
CDMTCS

Research

Report

Series

Tracing

Lazy Functional Languages

Jeremy Gibbons and

Keith Wansbrough

Department of Computer Science

University of Auckland

CDMTCS-006

August 1995

Centre for Discrete Mathematics and

Theoretical Computer Science

Tracing Lazy Functional Languages

Jeremy Gibbons and Keith Wansbrough

Department of Computer Science

University of Auckland

Private Bag 92019

Auckland, New Zealand

fjeremy,kwan01g@cs.auckland.ac.nz

Abstract

We argue that Ariola and Felleisen's and Maraist, Odersky and Wadler's axioma-

tization of the call-by-need lambda calculus forms a suitable formal basis for tracing

evaluation in lazy functional languages. In particular, it allows a one-dimensional

textual representation of terms, rather than requiring a two-dimensional graphical

representation using arrows. We describe a program LetTrace, implemented in

Gofer and tracing lazy evaluation of a subset of Gofer.

Keywords Functional programming, tracing, call-by-need, lambda calculus,
lazy evaluation.

1 Introduction

One major advantage of pure, and especially lazy, functional languages over more

conventional imperative languages is in not having to directly and completely spec-

ify the order of execution of a program. Leaving execution order unspeci�ed allows

the compiler or interpreter to perform transformations on the code, changing the
order of execution and perhaps even executing parts of the program in parallel.

In Proceedings of CATS'96 (Computing: The Australasian Theory Symposium), Melbourne, Aus-

tralia, January 1996, and Massey Functional Programming Workshop, Palmerston North, New

Zealand, February 1996.

However, when it comes to debugging a program, this feature turns into a dis-

advantage. In a more conventional language, one can `trace' execution by inserting

write statements in interesting places in order to monitor what is happening. More

sophisticated tracing systems provide step-by-step execution of statements together

with an animation consisting of the program text and a pointer to the `current state-

ment'. This approach does not work in a pure functional language, because there

is no direct connection between the order of a program's text and the order of that

program's execution. Indeed, in a lazy functional language, the same program with

the same input may display di�erent execution orders depending on what is done

with the output.

Because pure functional languages are free of side-e�ects, the programmer can-

not use the write-statement approach. Augustsson and Johnsson [5] describe the

addition to a pure lazy functional language of an impure primitive trace with two

arguments, which returned the �rst argument as result but printed the value of the

second as a side-e�ect. They observe that `it generally turned out to be very di�-

cult to decipher the output from this, since quite often (due to lazy evaluation) the
evaluation by trace of its arguments caused other instances of trace to be evaluated.

The result was a mish-mash of output from di�erent instances of trace.'
The essential problem is that running a purely functional program does not

consist of step-by-step execution of statements, as in a conventional language, but
rather consists of reducing an expression to normal form. The result of tracing,
therefore, should not be the sequence of statements executed; rather, it should be

the sequence of intermediate terms through which the expression is transformed.
Producing such a sequence of intermediate terms entails having a calculus rich

enough to model these terms and their reductions. Plotkin [18] shows that the
call-by-value lambda calculus, in which an argument to a function is evaluated
before being substituted into the function body, is a good model for a call-by-
value functional language, and that the call-by-name lambda calculus, in which the

argument is substituted before it is evaluated, is a good model of a call-by-name
language. However, there is more to a lazy functional language than just call-by-
name parameter passing; in particular, multiple copies of an argument are shared,
and the argument is evaluated at most once and subsequently reused if necessary.
Although the call-by-name lambda calculus accurately models the semantics (the

relationship between a program and its �nal value) of lazy evaluation, it does not
accurately model the pragmatics (the evaluation process by which this relationship

is achieved).
Ariola, Felleisen, Maraist, Odersky and Wadler [2, 3, 15] have developed a call-

by-need lambda calculus that does accurately model the sharing of arguments in

lazy evaluation; Wadler reported on the work at Cats'94 [24]. We claim that
this call-by-need lambda calculus makes a good vehicle for tracing evaluation in a
lazy functional language. In particular, this calculus provides a one-dimensional,

2

Syntactic domains:

Variables x; y; z

Values V;W ::= x j �x:M

Terms L;M;N ::= V jM N j let x be M in N

Reduction rules:

(Let-I) (�x:M)N
name

��+ let x be N in M

(Let-E) let x be N in M
name

��+ M [x := N]

Figure 1: The call-by-name calculus

textual representation of terms, rather than requiring a two-dimensional graphical

representation.

