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Abstract

The Robin function associated to a compact set K captures information about the asymp-

totic growth of the logarithmic extremal function associated to K and has found numerous

applications within pluripotential theory in CN . Despite its use, an analogous function for

affine algebraic varieties has not been described in the literature. The work presented here

shows how such a function can be constructed and, supposing only mild geometric conditions, a

wealth of classical pluripotential theoretic results can be recovered on an affine algebraic variety.

Moreover this thesis defines special coordinates for an algebraic variety (‘Noether presentation’)

which are particularly suited to studying the class L+(V).
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Introduction

Affine algebraic varieties have largely been a sideline to the main study of pluripotential the-

ory. Investigations are usually conducted in either the generality of a complex manifold or the

concreteness of CN . Algebraic varieties have traditionally been seen as a special case of pluripo-

tential theory on complex manifolds, since all smooth algebraic varieties are complex manifolds,

and the literature reflects this point of view. The main results of this thesis exploit the fact

that affine algebraic varieties are algebraic subvarieties of CN and are relatively finite over CM

to show that a pluripotential theory can be developed on varieties which closely resembles the

CN case. From this point of view, algebraic varieties can be seen as an intermediate situation

between pluripotential theory on CN and pluripotential theory on complex manifolds.

Brief history of pluripotential theory on algebraic varieties

The study of pluripotential theory on algebraic varieties can broadly be split into two time

periods; 1983-1995 and contemporary. One of the first major papers in 1983 was due to A.

Sadullaev [50] which showed that if the logarithmic extremal function (with pole at infinity)

associated to a compact subset K of an analytic variety V is finite at each point then V is

algebraic. In particular, a logarithmic extremal function for an analytic variety which is not

algebraic must have some points where it is not finite. This distinguished algebraic varieties

from analytic varieties as spaces where classical pluripotential notions were likely to carry over.

The main thrust of technical development for pluripotential theory on algebraic varieties was

due to Demailly and later Zeriahi. Demailly’s point of view can be largely summarised as be-

ing motivated by the complex geometric consequences of pluripotential theoretic notions. For

instance, the geometric concept of intersection theory is studied via the pluripotential theoretic

notion of the Lelong number. His study culminated in the books ‘Complex analytic and dif-

ferential geometry’ [25] and ‘Applications of pluripotential theory to algebraic geometry’ [26] –

both have a distinctly differential geometric flavour to them. As far as we are aware, there is

little overlap beyond basic definitions between his work and this thesis.

Zeriahi’s contribution established a number of classical pluripotential theoretic results in the

setting of a Stein space with parabolic potentials – of which algebraic varieties are an important

example. Between his PhD thesis [55] and ’91 [56] & ’96 papers [57] he developed tools to show

that many aspects of classical pluripotential theory (i.e. the ideas presented in Klimek [37])

could be recovered on an algebraic variety.

Contemporary results usually take the form of treating algebraic varieties as a special case of

complex manifolds. There are a few exceptions. Firstly, Dihn-Sibony [28] have done work invok-

ing pluripotential theory to study complex dynamics on algebraic varieties. Bloom-Levenberg

1



[14] studied the distribution of nodes on an algebraic curve for polynomial interpolation and

as a special case obtained the convergence of an equilibrium measure in this setting. Finally,

Coman-Guedj-Zeriahi [21] have investigated extensions of functions in the Lelong class on an

algebraic variety to functions in the Lelong class on CN . We note that we don’t use their results

in this thesis, but it would be interesting to see if the ideas here can be streamlined using their

theory.

We must also mention the pioneering work of Berman-Boucksom [6–8] who developed deep

machinery to study the equidistribution of Fekete points on complex manifolds. While not

specifically on algebraic varieties, the impact of their work on pluripotential theory is signifi-

cant. We will use some of their results in Section 3.5.

The other studies conducted on algebraic varieties are those done by Ma’u. Ma’u’s work focuses

on studying the transfinite diameter and Chebyshev constants on an affine algebraic variety with

emphasis placed on computation using the underlying geometry. These constants were first de-

fined on an algebraic curve in C2 in [44]. Working with Baleikorocau, the extension to algebraic

curves in CN was established in [2]. The generalisation of these concepts to an algebraic variety

was work done in conjunction with Cox in [23]. Development of generalisations of Robin con-

stants to affine algebraic curves were considered in conjunction with the present author in [33].

Motivation

Our aim was to define and study a Robin function for affine algebraic varieties in CN along

classical lines. The results in [23, 33] suggest that with the right geometric assumptions that

a ‘classical’ generalisation is possible. With this in mind, our main goal became generalising

the results from the paper by Bloom-Levenberg [15] to an affine algebraic variety. Their main

results make correspondences between the transfinite diameter and Chebyshev constants in dif-

ferent settings and make extensive use of weighted potential theory and the Robin function to

do so.

The work of Berman-Boucksom [6–8] gave rise to a ‘Robin function’ realised as the restriction

of a positive metric. It is not a priori given that the Cox-Ma’u formulation of the transfinite

diameter is compatible with the Berman-Boucksom approach. Without knowing this, a ‘classi-

cal’ approach to the problem of defining the Robin function seemed like a more direct way of

generalising the results in [15] hence our decision to pursue this route. In Section 3.5 we show

precisely how the Cox-Ma’u formulation of a transfinite diameter is compatible. It would hence

be interesting to see the results of this thesis recast in the formulation of Berman-Boucksom.

Overview of this thesis

2



In Chapter 1 we recall basic facts in the areas of pluripotential theory, algebraic geometry and

the notion of Chebyshev constants and transfinite diameter on an algebraic variety (from the

point of view of Cox-Ma’u [23]) which will be used in subsequent sections. Within this sec-

tion we develop a higher dimensional analogue of a branch cut (Definition 1.40). This is a set

C ⊂ CM containing the branching set Bπ of an affine algebraic variety V ⊂ CN of dimension

M with respect to a projection π for which CM\C is simply connected. Theorem 1.44 shows

that C can be chosen to be a real 2M − 1 dimensional set and an explicit construction is given

by utilising classical branch cuts along 1 dimensional slices. The main use of this result is that

it allows us to define a biholomorphic projection πi : Vi → CM\C from the ith branch of V to

CM\C.

Our main geometric condition used throughout the thesis is the notion of an algebraic vari-

ety having distinct intersections with infinity, introduced in Definition 1.133. A variety V has

distinct intersections with infinity if

(i) C[z1, ..., zM ] ⊂ C[V] is a Noether normalisation for V.

(ii) Let P = {V({z0, ..., zM−1})} ⊂ PM . The set VP ∩ P consists of d distinct points.∗

(iii) Let VP ∩ P = {λ1, ..., λd} with λi = [0 : ... : λiM : ... : λiN ]. Then for each i, λiM 6= 0.

We verify in Theorem 2.51 that a geometric interpretation of this condition is that the sheets of

the variety intersect the hyperplane at infinity in a way which preserves the number of sheets

i.e. that the homogeneous variety Vh has the same number of sheets as V.

In Chapter 2 we study pluripotential theory on an affine algebraic variety with the aim of gen-

eralising a result of Bedford-Taylor. A key observation is that it is convenient to do calculations

using coordinates z = (x, y), x ∈ CM , y ∈ CN−M where M is the dimension of V which satisfy

the following two properties:

(i) C[V] is finite over C[x].

(ii) For all (x, y) ∈ V we have the growth estimate ‖y‖ ≤ A(1 + ‖x‖) for some A > 0.

We call coordinates satisfying these properties a ‘Noether presentation’ for V. Theorem 2.21

gives an algorithm to compute a Noether presentation given arbitrary coordinates, consequently

such coordinates can always be obtained via a linear change of coordinates. As an immediate

application of these coordinates we show that

Theorem 0.1 (Theorem 2.27). Suppose that V is an affine smooth algebraic variety with a

Noether presentation (x, y). Let u ∈ L+(V). Then∫
V

(ddcu)M = d(2π)M ,

∗VP is the projective closure of V, see the notation table on page vi.

3



where d is the number of branches of V (over CM ).

For an affine algebraic variety V with Noether presentation (x, y) which has distinct inter-

sections with infinity, given u ∈ L+ we define the Robin function ρu pointwise in the following

way.

Definition 0.2 (Definition 2.52). Given a point (x, ỹi(x)) ∈ Vh,reg\Bh
π we can choose a suitable

branch cut C such that

π−1
i (x) = (x, yi(x)),

lim
(t,x)→(0,x)

x/t∈CM\C

yi(x/t) = ỹi(x),

i.e. we can find a path of points in (x/t, yi(x/t)) ∈ V tending to (x, ỹi(x)) ∈ Vh as t→ 0. Then

we define the value of the Robin function ρu at (x, ỹi(x)) to be

ρu(x, ỹ(x)) = lim sup
t→0

x/t∈CM\C

u(x/t, y(x/t)) + log |t|.

This defines the Robin function pointwise on Vh\Bh
π . We extend the Robin function to be defined

everywhere on Vh by

ρu(x, y) = lim sup
Vh,reg\Bhπ3(ζ,η)→(x,y)

ρu(ζ, η).

This is a direct generalisation of the CN formulation of the Robin function. Throughout the

rest of Chapter 2 and Chapter 3 we show that our Robin function satisfies generalised versions

of important classical results.

The first of these is a Bedford-Taylor formula.

Theorem 0.3 (Theorem 2.67). Let V be a smooth irreducible algebraic variety with Noether

presentation (x, y) which has distinct intersections at infinity. Let u, v, w2, ..., wM ∈ L+(V)

Then ∫
V

(u ddcv − v ddcu) ∧ T = 2π

∫
Ṽh

(ρ̃∗u − ρ̃∗v) ∧ T̃

where T = ddcw2 ∧ ... ∧ ddcwM , ρ̃∗u is usc regularisation of the projective Robin function, and

T̃ = (ddcρ̃∗w2
+ ω) ∧ ... ∧ (ddcρ̃∗wM + ω), where ω is the usual Kähler form (see Notation, page

viii).

Our method of proof relies on using the fact that the projection is locally biholomoprhic

to utilise the CM version of the Bedford-Taylor formula to establish the formula on branches

of V, and then piecing everything together. Many consequences of this formula are derived in

Sections 3.1-3.3.
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In Section 3.4 we generalise results found in Hart-Ma’u [33] to an algebraic variety. Precisely, in

Theorem 3.33 we show that for a compact, nonpluripolar, regular set K the projective capacity

κ(K, ζ) in the direction ζ ∈ Vh is equal to e−ΨK(ζ) = e−ρK(ζ). This in turn generalises the well

known equality between the classical projective capacity and the classical Robin function. In

the case where V is an algebraic curve the directional projective capacity coincides with the

directional Chebyshev constants and we obtain e−ρK(λj) = τ(K,λj).

In Section 3.5 we establish a Rumely type formula relating the transfinite diameter to our

Robin function. We first show that the Cox-Ma’u transfinite diameter is compatible with

the Berman-Boucksom theory. The difference between these formulations is that the Cox-

Ma’u formulation utilises the reduced monomials which span C[V] to form the Vandermonde

determinants, while the Berman-Boucksom theory utilises an L2(µ)-orthonormal basis (with

respect to a probability measure µ) to form the Vandermonde determinants. The key to relating

these is using Gram-Schmidt with respect to the probability measure µ = 1
d(2π)M

(ddcVTV )M

where TV = {|xj | ≤ 1} ∩ V. These calculations are done in Propositions 3.45 and 3.46. As a

consequence we obtain

lim
k→∞

1

kNk
log ‖ det[Dk]‖L∞(K) = lim

k→∞

1

kNk
log ‖ det[Sk]‖L∞(K)

where Dk are the elements of C[V] of degree at most k and Sk the elements of the µ-orthonormal

basis of degree at most k. From this, we clarify the relationship between the Cox-Ma’u formu-

lation and the Berman-Boucksom theory when µ = (ddcVTV )M in the following result

Theorem 0.4 (Theorem 3.51.). Let K ⊂ V be a compact set, µ = (ddcTV)M and Sk be an

L2(µ)-orthonormal basis. Then

log(K) =
M + 1

M
lim
k→∞

1

kNk
log ‖det[Sk]‖L∞(K).

Where log(K) is the Cox-Ma’u transfinite diameter and lim
k→∞

1

kNk
log ‖det[Sk]‖L∞(K) is the

Berman-Boucksom transfinite diameter.

With this key technical result we are able to prove the following Rumely type formula by

invoking the Berman-Boucksom theory.

Theorem 0.5 (Theorem 3.53). Suppose that K ⊂ V is compact, regular and K = {VK(z) ≤ 0}.
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Then

− log δ(K) =
1

dM

[
1

(2π)M−1

∫
Vh
ρK(1, z2, ..., zN )(ddcρK(1, x2, ..., xM , y))M−1

+
1

(2π)M−2

∫
Vh
ρK(0, 1, x3, ..., xM , y)(ddcρK(0, 1, x3, ..., xM , y))M−2

+ ...+
1

2π

∫
Vh
ρK(0, ..., 0, 1, xN , y)(ddcρK(0, ..., 0, 1, xN , y))

+
d∑
j=1

ρK(0, ..., 0, 1, yi)

 .
Equivalently, we have an “energy version” of this formula

− log δ(K) =
1

dM(2π)M−1

∫
Vh

[ρ̃K − ρ̃TV ]

N−1∑
j=0

(ddcρ̃K + ω)j ∧ (ddcρ̃TV + ω)M−j−1.

Chapter 4 is dedicated to exploring weighted pluripotential theory on algebraic varieties

and makes extensive use of the technical results derived in Chapter 3. One of the key ideas

used in this section is that of relating the weighted pluripotential theory on K ⊂ V with the

unweighted potential theory of Kw
↑ ⊂ V↑ where Kw

↑ := {(t, tζ) ∈ V↑ : |t| = w(ζ), ζ ∈ K} and

V↑ = {(t, tz) : z ∈ V, t ∈ C}. The weighted H-principle (Theorem 4.19) provides the maps to

relate the potential theories.

Theorem 4.44 uses this connection to show that the limit of Vandermonde determinants defining

the weighted transfinite diameter δw(K) exists by showing that it is related to the homogeneous

transfinite diameter by δw(K) = dH(Kw
↑ )(M+1)/M .

We extend this idea in Section 4.5 by relating the weighted potential theory of K ⊂ V to the

unweighted potential theory on Kw
ρ ⊂ Vh where Kw

ρ := {z ∈ V h : ρQ(z) ≤ 0}. This is an

extension of an idea of Bloom-Levenberg [15] where in their case K ⊂ CN and Kw
ρ ⊂ CN i.e.

the underlying space does not change. The changing of the underlying space from V to Vh in

our work introduces a minor technicality. We deduce the following ‘Kw
ρ lemmas’ in this section.

(i) log δw(K) = log δ(Kw
ρ )− 1

dM(2π)M

∫
K Q(ddcVK,Q)M . (Lemma 4.46).

(ii) dw(K) = d(Kw
ρ ) (Lemma 4.51).

(iii) dw(K) = δw(K) exp
(

1
dM(2π)M

∫
K Q(ddcVK,Q)M

)
(Corollary 4.53).

(iv) τw(K, θ, λ) = τ(Kw
ρ , θ, λ) (Lemma 4.55).

Using the Kw
ρ lemmas in conjunction with the technique of turning weighted problems into

unweighted problems allows us to derive the convergence of Fekete polynomials to the extremal

function.
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Theorem 0.6 (Theorem 4.58). Let K ⊂ V be compact, regular and polynomially convex. Let

w be a continuous admissible weight function on K. For each i, let {pj,i}j∈N be a sequence of

polynomials such that for all θ there exists a subsequence Yθ,i ∈ Z≥0 with pj,i ∈ {p : lt(p) =

vλix
αj}, j ∈ Yθ,i and

lim
j∈Yθ,i

‖wdeg pj,ipj,i‖1/ deg pj,i
K = τw(K, θ, λi).

Then for all z 6∈ K,

max
1≤i≤d

[
lim sup
j→∞

1

deg pj,i
log

|pj,i(z)|
‖wdeg pj,ipj,i‖K

]∗
= VK,Q(z).

Where we are treating vλ,ix
α as a monomial as in Lemma 1.134 and Definition 1.138.

In Chapter 5 we pose some unanswered questions. Notably, in Section 5.3 we consider the

following extension problem. The work of Coman-Geudj-Zeirahi [21] guarantees an extension

of functions with logarithmic growth on an affine algebraic variety to all of CN under certain

circumstances, however an explicit extension is not given in their work. By utilising a generali-

sation of the theory of uniform algebra (i.e. the restriction of a uniform algebra to a subspace)

we give some results to partially answer this question.
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1 Preliminaries

1.1 Pluripotential Theory

There are many exceptional resources explaining classical potential theory. The classic resource

is Klimek [37] but many of those in the field have notes which cover the concepts important to

the modern study of the subject. See B locki [9], Levenberg [42], [41] or Bracci-Trapani [17] for

such modern renditions of the classical material. For pluripotential theory on complex manifolds

Demailly’s book [25] is the main reference, however his set of notes [24] is more than sufficient

for what we will cover and is more accessible.

Our main focus here is to establish definitions and key results that will be used in subsequent

sections. Proofs will largely be omitted in favour of references.

1.1.1 Plurisubharmonic Functions

Definition 1.1 (§2.3, [37]). Let X be a metric space and u : X → [−∞,∞) a function. We

say u is upper semicontinuous (usc) if for each c ∈ R the set {x ∈ X : u(x) < c} is open. A

function u is lower semicontinuous (lsc) if −u is usc.

Lemma 1.2 (§2.3, [37]). Let X be a metric space with norm |.| and u : X → [−∞,∞) a

function. u is usc if and only if for each a ∈ X,

lim sup
x→a

u(x) := inf
ε>0

(sup{u(y) : y ∈ |y − a| ≤ ε}) = u(a).

Lemma 1.3 (Lemma 2.3.2, [37]). Suppose that {uα}α∈A is a collection of usc functions uni-

formly bounded above. The pointwise infimum v(z) = infα∈A uα(z) is usc and A can be replaced

by a countable subset B.

Definition 1.4 (§2.3, [37]). Let X be a metric space and U ⊂ X. Suppose u : U → [−∞,∞) is

a function which is locally bounded above near each point of U . Then the upper semicontinuous

regularisation u∗ of u is defined by the formula

u∗(x) = lim sup
y→x∈X
y∈U

u(y).

Moreover, u∗ : U → [−∞,∞) is upper semicontinuous with u∗ ≥ u in U .

Lemma 1.5 (Choquet’s Lemma, Lemma 2.3.4, [37]). Suppose that {uα}α∈A is a collection of

real valued functions locally bounded above. Then there exists a countable subset B of A such

that (
sup
α∈A

uα

)∗
=

(
sup
β∈B

uβ

)∗
.
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Definition 1.6 (Definition 1.2.3, [9]). Let Ω ⊂ RN be an open set. An usc function u : Ω →
[−∞,∞) is called subharmonic if u 6≡ −∞ on any connected component of Ω and for every ball

Br = Br(x0) b Ω

u(x0) ≤ 1

σ(∂Br)

∫
∂Br

u(x) dσ

where σ is ‘surface area’ measure of the ball. (i.e. the spherical measure on the N sphere)

Theorem 1.7 (Hartogs’ Lemma, Theorem 2.6.4, [37]). Suppose that Ω ⊂ RN is an open set. Let

{uj}j∈N be a sequence of subharmonic functions on Ω uniformly bounded above in Ω. Suppose

that

lim sup
j→∞

uj(x) ≤M

for each x ∈ Ω and some constant M . Then, for each ε > 0 and each compact set K ⊂ Ω, there

exists a natural number j0 such that for j ≥ j0

sup
x∈K

uj(x) ≤M + ε.

Definition 1.8 (§2.9, [37]). Let Ω ⊂ CN be an open set and u : Ω → [−∞,∞) a usc function

which is not identically −∞ on any connected component of Ω. We say u is plurisubharmonic

(psh) if for each a ∈ Ω and b ∈ CN , the function λ 7→ u(a + λb) is subharmonic or identically

−∞ on every component of the set {λ ∈ C : a+ λb ∈ Ω}. In this case we write u ∈ PSH(Ω).

Theorem 1.9 (Theorem 2.9.1, [37]). Plurisubharmonicity is a local property. That is, if Ω ⊂
CN is an open set then a function u : Ω → [−∞,∞) is psh on Ω if and only if it is psh in a

neighbourhood of each point of Ω.

Definition 1.10 (Corollary 2.9.10, [37]). A set E ⊂ CN is pluripolar if for each point a ∈ E
there is a neighbourhood N of a and a function u ∈ PSH(N ) such that E ∩ N ⊂ {z ∈ N :

u(z) = −∞}.

Definition 1.11 (Theorem 0.5, [24]). We say a set E ⊂ CN is complete pluripolar if there exists

an open covering {Ωj} of E and psh functions uj ∈ PSH(Ωj) with E ∩ Ωj = u−1
j ({−∞}).

Definition 1.12. We say a property P holds on a set Ω ⊂ CN quasi-everywhere (q.e.) if it

holds on Ω\E where E is a pluripolar set.

Proposition 1.13 (Corollary 2.9.5, [37]). Let Ω and Ω′ be open sets in CN and CM respectively.

If u ∈ PSH(Ω) and f : Ω′ → Ω is a holomorphic mapping, then u ◦ f is plurisubharmonic in

Ω′.

Proposition 1.14 (Theorem 2.9.14, [37]). Let Ω ⊂ CN be open.

(i) The family PSH(Ω) is a convex cone, i.e. if α, β are non-negative real numbers and

u, v ∈ PSH(Ω) then αu+ βv ∈ PSH(Ω).
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(ii) If Ω is connected and uj ⊂ PSH(Ω), j ∈ N is a decreasing sequence, then u = limj→∞ uj ∈
PSH(Ω) or u ≡ −∞.

(iii) If u : Ω → R and if {uj}j∈N ∈ PSH(Ω) converges to u uniformly on compact subsets of

Ω then u ∈ PSH(Ω).

Proposition 1.15 (Proposition 2.9.17, [37]). Let Ω ⊂ CN be an open set. Suppose that {uj}j∈N
is a sequence of psh functions on Ω which are locally uniformly bounded above. Define u(z) =

lim supj→∞ uj(z) for z ∈ Ω. Then u∗ is psh.

Proposition 1.16 (Corollary 2.9.8, [37]). Let Ω ⊂ CN be an open set. If u, v ∈ PSH(Ω) and

u = v almost everywhere in Ω then u ≡ v.

Proposition 1.17 (Corollary 2.9.15, [37]). Let Ω ⊂ CN be an open set and let ω be a non-empty

proper open subset of Ω. If u ∈ PSH(Ω), v ∈ PSH(ω) and lim supx→y v(x) ≤ u(y) for each

y ∈ ∂ω ∩ Ω then the formula

w =

max{u, v} in ω

u in Ω\ω

defines a psh function in Ω.

Definition 1.18. We say u ∈ PSH ∩ L∞loc(CN ) is maximal on a nonpluripolar compact set E

if
∫
E(ddcu)N = 0.

Lemma 1.19 (Lemma 3.7.5, [37]). If u ∈ PSH ∩ L∞loc(CN ) is maximal on a nonpluripolar

compact set E then any v ∈ PSH(CN ) with v ≤ u on ∂E satisfies v ≤ u on E.

Definition 1.20. Suppose that X is a complex manifold and u : X → [−∞,∞) is a function.

We say u ∈ PSH(X) if for any atlas {(Uα, φα)} the function φ∗αu = u ◦ φ−1
α ∈ PSH(φα(Uα))

for every α (note φα(Uα) ⊂ CN ).

Definition 1.21. Let Ω ⊂ CN be an open set. We say that a psh function u is strongly psh on

Ω if for every open U b Ω there exists λ ∈ [0,∞) such that u(z)− λ|z|2 is psh in U . If instead

Ω ⊂ X is an open set where X is a complex manifold, then we say that u is strongly psh if on

every chart (Uα, φα) the function φ∗αu is strongly psh on φα(Uα).

Remark 1.22. Definition 1.20 and Proposition 1.13 allows us to prove any local result from CN

pluripotential theory on a complex manifold. We will encounter this idea frequently in Sections

2.1-2.2. For instance, Proposition 1.17 is a local result so the result for Ω′ in a complex manifold

holds by Proposition 1.13.

1.1.2 Plurisubharmonic Functions on Algebraic Varieties

Definition 1.23. Suppose that {pi(z) : i ∈ A} is a collection of holomorphic polynomials in N

complex variables with coefficients in C. Then we say that their common zero set is an affine
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algebraic variety i.e.

V = {z ∈ CN : pi(z) = 0, i ∈ A}.

The collection {pi(z) : i ∈ A} are called defining polynomials for V.

Recall the Hilbert basis theorem which says that there is always a finite collection of poly-

nomials that define an algebraic variety V. Our usual situation will consider algebraic varieties

formed from a finite collection of polynomials.

Definition 1.24. We say an algebraic variety V is reducible if it can be written as the union

of two non-empty proper subvarieties. Otherwise, we say V is irreducible.

Definition 1.25. We define the dimension of V at ζ (denoted dimζ(V)) to be the nullity∗ of

the Jacobian of the defining polynomials at ζ. In other words, Jacζ(p1, ..., pN−M ) has rank

N − dimζ(V) where

Jacζ(p1, ..., pN−M ) =


∂p1

∂z1
(ζ) ...

∂p1

∂zN
(ζ)

...
. . .

...
∂pN−M
∂z1

(ζ) ...
∂pN−M
∂zN

(ζ)

 .

We say the dimension of V is dim(V) = min{dimζ(V) : ζ ∈ V}.

Example 1.26. Consider the algebraic variety V = {(x, y) ∈ C2 : xy = 0}. Then

Jac(xy) =
(
y x

)
.

There are three kinds of points on V, ζ1 = (ζ ′1, 0), ζ ′1 6= 0, ζ2 = (0, ζ ′2), ζ ′2 6= 0 and ζ3 = (0, 0).

We calculate

Nullity(Jacζ1) = Nullity
(

0 ζ ′1

)
= 1,

Nullity(Jacζ2) = Nullity
(
ζ ′2 0

)
= 1, Nullity(Jacζ3) = Nullity

(
0 0

)
= 2.

Hence dim(V) = 1.

Definition 1.27. If dimζ(V) = dim(V) then we say ζ is a regular point of V. The set of all

regular points on V defines the regular part of V which we denote Vreg. If dimζ(V) > dim(V)

then we say that ζ is a singular point of V. The set of all singular points on V defines the

singular part of V which we denote Vsing. Evidently, V\Vsing = Vreg. If Vreg = V then we say

that V is smooth.

The following is a consequence of the implicit function theorem.

∗Dimension of the null space
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Lemma 1.28. Vreg is a complex manifold.

Definition 1.29. We say u ∈ PSH(V) if for every point z ∈ V there exists a neighbourhood

Ω(z) ⊂ CN and a function v ∈ PSH(Ω(z)) with v|V = u.

Definition 1.30. We say that u is weakly psh (denoted wPSH) if for all z ∈ Vreg there exists a

neighbourhood Ω(z) ⊂ CN and a function v ∈ PSH(Ω(z)) with v|V = u. Moreover for z ∈ Vsing

we require that u satisfies lim supζ→z u(ζ) = u(z).

Theorem 1.31 (Fornæss-Narasimhan, Theorem 5.3.1, [29]). When V is smooth, definitions

1.20 and 1.29 are equivalent.

Definition 1.32 (Definition C.1, [32]). A mapping π : V → W between two second-countable

Hausdorff spaces is a finite branched covering if

(i) π is a continuous finite proper surjective mapping.

(ii) There are dense open subsets V0 ⊂ V , W0 ⊂W such that V0 = π−1(W0) and the restriction

π|V0 : V0 → W0 is a covering mapping. That is, for any x ∈ W0 and π−1(x) = {zj} ⊂ V0

then there is an open neighbourhood Wx of x in W0 and disjoint open neighbourhoods

Vj (called sheets) of the distinct points zj in V0 such that π−1(Wx) = ∪jVj and each

restriction π|Vj : Vj →Wx a homeomorphism.

We call the space W the base space and the space V the covering space in this instance. The

restriction π|V0 : V0 → W0 will be called the generic part of the finite branched covering π.

Points in W0 will be called generic points.†

Definition 1.33. We say a function f : A→ B is locally biholomorphic if for each point x ∈ A
there is an open neighbourhood U of x such that f : U → f(U) is a biholomorphic function (i.e.

holomorphic with holomorphic inverse).

Definition 1.34 (Definition C.3, [32]). A mapping π : V →W between two algebraic varieties

is a finite branched holomorphic covering if

(i) π is a finite branched covering.

(ii) There is a generic part π|V0 : V0 → W0 (where V0 and W0 are as in Definition 1.32) of

this finite branched covering for which W −W0 is a algebraic subvariety of W and π|V0 is

a locally biholomorphic mapping.

Theorem 1.35 (Theorem D.1, [32]). For any smooth algebraic variety of dimension M , the

projection π : V → CM is a finite branched holomorphic covering.

Definition 1.36 (Lemma C.3, [32]). Using the notation of Definition 1.34, the order of a

branched covering π : V → W is the maximum number of sheets over W0. The order will be

denoted oπ.
†Note that Gunning calls this part the regular part of the finite branched covering. Due to regular meaning

non-singular for algebraic varieties in our case we avoid this terminology.
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Lemma 1.37 (Lemma C.3, [32]). Using the notation of Definition 1.34, for each z ∈ V there is

an arbitrarily small connected open neighbourhood Vz ⊂ V such that the restriction π|Vz : Vz →
π(Vz) is a finite branched covering. The order o(π|Vz) is a positive integer and decreases as Vz

shrinks and is eventually constant for all sufficiently small neighbourhoods Vz.

Definition 1.38 (Lemma C.3, [32]). The common order from the conclusion of Lemma 1.37

will be called the branching order of the mapping π at the point z and denoted oπ(z). For any

point z ∈ V0 we have oπ(z) = 1. The set

Bπ = {z ∈ V : oπ(z) > 1}

will be called the branch locus of the mapping π.

Lemma 1.39 (Lemma C.14, [32]). If π : V → W is a finite branched homomorphic covering

then Bπ is a proper holomorphic subvariety of V and π(Bπ) is a proper holomorphic subvariety

of W .

1.1.3 Branch Cuts

Recall that an algebraic variety V of dimension M is a finite branched holomorphic covering

over CM with projection map π : (x, y) ∈ V \W 7→ x ∈ CM locally biholomorphic where V \W
is a dense open set in V . Our goal in this section is to show that we can choose W so that

the projection restricted to each sheet of V \W is biholomorphic. This is a multi-dimensional

analogue of the notion of branch cuts in complex analysis of one variable. While a number of

related notions are discussed in the literature we are unsure if branch cuts have been explicitly

constructed.

Definition 1.40. Let V be an algebraic variety with projection π. A branch cut C ⊂ CM is a

set satisfying

(i) CM\C is simply connected;

(ii) CM\C is dense in CM .

In this case we say that C is a branch cut of V over CM for π.

We will often say that C is a branch cut for V , in this context the base space CM and

projection π are implied.

Theorem 1.41 (Monodromy Theorem, 1.6 [53]). Let U ⊂ CN . Suppose that a function f : U →
C is holomorphic in some neighbourhood of a point z0 and is analytically continued outside this

neighbourhood along every path lying entirely in some domain G. Then, the result of continuing

f(z) to an arbitrary point z′0 ∈ G along all homotopic paths in G connecting the points z0 and z′0

will be the same. In particular, if the domain G is simply connected, f(z) will be single-valued

in G.

13



Corollary 1.42. Let V be an M -dimensional algebraic variety. If C is a branch cut for V over

CM then every point of CM\C is generic and V \π−1(C) is a finite holomorphic covering over

CM\C.

We need to understand how ‘large’ the branch locus is in order to understand how to form

a branch cut C. The Zariski-Nagata purity theorem does this.

Theorem 1.43 (Zariski-Nagata Purity Theorem, Theorem G.17, [32]). Let V be an M -dimensional

affine algebraic variety. If π : V → U is a finite branched holomorphic covering over an open

subset U ⊂ CM with branch locus Bπ ⊂ V and if V is (locally) irreducible at a point z ∈ Bπ
then dima(Bπ) = dimπ(z)π(Bπ) = M − 1.

Our standard hypothesis on V will include the fact that it is irreducible, so we will always

be in this situation unless explicitly stated otherwise.

Theorem 1.44. Suppose that V is an irreducible M -dimensional algebraic variety, π : V → CM

the projection and that π : V \Bπ → CM\π(Bπ) is a finite branched holomorphic covering. Then

a branch cut C for V over CM can be chosen to be a real 2M − 1 dimensional set (noting

CM ∼= R2M ).

Proof. If Bπ is empty then we are done, so suppose that Bπ is not empty. By the Zariski-Nagata

purity theorem we know that Bπ is, at most, an M − 1 (complex) dimensional set and hence

π(Bπ) is at most M − 1 dimensional. Without loss of generality, assume that π(Bπ) has finite

intersection with any line parallel to the z1 axis (else we can rotate coordinates to ensure this).

If z′ = (z2, ..., zM ), define

Sz′ := {(t, z2, ..., zM ) : t ∈ C}

Then Sz′ is a complex line in CM and, by hypothesis and the Zariski-Nagata purity theorem,

intersects π(Bπ) at most finitely many points. If the intersection is empty then we do nothing. If

the intersection is nonempty then enumerate the points in the intersection by (t1, z
′), ..., (td, z

′) ∈
Sz′ ∩ π(Bπ). Fix some θ ∈ [0, 2π) and define the ray

rθ(t) := {t+ reiθ : r ∈ [0,∞)}.

We can identify the line Sz′ with the complex plane by projection to the first coordinate (i.e.

projection to t). With this identification Sz′ ∩ π(Bπ) is identified with C\{t1, ..., td}. Observe

that C\{t1, ..., td} is not simply connected. Let Cz′ := ∪1≤i≤d{rθ(ti)}. Then C\Cz′ is simply

connected and Cz′ has real dimension 1. This consideration can be done for any z′ ∈ CM−1

(note that for every z′ we choose the same θ). Now define

C = {(t, z2, ..., zM ) ∈ CM : t ∈ C(z2,...,zM )} =
⋃

z′∈CM−1

Cz′ × {z′}.

