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Chapter 1

COMPLEXITY: A
LANGUAGE–THEORETIC POINT
OF VIEW

Cristian Calude1 and Juraj Hromkovič 2

1.1 Introduction

The theory of computation and complexity theory are fundamental parts of current theoretical com-
puter science. They study the borders between possible and impossible in the information processing,
quantitative rules governing discrete computations (how much work (computational resources) has to
be done (have to be used) and suffices (suffice) to algorithmically solve various computing problems),
algorithmical aspects of complexity, optimization, approximation, reducibility, simulation, communica-
tion, knowledge representation, information, etc. Historically, theoretical computer science started in
the 1930s with the theory of computation (computability theory) giving the exact formal border between
algorithmically solvable computing problems and problems which cannot be solved by any program (al-
gorithm). The birth of complexity theory can be set in the 1960s when computers started to be widely
used and the inner difficulty of computing problems has started to be investigated. At that time people
defined quantitative complexity measures enabling to compare the efficiency of computer programs and
to study the computational hardness of computing problems as an inherent property of problems. The
abstract part of complexity theory has tried to classify computing problems according to their hard-
ness (computational complexity) while the algorithmic part of complexity theory has dealt with the
development of methods for the design of effective algorithms for concrete problems.

The theory of computation and complexity theory provide a variety of concepts, methods, and tools
building the fundamentals of theoretical computer science. The goal of this chapter is to concentrate
on the intersection of formal language theory and computation (complexity) theory, on the methods
developed in formal language theory and used in complexity theory as well as on the complexity of
language recognition and generation. An effort in this direction is reasonable because the core formalism
used in complexity and computation theory is based on words and languages, the class of algorithmically
solvable problems is usually defined as a class of languages, the fundamental complexity classes are
defined as classes of languages, etc.

In what follows we assume that the reader is familiar with the elementary notions and concepts of
formal language theory (words, languages, automata, Turing machines, grammars and rewriting systems,
etc.) and we review the basic concepts, results, and proof methods of the computation and complexity
theory using the formalism of formal language theory.

1Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Private Bag 92019,
Auckland, New Zealand.

2Institut of Informatics and Applied Mathematics, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
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4 CHAPTER 1. COMPLEXITY

This chapter is organized as follows. In Section 2 the fundamentals of computability theory (theory
of computation) is given.

Section 3 is devoted to abstract (structural) complexity theory. First the definitions of time and space
complexity as basic complexity measures are given and the corresponding complexity classes are defined.
Using proof methods from computability and formal language theory, strong hierarchies of complexity
measures (more time/space helps to recognize more languages) are proven. The problem of proving
nontrivial lower bounds on the complexity of concrete problems is discussed and nondeterminism is used
in order to obtain a new insight on the classification of the hardness of computing problems. Finally,
probabilistic Turing machines and the corresponding probabilistic complexity classes are introduced.

Section 4 is devoted to program-size (or descriptional) complexity. We begin by contrasting dynamic
and descriptional complexities, then revisit the halting problem; random strings and random languages
will be introduced and studied. Recursive and regular languages are characterized in terms of descriptive
complexity and, at the end, we review a few results—obtained by program-size methods—concerning
the problem P versus NP.

The last section of this chapter is devoted to parallel data processing. Alternating Turing machines are
used as a representant of a parallel computing model enabling to relate sequential complexity measures
to parallel ones. A further extension to synchronized alternating Turing machines shows the importance
of communication facilities in parallel computing. A formal language approach enabling to study and
to compare the power of different communication structures as candidates for parallel architectures
(interconnection networks) closes this section.

1.2 Theory of Computation

1.2.1 Computing Fallibilities

This section will describe a few tasks which appear to be beyond the capabilities of computers.

From Minimal Art to Minimal Programs

According to Gardner [66], minimal art3—painting4, sculpture5, music6 —appears to be minimal in at
least two senses:

• it requires minimal resources, i.e. time, space, cost, thought, talent, to produce, and

• it has some, but rather minimal, aesthetic value.

Let’s imagine with [110] that we find ourselves in a large and crowded hall where ten thousand people
are talking on a large variety of subjects. The loud hubbub generated by this environment is certainly
very rich in information. However, it is totally beyond human feasibility to extract one single item from
it. Pushing this experiment to extreme we reach the “white noise” where all sounds that have been made,
that are being made or that will be ever made are put together. Similar experiments would consist in

• considering a canvas on which all colours are mixed to the extent that the whole painting becomes
a uniform shade of grey, or

• mixing the matter and anti-matter until one reaches the quantum vacuum, or

3In painting, minimalism was characterized chiefly by the minimal presence of such standard “artistic” means as form
and color and by the use of components that in themselves have no emotive or aesthetic significance. Minimal sculpture
is often constructed by others, from the artist’s plans, in commonplace industrial materials such as plastic or concrete.
Music minimalism is based on the repetition of a musical phrase with subtle, slowly shifting tonalities and a rhythmic
structure—if there is one. Minimal art works are not intended to embody any representational or emotional qualities but
must be seen simply as what they are. See [5, 137].

4P. Mondrian (Composition 2, 1922), R. Tuttle (Silver Picture, 1964).
5C. Brâncuşi (Endless Column, 1937-8), C. Andre (Cedar Piece, 1959), Picasso (Chicago statue, 1967).
6La Monte Young (Trio for Strings, 1958), T. Riley (In C, 1964), S. Reich (Drumming, 1971), P. Glass (Akhnateon,

1984), J. Adams (Nixon in China, 1987).



          
1.2. THEORY OF COMPUTATION 5

• considering a lexicon containing all writings that have been written, that are being written or that
will be ever written.

In all these experiments information tends to be so “dense” and “large” that it is impossible to
conceive it as a human creation: it reaches the level of randomness.7 What about computers and their
“minimal programs”? Any computation can be done in infinitely many different ways. However, the
programs of greatest interest are the smallest ones, i.e. the minimal ones.

What is the typical “behaviour” of such a program? Can we “compute” the smallest minimal pro-
grams?

To answer the first question we claim that minimal programs should be random. But what is a random
program? According to the point of view of Algorithmic Information Theory (see [37, 24]), a random
program is a program whose minimal program has roughly the same length as the generating program.8

Now, assume that x is a minimal program generating y. If x is not random, then there exists
a program z generating x which is substantially smaller than x. To conclude, let us consider the
program

from z calculate x, then from x calculate y.

This program is only a few letters longer than z, and thus it should be much shorter than x, so x is
not minimal.

The answer to the second question is negative and the argument is related to the answer of the first
question: minimal programs cannot be computed because they are random.

Like minimal art works, minimal programs tend to display an inner “randomness”; in contrast,
minimal programs cannot be computed at all while minimal work arts appear to require very little
resources.

Word Problems

Suppose that we have fixed a finite set of strings (words) over a fixed alphabet. These strings do not need
to have in themselves any meaning, but a meaning will be assigned by considering certain “equalities”
between strings. These equalities will be used to derive further equalities by making substitutions of
strings from the initial list into other, normally much longer, strings which contain them as “portions”.
Each portion may be in turn replaced by another portion which is deemed to be equal to it according
to the list.

For example, from the list

ATE = A

CARP = ME

EAT = AT

PAN = PILLOW

we can derive, by successively substitutions,

LAP=LEAP

as

LAP=LATEP=LEATEP=LEAP.9

Is it possible to derive from the string CARPET the string MEAT? A possible way to get a negative
answer is to notice that in every equality in our initial list the number of As plus the number of Ws plus
the number of Ms is constant in each side. Computing this “invariant” for the strings above we get 1
for CARPET and 2 for MEAT, so we cannot get MEAT from CARPET.

7Xenakis [147] says that the amount of information conveyed in sounds gives the real value of music, and Eco [57]
observes that a lexicon, no matter how complete or well constructed, has no poetic value.

8See Section 1.3.3.
9We have used, in order, the first, third, and again first equality.
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What about the general decision problem, i.e. one in which we have an arbitrary initial (finite)
list of strings, two fixed arbitrary strings x, y and we ask whether we can get from x to y by
allowed substitutions? Clearly, by generating quasi-lexicographically all possible finite sequences of
strings starting with x and ending with y, and then checking if such a list satisfy the required rules,
one can establish equality between strings which are indeed equal. For some lists (e.g. the list displayed
above) it is possible to design an algorithm to test whether two arbitrary strings are or are not equal.10

Is it possible to do this in general? The answer is negative and here is an example (discovered by G. S.
Tseitin and D. Scott in 1955 and modified by Gardner [65]) of an instance for which there is no single
algorithm to test whether, for arbitrary strings x, y we can get from x to y:

ac = ca

ad = da

bc = cd

bd = db

abac = abacc

eca = ae

edb = be.

For more information on word problems see [2, 50].

Tilings

Consider a positive integer n and a 2n × 2n square grid with only one square removed. Let us define
an L-shaped tile to be a figure consisting of three squares arranged in the form of the letter L. Is it
possible to cover the square grid with L-shaped tiles? The answer is affirmative and here is an inductive
argument (see [152]). If n = 1, then the grid has the dimension 2 × 2 and one square has been
removed: the figure is exactly an L–shaped tile. Suppose now that for a positive integer n, every
2n × 2n square grid in which one square has been removed can be covered with L-shaped tiles. Let us
consider a 2n+1 × 2n+1 grid with one square removed. Cutting this grid in half both vertically and
horizontally we get four 2n × 2n square subgrids. The missing square comes from one of these four
subgrids, so by applying the inductive hypothesis for that subgrid we deduce that it can be covered with
L-shaped tiles. To cover the remainder subgrids, first place one L-shaped tile in the center so that it
covers one square from each of the remaining subgrids. We have to cover an area which contains every
square except one in each of the subgrids, so applying again the inductive hypothesis we get the desired
result. Notice that the above proof can be easily converted in an algorithm constructing the required
cover.

We can go one further step and ask if it possible to cover the Euclidean plane with polygonal shapes,
i.e. we are given a finite number of shapes and we ask whether it is possible to cover the plane completely,
without gaps or overlaps with just the selected shapes. Choosing only squares, or equilateral triangles,
or regular hexagons, the answer is affirmative. In all these cases the tilings are periodic, in the sense that
they are exactly repetitive in two independent directions. However, H. Wang has shown the existence of
non-periodic tilings. In 1961 he has addressed the following question: Is there an algorithm for deciding
whether or not a given finite set of different polygonal shapes will tile the Euclidean plane? Five years
later, R. Berger proven that the answer is negative.11

The World of Polynomials

We shall use Diophantine equations, that is equations of the form

P (x1, . . . , xn) = 0,
10The reader is encouraged to find such an algorithm.
11Berger used a set of 20 426 tiles; R. Robinson was able to reduce this number to six, and R. Penrose to two. See more

in [74].
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where P is a polynomial with integer coefficients in the variables x1, . . . , xn, to define sets of positive
integers. To every polynomial P (x, y1, y2, . . . , ym) with integer coefficients one associates the set

D = {x ∈ N | P (x, y1, y2, . . . , ym) = 0, for some y1, y2, . . . , ym ∈ Z}.

Call a set Diophantine if it is of the above form.
For example, the set of composite numbers is Diophantine as it can be written in the form

{x ∈ N | x = (y + 2)(z + 2), for some y, z ∈ Z}.

The language of Diophantine sets permits the use of existential quantifiers (by definition), as well as
the logical connectives and and or (as the system P1 = 0 and P2 = 0 is equivalent to the equation
P 2

1 + P 2
2 = 0, and the condition P1 = 0 or P2 = 0 can equivalently be written as P1P2 = 0). Many

complicated sets, including the set of all primes or the exponential set

{23·
··
n

| n > 1},

are Diophantine.
Actually, the work of J. Robinson, M. Davis and Y. Matijasevič (see the recent book [109]) has shown

that combining the fact that every possible computation can be represented by a suitable polynomial
with the fact that the language of Diophantine sets permits neither the use of universal quantification
nor the use of the logical negation, proves that the famous Hilbert’s tenth problem “Does there exist an
algorithm to tell whether or not an arbitrary given Diophantine equation has a solution” has a negative
answer.

1.2.2 Turing Machines, Chaitin Computers, and Chomsky Grammars

Before the work of A. Church, S. Kleene, K. Gödel and A. Turing there was a great deal of uncertainty
about whether the informal notion of an algorithm—used since Euclid and Archimedes—could ever be
made mathematically rigorous.

Turing’s approach was to think of algorithms as procedures for manipulating symbols in a purely
deterministic way. He imagined a device, a Turing machine, as it has come to be called later, having
a finite number of states. At every given moment the machine is scanning a single square on a long,
thin tape and, depending upon the state and the scanned symbol, it writes a symbol (chosen from a
finite alphabet), moves left or right, and enters a new, possibly the same, state. Despite the extreme
conceptual simplicity Turing machines are very powerful.12

There are many different models of Turing machines. At this point we use the following variant: a
Turing machine TM will have three tapes, an input tape, an output tape, and a scratch tape. Such
a machine determines a partial function, ϕTM from the set of strings over an alphabet Σ into itself:
ϕTM (x) = y if TM started in its initial state, with scratch and output tapes blank, and x on
its input tape, writes y on its output tape and then halts. The class of partial functions computed
by Turing machines coincides with the class of partial recursive functions; the languages computed by
Turing machines are the recursively enumerable languages, [21, 23, 84, 114, 128].

For information-theoretical reasons Chaitin [35] (and, independently, Levin [103]) has modified the
standard notion of Turing machine by requiring that as we are reading a string, we are able to tell when
we have read the entire string. More precisely, we require that the input tape reading head cannot move
to the left: at the start of the computation, the input tape is positioned at the leftmost binary digits
of x, and at the end of the computation, for ϕTM (x) to be defined, we now require that the input
head be positioned on the last digit of x. Thus, while reading x, TM was able to detect at which
point the last digit of x has occurred. Such a special Turing machine is called self-delimiting Turing
machine or Chaitin computer (cf. [135, 24]). The class of partial recursive functions having a prefix-free
domain13 is exactly the class of partial functions computed Chaitin computers. In terms of languages,
Chaitin computers have the same capability as Turing machines.

12In fact, Turing conjectured that a symbolic procedure is algorithmically computable just in case we can design a Turing
machine to carry on the procedure. This claim, known as Church-Turing’s Thesis, will be discussed later.

13No string in the domain is a proper prefix of another string in the domain.
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Chomsky type-0 grammars offer another way to generate languages. Before going to some details let
us a fix a piece of notation. For an alphabet V we denote by V ∗ the free monoid generated by V
(λ is the empty string); the elements of the Cartesian product V ∗ × V ∗ will be written in the form
α→ β, α, β ∈ V ∗.

A Chomsky (type-0) grammar is a system G = (VN , VT , w, P ), where VN and VT are disjoint
alphabets, w ∈ V ∗ and P is a finite subset of V ∗VNV

∗ × V ∗, where V = VN ∪ VT . The elements
of VN and VT are referred to as nonterminal and terminal letters, respectively, and w is called the
start, or axiom, string.