The rest of this paper is structured as follows. In Section 2 we review the call-by-
name lambda calculus and introduce the call-by-need calculus; this material is not
new [2, 3, 6, 8, 15, 24]. In Section 3 we describe the implementation of a program
to perform evaluation in the call-by-need lambda calculus. Finally, in Section 4 we
present some possible future extensions and discuss related work.

2 Lambda calculi

The call-by-need lambda calculus is most naturally presented by augmenting the
standard lambda calculus syntax of variables, lambda abstractions and function

applications with an extra piece of syntax, the let-expression. In order to make
clear the parallels with the call-by-name calculus, we will �rst review the latter also
augmented with let-expressions.

We write fv (M) for the set of free variables of a termM . We write M [x := N]
for the substitution of term N for all free occurrences of variable x in termM . We

assume Barendregt's variable convention [6]: in a term, all the bound variables are
chosen to be di�erent from the free variables.

In an applicationM N , we callM the function part and N the application part.

In a let-expression let x be M in N , we call x the variable, M the de�nition and N
the body.

2.1 The call-by-name calculus

The syntactic domains and reduction rules of the call-by-name calculus are given
in Figure 1. The set of variables is countably in�nite. Values are those terms that

cannot be further reduced. Rule Let-I introduces a let-expression, and rule Let-E

3

(�x:x x) ((�y:y) (�z:z))

(Let-I)
name

��! let x be ((�y:y) (�z:z)) in xx

(Let-E)
name

��! ((�y:y) (�z:z)) ((�y:y) (�z:z))

(Let-I)
name

��! (let y be �z:z in y) ((�y:y) (�z:z))

(Let-E)
name

��! (�z:z) ((�y:y) (�z:z))

(Let-I)
name

��! let z be (�y:y) (�z:z) in z

(Let-E)
name

��! (�y:y) (�z:z)

(Let-I)
name

��! let y be �z:z in y

(Let-E)
name

��! �z:z

Figure 2: A call-by-name reduction sequence

eliminates it in favour of substitution. Note that a let-expression is here essentially
just a stepping stone between an application and the corresponding substitution.

A context is just a term with a single hole|denoted []|in place of one of the
subterms. In the case of our lambda calculus with let-expressions, the contexts are
de�ned by the grammar

Contexts C ::= [] j �x:C j CM jM C j let x be C in M j let x be M in C

We write C[M] for the context C[] with the hole �lled by the termM ; we call the
whole thing a �lled context. (Note that a variable free in M may become bound
in C[M].) A �lled context may be thought of as a term with one of the subterms
`marked'. We say termN corresponds to �lled context C[M], and write N � C[M],
if N is the term obtained by forgetting the mark in C[M]|that is, if replacing the

hole in the context C[] by the termM yields N .
We write

name

��! for the compatible closure of
name

��+ (that is, the least relation
name

��! that includes the original relation
name

��+ and is closed under the implication
M

name

��! N) C[M]
name

��! C[N]).
Figure 2 gives an example reduction sequence in the call-by-name calculus.

Notice that the argument (�y:y) (�z:z) gets reduced twice.

2.2 Standard reduction

The reduction rule
name

��! is not deterministic, since (for example) the term

((�y:y) (�z:z)) ((�y:y) (�z:z))

reduces under
name

��! to both

(let y be �z:z in y) ((�y:y) (�z:z))

4

and

((�y:y) (�z:z)) (let y be �z:z in y)

Although the reduction rule
name

��! is conuent|di�erent orders of reduction cannot

yield di�erent normal forms|there are terms with both �nite and in�nite reduction

sequences. Thus,
name

��! does not provide an accurate model of deterministic program

execution.

