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1 IntroductionWe begin by presenting some basic de�nitions from e�ective model theory.A computable structure is one with a computable domain and uniformlycomputable atomic relations. Without lost of generality, we can always sup-pose that the domain of every computable structure is the set of all naturallnumbers ! and that its language does not contain function symbols. If astructure A is isomorphic to a computable structure B, then A is com-putably presentable and B is a computable presentation of A. Let �be an e�ective signature. Let �0 � �1 � �2 � : : : be an e�ective sequenceof �nite signatures such that � = St �t.It is clear that a structure A of signature � is computable if and only ifthere exists an e�ective sequence A0 � A1 � A2 � : : : of �nite structures�Partially supported by ARO through MSI, Cornell University, DAAL03-91-C0027.yPartially supported by MSI, Cornell University and the NSF grant DMS 9500983xPartially supported by NSF Grant DMS-9204308, DMS-9503503 and ARO throughMSI, Cornell University, DAAL-03-C-0027. 1



such that for each i the domain of Ai is f0; : : : ; tig, the function i ! tiis computable, Ai is a structure of signature �i, Ai+1 is an expansion andextension of Ai, and the structure A is the union SiAi. The domain of A isdenoted by A. For a structure A of signature � we write PA to denote theinterpretation of the predicate symbol P 2 � in A. When it does not causeconfusion, we write P instead of PA. In this paper we only deal with �niteor countable structures.A basic question in computable model theory is whether a given �rst or-der theory T has a computable model. A standard Henkin type constructionshows that each decidable theory has a computable model. Moreover thesatisfaction predicate for this model is computable. Such computable mod-els are called decidable. Constructing computable (decidable) presentationsfor speci�c models of T has been an intensive area of research in e�ectivemodel theory [2], [9], [4]. For example, the computableness of homogeneousmodels, in particular of prime and saturated models has been well studied.In [2], [9] it is proved that the saturated model of T has a decidable pre-sentation if and only if there exists a procedure which uniformly computesthe set of all types of T . Goncharov [4] and Harrington [8] gave criteriafor prime models to have decidable presentations. It is also known that thedecidability of the saturated model of T implies the existence of a decidablepresentation of the prime model of T [2], [12]. Thus, a general question arisesas to how computable models of undecidable theories behave in comparisonto computable models of decidable theories. In this paper we investigatecomputable models of complete theories with \few countable models" (M.Morley [12]). Examples of such theories are theories with countably manycountable models such as !1{categorical theories and theories with �nitelymany countable models (Ehrenfeucht theories).In [1] Baldwin and Lachlan developed the theory of !1{categoricity interms of strongly minimal sets. They settled a�rmatively Vaught's con-jecture for !1{categorical complete theories by proving that each complete!1{categorical theory has either exactly one or ! many countable models upto isomorphisms. Their paper also shows that all the countable models ofany !1{categorical theory T can be listed in an ! + 1 chain:chain(T ) : A0 � A1 � : : : � An � : : :A!of elementary embeddings with A0 and A! being the prime and saturatedmodels of T , respectively [1]. The results of Baldwin and Lachlan lead one2



