Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Finite Element Solution of an Eikonal Equation for Excitation Wavefront Propagation in Ventricular Myocardium

Karl Antony Tomlinson

Supervised by Dr Andrew J. Pullan and Professor Peter J. Hunter

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

Department of Engineering Science
School of Engineering
The University of Auckland
New Zealand

March 2000
Abstract

An efficient finite element method is developed to model the spreading of excitation in ventricular myocardium by treating the thin region of rapidly depolarizing tissue as a propagating wavefront. The model is used to investigate the excitation sequence in the full canine ventricular myocardium.

The solution to an eikonal–curvature equation for excitation time is shown to satisfy a reaction–diffusion equation for the bidomain myocardial model at the wavefront, while the solution to an eikonal–diffusion equation approximately satisfies the reaction–diffusion equation in the vicinity of the wavefront. The features of these two eikonal equations are discussed.

A Petrov–Galerkin finite element method with cubic Hermite elements is developed to solve the eikonal–diffusion equation. The oscillatory errors seen when using the Galerkin weighted residual method with high mesh Péclet numbers are avoided by supplementing the Galerkin weights with C^0 continuous functions based on derivatives of the interpolation functions. The ratio of the Galerkin and supplementary weights is a function of the Péclet number such that, for one-dimensional propagation, the error in the solution is within a small constant factor of the optimal error achievable in the trial space. An additional no-inflow boundary term is developed to prevent spurious excitation initiating on the boundary. The need for discretization in time is avoided by using a continuation method to gradually introduce the non-linear term of the governing equation. A small amount of artificial diffusion is sometimes necessary.

Simulations of excitation are performed using a model of the anisotropic canine ventricular myocardium with 2355 degrees of freedom for the dependent variable, and results are compared with reported experimental observations. When it was assumed that Purkinje fibres influence propagation only on the endocardial surface, excitation of the entire myocardium was completed in 56 ms. Altering material parameters to represent penetration of the Purkinje fibres beneath the left endocardial surface reduced the completion time to 48 ms. Modelling the effects of the laminar structure of myocardium by reducing the propagation speed by 40% in the direction normal to the layers delayed completion of excitation by only 4%.
Acknowledgements

This work is in many ways a result of the efforts of a team of people, many of whom I have not even met. I am fortunate to have had the base of anatomical data and the foundations of CMISS from previous researchers in the Bioengineering Research Group, as well as the continued support and input of the more recent members of the group.

I have enjoyed working in the Department of Engineering Science and with the members of the Bioengineering Research Group from the Department of Physiology. The staff have always been available to help when I have requested their assistance. I am most grateful for the efforts of my supervisors, Andrew Pullan and Peter Hunter. They have provided guidance, motivation, inspiration, and friendship throughout the course of this work, and I look forward to working with them in the future.

The many graduate students I have had the pleasure of getting to know over the past few years have contributed to a cooperative and enjoyable work environment. Thanks in particular to Mark Trew and Nic Smith who have helped me even when under pressure themselves. Chris Bradley also has given his valuable time to help me when CMISS was not making sense. I am grateful to Adrian Croucher for sharing his understanding of the issues involved in numerical solution of the advection–diffusion equation. Carey Stevens and Martin Buist helped me considerably in my early days with CMISS and I have valued Leo Cheng’s understanding of programming issues.

I am appreciative of the work of Richard Christie, Shane Blackett, and David Bullivant on the graphics software that was used in analysis of results and in producing many of the figures included in this thesis.

I am grateful for the scholarship support provided at various stages of the program by the University of Auckland, Auckland UniServices Limited, IBM New Zealand Limited, and the William Georgetti Trust.

Thanks to my family and friends for believing in me, and for their love.