Clearly C is at most real 2M−1 dimensional, we claim that CM\C is simply connected. To this

end let γ be any closed curve in CM\C. Let z′ be such that Sz′ intersects γ. By construction
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C is a closed set. Since CM is a metric space, we can find disjoint open neighbourhoods

containing C and γ respectively. It follows that we can find a homotopy that sends γ to a

curve that is contained in Sz′ while remaining outside of an open neighbourhood of C. Taking

the projection to the first coordinate, we have a closed loop γ′ contained in the set C\Cz′ .
By construction, C\Cz′ is simply connected and hence γ′ can be contracted to a point. Since

this process is arbitrary, it follows that any closed curve is null-homotopic and hence CM\C is

simply connected. By definition C is a branch cut and fulfils the conclusion of the theorem.

Corollary 1.45. With the setup as in Theorem 1.44, V \π−1(C) is not connected. Moreover if

π has d fibers then V \π−1(C) consists of d simply connected sets.

Definition 1.46. Let V be an irreducible M -dimensional algebraic variety. Suppose that C is

a branch cut for V over CM for the projection π. Enumerate the d simply connected sets from

Corollary 1.45 as V1, ..., Vd. We call V1, ..., Vd the branches of V (with repsect to the branch cut

C).

Remark 1.47. There are two equivalent formulations of Definition 1.46 that utilise the idea of

analytic continuation.

(i) Let z = (x, y) where x ∈ CM and y ∈ CN−M . Suppose moreover that x ∈ CM\C so that

π−1(x) = {(x, y1), ..., (x, yd)} ⊂ V . Define Vi to be the set obtained from the analytic

continuation of π−1 to CM\C which sends x 7→ (x, yi).

(ii) Each yi coordinate on V \π−1(C) can be considered as an analytic function (given by the

projection) over CM\C. We can then define Vi = {(x, yi(x)) : x ∈ CM\C}.

Corollary 1.48. With the setup as in Definition 1.46, if V i is the closure of Vi (in V or CN )

then V =
⋃

1≤i≤d V i.

Proof. Observe that by definition
⋃

1≤i≤d Vi is dense in V .

1.1.4 The Complex Monge-Ampère Operator

Definition 1.49 (§1.1, [9]). Let Ω ⊂ RN be an open set. On the vector space Ck(Ω), k =

0, 1, ...,∞ of k-differentiable functions with compact support define the following topology: a

sequence {φj} is convergent to φ if and only if

(i) there exists K b Ω such that suppφj ⊂ K for all j;

(ii) for all multi-indices α ∈ NN with |α| ≤ k we have Dαφj → Dαφ uniformly (if k =∞ then

for all α) where Dα is the α-partial derivative.

We call D(Ω) = C∞(Ω) with this topology the space of test functions on Ω. By D′(Ω) we denote

the set of all (complex) continuous linear functionals on D(Ω) and call functionals in this class

distributions on Ω. We say that u ∈ D′(Ω) is a distribution of order k if it can be continuously

extended to a linear functional on Ck(Ω).
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A sufficient treatment of distributions (insofar as they are used in pluripotential theory) can

be found in B locki [9] §1.1.

Remark 1.50. While we will make definitions where the underlying space is CN , these definitions

can be extended to the case of a complex manifold X in the natural way. That is, ensuring the

definition is valid on each chart (Uα, φα) of an atlas for X via pullback.

Definition 1.51 (§1.3, [9]). A current Θ of bidegree (p, q) is a differential (p, q)-form with

distribution coefficients. That is, if Ω ⊂ CN is an open set then

Θ =
∑
I,J

ΘIJ dzI ∧ dzJ ,

where the sum is taken over increasing multi-indices I, J with |I| = p, |J | = q and each ΘIJ ∈
D′(Ω).

Definition 1.52 (§1, [24]). Suppose that Θ ∈ D(p,q)(Ω) has measure coefficients. Let K ⊂ Ω

be a compact set. We define a mass semi-norm

‖Θ‖K =
∑
j

∫
Kj

∑
I,J

|ΩI,J |

by taking a partition K = ∪Kj where each Kj is contained in a coordinate patch and where

ΘI,J are the corresponding measure coefficients.

Remark 1.53. The semi-norm ‖Θ‖K does not depend on the choice of coordinate system.

Corollary 1.54 (§3.3, Page 107, [37]). Let Ω ⊂ CN be an open set. Write D′(p,q)(Ω) to denote

the currents of bidegree (p, q). Then
(
D′(p,q)(Ω)

)′ ∼= D(N−p,N−q)(Ω) where D(p,q)(Ω) is the space

of smooth (N − p,N − q)-forms (differential forms with C∞ coefficients with compact support

in Ω). We say that a current of bidegree (p, q) is a (p, q)-current.

Definition 1.55 (Equation 0.2, [24]). Let Ω ⊂ CN be an open set. The duality pairing between

a current Θ of bidegree (p, q) and a smooth differential form with compact support φ of bidegree

(N − p,N − q) is given by

〈Θ, φ〉 =
∑
〈ΘIJ , φI′J ′〉 =

∫
Ω

Θ ∧ φ

where the sum is taken over all I, I ′, J, J ′ such that I + I ′ = J + J ′ = N . The integration

symbol and wedge product is used to represent the pairing. These symbols are chosen because

when everything is smooth the situation reduces to classical integration.

Definition 1.56. Let Ω ⊂ CN , a form ω ∈ D(p,p)(Ω) is said to be elementary strongly positive

if there are linearly independent ηj ∈ D(1,0)(Ω), j = 1, ..., p such that

ω =
i

2
η1 ∧ η1 ∧ ... ∧

i

2
ηp ∧ ηp.
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Definition 1.57. Let Ω ⊂ CN be an open set and let Θ ∈ D′(p,p)(Ω). Then we say that T is a

(weakly) positive current if T ∧ α ≥ 0 for all elementary positive forms α ∈ D(p,p)(Ω).

Definition 1.58. Let Ω ⊂ CN be an open set. Let (z1, ..., zN ) be local coordinates for Ω. We

define ∂ : D(p,q)(Ω)→ D(p+1,q)(Ω) to be the operator

∂φ =
N∑
j=1

∂φ

∂zj
dzj

where φ ∈ D(p,q)(Ω). Similarly we define ∂̄ : D(p,q)(Ω)→ D(p,q+1)(Ω) to be the operator

∂̄φ =
N∑
j=1

∂φ

∂zj
dzj .

We define the exterior derivative to be d = ∂ + ∂̄ and operator dc = i(∂̄ − ∂). The operator

ddc : D(p,q)(Ω) → D(p+1,q+1)(Ω) is the operator 2i∂∂̄. Each of these operators can be extended

to be defined for currents in the obvious way using the duality pairing.

Definition 1.59. If T is a (p, q)-current and α an (m,n)-form then T ∧α is defined for a test

(N − p−m,N − q − n)-form ϕ by

〈T ∧ α,ϕ〉 = 〈T, α ∧ ϕ〉.

Moreover, T ∧ α = (−1)m+n+p+qα ∧ T .

Theorem 1.60 (Stokes Theorem). Let Ω be an open set (in CN or a complex manifold X) with

oriented boundary ∂Ω and let α ∈ D(N,N−1)(Ω) ⊕ D(N−1,N)(Ω) be a differential form on Ω (so

that dα ∈ D(N,N)(Ω)). Then ∫
Ω
dα =

∫
∂Ω
α.

Where the integral on the RHS is the integral of the restriction of α to ∂Ω.

Theorem 1.61 (Integration by Parts). Let Ω be an open set (in CN or a complex manifold

X). Let α, β be differential forms on Ω. Suppose that Θ is a current such that α ∧ β ∧ Θ ∈
D′(N,N−1) ⊕D′(N−1,N) and dΘ = 0. Then

∫
∂Ω
α ∧ β ∧Θ =

∫
Ω
dα ∧ β ∧Θ +

∫
Ω
α ∧ dβ ∧Θ.

Definition 1.62 (§0, [24]). We say that a (p, p)-current Θ is closed if dΘ = 0.

Lemma 1.63 (Proposition 3.3.4, [37]). The coefficients of a positive current are complex mea-

sures.
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Theorem 1.64 (Stokes’ Theorem for Currents, Theorem 1.3.4, [9]). Let Ω be a bounded domain

in CN with C1 boundry. Assume that T is a current in Ω such that T is C1 on Ω\U where

U b Ω. If dT is an (N,N)-current then∫
∂Ω
T =

∫
Ω
dT.

Theorem 1.65 (Skoda-El Mir, Theorem 0.5, [24]). Let X be a complex manifold. Suppose that

E is a closed complete pluripolar set in X and let Θ be a closed positive current on X\E such

that the coefficients ΘIJ of Θ are measures with locally finite mass near E. Then the trivial

extension Θ̃ obtained by extending the measures ΘIJ by 0 on E is still closed.

Definition 1.66. Let X be a complex manifold. The current of integration [S] over an oriented

submanifold S ⊂ X is given by

〈[S], α〉 =

∫
S
α.

Theorem 1.67 (Equation 0.4, [24]). Let X be a complex manifold. Suppose that A ⊂ X is

closed analytic set of pure dimension p. Then

〈[A], α〉 =

∫
Areg

α, α ∈ D(p,p)(X),

is a positive closed current with locally finite mass near Asing.

Theorem 1.68 (Proposition 3.3.5, [37]). Let X be a complex manifold. If u ∈ PSH(X) then

T = 2i∂∂̄u = 2i
∑

1≤i,j≤N

∂2u

∂zi∂zj
dzi ∧ dzj

is a closed positive current of bidgree (1, 1).

It is common in the literature to use a normalised ddc operator, precisely i
π∂∂̄. We will

avoid this, but we alert the reader because the convention is popular in modern papers. Our

decision to not normalise is motivated by our calculation of the mass of functions in L+(V )

(Theorem 2.27). We now define some commonly used wedge products.

Definition 1.69. Suppose that [Xj ] is the current of integration on an algebraic variety Xj for

1 ≤ j ≤ q.We define

[X1] ∧ ... ∧ [Xq] = [X1 ∩ .... ∩Xq].

In other words, for any test (N − q,N − q)-form α, we have

〈[X1] ∧ ... ∧ [Xq], α〉 =

∫
X1∩...∩Xj

α = 〈[X1 ∩ .... ∩Xq], α〉.

Remark 1.70. The previous definition is made in the spirit of the Poincaré-Lelong formula [39].
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Definition 1.71 (§1, [24]). Let Ω ⊂ CN be an open set. Suppose that u ∈ PSH ∩ L∞loc(Ω) and

T is a positive current of bidegree (N − p,N − p). We define

ddcu ∧ T := ddc(uT ).

Theorem 1.72 (Theorem 1.2, [24]). With the same hypothesis as Definition 1.71, the wedge

product ddcu ∧ T is a closed positive current.

The following is the primary operator of study in this thesis.

Definition 1.73 (Theorem 1.2, [24]). We define inductively the N -fold exterior product

ddcu ∧ ... ∧ ddcu︸ ︷︷ ︸
N terms

= (ddcu)N := ddc(u(ddcu)N−1).

We will call the operator (ddc)N the Monge-Ampère operator. (ddcu)N is a positive current of

bidegree (N,N).

Definition 1.74. Suppose that u, v ∈ PSH ∩L∞loc(Ω) and T a positive closed current. Then we

define

du ∧ dcu ∧ T := ddcu2 ∧ T − 2u ddcu ∧ T

du ∧ dcv ∧ T :=
1

2

(
d(u+ v) ∧ dc(u+ v) ∧ T − du ∧ dcu ∧ T − dv ∧ dcv ∧ T

)
.

Theorem 1.75 (First Integration by Parts Formula for ddc, Formula 1.1, [24]). Let Ω b X be a

smoothly bounded open set in a complex manifold X and let f ∈ C2∩D(p,p)(Ω), g ∈ C2∩D(q,q)(Ω)

with p+ q = N − 1. Then∫
Ω
f ∧ ddcg − ddcf ∧ g =

∫
∂Ω
f ∧ dcg − dcf ∧ g.

Theorem 1.76 (Second Integration by Parts Formula for ddc, Proposition 2.1, [27]). Let X be

a complex manifold and Ω an open set in X. Suppose that u, v ∈ PSH ∩ L∞loc(Ω) and that u, v

are negative. Let T be a positive closed (N − 1, N − 1) current. If limz→w∈∂Ω u(z) = 0 then∫
Ω
v ddcu ∧ T ≤

∫
Ω
u ddcv ∧ T

with equality if limz→w∈∂Ω v(z) = 0.

Lemma 1.77 (Corollary 1.10, [24]). Let X be a complex manifold and Ω an open set in X. Let

u1, ..., uq ∈ PSH∩L∞loc(Ω). The wedge product ddcu1∧...∧ddcuq is symmetric with respect to the

order of u1, ..., uq. That is, interchanging ddcuj with ddcui leaves the wedge product unchanged

for all j, i.

Theorem 1.78 (Chern-Levine-Nirenberg (CLN) Inequalities, 1.3, [24]). Let X be a complex

manifold. For all compact subsets K,L of X with L ⊂ int(K) there exists a constant CK,L > 0
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such that

‖ddcu1 ∧ ... ∧ ddcuq ∧ T‖L ≤ CK,L‖u1‖L∞(K)...‖uq‖L∞(K)‖T‖K .

Theorem 1.79 (Proposition 1.11, [24]). Let X be a complex manifold. Let K,L be compact

subsets of X such that L ⊂ int(K). If v ∈ PSH(X) and u1, ..., uq ∈ PSH ∩L∞loc(X) then there

is an inequality

‖vddcu1 ∧ ... ∧ ddcuq‖L ≤ CK,L‖v‖L1(K)‖u1‖L∞(K)...‖uq‖L∞(K).

1.1.5 Logarithmic Extremal Functions

Definition 1.80. Define the Lelong class of psh functions to be

L(CN ) := {u ∈ PSH(CN ) : u(z)− log ‖z‖ ≤ α, ‖z‖ → ∞ for some α ∈ R}.

This is the class of psh functions which have at most logarithmic growth. We will also need the

following class of functions which have exactly logarithmic growth;

L+(CN ) := {u ∈ PSH(CN ) : α ≤ u(z)− log ‖z‖ ≤ β, ‖z‖ → ∞, for some α, β ∈ R}.

Define the class of log homogeneous psh functions to be

H(CN ) := {u ∈ PSH(CN ) : u(λz) = u(z) + log |λ|}.

Definition 1.81. The (logarithmic) extremal function for a compact set K ⊂ CN is the function

VK(z) := sup{u(z) : u ∈ L(CN ), u ≤ 0 on K}.

A complete study of VK(z) in CN can be found in Section 5 of Klimek [37]. We will recall

the important properties needed for our study here.

Notation 1.82. We will commonly use the notation log+ |z| to denote the function max{log |z|, 0}.

Example 1.83 (Example 5.1.1, [37]). If Br(a) = {z :∈ CN : |z − a| ≤ r} then VBr(a)(z) =

log+ |z−a|
r .

Definition 1.84. If K ⊂ CN is such that VK is continuous then we say K is regular.

Proposition 1.85 (Basic Properties of VK).

(i) If K1 ⊃ K2 ⊃ ... is a sequence of compact sets in CN and K = ∩Kj then limj→∞ VKj = VK

at each point of CN . (Corollary 5.1.2, [37])

(ii) If K ⊂ CN is compact then VK is lower semicontinuous. (Corollary 5.1.3, [37])

(iii) If K ⊂ CN is compact and VK |K ≡ 0 then VK is continuous. (Corollary 5.1.4, [37])
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(iv) If K ⊂ CN is compact and ε > 0 then VKε is continuous (equivalently, Kε is regular)

where Kε := {z ∈ CN : dist(z,K) < ε}. Moreover limε→0 VKε = VK at each point of CN .

(Corollary 5.1.5, [37])

Theorem 1.86 (Theorem 5.1.7, [37]). If K ⊂ CN is compact define

ΦK(z) := sup{|p(z)|1/ deg p : ‖p‖K ≤ 1, p a polynomial}.

Then VK = log ΦK(z).

Theorem 1.87 (Theorem 5.5.4, [37]). If K ⊂ CN is a bounded non-pluripolar set, then V ∗K(z) ∈
L+(CN ).‡ Moreover, ∫

CN
(ddcV ∗K(z))N =

∫
K

(ddcV ∗K(z))N = (2π)N .

In particular, ∫
CN\K

(ddcV ∗K(z))N = 0.

One of the most important objects of our study is the Robin function. Here we define this

function and refer the reader to Bedford-Taylor [4] for a more complete study.

Definition 1.88. For u ∈ L+(CN ) the Robin function of u is the function ρu : CN → [−∞,∞)

given by

ρu(z) = lim sup
t→0

u(z/t) + log |t|.

We also define the projective Robin function to be the function ρ̃u : PN−1 → R given by

ρ̃u([z]) = lim sup
t→0

u(z/t)− log ‖z/t‖.

Where [z] = [z1 : ... : zN ] ∈ PN−1 is identified with z = (z1, ..., zN ) ∈ CN .

Lemma 1.89 (Section 1 & Section 3, [4]). The Robin and projective Robin functions have the

following properties.

(i) The function ρu is psh for all u ∈ L+(CN ), and ρu ∈ L+(CN ).

(ii) For |z| = 1 we have ρu(z) = ρ̃([z]).

(iii) ρu(z) is logarithmically homogeneous, i.e. ρu(λz) = ρu(z) + log |λ| for all λ ∈ C, z ∈ CN .

1.2 Algebraic Preliminaries

There are three main things we need from algebra. The first is the basics of elimination theory

for finite sets of polynomials which we will need for the proof of Theorem 2.21. This is one of

‡Recall that V ∗K is the usc regularisation of VK , see Definition 1.4.
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the major technical results of this thesis. The second is the basics of algebraic computations in

quotients of polynomial rings in order to lay the foundations necessary for developing analogues

of the Chebyshev constants on an algebraic variety in Section 1.3. And finally, we need the

relative finiteness theorem and associated results. The main reference for this section is Cox-

Little-O’Shea [22].

1.2.1 Basic Concepts

Definition 1.90. A monomial in z1, ..., zN is a product of the form

zα1
1 · zα2

1 ... · zαNN ,

where each exponent α1, ..., αN is a nonnegative integer. The degree of the monomial is the

multiindex α = (α1, ..., αN ) ∈ ZN≥0 and the total degree of the monomial is the sum α1 + ...+αN .

We write |α| = α1 + ... + αN . We will often simplify notation so that zα = zα1
1 ...zαNN , where

z = (z1, ..., zN ).

Notation 1.91. C[z] will denote the set of polynomials in z with coefficients in C. The elements

of C[z] take the form

∑
α

cαz
α

where the sum is over a finite set of multiindices α and each cα ∈ C.

Definition 1.92. A subset I ⊂ C[z] is an ideal if it satisfies:

(i) 0 ∈ I.

(ii) If f, g ∈ I then f + g ∈ I.

(iii) If f ∈ I and h ∈ C[z] then hf ∈ I.

If f1, ..., fs ∈ C[z] then the ideal generated by f1, ..., fs is

〈f1, ..., fs〉 =

{
s∑
i=1

hifi : h1, ..., hs ∈ C[z]

}
.

If I is representable by 〈f1, ..., fs〉 for some f1, ..., fs ∈ I then we say that I is finitely generated.

In this case, such a subset {f1, ..., fs} is called a basis for I.

Remark 1.93. The Hilbert basis theorem guarantees that any ideal in C[z] is finitely generated.

Definition 1.94. An ideal I is radical if fm ∈ I for any integer m ≥ 1 implies that f ∈ I.

Given an arbitrary ideal I the radical of I, denoted
√
I is the set

√
I = {f : fm ∈ I for some integer m ≥ 1}.
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Definition 1.95. Let I ⊂ C[z] be an ideal and V be an algebraic variety. Write

V(I) = {z ∈ CN : f(z) = 0,∀f ∈ I},
I(V ) = {f ∈ C[z] : f(z) = 0, ∀z ∈ V }.

The map V is a map from affine varieties to ideals and the map I is a map from ideals to

algebraic varieties. Points in V(I) are called solutions to the system of equations f(z) = 0 for

all f ∈ I.

Theorem 1.96 (§4.2 Theorem 7, [22]). The maps V and I (by definition) are inclusion re-

versing, that is for ideals I1 ⊂ I2 we have V(I1) ⊃ V(I2) and for varieties V1 ⊂ V2 we have

I(V1) ⊃ I(V2). Moreover we have V(I(V )) = V for all varieties V (i.e. I is one-to-one.).

If we restrict the domain of I and range of V to radical ideals then the correspondences are

inclusion-reversing bijections which are inverses of each other.

Definition 1.97 (Monomial Ordering, §1.2 Definition 1, [22]). A monomial ordering on C[z1, ..., zN ]

is any relation > on the nonnegative integers ZN≥0, or requivalently, any relation on the set of

monomials zα, α ∈ ZN≥0, satisfying:

(i) > is a total ordering on ZN≥0.

(ii) If α > β and γ ∈ ZN≥0, then α+ γ > β + γ.

(iii) > is a well-ordering on ZN≥0.

There are many ways one can order the monomials in C[z]. We will only ever use two:

‘graded reverse lexicographic’ or ‘grevlex’ and elimination orderings of l-elimination type.

Definition 1.98 (Graded reverse lexicographic ordering). Let α, β ∈ ZN≥0. We say α >grevlex β

(or simply, α > β) if either

(a) |α| = ∑N
i=1 αi > |β| =

∑N
i=1 βi,

(b) |α| = |β| and in α− β the right-most nonzero entry is positive.

Definition 1.99. Fix an integer 1 ≤ l ≤ N and define the order >l as follows; if α, β ∈ ZN≥0

then α >l β if either

(a) αN + ...+ αN−l+1 > βN + ...+ βN−l+1 or

(b) αN + ...+ αN−l+1 = βN + ...+ βN−l+1 and α >grevlex β.

We call the order >l the grevlex order of l-elimination type.

Remark 1.100. Our definition of an elimination ordering counts down from N while in [22] an

elimination ordering counts up. The reason we invert is because the treatment in [22] uses

an ordering where z1 > z2 > ... > zN and the elimination theory eliminates the variable z1.

Grevlex orders zN > ... > z1 so we wish to eliminate zN necessitating the inversion.
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Definition 1.101. Let I ⊂ C[z] be an ideal other than {0}, f =
∑

α cαz
α ∈ C[z] and fix a

monomial ordering > on C[z].

(i) We define multideg(f) = max>{α ∈ ZN≥0 : cα 6= 0} (where the max is with respect to

grevlex ordering).

(ii) We define deg(f) = |multideg(f)|.

(ii) We define lt(f) = cmultideg(f)z
multideg(f).

(iii) We define lt(I) = {czα : there exists f ∈ I with lt(f) = czα}.

(iv) We define 〈lt(I)〉 to be the ideal generated by the elements of lt(I).

From now on we will always assume we are using grevlex ordering on C[z] unless otherwise

specified.

Lemma 1.102 (§2.5 Proposition 3, [22]). Let I ⊂ C[z] be an ideal. Then 〈lt(I)〉 is a finitely

generated monomial ideal. That is, 〈lt(I)〉 is generated by finitely many monomials of the form

zα.

Definition 1.103. A finite subset G = {g1, ..., gs} of an ideal I is a Gröbner basis if

〈lt(g1, ..., lt(gs)〉 = 〈lt(I)〉.

Corollary 1.104 (§2.5 Corollary 6, [22]). Every ideal I ⊂ C[z] other than {0} has a Gröbner

basis. Furthermore, any Gröbner basis for an ideal I is a basis of I.

Suppose that f1, ..., fs are polynomials in C[z]. To ‘divide’ f ∈ C[z] by f1, ..., fs is to find

polynomials a1, ..., as ∈ C[z] and a remainder r ∈ C[z] such that

f = a1f1 + ...+ fsgs + r.

In contrast to the one variable case, there is no division algorithm which returns unique

a1, ..., as, r in general. The main utility of Gröbner bases is that they allow for a division

algorithm which returns a unique remainder.

Theorem 1.105 (Division Algorithm, §2.6 Proposition 1, [22]). Let G = {g1, ..., gs} be a

Gröbner basis for an ideal I ⊂ C[z] and let f ∈ C[z]. Then there is a unique r ∈ C[z] with the

following properties.

(i) No term of r is divisible by any of lt(g1), ..., lt(gs).

(ii) There is g ∈ I such that f = g + r.

In particular, r is the remainder of division of f by G no matter how the elements of G are

listed when using a division algorithm.
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1.2.2 Elimination Theory

Definition 1.106. Let 1 ≤ l ≤ N . Given I = 〈f1, .., fs〉 ⊂ C[z], the lth elimination ideal Il is

the ideal of C[z1, ..., zN−l] defined by

Il = I ∩ C[z1, ..., zN−l].

As with the grevlex monomial order of l-elimination type, this is the opposite of what is

defined in Cox-Little-O’Shea [22] (c.f. Remark 1.100).

Theorem 1.107 (Elimination Theorem, Theorem 2 §3.1, [22]). Let I ⊂ C[z] be an ideal and

let G be a Gröbner basis of I with respect to grevlex order of l-elimination type. Then for every

0 ≤ l ≤ N the set

Gl = G ∩ C[z1, ..., zN−l]

is a Gröbner basis of the lth elimination ideal Il.

Definition 1.108. Let I = 〈f1, ..., fs〉 ⊂ C[z] be an ideal. Suppose 1 ≤ l ≤ N with l fixed. We

will call a solution (a1, ..., aN−l) ∈ V(Il) a partial solution of the original system V(I).

Theorem 1.109 (Extension Theorem, Theorem 3 §3.1, [22]). Let I = 〈f1, ..., fs〉 ⊂ C[z] be an

ideal and let I1 be the first elimination ideal of I. For each 1 ≤ i ≤ s, write fi in the form

fi = gi(z1, ..., zN−1)zmiN + terms in which zN has degree < mi,

where mi ≥ 0 and gi ∈ C[z1, ..., zN−1] is nonzero. Suppose that we have a partial solution

(a1, ..., aN−1) ∈ V(I1). If (a1, ..., aN−1) 6∈ V(g1, ..., gs) then there exists a1 ∈ C such that

(a1, ..., aN−1, aN ) ∈ V(I).

Our key technical result (Theorem 2.21) relies on the following special case of the Extension

Theorem.

Corollary 1.110 (§3.1 Corollary 4, [22]). Let I = 〈f1, ..., fs〉 ⊂ C[z] and assume that for some

i, fi is of the form

fi = czmN + terms in which zN has degree < m,

where c ∈ C is nonzero and m > 0. If I1 is the first elimination ideal of I and (a1, ..., aN−1) ∈
V(I1), then there is a1 ∈ C so that (a1, ..., aN−1, aN ) ∈ V(I).
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1.2.3 Quotients of Polynomial Rings

Definition 1.111. Let I ⊂ C[z] be an ideal and let f, g ∈ C[z]. We say that f and g are

congruent modulo I, written

f ≡ g mod I,

if f − g ∈ I. ‘Congruence modulo I’ is an equivalence relation on C[z].

Definition 1.112. The quotient of C[z] modulo I, written C[z]/I is the set of equivalence

classes for congruence modulo I:

C[z]/I = {[f ] : f ∈ C[z]}.

Theorem 1.113 (§5.2 Proposition 5, [22]). Suppose I is an ideal and [f ], [g] ∈ C[z]/I. The

operations

[f ] + [g] = [f + g] (sum in C[z])

[f ] · [g] = [f · g] (product in C[z])

are well defined.

The following definition will play a significant role in this thesis.

Definition 1.114. Suppose that V is an affine algebraic variety. We define C[V ] := C[z]/I(V ).

Theorem 1.115 (§5.2 Proposition 3, Theorem 7, [22]). Suppose V is an algebraic variety.

There is a one to one correspondence between the non-zero polynomials in C[z] restricted to

V and the equivalences classes of C[V ]. Moreover, this correspondence preserves the sum and

product operations from Theorem 1.113.

Motivated by this, we call the elements of C[V ] polynomials on V .

Theorem 1.116 (§5.3 Proposition 1, [22]). Fix a monomial ordering on C[z] and let I ⊂ C[z]

be an ideal. Let 〈lt(I)〉 denote the ideal generated by the leading terms of the elements of I.

(i) Every f ∈ C[z] is congruent modulo I to a unique polynomial r which is a C-linear

combination of the monomials in the complement of 〈lt(I)〉.

(ii) The elements of {zα : zα 6∈ 〈lt(I)〉} are ‘linearly independent modulo I’. That is, if

∑
α

cαz
α ≡ 0 mod I

where the zα appearing are all in the complement of 〈lt(I)〉, then cα = 0 for all α.

Theorem 1.117 (§5.3 Proposition 4, [22]). Let I ⊂ C[z] be an ideal. Then C[z]/I is isomorphic

as a C-vector space to S = span{zα : zα 6∈ 〈lt(I)〉}.
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Theorem 1.116 and 1.117 allow us to choose canonical representatives for equivalence classes

in C[V ], precisely, the representative for [f ] ∈ C[V ] is chosen to be f ′ ∈ S such that f ′ ∈ [f ]

with S given in Theorem 1.117. For this reason we will represent the elements of C[V ] using

elements of span{zα : zα 6∈ 〈lt(I(V ))〉} rather than the equivalence class notation. Theorem

1.115 gives a multiplication and addition operation on C[V ]. In particular, for f, g ∈ C[V ] we

have f · g = [f · g] = f ′ where f ′ is the canonical representative of the equivalence class [f · g] in

C[z]/I(V ). Recall that Theorem 1.105 ensures that the canonical representatives (i.e. remainders

after division) resulting from these calculations is unique. This relationship is formalised in the

following Lemma.

Lemma 1.118 (§5.3 Proposition 5, [22]). If G = {g1, ..., gs} is a Gröbner basis for an ideal I

and f
G

denotes the remainder of f ∈ C[z] under division by the elements in G then the canonical

representative in Theorem 1.117 for [f ] is f
G

. Moreover if g ∈ C[z] we have [f ] + [g] = f
G

+ gG

and [f ] · [g] = f
G · gG

G

.

Definition 1.119. Let G be a Groöbner basis for an ideal I ⊂ C[z]. If f ∈ C[z] we say that

f
G

is f written in normal form.

1.2.4 Finiteness

Definition 1.120. A C-algebra is a ring which contains C as a subring. We say a C-algebra is

finitely generated if it contains finitely many elements such that every element can be expressed

as a polynomial (with coefficients in C) in these finitely many elements.

Definition 1.121. Given a commutative ring S and a subring R ⊂ S, we say that S is finite

over R if there are finitely many elements s1, ..., sl ∈ S such that every s ∈ S can be written in

the form s = a1s1 + ...+ alsl where a1, ..., al ∈ R.

Theorem 1.122 (Relative Finiteness Theorem, §5.6 Theorem 4, [22]). Let

z = (x1, ..., xM , y1, ..., yN−M ) = (x, y). Let I ⊂ C[x, y] be such that I ∩ C[x] = {0} and order

monomials by (N −M)-elimination type. Then the following statements are equivalent.

(i) For each i, 1 ≤ i ≤ N −M there is some mi ≥ 0 such that ymii ∈ 〈lt(I)〉.

(ii) Let G be a Gröbner basis for I. Then for each i, 1 ≤ i ≤ N −M there is some mi ≥ 0

such that ymii = lm(g) for some g ∈ G.

(iii) The set {yα : there is β ∈ Zm≥0 such that xβyα 6∈ 〈lt(I)〉} is finite.

(iv) The ring C[x, y]/I is finite over the subring C[x].

When this condition is satisfied we say that C[V] = C[x, y]/I is finite over C[x].

Lemma 1.123 (§5.6, Pg 281, [22]). Suppose that (a, b) = (a1, ..., aM , b1, .., bN−M ) ∈ V(I). Then

the inclusion C[x] ⊂ C[x, y] corresponds to the projection π : CN → CM sending (a, b) 7→ a.

Moreover, the point a determines
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(i) the ideal Ia ⊂ C[y] which is obtained by setting xi = ai in all elements of the ideal I,

(ii) the fiber π−1(a) = V(I) ∩ ({a} × CN−M ), which consists of all points of V(I) whose first

M coordinates are given by a.

We also have the relation π−1(a) = {a} ×V(Ia) and

⋃
a∈CM

{a} ×V(Ia) =
⋃

a∈CM
π−1(a) = V(I) ⊂ CN .

Theorem 1.124 (Geometric Relative Finiteness Theorem, §5.6 Theorem 5, [22]). Suppose that

I ⊂ C[z] = C[x, y] is an ideal such that I ∩ C[x] = {0}. If, in addition, C[x, y]/I is finite over

C[x] then

(i) The projection map π : V(I)→ CM , (x, y) 7→ x is onto and has finite fibers.

(ii) For each a ∈ CM the variety V(Ia) ⊂ CN−M is finite and non-empty.

Theorem 1.125 (Noether Normalisation, §5.6 Theorem 6, [22]). If A ⊂ C[z] is a finitely

generated algebra then there are algebraically independent elements u1, ..., uM ∈ A such that:

(i) A is finite over C[u1, ..., uM ].

(ii) If additionally A is generated by s1, ..., sl as a C-algebra, then M ≤ l and u1, ..., uM is a

C-linear combination of s1, ..., sl.

In this case we say that C[u] ⊂ A is a Noether normalisation for A.

Theorem 1.126 (Geometric Noether Normalisation, §5.6 Theorem 8, [22]). Let V ⊂ CN be a

variety. Then a Noether normalisation C[x] = C[x1, ..., xM ] of C[V ] can be chosen (i.e. after a

suitable linear change of coordinates) so that the projection map π : V → CM , (x, y) 7→ x has

the following properties

(i) π is the composition of the inclusion V ⊂ CN with a linear map CN → CM .