A derivation of length n in G with domain a1 and codomain an+1 is a triple of finite sequences
x = (prx, rx, kx) such that

1. prx = (a1, a2, . . . , an+1) is a sequence of n+ 1 strings over V ,

2. rx = (r1, r2, . . . , rn) is a sequence of n elements in P ,

3. kx = (〈u1, v1〉, . . . , 〈un, vn〉) is a sequence of n pairs of strings over V , and

4. for each 1 ≤ i ≤ n, ai = uiαvi, ai+1 = uiβvi, and ri = α→ β.

A derivation with domain w and codomain in V ∗T is called terminal. The language generated by G
is defined to be the set of all codomains of terminal derivations. The languages generated by Chomsky
grammars are exactly the recursively enumerable languages.14

1.2.3 Universality

Is it possible to design a “machine” capable to simulate any other “machine”? If we replace the word
“machine” by Turing machine or Chaitin computer or Chomsky grammar, then the answer is affirmative.
Proofs of this extremely important result15 can be found in Turing’s seminal paper [144], and in many
monographs and textbooks (e.g. [84, 128]). The result is true also for Chomsky grammars as well, and
in the next paragraph we shall illustrate the universality with a construction of the universal Chomsky
grammar.

The Universal Chomsky Grammar

First we have to make precise the notion of “simulation”.
A universal Chomsky grammar is a Chomsky grammar U = (VN , VT , w, P ) with the following

property: for every recursively enumerable language L over VT there exists a string w(L) (depending
upon L) such that the language generated by the grammar (VN , VT , w(L), P ) coincides with L.

Theorem 1.1 [27] There exists a universal Chomsky grammar.

Proof. Let
VN = {A,B,C,D,E, F,H,R, S, T,X, Y } ∪ VT × {1, 2, 3, 4, 5, 6, 7, 8, 9},

P consists of the following rules (we have used also the set Σ = {S,X, Y } ∪ VT ):

1. C → BT,

2. Tx→ xT, x ∈ Σ ∪ {D,E},

3. TDx→ (x, 2)D(x, 1), x ∈ Σ,

4. y(x, 2)→ (x, 2)y, x ∈ Σ y ∈ Σ ∪ {D,E},
14Traditionally, see [128], the axiom is a nonterminal letter; using a string in V ∗ instead of a single letter in VT does

not modify the generative capacity of grammars.
15Which represents the mathematical fact justifying the construction of present day computers.
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5. B(x, 2)→ (x, 3)B, x ∈ Σ,

6. y(x, 3)→ (x, 3)y, x, y ∈ Σ,

7. x(x, 3)→ (x, 4), x ∈ Σ,

8. (x, 1)y → (y, 5)(x, 1)(y, 1), x, y ∈ Σ,

9. x(y, 5)→ (y, 5)x, y ∈ Σ, x ∈ Σ ∪ {D,E},

10. B(y, 5)→ (y, 6)B, y ∈ Σ,

11. x(y, 6)→ (y, 6)x, x, y ∈ Σ,

12. (x, 4)y(y, 6)→ (x, 4), x, y ∈ Σ,

13. (x, 1)Ey → (x, 7)E(y, 9), x, y ∈ Σ,

14. (x, 1)(y, 7)→ (x, 7)y, x, y ∈ Σ,

15. D(x, 7)→ DX, x ∈ Σ,

16. (x, 9)y → (y, 8)(x, 9)(y, 9), x, y ∈ Σ,

17. x(y, 8)→ (y, 8)x, y ∈ Σ, x ∈ Σ ∪ {D,E,B},

18. (x, 9)(y, 8)→ (y, 8)(x, 9), x, y ∈ Σ,

19. (x, 4)(y, 8)→ y(x, 4), x, y ∈ Σ,

20. (x, 1)ED → (x, 7)RED, x, y ∈ Σ,

21. (x, 9)D → RxD, x ∈ Σ,

22. (x, 9)R→ Rx, x ∈ Σ,

23. xR→ Rx, x ∈ Σ ∪ {D,E},

24. BR→ RC,

25. (x, 4)R→ λ, x ∈ Σ,

26. Ax→ xA, x ∈ VT ,

27. AC → H,

28. Hx→ H, x ∈ Σ ∪ {D,E},

29. HF → λ.

First we notice that every recursively enumerable language can be generated by a Chomsky grammar
having at most three nonterminals. Indeed, if L is generated by the grammar G = (VN , VT , S, P )
and VN contains more than three elements, say VN = {S,X1, . . . , Xm} with m > 2, then we define
the morphism h : V ∗ → (VT ∪ {S,A,B})∗ (here A,B are symbols not contained in V ) by h(S) =
S, h(a) = a, for all a ∈ VT , and h(Xi) = ABi, 1 ≤ i ≤ m. Let h(P ′) = {h(u)→ h(v) | u→ v ∈ P}.
It is easy to check that L is generated by the grammar G′ = ({S,A,B}, VT , S, P ′).

To complete the proof we consider the language L generated by the grammar G =
({S,X,X}, VT , S,Q) and we put

w(L) = ASCDα1Dα2Eβ2D . . .DαkRβkDF,



             
10 CHAPTER 1. COMPLEXITY

where the set of productions is Q = {αi → βi | 1 ≤ i ≤ k}.
We analyse now a derivation from a string

AγCDα1Dα2Eβ2D . . .DαkRβkDF. (1.1)

The first group of rules16 constructs the nonterminal T which selects the rule αi → βi occurring
in the right hand side of a nonterminal D (see rule 3). By the second group of rules, the first symbol
x in αi goes into (x, 1) and the nonterminal (x, 2) is translated into the left hand side of B, where
it becomes (x, 3). If in γ there exists a symbol x, then by the rule 7 we construct the nonterminal
(x, 4).

The third group of rules transforms all symbols x from αi in (x, 1); then, every such x is removed
from the right hand side of (x, 4) in case such elements do appear in the same order.

The fourth group transforms every symbol y from βi 6= λ into (y, 9) and translates the symbol
(y, 8) on the left hand side. When (y, 8) reaches (x, 4) the symbol y is introduced. In this way the
string αi, erased by the third group of rules, is replaced by βi. In case βi = λ the rule 20 is used
instead of the fourth group. Accordingly, we have reconstructed the derivation from γ to γ′ using the
rule αi → βi. This procedure can be iterated by means of rules in the sixth group. If γ′ does not
contain any nonterminal, then by rules in the last group the string can be reduced to γ′.

So, every string in L can be generated by the universal grammar with the axiom w(L).
For the converse relation we notice that the nonterminal A can be eliminated only in the case when

between A and C there exists a terminal string. Every derivation has to begin with the introduction
of the nonterminal T . Erasing T determines the introduction of a nonterminal (x, 1), which, in turn,
can be eliminated by the nonterminal (y, 9). These operations are possible if and only if the string αi
has been removed from γ. One can erase (y, 9) after the translation of βi in the place occupied by
αi. The symbol R constructed in this way can be eliminated when the given string is reduced to the
form (1.1). In this way we have constructed a derivation using the rule αi → βi. All derivations which
are not of this from will be eventually be blocked. ¤

1.2.4 Silencing a Universal Computer

A universal machine, be it Turing, Chomsky or Chaitin, despite all the clever things it can do, is not
omniscient.17

Let P be program whose intended behaviour is to input a string, and then output another string.
The “meaning” of P may be regarded as a function from strings over an alphabet V into strings over
the same alphabet, i.e. a function f : V ∗ → V ∗. Such a program P on input x

• may eventually stop, in which case it prints a string, or

• it may run forever, in which case we say, following [134], that the program has been “silenced” by
x.

We shall prove that every universal program can be silenced by some input. Here is the argument.
List all valid programs, P1, P2, . . . , Pn, . . ..18

Now suppose, by absurdity, that we have a universal program that cannot be silenced, so, by univer-
sality, we have a universal programming language such that none of its programs can be silenced. Let gn
by the function computed by Pn and construct, by diagonalization, the function f(x) = xgstring(x)(x),
where string(x) is the position of the string x in the quasi-lexicographical enumeration of all strings
in V ∗.

• The function f is computable by the following procedure: given the string x, first compute
string(x), then generate all programs until we reach the program Pstring(x), run Pstring(x) on
the input x and then concatenate x with the result of the above computation.

16There are seven groups of rules separated empty lines.
17As Leibniz might have hoped.
18There are many ways to do it, for instance, by listing all valid programs in quasi-lexicographical order. Such an

enumeration is referred to as a gödelization of programs, as Gödel used first this method in his famous proof of the
Incompleteness Theorem [59, 60].
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• In view of the universality it follows that f has to be computed by some program Pn. Now,
take the string x such that string(x) = n and the input x: f(x) = gn(x), which false.

This concludes our proof.
At a first glance the contradiction in the above argument can be avoided, and here are two possibilities.

First add to the initial programming language the program computing f . This construction does not
work as we can use again the diagonalization method to derive a contradiction for the new language.
Another possibility would be to say that f is “pathological” and we don’t really want it computable.
The last option is perfectly legitimate;19 however, if we want to preserve universality we have to admit
non-terminating programs.

1.2.5 *Digression: A Simple Grammatical Model of Brain Behaviour

A universal grammar can be used in describing a model of human brain behaviour.20 The model has
four grammatical components:

• the “grammar generator”,

• the “parser”,

• the “semantic analyzer”, and

• the universal grammar.

The “grammar generator” can be realized as a regular grammar, but the “parser” and the universal
grammar are type-0 Chomsky grammars.21 The model works as follows (see [26]): an external stimulus,
a question, for example, comes to the brain under the form of a string x in some language. Then an
“exciting relay” activates the “grammar generator” which produces strings of the form

x1 → y1/x2 → y2/ · · · /xk → yk

corresponding to the rules of that specific grammar. In fact, we assume that the grammar generator is
producing exactly a string w of the form (1.1) required by the universal grammar. The string w and
the input string come to a “syntactic analyzer” which decides whether x belongs or not to the language
identified by w. If the answer is affirmative, that is the right “competence” corresponding to x has
been found, then x and w come in the universal grammar which is the core of the answering device.
The universal grammar behaves now as the specific grammar and is used to “answer” the stimulus. The
answering mechanism, using some information provided by a “semantic analyzer” and some memory
files, generates the answer and sends it to the environment.

The full information capability of the brain can be accomplished by using only these “few” components
of the model, without actually retaining all grammars corresponding to the competences of the human
brain.

1.2.6 The Halting Problem

We have seen that each universal machine can be silenced by some input. Is it natural to ask the following
question: Can a machine test whether an arbitrary input will silence the universal machine? The answer
is again negative.

For the proof we will assume, without restricting generality, that all valid programs incorporate
inputs—which are coded as natural numbers. So, a program may be silenced or may just eventually
stop, in which case it prints a natural number. Assume further that there exists a halting program
deciding whether the universal program is silenced by an arbitrary input, that is, by universality, whether
an arbitrary program is going to be silenced or not. Construct the following program:

19The language of primitive recursive functions is such a language.
20We adopt here the Computabilism Thesis for Brains according to which the “brain functions basically like a digital

computer”. This thesis has been formulated, without elaboration, by Gödel in 1972, cf. [153]. We also distinguish, again
with Gödel, the mind from the brain: The mind is the user of the brain functioning as a computer. For more details we
refer to Section 1.2.8.

21An attempt to implement this model at the level of context-sensitive grammars is discussed in [28].
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1. read a natural N ;

2. generate all programs up to N bits in size;

3. use the halting program to check for each generated program whether it halts;

4. simulate the running of the above generated programs, and

5. output double the biggest value output by these programs.

The above program halts for every natural N . How long is it? It is about logN bits. Reason: to
know N we need logN bits (in binary); the rest of the program is a constant, so our program is
logN + O(1)22 bits.

Now observe that there is a big difference between the size—in bits—of our program and the size of
the output produced by this program. Indeed, for large enough N , our program will belong to the set
of programs having less than N bits (because logN + O(1) < N). Accordingly, the program will be
generated by itself—at some stage of the computation. In this case we have got a contradiction since
our program will output a natural number two times bigger than the output produced by itself!

The following two questions:

Does the Diophantine equation P = 0 have a solution?

Does the Diophantine equation P = 0 have an infinity of solutions?

are algorithmically unsolvable, but, they have a different degree of unsolvability!
If one considers a Diophantine equation with a parameter n, and asks whether or not there is a

solution for n = 0, 1, 2, . . . , N − 1, then the N answers to these N questions really constitute only
log2N bits of information, as we can determine which equation has a solution if we know how many of
them are solvable. These answers are not independent. On the other hand, if we ask the second question,
then the answers can be independent, if the equation is constructed properly.23 The first question never
leads to a pure chaotic, random behaviour, while the second question may sometimes lead to randomness.

1.2.7 Church–Turing’s Thesis

Church-Turing’s Thesis, a prevailing paradigm in computation theory, states that no realizable computing
device can be “globally” more powerful, that is, aside from relative speedups, than a universal Turing
machine. It is a thesis, and not a theorem, as it relates an informal notion—a realizable computing
device—to a mathematical notion. Re-phrasing, Church-Turing’s Thesis states that the universal Turing
machine is an adequate model for the discrete computation. Here are some reasons why Church-Turing’s
Thesis is universally accepted:

• Philosophical argument: Due to Turing’s analysis it seems very difficult to imagine some other
method which falls outside the scope of his description.

• Mathematical evidence: Every mathematical notion of computability which has been proposed was
proven equivalent to Turing computability.

• Sociological evidence: No example of computing device which cannot be simulated by a Turing
machine has been given, i.e. the thesis has not been disproved despite having proposed over 60
years ago.

Church-Turing’s Thesis includes a syntactic as well a physical claim. In particular, it specifies which
types of computations are physically realisable. According to Deutsch [52], p. 101:

22f(n) = O(g(n)) means that there exists a constant c such that |f(n)| ≤ c|g(n)|, for all n.
23Chaitin [37] has effectively constructed such an equation; the result is a 900 000–character 17 000–variable universal

exponential Diophantine equation.
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The reason why we find it possible to construct, say, electronic calculators, and indeed why
we can perform mental arithmetic, cannot be found in mathematics or logic. The reason is
that the laws of physics “happen” to permit the existence of physical models for the operations
of arithmetic such as addition, subtraction and multiplication. If they did not, these familiar
operations would be non-computable functions. We might still know of them and invoke
them in mathematical proofs (which would be presumably be called “non-constructive”) but
we could not perform them.

As physical statements may change in time, so may our concept of computation. Indeed, Church-
Turing’s Thesis has been recently re-questioned; for instance, [132] has proposed an alternative model of
computation, which builds on a particular chaotic dynamical system [55] and surpasses the computational
power of the universal Turing machine. See [146, 72, 73, 145, 14, 123, 81, 56, 140, 141, 113] for related
ideas.