Finally, I would like to acknowledge the creator of our inexhaustibly explorable world. Without Jesus Christ sustaining the Universe this work would not have been possible.
Contents

List of Figures xi
List of Tables xiii
Glossary of Symbols xv
Notation xxi

Chapter 1 Introduction 1

Chapter 2 A Model of Myocardial Behaviour 5
2.1 The Bidomain Model ... 6
 2.1.1 Governing Equations 6
 2.1.2 Dimensional Analysis 9
 2.1.3 One Dimensional Propagation 12
 2.1.4 Equal Anisotropy Approximation 14
2.2 The Need for an Eikonal Approach 16
2.3 Eikonal Equation Derivations 18
 2.3.1 Change of Variables 18
 2.3.2 Solution at the Wavefront 20
 2.3.3 Weighted Integral Solution 21
2.4 Comparison of Eikonal Equations 26
 2.4.1 Ellipsoidal Wavefronts 29
 2.4.2 Boundary Effects 31
 2.4.3 Summary .. 33
2.5 Numerical Solution of an Eikonal Equation 34
 2.5.1 Comparison with the Advection–Diffusion Equation 35
 2.5.2 Previous Approaches 36
Chapter 3 A Galerkin Finite Element Method 41

3.1 Interpolation .. 41
 3.1.1 Lagrange Basis Functions 42
 3.1.2 Hermite Basis Functions 44
3.2 Galerkin Weighted Residual Equations 46
 3.2.1 Poisson Equation 46
 3.2.2 Eikonal Equation 48
3.3 Boundary Conditions for Wavefront Initiation 49
 3.3.1 Mesh Discretization 49
 3.3.2 Point Initiation 50
3.4 Gaussian Quadrature 53
3.5 Numerical Continuation 54
 3.5.1 Selecting a Continuum of Equations 55
 3.5.2 Implementation 56
3.6 Quality of Numerical Results 57
3.7 Error Norm Analysis 59
 3.7.1 Solution Spaces 60
 3.7.2 One-Dimensional Error Bound 61
3.8 Difference Equation Analysis 64
 3.8.1 Convergence 66
 3.8.2 Error Transport 69

Chapter 4 Alternative Finite Element Methods 73

4.1 The Least Squares Finite Element Method 73
4.2 The Petrov–Galerkin Finite Element Method 76
4.3 Stabilizing Terms 79
 4.3.1 Artificial Diffusion 79
 4.3.2 Higher Order Stabilizing Terms 81
4.4 Summary ... 87

Chapter 5 A Petrov–Galerkin Finite Element Method 89

5.1 Selection of Weighting Functions 89
 5.1.1 Approximate Symmetrization 90
 5.1.2 One-Dimensional Optimal Weighting Functions . 93
 5.1.3 One-Dimensional Approximate Symmetrization . 99
5.1.4 Extension to Three Dimensions .. 105
5.2 No-Inflow Boundary Condition ... 112
 5.2.1 Inflow Boundaries .. 112
 5.2.2 Evolution Without Diffusion 114
 5.2.3 A No-Inflow Boundary Term 116
5.3 Summary of the Method .. 121

Chapter 6 Myocardial Geometry, Structure,
and Material Parameters .. 123
 6.1 A Model of Myocardial Geometry 123
 6.2 Myocardial Fibre and Sheet Structure 126
 6.3 Dependent Variable Discretization 130
 6.4 Material Parameters .. 133
 6.4.1 Resistivities .. 134
 6.4.2 Space Constants .. 140
 6.4.3 Time Constant .. 141
 6.4.4 Propagation Speeds ... 144
 6.4.5 Selection of Parameters 145

Chapter 7 Simulations .. 147
 7.1 Epicardial Point Stimulation 147
 7.2 Stimulation from the Purkinje Network 151
 7.2.1 The Purkinje Network .. 151
 7.2.2 Numerical Stability ... 153
 7.2.3 Comparison with Experimental Observations 159
 7.3 Penetration of Purkinje Fibres 162
 7.4 Effects of Sheet Structures 165

Chapter 8 Further Work ... 169
 8.1 Artificial Diffusion .. 170
 8.2 Improving Numerical Stability 171
 8.2.1 Treatment of the Evolution Term 171
 8.2.2 Existence of a Solution to the Non-Linear System 172
 8.3 Developing A Model of the Far-Field Potential 173
 8.4 Extensions to the Ventricular Model 175
Chapter 9 Conclusions 177