to investiagte the e�ective content of !1{categorical theories and their mod-els. Based on the theory developed by Baldwin and Lachlan, Harrington[8] and Khissamiev [6] proved that every countable model of each decidable!1-categorical theory T has a decidable presentation.This result of Harrington and Khissamiev motivated the study of com-putable models of !1{categorical undecidable theories. In 1972, S. Gon-charov [3] constructed an example of an !1{categorical but not !{categoricaltheory T for which the only model with a computable presentation isthe prime model, that is the �rst element of chain(T ). Later in 1980,K.Kudeiberganov [7] modi�ed Goncharov's construction to provide an ex-ample of an !1{categorical but not !{categorical theory T with exactly ncomputable models. These models are the �rst n elements of chain(T ).These results lead to the following two questions which have remained open:Question 1.1 (S.Goncharov [5]) If an !1{categorical but not !{categoricaltheory T has a computable model, is the prime model of T computably pre-sentable?Question 1.2 If all models A0, A1, : : :, Ai, : : :, i 2 !, in chain(T ) of an!1{categorical but not !{categorical theory T , have computable presentations,is the saturated model A! of T computably presentable?The above result of Harrington and Khissamiev also inspired Nerode toask whether the hypothesis of !1{categoricity of T can be replaced by thehypothesis that T has only �nitely many countable models, that is whetherevery countable model of a decidable Ehrenfeucht theory has a decidablepresentation. Morley noted that if the countable saturated model of a suchtheory is decidable, then the theory has at least three computable models[12]. Lachlan answered Nerode's question by giving an example of a decidabletheory with exactly 6 models of which only the prime one has a computablepresentation. Later, for each natural number n > 3, Peretyatkin constructedan example of decidable theory with exactly n models such that the primemodel of the theory is computable and none of the other models of thetheory has computable presentations [13]. In [7] Kudeiberganov constructedan example of a theory with exactly 3 models such that the theory has onlyone computable model and that model is prime. The saturated model of thetheory can not be decidable since, otherwise, all 3 model of the theory would3



have computable presentations. These results lead Morley to ask as whetherany countable model of a decidable Ehrenfeucht theory T with a decidablesaturated model has a decidable presentation [12]. There is a natural anologof this question for computable models:Question 1.3 If the saturated model of an Ehrenfeucht theory is computable,does there exist a nonsaturated, computable model of the theory?In this paper we answer the above three questions by providing appro-priate counterexamples. Our examples of models which answer the �rst twoquestions have in�nite signatures. However these questions remain open fortheories of �nite signatures.The general problem suggested by these results is to characterize thespectrum of computable models of !1{categorical theories: Let T bean !1{categorical but not !{categorical complete theory. Consider chain(T ).The spectrum of computable models of T , denoted by SRM(T ), is theset fi � !j the model Ai in chain(T ) has a computable presentation g .Problem. Describe all subsets of ! which are of the form SRM(T ) forsome !1{categorical theory T .The result of Harrington and Khissamiev shows that if T is decidable,then SRM(T )= !Sf!g. The results of Goncharov and Kudeiberganov showthat the sets f1; : : : ; ng, where n 2 !, are spectra of computable models of!1{categorical theories. In this paper we show that the sets ! � f0gSf!gand ! are also spectra of computable models of !1{categorical theories.2 Main ResultsThe results of this paper are based on the idea of coding �02 or �02 sets withcertain recursion-theoretic properties into !1{categorical theories. Our �rstresult is the following theorem which answers Question 1.1.Theorem 2.1 There exists an !1{categorical but not ! categorical theory Tsuch that all the countable models of T except its prime model have com-putable presentations (and so SRM(T )= ! � f0gSf!g).4



Before proving this theorem we would like to give the basic idea of ourproof. For an in�nite subset S � ! we construct a structure AS of in�nitesignature (P0; P1; P2; : : :), where each Pi is a binary predicate symbol. Wewill show that the theory TS of the structure AS is !1{categorical and AS isthe prime model of TS. The countable models of TS will have the followingproperty: Every non prime model A of TS has a computable presentation ifand only if the set S is a �02{set. The existence of a computable presentationof the prime model will imply that the set S has a certain recursion-theoreticproperty. Our recursion-theoretic lemma (Lemma 2.1.) will show that thereexists a �02{set S which does not have this properties.The Construction of Cubes. Let n be a nonzero natural number. Let�n = (P0; : : : ; Pn�1) be a signature such that each Pi is a binary predicatesymbol. For each nonzero natural number n we de�ne a �nite structure ofsignature �n, called an n{cube, as follows.A 1{cube C1 is a structure (fa; bg; P0) such that P0(x; y) holds in C1 ifand only if x = a and y = b or y = a and x = b.Suppose that n-cubes have been de�ned. Let A = (A; PA0 ; : : : ; PAn�1) andB = (B;PB0 ; : : : ; PBn�1) be n-cubes such that ATB = ;. These two n{cubesare isomorphic. Let f be an isomorphism from A to B. Then a n+ 1{cubeCn+1 is (A[B;PA0 [PB0 ; : : : ; PAn�1[PBn�1; Pn);where Pn(x; y) holds if and only if f(x) = y or f�1(x) = y. It follows thatwe can naturally de�ne an !{cube C! = Si2! Ci as an increasing union ofn{cubes formed in this way.An !{cube C! is a structure of the in�nite signature � = (P0; P2; : : :):From these de�nitions of cubes it followsClaim 2.1 For each n � ! any two n{cubes are isomorphic. 2Each binary predicate Pi in any cube A is a partial function and setsup a one-to-one mapping from dom(Pi) onto range(Pi). Therefore we canalso write Pi(x) = y instead Pi(x; y). Moreover by the de�nition of Pi,dom(Pi) = range(Pi):Construction of AS. For each natural number n 2 ! consider an n{cube denoted by An. Assume that An TAt = ; for all n 6= t. Let S be a5



