps, gives us faith in the
correctness of the algorithm. Hence our generated tables provide a nice correctness
check for future implemented algorithms.

Currently we are using the Graph Template Library (GTL) as our representation
of graphs [FPR99]. Our experience says that we can probably increase the orders
of graphs that IsMinor1 can process by about five more vertices if we use a more
specialized graph data structure.

We finish by mentioning some of the vast directions for future research. The next
natural step would be to develop some “practical” polynomial-time minor contain-
ment algorithms where H is fixed. If this is too hard then one should try focusing
on an algorithm for a class of graphs (e.g. planar graphs). In this respect, we should
implement the known linear-time algorithms for bounded treewidth to see if they
are practical (for small width). Here, an automated procedure could be invoked to
produce an algorithm for each fixed graph H. Lastly, we should also address the
possibility of designing feasible algorithms for the immersion and other partial graph
orders, possibly using direct mappings as we did for our minor containment algorithm.

References

[Bod93] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions
of small treewidth. In Proceedings of the ACM Symposium on the Theory
of Computing, volume 25, 1993.

[CD94] Kevin Cattell and Michael J. Dinneen. A characterization of graphs with
vertex cover up to five. In Vincent Bouchitte and Michel Morvan, editors,
Orders, Algorithms and Applications, ORDAL’94, volume 831 of Lecture
Notes on Computer Science, pages 86–99. Springer-Verlag, July 1994.

21

[CDF95] Kevin Cattell, Michael J. Dinneen, and Michael R. Fellows. Obstructions to
within a few vertices or edges of acyclic. In Proceedings of the Fourth Work-
shop on Algorithms and Data Structures, WADS’95, volume 955 of Lecture
Notes on Computer Science, pages 415–427. Springer-Verlag, August 1995.

[Epp99] David Eppstein. Subgraph isomorphism in planar graphs and related prob-
lems. Journal of Graph Algorithms and Applications, 3(3):1–27, 1999.

[ESI98] Yasser El-Sonbaty and M.A. Ismail. A new algorithm for subgraph optimal
isomorphism. Pattern Recognition, 31(2):205–218, 1998.

[FPR99] M. Forster, A. Pick, and M. Raitner. The graph template library
(GTL) manual. User manual, Universitat Passau, Germany, 1999. See
http://infosun.fmi.uni-passau.de/GTL.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. W. H. Freeman and Company,
1979.

[GLR94] Rajeev Govindan, Michael A. Langston, and Siddharthan Ramachandra-
murthi. A practical approach to layout optimization. Technical report,
Dept. of Computer Science, University of Tennessee, Knoxville, TN 37996–
1301, 1994.

[Kru60] J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vaszsonyi’s con-
jecture. Transactions of American Mathematical Society, 95:210–225, 1960.

[KS99] Donald L. Kreher and Douglas R. Stinson. Combinatorial Algorithms: Gen-
eration, Enumeration, and Search. CRC Press, 1999.

[Lan93] Michael A. Langston. An obstruction-based approach to layout optimiza-
tion. In Contemporary Math, volume 147, pages 623–629, 1993.

[RSa] Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner’s con-
jecture. in progress.

[RSb] Neil Robertson and Paul D. Seymour. Graph Minors. XXIII. Nash-Williams’
immersions conjecture. in progress.

[RS85] Neil Robertson and Paul D. Seymour. Graph Minors – A survey. In Surveys
in Combinatorics, volume 103, pages 153–171. Cambridge University Press,
1985.

[RS90] Neil Robertson and Paul D. Seymour. An Outline of a Disjoint Paths
Algorithm, pages 267–292. 1990. Algorithms and Combinatorics, Volume 9.

[RS95] Neil Robertson and Paul D. Seymour. Graph Minors. XIII. The disjoint
paths problem. Journal of Combinatorial Theory, Series B, 63:65–110, 1995.

22

Table 4: Number of minor containments in connected graphs of order n = 3, 4, . . . , 9.

Graph n: 3 4 5 6 7 8 9 Total

Total number of
connected graphs:

2 6 21 112 853 11117 261080 273191

1 2 6 21 112 853 11117 261080 273191

2 0 5 20 111 852 11116 261079 273183

3 0 4 19 110 851 11115 261078 273177

4 0 0 18 109 850 11114 261077 273168

5 0 0 18 108 849 11112 261075 273162

6 1 4 18 106 842 11094 261033 273098

7 0 3 17 105 841 11093 261032 273091

8 0 0 11 96 833 11091 261049 273080

9 0 0 10 93 826 11073 261008 273010

10 0 0 11 92 819 11055 260972 272949

11 0 0 12 95 816 11033 260883 272839

23

Table 4 (continued): Number of minor containments in connected graphs.

Graph n: 3 4 5 6 7 8 9 Total

Total number of
connected graphs:

2 6 21 112 853 11117 261080 273191

12 0 3 14 96 812 11011 260776 272712

13 0 0 13 95 811 11010 260775 272704

14 0 2 12 89 790 10929 260484 272306

15 0 0 8 80 769 10866 260287 272010

16 0 0 8 76 750 10799 260046 271679

17 0 0 6 67 722 10718 259882 271395

18 0 0 8 72 725 10669 259452 270926

19 0 0 7 70 718 10642 259333 270770

20 0 0 5 59 665 10382 258054 269165

21 0 0 7 62 666 10277 257014 268026

22 0 0 4 47 601 9965 255460 266077

24

Table 4 (continued): Number of minor containments in connected graphs.

Graph n: 3 4 5 6 7 8 9 Total

Total number of
connected graphs:

2 6 21 112 853 11117 261080 273191

23 0 1 6 56 612 9872 253898 264445

24 0 0 4 49 600 9850 253858 264361

25 0 0 5 52 597 9805 253575 264034

26 0 0 3 40 545 9548 252257 262393

27 0 0 3 32 442 8473 241874 250824

28 0 0 2 23 362 7644 232819 240850

29 0 0 1 9 164 4409 175313 179896

25