In order to provide such a model, we de�ne a deterministic restriction of
name

��!,

called standard reduction and written
name

7��!. A convenient way of formulating stan-

dard reduction is to use evaluation contexts [8], a subset of the contexts of the

calculus.

The idea behind evaluation contexts is to relate a term N to one or more �lled

contexts Ci[Mi] (that is, N � Ci[Mi]) in such a way that at most oneMi is reducible

under
name

��+; standard reduction then reduces this particular subterm of N .

For the call-by-name lambda calculus with let-expressions, the evaluation con-

texts are de�ned by the grammar

EContexts E ::= [] j EM

We can rephrase this de�nition in terms of the question, \Which subterms of a

term can I mark to get a �lled evaluation context?" The answer to the question
de�nes evaluation contexts:

� you can always mark the whole term;

� if the term is an application M N , you can mark in it anything you could
mark in the function part M alone.

We say that term M standard reduces to term M 0, written M
name

7��! M 0, i� M �
E[N], M 0 � E[N 0] and N

name

��+ N 0. It is not hard to prove the Unique Evaluation

Context Lemma for the call-by-name calculus:

Lemma 1 For a given term N , there is at most one �lled evaluation context C[M]
such that N � C[M] and M is reducible under

name

��+.

Hence, a term has at most one standard redex, and the standard reduction
name

7��! is
a partial function.

Closed terms in the calculus correspond to programs, and execution of a program

corresponds to repeatedly reducing the standard redex until the whole term becomes

irreducible (has no standard redex), at which point it will be a value.

5

(Let-I) (�x:M)N
need

��+ let x be N in M

(Let-V) let x be V in C[x]
need

��+ let x be V in C[V]

(Let-A) let y be (let x be L in M) in N
need

��+ let x be L in (let y be M in N)

(Let-C) (let x be L in M)N
need

��+ let x be L in (M N)

(Let-G) let x be M in N
need

��+ N if x 6= fv (N)

Figure 3: Call-by-need reduction rules

2.3 The call-by-need calculus

As we have seen, reduction in the call-by-name calculus does not correspond to lazy

evaluation, because the argument to a function may get reduced more than once.

The call-by-need1 calculus [2, 3, 15] resolves this discrepancy.
The four syntactic domains Variables, Values, Terms and Contexts of

the call-by-need calculus are the same as for call-by-name. The reduction rules,
given in Figure 3, are however a little more complex.

� The �rst rule, Let-I (for `let introduction'), is the same as for the call-by-
name calculus (indeed, we presented the call-by-name calculus in an uncon-
ventional way just to make this so).

� The second rule, Let-V, corresponds to the Let-E rule of the call-by-name
calculus. However, it only applies when the de�nition is (or has been reduced
to) a value|hence the name. In this way, an argument is not substituted into

a function body until it has been reduced to a value, and hence is reduced at
most once. Note that this rule replaces only one occurrence of the variable;
in general, replacing all occurrences will involve several applications of the
rule, and then an application of the Let-G rule (see below) to remove the
now-redundant let binding. Maraist et al. [14] give a rule closer to the call-by-

name Let-E rule, replacing all free occurrences of the variable and removing

the let binding all at once.

� The third rule, Let-A, turns left-nested let bindings into right-nested ones.

To see why it is needed, consider for example the term

(�f:f I (f I)) ((�z:�w:z w) (I I))

1It would be nice to call it the `lazy lambda calculus', but unfortunately that name has already

been taken by Abramsky and Ong [1]|ironically, for a call-by-name rather than a call-by-need

calculus.

6

(writing I for �x:x). After two applications of Let-I this reduces to

let f be (let z be I I in �w:z w) in f I (f I)

We cannot substitute the de�nition of f into the body of the expression,

because that would duplicate the unreduced I I in the de�nition of z. Nor can

we reduce the I I, because we do not know yet that we need it. The solution

is to reassociate the bindings using the Let-A rule (hence the name), yielding

let z be I I in let f be �w:z w in f I (f I)

Now the redex I I will be reduced just once, despite f appearing twice in the

result.