1.2.8 *Digression: Mind, Brain, and Computers

Thinking is an essential, if not the most essential, component of human life—it is a mark of
“intelligence”.24 In the intervening years Church-Turing’s Thesis has been used to approach formally
the notion of “intelligent being”. In simple terms, Church-Turing’s Thesis was stated as follows: What is
human computable is computable by a universal Turing machine. Thus, it equates information-processing
capabilities of a human being with the “intellectual capacities” of a universal Turing machine.25 This
discussion leads directly to the traditional problem of mind and matter which exceeds the aim of this
paper (see the discussion in [51, 58, 70, 126, 127, 120, 121, 130]); in what follows we shall superficially
review this topic in connection with the related question: can computers think?

The responses to the mind-body problem are very diverse; however, there are two main trends,
monism which claims that the distinction between mind and matter is only apparent, simply, the mind
is identical with the brain and its function, and dualism which maintains the we have a real distinction.

The dualism can be traced to Descartes. There are many types of dualism, among them being:

• “categorical dualism” (the mind and the body are different logical entities);

• “substance dualism” illustrated by Popper or Gödel, and claiming that mind exists in a mental
space outside space or time, and the brain is just a complex organ which “translates” thoughts into
the corporeal movements of the body. Gödel rejected monism by saying (in Wang’s words, [153], p.
164) that monism is a prejudice of our time which will be disproved scientifically—perhaps by the
fact that there aren’t enough nerve cells to perform the observable operations of the mind. This is a
challenging scientific conjecture—indeed, the capacity of nerve cells is a scientific research topic for
neuroscience and the observable operations of mind are also things subject to scientific analysis.
According to same author ([153], p. 169) Gödel asserted that the brain functions basically like a
digital computer. The user of the brain functioning as a computer is just the mind.

• “property dualism” maintaining that the mind and our experiences are “emergent” properties of
the material brain;

• “epistemic dualism”, illustrated by Kant, saying that from a “theoretical reason” the states of the
mind are reducible to the states of the brain, but from a “practical reason” such a reduction is not
possible.

Von Neumann remarked that in 1940s two outstanding problems were confronting science: weather
prediction and the brain’s operation. Today we have a fairly better understanding of the complexity
of weather,26 but the brain still remains a mystery. Perhaps the brain, and accordingly, the mind, are
simply unsimulatable and the reason is what von Neumann remarked: the simplest model of a neuron
may be a neuron itself. This property suggests the notion of randomness, which will be discussed in a
separate section.

24Descartes placed the essence of being in thinking.
25This may create the false impression of “EOE policy”: all brains are equal.
26Even if the weather equations behave chaotically, that is a small difference in the data can cause wildly different

weather patters.
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1.3 Computational Complexity Measures and Complexity
Classes

1.3.1 Time and Space Complexities and Their Properties

In the early 1960s the border between algorithmically solvable problems and algorithmically unsolvable
ones was already well–defined and understood and scientists knew methods powerful enough to decide
whether a given computing problem is decidable (algorithmically solvable) or undecidable. Because of
the growth of the computer use in many areas of every day life the interest of researchers has moved to the
questions like “How to measure the effectivity of computer programs (algorithms)?”, “How to compare
the effectivity of two algorithms?”, and “How to measure the computational difficulty of computing
problems?”. Dealing with these questions two fundamental complexity measures, time and space, have
been introduced by Hartmanis at. al. [78, 77]. Both these complexity measures are considered as
functions of the input. Informally, the time complexity of an algorithm working on an input is the
number of “elementary” operations executed by the algorithm processing the given input. In another
words, it is the amount of work done to come from the input to the corresponding output. The space
complexity of an algorithm is the number of “elementary” cells of the memory used in the computing
process. Obviously, what does “elementary” mean depends on the formal model of algorithms one
chooses (machine models, axiomatic models, programming languages, etc.). Since the theory always
tries to establish results (assertions) which are independent on the formalism used and have a general
validity, this dependence of the measurement on the model does not seem welcome. Fortunately, all
reasonable computing models used are equivalent, in the sense that the differences in the complexity
measurement are negligible for the main concepts and statements of the complexity theory.

Here, we use Turing machine (TM) as the standard computing model of computation theory to
define the complexity measures. From the several versions of Turing machine we consider the off–line
multitape Turing machine (MTM) consisting of a finite state control, one two–way read–only input
tape with one read–only head and a finite number of infinite working tapes, each with one read/write
head. This is the standard model used for the definitions of time and space complexities because it clearly
separates the input data (input tape) from the computer memory (working tapes) [78]. A computing
step (shortly, step) of a MTM is considered to be the elementary operation of this computing model.
In one step a MTM M reads one symbol from each of its tapes (exactly those symbols are read which
are on the positions where the heads are adjusted) and depending on them and the current state of
the machine M , M possibly changes its state, rewrites the symbols read from the working tapes and
moves the heads at most one position to the left or to the right. A configuration of a MTM M is
the complete description of the global state of the machine M including the state of the finite control,
the current contents of all tapes, and the positions of all heads on the tapes. A computation of M is a
sequence of configurations C1, C2, . . . , Cm such that Ci ` Ci+1 (Ci+1 is reached in one step from Ci).
A formal description of MTMs can be found in all textbooks on this topic and we omit it here. Now,
we are ready to define the complexity measures.

Definition 1.2 Let M be a MTM recognizing a language L(M) and let x ∈ Z∗, where Z is the
input alphabet of M . If C = C1, C2, . . . , Ck is the finite computation of M on x, then the time
complexity of the computation of M on x is

TM (x) = k − 1 .

If the computation of M on x is infinite, then

TM (x) =∞ .

The time complexity of M is the partial function from N to N,

TM (n) = max{TM (x) | x ∈ Σn ∩ L(M)}.

The space complexity of one configuration C of M , SM (C), is the length of the longest word over
the working alphabet stored on the working tapes in C. The space complexity of a computation
D = C1, . . . , Cm is

SM (D) = max{SM (Ci) | i = 1, . . . ,m}.
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The space complexity of M on a word x ∈ L(M) is SM (x) = SM (Dx), where Dx is the
computation of M on x.
The space complexity of M is the partial function from N to N,

SM (n) = max{SM (x) | x ∈ Σn ∩ L(M)}.

One can observe that the function TM (x)(SM (x)), as a function from L(M) to N is the most precise
(complete) description of the complexity behaviour of the machine M . But this description is not useful
for the comparison of complexities of different algorithms (MTMs). It is so complex that one can have
trouble to find a reasonable description of it. Thus, we prefer to consider the complexity measures as
functions of the input sizes rather than of specific inputs. The time and space complexities are so called
worst case complexities because TM (n)(SM (n)) is maximum of the complexities over all words of
length n from L(M) (i.e. M can recognize every input from L(M)∩Σn in time TM (n) and there
exists x ∈ L(M)∩Σn such that TM (n) = TM (x)). In abstract complexity theory we usually prefer this
worst–case approach to define the complexity measures, but in the analysis of concrete algorithms we
are often interested to learn the average behaviour of the complexity on inputs of a fixed length. In such
case one has to make a probabilistic analysis of the behaviour of TM (x) according to the probability
distribution of inputs of a fixed length.

Another interesting point in the definition above is that to define TM (n) and SM (n) we have
considered TM (x) and SM (x) only for words from L(M). This is because we allow infinite (or very
complex) computations of M on words in Σ∗ −L(M). In what follows we show that if TM (SM ) is a
“nice” function, then it does not matter for the complexity of the recognition of the language L = L(M)
whether one defines TM as above or as TM (n) = max{TM (x) | x ∈ Σn}. The idea is to construct a
machine M ′ simulating M in such a way that if M ′ simulates more than TM (n) steps of M on
an input y, then M ′ halts and rejects the input. Obviously, M ′ is able to do it in this way if M ′

is able to compute the number TM (|y|) in time O(TM (|y|)). Before starting to describe this we show
that it is sufficient to study the asymptotical behaviour of TM (n) and SM (n).

Definition 1.3 [78, 77] Let t and s be two functions from N to N. Then

TIME(t(n)) = {L | L = L(M) for a MTM M with TM (n) ≤ t(n)},

and
SPACE(s(n)) = {L | L = L(M) for a MTM M with SM (n) ≤ s(n)}.

Theorem 1.4 [77] Let c be a positive real number and let s : N→ N be a function. Then

SPACE(s(n)) = SPACE(c · s(n)).

Idea of proof. Without loss of generality we assume c < 1. Then, SPACE(c · s(n)) ⊆ SPACE(s(n)) is
obvious. To show that SPACE(s(n)) ⊆ SPACE(c · s(n)) we use a compression of the contents of the
tapes. Let M be a MTM recognizing a language L(M) ∈ SPACE(s(n)) with SM (n) ≤ s(n) . Let
k = d1/ce and let Γ be the working alphabet of M . Then one constructs a MTM M ′ with the
working alphabet Γk . This enables to store in one cell of the tapes of M ′ the contents of k adjacent
cells of tapes of M . The detailed construction of the rules of M ′ is left to the reader.

¤

The same idea of the compression can be used to reach the following speed–up theorem.

Theorem 1.5 [78] For every constant c > 0 and every function t : N→ N such that lim inf
n→∞

t(n)/n =
∞

TIME(t(n)) = TIME(c · t(n)).

Obviously, the compression of tapes in the theorems above is not completely fair because we save
space and time according to the complexity definition by storing larger data in one memory cell and
executing more complicated operations in a step of the simulating machine. If one fixes the working
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alphabet to {0, 1} this effect will be impossible. So, the lack of difference between c · f(n) and f(n)
for complexity considerations on Turing machines is rather a property of the computing model than a
complexity property of algorithms. On the other hand, in studying the complexity of concrete problems
one primarily estimates the asymptotical behaviour (polynomial growth, for instance) of complexity
functions. Thus, we are satisfied with the study of asymptotical behaviours of complexity functions and,
accordingly, we can accept Turing machines as a computing model for the complexity measurement.

Definition 1.6 A function s : N → N is called space–constructible if there exists a MTM M
having the following two properties:

(i) SM (n) ≤ s(n) , for all n ∈ N, and

(ii) for every n ∈ N, M starting on the input 0n computes 0s(n) on the first working tape and halts
in a final state.

A function t : N → N is called time–constructible if there exists a MTM A having the following
two properties:

(iii) TM (n) = O(t(n)) , and

(iv) for every n ∈ N, M starting on the input 0n computes 0t(n) on the first working tape and halts
in a final state.

Now, we can show that for constructible functions it does not matter whether TM (n) is defined as
max{TM (x) | x ∈ L(M) ∩ Σn} or as max{TM (x) | x ∈ Σn}.

Lemma 1.7 Let t : N→ N (s : N→ N) be a time–constructible (space–constructible) function. Then
for every L ∈ TIME(t(n)) (L ∈ SPACE(s(n))), L ⊆ Σ∗, there exists a MTM M such that

(i) L(M) = L, and

(ii) for every x ∈ Σ∗, TM (x) = O(t(|x|)) (SM (x) ≤ S(|x|)).

Proof. We give the proof for the time complexity. Since L ∈ TIME(t(n)) we may assume there is a
MTM A with L(A) = L and TA(n) ≤ t(n). If A has k working tapes, then we construct M with
k + 1 working tapes acting on the input x as follows:

1. M computes 0t(|x|) on the first working tape in time O(t(n)).

2. M simulates t(|x|) steps of the computation of A on x.

3. If A accepts x, then M accepts x too. If A halts and rejects x, then M rejects, too. If A
does not halt after t(|x|) steps, then M halts and rejects x.

Note that step 1 can be done because t is time–constructible. Since M uses k free working tapes to
simulate A with k working tapes, M can simulate one step of A in one step. Rewriting 0 to 1 in
each simulation step M one can check that t(|x|) simulation steps were executed. Since each accepting
computation of A on a word x ∈ L(A) fulfills TA(x) ≤ TA(|x|) one sees that every computation
longer than TA(|x|) cannot lead to acceptance of x (i.e. x /∈ L(A) ). Thus L = L(A) = L(M) and
TM (|x|) = O(t(|x|)) for every x ∈ Σ∗.

¤

As we have seen the complexity classes bounded by two functions f and g are the same if
f(n) = Θ(g(n)).27 A natural and important question has arisen. Which increase of the growth of g in
the comparison to the growth of f is sufficient and necessary to reach TIME(f(n)) ⊂ TIME(g(n))
or
SPACE(f(n)) ⊂ SPACE(g(n))? The answer to this question is provided by the following theorems

27If there are two constants c,N such that for all n ≥ N, f(n) ≥ cg(n), then we say that f(n) = Ω(g(n)). We say that
f(n) = Θ(g(n)) in case f(n) = O(g(n)) and f(n) = Ω(g(n)).
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which have been established by generalizing the well-known diagonalization method from the computabil-
ity theory.

Before starting to formulate them, we observe that every MTM A can be simulated by a MTM B
with one working tape only in the same space [77]. This is because the i-th cell of the working tape of
B can save the tuple containing all symbols on the i-th positions of all working tapes of A.

Theorem 1.8 [77] Let s1 and s2 be two functions having the following properties:

(i) s2(n) ≥ s1(n) ≥ log2 n for every n ∈ N,

(ii) s2 is space–constructible,

(iii) lim inf
n→∞

s1(n)
s2(n) = 0.

Then, SPACE(s1(n)) ⊂ SPACE(s2(n)).

Proof. The proof idea is based on the diagonalization technique. The simple version of this tech-
nique orders all Turing machines in an enumerable sequence T1, T2, . . . , Ti, . . . and, for any i ∈ N, it
chooses a word xi ∈ {0, 1}∗ (xi 6= xj for i 6= j). Then, the diagonal language Ld is defined as
{xi | xi /∈ L(Ti), i ∈ N}. Since, for every i ∈ N, L(Ti) and Ld differs in the behaviour on xi we
call xi the candidate for the difference between L(Ti) and Ld in the process of the choice of xi.

There are two reasons why this simple approach fails to work directly for our theorem. We cannot
enumerate the sequence of MTMs working in space s1 because it is not decidable whether a given
MTM is s1(n)–space bounded. This means we have to take the sequence of all MTMs, and for every
MTM M of this sequence (even in case M is not s1(n)–space bounded), we have to try to find a
candidate for the difference between L(M) and the diagonal language. Obviously, if a machine M is
not s1(n)–space bounded the candidate may fail because we do not need to have the difference between
L(M) and Ld. We must be only sure that our candidates will work for s1(n)–space bounded machines.

