
    

CDMTCS
Research
Report
Series

Kraft-Chaitin Inequality
Revisited

C. Calude and C. Grozea
University of Auckland, New Zealand
Bucharest University, Romania

CDMTCS-013
April 1996

Centre for Discrete Mathematics and
Theoretical Computer Science



                   

KRAFT-CHAITIN INEQUALITY REVISITED∗

Cristian Calude†‡ Cristian Grozea§

Abstract

Kraft’s inequality [9] is essential for the classical theory of noiseless coding [1, 8]. In algorithmic
information theory [5, 7, 2] one needs an extension of Kraft’s condition from finite sets to (infinite)
recursively enumerable sets. This extension, known as Kraft-Chaitin Theorem, was obtained by
Chaitin in his seminal paper [4] (see also, [3, 2], [10]). The aim of this note is to offer a simpler proof
of Kraft-Chaitin Theorem based on a new construction of the prefix-free code.
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1 Prerequisites

Denote by N = {0, 1, 2, . . .} the set of non-negative integers. If X is a finite set, then #X denotes the
cardinality of X.

Fix A = {a1, . . . , aQ}, Q ≥ 2, a finite alphabet. By A∗ we denote the set of all strings x1x2 . . . xn
with elements xi ∈ A (1 ≤ i ≤ n); the empty string is denoted by λ. For x in A∗, |x| is the length of
x (|λ| = 0). For p ∈ N, Ap = {x ∈ A∗ | |x| = p} is the set of all strings of length p. Fix a total ordering
on A, say a1 < a2 < · · · < aQ, and consider the induced lexicographical order on each set Ap, p ∈ N.
A string x is a prefix of a string y (we write x ⊂ y) in case y = xz, for some string z. A set S ⊂ A∗ is
prefix-free if there are no distinct strings x, y in S such that x ⊂ y. We shall use [2] for the basics on
partial recursive (p.r.) functions.

2 Main Proof

This section is devoted to a new and simpler proof of the Kraft-Chaitin Theorem.

Theorem. (Kraft-Chaitin) Let ϕ : N o→ N a p.r. function having the domain, dom(ϕ), to be N or
a finite set {0, 1, . . . , N}, with N ≥ 0. Assume that∑

i∈dom(ϕ)

Q−ϕ(i) ≤ 1. (1)

There exists (and can be effectively constructed) an injective p.r. function

Φ : dom(ϕ)→ A∗
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such that for every i ∈ dom(ϕ),
| Φ(i) |= ϕ(i),

and
{Φ(i) | i ∈ dom(ϕ)}

is a prefix-free set.
Proof. We will construct three sequences (Mn)n∈dom(ϕ) (of finite subsets of A∗), (mn)n∈dom(ϕ) (of

non-negative integers), (µn)n∈dom(ϕ) (of strings over A) as follows:

mn = max{| x | | x ∈Mn, | x |≤ ϕ(n)},
µn = min(Mn ∩Amn),

where min is taken according to the lexicographical order.
The sets Mn are constructed as follows: M0 = {λ}, and if M1, . . . ,Mn have been constructed and

ϕ(n+ 1) 6=∞, then:

Mn+1 = (Mn \ {µn}) ∪ Tn+1,

where
Tn+1 = {µnaj1ap | 0 ≤ j ≤ ϕ(n)−mn − 1, 2 ≤ p ≤ Q}.

Finally put
Φ(n) = µna

ϕ(n)−mn
1 .

The proof consists in checking, by induction on n ≥ 0, the following five conditions:

A)
∑

x∈Mn
Q−|x| = 1−

∑n−1
i=0 Q

−ϕ(i).

B) For all p ≥ 0,#(Ap ∩Mn) ≤ Q− 1.

C) The string µn does exist.

D) The sets Mn and {Φ(0),Φ(1), . . . ,Φ(n− 1)} are disjoint.

E) The set Mn ∪ {Φ(0),Φ(1), . . . ,Φ(n− 1)} is prefix-free.