Appendix A Step-Function Point Current Source in a Passive Bidomain with Equal Anisotropy 181

References 191
List of Figures

2.1 Planar wave propagation speeds predicted by the bidomain model and its monodomain approximation. .. 16
2.2 Comparison of magnitudes of e^{-ct^2} and τe^{-ct^2} with $\frac{dt}{dt}$ for $\alpha = 0.5$. 24
2.3 Dimensionless propagation speeds of a small ellipsoidal wavefront, as specified by two eikonal equation variants. 30
2.4 Eikonal and reaction–diffusion equation solutions for excitation initiated at the left hand end of tissue four space constants in length. 32
3.1 One-dimensional linear Lagrange interpolation functions. 43
3.2 One-dimensional cubic Hermite interpolation functions. 45
3.3 Demonstration of the effect that modification of the diffusion term in the eikonal equation near a point initiation has on Galerkin solutions. 53
3.4 Excitation time solutions on an 8 mm square slice of tissue. 58
3.5 Galerkin solutions for excitation time on an annulus. 59
4.1 Numerical solution from a Galerkin method stabilized by a derivative discontinuity term for a length of tissue stimulated at both ends. 86
5.1 Optimal weighting functions w_{ik}^{D} and w_{ik}^{1*} for $1 \leq i \leq N$. 96
5.2 Optimal weighting function w_{ik}^{1*} near the Dirichlet boundary. 96
5.3 Localized optimal weighting functions w_{ik}^{D} and w_{ik}^{1*} for $1 \leq i \leq N$. 98
5.4 Localized optimal weighting function w_{ik}^{1*} near the Dirichlet boundary. 98
5.5 Comparison of estimated error factors with $\frac{\Delta x}{A_0}$ given by the simplified expression (5.34) and the optimal expression (5.29). 104
5.6 Comparison of estimated error factors with $\frac{\Delta x}{A_0}$ determined by the derivative-limited expressions (5.45) and the optimal expression (5.29). 111
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>Excitation contours calculated by the Petrov–Galerkin method for a slice of tissue stimulated unevenly at the left hand edge.</td>
<td>113</td>
</tr>
<tr>
<td>5.8</td>
<td>Excitation contours calculated by the Petrov–Galerkin method with γ_0 defined by (5.61) in the additional boundary term (5.57).</td>
<td>120</td>
</tr>
<tr>
<td>5.9</td>
<td>Excitation contours calculated by the Petrov–Galerkin method with γ_0 defined by (5.67) in the additional boundary term (5.57).</td>
<td>121</td>
</tr>
<tr>
<td>6.1</td>
<td>Fitted left ventricular endocardial surface.</td>
<td>125</td>
</tr>
<tr>
<td>6.2</td>
<td>Fitted right ventricular endocardial surface.</td>
<td>125</td>
</tr>
<tr>
<td>6.3</td>
<td>Fitted epicardial surface.</td>
<td>125</td>
</tr>
<tr>
<td>6.4</td>
<td>\mathbb{Q}-element geometric model of the ventricular myocardium.</td>
<td>127</td>
</tr>
<tr>
<td>6.5</td>
<td>Sample fibre and sheet orientations in the model of the ventricular myocardium.</td>
<td>129</td>
</tr>
<tr>
<td>6.6</td>
<td>Regions of the mesh where C^1 continuity in U is not enforced.</td>
<td>131</td>
</tr>
<tr>
<td>7.1</td>
<td>Simulated epicardial excitation times after epicardial point stimulus.</td>
<td>148</td>
</tr>
<tr>
<td>7.2</td>
<td>Wavefront locations in simulation of propagation from an epicardial point stimulus.</td>
<td>149</td>
</tr>
<tr>
<td>7.3</td>
<td>Stimulation times on the portions of the endocardial surfaces that are stimulated by the Purkinje network.</td>
<td>153</td>
</tr>
<tr>
<td>7.4</td>
<td>Wavefront propagation for excitation initiated by the Purkinje network, from a simulation with $\alpha_c = 0.94$.</td>
<td>154</td>
</tr>
<tr>
<td>7.5</td>
<td>Wavefront propagation for excitation initiated by the Purkinje network, from a simulation with $\alpha_c = 0.5$.</td>
<td>157</td>
</tr>
<tr>
<td>7.6</td>
<td>Simulated epicardial excitation times for Purkinje fibre stimulation.</td>
<td>161</td>
</tr>
<tr>
<td>7.7</td>
<td>Wavefront propagation with penetration of Purkinje fibres.</td>
<td>164</td>
</tr>
<tr>
<td>7.8</td>
<td>Epicardial excitation times (ms) with different conductivities for the direction normal to sheets.</td>
<td>166</td>
</tr>
<tr>
<td>7.9</td>
<td>Wavefront propagation with reduced conductivity in the direction normal to sheets.</td>
<td>167</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Summary of the two eikonal equations proposed for modelling myocardial excitation wavefront propagation. ... 33