subset of !. De�ne a structure AS byAS = [n2SAn:Thus the structure AS is the disjoint union of all cubes An, n 2 S, with thenatural interpretations of predicate symbols of signature �. Let TS be thetheory of the structure AS.Claim 2.2 If S is an in�nite set, then the theory TS is !1 categorical butnot !{categorical.Proof. The model AS satis�es the following list of statements. It iseasy to see that this list of statements can be written as an (in�nite) set ofstatements in the �rst order logic.1. 8x9yP0(x; y) and for each n, Pn is a partial one to one function.2. For all n 6= m and for all x, Pn(x) 6= Pm(x).3. For each n and for all x if Pn(x) is de�ned, then P0(x), P1(x), : : :,Pn�1(x) are also de�ned.4. For all n;m and for all x if Pn(x) and Pm(Pn(x)) are de�ned, thenPm(Pn(x)) = Pn(Pm(x)).5. For all k, n > n1 � n2 � : : : � nk�1 � nk, for all elements x,Pn1(: : : (Pnk(x) : : :) 6= Pn(x):6. For each n 2 !, n 2 S if and only if there exists exactly one n{cubewhich is not contained in an n + 1{cube.LetM be a model which satis�es all the above statements. Then for eachn 2 S, M must have an n{cube which is not contained in an n + 1{cube.Moreover if an x 2M does not belong to any n{cube for n 2 S, then x is inan !{cube. Note that each !{cube is countable. Using the previous claim itcan be seen that any two models which satisfy the above list of axioms areisomorphic if and only if these two models have the same number of !{cubes.Suppose that M1 and M2 are models of TS and their cardinalities are !1.Since each cube is a countable set it follows that the number of !{cubes inM1 andM2 is !1. Therefore the modelsM1 andM2 are isomorphic. HenceTS is an !1{categorical but not !{categorical theory. 26



Claim 2.3 The set S is in �02 if and only if every nonprime model of TSpossesses a computable presentation.Proof. Each !{cube has a computable presentation. Therefore it su�cesto prove that S 2 �02 if and only if the nonprime modelM of TS with exactlyone !{cube has a computable presentation. If M is computable, then s 2 Sif and only if 9x9y8z(Ps(x; y)&:Ps+1(x; z)). Therefore S 2 �02.Now suppose that S 2 �02. There exists a computable function f suchthat for every n 2 !, n 2 S if and only if Wf(n) is �nite. We construct ane�ective sequence M0 �M1 �M2 � : : :of �nite structures by stages such that1. The model M is isomorphic to SnMn,2. Each Mt has exactly t + 1 cubes and the function t ! card(Mt) iscomputable,3. Each Mt is a structure of signature (P0; : : : ; Pni), where i ! ni is acomputable function.Stage 0. Construct a 1{cube M0 and mark this structure with thesymbol 2!.Stage s+1. Suppose thatMs has been constructed as the disjoint unionMs;0[Ms;1[ : : :[Ms;s[Ms;!;where each Ms;i, i � s is a i{cube, andMs;! is the cube marked with 2! atthe previous stage. Compute Wf(0);s+1; : : :Wf(s);n+1;Wf(s+1);s+1: For eachi � s+ 1 de�ne Mi;s+1 and Ms+1;! as follows:1. If Wf(i);s+1 =Wf(i);s, then let Mi;s+1 =Mi;s:2. If Wf(i);s+1 6= Wf(i);s, then construct a new i{cube and let Mi;s+1 bethis new cube.3. Extend the cube Ms;! to a �nite cube denoted by Ms+1;! such thatfor each i � s if Wf(i);s+1 6=Wf(i);s, then Ms+1;! contains Ms;i.7