A second, more serious problem is the following one. Ld has to be in SPACE(s2(n)), i.e. there must
exist a MTM M2 such that L(M2) = Ld and SM2(n) ≤ s2(n). Since M2 has a working alphabet
of a fixed size and we want to simulate the work of other s1(n)–space bounded machines on the chosen
candidates we need more than s1(n) space to do it if the working alphabet Γ of the simulated machine
is larger than the working alphabet of M2. More precisely, M2 needs dlog2 |Γ |e · s1(n) space for this
simulation which may be greater than s2(n) for finitely many small n′s. Thus, for words of small
lengths M2 is not able to simulate the machine with large Γ. It means we cannot fix the candidates
x′is for T ′i s without knowing that they are large enough to have s2(|xi|) ≥ (log2 |Γi|) · s1(|xi|), where
Γi is the working alphabet of Ti.

To overcome this difficulty we choose for every MTM Ti an infinite set of candidates for the
difference between L(Ti) and L(M2). Then, we can be sure that one candidate y will be large enough
for s2(|y|) ≥ (log2 |Γi|) · s1(|y|) and so M2 can simulate Ti on y and accepts (rejects) if Ti has
rejected (accepted).

Now, we are prepared to give the formal proof. As we have already observed it is sufficient to
consider MTMs with one working tape only. Let T1, T2, . . . be sequence of all MTMs with one
working tape and the input alphabet {0, 1}, and let T̃1, T̃2, . . . be their binary codes. The infinite set
Xi = {x ∈ {0, 1}∗ | x = 0n1T̃i} will be considered as the set of candidates for the difference between
L(Ti) and L(M2). Obviously Xi

⋂
Xj = ∅ for i 6= j.

We define the diagonal language as the language L(M2) accepted by M2 acting on every input w
as follows:

1. M2 computes 0S2(|w|) on the first working tape.

2. M2 considers w as 0r1T̃ for some r ∈ N and T̃ ∈ {0, 1}∗. If |T̃ | > S2(|w|), then M2 halts
and rejects w, else M2 continues with the step 3.

3. M2 decides whether T̃ is a code of a MTM T with one working tape and the input alphabet
{0, 1}. If not, M2 halts and rejects w. If the answer is yes, then M2 continues with the step 4.

4. M2 writes the number 2S2(|w|) in binary on the second working tape. On the third working tape
M2 simulates step by step the computation of T on w. The working alphabet Γ of T is coded
by the binary working alphabet of M2.



                 
18 CHAPTER 1. COMPLEXITY

(a) If M2 needs more than s2(|w|) space on the third tape (i.e. if s2(|w|) < dlog2(|Γ|)e ·s1(|w|)
or T is not s1–space bounded), then M2 halts and rejects w.

(b) If M2 has successfully simulated 2s2(|w|) steps of T and T does not halt, then M halts
and accepts w.

(c) If T halts on w in fewer than 2s2(|w|) steps and M2 succeeds to simulate all these steps,
then M2 accepts w iff T rejects w.

We observe that M2 always halts and that SM2(n) ≤ s2(n) for every n ∈ N.
Now, we have to show that L(M2) /∈ SPACE(s1(n)). We assume that L(M2) ∈ SPACE(s1(n)).

Then there exists a MTM M with one working tape such that L(M) = L(M2) and SM (n) ≤ s1(n).
Let Q be the set of states of M , and let Γ be the working alphabet of M . Obviously, for a given
input w, there are at most

r(|w|) = |Q| · s1(|w|) · (|Γ |+ 1)s1(|w|) · |w|

different configurations of M . This means that any computation of M on w consisting of more than
r(|w|) steps is infinite because M is deterministic and some configuration has occurred twice in the
computation. Since lim inf

n→∞
s1(n)/s2(n) = 0, there exists a positive integer n0 such that:

(i) | M̃ | ≤ s2(n0),

(ii) dlog2(|Γ |)e · s1(n0) ≤ s2(n0), and

(iii) |Q| · s1(n0) · (|Γ |+ 1)s1(n0) · n0 < 2s2(n0).

Set x = 0j1M̃ for a j ∈ N such that |x| = n0. If x ∈ L(M), then there exists an accepting
computation of M on x of the length at most r(|x|). Because (i), (ii), (iii) are fulfilled, M2 succeeds
to simulate the whole computation of M on x. Thus, M2 rejects x according to 4(c).
If x /∈ L(M), then two different reasons may determine it:

10 M halts in at most r(|x|) steps and rejects x. Then, following the step 4(c), M accepts x.

20 The computation of M on x is infinite. Then according to (i), (ii) and (iii), M2 succeeds to
simulate the first 2s2(|x|) = 2s2(n0) steps of M on x. Because of the step 4(b) M2 halts and
accepts x.

Thus, we have showed “x ∈ L(M) iff x /∈ L(M2)” which is a contradiction.

¤

The assertion above shows that the power of Turing machines strongly grows with the asymptotical
growth of the space complexity used. For space bounds growing slower than log2 n the situation is
a little bit different. A survey of such small space–bounded classes can be found in [67, 139]. We
only mention that SPACE(0(1)) [constant space] is exactly the class of regular languages and that if
SPACE(f(n)) contains at least one nonregular language, then lim sup

n→∞
f(n)/ log log2 n > 0. Thus the

space classes SPACE(s(n)) with s(n) = o(log log2 n) 28 contain only regular languages.
A similar hierarchy can be achieved for time complexity, but it is not so strong as the space hierarchy.

The reason is that we do not have only the problem to simulate different working alphabets of arbitrarily
large cardinalities by one working alphabet of the “diagonalizing” MTM , but we have to fix the number
of working tapes for the diagonalizing MTM while the simulated MTMs may have any number of
working tapes. Since, for any k ∈ N, we do not know a linear time simulation of an arbitrary number
of tapes by a k–working tapes we formulate the hierarchy result as follows.

Theorem 1.9 [78] Let there exist a positive integer k, a function f : N → N, and a simulation of an
arbitrary MTM A by a MTM with k working tapes in O(TA(n) · f(n)) time. Let t1, t2 be two
functions from N to N such that

28f(n) = o(g(n)) in case limn→∞
f(n)
g(n)

= 0.
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(i) t2(n) · f(n) ≥ t1(n) for every n ∈ N,

(ii) t2 is time–constructible, and

(iii) lim inf
n→∞

t1(n)·f(n)
t2(n) = 0.

Then TIME(t1(n)) ⊂ TIME(t2(n)).

Due to the fact that every t(n) time–bounded MTM can be simulated by a MTM with two working
tapes in O(t(n) · log2(t(n))) [80], we deduce the relation

TIME(t1(n)) ⊂ TIME(t1(n) · log2(t1(n)) · q(n)),

for any monotone, unbounded q : N→ N.
The hierarchy result above shows that there are languages of arbitrarily large complexity, i.e. we have

an infinite number of levels for the classification of the computational difficulty of language recognition
(computing problems). If L ∈ TIME(t1(n)) − TIME(t2(n)), then we say that t1(n) is the upper
bound on the time complexity of L and t2(n) is the lower bound on the time complexity of L.
So, the upper bound t1 for L means that there is an algorithm (MTM) A recognizing L with
TA(n) ≤ t1(n) and the lower bound t2(n) means that there is no algorithm (MTM) B recognizing
L with TB(n) ≤ t2(n). At this point one may wish to define the time (space) complexity of a
language (computing problem) as the complexity of the best (asymptotically optimal) algorithm (MTM)
recognizing L. But this is impossible because there are languages with no best MTM . This fact is
more precisely formulated for time complexity in the following version of Blum’s Speed–up Theorem
(this result works for an arbitrary Blum space, cf. [23]).

Theorem 1.10 [17]
There exists a recursive language L such that for any MTM M1 accepting L, there exists a

MTM M2 such that

(i) L(M2) = L(M1), and

(ii) TM2(n) ≤ log2(TM1(n)) for almost all n ∈ N.

Idea of proof. The assertion of Blum’s Speed–up Theorem may seem curious and surprising in the first
moment. But the following idea shows an explanation of this phenomenon. First, one can observe that
for every language L′ there are infinitely many MTMs accepting it. Then, one has to construct
a language L which cannot be recognized efficiently by any MTM (program) of small size (small
index), but as MTM (program) sizes increase faster and faster MTMs accepting L more and more
efficiently exist. The formal construction of L can be done by diagonalization.

¤

We see that the theorem above can be infinitely many times applied to L and so there is no optimal
MTM accepting L. For every concrete MTM M there exists a larger MTM M ′ working more
efficiently than M .29

This is the reason why we cannot generally define the complexity of a computing problem (language)
as the complexity of the optimal algorithm for it. But, we can always speak about lower and upper bounds
on the problem complexity which is sufficient for the classification of computing problems according to
their computational difficulty.

We close this section studying the relation between time complexity and space complexity. We
observe that TIME(t(n)) ⊆ SPACE(t(n)) for any function t(n) ≥ n because no MTM can use
more cells of the working tapes than the number of executed steps of M is. On the other hand we
have SPACE(s(n)) ⊆

⋃
c∈N

TIME(cs(n)) for any s(n) ≥ log2 n. This is because for every s(n)–space

bounded MTM M there is a constant c such that the number of different configurations of M with
a fixed content of the input tape is bounded by cs(n). These above two relations suggest that space may
be much more powerful than time. The best result currently known in this direction is contained in the
following assertion.

29The speed-up phenomenon is non-constructive; for instance, there is no recursive function of the initial index that
gives a bound for the exceptional values in Blum speed-up, but that there is a recursive bounding function of the speed-up
index, [22]. The class of speedable functions is large, [31].
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Theorem 1.11 [82] For any function t : N→ N such that t(n)/ log(t(n)) = Ω(n):

TIME(t(n)) ⊆ SPACE(t(n)/ log(t(n))).

1.3.2 Classification of Problems According to Computational Difficulty and
Nondeterminism

The hierarchy theorems show that there are problems of arbitrarily large computational difficulty. The
main practical interest is in the classification of concrete computing problems according to their computa-
tional difficulty. To see the importance of this let us consider the following classical example [79]. Let us
have four algorithms (MTMs) A1, A2, A3, and A4. Let TA1(n) = 5n, TA2(n) = n · logn, TA3(n) = n2,
and TA4(n) = 2n. Then for the realistic input size n = 1000 we have TA1(1000) = 5000, TA2(1000) =
9966, TA3(1000) = 1000000, and TA4(1000) is a 302–digit number. For comparison, the number of
protons in the known universe has 126 digits, and the number of microseconds since the “Big Bang” has
24 digits. Thus, A4 is not useful for any practical purposes because already TA4(100) is a 31–digit
number. If A4 is an optimal algorithm for some problem L, then we cannot algorithmically solve L in
general. We can see this also from the opposite side. Every computer has a finite memory and we always
have a bound on the time we can wait for a result. These two constants together with the complexity
functions of the given algorithm A bound the size of inputs which can be processed by the algorithm
A on a given computer. We observe that, for algorithms with exponential complexity, the bounds are
very small because, for f(n) = 2n, f(n+ 10) ≥ 103 · f(n). Considerations similar to those made above
have lead to the classification of computing problems into tractable (feasible) problems admitting a
polynomial–time solution [46] and intractable problems for which no polynomial algorithm exists. The
basic class for the classification of problems (languages) is the class

P =
⋃
k∈N

TIME(nk).

An important observation is that the definition of P is invariant with respect to all “reasonable”
computing models used, i.e. if one finds a polynomial algorithm for a problem in one formalism than we
can be sure that there exist polynomial algorithms for this problem in all other formalisms, and if one
proves L /∈ P in one of the computing model formalisms then this is true for all.
Some further fundamental complexity classes are:

DLOG = SPACE(log2 n),
PSPACE =

⋃
k∈N

SPACE(nk),

EXPTIME =
⋃
k∈N

TIME(2n
k

).

They satisfy the following relations:

DLOG ⊆ P ⊆ PSPACE ⊆ EXPTIME.

As we have already mentioned above, the theory of computation provides successful methods for the
classification of languages (problems) into recursive (decidable) and nonrecursive (undecidable) ones.
Unfortunately, this is not true for the decision whether a language L is in P or not. Usually it is not
very hard to prove that L ∈ P , because it is sufficient to find a polynomial MTM accepting L. So,
if L ∈ P , then it is rarely a problem to find a polynomial algorithm for L. An exception is the problem
of linear programming which was not known to be in P , nor to be not in P for a longer time. In 1979
an ingenious polynomial–time algorithm was found for it [98].

The main difficulty is in proving lower bounds on concrete computing problems. We do not have any
mathematical method enabling to prove higher than quadratic lower bounds on the time of restricted
computing models (for instance, one–tape TM) or superlinear (higher than linear) lower bounds on
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the time of general computing models (register machines). Thus, we cannot really classify computing
problems because we are unable to obtain tight lower bounds on their complexity.

To overcome the absence of absolute lower bounds (i.e. the evidence that some computing problems
are difficult) Cook [47] has introduced a method enabling to prove so called “relative” lower bounds
which are viewed as a strong implication of hardness. The idea of this method is based on the reduc-
tion between computing problems—a classical mathematical approach to problem solving. The novelty
consists in connecting the reduction, of one problem to another one, with the complexity.

Definition 1.12 [47] Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be two languages. We say, that L1 is polynomial–
time reducible to L2 (denoted L1 ≤ L2) if there is a polynomial–time bounded MTM that for every
word x ∈ Σ∗1 writes x2 on the first working tape (considered as an output tape here) such that
x ∈ L1 ⇐⇒ y ∈ L2. We say that L1 and L2 are polynomial–time equivalent if L1 ≤ L2 and
L2 ≤ L1.

We observe that “L1 is polynomial–time reducible to L2” means that L1 cannot be “much more
difficult” than L2, i.e. if L2 ∈ P then L1 must be in P , too. Thus, if L1 is polynomial–time
equivalent to L2, then L1 ∈ P iff L2 ∈ P .

The first idea behind the relative lower bounds (a strong implication to be difficult) is that if one finds
many computing problems polynomial–time equivalent (reducible) each to the other, and no polynomial–
time algorithm is known for any of these problems, then we have a large experience (strong implication)
that each of these problems is computationally difficult. This idea is still strengthen by considering
nondeterminism as follows (we assume that the reader is familiar with the concept of nondeterminism
and with nondeterministic MTMs [116]).

Definition 1.13 Let M be a nondeterministic MTM with an input alphabet Σ. Let x ∈ Σ∗ and C
be a computation of M on x. We denote by TM (C) the length of C minus 1. For every x ∈ L(M),
time complexity of M on x is

TM (x) = min{TM (C) | C is an accepting computation of M on x}.

The time complexity of M is a partial function TM : N→ N such that

TM (n) = max{TM (x) | x ∈ L(M) ∩ Σn}.

Further, for any f : N→ N, f(n) ≥ n,

NTIME(f(n)) = {L | L = L(M) for a nondeterministic MTM M

with TM (n) ≤ f(n)}.