� The fourth rule, Let-C, is needed for a similar reason. Consider for example

the term

(let z be I I in �w:z w) I

We want to associate the abstraction �w:z w with its argument I, but the two

are not adjacent. The solution in this case is to allow let bindings to commute
(hence the name) with application, giving

let z be I I in (�w:z w) I

� The �nal rule, Let-G (for `garbage collection'), discards redundant let bind-
ings.

The grammar of contexts for the call-by-need calculus is the same as for the

call-by-name calculus; however, the evaluation contexts are di�erent. As with the
call-by-name calculus, the evaluation contexts include the whole term, and the
function part of an application:

E;E0 ::= [] j EM

Function bodies should be reduced before arguments are substituted, so also the
body of a let-expression is an evaluation context:

E;E0 ::= � � � j let x be M in E

Finally, if the term is a let-expression whose body is an evaluation context �lled
with the de�ned variable, then the de�nition of the variable is needed for further
progress, and so must be reduced:

E;E0 ::= � � � j let x be E in E0[x]

Thus, we de�ne the evaluation contexts for the call-by-need calculus by

7

(Let-I) (�x:M)N
need-s

���+ let x be N in M

(Let-V) let x be V in E[x]
need-s

���+ let x be V in E[V]

(Let-A) let y be (let x be L in A) in E[y]
need-s

���+ let x be L in (let y be A in E[y])

(Let-C) (let x be L in A)N
need-s

���+ let x be L in AN

Figure 4: Standard call-by-need reduction

EContexts E;E0 ::= [] j EM j let x be M in E j let x be E in E0[x]

Again, we can rephrase this de�nition in terms of the question, \Which subterms of

a term can I mark to get a �lled evaluation context, in the call-by-need calculus?"

The answer, de�ning evaluation contexts, is:

� you can always mark the whole term;

� if the term is an application M N , you can mark in it anything you could
mark in the function part M alone;

� if the term is a let-expression let x be M in N , you can mark in it anything
you could mark in the body N alone;

� if the term is a let-expression let x be M in N , and you could mark an occur-
rence of the variable x in the body N alone, then you can mark in the whole
anything you could mark in the de�nition M alone.

Unfortunately, this de�nition of evaluation contexts does not provide a Unique
Evaluation Context Lemma for the call-by-need calculus. For example, in the term

let x be V in let y be W in x y

both let-expressions are markable and reducible under need��+; we could substitute

either x or y �rst.
We resolve this by directly de�ning a deterministic restriction of

need

��+. We

introduce a new syntactic category, Answers:

Answers A ::= V j let x be M in A

Thus, an answer is a value (that is, a variable or an abstraction) wrapped up in zero
or more let bindings. We then de�ne the restriction

need-s

���+ of
need

��+, as in Figure 4.
Now the rules Let-V and Let-A only apply if an occurrence of the variable is

markable in the body (and so the de�nition of the variable is needed in order to

8

Syntactic domains:

Operators p

Constructors kn (of arity n)

Values V;W ::= x j �x:M j p j kn V1 : : : Vn

Terms L;M;N ::= V jM N j let x be M in N

EContexts E;E0 ::= [] j EM j let x be M in E j

let x be E in E0[x] j pE

Reduction rules:

�-V p V
need-s

���+ �(p; V) if �(p; V) de�ned

�-A p (let x be M in N)
need-s

���+ let x be M in pN

Figure 5: Adding constructors and primitive operators

make progress), and Let-A only applies if further the de�nition of y is an answer;

the Let-C rule only applies if the body of the let-expression is an answer.
It is now possible|but tedious|to prove the Unique Evaluation Context Lemma

for the call-by-need calculus [3, Lemma 4.2]:

Lemma 2 For a given term N , there is at most one �lled evaluation context C[M]
such that N � C[M] and M is reducible under

need-s

���+.

Hence, standard reduction
need

7��!, the closure of the relation
need-s

���+ under the impli-
cation M

need

7��! N) E[M]
need

7��! E[N], is a partial function.

2.4 Constructors and primitive operators

Most `real' functional languages augment the pure lambda calculus with construc-
tors (for example, numbers and pairs) and primitives (for example, addition and

projections). Of course, these features can be simulated in the pure lambda calcu-
lus, but providing them directly improves clarity and e�ciency.