Let Ms+1 be Ms+1;0 SMs+1;1S : : :SMs+1;s+1SMs+1;!: De�neM! =[s Ms:By the construction, the structure M! is computable. The construction ofM! guarantees that the structure M! is isomorphic to the model M. 2Now we need the following de�nition and recursion theoretic lemma. Wewill prove the lemma at the end of this section.De�nition 1 A function f is limitwise monotonic if there exists a com-putable function �(x; t) such that �(x; t) � �(x; t + 1) for all x; t 2 !,limt �(x; t) exists for every x 2 ! and f(x) = limt �(x; t).Lemma 2.1 (Recursion Theoretic Lemma) There exists a �02 set Awhich is not the range of any limitwise monotonic function. 2Proof of Theorem 2.1. We need the followingLemma 2.2 If the prime model AS is computable, then the set S is the rangeof a limitwise monotonic function.Proof. Let x 2 AS. Note that each cube in AS is �nite. De�ne �(x)to be an s such that x is in an s{cube and this cube is not contained in as + 1{cube. It is clear that � witnesses that S is the range of a limitwisemonotonic function. 2By the Recursion Theoretic Lemma there exists an S 2 �02 which is notthe range of any limitwise monotonic function. Consider the structure ASand its theory TS. The claims above and Lemma 2.2 show that TS is therequired theory and so prove Theorem 1.1. 2Now we give an answer to Question 1.2. The idea of our proof is thefollowing. We take a �02 but not �02 set S and code this set into a theory TS.The language of TS will contain in�nitely many unary predicates P0; P1; : : :,and in�nitely many predicates of arity n for each n 2 !. We will prove thatTS is an !1{categorical but not !{categorical theory. Our construction of TSguarantees that all the countable models of TS, except the saturated model,have computable presentations. The existence of a computable presentationfor the saturated model will imply that the set S is a �02 set. This willcontradict with the choice of S. 8



Theorem 2.2 There exist an !1{categorical but not !{categorical theory Tsuch that all the countable models of T except the saturated model, havecomputable presentations.Proof. We construct a structure of the in�nite signature(P0; P1; : : : ; R1;0; R1;1; R1;2; : : : ; Rk;0; Rk;1; Rk;2; : : :);where each Pi is a unary predicate and each Rk;s is a predicate of arity k.Let S be a (�02 n �02) set. There exists a computable predicate H suchthat n 2 S if and only if 8x9yH(x; y; n) holds. Below we present a step bystep construction of a computable structure denoted by AS and prove thatthe theory TS of this structure satis�es the requirements of the theorem.Stage 0. Let A0 = (f0g; P0), where P0(0) holds.Stage t+1. The domain At+1 of At+1 is f0; : : : ; t+1g. The signature ofAt+1 is �t+1 = (P0; : : : ; Pt+1; R1;0; : : : ; R1;t+1; : : : ; Rt+1;0; : : : ; Rt+1;t+1):For each i � t + 1 let Pi(x) hold if and only if x � i. For k; s � t + 1, letRk;s(x1; : : : ; xk) hold if and only if x1; : : : ; xk are pairwise di�erent and forthe maximal number j � t+1 such that all Pj(x1), : : :, Pj(xk) hold we have8n � s9m � jH(n;m; k). We have de�ned the model At+1.Thus we have an e�ective sequence A0;A1;A2 : : : of �nite structuressuch that each Ai+1 is an extension and expansion of Ai. Therefore we cande�ne AS by AS = [i Ai:It is clear that the model AS is computable.Claim 2.4 The theory TS of the model AS is a !1{categorical but not !{categorical.Proof. The model AS satis�es the following list of properties which canbe written as an in�nite set of stetements in the language of the �rst orderlogic.1. For all x if Pi+1(x) holds, then Pi(x) also holds. Moreover 8xP0(x) istrue. 9