(ii) π is onto with finite fibers.

Remark 1.127. It is worth clarifying the relationship between the Geometric Noether Normali-

sation Theorem and the notion that V is a finite branch holomorphic covering over CM . If V

is a finite branched holomorphic covering then π : V →W ⊂ CM is a surjective mapping to W

which can be a strict subset of CM . For instance, the projection to x or y for V = {yx = 1}
is onto C\{0}. The Geometric Noether Normalisation theorem says that we can always find

a linear change of variables so that W = CM . For instance, the linear change of variables

u = x+ y and v = x− y yields V = {(u+ v)(u− v) = 1} and the projection to u is onto C.
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1.3 Transfinite Diameter and Chebyshev Constants on Algebraic Varieties

We will assume for the majority of this thesis that certain geometric conditions on our algebraic

varieties are satisfied, which allow us to discuss natural analogues of the transfinite diameter

and Chebyshev constants on an affine variety. This section closely follows that of Cox-Ma’u

[23] in order to establish those conditions and prove the existence of the generalised transfinite

diameter and Chebyshev constants. First let us recall the classical situation due to Zakharjuta

[54].

Notation 1.128. Fix a monomial order on C[z1, ..., zN ] = C[z]. We make the following notational

conventions:

(i) m(N)(i) = the number of monomials of degree at most i in C[z1, ..., zN ];

(ii) h(N)(i) = m(N)(i)−m(N)(i−1) = the number of monomials degree exactly i in C[z1, ..., zN ];

(iii) l(N)(i) =
∑i

j=1 jh
(N)(j) = the sum of degree of the monomials of at most degree i in C[z].

Definition 1.129. Fix a monomial order (e.g. grevlex) on C[z] and enumerate the monomials

as {e1, e2, ....}. Given a positive integer s and points ζ1, ..., ζs ∈ CN , we define the Vandermonde

determinant as

V DMC[z](ζ1, ..., ζs) = V DM(ζ1, ..., ζs) = det


e1(ζ1) e1(ζ2) ... e1(ζs)

e2(ζ1) e2(ζ2) ... e2(ζs)
...

...
. . .

...

es(ζ1) es(ζ2) ... es(ζs)

 .

Let K ⊂ CN be a compact set. We define the transfinite diameter for K to be

δ(K) = lim sup
s→∞

max
ζ1,...,ζs∈K

∣∣∣V DM(ζ1, ..., ζs)
1/l(N)(s)

∣∣∣ .
Definition 1.130. Fix a monomial order of C[z] and suppose K ⊂ CN is compact. Let α ∈ ZN≥0.

The α-Chebyshev constant is defined to be

T (K,α) = inf{‖p‖K : lt(p) = zα}.

Let Σ be the N -dimensional simplex. That is,

Σ =

{
(θ1, ..., θN ) ∈ RN :

N∑
i=1

θi = 1, θi ≥ 0

}
.

We also define Σ0 = {θ ∈ Σ : θi > 0, ∀ i}. Let θ ∈ Σ0. We define the θ-partial Chebyshev

constant to be

τ(K, θ) = lim sup
α
|α|→θ

T (K,α)1/|α|. (1)
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We define the principal Chebyshev constant to be

τ(K) = exp

(
1

vol(Σ)

∫
Σ0

log τ(K, θ) dθ

)
.

Theorem 1.131 (Zakharjuta, [54]). The lim sup defining the transfinite diameter in Definition

1.129 and θ-partial Chebyshev constants in Definition 1.130 can be replaced by a limit. Moreover,

δ(K) = τ(K).

Bloom-Levenberg [15] developed a very general system to prove that the lim sup can be

replaced by a limit in equation (1), which depends on so-called sub-multiplicative functions,

and allowed for a number of analogous concepts to be proven in the same manner. The equality

δ(K) = τ(K) was proven by Zakharjuta [54] and also originally showed that the lim sup in

Definition 1.129 can be replaced by a limit.

The work of Berman-Boucksom [7] proved that an analog of Theorem 1.131 for a transfinite

diameter defined using an L2(µ)-orthonormal basis with respect to a probability measure µ

on V . The paper of Cox-Ma’u [23] shows that under reasonable geometric conditions on an

algebraic variety V , one can formulate the transfinite diameter on V in a purely algebraic way.

We will relate these two different conceptions of the transfinite diameter in Section 3.5. The

construction given by Cox-Ma’u provides a natural setting to study Chebyshev constants. Our

work focuses primarily on this construction.

1.3.1 Distinguished Basis for C[V ]

Notation 1.132. Suppose that V is an affine algebraic variety. Let V P denote the projective

closure of V . Precisely, if p̃(t, z) = tdeg pp(z/t) is the homogenisation of p and I = I(V ) then

Ih := {p̃ ∈ C[z0, z1, ..., zN ] : p ∈ I}
V P = V(Ih) = {z = [z0 : ... : zN ] ∈ PN : p(z) = 0 for all p ∈ Ih}.

Definition 1.133. We say a d-sheeted affine algebraic variety V of dimension M has distinct

intersections with infinity if it satisfies the following properties.

(i) C[z1, ..., zM ] ⊂ C[V ] is a Noether normalisation for V .

(ii) If P = V({z0, ..., zM−1}) ⊂ PM the set V P ∩ P consists of d distinct points.

(iii) Label the point of V P ∩ P as λ1, ..., λd where each λi = [0 : ... : 0 : λiM : ... : λiN ]. Then

for each i, λiM 6= 0.

The name ‘distinct intersections with infinity’ is motivated by the fact that the sheets of

V intersect the hyperplane at infinity in a way which preserves the number of branches and

is singular at a subvariety of H∞. The justification for these claims will be proven in Section

2.5.4. The following lemma distinguishes certain polynomials which will be used in our study.

30



Lemma 1.134 (Corollary 2.6, Lemma 2.7-10, Proposition 2.11, [23]). Suppose that V is an

M -dimensional affine algebraic variety with distinct intersections with infinity. For some t ∈ N
sufficiently large there are polynomials v1, ..., vd ∈ C[V ] of degree t satisfying the following

properties

(i) v2
i = ztMvi +

∑M−1
k=1 zkhk + h0 with deg(hk) ≤ 2t− 1 for each k = 0, ...,m− 1.

(ii) vivj =
∑M−1

k=1 zkqk + q + 0 if i 6= j with deg(qk) ≤ 2t− 1 for each k.

(iii) There is ṽi ∈ C[z0, ..., zN ]/(Ih+〈z0〉) such that ṽi(λj) = δij where δij is the usual Kronecker

delta function and the canonical representation of ṽi(0, z1, ..., zN ) in C[V ] is vi.

(iv) ṽi
2 = ztM ṽi +

∑M−1
k=1 zkHk(z1, ..., zN ) and ṽiṽj =

∑M−1
k=1 zkQk(z1, ..., zN ) where Hk and Qk

are homogeneous polynomials of degree 2t− 1.

(v) C[V ] is spanned by

(∗) zαzlMz
β : α ∈ ZM−1

≥ 0, zlMz
β ∈ B

(∗∗)
[
zαzlMvi

]
: α ∈ ZM−1

≥ 0, l ≥ 0, i = 1, ..., d.

where B = {zlMzβ 6∈ 〈lt(I(V ))〉, l + |β| ≤ t− 1}.

Remark 1.135. It is possible that zαzlMvi is not written in normal form (c.f. Lemma 1.118).

However for simple examples (such as the hypersurface) zαzlMvi is usually in normal form.

Including the normal form of [zαzlMvi] in the definition is largely just a technicality and won’t

impact our work.

Notation 1.136. Basis elements of the form (∗) will be called type-1 monomials. The multi-

plicative behavior of the terms
[
zαzlMvi

]
resembles that of monomials and they will often be

treated as such. Elements of the form (∗∗) will be called type-2 monomials. See Cox-Ma’u [23]

for further details.

Theorem 1.137 (Theorem 2.13, [23]). All type-2 monomials are in C, i.e.
[
zαzlMvi

]
and[

zα
′
zl
′
Mvj

]
are linearly independent unless α = α′, l = l′, i = j.

Definition 1.138. Suppose that V is an M -dimensional affine algebraic variety with distinct

intersections with infinity. The following construction defines the distinguished basis C for C[V ].

Define an ordering ≺ on the type-1 and type-2 monomials as follows:

(i) Let type-2 monomials precede type-1 monomials.

(ii) Let zαzlMvi ≺ zα
′
zl
′
M if zαzlM <grevlex z

α′zl
′
M .

(iii) Let zαzlMvi ≺ zαzlMvj if i < j.

(iv) Order type-1 monomials by grevlex.
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We inductively define the set C by going through this collection with respect to the order ≺ and

adding elements which are linearly independent to those already in the set. (This removes any

monomial which is not linearly independent with a zαzlMvi term). With this process completed,

we redefine the ordering on C so that type-1 monomials precede type-2 monomials, leaving the

other conditions unchanged. We will write ei to be the ith element in C (with the ordering ≺).

1.3.2 Transfinite Diameter and Chebyshev Constants

Cox-Ma’u [23] extended the convergence properties of submultiplicative functions due to Bloom-

Levenberg (pp. 10-12, [15]) to that of weakly submultiplicative functions of subexponential

growth in order to exploit ‘classical’ arguments to show the convergence of the Chebyshev con-

stants on an algebraic variety. The following definition is made in the same spirit as Definition

1.130.

Definition 1.139. Suppose that V is an M -dimensional affine algebraic variety with distinct

intersections with infinity and let ≺ be monomial ordering from Definition 1.138. Let K ⊂ V

be a compact set. For 1 ≤ i ≤ d let C(α, i) := {p(z) ∈ C[V ] : p(z) = zαvi + g(z), g(z) < zαvi}.
Define

T (K,α, λi) = inf{‖p‖K : p ∈ C(α, i)}.

T (K,α, λi) will be called the α-Chebyshev constant in the direction λi and a polynomial p ∈
C(α, i) which reaches the infimum an α-Chebyshev polynomial in the direction λi. The limit

τ(K, θ, λi) = lim sup
|α|→∞
α
|α|→θ

T (K,α, λi)
1/|α|

will be called the θ-partial Chebyshev constant in the direction λi. We define the Chebyshev

constant in the direction λ to be

τ(K,λi) = exp

(
1

vol(Σ)

∫
Σ0

log τ(K, θ, λi) dθ

)
.

We define the principal Chebyshev constant for K to be the geometric average τ(K) =
(∏d

i=1 τ(K,λi)
)1/d

.

Lemma 1.140 (Lemma 3.4, [23]). Suppose that we are in the situation of Definition 1.139.

Then τ(K, θ, λi) is log-convex with respect to θ, i.e. for any θ1, θ2 ∈ Σ0 and t ∈ [0, 1],

log τ(K, tθ1 + (1− t)θ2, λi) ≤ t log τ(K, θ1, λi) + (1− t) log τ(K, θ2, λi).

In the spirit of the notation introduced in 1.128 we make the following conventions.

Notation 1.141. Suppose that V is an algebraic variety that has distinct intersections with

infinity and let C be the distinguished polynomial basis for C[V ]. We make the following

notational conventions:
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(i) m(V )(i) = the number of monomials of degree at most i in C;

(ii) h(V )(i) = m(V )(i)−m(V )(i− 1) = the number of monomials degree exactly i in C;

(iii) l(V )(i) =
∑i

j=1 jh
(V )(j) = the sum of degree of the monomials of at most degree i in C.

Definition 1.142. Suppose that V is an affine algebraic variety. We define the Vandermonde

determinant for a finite set {ζ1, ..., ζs} ⊂ V with respect to the basis C to be

V DMC(ζ1, ..., ζs) := det


e1(ζ1) e1(ζ2) ... e1(ζs)

e2(ζ1) e2(ζ2) ... e2(ζs)
...

...
. . .

...

es(ζ1) es(ζ2) ... es(ζs)

 .

where {ei}∞i=1 is the enumeration of C with the ordering ≺.

Definition 1.143. Suppose that V is an affine algebraic variety and that K ⊂ V is a compact

set. Let

δ(K) := lim sup
s→∞

∣∣∣∣∣∣
(

max
ζ1,...,ζm(V )(s)

∈K
V DMC(ζ1, ..., ζm(V )(s))

)1/l(V )(s)
∣∣∣∣∣∣ .

We say that δ(K) is the transfinite diameter of the set K.

The following is the main result of Cox-Ma’u [23].

Theorem 1.144. Suppose we are in the situation of Definition 1.143. The lim sup in Definition

1.143 can be replaced by a limit, moreover

δ(K) = τ(K) =

(
d∏
i=1

τ(K,λi)

)1/d

.

We now want to relate the transfinite diameter from the C basis to the transfinite diameter

using the monomial basis for C[V]. Write B for the monomial basis, then δC(K) is the transfinite

diameter using V DMC and δB(K) is the transfinite diameter using V DMB.

Theorem 1.145. Suppose that V is an affine algebraic variety which has distinct intersections

with infinity and K a compact subset of V. Write B to be usual monomial basis for C[V ]. Let

v1, ..., vd be the polynomials guaranteed by Lemma 1.134 and C the corresponding distinguished

basis. Then δB(K) = δC(K).

We note a preliminary Lemma.

Lemma 1.146. With the hypothesis as in Theorem 1.145, if C′ is the distinguished basis but

with the normal form [zαzlMvi] replaced with the monomial form zαzlMvi then δC′(K) = δC(K).
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Proof. Observe that [zαzlMvi]
∣∣
V = zαzlMvi

∣∣
V by definition of the normal form (Lemma 1.118).

The result now follows immediately.

Proof of Theorem 1.145. Write z = (x′, xM , y) where (x′, xM ) ∈ CM and y ∈ CN−M and choose

t so that type-1 monomials in C have the form xαxlMy
β where |β| + l ≤ t − 1 for some t ∈ N

and by Lemma 1.146 we may choose our type-2 monomials to have the form xαxlMvi without

changing the transfinite diameter. Observe that every type-1 monomial in C is an element of B,

so the monomials which are not type-1 in the set B belong to the set B′ = {xlMyβ : |β|+ l ≥ t}.

By the Noether normalisation assumption, there exists mi ∈ N such that ymi+1
i 6∈ C[V ] while

ymii ∈ C[V ]. It follows then that |β| ≤∑N−M
i=1 mi =: mY . Then elements of B′ have the form of

xsMfj , s ∈ N where fj is an element of the finite set F = {xlMyβ : mY ≥ |β| ≥ t− l}.

Let fj ∈ F . By Lemma 1.134 property (v) there exists a linear combination of elements ek ∈ C
such that fj =

∑sj
k=1 cjkek. It is apparent by linear independence that deg(ek) ≤ deg(fj). The

observation about the form of elements in B′ means that every element can be represented as

xsM
(∑sj

k=1 cjkek
)

for some j, again from the form of the elements in B′, this sum is a linear

combination of type-2 monomials.

Now choose r ∈ N sufficiently large F ⊂ Br where Br := {b ∈ B : deg(b) ≤ r} (define Cr
similarly). It follows by doing elementary row operations that

detV DMB(ζ1, ..., ζm(V )(r)) = C detV DMC(ζ1, ..., ζm(V )(r))

where C is a normalisation constant depending on the cjk terms arising from the elementary

row operations calculated previously.§ Since the same linear operations are used to transform

C2r\Cr into B2r\Br (which is a consequence of the form of the elements of B′ observed above)

it follows that

detV DMB(ζ1, ..., ζm(V )(2r)) = C2V DMC(ζ1, ..., ζm(V )(2r))

and so on. We have the following estimate and limit calculation,

2

nr(nr + 1)m(V )(nr)
≤ 1

l(V )(nr)
≤ 1

nrm(V )(nr)
,

1 = lim
n→∞

C2/r(nr+1)m(V )(nr) ≤ lim
n→∞

Cn/l
(V )(nr) ≤ lim

n→∞
C1/rm(V )(nr) = 1.

§Despite not using ek written in normal form, the elementary row operations preserve the value of the deter-
minant since the elementary row operations only involve the addition of rows, and the normal form of a sum is
the sum of the normal forms (Lemma 1.118).
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It follows that

δB(K) = lim
n→∞

∣∣∣∣∣ max
ζ1,...,ζm(V )(nr)

∈K

(
detV DMB(ζ1, ..., ζm(V )(nr))

)1/l(V )(nr)
∣∣∣∣∣

= lim
n→∞

∣∣∣∣∣ max
ζ1,...,ζm(V )(nr)

∈K

(
Cn detV DMC(ζ1, ..., ζm(V )(nr))

)1/l(V )(nr)
∣∣∣∣∣

= δC(K).

This concludes the proof.

The point of this is that convergence to the transfinite diameter in the basis C is equivalent

to convergence to the transfinite diameter in the monomial basis for C[V]. The speciality of C
is that it allows a geometric interpretation of the transfinite diameter (or rather, Chebyshev

polynomials).

1.3.3 Homogeneity and Circled Sets

We record a few basic facts concerning circled sets and homogeneous polynomials for later use.

Definition 1.147. We say a set K ⊂ CN is circled if z ∈ K implies eiθz ∈ K for all θ ∈ [0, 2π].

The following is a standard consequence of the Cauchy integral formula.

Lemma 1.148 (Pg 7, [16]). Given a compact circled set K ⊂ CN and a polynomial p =

hd +hd−1 + ...+h0 of degree d written as a sum of homogeneous polynomials h0, ..., hd of degree

0, ..., d respectively, we have

‖hj‖K ≤ ‖p‖K , ∀j ∈ {1, ..., d}.

Corollary 1.149. Let V be an affine algebraic variety with distinct intersections with infinity.

If K ⊂ V is a compact circled set then α-Chebyshev polynomials for K for any α can be chosen

to be homogeneous.

Definition 1.150. If p is a polynomial then we define the top degree homogeneous part of p

(denoted p̂) to be

p̂(z) = lim
t→0

tdeg pp(z/t) = the sum of all terms of p with degree equal to deg p.

Remark 1.151. In the notation of Lemma 1.148, p̂(z) = hd(z) where d = deg(p).
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2 The Robin Function and First Results

The main goal of this section is to define a Robin function for algebraic varieties and show that

it sastifies the following generalisation of a Bedford-Taylor result.

Theorem 2.1 (Theorem 2.67). Let V be a smooth irreducible algebraic variety with Noether

presentation (x, y) which has distinct intersections at infinity. Let u, v, w2, ..., wM ∈ L+(V)

Then ∫
V

(u ddcv − v ddcu) ∧ T = 2π

∫
Ṽh

(ρ̃∗u − ρ̃∗v) ∧ T̃

where T = ddcw2 ∧ ... ∧ ddcwM .

This theorem is essential to obtaining the results from Bloom-Levenberg [15] and our main

results in Section 3. The first three parts of this chapter are dedicated to building the preliminary

material to prove this result. Section 2.1 explicitly proves a Quasicontinuity Theorem (Corollary

2.8) and Comparison Theorem (Theorem 2.3) on affine algebraic varieties – these results were

first obtained on an algebraic variety by Zeriahi through using classical arguments. For our

work it is sufficient to consider only smooth affine algebraic varieties and so these results are

also valid on a complex manifold, and in that setting are well known. Section 2.2 builds on

the perliminary material to prove a Mass Comparison Theorem (Theorem 2.16) for algebraic

varieties. Section 2.3 utilises the Mass Comparison Theorem and ‘good’ coordinates (which

we call a Noether presentation, Definition 2.22) to calculate the mass of functions in L+(V)

(Theorem 2.27) which as far as we can tell is an original result.

Section 2.4 examines the definitional problems for the Robin function on an algebraic variety

and culminates in a definition for the Robin function in Section 2.5 (Definition 2.52). Some

preliminary properties are proven. Section 2.6 contains the proof of Theorem 2.67. Section 2.7

contains a sample calculation to illustrate Theorem 2.67 while Section 2.8 justifies some of the

hypotheses imposed through this section.

Unless explicitly stated otherwise, all algebraic varieties henceforth will be affine algebraic

varieties.

2.1 Comparison and Quasicontinuity Theorems

Two important theoretical results due to Bedford-Taylor are the following theorems:

Theorem 2.2 (Quasicontinuity, [37] 3.5.5). Let u ∈ PSH ∩L∞loc(Ω), where Ω is an open subset

of CN . For each ε > 0 there exists an open subset E of Ω such that capN (w,Ω) < ε and the

restriction of u to Ω\E is continuous, where

capN (E,Ω) = sup

{∫
E

(ddcu)N : u ∈ PSH(Ω, (0, 1))

}
.
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Theorem 2.3 (Comparison Theorem, [37] 3.7.1). Let Ω be a bounded open subset of CN and

let u, v ∈ PSH ∩ L∞(Ω) be such that for each w ∈ ∂Ω

lim inf
z→w
z∈Ω

(u(z)− v(z)) ≥ 0. (2)

(i.e. u ≥ v on ∂Ω) Then ∫
{u<v}

(ddcv)N ≤
∫
{u<v}

(ddcu)N .

Generalisations of the above were considered by Zeriahi in [55] and [56] (Theorem 1.9), who

claimed that they could be obtained using the methods of Bedford-Taylor (essentially by the

arguments presented in Klimek [37]). We will simplify the proof of the Quasicontinuity theorem

by utilisation a localisation argument and give the details to prove the Comparison theorem

along the lines claimed by Zeriahi.

The Quasicontinuity Theorem is local so can be reduced to the classical case, provided the

relative capacities behave appropriately. This means the result can be obtained directly from

the CN case without needing to re-develop the theory.

The Comparison Theorem depends on the boundary data from equation (2) so only reduces to

the classical case provided there exists an atlas {(Uα, φα)} for V such that {u < v} is contained

Uj for some j. The technicality is illustrated in the diagram below.

U1 U2

Ω

u

v

Suppose that V is M -dimensional. When U1 is pushed forward via φ1 to CM the push forward

of the boundary of {u < v} ∩ U1 does not satisfy the boundary data (2). As such the classical

theory yields no information for us. Removing this obstruction is more difficult than building

up the theorem from Bedford-Taylor methods. Thus in order to obtain a generalisation of

Theorem 2.3 we pursue a direct proof. It is worth pointing out that Guedj-Zeriahi [31] obtained

a Comparison Theorem for compact Kähler manifolds. One can probably reduce the affine

algebraic variety version from this case, but a number of useful technical results are obtained in

the pursuit of a classically inspired argument hence our choice to present the result in this way.
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2.1.1 Quasicontinuity

Our strategy to prove a generalisation of Theorem 2.2 is to reduce the problem to the classical

case by relating a version of the relative capacity on V to the relative capacity in CM . Recall

that we are using the notation that an atlas {(Xj , φj)} of V is a covering of V by open sets

Xj and for each j there is a biholomorphic mapping φj : Xj → φ(Xj) ⊂ CM . Also recall that

φ∗ju = u ◦ φ−1. To begin note the following.

Lemma 2.4. Suppose that V is an M -dimensional algebraic variety, and let Ω ⊂ V be an open

set, {(Xj , φj) : 1 ≤ j ≤ n} be a finite atlas for Ω,∗ and u ∈ PSH ∩ L∞loc(Ω). Then for all

ε1, ..., εn > 0 there exists an open set E of Ω such that u restricted to Ω\E is continuous and

capM (φj(Xj ∩ E), φj(Xj)) < εj .

Proof. Let u ∈ PSH ∩ L∞loc(Ω) then uj := u|Xj ∈ PSH ∩ L∞loc(Xj) by restriction. Since

plurisubharmonicity is preserved under holomorphic maps, φ∗juj ∈ PSH ∩ L∞loc(φj(Xj)). Since

φj(Xj) ⊂ CM we may use the classic theory (i.e. Theorem 2.2) to deduce that we can find a

(possibly empty) subset Ej ⊂ φj(Xj) such that capM (Ej , φj(Xj)) < ε and φ∗juj is continuous

on φ(Xj)\Ej . If we let E =
⋃
j φ
−1
j (Ej) then the conclusion of the lemma is satisfied.

It is desirable to be able to formulate this result so that it says that the set E is ‘small’ in

V, rather than its image under φα in CM . To this end we define the relative capacity for the

variety.

Definition 2.5. Suppose that V ⊂ CN is a smooth M -dimensional algebraic variety and that

E ⊂ Ω ⊂ V where Ω is an open set and E is a Borel set. Then we set

capV(E,Ω) := sup

{∫
E

(ddcu)M : u ∈ PSH(Ω), 0 ≤ u ≤ 1

}
.

We say that capV(E,Ω) is the relative Monge-Ampère capacity (or simply, relative capacity).

Remark 2.6. This coincides with Zeriahi’s definition (Equation (1.13), [56]) except Zeriahi makes

no assumption of smoothness of V, which leads to the supremum being over all weakly psh

functions in Ω ⊂ V. We note that Zeriahi doesn’t supply a quasicontinuity theorem with

respect to this capacity in [56].

Using the generalised CLN inequality (Theorem 1.78) it is easily shown that capV(E,Ω) is

finite when E is compact.

Theorem 2.7. Suppose that V is a smooth M -dimensional algebraic variety and let Ω ⊂ V be

∗Recall that a projective algebraic variety is compact, hence there exists a finite atlas {(Xj , φj) : 1 ≤ j ≤ n}
for any projective algebraic variety. Since every affine algebraic variety is the local restriction of some projective
algebraic variety, we can take the local restriction of the finite atlas to induce a finite atlas for an affine algebraic
variety.

38



an open set and {(Xj , φj)} a finite atlas for Ω. Then for any Borel subset E ⊂ Ω,

capV(E,Ω) ≤
∑
j

capM (φj(E ∩Xj), φj(Xj)).

Proof. Let Ej = E ∩Xj . Then clearly
⋃
j Ej = E. It follows from the definition that

capV

⋃
j

Ej ,Ω

 ≤ sup
u

∑
j

∫
Ej

(ddcu)M ≤
∑
j

sup
u

∫
Ej

(ddcu)M =
∑
j

capV(Ej ,Ω).

Given a function u which is a competitor for the relative capacity capV(Ej ,Ω) we observe that

φ∗ju is a competitor for the relative capacity capM (φj(Ej), φj(Xj)). It follows that∫
Ej

(ddcu)M =

∫
φj(Ej)

(ddcφ∗ju)M ≤ sup
v∈PSH(φj(Xj))

∫
φj(Ej)

(ddcv)M = capM (φj(Ej), φj(Xj)).

By taking the supremum over the left hand side we conclude that capV(Ej ,Ω) ≤
capM (φj(Ej), φj(Xj)). Combining both parts of this argument yields

capV(E,Ω) ≤
∑
j

capV(Ej ,Ω) ≤
∑
j

capM (φj(Ej), φj(Xj)).

Corollary 2.8 (Quasicontinuity theorem for varieties). Let Ω ⊂ V where V is a smooth M -

dimensional algebraic variety and Ω is open. Suppose that u ∈ PSH ∩ L∞loc(Ω). Then for all

ε > 0 there exists an open set E of Ω such that capV(E,Ω) < ε and u restricted to Ω\E is

continuous.

2.1.2 Comparison theorem

Essential for the following result is that given a branch cut C for V over CM the projection π

is biholomorphic when restricted to the branches of V.

Theorem 2.9. Let C be a branch cut for a smooth algebraic variety V over CM . Suppose Ω is

a bounded open subset of V\π−1(C). Let u, v ∈ PSH ∩ L∞loc(Ω) be such that for each w ∈ ∂Ω

lim inf
z→w
z∈Ω

(u(z)− v(z)) ≥ 0.

Then ∫
{u<v}

(ddcv)M ≤
∫
{u<v}

(ddcu)M .

Proof. Since every point of Ω is generic (by Corollary 1.42) it follows that Ω is a d-sheeted

covering over W ⊂ CM for some d. We can enumerate these sheets Ω1, ...,Ωd and now the
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projection πi : Ωi →W is biholomorphic for each i. The boundary data of Ω is preserved under

the holomorphic map πi since Ω is the disjoint union of all the sheets Ωi. π
∗
i u and π∗i v are both

psh functions in CM and so using CM theory we have∫
{π∗i u<π∗i v}

(ddcπ∗i v)M ≤
∫
{π∗i u<π∗i v}

(ddcπ∗i u)M .

Transferring this statement back to the variety we obtain∫
{u<v}∩Ωi

(ddcv)M ≤
∫
{u<v}∩Ωi

(ddcu)M .

It follows that

∫
{u<v}

(ddcv)M =
d∑
i=1

∫
{u<v}∩Ωi

(ddcv)M ≤
d∑
i=1

∫
{u<v}∩Ωi

(ddcu)M =

∫
{u<v}

(ddcu)M .

With some care, this result would be all that we need for the remainder of this thesis.

However, as already noted, we can obtain this result for Ω ⊂ V which are not entirely generic

and we will present that result for the sake of completeness.

The obstruction for when we cannot make a branch cut which avoids Ω is that π is only locally

biholomorphic. This has two consequences; (i) if u ∈ PSH(V) it is not necessarily true that

π∗u ∈ PSH(CM ) (ii) the boundary data for Ω in the hypothesis may straddle any branch

cut and may no longer being admissible upon being mapped by π as in the example from the

introductory part of this section. Resolving these issues is more work than providing a direct

proof.

We can proceed by direct proof because logically the only fact which the result depends on in

the CN case is integration by parts and Stokes theorem. Since both of these are valid on a

smooth algebraic variety we can use the same deductions to deduce the result.

Recall the following results from [24].

Lemma 2.10 ([24], Lemma 1.9). Let fk be a sequence of usc functions converging to f on some

separable locally compact space X and µk a sequences of positive measures converging weakly to

µ on X. Then every weak limit ν of fkµk satisfies ν ≤ fµ.

Theorem 2.11 ([24], Theorem 1.7). Let u1, ..., uq be locally bounded plurisubharmonic functions

and let uk1, ..., u
k
q be decreasing sequences of plurisubharmonic functions converging pointwise to

u1, ..., uq. Then

(a) uk1dd
cuk2 ∧ ... ∧ ddcukq ∧ T −→ u1dd

cu2 ∧ ... ∧ ddcuq ∧ T weakly.
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(b) ddcuk1 ∧ ... ∧ ddcukq ∧ T −→ ddcu1 ∧ ... ∧ ddcuq ∧ T weakly.

Where T is an arbitrary positive current.

We need a slightly stronger version of this theorem, originally due to Bedford-Taylor.

Theorem 2.12. Suppose that V is a smooth M -dimensional algebraic variety. Let u1, ..., uq be

locally bounded plurisubharmonic functions and let uk1, ..., u
k
q be monotone (either increasing or

decreasing) sequences of plurisubharmonic functions converging almost everywhere to u1, ..., uq.

Then

(a) uk1dd
cuk2 ∧ ... ∧ ddcukq ∧ T −→ u1dd

cu2 ∧ ... ∧ ddcuq ∧ T weakly.

(b) ddcuk1 ∧ ... ∧ ddcukq ∧ T −→ ddcu1 ∧ ... ∧ ddcuq ∧ T weakly.

Where T is an arbitrary positive current.

Proof. We only prove (a) as (b) follows along identical lines. The result is local so, given an atlas

{(Xj , φj)} for V, we prove the result on a chart (Xα, φα). Now each φ∗αu
k
l ∈ PSH ∩ L∞loc(CM )

so we may use the CM version of the result (Theorem 7.2, [3]). Using this we obtain

φ∗αu
k
1dd

cφ∗αu
k
2 ∧ ... ∧ ddcφ∗αukq ∧ φ∗αT −→ φ∗αu1dd

cφ∗αu2 ∧ ... ∧ ddcφ∗αuq ∧ φ∗αT weakly

Pushing forward to Xα proves the claim.

With this theorem we have all the necessary tools to prove the comparison theorem for

varieties along the lines of Klimek [37] (which in turn is a derivative of Cegrell [20]). We follow

a version of this argument due to B locki [9].

Theorem 2.13 (Comparison Theorem for Varieties). Let Ω be a bounded domain in a smooth

algebraic variety V of dimension M . Let u, v ∈ PSH ∩ L∞(Ω) be such that for every w ∈ ∂Ω,

lim inf
z→w,z∈Ω

(u(z)− v(z)) ≥ 0.

Then ∫
{u<v}

(ddcv)M ≤
∫
{u<v}

(ddcu)M .

Lemma 2.14. The above theorem holds for when u and v are continuous.

Proof. Since u, v are continuous, Ω′ = {u < v} is open, u, v are continuous on Ω
′

and we may

assume u = v on ∂Ω′. Let uε := max{u+ ε, v}. Then uε ↓ v on Ω′ as ε ↓ 0 and uε = u+ ε in a
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neighbourhood of Ω′. By Stokes theorem∫
Ω′

(ddcuε)
M =

∫
∂Ω′

dcuε ∧ (ddcuε)
M

=

∫
∂Ω′

dc(u+ ε) ∧ (ddc(u+ ε))M

=

∫
∂Ω′

dcu ∧ (ddcuM )

=

∫
Ω′

(ddcu)M .

Since uε is monotone decreasing in ε to v, by Theorem 2.12 we have∫
{u<v}

(ddcv)M ≤ lim
ε→0

∫
{u<v}

(ddcuε)
M ,

which proves the theorem if u and v are continuous.

Proof of Theorem 2.13. We may assume that lim inf(u − v) ≥ δ > 0 for δ > 0 on ∂Ω by

considering u+ δ in place of u since {u+ δ < v} ↑ {u < v} as δ ↓ 0.