The changes to the calculus are shown in Figure 5. There are two new syntactic
domains, Operators p and Constructors kn of arity n � 0. Operators are

values2, and a constructor kn together with n values V1; : : : ; Vn is itself a value.

(The components of a constructor must be values, in order that copying the whole
construct is safe. A constructor k1 can be applied to a non-value M using a let-
expression: let x be M in k1 x.) There are two new reduction rules. Rule �-V

applies a primitive operator, and is de�ned in terms of partial function � from

2Maraist [13] observes that it is insu�cient to have operators as terms, as in [3, 15], because

then, for example, let x be p in x is irreducible.

9

operators and values to terms; this function may be arbitrary, except that it may not

`look inside' lambda abstractions (see [3] for more details). Note that this rule makes

operators unary and strict; multiary operators can be simulated using currying. The

second rule, �-A, allows a let-expression as an argument to an operator to be pulled

outside the application of that operator.

Notice that the �-V rule only applies when the function � is de�ned. For exam-

ple, consider the calculus augmented with the nullary constructors True and False

and the operator Not , with � given by

�(Not ;True) = False

�(Not;False) = True

and unde�ned elsewhere. In the term

let x be True in Not x

the subterm Not x is markable, but should not be reducible (because �(Not; x) is

unde�ned). Instead, we need to add pE as another kind of evaluation context3;
then variable x is markable in Not x, so we may substitute its de�nition True as
expected:

let x be True in Not x

(Let-V) need7��! let x be True in Not True

(Let-G)
need

7��! Not True

(�-V)
need

7��! False

We can extend the calculus to include integers and addition by de�ning the con-

structors Delta0, Delta1, Delta2; : : :, the operators Add and Plus0, Plus1, Plus2; : : :,
and the primitive evaluation rule

�(Add;Delta i) = Plus i
�(Plus i;Deltaj) = Delta i+j

Then, for example, we have the reduction sequence in Figure 6. Notice that the
1 + 1 gets evaluated only once; only two additions are performed overall.

3 LetTrace

We have implemented the call-by-need lambda calculus as a Gofer program called
LetTrace. This program takes a term in the lambda calculus and produces a trace
of its evaluation. The intention is that it be used to produce reduction sequences in

3This extra kind of evaluation context is missing from [3], and so in that paper the term

let x be True in Not x is irreducible.

10

let x be (Add Delta1)Delta1 in (Add x)x

(�-V)
need

��! let x be Plus1Delta1 in (Add x)x

(�-V)
need

��! let x be Delta2 in (Add x)x

(Let-V)
need

��! let x be Delta2 in (Add Delta2)x

(�-V)
need

��! let x be Delta2 in Plus2 x

(Let-V)
need

��! let x be Delta2 in Plus2Delta2

(Let-G)
need

��! Plus2Delta2

(�-V)
need

��! Delta4

Figure 6: A reduction sequence with constructors and operators

the style of Bird and Wadler [7] to help explain lazy evaluation. Actually, we want
to improve on Bird and Wadler; when it comes to sharing (for example, [7, p143]),

they resort to drawing arrows, whereas we may use let-expressions. For example,
LetTrace produces the trace in Figure 7 from the expression

(�x:((Add x)x)) ((Add Delta1)Delta1)

whereas Bird and Wadler would have to use a series of diagrams with arrows, such
as the diagram in Figure 8.

In this section we briey describe the most interesting parts of the implemen-
tation. For further details, see [25].

3.1 Renaming and substitution

The �rst problem we encountered is that Barendregt's variable convention is an

unrealistic assumption in practice. For starters, we cannot assume that a user's
program will satisfy it. More seriously, literal application of the reduction rules can
break the convention. For example, the term (�y:(�x:y x)) (�x:z), which satis�es

the variable convention, standard reduces in two steps to

let y be �x:z in �x:(�x:z)x

in which the subterm (�x:z)x contains x both free and bound.