2. For each i 2 ! there exists a unique x such that Pi(x)&:Pi+1(x), i 2 !.3. For all k; s 2 !, if Rk;s(x1; : : : ; xk) holds, then x1, : : :, xk are pairwisedistinct.4. Let k 2 S. For every s 2 ! there exists a j 2 ! such that8n � s9m < jH(n;m; s). Let js be the minimal number which has thisproperty. Then for all pairwise distinct x1 : : : xk if Pjs(x1)& : : : Pjs(xk)holds, then Rk;s(x1; : : : ; xk) holds.5. Let k 62 S. There exists an s0 such that for all s � s0 and for allx1; : : : ; xk, Rk;s(x1; : : : ; xk) does not hold.Let A be a model of TS. Consider the set Ti PAi . For any two elementsa; b 2 Ti PAi there exists an automorphism � of the model A such that�(a) = b. Thus a proof of !1{categoricity can be based on the followingobservation. Two models B and C of the theory TS are isomorphic if andonly if the cardinalities of the sets Ti PBi and Ti PCi are equal. Hence if Band C are models of cardinality !1, then both Ti PBi and Ti PCi have exactly!1 elements. It follows that B and C are isomorphic. 2>From the proof of Claim 2.4, it follows that if B is a countable unsatu-rated model of the theory TS, then TPBi has a �nite number of elements.Claim 2.5 If C is a countable and unsaturated model of TS, then C has acomputable presentation.Proof. Let C be a countable, unsaturated model of TS. The set Ti PCi hasa �nite number of elements, say n. We construct a computable presentationof C by stages.Let a1; : : : ; an be new symbols. In our construction of a computablepresentation A of C we put the elements a1; : : : ; an into Ti PAi . Let p1; : : : ; pnbe the all elements of S Tf0; 1; : : : ; ng.Stage 0. De�ne A0 = (f0; a1; : : : ; ang; P0), letting P0(0), P0(a1), : : :,P0(an) hold.Stage t+1. The domain At+1 of At+1 is f0; : : : ; t + 1; a1; : : : ; ang. Thesignature of the At+1 is�t+1 = (P0; : : : ; Pt+1; R1;0; : : : ; R1;t+1; : : : ; Rt+1;0; : : : ; Rt+1;t+1):10



For each i � t + 1 let Pi(x) hold if and only if x � i or x 2 fa1; : : : ; ang.For k; s � t+1, let Rk;s(x1; : : : ; xs) hold if and only if one of the followingsholds:1. k 2 fp1; : : : ; png, (x1; : : : ; xk) 2 fa1; : : : ; angn, and x1; : : : ; xk are pair-wise distinct.2. fx1; : : : ; xkg n fa1; : : : ; ang 6= ;, the elements x1; : : : ; xk are pairwisedi�erent, and for the maximal number j � t + 1 such that all Pj(x1),: : :, Pj(xk) hold we have 8n � s9m � jH(n;m; k).Thus this stage de�nes the structure At+1. For each i 2 ! Ai+1 is anextension and expansion of Ai. De�ne A by A = SiAi: It is clear that thestructure A is computable and isomorphic to the model C. 2Claim 2.6 The countable saturated model B of T does not have a computablepresentation.Proof. Suppose that B is computable. Since B is saturated the numberof elements in Ti PBi is in�nite. It can be checked that for each k 2 !, k 2 Sif and only if there exist di�erent elements y1; : : : ; yk from Ti PBi such thatfor all s � 1, Rk;s(y1; : : : ; yk) holds. The set S would then be a �02{set. Thiscontradicts with our assumption that S 2 �02 n �02. 2These claims prove Theorem 3. 2Thus the above theorems prove the following corollary about spectra ofcomputable models (SRM) of !1 categorical theories.Corollary 2.1 1. There exists an !1{categorical but not ! categoricaltheory T such that SRM(T ) = ! � f0gSf!g.2. There exists an !1{categorical but not ! categorical theory T such thatSRM(T ) = !. 2In the next theorem, which answers Question 1.3, we provide an exampleof a theory TS with exactly 3 countable models of which only the satu-rated model is computably presentable. To prove that TS has exactly 3countable models, we use the known ideas which show that the theory of themodel (Q;�; c0; c1; : : :); where � is the linear ordering of rationals, andthe constants are such that c0 > c1 > c2 > : : :, has exactly 3 countablemodels [14]. 11