Let W be a domain such that {u ≤ v + δ/2} ⊂ W ⊂ Ω where inclusion is strict. We can find

sequences uj and vk of smooth psh functions in a neighbourhood of W decreasing to u and v

respectively and such that uj ≥ vk on ∂W for every j, k. We may assume that −1 ≤ uj , vk ≤ 0

as per our usual regularisation process. We have∫
{u<v}

(ddcv)M = lim
j→∞

∫
{uj<v}

(ddcv)M . (3)

Let ε > 0, by the Quasicontinuity Theorem we can find an open set G in Ω such that

capV(G,Ω) < ε and u, v continuous on F = Ω\G. There is a continuous function φ on Ω

such that v = φ on F . Since {uj < v} ⊂ {uj < φ} ∪G and since {uj < φ} is open,

∫
{uj<v}

(ddcv)M ≤
(∫
{uj<φ}

+

∫
G

)
(ddcv)M ≤ lim inf

k→∞

∫
{uj<φ}

(ddcvk)
M + ε. (4)

Where we have used the quasicontinuity estimate in the second inequality. From the continuous

case we have ∫
{uj<vk}

(ddcvk)
M ≤

∫
{uj<vk}

(ddcuj)
M . (5)
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From equations (3), (4), the fact that {uj < φ} ⊂ {uj < vk} and (5) we deduce∫
{u<v}

(ddcv)M = lim inf
j→∞

∫
{uj<v}

(ddcv)M

≤ lim inf
j→∞

lim inf
k→∞

∫
{uj<φ}

(ddcvk)
M + ε

≤ lim inf
j→∞

lim inf
k→∞

∫
{uj<vk}∩F

(ddcvk)
M + 2ε

≤ lim inf
j→∞

lim inf
k→∞

∫
{uj<vk}∩F

(ddcuj)
M + 2ε

≤ lim inf
j→∞

∫
{uj≤v}

(ddcuj)
M + 2ε. (6)

We use the quasicontinuity estimate again to deduce that∫
{uj≤v}

(ddcuj)
M ≤

∫
{uj≤v}∩F

(ddcuj)
M + ε (7)

and since the set {u ≤ v} ∩ F is compact, and {uj ≤ v} ⊂ {u ≤ v},

lim sup
j→∞

∫
{uj≤v}∩F

(ddcuj)
M ≤

∫
{u≤v}∩F

(ddcu)M ≤
∫
{u≤v}

(ddcu)M . (8)

Appending the deduction in (8) to the deduction from (7), and then appending that to the

deduction in (6) we obtain, ∫
{u<v}

(ddcv)M ≤
∫
{u≤v}

(ddcu)M + 3ε.

Because ε > 0 was arbitrary we have∫
{u<v}

(ddcv)M ≤
∫
{u≤v}

(ddcu)M .

This implies that for every η > 0,∫
{u+η<v}

(ddcv)M ≤
∫
{u+η≤v}

(ddc(u+ η))M =

∫
{u+η≤v}

(ddcu)M .

The theorem follows since {u+ η < v} ↑ {u < v} and {u+ η ≤ v} ↑ {u < v} as η ↓ 0.

2.2 Mass Comparison Theorem

The aim of this section is to prove an analogue of the following ‘Mass Comparison Theorem’

for a smooth algebraic variety.

Theorem 2.15 (Mass Comparison Theorem, Theorem 5.5.1, [37]). Let u, v ∈ PSH∩L∞loc(CN ).
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If v > 0 outside a bounded subset of CN and u(z) = v(z) + o(z) as ‖z‖ → ∞ then∫
CN

(ddcu)N ≤
∫
CN

(ddcv)N

Theorem 2.16 (Mass Comparison Theorem). Suppose that V is a smooth M -dimensional

algebraic variety. Let u, v ∈ PSH ∩ L∞loc(V). If v > 0 outside a bounded subset of V and

u(z) = v(z) + o(z) as ‖z‖ → ∞, (z ∈ V) then∫
V

(ddcu)M ≤
∫
V

(ddcv)M

Proof. The proof follows the ideas of Klimek [37]. Let ε, c > 0 and define wε,c := (1 + ε)v − c
and Wε,c = {z ∈ V : wε,c(z) < u(z)}. As ε > 0, the set Wε,c is bounded. From the Comparison

Theorem we have∫
Wε,c

(ddcu)M ≤
∫
Wε,c

(ddcwε,c)
M = (1 + ε)M

∫
Wε,c

(ddcv)M ≤ (1 + ε)M
∫
V

(ddcv)M .

Letting c→∞ we obtain ∫
{u>−∞}

(ddcu)M ≤ (1 + ε)M
∫
V

(ddcv)M .

Since u ∈ L∞loc(V) we know that
∫
{u=−∞}(dd

cu)M = 0 so

∫
V

(ddcu)M ≤ (1 + ε)M
∫
V

(ddcv)M .

Letting ε→ 0 gives the result.

Corollary 2.17. If u, v ∈ L+(V) then
∫
V(ddcu)M =

∫
V(ddcv)M .

Proof. Apply previous theorem again but in reverse.

We will encounter the following ideas frequently. While both are obvious, we record this

result for clarity.

Lemma 2.18 (Conservation of Mass). Let V be a smooth M -dimensional algebraic variety.

Suppose that C is a branch cut for V over CM and V1, ..., Vd the corresponding branches of V.

Let T be a closed, positive, degree 2M -current on V.

(i)

∫
V
T =

∫
V\Bπ

T .

(ii) If additionally suppT ⊂ ⋃d
i=1 Vi then

∫
V
T =

d∑
i=1

∫
Vi

T =
d∑
i=1

∫
πi(Vi)

π∗i T.

Proof. The first claim follows since Bπ is a M − 1 dimensional set by the Zariski-Nagata purity

theorem. Since T is a 2M -current it follows that the resulting integral is zero. For the second
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claim;

∫
V
T =

d∑
i=1

∫
Vi

T +

∫
π−1(C)

T.

The second integral is 0 because T is not supported on π−1(C). The final equality is just a

change of variables.

2.3 Mass of Functions in the Class L+(V) and Noether Presentations

We want to compute the (Monge-Ampère) mass of a particular function in L+(V) and use

Theorem 2.16 to deduce the mass of u ∈ L+(V). The obvious candidate is log(1 + ‖z‖) or

log+ ‖z‖ since either of these are easy to calculate in CN . However, for an arbitrary algebraic

variety this computation isn’t clear. We will find ‘good’ coordinates z = (x, y) such that

log+ ‖x‖ ∈ L+(V). We open with an example to illustrate that this is not always the case.

Example 2.19. Take the curve {x3 − xy + 1 = 0} ⊂ C2. Then π : (x, y) → x is not onto CM

(x = 0 is not on the curve). Now

log+ ‖z‖ =
1

2
log+(|x|2 + |x2 + x−1|2)

so log+ ‖z‖ → ∞ when x → ∞ or x → 0. However log+ |x| → 0 6= ∞ as x → 0 so log+ |x|
cannot be in L+(V).

Example 2.20. C[V] being finite over C[x] is not a sufficient condition either. Consider the curve

V = {x3 − y = 0}. Then C[V] is finite over C[x]. We calculate

log+ ‖z‖ =
1

2
log+(|x|2 + |y|2) =

1

2
log+(|x|2 + |x|6).

Since

log+ |x|6 + α ≤ log+ |x|2

⇐⇒ log+ |x|6 − log+ |x|2 ≤ −α
⇐⇒ log+ |x|4 ≤ −α 	.

It follows that there is no constant α such that log+ ‖z‖+α ≤ log+ |x| since log+(|x|6 + |x|2) ≥
log+ |x|6.

The proof of the following theorem uses a combination of ideas from Rudin [47], Sadullaev

[50] and Demailly [24].

Theorem 2.21. For a smooth irreducible algebraic variety V of (pure) dimension M there are

CN coordinates (x, y) satisfying the following properties

(i) C[V] is finite over C[x].
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(ii) For all (x, y) ∈ V we have the growth estimate ‖y‖ ≤ A(1 + ‖x‖).

By a theorem due to Rudin [47] we know that a necessary and sufficient condition for V to

be an algebraic variety is that we can find coordinates (x, y) that satisfy the estimate ‖y‖ ≤
A(1 + ‖x‖)B for some choice of positive constants A,B. Our theorem says that an algebraic

variety has coordinates satisfying the estimate for B = 1 and that (x, y) satisfy the Noether

normalisation theorems. Coordinates satisfying only the second condition were studied by

Zeriahi in [57].

Proof. We use induction on the co-dimension of the variety.

Base Case: Co-dimension 1

V is defined by the zero set of a single polynomial P . If d is the total degree of P , then we can

find a linear change of coordinates so that P is monic in y and that the highest power of y is d.

That is, we can write

P (x, y) = yd +
d−1∑
j=0

yjQj(x),

where deg(Qj) ≤ d− j. It is clear that I(V)∩C[x] = {0} since I(V) = 〈lt(P )〉 = 〈yd〉. We now

fix a monomial ordering of 1-elimination type (where yα ≥ xβ for any α ∈ N, β ∈ Nd−1). Since

P (x, y) is trivially a Gröbner basis for I(V) (Definition 1.103) with respect to this ordering, it

follows that C[V] is finite over C[x] (Theorem 1.122). Fix some x ∈ CN−1 so that P is a one

variable polynomial in y. Then any root of P (x, y) satisfies the estimate

|y| ≤ 2 max
1≤j≤d−1

|Qj(x)|1/d−j ,

since otherwise

|P (x, y)y−d| = |1 +Qd−1(x)y−1 + ...+Q0(x)y−d|
≥ 1− (|Qd−1(x)y−1|+ ...+ |Q0(x)y−d|)
≥ 1− (2−1 + ...+ 2−k)

= 2−d > 0

which contradicts (x, y) being a root of P . The total degree of Qj is at most d − j so

|Qj(x)|1/d−j ≤ O(‖x‖). This implies that |y| ≤ C(1 + ‖x‖) for some C ∈ R which com-

pletes the proof of the base case.

Induction Step: Co-dimension N −M
Suppose that the proposition holds for co-dimension 1, ..., N − M − 1. For this case V =

{P1(xy) = ... = PN−M (x, y) = 0} since V is irreducible. If d = deg (P1), we can find a lin-

ear change of coordinates so that lt(P1) = ydN−M as in the first step of the proof. Write
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y′ = (y1, ..., yN−M−1). In these coordinates P1 is in a form which allows us to use Corollary

1.110. It follows from this corollary that there exists R1, ..., Rs ∈ C[x, y′] such that (x, y′) is a

common zero of all Ri if and only if there exists ζ ∈ C such that (x, y′, ζ) is a common zero of

all Pi. If η is the orthogonal projection of CN to CN−1 sending (x, y′, yN−M ) 7→ (x, y′), then

ηV = {R1(x, y′) = ... = Rs(x,
′ y) = 0}.

Hence ηV is an algebraic variety. From the Noether Normalisation Theorem (Theorem 1.125) it

follows we can find coordinates (x′, y′′) so that C[ηV] is finite over C[x′] and k dimensional where

k is the number of x′ variables. Applying the same coordinate transformation to (x, y′, yN−M )

to obtain (x′, y′′, yN−M ) and using the fact that C[z]/I(P1) is finite over C[x′, y′′] (since it is a

Gröbner basis) we deduce that C[V] is finite over C[x′] as well, hence the dimension of V must

also be k. It follows that ηV is M dimensional. Hence co-dimension N −M − 1 in CN−1, so we

may apply the inductive hypothesis to the coordinates (x′, y′′). This produces new coordinates

(x̃, ỹ) such that for some A > 0

‖ỹ‖ ≤ A(1 + ‖x̃‖). (9)

As in the first step, write

P1(x̃, ỹ, yN−M ) = ydN−M +
d−1∑
j=0

yjN−MQj(x̃, ỹ)

where using the same procedure from the base case we obtain the estimate

|yN−M | ≤ 2 max
1≤j≤d−1

|Qj(x̃, ỹ)|1/d−j ,

which shows that |yN−M | ≤ A(1 + ‖(x̃, ỹ)‖). Applying equation (9), we obtain |yN−M | ≤
A′(1 + ‖x̃‖). Finally it follows that ‖(ỹ, yN−M )‖ ≤ A′′(1 + ‖x̃‖).

We must still show that C[x̃, ỹ, yN−M ]/I(V) is finite over C[x̃]. By the inductive hypothesis

we know that C[x̃, ỹ]/I(ηV) is finite over C[x̃]. By construction of P1, C[x̃, ỹ, yN−M ]/I(P1) is

finite over C[x̃, ỹ]. Since relative finiteness is transitive, it follows that C[V] is finite over C[x̃]

as required.

Definition 2.22. Coordinates (x, y) which satisfy the conclusion of Theorem 2.21 will be called

a Noether presentation for V.

Example 2.23. The proof of Theorem 2.21 gives an algorithm to compute Noether presentations

for a given smooth algebraic variety. We present an example to further illustrate how the proof
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works. We define the following variety:

V = {(z1, z2, z3, z4) ∈ C4 : z3
1 − z1z2z3 + z3

2 = z1 − z4z2 = 0}.

Our goal is to find a Noether presentation for V. To this end we study the elimination ideal

arising from eliminating the z1 variable. We obtain this by substituting z1 = z4z2 into the other

equation. This yields

(z4z2)3 − z4z
2
2z3 + z3

2 = z2
2(z2z

3
4 − z4z3 + z2) = z2

2((1 + z3
4)z2 − z4z3) = 0.

The variety generated by (1 + z3
4)z2 − z4z3 = 0 consists of points which extend to solutions in

V (i.e. is an Ri polynomial from the Noether presentation proof, moreover the Ri polynomials

correspond to an elimination ideal with respect to a coordinate). This is a degree 4 polynomial

with leading term which is not monic, so we must make a linear change of variables to make

this so. Let u1 = 1
2(z4 + z2) and u2 = 1

2(z4 − z2). In these coordinates we have

(u1 + u2)3(u1 − u2)− (u1 + u2)z3 = u4
1 + 2u3

1u2 − u1u
3
2 − u4

2 − u1z3 − u2z3 = 0.

We now write this in a polynomial in u1 with polynomial coefficients in u2, z3

u4
1 + 2u3

1u2 − u1(u3
2 + z3)− (u4

2 + u2z3) = 0.

We have the estimate from Theorem 2.21 which asserts that

|u1| ≤ 2 max{|2u2|, |u3
2 + z3|1/3, |u4

2 + u2z3|1/4}.

Which implies that

|u1| ≤ O(‖(u2, z3)‖).

We now applying this linear transformation to the original variety to obtain the following

equations

0 = z3
1 − z1(u1 − u2)z3 + (u1 − u2)3

z1 = (u1 + u2)(u1 − u2).

Using the same estimate as before we obtain

|z1| ≤ 2 max{|(u1 − u2)z3|1/2, |u1 − u2|}.

Which implies

|z1| ≤ O(‖(u1, u2, z3)‖).
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When combined with the first estimate of this type we have

‖(z1, u1)‖ ≤ O(‖(u2, z3)‖).

We declare coordinates x1 = u2, x2 = z3, y1 = u1, y2 = z1. Writing out the defining equations

for V in these coordinates (with respect to grevlex order) we have

0 = y3
2 − y3

1 − y1y2x2 + y2
1x1 − y2x1x2 − y1x

2
1 + x3

1

0 = y2
1 − x2

1 − y1.

Since the leading term in each defining equation is a monic in yi this implies that the conditions

of the Relative Finiteness Theorem (Theorem 1.122) are satisfied and hence C[V] is finite over

C[x]. Hence, the coordinates (x1, x2, y1, y2) are a Noether presentation for V. That is,

V = {(x1, x2, y1, y2) ∈ C4 : y3
2 − y3

1 − y1y2x2 + y2
1x1 − y2x1x2 − y1x

2
1 + x3

1 = y2
1 − x2

1 − y2 = 0},

with the estimate

‖(y1, y2)‖ ≤ A(1 + ‖(x1, x2)‖),

and C[V ] is finite over C[x].

We can now prove the following useful theorem.

Theorem 2.24. Suppose that z = (x, y) is a Noether presentation for a smooth algebraic variety

V. Then log+ ‖x‖ ∈ L+(V).

Proof. Since the projection π is onto CM it follows that log |x| is defined for all (x, y) ∈ V.

Moreover since the fiber π−1(x) is finite it follows that sup{log+ ‖(x, y)‖ : π(x, y) = x} <∞ for

any x ∈ CM . Thus log+ ‖z‖ → ∞ ⇐⇒ log+ ‖x‖ → ∞.

We need to show that (log+ ‖x‖ − log+ ‖z‖) = O(1). Firstly, we have the obvious inequality
1
2 log ‖x‖2) ≤ 1

2 log(‖x‖2 + ‖y‖2 which shows that log+ ‖x‖ ≤ log+ ‖z‖. For the other side we

need to show that the basis (x, y) satisfies the condition ‖y‖ < A(1+‖x‖) for some A > 0. This

is the defining condition of a Noether presentation.

We can use this estimate to deduce that for ‖x‖ ≥ 1,

(log+ ‖x‖ − log+ ‖(x, y)‖) =
1

2
log

(
1 +
‖y‖2
‖x‖2

)
≤ 1

2
log

(
1 +

A2(1 + ‖x‖)2

‖x‖2
)
≤ 1

2
log(1 + C) ∈ R

for an appropriately chosen constant C. This finishes the proof.

Corollary 2.25. If u ∈ L+(CM ) then u′(x, y) := u(x) is in L+(V).

Our aim in this section is to calculate the mass of functions in L+. The following example

gives an explicit calculation of the mass, and provides a method to calculate the mass in general.
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Example 2.26. Let V = {y3 − xy + 1 = 0} so that C[V] is finite over C[x]. V is defined by

an irreducible polynomial so the ideal I(V) is radical. When one fixes x = b the polynomial

y3 − by + 1 = 0 is reducible by the fundamental theorem of algebra and the ideal I(V) is

radical for almost all choices of b since its factors are all unique. Let ζ =
(
−1

2 +
√

3
2 i
)

. When

bk = ζk3/41/3 for k = 1, 2, 3 we have

y3 − ybk + 1 = (y − ζ3−k/21/3)2(y + ζk41/3)

and so the ideal I(y3− bky+1) is not radical. One can calculate that the cardinality of the fiber

π−1(bk) is 2 while at every other point it is 3. This means that {(bk, ζ3−k/21/3) : k = 1, 2, 3} is the

branch locus of V. We can choose a branch cut C to be the union of rays {rbk : r ≥ 1, k = 1, 2, 3}.

C[V] is finite over C[x] and additionally since x = y2 − y−1 we can find A ∈ R such that

|y| ≤ A(1 + |y2 + y−1|) = A(1 + |x|). It follows that (x, y) is a Noether presentation for V.

By the calculation in the previous paragraph, V decomposes into three branches. Suppose that

V1, V2, V3 be the branches of V and let πi : Vi → C be the projection onto x. From one variable

theory we know that ddc log+ |x| is Lebesgue measure on the unit circle, hence ddc log+ |x| is

supported in ∪Vi. Hence ∫
Vi

(ddc log+ |x|) =

∫
C\C

(ddc log+ |x|) = 2π.

It follows from the Conservation of Mass Lemma (Lemma 2.18) that

∫
V

(ddc log+ |x|) =

3∑
i=1

∫
Vi

(ddc log+ |z|) = 6π.

Hence by Corollary 2.17 the mass of any u ∈ L+(V) is 6π.

This example is generalised by the following theorem.

Theorem 2.27. Suppose that V is a smooth algebraic variety with a Noether presentation (x, y).

Let u ∈ L+(V). Then
∫
V(ddcu)M = d(2π)M where d is the number of branches of V.

Proof. By Corollary 2.17 it suffices to compute the mass of any function in L+(V) since every

function in this class has the same mass. We choose log+ |x| which is in L+(V) by Theorem

2.24. Without loss of generality (i.e. by translating the variety if necessary) we may assume that

B1(0) ∩ π(Bπ) = ∅ and C is a branch cut for V over CM which avoids the closed ball B1(0).

Let V1, ..., Vd be the branches resulting from this branch cut. Then from classical pluripotential

theory we have∫
Vj

(ddc log+ |x|)M =

∫
CM\C

(ddc log+ |x|)M =

∫
CM

(ddc log+ |x|)M = (2π)M ,

where the fact ddc(log+ |x|)M is supported in B1(0) ⊂ CM\C allows the second equality. From
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this observation it follows that (ddc log+ |x|)M is supported in ∪di=1Vi and hence by the Conser-

vation of Mass Lemma (Lemma 2.18),

∫
V

(ddcu)M =
d∑
j=1

∫
Vj

(ddcu)M = d(2π)M

as claimed.

We recall the following result from algebraic geometry which gives an estimate for the

number of branches d for an arbitrary algebraic variety, and computes the number of branches

for d under certain conditions.

Theorem 2.28 ([22], §4.3 Proposition 8). Suppose I(V) ⊂ C[x, y] is an ideal and that C[V] =

C[x, y]/I(V) is finite over C[x]. If mi ∈ N is such that ymii ∈ I(V) then the number of branches

of V is at most m1 · ... ·mN−M . If I(V) is radical and mi minimal, then equality holds.

2.4 Definitional issues for the Robin function

2.4.1 Desingularisation

While we almost exclusively work with smooth (non-singular) algebraic varieties it is still possi-

ble that an algebraic variety may be singular at infinity. We wish to study this case. We won’t

need any explicit desingularisation for our general results, but we will do explicit examples

which will need this machinery. The following deep result due to Hironaka.

Theorem 2.29 (Resolution of Singularities, [35]). Any reduced singular scheme X of finite

type over a field of characteristic zero admits a strong resolution of its singularities. This is,

for every closed embedding X into a regular ambient scheme W , there is a proper birational

morphism ε from a regular scheme W ′ onto W that satisfies explicitness, embeddedness, exci-

sion, equivariance and effectiveness (see [34] for the definition of each of these properties). The

induced morphism η : X ′ → X is called a strong desingularisation of X.

The following Theorem is simply a restatement of the result above that captures the important

aspects for application in our work.

Theorem 2.30 ([34]). Suppose that V is an algebraic variety in CN . Then there exists a

resolution of its singularities given by η. η is a surjective differentiable map from a complex

manifold Ṽ to V which is almost everywhere a diffeomorphism. The points at which η fails to be

a diffeomorphism is the set η−1(Vsing). Moreover, η is a composition of blowups of V in regular

closed centers Z transversal to the exceptional loci.

Simply put, the diffeomorphism η can be constructed by repeatedly ‘blowing up’ up the

variety V until it is no longer singular. Our examples will exclusively be concerning algebraic

curves in C2 so we will explain how the blow up process works in this instance. There are many

fantastic resources for general blow ups and modern treatments of Hironaka’s work, of note

Hauser’s rendition [34] is particularly accessible.
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Definition 2.31. Let Z be the origin in CN . Let PN−1 be projective space with homogeneous

coordinates w1, ..., wN . We call the space CNB := {((z1, ..., zN ), [w1 : ... : wN ]) : ziwj = zjwi}
paired with the projection η : CNB → CN (induced by the projection from CN ×PN−1 → CN ) the

blow up of CN at the point Z.

By changing the origin one can blow up any point Z ∈ CN . Suppose that V ⊂ C2 is an

algebraic curve with a singularity at 0. Then the blow up of V at 0 is given by

VB = {((z1, z2), [t1 : t2]) ∈ V × P : z1t2 = t1z2}.

The importance of desingularisation is captured in the following two simple and well known

results.

Lemma 2.32 (Proposition 2.2, [28]). Let η : X̂ → X be a desingularisation of X. If u is a

weakly psh function on X then there is a psh function û on X̂ such that u(x) = maxη−1(x) û for

x ∈ X. Conversely, if û is psh on X̂ then x 7→ maxη−1(x) û defines a weakly psh function on X.

Lemma 2.33 (Proposition 2.3, [28]). Let η : X̂ → X be a desingularisation of X and u a

weakly psh function on X. Suppose that T is a positive current on X and T̂ is the positive

current on X̂ equal to T on X̂\
(
η−1Xsing

)
and 0 otherwise. Then ddcu ∧ T = η∗(dd

cû ∧ T̂ ).

2.4.2 Obstructions at Infinity

We open with an example due to Coman-Guedj-Zeriahi [21] which illustrates some of the diffi-

culty in defining the Robin function.

Example 2.34 ([21], Example 3.3). We define an algebraic curve V ⊂ C2 by

V = {(z1, z2) ∈ C2 : p(z1, z2) = z3
2 − z1z2 + 1 = 0}.

V is a smooth algebraic curve; to see this we compute ∂
∂z1

p(z1, z2) = −z2 and ∂
∂z2

p(z1, z2) =

3z2
2 − z1. Since ∂

∂z1
p(z1, z2) = ∂

∂z2
p(z1, z2) = 0 only at (0, 0) 6∈ V, it follows that V is non-

singular at every point. Note that the points on V are equivalent to those on the rational curve

{z2
2 +z−1

2 = z1}. This observation shows us that there are two ‘paths to infinity’, one as z2 →∞
and another as z2 → 0. The projectivisation of V is

Ṽ = {[z0 : z1 : z2] : z3
2 − z0z1z2 + z3

0 = 0} ⊂ P2.

Setting z0 = 0 we can see there is only one point at infinity given by a = [0 : 1 : 0] in projective

coordinates. Define

u(z1, z2) = max{− log |z2|, 2 log |z2|+ 1},

then the näıve Robin function (i.e. ρ̃u(z) = lim sup‖z‖→∞ u(z)− log ‖z‖) for u can be computed
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by

lim sup
‖z‖→∞
|z2|→0

u(z1, z2)− log ‖z‖ = 0

lim sup
‖z‖→∞
|z2|→∞

u(z1, z2)− log ‖z‖ = 1.

It follows that the value of ρ̃u(a) depends on the path taken to infinity. Moreover, ρ̃u(a) loses

information about one of the ‘branches’ of the algebraic curve (since it takes the maximum of

the two values) voiding the usefulness of the näıve Robin function. We remark that the results

of Coman-Guedj-Zeriahi imply that when the Robin function for u depends on the path taken

to infinity then u ∈ L(V) does not extend to a function in L(CN ).

To understand what is going on we need to study the projective variety Ṽ. We will examine

the singularity at infinity by choosing a coordinate chart where the singularity is present. Let

X = Ṽ ∩ {z1 = 1} to give the curve {(x1, x2) : x3
1 + x3

2 − x1x2 = 0} where x1 = z0/z1 and

x2 = z2/z1.

x1

x2

x3
1 + x3

2 − x1x2 = 0

Now the singularity is a local one (at (0, 0)) and we can desingularise by blowing up at (0, 0).

XB = {((x1, x2), [t1 : t2] ∈ X × P : t2x1 = t1x2}.

In the coordinate chart t1 = t, t2 = 1 we have the condition

(tx2)3 + x3
2 − tx2

2 = 0

x2
2(x2(t3 + 1)− t) = 0

53



and so for x2 6= 0 we must have x2 = t
t3+1

. Substituting this into the original equation we get

x3
1 −

x1t

t3 + 1
+

t3

(t3 + 1)3
= 0

which can be solved analytically in terms of t. One solution is x1 = t2/(t3 + 1). Then the

parametrically defined curve

X̂ =

{(
t2

t3 + 1
,

t

t3 + 1
, t

)
∈ C3 : t ∈ C

}
is smooth and isomorphic to X except at (0, 0). It is easy to show that if η is the projection

from X̂ to X that η−1(0, 0) = {(0, 0, 0), (0, 0,∞)}. In XB this corresponds to the points

{((0, 0) , [1 : 0]), ((0, 0), [0 : 1])}.

We can repeat this analysis at any point y ∈ C to deduce that the blowup ṼB consists of two

points at infinity (t = 0)

a = ([0 : 1 : 0], [1 : 0]) ∈ ṼB
b = ([0 : 1 : 0], [0 : 1]) ∈ ṼB. (10)

The point a corresponds to taking the limit ‖z‖ → ∞, |z2| → 0 while the point b corresponds

to taking the limit ‖z‖ → ∞, |z1| → ∞. In this space the Robin function has two values at

infinity corresponding to the points a and b, moreover the lim sup along any path to a or b is

independent of path. We draw attention to the fact that the point a has multiplicity 2 (i.e.

branching order 2). This also poses a problem to defining the Robin function as we will see in

Section 2.5.3.

Some Notation

At this point it is desirable to clarify the notation which we will use going forward.

Notation Name Ambient Space

V (Original) Variety CN

Ṽ Projectivised Variety PN

V↑ Lifted Variety CN+1

V̂↑ Desingularised (lifted) Variety CN+1 ×X (X is unknown)

Vh Homogenised Variety CN

The following relations describe the relationship between the objects in the table. We will
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always assume that V = {Pj(z) = 0} where {Pj} form a Gröbner basis for V.† Then,

• Ṽ := {[t : z] ∈ PN : ζdegPjPj(z/ζ) = 0};

• V↑ := {(t, z) ∈ CN+1 : ζdegPjPj(z/ζ) = 0};

• Vh = V↑ ∩H∞;

• One way to obtain V̂↑ is to repeatedly blow-up V↑ until it is no longer singular.

• Given a branch cut C, we will use the notation Vı↑ to be the ith branch of V↑, as per

Definition 1.46.

It will be notationally convenient to define H∞ = {(t, z) ∈ CN+1 : t = 0}, e.g. V↑∩H∞ = Vh. If

π : V → CM , (x, y) 7→ x then we define π↑ : V↑ → CM+1, (t, x, y) 7→ (t, x). Note that π↑ induces

a projection on both V and Vh. Observe that Ṽ = VP.

2.5 Construction of the Robin Function

As observed in the example, the Robin function is best understood from studying the lifted

variety V↑. To make this precise suppose that u ∈ L+(V) and let

V↑ := {(t, z) ∈ CN+1 : tdegP1P1(z/t) = ... = tdegPN−MPN−M (z/t) = 0}. (11)

First we will assume that V↑ is locally irreducible away from 0 and V↑ ∩H∞ 6⊂ Bπ↑ ∩H∞ and

deal with other two cases shortly. This first case is the most important for this thesis since we

will eventually show that ‘distinct intersections with infinity’ in the sense of Definition 1.133

satisfies this hypothesis. We include the other cases for completeness.

Definition 2.35. Let π be the projection for an (affine) algebraic variety V. We will say that

V is branched at infinity if there is a component of V↑ ∩H∞ which is contained in Bπ↑.

2.5.1 V irreducible and not branched at infinity

The function ũ : V↑\H∞ → [−∞,∞) defined by (t, z) 7→ u(z/t) + log |t| is in L+(V↑\H∞). But

also for any (t, z) ∈ V↑\H∞ there are α, β ∈ R such that

log ‖z/t‖+ α ≤ u(z/t) ≤ log ‖z/t‖+ β

hence

log ‖z‖+ α ≤ log ‖z/t‖+ log |t|+ α ≤ u(z/t) + log |t| ≤ log ‖z/t‖+ log |t|+ β ≤ log ‖z‖+ β.

†This assumption avoids some technical cases where Ṽ 6= VP.
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So ũ(t, z) is locally bounded everywhere where is it defined. Since the hyperplane H∞ is

pluripolar it follow that ũ(t, z) can be extended across t = 0 by taking a lim sup. Precisely,

ũ(0, ζ) = lim sup
(t,z)→(0,ζ)

(t,z)∈V↑\H∞

u(z/t) + log |t|. (12)

Of course, excluding H∞ from the lim sup is not necessary. Also note that ũ(0, 0) = −∞. This

is important since Vh is always locally reducible at z = 0, but because ũ(0, 0) is always −∞ we

can ignore the reducibility here (as we have done throughout).

Remark 2.36. At this point in the classical case one defines the formula

ρu(z) = lim sup
t→0

u(z/t) + log |t|, (13)

to capture the behavior of ũ(0, z). However this is not possible for us:

(i) The obvious problem is that z/t may not be on the variety yielding a nonsense expression.

(ii) To amend the problem in (i) we can restrict the limsup in the following way

lim sup
t→0
z/t∈V

u(z/t) + log |t|.

However this is still nonsense – the set {z/t : t ∈ C\{0}} defines a hyperplane in CN+1

and hence, by Bezout’s theorem, intersects V↑ at only finitely many points.

As such simplifying the limsup in equation (12) is not a trivial matter.

Observe that V↑ is a d-sheeted algebraic variety of codimension N −M for some d ∈ N, so

we can find a Noether presentation (t, x, y) (where C[V↑] is finite over C[t, x]) and a branch cut

C of CM+1 for V↑ so that π−1
i↑ : CM+1\C → Vi↑ is biholomorphic for each i. Let C∗ = π−1

↑ (C).

We have π∗i↑ũ ∈ L+(CM\C) and moreover for any (0, x, y) ∈ Vi↑\C∗,

lim sup
t→0

π∗i↑ũ(t, x) = lim sup
(t,x,y(t,x))→(0,x,y(0,x))

ũ(t, x, y(t, x)).

Given any point (0, x, y) ∈ V↑ not contained in the branch locus Bπ↑ we can find a branch cut

C which avoids the point (0, x, y). Hence we can emulate the CN formula (13) on a variety in

the following way:

lim
t→0

y(x/t) = ỹ(x) (14)

ρu(x, ỹ(x)) = lim sup
t→0

u(x/t, y(x/t)) + log |t| (15)

where we identify V 3 (x/t, y(x/t)/t) with (t, x, y(t, x)) ∈ V↑ and (x, ỹ(x)) with (0, x, y(0, x)) ∈
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V↑. This identification is justified since by definition

(t, x, y(t, x)) ∈ V↑\H∞ ⇐⇒ (x/t, y(t, x)/t) ∈ V.
⇐⇒ (x/t, y(x/t)) ∈ V

This makes sense because, subject to a suitable branch cut, y only depends on the value of the

x coordinate on V. As (x/t, y(t, x)/t) is a point on V, this logic forces y(t, x)/t = y(x/t).

Example 2.37. Let V = {x2 + y2 = 1}. Taking a suitable branch cut (e.g. C = [−1, 1] ⊂ C) and

projection we have y(x) = ±
√

1− x2. Now V↑ = {x2 + y2 = t2} and so subject to a suitable

branch cut and projection,

y(t, x) = ±t
√

1− x2

t2
.

Clearly, y(t, x)/t = y(x/t).

Consequently, we understand the limit in (14) to be taken within a branch of V with respect

to a branch cut of V↑ avoiding (0, x, y(0, x)) ∈ V↑. This construction yields a well defined Robin

function (since it captures the behavior of ũ along H∞) for all (x, ỹ(x)) away from the branch

locus of Vh. But since the branch locus Bπh is pluripolar (where πh is the restriction of π↑ to

Vh), we can extend the Robin function across Bπ by taking a lim sup.