One solution would be to post-process the result of each reduction step, renam-

ing variables if necessary to re-establish the variable convention. Another solution|
the one we adopted in LetTrace|is to abandon the convention, and rephrase the

reduction rules more carefully to avoid inadvertent variable capture. Our rephrased
rules are shown in Figure 9. The Let-I and Let-G rules remain the same, as they

11

((�x ! ((Add x) x)) ((Add Delta1) Delta1))

let x be ((Add Delta1) Delta1) in ((Add x) x)

let-I

let x be (Plus1 Delta1) in ((Add x) x)

delta-V

let x be Delta2 in ((Add x) x)

delta-V

let x0 be Delta2 in ((Add Delta2) x0)

let-V

let x0 be Delta2 in (Plus2 x0)

delta-V

let x1 be Delta2 in (Plus2 Delta2)

let-V

(Plus2 Delta2)

let-G

Delta4

delta-V

Figure 7: An example trace

((Add ((Add Delta1) Delta1)))

Figure 8: Bird and Wadler's representation of shared expressions

12

(Let-I) (�x:M)N
need

��+ let x be N in M

(Let-V) let x be V in C[x]
need

��+ let x0
be V in C[x := x0][V]

(Let-A) let y be (let x be L in M) in N
need

��+ let x0
be L in (let y be M [x := x0] in N)

(Let-C) (let x be L in M)N
need

��+ let x0
be L in (M [x := x0]N)

(Let-G) let x be M in N
need

��+ N if x 6= fv (N)

where x0 is not free in V or C[x] for Let-V,

x0 is not free in M or N for Let-A and Let-C.

Figure 9: Call-by-need reduction rules with variable substitution.

cannot capture a free variable. The Let-V rule, however, has the potential for
variable capture. If the variable x is free in V , then substitution of V into C[x]
would introduce occurrences of x in the scope of the let, and these would incorrectly
be bound. To avoid this, we choose a variable x0 distinct from all free variables in
V and C[x], and substitute x0 for x in C[x] and in the let. We then replace the

variable �lling the hole in the context by the value V . The Let-A and Let-C

rules also need modi�cation. We substitute for the variable x a variable x0 not free
in M or N .

Any solution to the problem requires variables to be renamed, which is poten-
tially confusing to the poor student trying to trace an ill-understood program. We

have therefore tried to be as helpful as possible in choosing new variable names; a
variable x will be renamed to x0|or to x with some other subscript, if x0 is not
a fresh name. (It would be even more helpful if we renamed variables only when
necessary, but this makes the calculus less clear [22]).

3.2 Factoring standard reduction

We factored standard reduction into two phases: computing all the �lled evaluation

contexts of a term, and taking the �rst|indeed, the only|one with a marked

subterm reducible under
name-s

���+. (Of course, lazy evaluation means that once the
`right' evaluation context has been found, no others will be computed.) This leads
to a pleasingly clear program.

Consequently, LetTrace can readily be modi�ed to use a di�erent calculus, sim-

ply by changing these two functions to match the evaluation contexts and reduction

rules of the new calculus.

13

3.3 Viewing a trace

LetTrace is currently non-interactive; it generates a text �le with one reduction

per line, as in Figure 6. However, LetTrace maintains more information than is

shown in this �gure. In particular, tracing also yields information about where the

standard redex is, and what it reduces to. We have used this information to produce

the prettier trace in Figure 7. This trace was produced entirely automatically;

LetTrace can also create a program in John Hobby's METAPOST [10] language, a

declarative language for generating PostScript output.

We have also experimented with generating input for xfig. This is not yet com-

plete (we only mark the start of the standard redex, and the start of its reduction),

and the result is not so pretty. However, the output is available directly, rather

than having to be post-processed, and xfig's scroll-bars make it quite good for

browsing a tall wide picture.

Obviously, all of these interfaces could be improved. It would be nice to have

interactive tracing, whereby the user could choose (for example) to skip display of
some reduction steps. At the very least, it would be nice to have more control over
the output, perhaps collapsing sections horizontally (within a term) and vertically
(between terms).

3.4 Reading Gofer syntax

We have adapted a lexer supplied with the Gofer system (which was based on the

de�nitions in the Haskell report [11]) to note additionally the position in the source
�le of each token, and to handle a literate syntax.