5.1 Comparison of calculated and estimated one-dimensional error factors. 102

6.1 Summary of ventricular surface fitting. .. 126
Glossary of Symbols

A scalar constant.
\(A \) set of possible vectors \(\mathbf{a} \) for the spread of excitation.
\(A_0 \) coefficient of \(w_0 \) in \(w_k \).
\(A_\infty \) coefficient of \(w_\infty \) in \(w_k \).
\(A_b \) multiplier in no-inflow boundary term.
\(\mathbf{a} \) vector for the spread of excitation or velocity field for advection.
\(\mathbf{a}_k \) error transport eigenvector.
\(\mathbf{a}_l \) fibre (or longitudinal) direction.
\(\mathbf{a}_n \) direction normal to sheets.
\(\mathbf{a}_t \) direction transverse to fibres within sheets.

B scalar constant.
\(B(v, w) \) form representing the left hand side of the weighted residual equations.
\(B_S(v, w) \) symmetric part of \(B(v, w) \).

\(C_m \) membrane capacitance per unit area.
\(c_m \) membrane capacitance per unit volume.
\(c_0 \) dimensionless propagation speed for a planar wavefront in homogeneous tissue.

\(D \) set of numbers for parameters that are known from Dirichlet boundary conditions.

\(e_p^r \) coefficient of \(h_p \) in the power series expansion of error in \(U_i^r \).

\(e_p^{(n)} \) \(n \)th derivative of \(e_p^r \).

\(e_p \) coefficient of \(h_p \) in the power series expansion of error in \(U_i \).

\(f_{\|} \) fraction of cross-sectional area normal to \(\mathbf{a}_l \) occupied by intracellular space.
\(f_{1}, f_{2} \) unknown scalar functions.

\(f_{\text{IIN}} \) ionic activity function (dimension of voltage).
\(G^e \) extracellular effective conductivity tensor.
\(G^i \) intracellular effective conductivity tensor.
\(G^o \) conductivity tensor outside the myocardium.
\(g^e_{01}, g^e_{02}, g^e_{03} \) principal extracellular effective conductivities for directions \(\alpha_1, \alpha_2, \) and \(\alpha_3. \)
\(g^i_{01}, g^i_{02}, g^i_{03} \) principal intracellular effective conductivities for directions \(\alpha_1, \alpha_2, \) and \(\alpha_3. \)

\(H^p(\Omega) \) space of functions for which the squares of derivatives up to order \(p \) may be integrated over \(\Omega. \)

\(H^1_D \) space of functions in \(H^1(\Omega) \) satisfying the Dirichlet boundary conditions.

\(H^1_{0D} \) space of functions in \(H^1(\Omega) \) equal to zero on \(\Gamma_D. \)

\(h \) element length.

\(h_1, h_2, h_3 \) reference vectors for specification of \(\alpha_1, -\alpha_3, \) and \(\alpha_2. \)

\(I \) total applied current.

\(I_{\text{mem}} \) ionic membrane current per unit membrane area.

\(i_{\text{app}} \) applied extracellular current per unit tissue volume.

\(i_{\text{mem}} \) ionic membrane current per unit volume.

\(i_{\text{m}} \) transmembrane current per unit tissue volume.