Definition 2.38. Suppose that V is an algebraic variety which is irreducible and not branched

at infinity. Let u ∈ L+(V). Suppose that

π−1
i (x) = (x, yi(x)), for a suitable branch cut C (16)

lim
t→0

x/t∈CM\C

yi(x/t) = ỹi(x) (17)

Then we define the Robin function ρu : Vh\Bπh → [−∞,∞) pointwise by

ρu(x, ỹ(x)) = lim sup
t→0

x/t∈CM\C

u(x/t), y(x/t)) + log |t|. (18)

We extend the Robin function to be defined everywhere on Vh by

ρu(x, y) = lim sup
Vh\Bπh3(ζ,η)→(x,y)

ρu(ζ, η).

We will often omit the preamble (16, 17) and the extra hypothesis on the limsup in (18) to

simplify notation. That is, the statement

lim sup
t→0

u(x/t, y(x/t)) + log |t| = ρu(x, y)

is to be understood as equation (18).

Remark 2.39. For clarity, by definition of π↑, the branch locus Bπ ⊂ V↑ induces the correspond-
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ing branch locus Bπh for Vh and Bπ for V, and a branch cut for V↑ over CM+1 induces a branch

cut of V over CM and Vh over CM .

2.5.2 V (locally) reducible and not branched at infinity

For the case when V is (locally) reducible at infinity (equivalently, V↑ (locally) reducible along

H∞) we need to invoke desingularisation. Precisely, let η : V̂↑ → V↑ be a desingularisation of

V↑. Then η : V̂\η−1(Vsing↑ ) → Vreg↑ is a diffeomorphism. Let C be a branch cut for V↑, then

πi↑ : Vi\π−1(C) → CM+1\C is a diffeomorphism. Recall that Vi ⊂ Vreg by definition and

that Vsing↑ ⊂ H∞. It follows then that the composition πi↑ ◦ η : V̂\η−1(H∞) → CM+1\C is a

diffeomorphism.

Our strategy now is to track points in V̂\η−1(H∞) via points in CM+1 using these ‘projections’

and repeat the process laid out in the previous section.

In light of Example 2.34, for our strategy to be succesful we must ensure that our construction

allows us to take limsups that capture all the required information. This is equivalent to the

following.

Lemma 2.40. Let V be an M -dimensional, d sheeted, smooth algebraic variety, and sup-

pose that V sing
↑ ⊂ H∞. Then there exists a branch cut C that satisfies the following: Let

Zη,C = {η−1(0, z) : z ∈ V↑\(H∞\π−1
↑ (C))}, for any ζ ∈ Zη,C there is a sufficiently small open

neighbourhood ζ ∈ Nζ ⊂ Ṽ such that η(Nζ\Zη,C) ⊂ Vi↑ for exactly one i ∈ {1, ..., d}.

Proof. Let π↑ be the projection to (t, x) and C ′ a branch cut for V↑. Observe that η−1(H∞\Bπ↑)
has d fibers. Enumerate the fibers F1, ..., Fd (each Fi will be disconnected due to the exclusion

of Bπ↑). Let NFi be an open neighbourhood of Fi and declare that η(NFi\Fi) ⊂ V ′i for each i.

Now amend the branch cut C ′ to a branch cut C ′′ so that each V ′i belongs to one component of

V↑\C ′′. Declare that the remaining components belong to one of the V ′i subject to the condition

that π : V ′i → CM is one to one. The branch cut C ′′ satisfies the conclusion of the Lemma.

Remark 2.41. Observe that the branch cut constructed above, C ′′, does not give rise to con-

nected branches V ′i. This was a byproduct of ensuring that the limits are unique. This is not

an issue for our work, but we note this curiosity nonetheless. Inspired by this Lemma we make

a definition.

Definition 2.42. Let π : V → CM be a projection. We say a branch cut C is a distinguished

branch cut for V over CM if each sheet Vi has the following property. Let

Vi↑ := {(t, z) ∈ V↑ : z/t ∈ Vi}.

Then each point of the set {(0, z) : limVi↑3(t,ζ)→(0,z)(t, ζ) = (0, z)} is contained in the same local

irreducible component of V↑ near (0, z) for all 1 ≤ i ≤ d.
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We define Vhi :=

{
(0, z) ∈ Vh : lim

Vi↑3(t,ζ)→(0,z)
(t, ζ) = (0, z)

}
.

Remark 2.43. Any branch cut of an irreducible algebraic variety V which is irreducible at

infinity is trivially a distinguished branch cut. The property formulated in the definition is

the formalisation of saying that limits to infinity are independent of path in the sense of the

preceding example.

Remark 2.44. The sets Vhi form branches of Vh.

Lemma 2.45. If (x, y) 6∈ Bπ then there is a distinguished branch cut C such that x 6∈ C and

π−1
i (x) = (x, y) for some i.

Proof. This follows since the induced branch cut from the desingularised variety can be chosen

to avoid (x, y).

Example 2.46. We construct a distinguished branch cut for V = {y3 − xy + 1 = 0}. Note

that V is branched at infinity but the concept of distinguished branched cuts makes sense

in this case as well. Recall that Bπ = {ζk3/41/3 : ζ = (−1/2 +
√

3i/2), k = 1, 2, 3}. Let

C = {rb : r ∈ [1,∞), b ∈ Bπ} and C ′ = {rb : r ∈ [0,∞), b ∈ Bπ} be branch cuts with

projections π : V → C\C and π′ : V → C\C ′.

Since x = y2+y−1 as |x| → ∞ either y → 0 or |y| → ∞. Since C\C is connected π−1
i : C\C → V

must contain regions where y → 0 and |y| → ∞. As noted in Section 2.4.2, the multiplicity of

the |y| → ∞ path with Vh is 2 and the y → 0 path with Vh is 1. We can deduce that two of the

three regions partitioned by C have π−1 mapping to components of V where |y| → ∞ and the

other region maps to a component of V where y → 0 . C is consequently not a distinguished

branch cut.

Now consider the branch cut C ′. Since C\C ′ is partitioned into three regions we can choose a

projection π′ such that π′−1
i maps C\C to a branch of V which preserves path to infinity. That

is, we can choose the inverse projections π′−1
1 , π′−1

2 , π′−1
3 to satisfy

lim
|x|→∞

π′
−1
1 (x) = lim

|x|→∞
(x, y1(x)) = (∞, 0)

lim
|x|→∞

π′
−1
2 (x) = lim

|x|→∞
(x, y2(x)) = (∞,∞)

lim
|x|→∞

π′
−1
3 (x) = lim

|x|→∞
(x, y3(x)) = (∞,∞).

Of course, C ′ partitioning C into three regions is essential for π′−1
i to be biholomorphic since we

cannot analytically continue π′−1
i across C ′ at any point. It follows that C ′ is a distinguished

branch cut for V over C.
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Example 2.47. A distinguished branch cut need not partition CM into disjoint regions. For

instance, we can choose a branch cut of x2 + y2 = 1 to be the compact set [−1, 1] ⊂ C. Since

this curve is irreducible at infinity it follows that it is automatically distinguished.

We can now formulate a definition for the Robin function that includes the possibility that

V↑ is locally reducible along t = 0. The drawback is that it must be understood ‘piecewise’.

Definition 2.48 (Robin functions for V (locally) reducible and not branched at infinity).

Suppose that V is a smooth d-sheeted algebraic variety with Noether presentation (x, y). Let

u ∈ L+(V). Let C be a distinguished branch cut for V over CM . Suppose that

π−1
i (x) = (x, yi(x)), x ∈ CM\C

lim
t→0

x/t∈CM\C

yi(x/t) = ỹi(x).

Then we define the Robin function ρiu : Vhi \Bπ → [−∞,∞) pointwise by

ρu(x, ỹi(x)) = lim sup
t→0

x/t∈CM\C

u(x/t), yi(x/t)) + log |t|.

We extend the Robin function to be defined everywhere on V h
i by

ρiu(x, y) = lim sup
Vhi \Bπh3(ζ,η)→(x,y)

ρiu(ζ, η).

Lemma 2.49. If X1, ..., Xq are the local irreducible components of V↑ ∩ H∞ (and hence are

algebraic subvarieties) then for any u ∈ L+(V) there is a well defined Robin function associated

to each of X1, ..., Xq.

Proof. It suffices to show that we can define a Robin function on one of the Xj as the other

cases are similar. Suppose that C is a distinguished branch cut, then each V h
i belongs to exactly

one of X1, ..., Xq. Without loss of generality assume that V h
1 , ..., V

h
n ⊂ X1 are all of the V h

i ’s

which are in X1. Then
⋃n
j=1 V

h
j = X1\S where S is a real 2M−1 dimensional set. Then setting

ρu = ρiu(z) when z ∈ V h
i defines a psh function on X1\S.

Next recall ũ(t, z) can be extended to be psh inX1 by taking the lim sup withinX1 (alternatively,

use a desingularisation). Denote by ũ1(0, z) this extension of ũ. Then ũ1(0, z) coincides with

ρu on X1\S and is psh. Since it agrees almost everywhere with ρu it follows that ρu has an

extension to all of X1 given by ρu = ũ1. Repeating this for each Xj gives the result.

2.5.3 V branched at infinity

From the discussion in the previous section, if V is reducible at infinity we can instead study

a desingularisation so it suffices to assume that V is smooth at infinity for the purpose of

understanding this case. The basic problem of this section is that given (0, x, y) ∈ V↑∩H∞ then
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oπ(0, x, y) ≥ 2 (recall Definition 1.38). Equivalently, in the sense of Definition 2.38 (precisely

equation (17)) there are i, j with i 6= j such that

lim
t→0

yi(x/t) = ỹi(x) = ỹj(x) = lim
t→0

yj(x/t)

Example 2.46 exhibits this behavior along the y →∞ path. Situations like this it need not be

true that the projection of the Robin function correctly captures the behavior of ũ along t = 0

since the projection captures one of possibly many paths to that point. Taking the maximum

over all possible paths is the way we will resolve this problem.

Definition 2.50 (Robin function for V irreducible and branched at infinity). Suppose that V
is a smooth d-sheeted algebraic variety with Noether presentation (x, y) which is irreducible and

branched at infinity. Let u ∈ L+(V). Then we define the Robin function ρu : Vh\Bπ → [−∞,∞)

pointwise in the following way. Let C be a branch cut for V over CM .

π−1
i (x) = (x, yi(x)), x ∈ CM\C

lim
t→0

x/t∈CM\C

yi(x/t) = ỹi(x)

J(x, ỹ) = {j : ỹj(x) = ỹ}
ρu(x, ỹ(x)) = max

j∈J(x,ỹ)
lim sup
t→0

x/t∈CM\C

u(x/t), yj(x/t)) + log |t|.

We extend the Robin function to be defined everywhere on Vh by

ρu(x, y) = lim sup
Vh\Bπ3(ζ,η)→(x,y)

ρu(ζ, η).

The obvious adaption can be made for when V is reducible and branched at infinity.

2.5.4 Geometry of Distinct Intersection with Infinity

Recall the following definition from Chapter 1.

Definition (Definition 1.133). We say a d-sheeted algebraic variety V has distinct intersections

with infinity if it satisfies the following properties.

(i) C[z1, ..., zM ] ⊂ C[V] is a Noether normalisation for V.

(ii) Let P = {V({z0, ..., zM−1}) ⊂ PM . The set VP ∩ P = Ṽ ∩ P consists of d distinct points.

(iii) Let VP ∩ P = {λ1, ..., λd} with λi = [0 : ... : 0 : λiM : ... : λiN ]. Then for each i, λiM 6= 0.

In the context of the preceding discussion, we need to understand how ‘bad’ V is at infinity

under this hypothesis in order to make a sensible Robin function definition. The following

theorem does this.
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Theorem 2.51. Let V ⊂ CN be a d-sheeted, M -dimensional algebraic variety which has distinct

intersections at infinity and write (x, y) = z where x ∈ CM , y ∈ CN−M . Then dim(Vsing↑ ) ≤
M − 1 and Vh is a d-sheeted finite branched holomorphic covering over CM .

Proof. Suppose that V = {f1 = ... = fN−M = 0} so that V↑ = {f̃1 = ... = f̃N−M = 0} where

f̃i(t, z) = tdeg fif(z/t). To study the singularities of V↑ we study the Jacobian

Jac(t,z)(f̃1, ..., f̃N−M ) =


∂f̃1

∂t
(t, z)

∂f̃1

∂x1
(t, z) ...

∂f̃1

∂yM
(t, z)

...
...

...
...

∂f̃N−M
∂t

(t, z)
∂f̃N−M
∂x1

(t, z) ...
∂f̃N−M
∂yM

(t, z)

 .

First suppose that t 6= 0. Then observe that

∂f̃i
∂xj

= tdeg fi
∂fi(z/t)

∂zj
= tf̃i,zj (z/t)

where f̃i,zj is the homogenisation of fi,zj (z) = ∂fi(z)
∂zj

. We can hence write

Jac(t,z)(f̃1, ..., f̃N−M ) =


∂f̃1

∂t
(t, z) tf̃1,x1(z/t) ... tf̃1,yM (z/t)

...
...

...
...

∂f̃N−M
∂t

(t, z) tf̃N−M,x1(z/t) ... tf̃N−M,yM (z/t)



= tN−M


1

t

∂f̃1

∂t
(t, z) |

... Jacz/t(f̃1, ..., f̃N−M )

1

t

∂f̃N−M
∂t

(t, z) |


Where Jacz/t(f̃1, ..., f̃N−M ) is the Jacobian only over the z derivatives. By writing ζ = z/t we

observe that Jacz/t(f̃1, ..., f̃N−M ) = Jacζ(f1, ..., fN−M ). We know that Jacζ(f1, ..., fN−M ) has

rank N −M except possibly on an M − 1 dimensional set, so the matrix above must have at

least rank N −M everywhere except possibly an M − 1 dimensional set. However since there

are N −M rows it follows that the rank cannot exceed N −M which shows that, when {t 6= 0},
V↑ is singular at most at an M − 1 dimensional set.

Now suppose that t = 0. If f̂ denotes the top degree homogeneous part of f , then observe that

∂f̃i
∂xj

∣∣∣∣∣
t=0

= tdeg fi
∂fi(z/t)

∂zj

∣∣∣∣
t=0

=
∂f̂i
∂zj

(z) = f̂i,j(z).

∂f̃i
∂t

∣∣∣∣∣
t=0

= f̂i,0(z), fi,0(z) = fi(z)− f̂i(z).
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Suppose that the rank of Jac(0,z)(f̃1, ..., f̃N−M ) is strictly less than N −M for all (0, z) ∈ V↑.
Then one of the rows must be a linear combination of the other rows, that is, there is some

k ∈ {1, ..., N −M} such that there exists ci, 1 ≤ i ≤ N −M , such that

∑
i 6=k

cif̂i,j = ckf̂k,j ,

for all 0 ≤ j ≤ N . Without loss of generality we may assume that ck = 1. For j 6= 0 we have

∑
i 6=k

∫
cif̂i,j dzj =

∫
f̂k,j dzj ,∑

i 6=k
cif̂i = f̂k + a(z1, ..., zj−1, zj+1, ..., zN ).

Doing this for all j shows that a is does not depend on any z1, ..., zN and hence is a constant.

Each f̂i is homogeneous so for any λ ∈ C

λdeg fkfk(z) + a = f̂k(λz) + a =
∑
i 6=k

cif̂i(λz) =
∑
i 6=k

λdeg ficif̂i(z).

This shows that when λ = 0, a = 0 and since a is a constant it follows that

f̂k(z) =
∑
i 6=k

cif̂i(z).

This implies that Vh(= V↑∩H∞ ⊂ CN ) is defined by N−M−1 equations (since f̂k = 0 is a linear

combination of the other equations). So Vh ∩ P = {z1 = .... = zM−1 = f̂1 = ... = f̂N−M = 0}
has dimension at least 1. This contradicts property (ii) of Definition 1.133 i.e. V↑ ∩ P being

distinct finite points {p1, ..., pd}. It follows that the rank of Jac(0,z)(f̃1, ..., f̃N−M ) = N −M for

(0, z) ∈ V↑ satisfying Rank
(
Jacz{f̂1, ..., f̂N−M )

)
= N −M . Hence the rank is N −M − 1 on a

set of dimension at most M − 1, i.e. V↑ is singular on a set of at most dimension M − 1. This

shows that the M dimensional set Vh cannot be in the singular part of V↑. Finally, condition

(iii) of Definition 1.133 implies that Vh is d-sheeted. This completes the proof.

In the context of defining the Robin function we have the following definition.

Definition 2.52 (Robin Function when V has distinct intersections with infinity). Suppose that

V ⊂ CN is an M -dimensional algebraic variety which has distinct intersections with infinity and

Noether presentation (x, y). Further suppose that

π−1
i (x) = (x, yi(x)), for a suitable branch cut C

lim
t→0

x/t∈CM\C

yi(x/t) = ỹi(x).
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Let u ∈ L+(V). Then we define the Robin function ρu : Vh,reg\Bπ :→ [−∞,∞) pointwise by

ρu(x, ỹ(x)) = lim sup
t→0

x/t∈CM\C

u(x/t), y(x/t)) + log |t|.

We extend the Robin function to be defined everywhere on Vh by

ρu(x, y) = lim sup
Vh,reg\Bπh3(ζ,η)→(x,y)

ρu(ζ, η).

Corollary 2.53. If u ∈ L+(V) then ρu is psh on Vh.

Lemma 2.54. If u ∈ L+(V) then ρu ∈ L+(Vh).

Proof. Given a Noether presentation (x, y) it suffices to show that ρu(x, ỹ) = log ‖x‖ + O(1).

Since u ∈ L+(V) it follows that there exists α, β ∈ R such that

log ‖x‖+ α ≤ u(x, y) ≤ log ‖x‖+ β.

Making the substitution (x, y) 7→ (x/t, y(x/t)) yields

log ‖x/t‖+ α ≤ u(x/t, y(x/t)) ≤ log ‖x/t‖+ β.

Adding log |t| through the inequality yields

log ‖x‖+ α ≤ u(x/t, y(x/t)) + log |t| ≤ log ‖x‖+ β.

Taking the lim sup as t→ 0 and y(x/t)→ ỹ yields

log ‖x‖+ α ≤ ρu(x, ỹ) ≤ log ‖x‖+ β.

This proves the claim.

The vast majority of the work we will do in the remainder of this thesis will be in the

following setting.

Definition 2.55. We say that an algebraic variety V satisfies the ‘standard hypothesis’ if it

satisfies the following:

(i) V is smooth, affine, irreducible, and M dimensional.

(ii) (x, y) is a Noether presentation for V with x ∈ CM and y ∈ CN−M and V is d-sheeted

with respect to these coordinates.

(iii) V has distinct intersections with infinity.
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2.5.5 Projective Definition

Observe the following log-homogeneity property of the Robin function.

Lemma 2.56. Let V satisfy the standard hypothesis. Suppose that u ∈ L+(V) then ρu is log

homogeneous.

Proof. Let λ ∈ C\{0}. Since Vh is homogeneous we have the following property:

(x, y) ∈ Vh ⇐⇒ λ(x, y) ∈ Vh ⇐⇒ (λx, y(λx)) ∈ Vh.

That is,

λy = y(λx)

where y on the LHS is a point and the y on the RHS is an analytic function determined by the

projection. With this observation we calculate

ρu(λ(x, ỹ)) = lim sup
t→0

u(λx, y(λx/t)) + log |t|

= lim sup
t→0

u

(
x

t/λ
, y

(
x

t/λ

))
+ log |t/λ|+ log |λ|

= lim sup
t/λ→0

u

(
x

t/λ
, y

(
x

t/λ

))
+ log |t/λ|+ log |λ|

= ρu(x, ỹ) + log |λ|.

Lemma 2.56 says that the Robin function is determined on a complex line by a single point

on that line. It follows that it is also natural to talk about the Robin function defined on the

projective variety Ṽh.

Definition 2.57. Let V satisfy the standard hypothesis. Let u ∈ L+(V). Recall that

Ṽh := {[z] ∈ PN−1 : λz ∈ Vh, λ ∈ C\{0}}.

Then we define the projective Robin function to be

ρ̃u([z]) = ρu(z)− log ‖z‖ = ρu(z/‖z‖).

The motivation for this definition is that it is occasionally convenient to view Ṽ (the pro-

jectivisation of V) as the disjoint union V ∪ Ṽh. With this identification, if [z0 : ... : zN ] are

projective coordinates for Ṽ then the chart given by z0 = 1 corresponds to V whilst setting

z0 = 0 (which is the only set outside of the z0 = 1 chart) gives Ṽh. The projective Robin

function often arises in this context; in particular in the work of Bedford-Taylor [4].
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2.6 Bedford-Taylor Generalisations

We want to generalise results from [4] to the case of an algebraic variety. In particular the

following theorem.

Theorem 2.58 (Theorem 5.5, [4]). Let u, v, w2, ..., wN ∈ L+(CN ). Then∫
CN

(uddcv − vddcu) ∧ ddcw2 ∧ ... ∧ ddcwN =

∫
PN−1

(ρ̃u − ρ̃v) ∧ (ddcρ̃w2 + ω) ∧ ... ∧ (ddcρ̃wN + ω)

where ω = 1
2dd

c log(1 + ‖z‖2).‡

While it would be interesting to recover this result in the most general case (V possibly

reducible, branched at infinity) using our method, there are a number of technical obstructions

to the proof we give here. As our primary concern is understanding the case when V has distinct

intersection with infinity we elect to omit proofs of the more general case. A simpler approach

for the general case would be to use the results of Berman-Boucksom. In particular, Proposition

4.7 [7] is in essence the complex manifold analogue of Theorem 2.58. With some care, one can

use desingularisations and the Proposition to deduce the general case. While this approach

could be used here, we elect to pursue the following method since it is more in the spirit of the

work preceding it. Our strategy is to use projections to relate everything to the CM case using

techniques we have already encountered. We will need the following two results from [4].

Definition 2.59. Let Ω ⊂ CM be open and Z = {z1 = 0}. Assume that Ω∩Z 6= ∅. We define

the class L+(Ω, Z) := {u ∈ PSH ∩ L∞loc(Ω\Z) : u(z) = − log |z1|+O(1), z1 → 0} .

For u ∈ L+(Ω, Z) we let ũ(z) = u(z) + log |z1| so that ũ is a bounded psh function on Ω.

Lemma 2.60 (Lemma 5.1, [4]). Let u, v, w2, ..., wM ∈ L+(Ω, Z) and set T = ddcw2∧...∧ddcwM .

Then there is a (2M − 1) current, S, defined on Ω by the formula

〈S, α〉 = lim
ε→0

∫
|z1|>ε

α ∧ (u dcv − v dcu) ∧ T

for every test 1-form α.

Lemma 2.61 (Lemma 5.2, [4]). Under the hypothesis of Lemma 2.60 we have

dS = (u ddcv − v ddcu) ∧ T − 2πχ{z1=0}[ũ(0, z′)− ṽ(0, z′)] ∧ ddcw̃2(0, z′) ∧ ... ∧ ddcw̃M (0, z′),

where z′ = (z2, ..., zM ).

To prove a Bedford-Taylor formula as in Theorem 2.58 for varieties we first want to realise

u ∈ L+(V) (or L+(CM )) as the restriction of a function u′ defined on Ṽ (or PM ) to the chart

x0 = 1.

‡This is the usual Kähler form for PN .
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Lemma 2.62. Let u ∈ L+(V). Then

u′(x0, x, y]) :=


u(x, y), x0 = 1,

u

(
x1

x0
, ...,

xj−1

x0
,

1

x0
,
xj+1

x0
, ...,

xM
x0

, y

(
x

x0

))
, xj = 1,

defines a psh function on V↑ with logarithmic singularity along x0 = 0.

Proof. The fact that u′ is psh is immediate. To show that u′ has a logarithmic singularity along

x0 = 0 it suffices to choose a chart containing x0 = 0, we’ll choose x1 = 1. Since u ∈ L+(V)

and (x, y) is a Noether presentation for V it follows that

u

(
1

x0
,
x2

x0
, ...,

xM
x0

, y

(
x

x0

))
= log

∥∥∥∥( 1

x0
,
x2

x0
, ...,

xM
x0

)∥∥∥∥+O(1)

= log ‖(1, x2, ..., xM )‖ − log |x0|+O(1).

It follows that u′(x0, x, y) = − log |x0|+O(1) near x0 which finishes the proof.

Corollary 2.63. Let u ∈ L+(V). Then ũ(x0, x, y) = u′(x0, x, y) + log |x0| defines a locally

bounded psh function near x0 = 0. Moreover we can define

ũ(0, x, y) = lim sup
(x0,ξ,η)→(0,x,y)

u′(x0, ξ, η) + log |x0|.

Lemma 2.64. ddcρ̃∗u([x : y]) + ω = ddcũ(0, x, y).

Proof. Observe that by definition of ρu we have

ρ∗u(x, y) = ũ(0, x, y).

Since ρ∗u(x, y) − log ‖(x, y)‖ = ρ̃∗u([x : y]) and ddc log ‖(x, y)‖ = ω when restricted to PN−1 the

result follows.

Remark 2.65. The same constructions work for CN functions. See Section 3 of [4] for details.

Lemma 2.66. The current (u′ddcv′−v′ddcu′)∧ddcw′2∧ ...∧ddcw′M has locally finite mass near

x0 = 0.

Proof. Rewriting u′ in terms of ũ (and similar for other terms) we obtain

log |x0|ddc(ũ− ṽ) ∧ ddcw̃2 ∧ .. ∧ ddcw̃M + (ũddcṽ − ṽddcũ) ∧ ddcw̃2 ∧ ... ∧ ddcw̃M .

The second term is obviously has locally finite mass near x0 = 0 since all functions are locally

bounded there. For the first term let K be a compact set containing points of {x0 = 0} and
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L ⊂ int(K). Theorem 1.79 gives an inequality

‖ log |x0|ddc(ũ− ṽ)∧ddcw̃2 ∧ ... ∧ ddcwM‖L
≤ CK,L‖ log |x0|‖L1(K)‖ũ− ṽ‖L∞(K)‖w̃2‖L∞(K)...‖wM‖L∞(K)

which implies that the RHS has locally finite mass near x0 = 0.

Theorem 2.67. Let V be a smooth irreducible algebraic variety with Noether presentation (x, y)

which has distinct intersections at infinity. Let u, v, w2, ..., wM ∈ L+(V) Then∫
V

(u ddcv − v ddcu) ∧ T = 2π

∫
Ṽh

(ρ̃∗u − ρ̃∗v) ∧ T̃

where T = ddcw2 ∧ ... ∧ ddcwM .

Proof. Without loss of generality we may assume that w2 = ... = wM , and suppose that w is

that function.§ Let C be a branch cut for V over CM with respect to the projection π and let

C ′ be a second branch cut so that C ′ ∩C ⊂ π(Bπ) and let the projection for C ′ be denoted π′.

Let the branches of V with respect to π be denoted V1, ..., Vd and with respect to π′ be denoted

V ′1 , ..., V
′
d. Let U1, ..., U2d such that V1 = U1, ..., Vd = Ud and V ′1 = Ud+1, ..., V

′
d = U2d so that⋃q

j=1 Uj = V. Then

∫
V

(uddcv − vddcu) ∧ T =

2d∑
j=1

∫
Uj

(uddcv − vddcu) ∧ T −
2d∑
j=1

2d∑
i=j+1

∫
Uj∩Ui

(uddcv − vddcu) ∧ T.

(19)

Note that sinceBπ is pluripolar this decomposition is valid. Observe that Uj ∩ Ui ⊂ V\π−1(C ∪ C ′)
so πj and π′i are biholomorphic there. For simplicity we will make the following conventions:

θ = θ(u, v, T ) = (uddcv − vddcu) ∧ T,

S(α) = 〈S(u, v, T ), α〉 = lim
R→∞

∫
|x|<R

α ∧ (u dcv − v dcu) ∧ T,

where ω = 1
2 log(1 + ‖z‖2). Then we have that (19) is equal to

d∑
j=1

∫
πj(Uj)

π∗j θ +
2d∑

j=d+1

∫
π′j(Uj)

π′
∗
jθ −

d∑
j=1

2d∑
i=j+1

∫
πj(Uj∩Ui)

π∗j θ. (20)

We will now do the calculation for one of the Uj , the others are similar. Say we choose Uj (with

1 ≤ j ≤ d). Define

PM−1 ⊃ Ũj = {[1 : x] : x ∈ πj(Uj)}\{[1 : x] ∈ C} = U j,P\CP

§To see this, let w = w2 + ...+ wM and match coefficients after distributing ddc over the terms in w.
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and the homogeneous part of Ũj to be

Ũhj = Ũj ∩ {x0 = 0}.

Since π∗ju, π
∗
j v, π

∗
jw ∈ L+(πj(Uj)) we can use the CM version of Lemma 2.62 to realise each of

these functions as the restriction of psh functions u′, v′ and w′ on Ũj respectively. We claim

that, for any test 1-form α, 〈S(u′, v′, T ′), α〉 defines a current on Ũj . It is enough to prove this

for test 1-forms α which have support in the coordinate patches of Ũj . The coordinate patch

x0 = 1 has the form

lim
R→∞

−
∫
|z|<R

α ∧ (u dcv − v dcu) ∧ T

which is clearly defines a current (since it is the limit of well defined currents). The x1, ..., xM

cases are similar so we only prove the claim for the x1 = 1 chart. In this chart we have local

coordinates

(s, t2, ..., tM ) = (x0/x1, x2/x1, ..., xM/x0).

In these coordinates u′ has the form

π∗ju

(
1

s
(1, t2, ..., tM )

)
= − log |s|+O(1)

as in Lemma 2.62. So in these coordinates, u′ ∈ L+(Ũj ∩ {x1 = 1}, Z) where Ũj ∩ {x1 = 0} is

Ũj written in (s, t) coordinates and Z = {s = 0} and

〈S(u′, v′, T ′), α〉 = lim
ε→0
−
∫
|x0|>ε

α ∧ (u′ dcv′ − v′ dcu′) ∧ T ′.

So we are in the situation of Lemma 2.60, which implies that S defines a current on Ũj . This

proves that S defines a current on Ũj , invoking Lemma 2.61 we obtain

dS(u′, v′, T ′) = θ(π∗ju, π
∗
j v, π

∗
jT )− 2πχ{x0=0}(ũ(0, z)− ṽ(0, z)) ∧ (ddcw̃(0, z))M . (21)

By Lemma 2.66 the current θ can be trivially extended to a current on Ũj (by letting θ = 0 on

Ũj\Uj). Let ψ be a test form, then the equality above becomes∫
Ũj

ψdS(u′, v′, T ′) =

∫
Ũj

ψθ(π∗ju, π
∗
j v, π

∗
jT )− 2π

∫
Ũj

χ{x0=0}ψ(ũ(0, z)− ṽ(0, z)) ∧ (ddcw̃(0, z))M .

Observe that π∗j θ(u, v, T ) = θ(π∗ju, π
∗
j v, π

∗
jT ). Then using equation (21) we can deduce∫

Uj

θ(u, v, T ) =

∫
π(Uj)

π∗j θ(u, v, T ) =

∫
πj(Uj)

θ(π∗ju, π
∗
j v, π

∗
jT )

=

∫
Ũj

dS(u′, v′, T ′) + 2π

∫
Ũhj

(ũ(0, z)− ṽ(0, z)) ∧ (ddcw̃(0, z))M . (22)
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Now

ρπ∗j u(x) = lim sup
t→0

x/t∈πj(Uj)

π∗ju(x/t) + log |t|

= lim sup
t→0

x/t∈πj(Uj)

u(x/t, yj(x/t)) + log |t|

= ρu(x, ỹj),

where (x, ỹj) ∈ V h
j (recalling that Uj = Vj). Observe that π−1

j (Ũj) corresponds to

Vj ∪ Ṽ h
j = Ṽj . Using Lemma 2.64 and the previous observation we can rewrite equation (22) as∫

Vj

θ(u, v, t) =

∫
Ũj

dS(u′, v′, T ′) + 2π

∫
Ũhj

(ρ̃∗π∗j u − ρ̃
∗
π∗j v

) ∧ (ddcρ̃∗π∗jw + π∗jω)M

=

∫
Ṽj

πj∗dS(u′, v′, T ′) + 2π

∫
Ṽ hj

(ρ̃∗u − ρ̃∗v) ∧ (ddcρ̃∗w + ω)M

=

∫
Ṽj

dS(πj∗u
′, πj∗v

′, πj∗T
′) + 2π

∫
Ṽ hj

(ρ̃∗u − ρ̃∗v) ∧ (ddcρ̃∗w + ω)M .

Repeating this for each Uj means the sum in equation (19) becomes∫
V
θ(u, v, t) =

∫
Ṽ
dS(πj∗u

′, πj∗v
′, πj∗T

′) + 2π

∫
Ṽh

(ρ̃∗u − ρ̃∗v) ∧ (ddcρ̃∗w + ω)M

where we are justified in ignoring the pluripolar set Bπ by the logic in the Conservation of

Mass Lemma (Lemma 2.18). dS is an (N,N) current on Ṽ so can be understood by integrating

against test forms. In particular 1 is a test form on Ṽ since Ṽ is compact. Since Ṽ has no

boundary it follows from Stokes theorem for currents (Theorem 1.64) that∫
Ṽ
dS =

∫
∂Ṽ
S = 0.

This completes the proof.

2.7 Explicit Computation

While the proof of the Bedford-Taylor formula was conducted under imposing the standard

hypothesis on V it’s plausible that given suitable adaption it is valid in more general settings.

Precisely, we must respect multiplicity and use distinguished branch cuts. We will verify the

Bedford-Taylor formula for a particular example on an algebraic curve which is both singular

and branched at infinity. Recall ddc = 2i∂∂̄. We wish to verify

∫
V

(u ddcv − v ddcu) ∧ T = 2π

d∑
i=1

∫
Ṽhi

(ρ̃∗u,i − ρ̃∗v,i) ∧ T̃
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where u = max{− log |y|, 2 log |y|+ 1}, v = max{− log |y|, 2 log |y|} and V = {y3 − xy + 1 = 0}.
Since V is 1 dimensional we have T = 1.