Theorem 2.3 There exists a theory T with exactly 3 countable models suchthat the only model of T which has a computable presentation is the saturatedmodel.Proof. Let Q be the set of all rational numbers. For each cardinalnumber m 2 !Sf!g de�ne a structure Q0(m) as follows. The domain of thestructure is fq 2 Qj1 � qg[fcq;1; : : : ; cq;mjq 2 Qg;where fcq;ijq 2 Q; 1 � i � mg is a set of new elements. The signature of themodel is (�; f), where � is a binary predicate and f is a unary functionsymbol. The predicate � and the function f are de�ned as follows. For allx; y we have x � y if and only if x; y 2 Q and x is less or equal to y asrational numbers. For all z; y de�ne f(z) = y if and only if for some rationalnumber q, y = q and z 2 fcq;1; : : : ; cq;mg or y = z = q. Let Q(m) be thestructure obtained from Q0(m) by removing the elements 1, c1;1, : : :, c1;mfrom the domain of Q0(m).If A and B are isomorphic copies of the structures Q0(n) and Q0(m),respectively, and ATB = ;, then one can naturally de�ne the isomorphismtype of the structure Q0(n) + Q0(m) as follows. The domain of the newstructure is ASB. The predicate � in the new structure is the least partialordering which contains the partial orderings of A, the partial ordering of B,and the relation f(x; y)jx 2 A&fA(x) = x& y 2 B&fB(y) = yg. The unaryfunction f in the new structure is the union of the unary operations of the�rst and the second structures.If n0; n1; n2; : : : ; ni; : : :, i < ! is a sequence of natural numbers, then asabove we can de�ne the structureQ0(n0) +Q0(n1) +Q0(n2) + : : : :Let S be a set in �02 which is not the range of a limitwise monotonicfunction. There exists a computable function g such that, for all n h(n) =lims g(n; s) exists and range(h) = S. Consider the model Q0(S) de�ned byQ0(h(0)) +Q0(h(1)) +Q0(h(2)) + : : : :De�ne the theory TS to be the theory of the structue Q0(S).Claim 2.7 . The theory TS has exactly three countable models.12



Proof. The �rst model of TS is Q0(S). This model is the prime modelof the theory TS. The second model of TS isQ0(S) = Q0(h(0)) +Q0(h(1)) +Q0(h(2)) + : : :+Q0(!):The third model M of TS isQ(h(0)) +Q0(h(1)) +Q0(h(2)) + : : :+Q(!):These structures are indeed models of TS. To see this, note that Q0(S) is asubmodel of Q0(S), and Q0(S) is a submodel of M. It can be checked thatfor any formula 9x�(x; a1; : : : ; an) and all a1; : : : ; an 2 Q0(S) (a1; : : : ; an 2Q0(S)) if the formula 9x�(x; a1; : : : ; an) is true in Q0(S) (inM) then thereexists a b 2 Q0(S) ( b 2 Q0(S) ) such that �(b; a1; : : : ; an) is true in Q0(S)(in Q0(S)). Therefore the embeddings are elementary.We have to prove that any countable model of TS is isomorphic to one ofthe three models described above. Let A be a model of TS. For each i 2 !we de�ne by induction an element ai 2 A as follows.The element a0 is the minimal element with respect to the partial orderingin A. Note that the set fbjb 6= a0&f(b) = a0g has exactly h(0) elements.Also put k0 = 0.Suppose that the elements a0, : : :, ai�1 2 A and the numbers k0; : : : ; ki�1have been de�ned. Let ki be the least element such that h(ki) 6= h(kj) forj = 1; : : : ; i� 1. The element ai is the one such that the following propertieshold:1. The set fbjb 6= ai&f(b) = aig has exactly h(ki) elements,2. For each x < ai the cardinality of the set fbjb 6= x&f(b) = xg is infh(k0); : : : ; h(ki�1g.Consider the sequence a0; a1; a2; : : :. Clearly a0 < a1 < a2 < : : :. Thus wehave three cases:Case 1. limi ai does not exists and for any x 2 A such that f(x) = xthere exists an i such that ai � x,Case 2. limi ai exists,Case 3. limiai does not exists and there exists an x such that f(x) = xand x � ai for all ai.In the �rst case A is isomorphic to Q0(S). In the second case A isismorphic to Q0(S). In the third case A is isomorphic to M. Note that13