We note that one can represent all possible computations of a nondeterministic MTM M on a
given word as a directed possibly infinite tree TrM (w) whose nodes are labeled by configurations of M .
The root of TrM (w) is labeled by the initial configuration C0(w) of M on w. Each node labeled by
C has indegree 1 and outdegree equal to the number of all possible nondeterministic actions from the
configuration C. M accepts w if and only if TrM (w) contains at least one accepting configuration.
We observe that TM (x) is bounded by the depth of TrM (x) because TM (x) is the minimum of
the distances between the root of TrM (x) and accepting configurations of TrM (x). A deterministic
simulation of the work of M on an input w is usually a search for an accepting configuration in
TrM (w). Since the size of TrM (w) may be exponential in the depth of TrM (w) (and so exponential
in TM (w)) this deterministic search for an accepting computation consists of exponentially many steps
according to TM (w). All simulations of nondeterministic machines by deterministic ones cause an
exponential increase of time complexity. This is one reason to believe that

P ⊂ NP =
⋃
k∈N

NTIME(nk).

Another reason for that is that for some mathematical problems the deterministic time corresponds to the
complexity of the search for a solution while the nondeterministic time corresponds to the complexity
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of verifying whether a given candidate for the solution is a consistent solution. This is because a
nondeterministic algorithm can guess the solution (for instance the values of variables over {0, 1} in
a system of equations) in real time and then check whether this guess was correct. For many such
problems we cannot find better deterministic algorithms than those searching for a solution by generating
exponentially many candidates for it. Thus, we have enough experience to believe P ⊂ NP .

Now, we add these two ideas together by saying that a problem is relatively hard if it is one of the
hardest in NP in the following sense.

Definition 1.14 [47] A language L is called NP–complete if

(i) L ∈ NP , and

(ii) ∀L′ ∈ NP L′ is polynomially reducible to L.

Clearly,

(i) If P ⊂ NP then every NP–complete language is in NP − P (i.e. intractable).

(ii) If an NP–complete language L ∈ P , then P = NP .

A few thousands NP–complete problems are known, and for none of them we have a polynomial–time
algorithm. Moreover, we do not know any deterministic time–effective simulation of nondeterministic
computations and we do not believe that to find a solution is not much harder than to verify whether a
given candidate for the solution is correct. All these facts together provide a large experience supporting
the opinion that NP–complete problems do not have polynomial algorithms.

We omit examples and proofs of NP–completeness in this short survey. A nice overview on this
topic can be found in [64]. We note only that we can also define complete problems in other classes
like P, PSPACE too. If one defines P -complete problems according to the log2 n–space reduction,
then such P–complete problems are candidates for the membership in P − DLOG. This question
has been found interesting from the very beginning of the complexity theory because each polynomial
time computation contains at most a polynomial number of different configurations. To generate any
polynomial number of configuration the space O(log2 n) is sufficient. Thus P = DLOG would mean
that the memory of every polynomial–time algorithm can be optimized within the log2 n–space bound.
But we conjecture that there are problems in P (exactly the P–complete problems according to
log2 n–space reduction) which require polynomial time as well as polynomial space to be solved.

We conclude this section by giving the fundamental relations among the basic complexity classes.

Definition 1.15 Let M be a nondeterministic MTM with an input alphabet Σ. Let x ∈ Σ∗ and
C = C1, . . . , Ck be a computation of M on x. We denote by SM (Ci) the length of the longest content
of the working tapes of M in the configuration Ci. SM (C) = max{SM (Ci) | i = 1, . . . , k}. For every
x ∈ L(M), the space complexity of M on x is

SM (x) = min{SM (C) | C is an accepting computation of M on x}.

The space complexity of M is a function SM : N→ N such that

SM (n) = max{SM (x) | x ∈ L(M) ∩ Σn}.

Further, for any f : N→ N, f(n) ≥ n,

NSPACE(f(n)) = {L | L(M) for a nondeterministic MTM M with

SM (n) ≤ f(n)}.
NLOG = NSPACE(log2 n),

NPSPACE =
⋃
k∈N

NSPACE(nk).

First, we observe that there exists a space–efficient simulation of nondeterministic computations.
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Theorem 1.16 [129] Let f(n) ≥ log2 n is space–constructible. Then

NSPACE(s(n)) ⊆ SPACE((s(n))2).

Idea of proof. Let L = L(M), SM (n) ≤ s(n). Then there exists a constant c such that the number
of different configurations of the nondeterministic MTM M on an input of length n is bounded by
cs(n), for every n ∈ N. So, if M accepts a word w, then TrM (w) contains an accepting configuration
in the distance at most cs(|w|) from the root.

Let C0(w) be the initial configuration of M on w. Without loss of generality we can assume that
there is a unique accepting configuration C ′. We have to test whether C ′ is reachable from C0(w) in
exactly cs(|w|) steps. We can do it by testing for every configuration C whether C is reachable from
C0(w) in cs(|w|)/2 steps and C ′ is reachable from C in cs(|w|)/2 steps. By this approach the space
needed to determine whether C1 is reachable from C2 in 2i steps is equal to the space needed to
record the configuration C plus the space needed to test if one can reach one configuration from another
one in 2i−1 steps. Using this approach recursively until one has to test whether one configuration can
be reached from another one in one step we have to store at most log2(cs(n)) = O(s(n)) configurations.
Since each configuration is of size s(n), the simulation uses O((s(n))2) space.

¤

Corollary 1.17 PSPACE = NPSPACE

As we have already mentioned, the best known time–bounded simulation causes an exponential
increase of time.

Theorem 1.18 Let t be a time–constructible function. Then

NTIME(t(n)) ⊆
⋃
c∈N

TIME(ct(n)).

Idea of proof. Let L ∈ NTIME(t(n)), i.e. L = L(M) for some t(n)–time bounded nondeterministic
NTM . Obviously, M is t(n)–space bounded, too. As we already know, there exists a constant d
such that the number of configurations of M on an input of the length n is bounded by dt(n). A
deterministic MTM can generate all configurations of M reachable from the given initial configuration
in time ct(n), for some suitable constant c.

¤

The fundamental complexity hierarchy is as follows.

Theorem 1.19

DLOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

Proof. The following inclusions DLOG ⊆ NLOG, P ⊆ NP, PSPACE ⊆
EXPTIME are obvious. Since NP ⊆ NPSPACE = PSPACE we obtain NP ⊆ PSPACE.
NLOG ⊆ P , because every nondeterministic log2 n–space bounded MTM has at most a polynomial
number of configurations in any computation tree for an input of length n.

¤

All inclusions in Theorem 1.19 are believed to be proper, but nobody has proven it for any of them.
To prove at least one proper inclusion or equality in this hierarchy is one of the central open problems
of theoretical computer science. One supposes that this problem is very hard because it can be proven
that the usual machine simulations, as a method for proving equality between two language (complexity)
classes, and the diagonalization, as a method for proving non-equality among complexity classes, do not
work for any of the inclusions of the fundamental complexity hierarchy. How can one prove that these
methods do not work? We illustrate this approach on the most important problem P =?NP (see, for
instance, [64, 7, 8, 116]).
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An oracle machine is a pair (M,L), denoted ML too, where M is a MTM with one additional
oracle tape and L is an oracle. M has special states q?, qY , qN , and if M is in the state q? then M
without looking on the content of its tapes, enters the state qY (qN ) if the content of the oracle tape is
(not) in L. A move from q? to qY or qN according to L is considered as one step of ML. After
this, the content of the oracle tape is erased. We denote L(MA) the language accepted by the oracle
machine MA and

PA = {L(MA) |MA is a polynomial–time bounded oracle machine},

NPA = {L(MA) |MA is a nondeterministic polynomial–time bounded

oracle machine}.

Theorem 1.20 [6] There exist two languages A,B such that

(i) PA = NPA

(ii) PB ⊂ NPB

Idea of proof. To prove (i) it is sufficient to take a PSPACE–complete language A. For this choice
of A one can easily observe that PA = PSPACE = NPSPACE = NPA. The proof of (ii) is
much more involved. The idea is to find an oracle B and a language L ∈ NPB − PB in such a
way L = {0i | B contains a word of the length i} and |B

⋂
{0, 1}n| ≤ 1, for any n ∈ N. A

nondeterministic MTM MB can accept L in linear time by guessing the word x from B
⋂
{0, 1}n,

for the input 0n, and by verifying its nondeterministic decisions by asking the oracle B whether x ∈ B.
If the oracle B is cleverly constructed then no polynomial–time bounded MTM can find in polynomial
time the candidate x ∈ B

⋂
{0, 1}n among the 2n words of the length n.

¤

The above theorem shows that we cannot prove P = NP by any usual simulation and P 6= NP by
any typical diagonalization. Suppose one could “simulate” nondeterministic polynomial–time bounded
MTMs by polynomial–time bounded MTMs. All known simulations of a machine M1 by a machine
M2 remain valid if one attaches the same oracle to both machines M1 and M2. This means that
P = NP, proven by such simulation implies PC = NPC , for every oracle C. But (ii) of Theorem 1.20
contradicts this. The same is true for the diagonalization method. All usual diagonalization proofs for
the non-equality G 6= H between two language classes G and H would also work when oracles are
attached (GL 6= HL, for every language L). But we have an oracle A such that PA = NPA which
means that usual diagonalizations cannot help to separate P from NP .

Finishing this section we note that we omit to present two large intersections of formal language
theory and complexity theory here. One is devoted to the characterizations of basic complexity classes
by different kind of automata (multihead automata, pushdown machines, etc.). A nice overview about
this topic can be found by Lange [100]. Another topic omitted is devoted to the complexity of classical
problems of formal language theory like string matching, parsing, etc. Each one of this research areas
involves enough result for a monograph and according to the size restrictions of this chapter we do not
try to give a survey of them.

1.3.3 Hard Problems and Probabilistic Computations

What to do if one has proven the evidence or a strong implication that a given computing problem is
computationally difficult? One can stop any attempt to solve the problem by giving the mathematical
arguments justifying why the problem cannot be solved on a computer. This may be good for pure theory
but quite unsatisfactory if there is a large practical interest to have a program solving the problem. In
this case one uses one of the following approaches.

1) Deterministic Algorithms

Let us assume that our problem has exponential time complexity. Then one can still try to
find a MTM M (algorithm, program) which solves the problem in time complexity close to
TM (n) = 1

100 · 2n/50. It means, that in spite of the fact that M has an exponential complexity,
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one can still effectively compute results for inputs of several hundreds bits. Thus, if the lengths of
the input from practical applications are in the range where TM (n) is not too large, then one has
an useful algorithmical solution for a hard problem.

2) Problem Restrictions

Usually, you do not need to solve the given computing problem in the generality of its original
formulation. In several cases some additional restrictions essentially decrease the computational
difficulty of the problem. The most typical case is to restrict the set of potential inputs only (for
instance, the Post Correspondence Problem starts to be decidable if one considers inputs over one–
letter alphabet only, the Satisfiability Problem is in P if one restricts the inputs to conjunctive
normal formulas in which the length of the elementary disjunctions are bounded by two).

3) Approximate Algorithms

If our difficult problem is an optimization problem, one can make it easier searching for a solution
which is not too far from the optimum, but it is not necessarily the optimum. There are NP–
complete optimization problems for which good approximations of optimal solutions can be found
in polynomial time. Since the practice is often satisfied with approximate solutions this is one of
the most successful methods for the design of algorithms for hard problems.

4) Probabilistic Algorithms

Probabilistic algorithms are based on nondeterministic ones. Each nondeterministic step (branch-
ing) is interpreted as a random decision (tossing coin). While for nondeterministic computations
an accepting configuration in the computation tree has been sufficient to accept the input, for
probabilistic computations we require a “sufficiently large” probability to reach an accepting con-
figuration (correct output). Thus, instead of surely correct outputs produced by deterministic
algorithms one computes an output whose probability to be correct is large enough. Usually the
probabilistic algorithms allow repeated runs on the same input due to which the probability to get
the right answer tends to 1 with the size of the input.

5) Probabilistic Approximate Algorithms

A combination of the two previous methods leads to algorithms providing with high probability
solutions of optimization problems which are very close to optimum.

6) Heuristics

Heuristic algorithms are similar to probabilistic ones in that they make random decision during
their computations, too. The difference is in that we are unable to prove that heuristic algorithms
provide good solutions (outputs) despite of the fact that they successfully work in some practical
applications (at least for most of the inputs generated in practice). The ideas of the algorithm
design are based on some analogies to efficient optimization processes running in the nature (biology,
physics). Two of the most popular representants are genetic algorithms and simulated annealing.
But theoretical as well as experimental results show that the methods previously described are
much more reliable than heuristic ones and the use of heuristic methods is recommended only in
cases in which one is not able to find an efficient solution by the previous five approaches.

Note that the above approaches may be also mixed. For instance, we have polynomial–time approximate
algorithms for Traveling Salesman Problem in Euclidean space.

Out of the six approaches mentioned above we shall give more details about the probabilistic one
only. There are two reasons for this: i) one can use the formalism of formal language theory to describe
probabilistic algorithms, and ii) the power of randomized computations is one of the topics of main
interest in the recent complexity theory.

We distinguish two types of probabilistic MTMs (algorithms) called Las Vegas MTMs and Monte
Carlo MTMs. Las Vegas algorithms always give the right result and their complexity on an input x is
measured as the “weighted average” over all computations on x. Monte Carlo algorithms give the right
result with some probability greater than 1/2 (i.e. some computations may lead to wrong results) and
one usually considers that the time complexity is measured by the depth of the computation tree. In
what follows we give more details about these two models of probabilistic computations in the formalism
of formal language theory.



            
26 CHAPTER 1. COMPLEXITY

Definition 1.21 A nondeterministic MTM M is called a Las Vegas MTM M if

(i) the degree of nondeterminism is bounded by two (i.e. all computation trees are binary trees), and

(ii) for every x ∈ L(M) [x /∈ L(M)] all leaves of TrM (x) are accepting [rejecting] configurations.

Let D ∈ TrM (x) denote the fact that D is a computation of M on x corresponding to a path
in TrM (x) leading from the root to a leaf of TrM (x). The probability of executing D ∈ TrM (x) is
Prob(D) = 2k, where k is the number of nondeterministic choices of D. Let |D| denote the length
of D. Las Vegas time complexity of M on an input x is

LV TM (x) =
∑

D∈TrM (x)

Prob(D) · |D|.

Las Vegas time complexity of M is

LV TM (n) = max{LTVM (x) | |x| = n}.

We observe that polynomial Las Vegas algorithms are very useful in practical applications because
they are reliable (they compute the right outputs), and the outputs are computed in polynomial time
with a high probability.

Definition 1.22 A nondeterministic MTM M is called one–sided error Monte Carlo MTM if

(i) the degree of nondeterminism is bounded by two,

(ii) there is a function f : N → N such that all computations on the inputs of the length n have
length f(n) and each one uses exactly f(n) − 1 nondeterministic guesses (i.e. all 2f(n)−1

computations have the same probability)

(iii) if x ∈ L(M), then at least 2f(n)−2 computations on x finish in accepting states, and

(iv) if x /∈ L(M), then all computations on x finish in rejecting states.