We now try to understand the integral on the RHS. We know from prior analysis that Vh =

{(x, 0) : x ∈ C} which is one sheeted. From Example 2.46 we know that V is three sheeted

and two sheets correspond to ‘y → ∞’ and one sheet corresponds to ‘y → 0’. Each sheet

corresponds to a copy of {(x, 0) : x ∈ C} at infinity. Using a desingularisation of V↑ (e.g.

equation (10)) we can take Vh1 = {(x, 0; a) : x ∈ C, a ∈ P}, Vh2 = {(x, 0; a) : x ∈ C, a ∈ P} and

V3 = {(x, 0; b) : x ∈ C, b ∈ P} where a corresponds to the limit as y →∞ and b corresponds to

the limit as y → 0. We have included two copies of the point a because it has multiplicity 2.

It follows that the integral on the RHS becomes the discrete evaluation of the Robin functions

at ζ1 = (1, 0; a), ζ2 = (1, 0; a) and ζ3 = (1, 0; b). Since this evaluation is discrete, we need not

worry about regularising ρu or ρv. Observe that x = y2 + y−1 so 2 log |y| + 1 = log |x − y−1|.
Write ρu,i to indicate the Robin function on Vi. With this we calculate

ρu,1(x) = lim sup
λ→0
y→∞

log |(x− y−1)/λ|+ log |λ| = log |x|+ 1,

ρu,1(ζ1) = 1.

Using a similar calculation one can deduce ρu,2(ζ2) = 1, ρu,3(ζ3) = 0 and ρv,1(ζ1) = ρv,2(ζ2) =

ρv,3(ζ3) = 0. Hence the integral on the RHS can be evaluated as

2π ((ρu,1(x1)− ρv,1(x1)) + (ρu,2(x2)− ρv,2(x2)) + (ρu,3(x3)− ρv,3(x3)))

= 2π((1− 0) + (1− 0) + (0− 0)) = 4π.

Observe that y3 − xy + 1 = 0 can be parameterised by s = y, x = s3+1
s . In s coordinates we

have V =
{(

s3+1
s , s

)
: s ∈ C\{0}

}
We have the following ddc of a maximum formula from [5].

Theorem 2.68 (Theorem 1, [5]). Let Ω ⊂ C. If u1, u2 ∈ C3 ∩ PSH(Ω) let u = max{u1, u2}.
Then

ddcu = dc(u1 − u2)|{u1=u2} +

∫
{u1>u2}

ddcu1 +

∫
{u2>u1}

ddcu2.

Using this formula we see that the only term which is nonzero for ddcu and ddcv is the dc
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term. In conjunction with the parameterisation in s we have;

ddcu(s) = dc(2 log |s|+ 1− (− log |s|))||s|=e−1/3 = dc(3 log |s|+ 1)||s|=e−1/3 = dc(3 log |s|)||s|=e−1/3

=
3i

2

(
(∂̄ − ∂) log(ss)

)
||s|=e−1/3 =

3i

2

((
1

s
ds− 1

s
ds

))∣∣∣∣
|s|=e−1/3

=
3i

2

(
−ie−1/3e−it

e−1/3e−it
dt− ie−1/3eit

e−1/3eit
dt

)
=

3i

2
(−2i dt) = 3 dt

i.e. for any test function φ,
∫
φ(s) ddcu(s) = 3

∫ 2π
0 φ(e−1/3t) dt. That is, ddcu(s) is three times

Lebesgue measure on {|s| = e1/3}, the same calculation shows ddcv is three times Lebesgue

measure on on the unit circle.

Let dλ be Lebesgue measure. We calculate∫
V
u ddcv − v ddcu =

∫
C\{0}

u ddcv − v ddcu

3

∫
|s|=1

2 log |s|+ 1 dλ− 3

∫
|s|=e−1/3

− log |s| dλ

= 6π − 2π = 4π.

Which verifies the formula.

2.8 Justification of the Standard Hypothesis

While the motivations behind requiring V to have distinct intersections with infinity and a

Noether presentation (x, y) has been thoroughly discussed, the assumption that V is irreducible

and smooth has had no such discussion. This section is dedicated to illuminating how the

singular and/or reducible case can be deduced from the smooth, irreducible case.

2.8.1 V singular

By quasicontinuity and the fact that the singular points of V lie in an M − 1 dimensional

algebraic subvariety, one might expect that the singular case can be deduced from the smooth

case. It transpires that this is indeed the case. Dinh and Sibony [28] provide an efficient way

to translate results from the smooth case to the singular case. The key results are the following

lemmas that we encountered in Section 2.4.

Lemma 2.69 (Proposition 2.2, [28]). Let η : X̂ → X be a desingularisation of X. If u is

a wpsh function on X then there is a psh function û on X̂ such that u(x) = maxη−1(x) û for

x ∈ X. Conversely, if û is psh on X̂ then x 7→ maxη−1(x) û defines a wpsh function on X.

72



Lemma 2.70 (Proposition 2.3, [28]). Let η : X̂ → X be a desingularisation of X and u a wpsh

function on X. Suppose that T is a positive current on X and T̂ is the positive current on X̂

equal to T on X̂\η−1Xsing and 0 otherwise. Then ddcu ∧ T = η∗(dd
cû ∧ T̂ ).

These two lemmas allow us to transfer almost all results from the smooth case to the singular

case. We’ll refer to the application of these two lemmas as ‘transposition to the smooth case’.

We illustrate this with an example.

Theorem 2.71 (c.f. Theorem 2.12). Let u1, ..., uq be locally bounded weakly plurisubharmonic

functions and let uk1, ..., u
k
q be monotone (either increasing or decreasing) sequences of weakly

plurisubharmonic functions converging almost everywhere to u1, ..., uq. Then for any positive

current T .

(a) uk1dd
cuk2 ∧ ... ∧ ddcukq ∧ T −→ u1dd

cu2 ∧ ... ∧ ddcuq ∧ T weakly.

(b) ddcuk1 ∧ ... ∧ ddcukq ∧ T −→ ddcu1 ∧ ... ∧ ddcuq ∧ T weakly.

Proof. As in the smooth case, it suffices to prove (a) since (b) follows immediately from it. The

result is true for the smooth case so we may apply the standard transposition to the smooth

case. The details are as follows. The functions û1, ..., ûq are locally bounded psh functions on

X̂ so it follows from the smooth case that

ûk1dd
cûk2 ∧ ... ∧ ûkq ∧ T̂ −→ û1dd

cû2 ∧ ... ∧ ûq ∧ T̂ , weakly. (23)

But now

η∗(û
k
1dd

cûk2 ∧ ... ∧ ûkq ∧ T ) = uk1dd
cuk2 ∧ ... ∧ ukq ∧ T,

η∗(u1dd
cû2 ∧ ... ∧ ûq ∧ T̂ ) = u1dd

cu2 ∧ ... ∧ uq ∧ T.

So applying η∗ to both sides of (23) gives the result.

Define

wL(V) := {u ∈ L(Vreg) : u is usc on V}.

For results demanding a higher level of precision, such as the calculation of mass for u ∈ wL+(V),

we can exploit that Vsing is pluripolar. To highlight this we calculate the mass of functions in

wL+(V). Note that, provided that V is irreducible, the argument proving the existence of a

Noether presentation goes through without modification.

Theorem 2.72. Suppose that V is an M dimensional, irreducible, singular algebraic variety

with Noether presentation (x, y). Let u ∈ wL+(V), then
∫
V(ddcu)M = d(2π)M where d is the

number of branches of V.

Proof. By transposition to the smooth case, the Mass Comparison Theorem (Theorem 2.16)

is valid for a singular variety. As such it suffices to compute the mass of one function in the

73



class wL+(V). As in the smooth case, we will choose u = log+ |x|. Without loss of generality

(e.g. by a linear translation if necessary), we may assume that no singular points or branch

points are contained in π−1(B1(0)). So we may take a branch cut C which avoids B1(0). But

now supp(ddcu)M is supported in Vreg\π−1(C) and so we may apply the Conservation of Mass

Lemma (Lemma 2.18) to conclude∫
V

(ddcu)M =

∫
Vreg\π−1(C)

(ddcu)M =
∑∫

Vi∩Vreg
(ddcu)M =

∑∫
B1(0)

(ddcu)M = d(2π)M .

2.8.2 V Reducible

The only kind of reducible varieties we are willing to discuss are those of the form V = V1 ∪ V2

where V1 and V2 are smooth irreducible varieties. When dim(V1) > dim(V2) the situation is

uninteresting since V2 is pluripolar with respect to PSH(V1). As such we will primarily be

concerned with varieties of the same dimension M with V1 6= V2. The logic in our discussion

will extend to a finite union of smooth irreducible varieties so it is sufficient to use V1 and V2

to illuminate the concepts.

The general strategy is similar to the singular case. We use desingularisation as our main tool

to obtain results from the smooth irreducible case. In section 4.7 we explicitly show how this

can be done. The results that cannot be obtained this way are those which make geometric

claims about V. In light of this, the most important result necessary for us to establish is the

existence of a Noether presentation. Suppose that

V1 = {P1(z) = ... = PN−M (z) = 0}
V2 = {Q1(z) = ... = QN−M (z) = 0}

are smooth irreducible varieties. Then their union is defined to be

V = V1 ∪ V2 := {Pi(z)Qj(z) = 0 : 1 ≤ i, j ≤ N −M}.

We will assume that Pi 6= Qj for all i, j for simplicity (if there is equality we can modify the

polynomials defining V to accommodate this fact).

Lemma 2.73. With the setup as above, there exists a Noether presentation for V.

Proof. The proof given in Theorem 2.21 works in this situation with no modification. To see

this note the following:

• V is a variety defined by (N − M)2 equations, but many of these equations contain

redundant information. Since V is M -dimensional, it is straightforward to see that V =

{Pi(z)Qi(z) : 1 ≤ i ≤ N −M} and so V has co-dimension N −M .
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• Reducibility has no impact on the existence of a Groöbner basis.

• The proof never appeals to any fact that might depend on irreducibility e.g. no structure

of the ideal I(V) is assumed beyond the properties of any polynomial ideal.

Remark 2.74. If V is singular or reducible and has distinct intersections with infinity, by the

methods discussed in this Section we can make useful definition for the Robin function in the

analogous way to the smooth case. This idea will be used in Section 4.6.
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3 Properties of the Robin Function

3.1 Siciak’s H-principle

Recall the classical H-principle due to J. Siciak.

Theorem 3.1 (H-principle, [51]). Let Pn(CN ) (resp. Hn(CN )) denote the space of all poly-

nomials of degree at most n (resp. homogeneous polynomials degree at most n) in N complex

variables. Let L(CN ) (resp. H(CN )) denote the class of logarithmic psh functions (resp. log

homogeneous psh functions). The maps

(i.) Hn(C× CN ) 3 Qn(t, z)→ Qn(1, z) ∈ Pn(CN ),

(ii.) H(C× CN ) 3 u(t, z)→ u(1, z) ∈ L(CN )

are one-to-one. If P ∈ Pn(CN ) then the unique element P̃ ∈ Hn(C × CN ) such that P (z) =

P̃ (1, z) is given by the formula P̃ (t, z) = tnP (z/t). If u ∈ L(CN ) then the unique element

ũ ∈ H(C× CN ) such that ũ(1, z) = u(z) on CN is given by

ũ(t, z) :=


log |t|+ u(z/t), t 6= 0

lim sup
(t,ζ)→(0,z)

log |t|+ u(ζ/t), t = 0.

A corresponding version of the H-principle for algebraic varieties essentially formalises the

discussion from Section 2.5. We will also discuss a weighted version in Section 4.

Notation 3.2. We will employ the following notation for convenience; Pn(V) (resp. Hn(V)) will

denote the polynomials of degree n (resp. homogeneous polynomials of degree n) which are not

in the ideal I(V) (resp. homogeneous ideal Ih(V)).

The variety V↑ always is singular at the origin (since it is a homogeneous variety). The

singularity at the origin will never pose any problem for us since we will be exclusively consider

log-homogeneous functions on V↑ which all take the value −∞ at the origin. It is possible that

V↑ has additional singularities, this necessitates the following definition.

Definition 3.3. Suppose that V is an irreducible algebraic variety (possibly singular). We define

the class of weakly log homogeneous psh functions to be

wH(V) := {u ∈ H(Vreg) : u is usc on V}.

Theorem 3.4 (H-principle for Algebraic Varieties). Suppose that V is an algebraic variety

satisfying the standard hypothesis, with (possibly singular) lift V↑.

(i) The map Hn(C × CN ) 3 Qn(t, z) → Qn(1, z) ∈ Pn(CN ), is one to one. Moreover,

Qn(t, z) ∈ I(V↑) if and only if Qn(1, z) ∈ I(V).
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(ii) If P ∈ Pn(V) then the unique element P̃ ∈ Hn(V↑) such that P (z) = P̃ (1, z) is given by

the formula P̃ (t, z) = tnP (z/t) and P ∈ I(V) implies P̃ ∈ I(V↑).

(iii) The map wH(V↑) 3 u(t, z)→ u(1, z) ∈ L(V) exists.

(iv) If u ∈ L(V) then the unique element ũ ∈ wH(V↑) such that ũ(1, z) = u(z) is given by

ũ(t, z) :=


log |t|+ u(z/t), t 6= 0

lim sup
(t,ζ)→(0,z)

log |t|+ u(ζ/t), t = 0.

In particular, the map in (iii) is one to one.

Proof. (i) The first claim is a direct consequence of the H-principle (Theorem 3.1). The second

claim follows since Qn ∈ I(V↑) implies Qn ≡ 0 at every point of V↑. Since {1} × V ⊂ V↑ it

follows that Qn(1, z) ≡ 0 on V.

(ii) The first claim is a direct consequence of the H-principle. The second claim follows since

every point (t, z) ∈ V↑ is a linear multiple of a corresponding point (1, z/t) ∈ V. Hence for any

(t, z) ∈ V↑ we have P̃ (t, z) = tnP (1, z/t) = 0, hence P̃ (t, z) ∈ I(V↑).

(iii) By Theorem 2.51, the only place where V↑ can be singular is on the set {t = 0} ∩ V↑. It

follows that the only place that u(t, z) ∈ wH(V↑) may not be psh is on the set {t = 0} ∩ V↑
which does not contain {1} × V. It follows then that u(1, z) ∈ PSH(V) so we need only check

that u has logarithmic growth. This follows since by being a member of wH(V↑) there exists

an α ∈ R such that

u(t, z) = u(1, z/t) + log |t| ≤ log ‖(t, z)‖+ α

u(1, z/t) ≤ log ‖(1, z/t)‖+ α.

After letting t = 1 the result is immediate and u(1, z) ∈ L(V).

(iv) Clearly ũ is psh away from {t = 0} and since {t = 0} ∩ V↑ is pluripolar in V↑ the up-

per semicontinuous regularisation yields a wpsh function on V↑. By construction ũ(λt, λz) =

ũ(t, z) + log |λ| for t 6= 0. We can use the argument from Lemma 2.56 to show that ũ is log ho-

mogeneous on {t = 0}∩V↑ and hence log homogeneous everywhere.∗ Since ũ is log homogeneous

it is determined q.e. by the values taken on {1} × V which implies uniqueness.

Corollary 3.5. We have the following inclusion of ideals in C[t, z]; I(V↑) ⊂ I({1}×V) ⊂ Ih(V↑)
where Ih(V↑) ⊂ H(CN ) is a homogeneous polynomial ideal.

∗The hypothesis of Lemma 2.56 requires u ∈ L+(V), however this merely ensures that ρu is not identically
−∞ on Vh. ũ is obviously still log homogeneous if it is identically −∞ on {t = 0} ∩ V↑ so using the argument
given there is valid.
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Corollary 3.6. Suppose that V is an algebraic variety (possibly singular). Then the H-principle

holds with L(V) replaced with

wL(V) = {u ∈ L(Vreg) : u is usc on V}.

Proof. Follows from the standard desingularisation argument.

Example 3.7. Suppose that V = {y3−xy+1 = 0} and u(x, y) = max{2 log |y|+1,− log |y|}. We

saw in Section 2.4 that the function is either 0 or 1 at infinity depending on the path we take.

The lifted variety is V↑ := {x3−xyt+ t3 = 0}. When t = 0, V↑ consists of the set {0}×C×{0}.
The lift of u given by the H-principle is

ũ(t, x, y) =


u(x/t, y(x/t)) + log |t|, t 6= 0

lim sup
t→0

u(x/t, y(x/t)) + log |t|, t = 0.

We can find this explicitly by using the fact that x = y2/t − t2/y and t → 0 implies either

y → 0 or y →∞.

lim sup
t→0

u(x/t, y(x/t)) + log |t| = lim sup
t→0

(max{2 log |x/t|+ 1,− log |x/t|}+ log |t|) .

When y →∞ then 2 log |y|+ 1 > − log |y| so in this case

lim sup
t→0

2 log |y(x/t)|+ 1 + log |t| = lim sup
t→0

log(|t||y(x/t)|2) + 1

= lim sup
t→0

log |t||x/t+ t/y(x/t)|+ 1 = log |x|+ 1. (24)

When y → 0 then − log |y| > 2 log |y|+ 1 so

lim sup
t→0

− log |y(x/t)|+ log |t| = lim sup
t→0

log(|t|/|y(x/t)|)

= lim sup
t→0

log |t||x/t− y(x/t)2/t| = log |x|. (25)

Taking the max of equations (24) and (25) yields ũ(0, x, y) = log |x|+ 1. So

ũ(t, x, y) =


u(x/t, y(x/t)) + log |t|, t 6= 0

log |x|+ 1, t = 0.

Clearly ũ is log homogeneous, but fails to be psh along t = 0. To see this, note that V↑ is locally

reducible near {t = 0} and decomposes into two holomorphic components with one component

corresponding to y → 0 and the other corresponding to y →∞. The restriction map to either

of these components is holomorphic. Restricting ũ to the y → 0 component fails to yield a psh
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function as it is not usc (it approaches the value log |x| at t = 0, but takes the value log |x|+ 1).

Hence ũ cannot be psh. It is readily seen that ũ is in wH which is phenomena which does not

occur in the classical case.

3.2 Bedford-Taylor Consequences

Our first consequence of Theorem 2.67 is a generalisation of Theorem 6.1 from [4]. For this we

need an identity due to Bedford-Taylor.

Proposition 3.8. Suppose that u, v ∈ PSH(X). We have the following algebraic identity;

u (ddcv)M − v (ddcu)M = (u ddcv − v ddcu) ∧
n−1∑
j=0

(ddcu)j ∧ (ddcv)n−j−1

+ (v − u)
n−1∑
j=1

(ddcu)j ∧ (ddcv)n−j .

Proof. For notational convenience we write

T l,m
i,k (u, v) = T l,m

i,k =
l∑
j=i

(ddcu)j+k ∧ (ddcv)m−j

so that the RHS of the formula becomes

(u ddcv − v ddcu) ∧ T M−1,M−1
0,0 + (v − u)T M−1,M

1,0 .

Note the symbolic formula T l,m
i,k = T l+1,m+1

i+1,k−1 . Observe that

v(ddcv)M − u(ddcu)M = v(ddcv)M − u(ddcu)M + uT M−1,M
0,0 − uT M−1,M

0,0 + v T M−1,M−1
0,1

− v T M−1,M−1
0,1

= uT M−1,M
0,0 − uT M,M

0,0 + v T M−1,M−1
−1,1 − v T M−1,M−1

0,1

= uT M−1,M
0,0 − v T M−1,M−1

0,1 + v T M,M
0,0 − uT M,M

0,0

= uT M−1,M
0,0 − v TM,M

1,0 + (v − u)T M,M
0,0

= (u ddcv) ∧ TM−1,M−1
0,0 − (v ddcu) ∧ TM,M

1,−1 + (v − u)T M,M
0,0

= (u ddcv) ∧ TM−1,M−1
0,0 − (v ddcu) ∧ TM−1,M−1

0,0 + (v − u)T M,M
0,0

= (u ddcv − v ddcu) ∧ T M−1,M−1
0,0 + (v − u)T M,M

0,0 .

Note that

(v − u)T M,M
0,0 = (v − u)

M∑
j=0

(ddcu)j ∧ (ddcv)M−j

= (v − u)
M−1∑
j=1

(ddcu)j ∧ (ddcv)M−j + (v − u)
(
(ddcu)M + ddcv)M

)
.
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By adding −(v − u)
(
(ddcu)M + ddcv)M

)
to both sides of the first deduction and cancelling

terms, we have

u(ddcv)M − v(ddcu)M = (u ddcv − v ddcu) ∧ T M−1,M−1
0,0 + (v − u)T M−1,M

1,0

which proves the formula.

Theorem 3.9. Suppose that V is an algebraic variety which satisfies the standard hypothesis.

If u, v ∈ L+(V) and u ≥ v then

∫
V
u (ddcv)M ≤

∫
V
v (ddcu)M + 2π

M−1∑
j=0

∫
Ṽh

(ρ̃u − ρ̃v) (ddcρ̃v + ω)M−1−j ∧ (ρ̃u + ω)j

where ω = 1
2dd

c log(1 + ‖z‖2).

Proof. We retain the notation from Proposition 3.8 for convenience. By integrating the algebraic

formula Proposition 3.8 we have∫
V
u(ddcv)M − v(ddcu)M =

∫
V

(u ddcv − v ddcu) ∧ T M−1,M−1
0,0 +

∫
V

(v − u)T M−1,M
1,0 .

Since u ≤ v it follows that the last term must be negative from which we deduce∫
V
u(ddcv)M − v(ddcu)M ≤

∫
V

(u ddcv − v ddcu) ∧ T M−1,M−1
0,0 . (26)

Observe that by definition

TM−1,M−1
0,0 =

M−1∑
j=0

(ddcu)j ∧ (ddcv)M−1−j .

Invoking the Bedford-Taylor formula (Theorem 2.67) to each term of the sum above we obtain

∫
V

(u ddcv − v ddcu) ∧
M−1∑
j=0

(ddcu)j ∧ (ddcv)M−1−j

= 2π

∫
Ṽh

(ρ̃u − ρ̃v) ∧
M−1∑
j=0

(ddcρ̃u + ω)j ∧ (ddcρ̃v + ω)M−1−j . (27)

Applying the deduction from (27) to the deduction in (26) yields the result.

We want to prove a consequence of Theorem 3.9 due to Bloom (Lemma 2.1, [11]). To do so

we need the following lemma originally due to Bedford-Taylor ([4], Lemma 6.5).

Lemma 3.10. Suppose that u ∈ L(V), v ∈ L+(V) and u ≤ v for (ddcv)M -almost all of the

points in the support of (ddcv)M . Then u ≤ v in V.

Proof. First note that supp(ddcv)M is contained in {u ≤ v}. Suppose that there exists z0 ∈ V
such that u(z0) > v(z0). Let E be an open neighbourhood of z0 where E ⊂ {u(z) > v(z)} and

80



let w ∈ L(V) with supp(ddcw)M ⊂ E. Since w ∈ L(V), by addition of a constant if necessary,

we may assume that w(z) ≤ v(z).

Let 0 < δ < ε be such that S = {u(z) + δw(z) ≥ (1 + ε)v(z)} is compact. Supposing that S is

compact is valid since v(z) ≥ log ‖z‖+ β for some β ∈ R. Hence, for an appropriately chosen ε

and δ, (1 + ε)v(z) grows faster than u(z) + δw(z). Now for sufficiently small ε we have E ⊂ S,

precisely when ε is chosen so that 0 ≤ εv(z)− δw(z) ≤ min{u(z)− v(z) : z ∈ E}. Observe that

if S ∩ supp(ddcv)M 6= ∅ then any point in the intersection fails to satisfy the lower bound for

v(z); i.e.

(1 + ε)v ≤ u(z) + δw(z) ≤ v(z) + δw(z) ⇐⇒ εv(z) ≤ δw(z) 	.

This implies that S ∩ supp(ddcv)M = ∅. Hence
∫
S(ddcv)M = 0. We may use the comparison

theorem (Theorem 2.13) since ∂S has admissible boundary data.

0 <

∫
E

(ddcδw)M +

∫
E

(ddcu)M

≤
∫
E

(ddc(u+ δw))M

≤
∫
S

(ddc(u+ δw))M

≤ (1 + ε)M
∫
S

(ddcv)M = 0 	.

This completes the proof.

Theorem 3.11. Let K be a nonpluripolar compact set in V and suppose that VK(z) ≤ 0 iff

z ∈ K. Let v ∈ L+(V) and suppose that v ≤ 0 on K. If ρ̃∗v = ρ̃∗K then VK = v.

Proof. Without loss of generality, we may assume v ≥ 0 by consider max{v, 0} if necessary.

The formula from Theorem 3.9 yields

∫
V
VK (ddcv)M ≤

∫
V
v (ddcVK)M + 2π

M−1∑
j=0

∫
Ṽh

(ρ̃∗K − ρ̃∗v) (ddcρ̃∗v + ω)M−1−j ∧ (ddcρ̃∗u + ω)j

=

∫
V
v (ddcVK)M = 0.

We have used the fact that supp(ddcVK)M ⊂ K and Stokes theorem to conclude that the final

integral is 0. This implies that

0 =

∫
V
VK(ddcv)M =

∫
{VK>0}

VK(ddcv)M .

Hence {VK > 0} is a set of (ddcv)M -measure zero. But since VK , v ≥ 0 it follows that {VK >

v} ⊂ {VK > 0} and so {VK > v} must also have (ddcv)M -measure zero. By Lemma 3.10 it

follows that VK ≤ v in V. Hence there must be equality since VK is maximal on V\K. This
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completes the proof.

Remark 3.12. Bloom [11] proves the analogous proposition for v ∈ L(CN ). We can weaken the

hypothesis of Theorem 3.11 from L+ to L by considering max{v, 0, log |z|+c} instead of v, with

c chosen so that log |z|+ c ≤ 0 on K. Bloom also imposes polynomial convexity and regularity

on K. Polynomial convexity is equivalent to the condition VK(z) ≤ 0 iff z ∈ K while we make

no regularity assumption.

We are now interested in studying the continuity properties of the Robin function. Classical

results along these lines are due to Levenberg [40], Bloom [11], and Nguyen and Zeriahi [45].

Since our standard hypothesis allows the possibility of singularities on Vh we can only hope for

weak continuity. Precisely,

Definition 3.13. Suppose that V is an algebraic variety. We say a function u is weakly con-

tinuous if u is continuous on Vreg and upper semicontinuous on Vsing.

Definition 3.14. Suppose that V is irreducible but possibly singular. We say that a compact set

K ⊂ V is regular if the extremal function VK is weakly continuous on V. Equivalently, VK ≡ V ∗K
on K.

Corollary 3.15. If V ∗K ≡ 0 on K then K is regular.

Proof. Note that V ∗K ∈ wL(V). Then V ∗K = 0 on K implies V ∗K ≤ VK .

Corollary 3.16. If K ⊂ V is regular then VK is weakly continuous on V. If additionally V is

smooth then VK is continuous.

Remark 3.17. This is somewhat surprising since it is not guaranteed that VK will be weakly

continuous at singular points. VK being an upper envelope of continuous functions guarantees

that VK is lower semicontinuous so one might expect that at singular points VK is lower semi-

continuous while V ∗K is upper semicontinuous. The corollary says that this is never the case

when K is regular.

We note the following (often overlooked) property of regularity for future use.

Lemma 3.18 (Negligibility Lemma for Regular Sets). Let K be a non-pluripolar compact set

in V. Let K∗ := {V ∗K(z) ≤ 0}. Then K\K∗ is pluripolar.

Proof. The result is local so it suffices to prove the result on charts (Eα, φα) which cover K.

Let

Uα := {u ∈ PSH(φα(Eα)) : (u ◦ φα)(z) = v(z)|Eα where v ∈ L(V), v|K ≤ 0} .

Then Uα is a family of psh functions which is locally bounded above (by φ∗αV
∗
K). If uα =

supu∈Uα u(z) then the set {uα(z)∗ > uα(z)} is pluripolar by Theorem 4.7.6 [37]. By construction

uα = φ∗αVK and u∗α = φ∗αV
∗
K . It follows that (K\K∗) ∩ Eα is pluripolar which completes the

proof.
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Corollary 3.19. The set {V ∗K > VK} is pluripolar.

Proof. Vsing is pluripolar so it suffices to check {V ∗K > VK} ∩ Vreg is pluripolar. The argument

in Lemma 3.18 does this.

Theorem 3.20. Suppose that V satisfies the standard hypothesis and let K ⊂ V be regular. Let

ṼK(t, z) be the lift of VK to V↑ given by the H-principle. Let E = {(t, z) ∈ V↑ : ṼK(t, z) ≤ 0}.
Then

Ṽ +
K (t, z) = max{0, ṼK(t, z)} = VE(t, z).

Moreover, both functions are weakly continuous on V↑.

Proof. Firstly, Ṽ +
K (t, z) = 0 on E by construction of E. Since VK = V ∗K on V it follows that

VK ∈ L(V) so by the H-principle ṼK(t, z) ∈ wH(V↑) and so Ṽ +
K (t, z) ∈ wL(V↑). It follows that

Ṽ +
K ≤ VE , so we seek the reverse inequality. Observe that E is a circled set since ṼK(t, z) is log

homogeneous. It follows that VE is homogeneous and hence coincides with the homogeneous

extremal function. Consequently we need only consider log homogeneous functions to define

VE . If h ∈ wH(V↑) then by the H-principle h(1, z) ∈ L(V), and in particular for t 6= 0

h(t, z) ≤ VE(t, z)

⇒ h(1, z/t) + log |t| ≤ VE(1, z/t) + log |t|, t 6= 0

⇒ h(1, ζ) ≤ VE(1, ζ) ≤ VK(ζ), ζ = z/t.

It follows that h(t, z) ≤ ṼK(t, z) for all (t, z) ∈ V↑\ ({t = 0} ∪ E). It follows then that VE = 0

on E\{t = 0}, and hence V ∗E ≡ 0 on E since {t = 0} ∩ E is pluripolar (in V↑). Since Ṽ +
K = VE

quasi-everywhere it follows that they must agree everywhere since they are both psh functions,

hence Ṽ +
K ≡ VE . Weak continuity is an immediate consequence of VE = V ∗E = 0 on E.

Corollary 3.21. Suppose that K ⊂ V is regular. Then ρK is weakly continuous on Vh.

Proof. By the previous theorem the function Ṽ +
K is weakly continuous on V↑. Note that the

restriction of Ṽ +
K to {t = 0} ∩ {ṼK ≥ 0} defines the values for the Robin function on that

set. It follows that the Robin function is weakly continuous there. Since Robin functions are

log homogeneous by Lemma 2.56 they are continuous along complex lines. It follows that weak

continuity extends to all points of Vh (taking the value −∞ at 0) which completes the proof.

3.3 Polynomial Formulae

Theorem 3.22. Let K ⊂ V be compact and VK be the corresponding extremal function. Define

ΦK(z) = sup{|p(z)|1/deg(p) : p ∈ C[V], ‖p‖K ≤ 1}.

Then VK = log ΦK .
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Proof. By Klimek [37] Theorem 5.1.7 the corresponding result holds in CN . In this light,

treating K as a subset of CN gives the desired result provided that

ΦK(z) = sup{|p(z)|1/ deg(p) : p ∈ C[z], ‖p‖K ≤ 1}. (28)

To this end observe that {p + I(V) : p ∈ C[V]} ⊃ C[z] and all polynomials q in this class have

the same values on V. It follows that for any fixed p ∈ C[V] the supremum

sup
{
|q(z)|1/deg q : q ∈ {p+ I(V)}

}
is attained by q ∈ {p+I(V)} of minimal degree in this class. Observe that p has minimal degree

in this class since deg(p + q) = max{deg p,deg q} so deg(p + q) ≥ deg(p) for all q. As such it

suffices for the supremum in (28) to be taken only over p ∈ C[V].

Remark 3.23. Despite K being pluripolar in CN the above result still holds without contradict-

ing that VK is finite on V. However, VK =∞ on CN\V if K is viewed as a subset of CN (which

implies that K is pluripolar in CN ). Our approach simplifies the approach of Zeriahi [55] who

proves the formula intrinsically on V rather than by restriction from CN .

Theorem 3.24. Suppose that V satisfies the standard hypothesis and let K ⊂ V be compact

and regular. Define

ΨK(z) = sup{|p̂(z)|1/ deg(p) : p ∈ C[V], ‖p‖K ≤ 1}.

where p̂(z) is the top degree homogeneous part of p (recall Definition 1.150). Then

ρK(z) = log ΨK(z).

Proof. We use the notation from Theorem 3.20. Let E be as in the hypothesis of Theorem 3.20.

Then E is a circled set so, by Lemma 1.148, ΦE = ΨE . Then VE = ΨE(z) by Theorem 3.24.

Note VE(0, z) = ρK(z) hence ΦE(0, z) = ρK(z). We make two observations. Firstly, if p(t, z) is

a homogeneous polynomial in N + 1 variables, then p(0, z) is a homogeneous polynomial in N

variables and is equal to p̂(1, z). Secondly, if 1
deg(p) log |p(t, z)| ≤ VE(t, z) then log |p(1, z)| ≤ 0

for z ∈ K. The conclusion of the theorem follows from these two observations.

Corollary 3.25. Let K̂ = {z ∈ V : |p(z)| ≤ ‖p‖K for all p ∈ C[V]} be the polynomial convex

hull of K. Then VK = VK̂ . Moreover if K = {z ∈ V : VK(z) ≤ 0} then K is polynomially

convex.