The induction basis is very simple: M0 = {λ}, so m0 = 0,Φ(0) = a
ϕ(0)
1 . Consequently,∑

x∈M0
Q−|x| = 1 −

∑−1
i=0Q

−ϕ(i). For all p ≥ 1,#(Ap ∩ Mn) = 0 ≤ Q − 1. Finally, µ0 = λ and
the last two conditions are vacuously true.

Assume now that conditions A)-E) are true for some fixed n ≥ 0 and prove that they remain true for
n+ 1.

We start by proving the formula

(Mn \ {µn}) ∩ Tn+1 = ∅. (2)

In fact, Mn ∩ Tn+1 = ∅. Otherwise, ∅ 6= Mn ∩ Tn+1 ⊂ Mn and Mn is prefix-free. So, for some
0 ≤ j ≤ ϕ(n)−mn − 1 and 2 ≤ p ≤ Q, µna

j
1ap ∈Mn ∩ Tn+1 ⊂Mn. As µn ∈Mn, it follows that Mn is

no longer prefix-free, a contradiction.
We continue by checking the validity of conditions A)-E). For A), using (2), the induction hypothesis

and the construction of Mn+1, we have:∑
x∈Mn+1

Q−|x| =
∑

x∈(Mn\{µn}) ∪ Tn+1

Q−|x|

=
∑

x∈Mn\{µn}
Q−|x| +

∑
x∈Tn+1

Q−|x|

=
∑
x∈Mn

Q−|x| −Q−mn + (Q− 1)
∑

0≤j≤ϕ(n)−mn−1

Q−(mn+j+1)

= 1−
n−1∑
i=0

Q−ϕ(i) −Q−mn + (Q− 1)Q−mn−1

ϕ(n)−mn−1∑
j=0

Q−j

= 1−
n∑
i=0

Q−ϕ(i),

2



          

provided mn ≤ ϕ(n)− 1, and∑
x∈Mn+1

Q−|x| =
∑

x∈Mn∪Tn+1

Q−|x|

=
∑

x∈Mn\{µn}
Q−|x| +

∑
x∈Tn+1

Q−|x|

= 1−
n−1∑
i=0

Q−ϕ(i) −Q−mn

= 1−
n∑
i=0

Q−ϕ(i),

in case mn = ϕ(n) (and, consequently, Tn+1 = ∅).
For B) we note that in case k < mn or k > ϕ(n) we have

Mn+1 ∩Ak = Mn ∩Ak.

For k = mn,
#(Mn+1 ∩Ak) = #(Mn ∩Ak)− 1,

so in all these situations B) is true by virtue of the inductive hypothesis.
In case

mn + 1 ≤ k ≤ ϕ(n), (3)

we have
Mn+1 ∩Ak = Tn+1 ∩Ak. (4)

Indeed, if x ∈ Ak and k satisfies (3), then x 6∈Mn. For such a k,

Mn+1 ∩Ak = ((Mn \ {µn}) ∪ Tn+1) ∩Ak

= ((Mn \ {µn}) ∩Ak) ∪ (Tn+1 ∩Ak)
= (Mn ∩Ak) ∪ (Tn+1 ∩Ak)
= Tn+1 ∩Ak.

In view of (4),
#(Mn+1 ∩Ak) = #(Tn+1 ∩Ak) = Q− 1.

For C), µn+1 does exist if in Mn+1 we can find at least one string of length less or equal than ϕ(n+1).
To prove this we assume, for the sake of a contradiction, that every string in Mn has length greater than
ϕ(n+ 1). We have:

∑
x∈Mn+1

Q−|x| =
∞∑
p=0

∑
x∈Mn+1∩Ap

Q−|x|

=
∞∑

p=ϕ(n+1)+1

∑
x∈Mn+1∩Ap

Q−|x|

<
∞∑

p=ϕ(n+1)+1

Q−p(Q− 1)

= Q−ϕ(n+1),

as Mn+1 ∩Ap = ∅, for almost all p ∈ N, and by B), #(Mn+1 ∩Ap) ≤ Q− 1. From A) we get

1−
n∑
i=0

Q−ϕ(i) =
∑

x∈Mn+1

Q−|x| < Q−ϕ(n+1),

which contradicts the hypothesis (1), thus concluding the existence of µn+1.
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In proving D) we write Mn+1 ∩ {Φ(0),Φ(1), . . . ,Φ(n)} as a union of four sets:

(Mn \ {µn}) ∩ {Φ(0),Φ(1), . . . ,Φ(n− 1)}
Tn+1 ∩ {Φ(0),Φ(1), . . . ,Φ(n− 1)}
(Mn \ {µn}) ∩ {Φ(n)}
Tn+1 ∩ {Φ(n)}

each of which will be shown to be empty. Indeed, the first set is empty by virtue of the induction
hypothesis. For the second set we notice that in case Φ(i) ∈ Tn+1 (for some 0 ≤ i ≤ n − 1), then
Φ(i) = µna

j
1ap, for some 0 ≤ j ≤ ϕ(n) − mn − 1 and 2 ≤ p ≤ Q. So, µn ⊂ Φ(i), and, as µn ∈

Mn ⊂ Mn ∪ {Φ(0),Φ(1) . . .Φ(n − 1)} – which is prefix-free by induction hypothesis – we arrive to a
contradiction. Further on we have Φ(n) 6∈ Mn \ {µn} as µn ⊂ Φ(n), µn ∈ Mn and Mn is prefix-free.
Finally, Φ(n) 6∈ Tn+1 by virtue of the construction of Φ(n) and Tn+1.

For E) we write

Mn+1 ∪ {Φ(0),Φ(1), . . . ,Φ(n)} = (Mn \ {µn}) ∪ {Φ(0),Φ(1), . . . ,Φ(n− 1)} ∪ Tn+1 ∪ {Φ(n)}.

The set Mn∪{Φ(0),Φ(1), . . . ,Φ(n−1)} is prefix-free by induction hypothesis; Tn+1∪{Φ(n)} is prefix-free
by construction. To finish, four cases should be analyzed:

• The set (Mn \ {µn}) ∪ {Φ(n)} is prefix-free as µn ⊂ Φ(n) and Mn is prefix-free.

• The set (Mn \ {µn}) ∪ T (n + 1) is prefix-free as µn ⊂ x, for each string x ∈ T (n + 1) and Mn is
prefix-free.

• To prove that the set Tn+1∪{Φ(0),Φ(1), . . . ,Φ(n−1)} is prefix-free we have to consider two cases:

◦ if x ⊂ Φ(i), for some x ∈ T (n + 1) and 0 ≤ i ≤ n − 1, then µn ⊂ x, µn ∈ Mn ⊂
Mn∪{Φ(0),Φ(1), . . . ,Φ(n−1)}, a prefix-free set (by induction hypothesis), which is impossible;

◦ if Φ(i) ⊂ x, for some x ∈ T (n+ 1) and 0 ≤ i ≤ n− 1, then Φ(i) = µna
t
1, for some t > 0 (the

case t = 0 implies Φ(i) ⊂ µn which is impossible). This implies that µn ⊂ Φ(i), which is also
impossible.

• To show that the set {Φ(0),Φ(1), . . . ,Φ(n− 1),Φ(n)} is prefix-free we have to consider again two
cases:

◦ if Φ(n) ⊂ Φ(i), for some 0 ≤ i ≤ n − 1, then µn ⊂ Φ(i) (as µn ⊂ Φ(n)), which is a
contradiction;

◦ if Φ(i) ⊂ Φ(n), for some 0 ≤ i ≤ n− 1, then Φ(i) = µna
t
1, for some t > 0 (the case t = 0 is

impossible), so µn ⊂ Φ(i), a contradiction.

The injectivity of Φ follows directly from E). Hence, the theorem has been proved.

3 Comments

A careful examination of the procedure used in the above proof shows that it produces the same code
strings as Chaitin’s original algorithm [4]:

Start with Φ(0) = a
ϕ(0)
1 , and if Φ(1), . . . ,Φ(n) have been constructed and ϕ(n + 1) 6= ∞,

then:
Φ(n+ 1) = min{x ∈ Aϕ(n+1) | x 6⊂ Φ(i),Φ(i) 6⊂ x, for all 0 ≤ i ≤ n},

where the minimum is taken according to the lexicographical order.

For an extension of Kraft-Chaitin inequality to free-extensible codes see [11].
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