A nondeterministic MTM M is called two–sided error Monte Carlo

MTM if it satisfies (i), (ii), and

(v) there exists a constant ε such that if x ∈ L(M)(x /∈ L(M)), then more than (2f(n)−1/2)(1 + ε)
computations finish in accepting (rejecting) states.

We observe that Monte Carlo algorithms are not reliable as Las Vegas ones, but one–sided error
Monte Carlo algorithms are still extremely useful in solving decision problems. The reason for this claim
is that we can iterate the algorithm on the same input a certain number of times with independent
random choices in order to make the error probability arbitrarily small. For instance, k runs of a one–
sided error Monte Carlo algorithm on the same input produce k answers. If at least one is “yes”, then
the answer “yes” is certainly correct. If all answers are “no”, then we can conclude that the answer is
“no” with probability 1− ( 1

2 )k. For sufficiently large k the error 2−k is smaller than the probability
that our hardware/software fails during the execution of the k runs of the algorithm.

A nice example of the Monte Carlo approach is the recognition of the language

Com = {w ∈ 1{0, 1}∗ | w is the binary code of a composite number}.

Obviously, the simple approach based on trying to divide the given input number n by all numbers
n ∈ {1, 2, . . . , d

√
n e} has exponential complexity in the input length dlog2 ne. We do not know any

polynomial–time deterministic algorithm for Com, but one can construct an O((log2 n)5) algorithm
assuming the extended Riemann hypothesis [111]. In what follows we present a polynomial time one–
sided error Monte Carlo algorithm for Com [136, 124]. It is based on the following two results of the
number theory. Let GCD(a, b) denote the greatest common divisor of the numbers a and b.

Lemma 1.23 If a positive integer n > 2 is composite, then there exists an integer a, 1 ≤ a ≤ n, such
that
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(i) an−1 6≡ 1 (mod n) or

(ii) there exists an integer i such that 2i divides n− 1 and 1 < GCD(a(n−1)/2i − 1, n) < n.

Definition 1.24 Let n be a positive integer. An iteger a, 1 ≤ a ≤ n, is called a compositeness
witness for n if (i) or (ii) of Lemma 1.22 hold.

Lemma 1.25 If n ≥ 3 is an odd integer, then at least (n−1)/2 distinct integers from {1, 2, . . . , n−1}
are compositeness witnesses for n.

So, if for a fixed composite number n one randomly chooses a number a ∈ {1, 2, . . . , n − 1}, then
the probability that a is a compositeness witness for n is at least 1/2. On the other hand, if n is
a prime, then no a ∈ {1, 2, . . . , n− 1} is a compositeness witness for n. This two facts yield a Monte
Carlo MTM (algorithm) M working as follows:

1) If n is even, then M accepts.

2) If n is odd, then M randomly chooses a number a ∈ {1, 2, . . . , n− 1}. If a is a compositeness
witness for n then M accepts. Otherwise, M rejects.

The fact whether a is a compositeness witness for n can be checked in polynomial time. Obviously, if
M accepts, then the input is certainly composite. If M rejects, then one can state that n is prime
with probability at least 1/2. As we have already seen, if one wishes a smaller error probability, the
algorithm has to be executed repeatedly with the same input n.

We note that there even exists a Las Vegas algorithm deciding whether a given number is prime or
not [3], but it is too technical to be presented here.

Probabilistic algorithms are very efficient, but only “probably correct”. However, many probabilistic
algorithms—in particular, the above primality probabilistic algorithm—can be “theoretically” converted
into rigorous, deterministic algorithms provided a sufficiently long random string30 input is supplied
[44, 30]; this possibility is only “theoretical” as the set of random strings is not recursively enumerable
[24].

A recent quantum algorithm31 (based on Fourier transformation) proposed by Shor [131] seems to
indicate that primality can be checked in polynomial time on a quantum computer.

¿From a practical point of view one can consider the class of languages (problems) recognized (solved)
in polynomial time by some probabilistic algorithms to be the class of practically (solvable) languages
(problems). Because of this it is reasonable to consider the following language classes, introduced by
Gill [68]:

ZPP = {L | L = L(M), for a Las Vegas MTM M working in
polynomial time},

R = {L | L = L(M), for an one–sided error Monte Carlo MTM

working in polynomial time},
BPP = {L | L = L(M), for a two–sided error Monte Carlo MTM

working in polynomial time}.

The following relations can be easily proven.

Theorem 1.26

P ⊆ ZPP = R ∩ coR ⊆ R ⊆ NP,

R ∪ coR ⊆ BPP ⊆ PSPACE.
30See Section 1.4.3.
31One decisive feature of quantum computation is parallelism: during a computation cycle a quantum computer is

processing all coherent paths at once. See more in [4, 9, 10, 32, 61, 62, 52, 53, 54, 15, 16, 12, 13, 142, 143].
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Whether some of the inclusions above are proper or not is unknown. So, we do not know any NP–
complete language recognizable by one–sided error Monte Carlo in polynomial time. But we have either
examples of problems in P for which probabilistic algorithms are more effective than the best determin-
istic algorithms or we have polynomial–time probabilistic algorithms for problems whose membership in
P is unknown. Thus, we do not conjecture that a NP–complete problem may have a polynomial–time
probabilistic solution.

1.4 Program-Size Complexity

1.4.1 Dynamic vs Program-Size Complexities

Let us recall that a Chaitin computer C is a partial recursive function carrying strings (on A) into
strings such that the domain of C is prefix-free. If C is a computer, then TC denotes its time
complexity, i.e. TC(x) is the running time of C on the entry x, if x is in the domain of C; TC(x)
is undefined in the opposite case.

The property of universality discussed in Section 1.2.3 can be presented, in a stronger form, as follows:

Theorem 1.27 [Invariance Theorem] There exists a universal Chaitin computer U with the property
that for every computer C there exists a constant sim(U,C)—which depends upon U,C—such that
in case C(x) = y, there exists32 a string x′ satisfying the following conditions:

U(x′) = y, (1.2)

|x′| ≤ |x|+ sim(U,C). (1.3)

Indeed, let (Ci) be a gödelization of all Chaitin computers and define U(ai1a2u) = Ci(u), for all
strings u (here a1, a2 are two distinct letters from the alphabet A).

The program-size or Chaitin complexity associated to the Chaitin computer C is the partial function
HC defined by HC(x) = min{|u| ∈ A∗ | C(u) = x} iff such a u does exist. The above result can be
re-phrased as follows:

Theorem 1.28 There exists a Chaitin computer U such that for every Chaitin computer C there
effectively exists a constant c—depending upon U and C—such that for all strings x,

HU (x) ≤ HC(x) + c.

So, U not only simulates every Chaitin computer C, but the simulation is asymptotically optimal.
Is it possible to prove a similar result for a dynamical complexity, e.g. time complexity? The answer is
negative and here is a proof (cf. [25]).

Assume, for the sake of a contradiction, that U can simulate every other computer (1.2), in a shorter
time. Formally, to equation (1.2) we add the constraint:

TU (x′) < TC(x). (1.4)

For every string x in the domain of U let

t(x) = min{TU (z) | z ∈ A∗, U(z) = U(x)}, (1.5)

i.e. t(x) is the minimal running time necessary for U to produce U(x).33

Next define the temporal canonical program (input) associated with x to be the first (in quasi-
lexicographical order) string x# satisfying the equation (1.5):

x# = min{z ∈ dom(U) | U(z) = U(x), TU (z) = t(x)}.

So,
U(x#) = U(x), and TU (x#) = t(x).

32And can be effectively constructed.
33Actually, t(x) is not computable.
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As the universal computer U can simulate itself, it follows from (1.4) that there exists a string x′ such
that U(x′) = U(x#) = U(x), and TU (x′) < TU (x#) = t(x), which is false.

The reason for the above phenomenon can be illustrated by showing the existence of “small-sized”
computers requiring “very large” running times. To this aim we use the information-theoretic version of
the Busy Beaver function Σ. For every natural m let us denote by string(m) the mth string in
quasi-lexicographical order, and let Σ(n) be the largest natural number whose algorithmic information
content is less than or equal to n, i.e.

Σ(n) = max{m ∈ N | HU (string(m)) ≤ n}.

Chaitin ([39], 80-82, 189) has shown that Σ grows larger than any recursive function, i.e. for every
recursive function f , there exists a natural number N , which depends upon f , such that Σ(n) ≥ f(n),
for all n ≥ N :34 indeed, there is a constant q such that every program of length n either halts in
time less than Σ(n+ q), or else it never halts.

As HU (string(Σ(n))) ≤ n, it follows that U(yn) = string(Σ(n)), for some string yn of length
less than n. This program yn takes, however, a huge amount of time to halt: there is a constant c
such that for large enough n, U(yn) takes between Σ(n− c) and Σ(n+ c) units of time to halt. To
conclude, the equation (1.2) is compatible with (1.3), but incompatible with (1.4).35

1.4.2 The Halting Problem Revisited

Can the halting problem be solved if one could compute program-size complexity? The
answer is yes and here is a proof (cf. [43]).

Fix a universal Chaitin computer U and denote HU simply by H. We have seen that if an n–bit
program p halts, then the time t it takes to halt satisfies H(t) ≤ n+ q. So if p has run for time T
without halting, and if for all t ≥ T one has H(t) > n+ q, then p will never halt.

Consider the recursively enumerable set of all true upper bounds on H, Ch = {(x, k) ∈ A∗ × N |
{H(x) ≤ k}. Imagine enumerating this set, and keep track of the running time. Assuming that H
is computable, compute H(x) for each n–bit string x. Then enumerate Ch until we get the best
possible upper bound on H(x) for all n–bit strings x. Let β(n) be defined to be the time it takes
to enumerate enough of the set of all true upper bounds on program-size complexity until one obtains
the correct value of H(x) for all n–bit strings x. If one is given n and a number greater than β(n),
one can determine an n–bit bit string xmax with maximum possible complexity

H(xmax) = n+H(string(n)) +O(1).

Thus any number k ≥ β(n) has

n+H(string(n))− q′ < H(xmax) ≤ H(string(k)) +H(string(n)) + q′′

and
H(k) > n− q′ − q′′.

Thus we can use β(n), which is computable from H, to solve the halting problem as follows: an n–bit
program p halts iff it halts before time β(n+ q + q′ + q′′).

As a bonus we derive the fact that the information-theoretic Busy Beaver function Σ is computable
from H: the formula

Σ(n) = max{U(p) | |p| ≤ n},

proves that Σ is computable relative to the halting problem which, in turn, is computable from H.

34The difficulty might be also explained by the fact that Σ grows as fast as the least time necessary for all programs
of length less than n that halt on U to stop, [34].

35Incidentally, the above discussion shows that, contrary to what Penrose has suggested (see [121], p. 560), there is no
incompatibility between the strong determinism and computability: it is indeed impossible for a (universal) machine to
“learn its own theory”.
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1.4.3 Random Strings

Consider the number

one million, one hundred one thousand, one hundred and one.

This number appears to be

the first number not nameable in under ten words.

However, the above expression has only nine words, pointing out a naming inconsistency: it is an
instance of Berry’s paradox.

It follows that the property of nameability36 is inherently ambiguous and, consequently, too powerful
to be freely used.

Of course, the above analysis is rather vague. We can make it more rigorous by using a universal
Chaitin computer U . Some programs for U specify positive integers: when we run such a program
on U the computation eventually halts and produces the number. In other words, a program for U
“specifies” a positive integer in case after running a finite amount of time it prints the number. What
we get is the statement:

THE FIRST POSITIVE INTEGER THAT CANNOT BE SPECIFIED BY A PROGRAM
FOR U WITH LESS THAN N BITS.

However, there is a program for U , of length logN + c, for calculating the number
that supposedly cannot be specified by any program of N bits! And, of course, for large N ,
logN + c is much smaller than N .

Suppose that persons A and B give us a sequence of 32 bits each, saying that they were obtained
from independent coin flips. If A gives the string x = 01101000100110101101100110100101 and B
gives the string y = 00000000000000000000000000000000, then we would believe A and would not
believe B: the string x seems to be random, but the string y does not. Why? The strings are
extremely different from the point of view of regularity: the second string has a maximum regularity
which allows us to express it in a very compact way, only zeros, while the first one appears to have no
shorter definition at all.37

Classical probability theory is not sensitive to the above distinction, as strings are all equally probable.
Laplace (1749-1827) was, in a sense, aware of the above paradox when he wrote (cf. [101], pp.16-17):

In the game of heads and tails, if head comes up a hundred times in a row then this appears
to us extraordinary, because after dividing the nearly infinite number of combinations that
can arise in a hundred throws into regular sequences, or those in which we observe a rule that
is easy to grasp, and into irregular sequences, the latter are incomparably more numerous.

Non-random strings are strings possessing some kind of regularity, and since the number of all those
strings (of a given length) is small, the occurrence of such a string is extraordinary. The overwhelming
majority of strings have hardly any “computable” regularities—they are random. Randomness means
the absence of any compression possibility; it corresponds to maximum information content (because
after dropping any part of the string, there remains no possibility of recovering it). Borel (1909), Von
Mises (1919), Ville (1939), and Church (1940) elaborated on this idea, but a formal model of irregularity
was not found until the mid-1960s in the work of Kolmogorov [99] and Chaitin [33]. Currently, it appears
that the model due to Chaitin [35], which will be briefly discussed in what follows, is the best adequate
model (cf. [37, 41, 24]).

A string is random in case it has maximal program-size complexity when compared with the program-
size complexity of all strings of the same length. As for every n ∈ N, one has:

max
x∈An

H(x) = n+H(string(n)) + O(1),

36Another famous example refers to the classification of numbers as interesting or dull. There can be no dull numbers:
if they were, the first such number would be interesting on account of its dullness.

37The distinction between regular and irregular strings becomes sharper and sharper for longer and longer strings (e.g.
it is easier to specify the number

10101010

than the first 100 digits of π).
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and is led to the following definition: a string x ∈ A∗ is (Chaitin) m–random (m is a positive
integer) if H(x) ≥ Γ(|x|)−m; x is (Chaitin) random if it is 0–random. Here Γ(n) = max{H(x) |
x ∈ A∗, |x| = n}.

The above definition depends upon the fixed universal computer U ; the generality of the approach
comes from the Invariance Theorem. Obviously, for every length n and for every m ≥ 0 there exists
a m–random string x of length n.

It is worth noticing that randomness is an asymptotic property: the larger is the difference between
|x| and m, the more random is x. There is no sharp dividing line between randomness and pattern,
but it was proven that all m–random strings x with m ≤ H(string(|x|)) have a true random behaviour
[24].