Q0(S) is the prime model. The model Q0(S) is not saturated since it doesnot realize the type containing fx > ai&c > xji 2 !g, where c = limiai.Hence M is the saturated model of TS. 2Claim 2.8 The unsaturated models of the theory TS do not have computablepresentations.Proof. Consider the prime modelQ0(S). Suppose Q0(S) is a computablemodel. Then it can be easily checked that the set S is the range of a limitwisemonotonic function. This contradicts the assumption on S. If the otherunsaturated modelQ0(S) = Q0(h(0)) +Q0(h(1)) +Q0(h(2)) + : : :+Q0(!)were computable, then Q0(S) would be a computably enumerable submodelof the model Q0(S). Hence Q0(S) would have a computable presentation.This is again a contradiction. 2Claim 2.9 The saturated model M of the theory T has a computable pre-sentation.Proof. We present a constuction of the saturated model M by stages.The construction will clearly show that the saturated model has a computablepresentation.Stage 0. Consider the structure Q0(g(0; 0)) +Q(!): Denote this modelby A0.Stage n+1. Suppose that An has been de�ned and is isomorphic toQ0(g(0; n)) + : : :+Q0(g(n; n)) +Q(!):Compute g(0; n+ 1); : : : ; g(n + 1; n + 1): Let i � n be the minimal numbersuch that g(i; n) 6= g(i; n + 1). An can be extended to a structure An+1isomorphic toQ0(g(0; n+1))+: : :+Q0(g(i�1; n+1))+Q0(g(i; n+1))+: : :Q0(g(n+1; n+1))+Q(!):To see this, take the substructureQ0(g(i; n)) + : : : Q0(g(n; n)) +Q(!)14



of An; extend this substructure to Q(!); insert the new structureQ0(g(i; n+ 1)) + : : : Q0(g(n+ 1; n+ 1))between the structures Q0(g(0; n + 1)) + : : : + Q0(g(i � 1; n + 1)) and theextended structure Q(!). The structure obtained in this way is An+1.Thus we have the sequenceA0 � A1 � A2 � : : : :De�ne A! = SiAn: It is easy to see that the model A! is ismorphic toQ0(h(0)) +Q0(h(1)) + : : :+Q0(h(n)) + : : :+Q(!):Now it is clear that the above description can be e�ectivized. 2These claims prove the theorem. 2Finally we have to prove the promissed recursion theoretic lemma.Proof of the Recursion Theoretic Lemma. Let �e(x; t); e 2 !, bea uniform enumeration of all partial computable functions � such that forall t0 � t if �(x; t0) is de�ned, then �(x; t) is de�ned and �(x; t) � �(x; t0).At stage s of our construction we de�ne a �nite set As in such a way thatA(y) = limsAs(y) exists for all y. We satisfy the requirement Re assertingthat, if fe(x) = limt�e(x; t) < ! for all x, then range(fe) 6= A.The strategy for a single Re is as follows: At stage s pick a witness me,enumerateme into A (i.e. As(me) = 1). Now Re is satis�ed (sinceme remainsin A) unless at some later stage t0 we �nd an x such that �e(x; t0) = me.If so, Re ensures that A(�e(x; t)) = 0 for all t � t0. Thus, either fe(x) " orfe(x) # and fe(x) 62 A.Keeping �e(x; t) out of A for all t � t0 can con
ict with a lower priority(i > e) requrement Ri since it maybe the case that mi = �e(x; t0) for somet0 > t0. However, if fe(x) #, then this holds permanently for just one number,and if fe(x) ", then the restriction is transitory for each number. So eachlower priority Ri will be able to choose a stable witness at some stage.Construction. At stage s we try to determine the values of parametersme, xe, and ne = �e(xe; s) for Re. Each parameter may remain unde�ned.Moreover we de�ne the approximation As to A at stage s.15