\(j_e \) extracellular current density.

\(j_i \) intracellular current density.

\(j_o \) current density outside the myocardium.

\(K_{\text{Galer}} \) constant in Galerkin error bound.

\(k_{\text{Poincare}} \) constant in Poincaré bound.

\(k_{\text{c}} \) constant for \(\zeta. \)

\(L \) domain length or characteristic distance.

\(N \) number of nodes.

\(N \) set of parameter numbers not in \(D. \)

\(n \) normal to the boundary.

\(n^\nu \) normal to the boundary in the natural coordinate system.

\(O(h^p) \) terms involving powers of \(h \) order \(p \) and higher.

\(P_e \) mesh Pécel number.

\(P^b_e \) mesh Pécel number at the boundary.
GLOSSARY OF SYMBOLS

P_g global Péclet number.

p_S piecewise polynomial function for modification of the diffusion term near a singularity.

p_ζ piecewise polynomial function for ζ.

p direction of propagation (normal to the wavefront).

R_m reciprocal of membrane conductance per unit area.

R_S Riesz representer.

r_{el}, r_{in}, r_m principal extracellular effective resistivities for directions a_1, a_4, and a_6.

r_{II}, r_{I}, r_m principal intracellular effective resistivities for directions a_2, a_4, and a_{III}.

r, r_{I}, r_{II} bulk tissue resistivities for directions a_1, a_4, and a_{III}.

r_m reciprocal of membrane conductance per unit volume.

\bar{r}_m spatially averaged value of r_m.

r_b residual for no-inflow boundary term.

$S \equiv \left(\frac{\partial y}{\partial \xi} \right)^{-1}.$

S_D^h trial space.

S_D^h space of possible variation within S_D^h.

$s \equiv S(\xi, 0)$.

T coordinate transformation function, $T(\xi, \tau) = t$.

T^h test space.

T^{h*} optimal test space.

t time.

U numerical approximation of u.

U^* optimal approximation to u in S_D^h.

U_i ith parameter determining U.

U_{ij}^{pqr} parameter at node j corresponding to U differentiated $p, q,$ and r times with respect to $\xi_1, \xi_2,$ and ξ_3, respectively.

U_i vector of parameters for U at node i.

\hat{U}_D sum of terms for U that are determined by Dirichlet boundary conditions.

u excitation time.

\bar{u}_D Dirichlet boundary condition value.

V_{el} jump in extracellular potential across a wavefront propagating along fibres.

V_{el} jump in extracellular potential across a wavefront propagating transverse to fibres.
GLOSSARY OF SYMBOLS

V_p plateau transmembrane potential.
V_r resting transmembrane potential.
V_{m} transmembrane potential.
v_{in} transmembrane potential $v_{in}(r)$.

w_i finite element weighting function corresponding to parameter i.
\hat{w}_i^* optimal weighting function corresponding to parameter i.
w_{∞} weight terms based on w_i^* when P_c approaches 0 and ∞.
$w_{\hat{c}}^p$ finite element weighting function corresponding to derivative p at node i.
\hat{w}_i^p optimal weighting function corresponding to derivative p at node i.
\hat{w}_i^{p*} localized optimal weighting function corresponding to derivative p at node i.
$w_{\infty}^p, w_{\hat{c}}^p$ weight terms based on \hat{w}_i^{p*} when P_c approaches 0 and ∞.
\hat{w}_i^p Petrov–Galerkin supplementary weighting function corresponding to parameter i.
\hat{w}_i^p supplementary weighting function corresponding to derivative p at node i.

\hat{r} position in space.

α a positive scalar.
α_{∞} constant for smoothing w_{∞}.
$\alpha_{\hat{r}}$ constant for smoothing $r_{\hat{r}}$.
α_c continuation variable.
α_e ratio of M to M^e for equal anisotropy.
α_q ratio of M to M^q for equal anisotropy.
α_i multiplier in Petrov–Galerkin supplementary weighting functions.
$\alpha_{\hat{c}}^p$ multiplier in supplementary weighting functions corresponding to derivative p.