A random string cannot be algorithmically compressed. Incompressibility is a non-effective property:
no individual string, except finitely many, can be proven random. Under these circumstances it is
doubtful that we can exhibit an example of a random string, even though the vast majority of strings are
random. However, we can describe a non-effective construction of random strings. We start by asking
ourselves: How many strings x of length n have maximal complexity, i.e. H(x) = Γ(|x|)? Answer:
There exists a natural constant c > 0 such that

γ(n) = #{x ∈ A∗ | |x| = n,H(x) = Γ(|x|)} > Qn−c,

for all natural n; here Q is the cardinality of the alphabet A.38

Now fix a natural base Q ≥ 2, and write γ(n) in base Q. The resulting string—over the alphabet
containing the letters 0, 1, . . . , Q− 1—is itself random (cf. [42]).39

1.4.4 From Random to Regular Languages

Recall that {stringQ(n) | n ≥ 0} is the enumeration of all strings over the alphabet A (having Q ≤ 2
elements) in quasi-lexicographical order. A language L ⊂ A∗ is described by its binary characteristic
sequence l, li = 0 iff stringQ(i) ∈ L. A language L is random if its characteristic function is random
(as an infinite, binary sequence). Denote by RAND the set of random languages. In what follows we
shall present different characterizations of random languages.

We start with a piece of notation. For every sequence l = l1l2 . . . ln . . . we denote by l(n) = l1l2 . . . ln,
the prefix of length n of l.

The unbiased discrete probability on B = {0, 1} is defined by the function

h : 2A → [0, 1], h(X) =
#X

2
,

for all subsets X ⊂ B. This uniform measure induces the product measure µ on the set of binary
infinite sequences Bω: for all strings x ∈ B∗, xBω = {y ∈ Bω | y(|x|) = x}, and

µ(xBω) = 2−|x|.

If x = x1x2 . . . xn ∈ B∗ is a string of length n, then µ(xBω) = 2−n and the expression µ(. . .)
can be interpreted as “the probability that a sequence y = y1y2 . . . yn . . . ∈ Bω has the first element
y1 = x1, the second element y2 = x2, . . . , the nth element yn = xn”. Independence means that the
probability of an event of the form yi = xi does not depend upon the probability of the event yj = xj .

Every open set G ⊂ Bω, i.e. a set G = ∪x∈XxBω, for some prefix-free subset X ⊂ B∗, is µ
measurable and

µ(G) =
∑
x∈X

2−|x|.

Finally, S ⊂ Bω is a null set in case for every real ε > 0 there exists an open set Gε which contains
S and µ(Gε) < ε. For instance, every enumerable subset of Bω is a null set.

38How large is c? Out of Qn strings of length n, at most Q+Q2 + · · ·+Qn−m−1 = (Qn−m − 1)/(Q− 1) can be
described by programs of length less than n−m. The ratio between (Qn−m − 1)/(Q− 1) and Qn is less than 10−i

as Qm ≥ 10i, irrespective of the value of n. For instance, this happens in case Q = 2, m = 20, i = 6; it says that less
than one in a million among the binary strings of any given length is not 20–random.

39This string is random because it represents a large number.
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A property P of sequences x ∈ Bω is true almost everywhere in the sense of µ in case the set of
sequences not having the property P is a null set. The main example of such a property was discovered
by Borel and it is known as the Law of Large Numbers. For every sequence x = x1x2 . . . xm . . . ∈ Bω
and natural number n ≥ 1 put

Sn(x) = x1 + x2 + · · ·+ xn.

Then,

The limit of Sn/n, when n→∞, exists almost everywhere in the sense of µ and has the
value 1/2.

It is clear that a sequence satisfying a property false almost everywhere with respect to µ is very
“particular”. Accordingly, it is tempting to try to say that

a sequence x is “random” iff it satisfies every property true almost everywhere with respect
to µ.

Unfortunately, we may define for every sequence x the property Px as following:

y satisfies Px iff for every n ≥ 1 there exists a natural m ≥ n such that xm 6= ym.

Every Px is an asymptotic property which is true almost everywhere with respect to µ and x does
not have property Px. Accordingly, no sequence can verify all properties true almost everywhere with
respect to µ. The above definition is vacuous!

However, there is a way—due to Martin-Löf (cf. [108])—to overcome the above difficulty: we consider
not all asymptotic properties true almost everywhere with respect to µ, but only a sequence of such
properties. In this context the important question becomes: What sequences of properties should be
considered? Clearly, the “larger” the chosen sequence of properties is, the “more random” will be the
sequences satisfying that sequence of properties. As a constructive selection criterion seems to be quite
natural, we will impose the minimal computational restriction on objects: each set of strings will be
recursively enumerable, and every convergent process will be regulated by a recursive function.

A constructively open set G ⊂ Bω is an open set G = XBω for which X ⊂ B∗ is recursively
enumerable. A constructive sequence of constructively open sets, for short, c.s.c.o. sets is a
sequence (Gm)m≥1 of constructively open sets Gm = XmB

ω such that there exists a recursively
enumerable set X ⊂ B∗ × N with

Xm = {x ∈ B∗ | (x,m) ∈ X},

for all natural m ≥ 1. A constructively null set S ⊂ Bω is a set such that there exists a c.s.c.o.
sets (Gm)m≥1 for which

S ⊂
⋂
m≥1

Gm,

and
lim
m→∞

µ(Gm) = 0, constructively,

i.e. there exists an increasing, unbounded, recursive function H : N → N such that µ(Gm) < 2−k

whenever m ≥ H(k).
It is clear that µ(S) = 0, for every constructive null set, but the converse is not true.
Here are some properties equivalent to randomness:

Theorem 1.29

• (Martin-Löf) A sequence x ∈ Bω is random iff x is not contained in any constructive null
set.

• (Chaitin-Schnorr) A sequence x ∈ Bω is random iff there exists a natural c > 0 such that

H(x(n)) ≥ n− c,

for all natural n ≥ 1.
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• (Chaitin) A sequence x ∈ Aω is random iff

lim
n→∞

(H(x(n))− n) =∞.

Random languages have remarkable properties:

Theorem 1.30

• [24] No random language is recursively enumerable; in fact, every random language is immune in
the sense that it contains no infinite recursively enumerable language.

• [24] Random languages are closed under finite variation.

• [19, 18] If L = {stringQ(i) | li = 1} is random and f : N → N is recursive and one-one, then
the language {stringQ(i) | lf(i) = 1} is also random.

• [19, 18] Let L ⊂ Aω be a union of constructively closed sets that is closed under finite variation.
Then

µ(L) = 1 iff X ∩RAND 6= ∅.

• [19, 18] Let L be an intersection of constructively open sets that is closed under finite variation.
Then

µ(L) = 1 iff RAND ⊂ L.

• [63, 24] Every language is Turing reducible to a random language.

To characterize recursive and regular languages by means of descriptional complexity we need to
introduce the blank-endmarker or Kolmogorov–Chaitin complexity (see [99, 33]) associated to a universal
Turing machine TM : K(x) = min{|y| | TM(y) = x}.

Recursive languages can be characterized as follows

Theorem 1.31 ([40]) A language L ⊂ A∗ is recursive iff one of the following two equivalent conditions
holds true:

• there exists a constant c (depending upon L) such that K(l1l2 · · · ln) < K(stringQ(n)) + c, for
all positive integers n,

• there exists a constant c′ (depending upon L) such that K(l1l2 · · · ln) < log2 n + c′, for all
positive integers n.

It is worth noticing that recursive sequences cannot be characterized by the property “H(l1l2 · · · ln) <
H(stringQ(n)) + O(1)”, as shown in [135] (see also [36]).

The above result can be used to describe regular languages. For L ⊂ A∗ and x ∈ A∗ let
α = α1α2 · · ·αn · · · be the characteristic sequence of the language Lx = {y ∈ A∗ | xy ∈ L}.

Theorem 1.32 [104] A language L ⊂ A∗ is regular iff one of the following equivalent statements holds
true:

• There is a constant c (depending upon L) such that for all x ∈ A∗ and all positive integers n,
K(α(n)) ≤ K(stringQ(n) + c.

• There is a constant c′ (depending upon L) such that for all x ∈ A∗ and all positive integers
n, K(α(n)) ≤ logQ n+ c′.

Program-size pumping lemmas for regular and context-free languages have been proposed in [104];
however, they are currently superseded by pumping lemmas based on other tools (see for example [149]).
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1.4.5 Trade-Offs

In this section we give some examples of trade-offs between program-size and computational complexities.
We start with an example, discussed in [125], of a language having a very low program-size complexity,

but a fairly high computational complexity. Let αi, i = 0, 1, . . . be an ordering of all regular expressions
over the alphabet A. A positive integer i is saturated iff the regular language denoted by αi equals
A∗. A real number

r = 0.a0a1 · · ·

in base Q (the cardinality of A) is now defined by putting ai = 1 iff i is saturated.
It is obvious that r is non-empty, as some indices i are saturated. The language Lr of all prefixes of

the sequence a0a1 · · · has a low program-size complexity; more precisely, there exists a constant k such
that H(a0a1 · · · an) ≤ logQ n+k. On the other hand, the computational complexity of the membership
problem in Lr is very high: to decide the membership of a string of length i one has to prove that all
the i regular languages involved have an empty complement. If instead of r we consider π, then the
corresponding language Lπ has the same (within an additive constant) program-size complexity, but
the computational complexity of the membership in Lr is higher than the membership in Lπ.

To an infinite sequence x we associate also the languages

S(x) = {u ∈ A∗ | x = vuy, v ∈ A∗, y ∈ Aω},

and
P (x) = {u ∈ A∗ | x = uy, y ∈ Aω},

that is, S(x) is the set of all finite substrings of x, and P (x) is the set of all finite prefixes of x.
A way to measure the complexity of an infinite sequence x is to evaluate the complexity of the

language P (x). If x is random, then S(x) = A∗, but the converse relation is obviously false.
Following [96], call a sequence x disjunctive if S(x) = A∗.

Non-recursive disjunctive sequences have been constructed in [96]. Chaitin’s Omega Number [39] is
Borel normal in any base and, therefore, disjunctive in any base. More generally, every random sequence
is Borel normal and, hence, disjunctive (cf. [24]).

Are there recursive disjunctive sequences? A direct application of Rabin’s Theorem (see [23]) shows
the existence of disjunctive sequences x such that P (x) is recursive but arbitrarily complex. A more
effective construction of a recursive disjunctive sequence can be obtained by concatenating, in some
recursive order, all strings over A. This construction raises two questions: What is the “complexity”
of such a sequence? Are there “simpler” ways to produce disjunctive sequences? If we measure the
complexity of a sequence x by the complexity of the language P (x), then one can prove (see [29])
that the language associated to the sequence consisting of all strings over the binary alphabet arranged
in quasi-lexicographical order is context-sensitive and this complexity is the best possible we can obtain
(in other terms, no language P (x) can be regular when x is disjunctive).

1.4.6 More About P =?NP

We have seen (Section 1.3.2) that the extreme difficulty of the (in)famous problem P =?NP can be
explained in terms of oracles [6].

To complete the picture we quote the following two results:

Theorem 1.33

1) [75] There exist two recursive sets A,B with P (A) 6= NP (A) and P (B) = NP (B), but neither
result is provable within Zermelo–Fraenkel set theory augmented with the Axiom of Choice.

2) [11] If A is a random oracle, then P (A) 6= NP (A), i.e. with probability one P (A) 6= NP (A).

Finally, consider the exponential complexity classes

E = DTIME
(
2linear

)
, and E2 = DTIME

(
2polynomial

)
.

There are several reasons for considering these classes ([106, 107]):
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1) Both classes E,E2 have rich internal structures.

2) E2 is the smallest deterministic time complexity class known to contain NP and PSPACE.

3) P ⊂ E ⊂ E2, E 6= E2, and E contains many NP–complete problems.

4) Both classes E,E2 have been proven to contain intractable problems.

In view of the property 2) there may be well a natural “notion of smallness” for subsets of E2 such
that P is a small subset of E2, but NP is not. Similarly, it may be the case that P is a small
subset of E, but that NP ∩ E is not! In the language of constructive measure theory smallness can
be translated by “measure zero” (with respect to the induced spaces E or E2). One can prove that
indeed P has constructive measure zero in E and E2, [106]. This motivates Lutz [107] to adopt the
following quantitative hypothesis:

The set NP has not measure zero.

This is a strong hypothesis, as it implies P 6= NP . It is consistent with Zimand’s topological
analysis [150] (with respect to a natural, constructive topology, if NP − P is non-empty, then it is
a second Baire category set, while NP–complete sets form a first category class) and appears to have
more explanatory power than traditional, qualitative hypotheses.

1.5 Parallelism

1.5.1 Parallel Computation Thesis and Alternation.

Achievements in the hardware technologies made possible the construction of parallel computers involving
several thousands of processors capable to cooperate in solving one concrete computing task. While the
time complexity has been measured as the number of elementary operations needed to compute the
output in all sequential computing models this is not more true for the time complexity of parallel
machines executing simultaneously lots of operations. The number of processors used by a parallel
machine is a new complexity measure (computational resource) considered as a function of the input
size. Since sequential time is the amount of work which has to be done we observe that

(number of processors) ∗ (parallel time) ≥ sequential time,

for any parallel algorithm solving a problem. If the equality holds we say that the parallel algorithm
exhibits an optimal speed up, because it does not need to execute more operations than the best deter-
ministic algorithm. We learn from the non-equality one important fact: We cannot hope that parallelism
helps to compute intractable computing problems. If the sequential time of a problem L is exponential,
then each parallel algorithms for L has an exponential number of processors or it works in exponen-
tial parallel time. Both are unrealistic and we conclude that the main contribution of parallelism is to
speed up sequential computations for the problems in P . This is of crucial importance for designing
“real–time” parallel algorithms.

As in the sequential case, to study parallel complexity measures one needs a formal computing model.
Unfortunately, we have a lot of parallel computing models and none is generally accepted. Moreover,
the differences between there models are essential. This is because we have not only to arrange the
cooperation between input, output, memory, and the operating unit as for sequential computing models,
but we additionally have to arrange the cooperation (information exchange) between many processors
working in parallel. The study of distinct models of parallel computations has lead to an invariant
characterizing “reasonable” parallel computing models. This invariant is called Parallel Computation
Thesis [69] and it says that, for any computing problem L,

“the parallel time of L is polynomially related to
the sequential space of L”.

Thus, each parallel computing model fulfilling the Parallel Computation Thesis is considered to be
“suitable” for measuring of parallel computation resources.
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In what follows we consider the alternating Turing machine as a parallel computing model and we
show that it fulfills the Parallel Computation Thesis. Note that alternating machines cannot be really
used to model parallel computations in the practice because they consider nondeterministic processors
working in parallel. But they provide several nice new characterizations of sequential complexity classes
obtained by typical approaches of formal language theory.