Sate 0. Let A0 = ;, and declare all parameters to be unde�ned.Stage s. For each e = 0; : : : s � 1 in turn go through substage e byperforming the following actions.1. If me is unde�ned, let me be the least number in ![e] greater than allmi (i < e) which is not equal to any ni. Let As(me) = 1 and proceedto the next sustage, or to stage s+ 1 if e = s� 1.2. If xe is unde�ned and �e(x; s) = me for some x, let xe = x, ne = me;and As(ne) = 0, and proceed to the next stage s + 1 if e = s� 1.3. Let ne = �e(xe; s) and As(ne) = 0. If ne = mi for some i > e, declareall the parameters of the Rj, j � i, to be unde�ned.For each y, if As(y) is not determined by the end of stage s, then assign toAs(y) its previous value As�1(y). The stage is now completed.Now we will verify that the construction succeeds.Claim 2.10 Each me is de�ned and is constant from some stage on.Proof. Suppose inductively that the claim holds for each i < e. Let s0be a stage such that each mi has reached its limit for i < e, and if xi everbecomes de�ned after s0, and lims ni;s <1; then the limit has been reachedat s0. Moreover, let k � e be the least number which does not equal any ofthese limits and is greater than all mi for i < e. Also suppose that ni;s0 > kif limsnj;s = 1, (j < e). If me is cancelled after stage s0, then me = k ispermanent from the next stage on. This proves the claim.Claim 2.11 For each y, limsAs(y) exists. Therefore the set A = limsAs isa �02{set.Proof. Suppose that y 2 ![e], and let s0 be a stage at which me hasreached its limit. Since y can only be enumerated into A if y = me, afterstage s0 A(y) can change at most once. This proves the claim.Claim 2.12 Suppose that fe(x) = limt �e(x; t) exists for each x. Then A 6=range(fe): 16



Proof. Suppose that A = range(fe): Let s0 be the stage at which mereaches its limit. Then at some stage s > s0 we must reach the secondinstruction of the construction, otherwise A(me) = 1 but me 62 range(fe).Suppose that �e(x; s) = me for the minimal s � s0 at which we reach thesecond instruction of the construction. It follows that for t � s, ne = �e(x; t)and At(ne) = 0. So A(fe(x)) = 0. This contradiction proves the claim andhence the lemma. 2Remark. It is possible to make A d.r.e, i.e. A = B � C for some r.e.sets B;C. To do so, we have to set aside an interval Ie, roughly of size 2e,for Re, I0 < I1 < : : :. As a �rst choice for me, we take the maximal elementof Ie, and then we proceed downward. The point is that, if Re is injured byRi, i < e, via ni = me, then all further values of ni are above the next valuesof me (unless Ri injured itself later). Obviously A can be neither r.e. norco-r.e.References[1] J. Baldwin, A. Lachlan, On Strongly Minimal Sets, Journal of SymbolicLogic, v.36, no 1, 1971.[2] Yu. Ershov, Constructive Models and Problems of Decidability, Moskow,Nauka, 1980.[3] S.Goncharov,Constructive Models of !1{categorical Theories, Matem-aticheskie Zametki, v.23, no 6, 1978.[4] S. Goncharov, Strong Constructivability of Homogeneous Models, Alge-bra and Logic, v.17, no 4, 1978.[5] Logic Notebook, Novosibirsk University, Editors Yu.Ershov,S.Goncharov, 1986.[6] N.Khissamiev, On Strongly Constructive Models of Decidable Theories,Izvestiya AN Kaz. SSR, no 1, 1974.[7] K.Kudeiberganov,On Constructive Models of Undecidable Theories,Siberian Mathematical Journal, v.21, no 5, 1980.17
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