The parser used is based on Wadler's monadic parser [23], and follows the gram-
mar found in Appendix A of the Gofer documentation [12] with only slight varia-
tions.

This allows the programmer to present input to LetTrace in (a subset of) liter-
ate Haskell or Gofer syntax, rather than directly as lambda expressions. Note, how-
ever, that the lets in the calculus are not letrecs, so de�nitions in the �le cannot be
implicitly recursive|though they may explicitly de�ne and use the Y combinator|
and earlier de�nitions cannot depend on later ones.

We have not yet provided conversion in the other direction, displaying the trace
in high-level Gofer syntax, though clearly that would be a nice touch.

3.5 Relating the trace to the program

As mentioned above, the lexer records the position in the input �le of each token

in the input program. We have a version of LetTrace that maintains the start
and end position in the input �le of each subterm in the term being reduced.

This position information is passed around in the right way through the various
substitutions and rearrangements that arise during reduction.The propagation of

14

this information is fairly straightforward; when it is not obvious to which subterm

in the original evaluation context a particular resulting subterm relates, the entire

evaluation context is chosen.

The use of these rules ensures that at every step, every subterm in the current

term corresponds to a known location in the source code. This information could

be used to draw arrows between matching parts of successive terms; with a more

elaborate user interface it could be used to perform some type of animation, or to

allow a user's double-click to take them to the relevant source code for a particular

subterm from any point in the reduction sequence.

4 Extensions and related work

We have already mentioned some areas|for example, various aspects of the user

interface|that require further work. In this section we briey cover some more

speculative directions. We also discuss related work.

4.1 Recursion

Our let-expressions are not recursive; the variable is bound in the body but not in
the de�nition. We can implement recursion with the Y combinator. However, the Y
combinator does not quite accurately model sharing with lazy data constructors [3].

This problem would be solved by extending the calculus to include also a letrec

construct. Ariola et al. [3] give the axioms for such a construct. However, they are
signi�cantly more complex than the axioms for a non-recursive let.

4.2 Source-level tracing

Currently, LetTrace translates (a subset of) literate Gofer syntax into the lambda

calculus, and never translates back again. An obvious use of the position informa-
tion that we carry around for every subterm of the source program is to present to
the user their original source code, rather than its rendition in the lambda calculus.
We need to work out when we can present the original source unchanged, when we
must present a reduced lambda-calculus version, and perhaps when we can rephrase

reductions at the lambda-calculus level in terms of the original source.

4.3 Parallel evaluation

Our LetTrace system could be adapted without too much di�culty to trace parallel
evaluation of non-overlapping redexes, given the right `parallel lambda calculus' on

which to base it.

4.4 Related work

The work most closely related to ours is that of the Calculator Project at Queen
Mary and West�eld College and the Open University; this involved MiraCalc [9, 20],

15

essentially a tracer for the lazy functional language Miranda4. MiraCalc uses a

one-dimensional textual representation of terms, like LetTrace, but actually uses

call-by-name rather than call-by-need reduction, and so does not really trace lazy

evaluation. Auguston and Reinfelds [4] describe a similar system for tracing `lazy

evaluation' in Miranda, but again they use call-by-name rather than call-by-need

reduction.

Ra�alli [19] describes a tracer for pure lambda calculus (with no primitives),

allowing call-by-name and a kind of lazy evaluation (`call-by-name with some shar-

ing'). However, this system performs computation under lambda abstractions, so

does not model lazy evaluation as in most functional languages.

Several authors [17, 21, 16, 26] describe a `transformational' approach to tracing,

whereby the program to be traced is transformed to return a pair consisting of

the original result and some `trace information'. However, this approach comes

adrift because of lazy evaluation; the trace information usually concerns partially

evaluated arguments, and forcing evaluation to record their values changes the

behaviour of the program being traced.

Acknowledgements

The implementation described here is due mostly to Keith Wansbrough. The au-

thors would like to thank Phil Wadler, whose presentation at Cats'94 inspired the
work reported here, and the anonymous referees for their helpful comments.

References

[1] Samson Abramsky. The lazy lambda calculus. In David A. Turner (editor),
Research Topics in Functional Programming, Chapter 4. Addison-Wesley, 1990.