An alternating TM M is a natural extension of the nondeterministic TM introduced in [45].
The states of M are divided into 4 disjoint subsets of accepting states, rejecting states, existential
states and universal states. A computation tree TrM (x) of M on an input x is the same tree as
by a nondeterministic TM . The difference is only in the definition of the acceptance. A computation
of a nondeterministic TM corresponds to a path of the computation tree. A computation of the
alternating TM M on x is any subtree T of TrM (x) having the following properties:

(i) the root of T is the root of TrM (x),

(ii) if an inner node v of T is labeled by a universal configuration (state), then T must contain all
sons of v in TrM (x),

(iii) if an inner node v of T is labeled by an existential configuration, then T contains exactly one
of the sons of v in TrM (x),

(iv) every leaf of T is labeled either by an accepting configuration or by a rejecting configuration.

An accepting computation of M on x is any computation T whose all leaves are labeled by
accepting configurations. A word x is accepted by the alternating TM M (x ∈ L(M)) iff there
exists an accepting computation of M on x.

We observe that existential states of an alternating TM has the same meaning as states of nonde-
terministic TMs. One has to choose one of the possible actions, and one accepts if at least one of these
possibilities leads to acceptance. A step from a universal state (configuration) corresponds to a parallel
branching of the machine into a number of copies continuing to work in parallel. Here, one requires that
all branches lead to the acceptance.

Let, for any function f : N→ N, ASPACE(f(n)) and ATIME(f(n)) denote the alternating time
and space complexity classes respectively. We define

ALOG = ASPACE(log2 n), AP =
⋃
k∈N

ATIME(nk),

and
APSPACE =

⋃
k∈N

ASPACE(nk).

Alternation has brought new characterizations of fundamental complexity classes. Some of the most
important ones follow.

Theorem 1.34 [45] For any space–constructible s : N→ N, s(n) ≥ n,

NSPACE(s(n)) ⊆
⋃
c>0

ATIME(c(s(n))2).

Idea of proof. The technique is similar to Savitch’s Theorem. To check whether an s(n) space–bounded
nondeterministic TM M can achieve an accepting configuration C in 2s

′(n) steps for a suitable
function s′(n) = O(s(n)) from an initial configuration C0 on an input x, the alternating TM A
guesses nondeterministically a configuration C ′ and universally branches into two copies continuing to
work in parallel. One copy checks whether C ′ is reachable from C0 in 2s

′(n)−1 steps and the other
one checks whether C is reachable from C ′ in 2s

′(n)−1 steps.

¤
We do not know whether SPACE(s(n)) is equal to NSPACE(s(n)) or not. Since all deterministic

classes are closed under complementation people have hoped to prove SPACE(s(n)) is not equal to
NSPACE(s(n)) by proving that NSPACE(s(n)) is not closed under complementation. But Immerman
[94] and Szelepcsényi [138] have proved that this idea cannot work because all classes NSPACE(s(n))
for s(n) ≥ logn are closed under complementation too.
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Theorem 1.35 [45] For any function t, t(n) ≥ n,

ATIME(t(n)) ⊆ DSPACE(t(n)).

Idea of proof. Let M be an alternating TM , and let TrM (x) is the computation tree of M on x. To
check whether TrM (x) contains an accepting computation one assigns the value 1 (0) to the accepting
(rejecting) leaves, the operator disjunction to the existential nodes, and the operator conjunction to
universal nodes. Then one looks at TrM (x) as a Boolean circuit with inputs on leaves and the output
on the root. Obviously, M accepts x iff the output value of this circuit is 1. A deterministic TM B
can traverse TrM (x) and calculate the output of the circuit in post order. To do it, at any point of the
computation B has to store the visiting configuration (node) and a string representing the position of
the node in TrM (x). Both can be done in O(t(n)) space.

¤

Theorem 1.36 [45] For any function s : N→ N, s(n) ≥ log2 n,

ASPACE(s(n)) =
⋃
c>0

DTIME(cs(n)).

The above results show that alternation shifts by exactly one level the fundamental hierarchy of
deterministic complexity classes because ALOG = P,AP = PSPACE,APSPACE = EXPTIME,
etc. Another interesting result, proven in [97], is that the class of languages accepted by two–way
alternating finite automata is exactly PSPACE.

One can observe that the copies of an alternating TM working in parallel in some computation
do not have any possibility to communicate (exchange information). Since communication is one of the
main ingredients of parallel computations, synchronized alternating TM (SATM) has been introduced
in [85] as a generalization of alternating TMs. We give a brief informal description of this idea. (The
formal definitions can be found in [90].) An SATM M is an alternating TM with an additional
finite synchronization alphabet. An internal state of M can be either an usual internal state or a pair
(internal state, synchronizing symbol). The latter is called a synchronizing state. The synchronizing
states are used in a computation as follows. Each time one of the machine copies, working in parallel in a
computation, enters a synchronizing state it must wait until all other machines working in parallel enter
an accepting state or a synchronizing state with the same synchronizing symbol. When this happens
all machines are allowed to move from the synchronizing states (to continue to work). In what follows
the usual notation SATIME(f(n)) and SASPACE(f(n)) is used for the synchronized alternating
complexity classes. Analogously SALOG and SAP denote synchronized alternating logspace and
synchronized alternating polynomial time respectively. The main results proven in [90] are the following:

Theorem 1.37 [90] For any space–constructible function s : N→ N,⋃
c>0

NSPACE(ncs(n)) = SASPACE(s(n)).

Corollary 1.38 [90, 133] For any space–constructible function s(n) ≥ log2 n

SASPACE(s(n)) =
⋃
c>0

DSPACE(cs(n))

=
⋃
c>0

ATIME(cs(n)) =
⋃
c>0

SATIME(cs(n)).

Corollary 1.39 [90, 133] NSPACE(n) is exactly the class of languages recognized by synchronized
alternating finite automata.

We observe that the equality

SASPACE(s(n)) =
⋃
c>0

SATIME(cs(n))
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implies that synchronized alternating machines are able to use the space in an “optimal way”. It
seems that deterministic, nondeterministic and alternating computing devices do not have this property
because if they would have this property then some fundamental complexity hierarchies would collapse.
More precisely, if alternating machines would have this property, then P = NP = PSPACE. If
nondeterministic (deterministic) machines would have this property, then NLOG = P = NP (DLOG =
NLOG = P ).

In [90] a new characterization of PSPACE by SALOG and by synchronized alternating mul-
tihead automata is given. This extends the well–known characterization of fundamental complexity
classes DLOG ⊆ NLOG ⊆ P by deterministic, nondeterministic, and alternating finite automata
respectively. Since [93] shows that NP can be characterized by synchronized alternating multihead
automata with polynomial number of synchronizations we get the characterization of the hierarchy
P ⊆ NP ⊆ PSPACE by synchronized alternating multihead automata without synchronization, with
polynomial synchronization and with full (unbounded) synchronization, respectively.

1.5.2 Limits to Parallel Computation and P–Completeness

In the previous section we have explained that parallelism is used to speed up computations for problems
in P , and not to address intractable problems. A very natural question arises: Are the parallel algorithms
able to essentially speed up the time complexity of any problem in P? We do not believe that it is
possible, but we are not able to prove it from the same reason why we are not able to prove NP −P 6= ∅.
We conjecture that there exist feasible problems which are inherently sequential, i.e. which do not allow
any high parallel execution because of hard sequential dependence of the operation order. To give more
formal arguments we first define the class of feasible highly parallel problems as the class of
problems allowing very high degree of parallelization.

Definition 1.40 [122] For any positive integer i let

NCi = {L | L can be accepted by uniform Boolean circuits with size

nO(1) and depth O((log2 n)i)}.
NC = {L | L is decidable in parallel time (log2 n)O(1)

using nO(1)processors} =
∞⋃
i=1

NCi.

Now, to support the strong conjecture that P −NC 6= ∅ we use the same approach as we have used
to argue that P should be a proper subset of NP . Let ANC be a class of all parallel algorithms
working in parallel time (log2 n)O(1) with nO(1) processors.

Definition 1.41 We say that a language L1 ⊆ Σ∗1 is NC–reducible to a language L2 ⊆ Σ∗2 if
there exists a parallel algorithm A ∈ ANC which for any input x ∈ Σ∗1 computes an A(x) ∈ Σ∗2 such
that

x ∈ L1 ⇐⇒ A(x) ∈ L2.

A language L is P–complete under NC–reducibility if

(i) L ∈ P , and

(ii) every language in P is NC–reducible to L.

We note that if an NC–complete language would be in NC, then NC = P .

Again, as for NP–completeness, we have many P–complete problems, and for none of them we know
a highly parallel solution. So, there is a large experience saying that P–complete problems according
to NC–reducibility do not allow feasible highly parallel solutions (i.e. they are inherently sequential).
Another reason to believe NC 6= P is that we do not know any fast general simulation of sequential
machines by parallel ones. The best known parallel simulations reduce sequential time T to parallel
time T/ log2 T or

√
T , depending on the parallel model. Furthermore, an exponential number of

processors is needed to achieve even these modest speed ups. Thus P–completeness is an instrument
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helping to study the border between problems having a tractable highly parallel solution and problems
which do not have efficient highly parallel solution. More about the classification of computing problems
according to the class NC can be found in the excellent book [71] devoted to this topic only.

1.5.3 Communication in Parallel and Distributive Computing

In many parallel and distributive computations the main running time is devoted to the communication
between processes. To built parallel architectures whose communication structure has high communica-
tion facilities is one of the central tasks of parallel computing. There are many studies in this direction
dealing with the efficiency of the realization of basic communication tasks (like broadcast, gossip [91],
routing [102]) in distinct communication structures as well as with the ability to effective simulate the
communication facilities of several different interconnection networks (communication structures) on one
network candidating for our parallel architecture [112]. Results and methods used in this area are pri-
mary connected with discrete mathematics and graph theory [102, 112] and so we do not want to give
more details here. We omit to discuss typical parallel models of formal language theory like systolic
arrays, Lindenmayer systems and other kinds of parallel rewriting too because they are not in any main
research streams in the complexity of parallel computing.

We briefly discuss the parallel communicating grammar systems (PCGSs) introduced in
[119]. Each PCGS can be considered as a directed graph whose nodes are simple regular grammars. If
the graph (communication structure) contains a directed edge (G1, G2), then the grammar G2 may
ask the grammar G1 for the submission of the word generated by G2 (for more details and formal
definitions consult [118, 89]). For this model it was shown that some classes of communication structures
are absolutely more powerful than other graph classes [105, 88, 89, 118], i.e. that there are languages
generated be one communication structure but not by any communication structure from any other graph
class. These results are interesting for the theoretical study of communicational aspects in computing
because no similar results were achieved for other parallel computing models. Note that it is not realistic
to obtain an absolute comparison of interconnection networks from the following reasons. If nodes of
networks are standard sequential computers, then already one node can compute anything computable.
If every node is a simple processor (finite automaton) and communication structure is a finite graph, then
the whole network can be considered as a finite automaton. If we have simple processors and we allow
an unbounded growth of the communication structure during the computation, then one can simulate
Turing machines with one–dimensional arrays which are the simplest communication structure at all.

Another really important research, partially influenced by the standard formal language methods,
is the study of abstract communication complexity of languages. The communication complexity of a
language [1, 148, 117] is the necessary and sufficient number of bits exchanged between two computers
in order to decide about the acceptance of the input word whose input bits are distributed to the two
computers in a balanced way. As program-size complexity, the communication complexity of computing
problems has numerous applications for different computing models. It can be applied to get lower bounds
on different complexity measures of Boolean circuits, VLSI circuits, interconnection networks and many
other not primarily parallel computing models (Turing machines, for instance) [86]. Another important
fact is that one can prove exponential gaps between determinismus, nondeterminismus and Monte Carlo
probabilismus for communication complexity. Moreover, deterministic communication complexity and
Las Vegas one are polynomially related. To prove similar results for time complexity is exactly one of
the central problem of theoretical computer science.
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[27] C. Calude, Gh. Păun, Global syntax and semantics for recursively enumerable languages, Fund.
Inform. 4 (1981), 245–254.
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[73] A. Grünbaum, Philosophical Problems of Space of Time, D. Reidel, Dordrecht, 1973. (Second,
enlarged edition)
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[133] A. Slobodová, On the power of communication in alternating machines. In: Proc. 13th MFCS’88,
Lect. Notes in Comp.Sci. 324, Springer–Verlag 1988, 518–528.

[134] R. M. Smullyan, Diagonalization and Self–Reference, Clarendon Press, Oxford, 1994.

[135] R. M. Solovay, Draft of a paper (or series of papers) on Chaitin’s work ... done for the most part
during the period of Sept.– Dec. 1974, unpublished manuscript, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, May 1975, 215 pp.



     
BIBLIOGRAPHY 47

[136] R. Solovay, V. Strassen, A fast Monte Carlo test for primality, SIAM J. Computing 6 (1977),
84–85.

[137] E. Strickland, Minimalism–Origins, Indiana University Press, Bloomington, 1993.

[138] R. Szelepcsényi, The method of forced enumeration for nondeterministic automata, Acta Infor-
matica 26 (1988), 279–284.

[139] A. Szepietowski, Turing Machines with Sublogarithmic Space, Lect. Notes Comp. Sci. 843,
Springer–Verlag, Berlin, 1994.

[140] K. Svozil, Randomness and Undecidability in Physics, World Scientific, Singapore, 1993.

[141] K. Svozil, On the computational power of physical systems, undecidability, the consistency of
phenomena and the practical uses of paradoxes. In: Greenberger, D. M., Zeilinger, A. (eds.)
Fundamental Problems in Quantum Theory: A Conference Held in Honor of Professor John A.
Wheeler, Annals of the New York Academy of Sciences 755 (1995), 834–842.

[142] K. Svozil, Quantum computation and complexity theory, I, EATCS Bull. 55 (1995), 170–207.

[143] K. Svozil, Quantum computation and complexity theory, II, EATCS Bull. 56 (1995), 116–136.

[144] A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc.
London Math. Soc. Ser. 2 42(1936), 230–265.

[145] J. F. Thomson, Tasks and super-tasks, Analysis 15 (1954), 1–13.

[146] H. Weyl, Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton,
1949.

[147] I. Xenakis, Musique formelle, La Revue Musicale 253/4 (1963), 10.

[148] A.C. Yao, Some complexity questions related to distributed computing. In: Proc. 11th Annual
ACM STOC, ACM 1981, 308–311.

[149] S. Yu, A pumping lemma for deterministic context-free languages, Inform. Process. Lett. 31(1989),
47–51.

[150] M. Zimand, If not empty, NP − P is topologically large, Theoret. Comput. Sci. 119(1993), 293–
310.

[151] P. van Emde Boas, Machine models and simulations. In: van Leeuwen, J., ed., Handbook of
Theoretical Computer Science, Vol. A, Elsevier, Amsterdam, 1990, 525–632.

[152] D. J. Velleman, How to Prove It. A Structural Approach, Cambridge University Press, Cambridge,
1994.

[153] H. Wang, On ‘computabilism’ and physicalism: some subproblems. In: Cornwell, J., ed., Nature’s
Imagination, Oxford University Press, Oxford, 1995, 161–189.