Proposition 3.26. Suppose that V satisfies the standard hypothesis and let K ⊂ V be compact

and not regular. Then

ρK(z)∗ = log ΨK(z)∗.
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Proof. Let V be the function

V := sup{ũ(t, z) : u|K ≤ 0, u ∈ L+(V)}

where ũ(t, z) is the lift guaranteed by the H-principal. Then V is the extremal function for

its zero set. That is, if E = {V ≤ 0} then VE = V . Moreover E is circled since each ũ is

homogeneous. It follows then that VE = log ΨE(t, z). If Kh := {z ∈ Vh : ΨK(z) ≤ 0} then

since any p which is a competitor for ΨKh(z) is a competitor for ΨE(0, z) and visa versa,

ΨK(z) = ΨKh(z) = ΨE(0, z).

By Corollary 3.19 VK(z)∗ = VE(1, z) q.e. since VE(1, z) = VK(z). It follows that ṼK(t, z)∗ =

VE(t, z) q.e. Taking the usc regularisation of both sides we obtain the equality VK(t, z)∗ =

VE(t, z)∗ and in particular for t = 0. That is,

ρK(z)∗ = ṼK(0, z)∗ = VE(0, z)∗ = ΨE(0, z)∗

We are done if ΨE(0, z)∗ = ΨK(z)∗ (note there may not be equality since the usc regularisation

on the LHS is over (t, z) while the usc regularisation on the RHS is only over z). Let Z = {z ∈
V : VK(z)∗ > VK(z)} and Z̃ = {(t, z) ∈ V↑ : (1, z/t) ∈ Z, t 6= 0}. Then the set Z̃ coincides with

{VE(t, z)∗ > VE(t, z), t 6= 0} by construction of VE . Then for any point (0, z) outside of an open

neighbourhood of Z̃ we have

VE(0, z) = lim sup
(t,ζ)→(0,z)

(t,z)∈V↑

VE(t, z) = lim sup
(t,ζ)→(0,z)

(t,z)∈V↑

VE(t, z)∗ = VE(0, z)∗.

Since Z̃ is pluripolar in V↑ it follows that VE(0, z) is determined q.e. by values on V↑\Z̃. This

shows that ΨK(z) = ΨE(0, z) = VE(0, z) = VE(0, z)∗ q.e. on V↑ ∩ {t = 0}. Taking the usc

regularisation (as functions of z and not (t, z)) yields ΨK(z)∗ = ΨE(0, z)∗ which completes the

proof.

Lastly we show that the Robin function induces its own extremal function.

Lemma 3.27. Suppose that X is an M -dimensional complex manifold with the property that

x ∈ X implies λx ∈ X for all λ ∈ C. Suppose that u : X → R ∪ {−∞} is a log homogeneous

psh function. Then u is maximal on the set X\{u ≤ 0}.

Proof. Suppose that v ∈ L(X) such that v ≤ u on {u ≤ 0}. If ζ ∈ {u = 0} then v(λζ) ≤ u(λζ)

for |λ| ≤ 1. For λ > 1 we have u(λζ) = u(ζ) + log |λ|. Since log |λ| is harmonic in λ for |λ| > 1

it follows that u is maximal along the line Lλ = {λζ : λ ∈ C}. Hence by Lemma 1.19, u ≥ v on

Lλ. Repeating this argument for all ζ ∈ {u = 0} shows that u ≥ v everywhere, and hence u is

maximal.
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Corollary 3.28. ρ+
u = max{0, ρu} is the extremal function for the set {ρu ≤ 0}. In particular,

VKρ = ρ+
K where Kρ := {ρK ≤ 0}.

We also note the following homogeneity property for future use.

Lemma 3.29. Suppose that V is an algebraic variety which satisfies the standard hypothesis.

Suppose that u is a log-homogeneous function in the x variables, i.e.

u(λx, y(λx)) = u(x, y(x)) + log |λ|.

Then u is maximal on the set V\{u ≤ 0}.

Proof. Let z ∈ V\{u ≤ 0}. Then there is λ ∈ C, |λ| > 1 and (x, y(x)) ∈ {u = 0} such that

λz = (λx, y(λx)) since the projection z ∈ V → CM 3 x is onto. The argument is now the same

as Lemma 3.27.

3.4 Projective Capacity

Definition 3.30. Suppose that K ⊂ V is a compact set. Let C[V] be the usual reduced monomial

basis for V with Noether presentation (x, y). Let ζ ∈ Vh with ‖ζ‖ = 1. Then we define the

projective Chebyshev constant in the direction ζ to be

κn(K, ζ) = inf{‖p‖K : p ∈ Pn(V), |p̂(ζ)| = 1}
κ(K, ζ) = lim sup

n→∞
κn(K, ζ)1/n.

A polynomial p ∈ Pn(V), |p̂(ζ)| = 1 such that ‖p‖K = κn(K, ζ) will be called a ζ-Chebyshev

polynomial of degree n.

Remark 3.31. The terminology ‘Projective Chebyshev constant’ comes from the fact that ζ ∈ Vh

and ‖ζ‖ = 1 means that ζ naturally corresponds to a point in Ṽh. The lim sup in the definition

can be replaced by a limit, we will see this in Corollary 3.34.

Lemma 3.32. ζ-Chebyshev polynomials exist.

Proof. Let K ⊂ V be compact, we show the existence of the ζ-Chebyshev polynomial of degree

n for this set. By definition of κn(K, ζ) there exists a sequence of polynomials {pj} of at

most degree n such that limj→∞ ‖pj‖K = κn(K, ζ). Choose j0 ∈ N sufficiently large so that

‖pj‖K ≤ 2κn(K, ζ) and any set of m(n) points in K enumerated as z1, ..., zm(n), where m(n) is

the number of monomials of degree at most n.

Let L : Pn(V) → Cm(n) be the linear map that maps p 7→ (p(z1), ..., p(zm(n))). As L is a linear

map between vector spaces of the same dimension and the kernel of L is 0, it follows that L

is invertible. Each coordinate of Lpj is bounded by 2κn(K, ζ), and hence forms a bounded

sequence of complex numbers and so there is a convergent subsequence Lpjk . Inverting under
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L yields a sequence pjk converging to some p ∈ Pn(K). As ‖pjk‖K → κn(K, ζ) it follows that

‖p‖K = κn(K, ζ). Finally, since p̂jk(ζ) = 1 for all k, it follows that p̂(ζ) = 1 and hence p is a

ζ-Chebyshev polynomial.

Corresponding classical notions have been well studied by a number of authors, in particular

Alexander [1], Levenberg and Bloom [43] [11], Ko lodziej and Cegrell [38] and Nivoche [46]. In

particular it is known that for any ζ ∈ PN−1 that κ(K, ζ) = ρ̃K(ζ) (e.g. Proposition 4.2, [46]).

In [33] we showed that this equality holds in the case of an algebraic curve (essentially the

contents of Theorem 4.2). We will show that the results here supersede the results found there.

The main result in this section is the following equality.

Theorem 3.33. Suppose that K is compact and nonpluripolar. Then for all ζ ∈ Vh with

‖ζ‖ = 1 we have κ(K, ζ) = ΨK(ζ).

Proof. First we establish κ(K, ζ) ≥ ΨK(ζ). Let p be any polynomial with |p̂(ζ)| = 1 of degree

n and let q(z) = p(z)/‖p‖K . Then ‖q‖K ≤ 1 so we have by definition

|q̂(z)| ≤ Ψ(z)n.

Letting z = ζ we obtain

Ψ(ζ)n ≥ |q̂(ζ)| = |p̂(ζ)|
‖p‖K

=
1

‖p‖K
.

This implies that

‖p‖K ≥ Ψ(ζ)n.

But this inequality is valid for any p satisfying the hypothesis, so in particular for a ζ-Chebyshev

polynomial hence

κn(K, ζ) ≥ Ψ(ζ)n.

Taking nth roots and the the lim inf as n→∞ yields

lim inf
n→∞

κn(K, ζ) ≥ ΨK(ζ).

For the converse, let pj be a polynomial of degree j such that ‖pj(ζ)‖K ≤ 1 and

lim sup
j→∞

|p̂(z)|1/j = ΨK(ζ) and write qj(z) = pj(z)/|p̂j(ζ)|. Then ‖qj‖K ≥ κj(K, ζ) so for all

j ∈ N

κj(K, ζ) ≤ ‖qj‖K =
‖pj‖K
|p̂j(z)|

≤ 1

|p̂j(ζ)| .

Taking the jth root of both sides and lim sup we obtain

κ(K, ζ) = lim sup
j→∞

κj(K, ζ)1/j ≤ lim sup
j→∞

1

|p̂j(ζ)|1/j = ΨK(ζ).
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Putting these two results together we obtain

ΨK(ζ) ≤ lim inf
n→∞

κn(K, ζ) ≤ κ(K, ζ) ≤ ΨK(ζ).

This completes the proof.

Corollary 3.34. The lim sup in Definition 3.30 can be replaced by a limit.

Corollary 3.35. Suppose that K is compact, regular and nonpluripolar. Then for all ζ ∈ Vh

with ‖ζ‖ = 1 we have κ(K, ζ) = e−ρK(ζ).

Proof. Follows from Theorems 3.24 and 3.33.

Remark 3.36. Observe that ρK(ζ) = ρ̃K([ζ]) when ‖ζ‖ = 1 which allows for the classical

identification observed in Remark 3.31.

Corollary 3.35 can be seen as a generalisation (and minor simplification) of Theorem 5.7 in

[33]. To see this we need some further terminology.

Definition 3.37. Suppose that V satisfies the standard hypothesis. Let dσ be normalised ‘spher-

ical’ measure on Ṽh so that σ(Ṽh) = 1. We define the projective capacity to be

κ(K) := exp

(∫
Ṽh

lnκ(K, ζ) dσ

)
.

Remark 3.38. The normalisation constant for dσ can be checked to be d(2π)M .

In the situation of Hart-Ma’u [33], V is an all algebraic curve are of degree d with d in-

tersections with the hyperplane at infinity denoted λ1, ..., λd and also called directions. Their

projective coordinates can be normalised so that ‖λj‖ = 1 for each j, but in [33] the normalisa-

tion is chosen so that the first non-zero coordinate of λj is 1. The choice of normalisation has no

impact on the result which we will see shortly. To each direction there is a unique polynomial

vλj (z) ∈ C[V] satisfying

(a) vλj is of minimal degree,

(b) vλj (λj) = 1 and vλj (λi) = 0 for any direction i 6= j,

(c) For any polynomial in C[z], p(z)vλj (z) = p̂(λj)z
deg p
1 vλj (z) + q(z) where q has degree at

most deg p+ deg vλj − 1.

From these conditions it is clear the only difference that results from a different choice of

normalisation for λj is multiplication of vλj by a constant. In particular there is a constant

cλ so that cλjvλj = vj where vj is one of the polynomials discussed in Lemma 1.134 which are

used in the construction of the set C (Definition 1.138). Moreover it is readily seen that this is

a specific instance of our more general notion of distinct intersections at infinity (check Section

1.3.1).
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Definition (Definition 1.139). For K ⊂ V compact we define

Tn(K,λj) := inf{‖p‖ : deg(p) = n, p = vλjz
n−degvλ
1 + l.o.t.}

τ(K,λj) := lim
n→∞

Tn(K,λj)
1/n

τ(K) =

 d∏
j=1

τ(K,λj)

1/d

.

Where l.o.t. stands for terms of lower order than vλjz
n−degvλ
1 with respect to grevlex ordering

for the basis C.

Theorem 3.39 (Theorem 5.7, [33]). Let K ⊂ V be compact and regular and let λj be a direction

of V. Then

e−ρK(λj) = τ(K,λj).

Proof. It suffices to show that κ(K,λj) = τ(K,λj). Let (x, y2, ..., yN ) be a Noether presentation

for V. Using polynomial long division we can decompose any p ∈ C[V] so that

p(z) =

(
d∑
i=1

aix
n−degvλivλi(x, y)

)
+ l.o.t. (29)

Suppose that q is a polynomial of degree n satisfying ‖q‖K = κn(K,λj). Then |q̂(λj)| = 1 so

using the decomposition in (29) we deduce that aj = 1. It follows by using properties (b) and

(c) of vλj and the decomposition above that

‖vλjq‖K = ‖q̂(λj)xnvλj + l.o.t.‖K = ‖ajxnvλj + l.o.t.‖K = ‖xnvλj + l.o.t.‖K ≥ Tn+degvλj
(K,λ)

After taking nth roots and letting n → ∞ it follows that κ(K,λj) ≥ τ(K,λj). The opposite

inequality follows since there exists a polynomial such that Tn(K,λ) = ‖vλjxn−degvλ+l.o.t.‖K ≥
κn(K,λj) for each n. The conclusion of the theorem now follows from Corollary 3.35.

Corollary 3.40. Let K ⊂ V be compact and regular, and let {λj}j=1,...,d be the directions of V.

τ(K) = exp

1

d

d∑
j=1

−ρK(λj)

 = κ(K).

To generalise this result to an algebraic variety we need a generalisation of Rumely’s formula

[49].
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3.5 Rumely’s Formula

Theorem 3.41 (Rumely’s Formula,[49]). Suppose that K ⊂ CN is compact, polynomially con-

vex and regular. Then

− log δ(K) =
1

N

[
1

(2π)N−1

∫
CN−1

ρK(1, z2, ..., zN )(ddcρK(1, z2, ..., zN ))N−1

+
1

(2π)N−2

∫
CN−1

ρK(0, 1, z3, ..., zN )(ddcρK(0, 1, z3, ..., zN ))N−2

+ ...+
1

2π

∫
C
ρK(0, ..., 0, 1, zN )(ddcρK(0, ..., 0, 1, zN )) + ρK(0, ..., 0, 1)

]
. (30)

Equivalently, we have an “energy version” of this formula

− log δ(K) =
1

N(2π)N−1

∫
PN−1

[ρ̃K − ρ̃T ]
N−1∑
j=0

(ddcρ̃K + ω)j ∧ (ddcρ̃T + ω)M−j−1, (31)

where T is the unit torus in CN .

We will check multiple things to obtain a generalisation of Rumely’s formula. We firstly

state the result then realise our situation in the context of Berman-Boucksom ([7]) which allows

us to rely on their machinery to do the heavy lifting to derive the result.

Theorem 3.42 (Rumely-Type Formula for Algebraic Varieties). Suppose that K ⊂ V is com-

pact, polynomially convex and regular. Then

− log δ(K) =
1

dM

[
1

(2π)M−1

∫
Vhi
ρK(1, z2, ..., zN )(ddcρK(1, x2, ..., xM , y))M−1

+
1

(2π)M−2

∫
Vhi
ρK(0, 1, x3, ..., xM , y)(ddcρK(0, 1, x3, ..., xM , y))M−2

+ ...+
1

2π

∫
Vhi
ρK(0, ..., 0, 1, xN , y)(ddcρK(0, ..., 0, 1, xN , y))

+
d∑
i=1

ρK(0, ..., 0, 1, yi)

]
.

Equivalently, we have an “energy version” of this formula

− log δ(K) =
1

dM(2π)M−1

∫
Vh

[ρ̃K − ρ̃TV ]
N−1∑
j=0

(ddcρ̃K + ω)j ∧ (ddcρ̃TV + ω)M−j−1,

where TV = {|x1| ≤ 1, ..., |xM | ≤ 1} ∩ V.
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3.5.1 Projectivised Energy Formula

The following result is a consequence of Theorem 2.67. Using the notation of Levenberg (Section

3, [41]), we define the Monge-Ampère energy bracket to be

E(u, v) =

∫
V

(u− v)
M∑
j=0

(ddcu)j ∧ (ddcv)M−j .

Proposition 3.43. Let u, v ∈ L+(V) with supp(ddcu)M and supp(ddcv)M compact. Then

E(u, v) =

∫
V
u(ddcu)M −

∫
V
v(ddcv)M + 2π

∫
Ṽh

(ρ̃∗u − ρ̃∗v)
M−1∑
j=0

(ddcu)j ∧ (ddcv)M−j−1.

Proof. Using the algebraic identity for the difference of powers we obtain

(ddcu)M − (ddcv)M = (ddcu− ddcv) ∧
M−1∑
j=0

(ddcu)j ∧ (ddcv)M−j−1 = ddc(u− v) ∧
M−1∑
j=0

(ddcu)j .

(32)

This allows us to write the energy bracket as

E(u, v)

∫
V

(u− v)

(ddcu)M + ddcv ∧
M−1∑
j=0

(ddcu)j ∧ (ddcv)M−j−1

 .
Since the supports of (ddcu)M and (ddcv)M are compact we can split the integral up to obtain

E(u, v) =

∫
V
u(ddcu)M −

∫
V
v(ddcu)M +

∫
V

(u− v)ddcv ∧
M−1∑
j=0

(ddcu)j ∧ (ddcv)M−j−1

=

∫
V
u(ddcu)M −

∫
V
v(ddcv)M +

∫
V
v[(ddcv)M − (ddcu)M ]

+

∫
V

(u− v)ddcv ∧
M−1∑
j=0

(ddcu)j ∧ (ddcv)M−j−1.

Using identity (32) again in the third term we obtain

E(u, v) =

∫
V
u(ddcu)M −

∫
V
v(ddcv)M +

∫
V
v ddc(v − u) ∧

M−1∑
j=0

(ddcu)j ∧ (ddcv)M−j−1

+ (u− v)ddcv ∧
M−1∑
j=0

(ddcu)j ∧ (ddcv)M−j−1

=

∫
V
u(ddcu)M −

∫
V
v(ddcv)M +

∫
V

(u ddcv − v ddcu) ∧
M−1∑
j=0

(ddcu)j ∧ (ddcv)M−j−1.
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Now we apply Theorem 3.9 to the last term to obtain.

E(u, v) =

∫
V
u(ddcu)M −

∫
V
v(ddcv)M + 2π

∫
Ṽhi

(ρ̃∗u − ρ̃∗v)
M−1∑
j=0

(ddcu)j ∧ (ddcv)M−j−1.

3.5.2 Berman-Boucksom on Algebraic Varieties

Define TV = {|xj | ≤ 1} ∩ V.

Proposition 3.44. VTV = max{log+ |x1|, ..., log+ |xM |}

Proof. Clearly, VTV is log homogeneous. By Lemma 3.29 it must be maximal outside of its zero

set. It is readily seen that {VTV = 0} = π−1(TV) which proves the claim.

Proposition 3.45. Let Dk be the monomials of degree k in C[V], Ok be an L2(µ)-orthogonal

basis for the monomials of at most degree k in C[V] with respect to the probability measure µ =
1

d(2π)M
(ddcTV)M and Sk the corresponding orthonormal basis. Let ck = max{‖pk‖µ : pk ∈ Ok}.

Then assuming c
1/k
k → 1 as k →∞ we have

lim
k→∞

1

kNk
log ‖ det[Dk]‖L∞(K) = lim

k→∞

1

kNk
log ‖det[Ok]‖L∞(K) = lim

k→∞

1

kNk
log ‖ det[Sk]‖L∞(K),

where we are using the notation that

det[Ok] = V DMOk(z1, ..., zs)

where s is the number of monomials of at most degree k in Ok and [Ok] is the corresponding

Vandermonde matrix.

Proof. Observe that log ‖det[Dk]‖L∞(K) is unchanged if rows are interchanged due to taking the

absolute value and adding a multiple of a row to another leaves the determinant unchanged. It

follows then that we can apply a Gram-Schmidt procedure to the monomials in Dk to produce

an orthogonal (but not necessarily orthonormal) basis Ok. Such a procedure would take the

form

ẽj(z) = ej(z)−
j−1∑
i=1

〈ej(z), ẽi(z)〉µ ẽi(z)

where ej ∈ Dk, ẽj ∈ Ok. It follows that adding 〈ej , ẽi〉µ times the ith row of [Dk] to the

jth row (inductively) for every 0 ≤ j ≤ Nk yields [Ok]. Hence we have equality between

log ‖ det[Dk]‖L∞(K) = log ‖det[Ok]‖L∞(K).

To obtain [Sk] from [Ok] we normalise each row by multiplying the ith row by a factor of
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〈ẽi(z), ẽi(z)〉−1/2
µ = ai,k. Set ck = max0≤i≤Nk{ai,k} and c′k = min0≤i≤Nk{ai,k}. Observe that

log ‖ det[Ok]‖L∞(K) = log ‖a1...aNk det[Sk]‖L∞(K) ≤ log ‖cNkk det[Sk]‖L∞(K),

log ‖a1...aNk det[Sk]‖L∞(K) ≥ log ‖c′Nkk det[Sk]‖L∞(K).

From which it follows that

lim
k→∞

1

kNk
log ‖ det[Ok]‖ ≤ log ‖cNkk det[Sk]‖

= lim
k→∞

Nk log |ck|
kNk

+
1

kNk
log ‖det[Sk]‖L∞(K) =

1

kNk
log ‖det[Sk]‖L∞(K),

and

lim
k→∞

1

kNk
log ‖ det[Ok]‖L∞(K) ≥ log ‖c′Nkk det[Sk]‖L∞(K)

= lim
k→∞

Nk log |c′k|
kNk

+
1

kNk
log ‖ det[Sk]‖L∞(K) = lim

k→∞

1

kNk
log ‖ det[Sk]‖L∞(K).

We now aim to show that normalising with respect to µ = (ddcVTV )M/d(2πM ) satisfies the

growth condition on ck in the hypothesis of Proposition 3.45.

Proposition 3.46. Suppose that V is an algebraic variety and µ =
(ddcVTV )M

d(2π)M
. The the constants

ck required to normalise Ok from Proposition 3.45 satisfy the growth condition c
1/k
k → 0 as

k →∞.

Proof. Let Dk and Sk be as in Proposition 3.45. Let D̃k be the basis generated by normalising

each monomial in Dk with respect to µ. Precisely,

Dk 3 ei(z) 7→
ei(z)

〈ei, ei〉1/2µ

∈ D̃k.

Since (x, y) is a Noether presentation for V it follows that V is finite over x, which implies that

there exists R ≥ 1 such that |yi| ≤ R for all 1 ≤ i ≤ N −M and (x, y) ∈ TV . We now estimate

〈xαyβ, xαyβ〉 =

∫
TV

xαyβxαyβ dµ

=

∫
TV

M∏
i=1

|xi|αi
N−M∏
j=1

|yi|βi dµ

≤
∫
TV

Rβ1+...+βN−M dµ

= Rβ1+...+βN−M . (33)

It follows that for any ei(z) ∈ Dk that 〈ei, ei〉µ ≤ RmY where ymii ∈ C[V], ymi+1
i 6∈ C[V] and
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mY =
∏N−M
i=1 mi. Hence

log ‖ det[Dk]‖L2(µ) ≤ log ‖RmY Nk det[D̃k]‖L2(µ)

lim
k→∞

1

kNk
log ‖ det[Dk]‖L2(µ) ≤ lim

k→∞

1

kNk
log ‖RmY Nk det[D̃k]‖L2(µ) = lim

k→∞

1

kNk
log ‖ det[D̃k]‖L2(µ).

We can obtain an orthogonal basis Õk from D̃k by applying Gram-Schmidt without normal-

isation. To obtain Sk from Õk we need only normalise the polynomials in Õk. Let fj be an

element of Õk and f̃j the corresponding element of Sk and ej the corresponding element of D̃k.

Then

fj(z) = ej(z)−
j−1∑
i=1

〈f̃i, ej〉µf̃i(z)

〈fj , fj〉µ = 〈ej , ej〉µ −
〈
ej ,

j−1∑
i=1

〈f̃i, ej〉µf̃i
〉
µ

−
〈
j−1∑
i=1

〈f̃i, ej〉µf̃i, ej
〉
µ

+

〈
j−1∑
i=1

〈f̃i, ej〉µf̃i,
j−1∑
i=1

〈f̃i, ej〉µf̃i
〉
µ

= 1−
j−1∑
i=1

〈ej , f̃i〉2µ −
j−1∑
i=1

〈f̃i, ej〉2µ +

j−1∑
i=1

〈f̃i, ej〉2µ〈f̃i, f̃i〉µ

= 1−
j−1∑
i=1

〈ej , f̃i〉2µ

〈fj , fj〉µ ≤ 1 +

j−1∑
i=1

|〈f̃i, ej〉µ|2 ≤ 1 +

j−1∑
i=1

|〈f̃i, f̃i〉µ||〈ej , ej〉µ| = j,

where we have used the fact that f̃i and ei are normalised in lines 2 and 3, and used the

Cauchy-Schwartz inequality in the final step. Taking the largest possible j yields the inequality

|〈fj , fj〉µ| ≤ Nk.

Hence

lim
k→∞

1

kNk
log ‖ det[Õk]‖L2(µ) ≤ lim

k→∞

1

kNk
log ‖Nk det[Sk]‖L2(µ) = lim

k→∞

1

kNk
log ‖det[Sk]‖L2(µ).

This shows that the constants ck from Proposition 3.45 satisfy the required growth condition.

We can now relate the results of Berman-Boucksom to our situation.

Definition 3.47. Let K be a compact set and µ a probability measure. We say that pair (K,µ)

has the Bernstein-Markov property if for any polynomial pj of degree at most j satisfies

‖pj‖K ≤Mj‖pj‖L2(µ) with lim sup
j→∞

M
1/j
j = 1.

94



Equivalently, given ε > 0 there exists C = C(ε,K) such that for all k ∈ N

‖pk‖K ≤ C(1 + ε)k‖pk‖L2(µ).

Lemma 3.48. The measure µ = (ddcVTV )M/d(2π)M has the Bernstein-Markov property.

Proof. We first consider a fixed monomial xαyβ ∈ C[V]. Observe that by the maximum principle

‖xαyβ‖TV = ‖xαyβ‖∂TV . Since ‖xα‖∂TV = 1 for any α it follows that

‖xαyβ‖∂TV = max{‖yβ‖∂TV : (x, y) ∈ ∂TV} = Mβ.

Next by equation (33) we know ‖xαyβ‖L2(µ) ≤ RmY . It follows that

‖xαyβ‖K ≤
Mβ

RmY
‖xαyβ‖L2(µ).

Now consider an arbitrary monomial xαyβ. Set

M0 = max
β:yβ∈C[V]

Mβ

RmY

which is a finite maximum because there are only finitely many β since (x, y) is a Noether

presentation. It follows then that

‖xαyβ‖K ≤M0‖xαyβ‖L2(µ).

Since M0 is constant, it is trivial that M
1/k
0 → 0 as k = |α| + |β| → ∞. Now let p be an

arbitrary polynomial of the form p(x, y) =
∑
cα,βx

αyβ. We have

‖p‖K ≤
∑
‖cα,βxαyβ‖K

≤M0‖cα,βxαyβ‖L2(µ)

= M0

∫
TV

∑
cα,βx

αyβcα,βxαyβ dµ

= M0

∫
TV

pp− f(x, y) dµ

≤M0

∫
TV

pp dµ = M0‖p‖L2(µ)

where f(x, y) consists of all of the cross terms of pp so that f(x, y) +
∑
cα,βx

αyβcα,βxαyβ = pp.

In particular, with this construction f is positive (and hence the inequality). This completes

the proof.

Theorem 3.49 (Corollary A, [7]). Let E ⊂ V and ν a probability measure on E with the

Bernstein-Markov property. Let Sk be an L2(µ)−orthonormal basis for C[V] and Nk the dimen-

sion of Sk.
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• For every subset K we have

lim
k→∞

1

kNk
log ‖ det[Sk]‖L∞(K) =

E(V ∗E , V
∗
K)

M + 1
.

• If µ is a probability measure with the Bernstein-Markov property for K then

lim
k→∞

1

kNk
log ‖det[Sk]‖L2(µ) =

E(V ∗E , V
∗
K)

M + 1
.

Where we using the notation that

‖ det[Sk]‖L∞(K) = sup
(z1,...,zNk )∈K

|V DMSk(z1, ..., zNk)|

‖ det[Sk]‖L2(µ) =

∫
(z1,...,zNk )∈V

|V DMSk(z1, ..., zNk)|2 µ(dx1)...µ(dxN ).

We have made simplifications to the statement of the theorem so that they are directly

relevant to our context. The more general statement is available in [7]. The set E above

effectively serves as a ground energy level or an energy reference state. In classical pluripotential

theory one chooses E = T , the unit torus, because the associated normalised Monge-Ampère

operator of VT induces an inner product for which the monomials are orthonormal. This allows

the relationship between an energy bracket and monomials which is essential for the Rumely

formula to be valid.

Proposition 3.50. Let TV , µ be as in Proposition 3.46. Then the conclusion of Theorem 3.49

is satisfied.

Proof. We must find (i) a probability measure µ with the Bernstein-Markov property and (ii)

an orthonormal basis Sk respect to 〈., .〉µ. Claim (i) follows since the mass of (ddcVTV )M is

d(2π)M by Theorem 2.27 and that mass is concentrated on TV by maximality. That µ has the

Bernstein-Markov property follows from Lemma 3.48. For Claim (ii), Propositions 3.45 and 3.46

shows that we can find an orthonormal basis Sk with respect to µ such that the Fekete-Leja

transfinite diameter with respect to Dk is the same as Sk.

3.5.3 Cox-Ma’u Transfinite Diameter is a Berman-Boucksom Transfinite Diameter

Important to our final result is the precise relationship between the Cox-Ma’u

transfinite diameter δ(K) (Definition 1.143) and the Berman-Boucksom transfinite diameter

lim
k→∞

1

kNk
log ‖ det[Sk]‖L∞(K).

Theorem 3.51. Let K ⊂ V be a compact set, µ = (ddcTV)M and Sk be an L2(µ)-orthonormal

basis. Then

log(K) =
M + 1

M
lim
k→∞

1

kNk
log ‖det[Sk]‖L∞(K).

Proof. We make the following notation conventions:
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1. Nk is the number of monomials in C[V] of degree at most k.

2. lk =
∑k

i=1 i(Ni − Ni−1) is the sum of the degrees of the monomials in C[V] of degree at

most k.

3. N
(x,M)
k = Nx

k is the number of monomials in C[V] in x of degree at most k.

4. lxk =
∑k

i=1 i(N
x
i −Nx

i−1) is the sum of the degrees of the monomials in C[V] in x of degree

at most k.

5. Let mi be the smallest integer such that ymi+1
i 6∈ C[V] and mY =

∑
mi.

6. Let C[V]≤k be the monomials in C[V] of degree at most k and let C[V]x≤k be the monomials

in x in C[V]≤k

It is a standard result that Nx
k =

M + k

M

 and lxk =
MkNx

k

M + 1
. For k ≥ mY we can decompose

C[V] in terms of C[V]≤mY for various j in the following way

C[V]≤k = C[V]≤mY −1 ⊕
k−mY⊕
j=0

⊕
|α|=j

xαC[V]=mY .

For notational convenience we will write σ(k) = k−mY . Using this decomposition and writing

B to be the number of monomials in C[V]≤mY −1 and C to be the number of monomials in

C[V]=mY we can compute Nk as

Nk = B + CNx
σ(k).

So for σ(k) ≥ 0 we can compute lk − lmY as

lk − lmY =

k∑
i=0

i(Ni −Ni−1)− lmY =

k∑
i=mY +1

i(Ni −Ni−1)

=

σ(k)∑
j=1

(j +mY )C(Nx
j −Nx

j−1)

=

σ(k)∑
j=1

jC(Nx
j −Nx

j−1) +

σ(k)∑
j=1

mY C(Nx
j −Nx

j−1)

= Clxσ(k) +mY C(Nx
σ(k) − 1)

=
CMσ(k)Nx

σ(k)

M + 1
+mY C(Nx

σ(k) − 1).

Where we have used the fact that the second sum on the third line is telescoping. Using this
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calculation we can compare the growth of lk and σ(k)Nx
σ(k);

lim
k→∞

lk
σ(k)Nσ(k)

= lim
k→∞

CMσ(k)Nx
σ(k)

σ(k)Nσ(k)(M + 1)
+
mY C(Nx

σ(k) − 1)

σ(k)Nσ(k)

= lim
k→∞

CMNx
σ(k)

Nσ(k)(M + 1)
. (34)

Where we have used the fact that

lim
k→∞

Nx
σ(k)

Nx
σ(k−mY )

=

M + σ(k)

M


M + σ(k −mY )

M


= lim

k→∞

(M + σ(k))!

M !σ(k)!
· M !σ(k −mY )!

(M + σ(k −mY ))!

= lim
k→∞

(M + σ(k)) · ... · (M + σ(k)−mY + 1)

σ(k) · ... · (σ(k)−mY + 1)

= lim
k→∞

(
M

σ(k)
+ 1

)
· ... ·

(
M

σ(k)−mY + 1
+ 1

)
= 1 (35)

so

lim
k→∞

mY C(Nx
σ(k) − 1)

σ(k)Nσ(k)
= lim

k→∞

mY C

σ(k)
·

Nx
σ(k)

B + CNx
σ(k−mY )

= lim
k→∞

mY C

σ(k)
= 0.

To calculate the limit in equation (34) we use equation (35) again:

lim
k→∞

CMNx
σ(k)

(M + 1)Nσ(k)
= lim

k→∞

CMNx
σ(k)

(M + 1)(B + CNx
σ(k−mY ))

=
M

M + 1
lim
k→∞

C
(
Nx
σ(k)/N

x
σ(k−mY )

)
B/Nx

σ(k−mY ) + C
=

M

M + 1
.

Using Proposition 3.45, Proposition 3.50 and Theorem 1.145 we conclude that†

log δ(K) = lim
k→∞

1

lk
log ‖detDk‖L∞(K) = lim

k→∞

M + 1

MkNk
log ‖ detDk‖L∞(K)

= lim
k→∞

M + 1

MkNk
log ‖ detSk‖L∞(K).

This completes the proof.

†Theorem 1.145 is used in the first equality here, i.e. that the transfinite diameter in the basis C is the same
as the usual monomial basis for C[V].
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3.5.4 Integral Formula

Proposition 3.52. Let V satisfy the standard hypothesis with corresponding homogeneous vari-

ety Vh. Let (x, y) be a Noether presentation for Vh and Xj = Vh∩{x1 = ... = xj−1 = 0}∩{xj =

1}. Suppose that u, v ∈ L+(V) with continuous Robin functions. Then

1

d(2π)M−1

∫
Ṽh

[ρ̃u − ρ̃v]
M−1∑
j=0

(ddcρ̃u + ω)j ∧ (ddcρ̃v + ω)M−j−1

=

M∑
j=1

1

d(2π)M−j

(∫
Xj

ρu(x, y) (ddcρu)M−j −
∫
Xj

ρv(x, y) (ddcρv)
M−j

)

where we interpret
∫
XM

ρu(x, y) as the discrete sum
∑

(x,y)∈XM ρu(x, y).