[2] Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus.

Technical Report CIS-TR-94-23, Computer Science Dept, University of Ore-
gon, October 1994.

[3] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky and Philip
Wadler. A call-by-need lambda calculus. In Principles of Programming Lan-

guages, 1995.

[4] Mikhail Auguston and Juris Reinfelds. A visual Miranda machine. In 5th

Annual Working Conference on Software Engineering Education, Dunedin,

November 1994. IEEE. Extended abstract.

[5] Lennart Augustsson and Thomas Johnsson. The Chalmers Lazy-ML compiler.

Computer Journal, Volume 32, Number 2, pages 127{141, 1989.

4Miranda is a trademark of Research Software Ltd.

16

[6] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, Volume

103 of Studies in Logic and the Foundations of Mathematics. North-Holland,

1981.

[7] Richard S. Bird and Philip L. Wadler. An Introduction to Functional Program-

ming. Prentice-Hall, 1988.

[8] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-

machine, and the lambda calculus. In M. Wirsing (editor), Formal Description

of Programming Concepts III, pages 193{219. Elsevier North-Holland, 1987.

[9] Doug Goldson. A symbolic calculator for non-strict functional programs. Com-

puter Journal, Volume 37, Number 3, pages 178{187, 1994.

[10] J. D. Hobby. A METAFONT-like system with PostScript output. Tugboat, the

TEX User's Group Newsletter, Volume 10, Number 4, pages 505{512, December

1989.

[11] P. Hudak, S. Peyton Jones and P. Wadler. Report on the programming lan-

guage Haskell, a non-strict purely functional language (version 1.2). SIGPLAN
Notices, Volume 27, Number 5, May 1992.

[12] Mark P. Jones. Gofer Manual. Department of Computer Science, Yale Uni-

versity, 1991.

[13] John Maraist. Private email communication, 30 August 1995.

[14] John Maraist, Martin Odersky, David Turner and Philip Wadler. Call-by-
name, call-by-value, call-by-need, and the linear lambda calculus (extended
abstract). In 11th International Conference on the Mathematical Foundations

of Programming Semantics, April 1995.

[15] John Maraist, Martin Odersky and Philip Wadler. The call-by-need lambda
calculus (unabridged). Technical Report 28/94, Fakult�at f�ur Informatik, Uni-

versit�at Karlsruhe, October 1994.

[16] Lee Naish and Tim Barbour. Towards a portable lazy functional declarative

debugger. Technical Report 95/27, Department of Computer Science, Univer-
sity of Melbourne, 1995.

[17] John T. O'Donnell and Cordelia V. Hall. Debugging in applicative languages.

Lisp and Symbolic Computation, Volume 1, pages 113{145, 1988.

[18] G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoret-

ical Computer Science, Volume 1, pages 125{159, 1975.

17

[19] Christophe Ra�alli. A normaliser for pure �-calculus. Chalmers University of

Technology and Logic Team of Paris VII, August 1995.

[20] Steve Reeves, Doug Goldson, Pat Fung, Tim O'Shea, Mike Hopkins and

Richard Bornat. The Calculator Project: Formal reasoning about programs. In

5th Annual Working Conference on Software Engineering Education, Dunedin,

November 1994. IEEE.

[21] Jan Sparud. Towards a Haskell debugger. In Functional Programming Lan-

guages and Computer Architecture, 1995.

[22] Allen Stoughton. Substitution revisited. Theoretical Computer Science, Vol-

ume 59, pages 317{325, 1988.

[23] Philip Wadler. Comprehending monads. In ACM Conference on Lisp and

Functional Programming, 1990. Later version to appear in Mathematical Struc-

tures in Computer Science.

[24] Philip Wadler. A call-by-need lambda calculus. Presentation at Cats'94,

Sydney, December 1994.

[25] Keith Wansbrough. Tracing lazy functional languages. Graduate project re-
port, Department of Computer Science, University of Auckland, 1995.

[26] Richard Watson. Debugging techniques for functional languages. In Neil Leslie
and Nigel Perry (editors), Proceedings of the Massey Functional Programming

Workshop, 1994.

18