β coefficient of artificial diffusion or stabilizing term.
β_p coefficient of artificial diffusion term corresponding to derivative p.

Γ_D portion of the boundary on which Dirichlet boundary conditions are applied.
Γ_N $\partial\Omega = \Gamma_D$.
γ ratio of first to second derivative coefficients in the one-dimensional eikonal equation.

Δ_S constant determining test space performance.
ϵ_k coefficients of error transport eigenfunctions.
\(\zeta \) multiplier in \(w_{\infty} \) to ensure that \(w_i \in H_{\Omega}^1 \).

\(\theta \) propagation speed.

\(\theta, \theta_l, \theta_n \) propagation speeds in directions \(a_l, a_e, \) and \(a_n \).

\(\lambda \) space constant.

\(\lambda_k \) error transport eigenvalue.

\(\lambda_{\xi l}, \lambda_{\xi e}, \lambda_{\xi n} \) singular values of \(M^\xi \) corresponding to eigenvectors \(a_l, a_e, \) and \(a_n \).

\(\lambda_{\xi l}, \lambda_{\xi e}, \lambda_{\xi n} \) singular values of \(M^i \) corresponding to eigenvectors \(a_l, a_e, \) and \(a_n \).

\(\lambda_{\xi l}, \lambda_{\xi e}, \lambda_{\xi n} \) space constants for directions \(a_l, a_e, \) and \(a_n \).

\(M \) effective coupling tensor.

\(M^e \) extracellular coupling tensor.

\(M^i \) intracellular coupling tensor.

\(M^\xi \) \(\xi \)-coordinate based coupling tensor.

\(\mu_{ij} \) component of \(M \).

\(\mu_{iir} \) component of \(M^\xi \).

\(\bar{\mu}^\xi \) average of the diagonal components of \(M^\xi \).

\(\nu \) function mapping element-local parameter numbers to global parameter numbers.

\(\xi \) (Chapter 2) position in space. \(\xi = x \) but \(\frac{\partial}{\partial \xi_a} \) is a derivative with \(\tau \) held constant.

\(\xi \) (Chapters 3,5,6) element-local coordinate system.

\(\xi_a \) component of \(\xi \).

\(\sigma_{ll} \) intracellular specific conductivity for the fibre direction.

\(\tau \) scalar function \(\tau(x,t) \) defined such that \(V_{\text{int}}(x,t) = v_{\text{int}}(\tau) \).

\(\tau_f \) time constant of the early exponential rise in the foot of an action potential.

\(\tau_{\text{in}} \) membrane time constant.

\(\nu \) local natural coordinate system.

\(\nu_p \) component of \(\nu \).

\(\phi_e \) extracellular potential.

\(\phi_l \) intracellular potential.

\(\phi_{\text{ПМД}} \) potential in a monodomain.

\(\phi_o \) potential outside the myocardium.

\(\varphi_e \) extracellular potential \(\varphi_e(\tau) \).
GLOSSARY OF SYMBOLS

χ ratio of membrane surface area to volume of tissue.

Ψ element-local basis functions.

ψi interpolation function corresponding to parameter i.

ψi interpolation function corresponding to derivative p at node i.

Ω domain of interest.

∂Ω boundary of Ω.

Ωe domain of element e.

∂Ωe boundary of element e.
Notation

- The \(\equiv \) symbol denotes definition.
- Repeated indices imply summation over all values of the index unless explicitly stated:
 \[a_i \phi_i \equiv \sum_i a_i \phi_i. \]
- A following prime denotes differentiation: for \(u \coloneqq u(x) \), \(u' \equiv \frac{du}{dx} \).
 Higher derivatives are denoted by multiple following primes or by a superscript in parentheses:
 \[u^{(4)} \equiv \frac{d^4u}{dx^4}. \]
- A subscript on a differentiation operator indicates the coordinate system in which the
 differentiation is performed: \(\nabla_\nu u \) is the gradient of \(u \) with respect to \(\nu \) coordinates.
- Angle brackets indicate an inner product over the domain \(\Omega \): \(\langle u, v \rangle \) is the inner product of \(u \) and \(v \).