Note that the normalisation factors 1/(2π)M−j are necessary to normalise the currents in

the integrals. These terms are absent in Levenberg’s formulation of this result because he makes

the convention that ddc = 2i∂∂̄/2π so that the normalisation factors of 1/(2π)M−j are built

into the formula. We could do the same for our situation, leaving only the normalisation factor

of 1/d but elect not to do this for clarity. The requirement that u and v have continuous Robin

functions is made for notational convenience and because this is the setting of the Rumely

formula.

Proof. Upon examining the proof given by Levenberg (Proposition 8.1, [41]) we see that the

proof of the corresponding result in CN is largely algebraic up to respecting the normalisation for

(ddcρu)M−j and respecting our definition of the Robin function. As such our proof is essentially

the one given by Levenberg, up to region of integration. Let u, v ∈ L+(V) with continuous

Robin functions. We make the following definitions:

Tu = ddcρ̃u + ω (36)

Tj = ddc log |xj | = 2π[xj = 0] (37)

Where [xj = 0] is the current of integration on {xj = 0} and ω = 1
2dd

c log(1 +‖z‖2) is the usual
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Kähler form. We observe the following algebraic identity for any 0 ≤ j ≤M − 1

TM−j−1
u ∧ ωj

= TM−j−1
u ∧ ωj−1 ∧ (Tv − ddcρ̃v)

= TM−j−1
u ∧ Tv ∧ ωj−1 − ddcρ̃v ∧ TM−j−1

u ∧ ωj−1

= TM−j−1
u ∧ Tv ∧ ωj−2 ∧ (Tv − ddcρ̃v)− ddcρ̃v ∧ TM−j−1

u ∧ ωj−1

= TM−j−1
u ∧ T 2

v ∧ ωj−2 −
2∑

k=1

(ddcρ̃v) ∧ TM−j−1
u ∧ ωj−k ∧ T k−1

v

...

= TM−j−1
u ∧ T j−1

v ∧ (Tv − ddcρ̃v)−
j−1∑
k=1

(ddcρ̃v) ∧ TM−j−1
u ∧ ωj−k ∧ T k−1

v

= TM−j−1
u ∧ T jv −

j∑
k=1

(ddcρ̃v) ∧ TM−j−1
u ∧ ωj−k ∧ T k−1

v

From this we deduce (after an integration by parts to pass from terms involving ddcρv to terms

involving ddcρu)

ρ̃uT
M−j−1
u ∧ ωj = ρ̃uT

M−j−1
u ∧ T jv − ρ̃u

j∑
k=1

(ddcρ̃v) ∧ TM−j−1
u ∧ ωj−k ∧ T k−1

v

= ρ̃uT
M−j−1
u ∧ T jv − ρ̃v

j∑
k=1

(ddcρ̃u) ∧ TM−j−1
u ∧ ωj−k ∧ T k−1

v .

Taking the sum over 0 ≤ j ≤M − 1 we obtain (interpreting
∑j=0

k=1 as 0)

M−1∑
j=0

ρ̃uT
M−j−1
u ∧ ωj =

M−1∑
j=0

(
ρ̃uT

M−j−1
u ∧ T jv −

j∑
k=1

ρ̃v(dd
cρ̃u) ∧ TM−j−1

u ∧ ωj−k ∧ T k−1
v

)
.

(38)

Applying the same argument to
∑M−1

j=0 TM−j−1
v ∧ωj but without using the integration by parts

step (so that we retain terms involving ddcρu) we deduce

M−1∑
j=0

ρ̃vT
M−j−1
v ∧ ωj =

M−1∑
j=0

(
ρ̃vT

M−j−1
v ∧ T ju −

j∑
k=1

ρ̃v(dd
cρ̃u) ∧ TM−j−1

v ∧ ωj−k ∧ T k−1
u

)
.

(39)

Subtracting equation (39) from equation (38) yields

M−1∑
j=0

ρ̃uT
M−j−1
u ∧ ωj −

M−1∑
j=0

ρ̃vT
M−j−1
v ∧ ωj = (ρ̃u − ρ̃v)

M−1∑
j=0

TM−j−1
u ∧ T jv . (40)
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We can integrate both sides of equation (40) to conclude that

∫
Ṽh

(ρ̃u − ρ̃v)
M−1∑
j=0

TM−j−1
u ∧ T jv =

∫
Ṽh

M−1∑
j=0

ρ̃uT
M−j−1
u ∧ ωj −

∫
Ṽh

M−1∑
j=0

ρ̃vT
M−j−1
v ∧ ωj . (41)

The result now follows from writing the above integrals on the right hand side of (41) over Xj .

Firstly, let X̃j := Ṽh ∩ {x1 = ... = xj−1 = xj = 0}. Firstly note that Ṽh = X1 ∪ X̃2 and

X̃j = Xj ∪Xj−1. We can apply this deduction inductively to get

Ṽh = X1 ∪ X̃2 = X1 ∪X2 ∪ X̃3 = ... = X1 ∪ ... ∪XM . (42)

We need local representations of the integrands in order to use (41). For this we need x-

coordinate-wise Robin functions

gj,u(x, y(x)) = gj(x, y(x)) := lim sup
λ→∞

u(λ(x, y(λx)))− log |λxj |.

These Robin functions are well defined by the logic in Section 2.5 after noting that t→ 0 ⇐⇒
1/t→∞. Observe for future use that we have locally the identity

ddcgj = Tu − Tj .

It will be convenient to use the notation

Sj = T1 ∧ ... ∧ Tj , S0 = 1,

which makes a well defined current since each Tj is the current of integration on {xj = 0}
multiplied by a factor of 2π. It follows that Sj is the current of integration on {x1 = ... = xj = 0}
multiplied by (2π)j by Definition 1.71. For 0 ≤ j ≤M − 1 we have the identity

TM−j−1
u = T1 ∧ TM−j−2

u + ddcg1 ∧ TM−j−2
u

= T1 ∧ T2 ∧ TM−j−3
u + T1 ∧ ddcg2 ∧ TM−j−3

u + ddcg1 ∧ TM−j−2
u

...

= SM−j−1 + SM−j−2 ∧ ddcgM−j−1 + ...+ ddcg1 ∧ TM−j−2
u

= SM−j−1 +

M−j−2∑
k=0

ddcgk+1 ∧ Sk ∧ TM−j−k−2
u . (43)
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Integrating (43) against ρ̃u we observe using integration by parts that

∫
Ṽh
ρ̃uT

M−j−1
u ∧ ωj =

∫
Ṽh
ρ̃u

(
SM−j−1 +

M−j−2∑
k=0

ddcgk+1 ∧ Sk ∧ TM−j−k−2
u

)
∧ ωj

=

∫
Ṽh
ρ̃uSM−j−1 ∧ ωj +

(
M−j−2∑
k=0

gk+1dd
cρ̃u ∧ Sk ∧ TM−j−k−2

u ∧ ωj
)
.

(44)

If we denote the sum in (44) by Ej then using the identity ddcρ̃u = Tu − ω we deduce that for

1 ≤ j ≤M − 2

Ej+Ej−1 (45)

=

M−j−2∑
k=0

gk+1dd
cρ̃u ∧ Sk ∧ TM−j−k−2

u ∧ ωj +

M−j−1∑
k=0

gk+1dd
cρ̃u ∧ Sk ∧ TM−j−k−1

u ∧ ωj−1

=

M−j−2∑
k=0

gk+1(Tu − ω)Sk ∧ TM−j−k−2
u ∧ ωj +

M−j−1∑
k=0

gk+1(Tu − ω) ∧ Sk ∧ TM−j−k−1
u ∧ ωj−1

=

M−j−2∑
k=0

gk+1Sk ∧ TM−j−k−1
u ∧ ωj −

M−j−2∑
k=0

gk+1Sk ∧ TM−j−k−2
u ∧ ωj+1

+

M−j−1∑
k=0

gk+1 ∧ Sk ∧ TM−j−ku ∧ ωj−1 −
M−j−1∑
k=0

gk+1Sk ∧ TM−j−k−1
u ∧ ωj

= −gM−jSM−j−1 ∧ ωj −
M−j−2∑
k=0

gk+1Sk ∧ TM−j−k−2
u ∧ ωj+1

+

M−j−1∑
k=0

gk+1 ∧ Sk ∧ TM−j−ku ∧ ωj−1.

It follows then that

EM−2 + ...+ E0 = −
M−2∑
j=0

gM−jSM−j−1 ∧ ωj − g1ω
M−1 +

M−1∑
k=0

gk+1Sk ∧ TM−k−1
u

= −
M−1∑
j=0

gM−jT
M−j−1
u ∧ ωj +

M−1∑
k=0

gk+1Sk ∧ TM−k−1
u .
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Summing over 0 ≤ j ≤M − 1 in (44) we get

∫
Ṽh

M−1∑
j=0

ρ̃uSM−j−1 ∧ ωj +

(
M−j−2∑
k=0

gk+1dd
cρ̃u ∧ Sk ∧ TM−j−k−2

u ∧ ωj
)

=

∫
Ṽh

M−1∑
j=0

ρ̃uSM−j−1 ∧ ωj −
M−1∑
j=0

gM−jSM−j−1 ∧ ωj +
M−1∑
k=0

gk+1Sk ∧ TM−k−1
u

=

∫
Ṽh

M−1∑
j=0

(ρ̃u − gM−j)SM−j−1 ∧ ωj +

M−1∑
k=0

gk+1Sk ∧ TM−k−1
u

=

∫
Ṽh

M−1∑
j=0

(log ‖(x, y)‖ − log |xM−j |)SM−j−1 ∧ ωj +
M−1∑
k=0

gk+1Sk ∧ TM−k−1
u . (46)

Where in the last line we have used the fact that

ρu(x, ỹ(x))− gM−j(x, ỹ(x)) = lim supu(λx, y(λx))− log ‖(λx, y(λx)‖ − lim supu(λx, y(λx))− log |λxj |
= log ‖(x, ỹ)‖ − log ‖xj‖.

Where the lim sups are taken over appropriate values as in Section 2.5. Note that the first term

in the integrand is independent of u so when repeating this calculation for v we obtain the same

term. Hence by considering the u and v versions of equation (46) substituted into equation (41)

we obtain

∫
Ṽh

M−1∑
j=0

ρ̃uT
M−j−1
u ∧ ωj −

∫
Ṽh

M−1∑
j=0

ρ̃vT
M−j−1
v ∧ ωj

=

∫
Ṽh

M−1∑
k=0

gu,k+1Sk ∧ TM−k−1
u −

∫
Ṽh

M−1∑
k=0

gv,k+1Sk ∧ TM−k−1
v . (47)

Note that Sk = ddc log |x1| ∧ ... ∧ ddc log |xk| is (2π)k times the current of integration on {x1 =

... = xk = 0} = X̃k+1 (noting that S0 gives the integration on X̃1 = Ṽh). Applying this to the

first term on the RHS of (47) we obtain

∫
Ṽh

M−1∑
k=0

gk+1Sk ∧ TM−k−1
u =

M−1∑
j=0

(2π)j
∫
X̃j+1

gj+1T
M−j−1
u . (48)

Note that the calculation for the v term is identical. We can now write gjT
M−j−1
u in local
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coordinates on Xj using the following identifications.

gj([0 : ... : 0 : xj : ... : xM : y])

= gj([0 : ... : 0 : 1 : xj+1/xj : ... : xM/xj : y(x/xj)]) + log |xj |
= lim sup

λ→0
u(0, ..., 0, 1/λ, xj+1/λxj , ..., xM/λxj , y(x/λxj)) + log |λxj |+ log |xj |

= lim sup
λ→0

u(0, ..., 0, 1/λ, tj+1/λ, ..., tM/λ, u(t/λ)) + log |λ|

= ρu(0, ..., 0, 1, tj+1, ..., tM , u(t)), (49)

TM−j−1
u = ddcρ̃u + ω

= ddc
(
ρu(0, ..., 0, 1, tj+1, ..., tM , u(t))− 1

2
log |1 + t2j+1 + ...+ u2

N−M |
)

+ ω

= ddcρu(0, ..., 0, 1, tj+1, ..., tM , u(t))− ω + ω

= ddcρu(0, ..., 0, 1, tj+1, ..., tM , u(t)), (50)

where (0, ..., 1, tj+1, ..., tM , u(t)) are local coordinates on Xj and where we have made use of the

lim sup convention for Robin functions to obtain equation (49). Using (49) and (50) in (48) we

obtain

M−1∑
j=0

(2π)j
∫
X̃j+1

gj+1T
M−j−1
u =

M−1∑
j=0

(2π)j
∫
Xj+1

ρu(t, u) (ddcρu)M−j−1. (51)

Using (51) in (47) for both the u and v terms we obtain (after combining with (41))

∫
Ṽh

(ρ̃u − ρ̃v)
M−1∑
j=0

TM−j−1
u ∧ T jv =

M∑
j=1

(2π)j−1

∫
Xj

ρu(t, u) (ddcρu)M−j

− (2π)j−1

∫
Xj

ρv(t, u) (ddcρv)
M−j (52)

Replacing the dummy variables (t, u) with (x, y) and dividing through by the normalisation

factor of d(2π)M−1 yields the proposition.

3.5.5 Derivation of Rumely’s Formula

The final step is to derive a relationship between log ‖ det[Sk]‖L2(µ) and δ(K) from Proposition

3.50. By Propositions 3.45 and 3.46 it suffices to consider E = TV in Proposition 3.50.

Theorem 3.53 (Rumely-Type Formula for Algebraic Varieties). Suppose that K ⊂ V is com-
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pact, regular and K = {VK(z) ≤ 0}.‡ Then

− log δ(K) =
1

dM

[
1

(2π)M−1

∫
Vh
ρK(1, z2, ..., zN )(ddcρK(1, x2, ..., xM , y))M−1

+
1

(2π)M−2

∫
Vh
ρK(0, 1, x3, ..., xM , y)(ddcρK(0, 1, x3, ..., xM , y))M−2

+ ...+
1

2π

∫
Vh
ρK(0, ..., 0, 1, xN , y)(ddcρK(0, ..., 0, 1, xN , y))

+
d∑
j=1

ρK(0, ..., 0, 1, yi)

 . (53)

Equivalently, we have an “energy version” of this formula

− log δ(K) =
1

dM(2π)M−1

∫
Vh

[ρ̃K − ρ̃TV ]

N−1∑
j=0

(ddcρ̃K + ω)j ∧ (ddcρ̃TV + ω)M−j−1. (54)

Proof. From Theorem 3.51 we have

log δ(K) =
M + 1

M

E(VTV , V
∗
K)

(M + 1)d(2π)M
=
E(VTV , V

∗
K)

Md(2π)M
. (55)

Where the d(2π)M term comes from normalising (ddcVTV )M and (ddcV ∗K)M so that they are

probability measures. Note that VK = V ∗K since K is regular. Hence
∫
VK(ddcVK)M =∫

VTV (ddcVTV )M = 0 since (ddcVK)M and (ddcVTV )M are supported on K and TV respectively.

It follows by Proposition 3.43 and Corollary 3.21 that

E(VTV , VK) =

∫
V
VTV (ddcVTV )M +

∫
V
VK(ddcVK)M + 2π

∫
Ṽh

(ρ̃TV − ρ̃K)

M−1∑
j=0

T jVTV
∧ TM−j−1

VK

= 2π

∫
Ṽh

(ρ̃TV − ρ̃K)
M−1∑
j=0

T jVTV
∧ TM−j−1

VK
.

Dividing through by Md(2π)M (in the spirit of Theorem 3.50) we obtain

E(VTV , VK)

Md(2π)M
=

1

Md(2π)M−1

∫
Ṽh

(ρ̃TV − ρ̃K)

M−1∑
j=0

T jVTV
∧ TM−j−1

VK
.

Applying Proposition 3.52 to the above equation we obtain

E(VTV , VK)

Md(2π)M
=

M∑
j=1

1

Md(2π)M−j

(∫
Xj

ρTV (x, y) (ddcρTV )M−j −
∫
Xj

ρK(x, y) (ddcρK)M−j

)
.

‡Recall that this is equivalent to K being polynomially convex. We write the hypothesis in this form to
emphasise its application in the proof.
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Observe that

ρTV = lim
λ→∞

log+ ‖λx‖ − log |λ| = log ‖x‖.

ρTV |Xj = log ‖(1, xj+1, ..., xM )‖.

Which means that the support of (ddcρTV )M−j on Xj is {(1, 0, ..., 0)} and on this set ρTV = 0

so the first integral is zero. Consequently,

E(VTV , VK)

Md(2π)M
= −

M∑
j=1

1

dM(2π)M−j

∫
Xj

ρK(x, y) (ddcρK)M−j . (56)

Finally, combining equations (55) and (56) we obtain

− log δ(K) =
1

Md

M∑
j=1

1

(2π)M−j

∫
Xj

ρK(x, y) (ddcρK)M−j ,

which is equation (53) and the proof is complete.
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4 Weighted Pluripotential Theory on Varieties

Weighted theory has been well studied on complex manifolds by many authors including Berman-

Boucksom [7] and Branka-Stawiska [18]. Our aim here is not so much as to re-develop the basic

theory but to obtain analogues of Levenberg-Bloom’s result [15] which related Chebyshev con-

stants in CN to weighted Chebyshev constants in CN−1. We include a preliminary section using

our own methods for completeness.

4.1 Weighted Pluripotential Theory Preliminaries

The following results are standard in CN , e.g. see [10]. Our goal in this section is to establish

relationships between weighted polynomials and weighted extremal functions. In particular, a

polynomial formula for the extremal function.

Definition 4.1. Let V ⊂ CN be a (possibly singular) algebraic variety. Let E ⊂ V be a closed

set. We say that w ≥ 0 is an admissible weight function if the following properties are satisfied.

(i) w is upper semi-continuous,

(ii) the set {z ∈ E : w(z) > 0} is not pluripolar,

(iii) if E is unbounded then |z|w(z)→ 0 as |z| → ∞, z ∈ E.

If w satisfies properties (i) and (ii) on a compact set E then we will say that w is a reduced

weight on E.

Unlike creating sensible analogues of psh functions on a variety, we need not impose any further

conditions on w from those that are usually placed on w in the CN case.

Corollary 4.2. Let Q = Qw = − logw. Then Q is lower semicontinuous on E, the set

{z ∈ E : Q(z) <∞} is not pluripolar and if E is unbounded Q(z)− log |z| → ∞ as |z| → ∞, z ∈
E.

Given an admissible weight w we will call Q the corresponding admissible log-weight.

Definition 4.3. Suppose that Q is an admissible log-weight on E ⊂ V where V is possibly

singular. Then the weighted extremal function is given by

VE,Q(z) := sup{u(z) : u ∈ wL, u ≤ Q on E}.

(Recall that wL(V) = {u ∈ L(Vreg) : u is usc on V}.)

We will use the convention that when Q = 0, VE,Q = VE . We first check to see if this definition

makes sense when E is compact.

Lemma 4.4. Suppose that E ⊂ V is compact and Q is an admissible log-weight on E. Then

V ∗E,Q ∈ L(V).
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Proof. Let F = {Q(z) < ∞}. First suppose that F is closed. Set c = max{Q(z) : z ∈ F} so

that if u ∈ L(V) satisfies u ≤ Q on F then u − c ≤ 0 on F . It follows then that u − c ≤ VF .

Taking the supremum over all candidates for u yields the conclusion VF,Q − c ≤ VF . It follows

that VF,Q ∈ L(V).

Now suppose that F is not closed, meaning that there is a subset U of ∂F where Q(z) = ∞.

We want to show that the set of u ∈ L(V) such that u ≤ Q on F is bounded above on F and

then use the argument in the previous paragraph to deduce the result. To this end, suppose

that there were such a sequence {uj} with uj → ∞ on U . Since F is non-pluripolar we can

find a closed susbset G of F which is non-pluripolar. G is non-pluripolar so V ∗G 6= +∞. Set

c = max{Q(z) : z ∈ G}, then uj − c ≤ 0 for each j on G and hence uj − c ≤ VG. But by

construction of uj , as j →∞, uj − c→∞ on U which forces VG →∞ on U which contradicts

V ∗G 6= ∞. It follows that there exists some C > 0 such that any u ∈ L(V) such that u ≤ Q is

bounded above by C on F and hence VF,Q ∈ L(V).

One of the reasons why we need not impose additional conditions on our weight functions is

that in the case that E is unbounded there exists a compact set ER which captures information

pertaining to the extremal function. This also shows that our definition when E is unbounded

makes sense.

Lemma 4.5. Suppose that E ⊂ V is an unbounded closed set with admissible log-weight Q.

Define ER = {z ∈ E : ‖z‖ ≤ R}. Then for R sufficiently large VE,Q = VER,Q.

Proof. Note that by definition VEr ≥ VE . We seek the reverse inequality.

Since E is non-pluripolar it follows that at least one of Er or E\Er is non-pluripolar for all

r. Then there is a point a ∈ E such that for all neighbourhoods V of a and psh functions

u ∈ PSH(V ) the set {u(z) = −∞} 6= E ∩V . This means we can find a bounded non-pluripolar

set in E hence for sufficiently large r this set is contained in Er and hence Er is non-pluripolar.

It follows that since V ∗Er,Q ∈ L(V) we can find c ∈ R such that VEr,Q(z) ≤ log+ |z| + c. Then

for R > r sufficiently large we have Q(z)− log |z| > c+ 1 for |z| > R since Q(z)− log |z| → ∞.

Then for u ∈ L(V) and u(z) ≤ Q(z) on Er we have u ≤ V ∗Er,Q. It follows that on E\ER that

u(z) ≤ log |z| + c ≤ Q(z) hence u ≤ Q on Er implies u ≤ Q on E. From this is follows that

VEr ≤ VE and the result follows.

Corollary 4.6. The support of (ddcVE,Q)M is compact.

Proof. Choose R sufficiently large so that VER,Q = VE,Q. Set c = max{VER,Q(z) : z ∈ ER}
and let Z = {z ∈ V : VER,Q − c ≤ 0}. Then VZ = VER,Q on V\Z and (ddcVZ)M has compact

support. It follows that (ddcVER,Q)M is supported in Z and hence has compact support.
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Corollary 4.7. For any admissible weight w on a set E there exists a reduced weight w′ on a

set K such that VE,Q = VK,Q′.

The main obstruction at this point to obtaining a polynomial formula for the extremal

function is the lack of an analogous result to the following one due to Siciak.

Theorem 4.8 (Siciak). Suppose that u ∈ L(CN ). Then there exists a sequence of functions

{uj}, j ∈ N satisfying for all z ∈ CN

(i) uj+1(z) ≤ uj(z) for all j ∈ N;

(ii) limj→∞ uj = u(z);

(iii) for each j there exists finitely many polynomials {pk,j}1≤k≤nk,j each of degree ≤ nk,j such

that

uj(z) = sup
1≤k≤nk,j

1

deg pk,j
log |pk,j(z)|.

The main barrier to generalisation is that membership in L is a global property so the local

techniques of pullback are generally not useful. We choose not to prove an analogous theorem

to Theorem 4.8 for u ∈ L(V) and instead will deduce the result from the CN polynomial formula

using an approximation technique.

Recall that in the unweighted case (Theorem 3.22) our strategy was to view E as a subset of

CN and invoke CN theory to deduce the result. The problem with the weighted case is that

the weight must be positive on a non-pluripolar set, but necessarily V is pluripolar in CN .

The unweighted case was equivalent to imposing the log-weight Q = 0 on Eε = {z ∈ CN :

dist(z, E) ≤ ε} which is a non-pluripolar set and then letting ε→ 0. While there is no natural

extension of a general weight to a ‘fat’ set Eε, the following lemma gives a possible extension

which has the desired properites which will allow us to emulate this process for the weighted

case.

Lemma 4.9. Suppose that (x, y) is a Noether presentation for V with branches V1, ..., Vd and

Q is an admissible weight on E ⊂ V. Define Eε = {z ∈ CN : dist(z, E) ≤ ε} and Eiε = {z ∈
CN : dist(z, E ∩Vi) ≤ ε}. Let Lx := {(x, y) : y ∈ CN−M} be the N −M dimensional hyperplane

through x and write (x, yix) for the only point in Lx ∩ Ei0. The weight Qε(z) given by

Qi,ε(x, y) =


VE,Q(x, yix), when (x, y) ∈ Lx ∩ Eiε,

+∞, otherwise.

Qε(z) = min
1≤i≤d

{Qi,ε(z)},

is admissible on Eε.
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E

V

Lx

(x, yx)

Figure 1: Illustration of the construction of (x, yx).

Proof. First observe that since (x, y) is a Noether presentation for V the branches V1, ..., Vd each

have exactly one intersection with Lx. Hence setting (x, yix) to be the only point in Lx ∩ Ei0 is

valid. Next observe that Qi,ε(x, y) is a lower semicontinuous function since

lim inf
(ξ,ζ)→(x,y)

Qi,ε(ξ, ζ) = lim inf
(ξ,ζξ)→(x,yx)

Qi,ε(ξ, ζξ) = lim inf
(ξ,yξ)→(x,yx)

VE,Q(ξ, yξ)

≥ VE,Q(x, yx) = Qi,ε(x, yx) = Qi,ε(x, y).

Where we have used the fact that VE,Q is lower semicontinuous. As Q′ε(z) is the minimum of

finitely many lower semicontinuous functions it too is lower semicontinuous. Finally we need to

show that Qε(z) <∞ on a non-pluripolar set. This follows since Eε is a non-pluripolar set and

Qε(z) is finite at each point of Eε and at any point (x, y) ∈ Eε,

Qε(x, y) ≤ max
(x,yx)∈Lx∩V

VE,Q(x, yx) <∞.

This shows that Qε is admissible on Eε.

Remark 4.10. For an unbounded set E we use use Lemma 4.5 to construct a bounded set

F which shares the same extremal function as E and then use Lemma 4.9 to construct the

extension of the weight on the extension of F .

Lemma 4.11. Suppose that E ⊂ V and Q is admissible on E. Then supp(ddcV ∗E,Q)M ⊂
{V ∗E,Q(z) ≥ Q(z)}.

Proof. Suppose that z ∈ {VE,Q(z) < Q(z)}. Suppose we have an atlas (Uα, φα) for which

z ∈ U1. Since V ∗E,Q is usc and Q there is an open neighbourhood N containing z such that

sup
z∈N

V ∗E,Q < inf
z∈N∩E

Q(z). (57)

110



Taking a smaller neighbourhood if necessary so that N ⊂ U1, φ∗1Q is an admissible weight on

{w ∈ φ−1(E ∩ U1)} ⊂ CM and the pull back of the inequality (57) remains valid. Therefore we

may find r > 0 such that Br(w) ⊂ φ1(N) and we can find u ∈ L(CM ) satisfying: (i) u = φ∗1V
∗
E,Q

on ∂Br(w), (ii) (ddcu)M ≡ 0 on Br(w) (this follows from solving the Dirichlet problem in CM ).

By the maximum principle for psh functions it follows that on Br(w)

u(ζ) ≤ sup
ζ∈Br(w)

φ∗1V
∗
E,Q(ζ) <

∫
ζ∈Br(w)∩φ1(E∩U1)

Q(z).

It follows from maximality of u that u(ζ) = φ∗1V
∗
E,Q(ζ) on Br(w). The maximality of u is

preserved upon push-forward hence (φ1)∗u(z) = V ∗E,Q on φ−1
1 (Br(w)) and hence (ddcVE,Q)M = 0

in a neighbourhood of z. This proves the lemma.

Lemma 4.12. Suppose that E ⊂ V and Q is admissible on E. Then V ∗E,Q = Q q.e. on E.

Proof. We first show that {VE,Q ≤ V ∗E,Q} is pluripolar. Since pluripolarity is a local property

it suffices to check {VE,Q ≤ V ∗E,Q} is pluripolar at an arbitrary z. With the atlas setup as

in the proof of Lemma 4.12 we can find a neighbourhood N of z such that N ⊂ U1. By a

result of Klimek ([37], Proposition 2.9.16) (V ∗E,Q ◦ φ−1
1 ) = (VE,Q ◦ φ−1

1 )∗. By another result

([37], Theorem 4.7.6) the set {(VE,Q ◦ φ−1
1 ) < (VE,Q ◦ φ−1

1 )∗} is pluripolar in φ1(N) (and in

particular at φ1(z)). Since pluripolarity is preserved under holomorphic maps, it follows that

φ−1{(VE,Q ◦ φ−1
1 ) < (VE,Q ◦ φ−1

1 )∗} = {VE,Q < V ∗E,Q} is pluripolar.

Thus we have shown that V ∗E,Q ≤ Q q.e. on E. Combining this result with Lemma 4.11 we

deduce that V ∗E,Q = Q q.e. on E which finishes the proof.

Corollary 4.13. If Q and Q′ are both admissible on E and Q = Q′ q.e. then VE,Q = VE,Q′ q.e.

Proof. Let F = {Q 6= Q′} ∪ {VE,Q 6= Q} ∪ {VE,Q′ 6= Q′}. Then F is pluripolar and VE,Q = Q =

Q′ = VE,Q′ on E\F . Maximality of VE,Q implies equality outside of E. Hence VE,Q = VE,Q′

q.e.

Lemma 4.14. Set Q0 := limε→0Qε. Q0 is admissible on E and VE,Q0 = VE,Q quasi-everywhere

on V.

Proof. Note that for δ1 > δ2 we have Qδ1 ≤ Qδ2 since the minimum is taken over terms

satisfying the same property, i.e. for ε1 > ε2 we have Qε1,i ≤ Qε2,i for any i. It follows

that limε→0Qε = supε>0Qε and a supremum of lower semicontinuous functions is again lower

semicontinuous. It follows that Q0 is lower semicontinuous.

If for some i and x we have Lx ∩Eiε ∩Ejε for all i 6= j then Q0 = Q. Hence we need only worry

about points (x, y) ∈ E for which (x, y) ∈ Lx ∩Eiε ∩Ejε for every ε > 0 and for some i 6= j. But

the only place where this can occur is the branch locus Bπ. We know that the branch locus is

pluripolar in V hence Q0 = Q q.e. on V. It follows that Q0 is admissible on E.
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Moreover since Q0 and Q only differ on a pluripolar set it follows that VE,Q = VE,Q0 by Corollary

4.13 as claimed.

Definition 4.15. Suppose that w is an admissible weight on E ⊂ V. We define

ΦE,Q(z) = sup

{
1

degP
log |wdegPP | : ‖wdegPP‖E ≤ 1

}
.

Theorem 4.16. Let Q be an admissible weight on E. Then VE,Q(z) = ΦE,Q(z) q.e.

Proof. We instead show that VE,Q0 = ΦE,Q0(z) q.e. which implies immediately the desired

conclusion. To this end, note that VEε,Qε is a weighted extremal function in CN hence by

classical theory VEε,Qε = ΦEε,Qε(z) q.e. for all ε > 0. Observe that VEε,Qε increases to VE,Q0 as

ε→ 0 since Qε increases to Q0. In particular note that VEε,Qε(z) ≤ VE,Q0(z) <∞ when z ∈ V
and so the restrictions of the families {VEε,Qε} and {ΦEε,Qε(z)} to V form monotone increasing

sequences which are bounded above and hence converge to VE,Q0 (q.e. in the case of Φ).

To complete the proof we want to show that VE,Q0 ≤ ΦE,Q0(z) q.e. on V since the converse

follows immediately by definition. Observe that for any j ∈ N and a polynomial p satisfying we

have 1
deg p log |p(z)| ≤ Qj(z) we have 1

deg p log |p(z)| ≤ Q0(z) since Qj ≤ Q0. It follows then that

ΦEj ,Qj (z) ≤ ΦE,Q0(z) for every j ∈ N hence in the limit we have

lim
j→∞

ΦEj ,Qj (z) = lim
j→∞

VEj ,Qj (z) = VE,Q0 ≤ ΦE,Q0(z) q.e.,

as desired.

4.2 Weighted H-principle

An important technique which is exploited in the CN case is a weighted analogue of Siciak’s

H-principle. First let us recall the original result from Section 3 for comparison.

Theorem 4.17 (H-Principle, [51]). Let Pn(CN ) (resp. Hn(CN )) denote the space of all poly-

nomials of degree at most n (resp. homogeneous polynomials degree at most n) in N complex

variables. Let L(CN ) (resp. H(CN )) denote the class of logarithmic psh functions (resp. log

homogeneous psh functions). The maps

(i.) Hn(C× CN ) 3 Qn(t, z)→ Qn(1, z) ∈ Pn(CN ),

(ii.) H(C× CN ) 3 u(t, z)→ u(1, z) ∈ L(CN )

are one-to-one. If P ∈ Pn(CN ) then the unique element P̃ ∈ Hn(C × CN ) such that P (z) =

P̃ (1, z) is given by the formula P̃ (t, z) = tnP (z/t). If u ∈ L(CN ) then the unique element
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ũ ∈ H(C× CN ) such that ũ(1, z) = u(z) on CN is given by

ũ(t, z) :=


log |t|+ u(z/t), t 6= 0

lim sup
(t,ζ)→(0,z)

log |t|+ u(ζ/t), t = 0.

A weightedH-principle has been used (without being called as such) by a number of authors,

in particular in the papers [15], [13] and [16].

Definition 4.18. Let w be a reduced weight on K ⊂ CN . We define the following classes of

functions.

(i) Pn(CN ,K,w) := {P ∈ Pn(CN ) : ‖wnP‖K ≤ 1}.

(ii) Hn(CN ,K,w) := {Q ∈ Hn(CN ) : ‖wnQ‖K ≤ 1}.

(iii) L(CN ,K,Q) := {u ∈ L(CN ) : u|K ≤ Q}.

(iv) H(CN ,K,Q) := {u ∈ H(CN ) : u|K ≤ Q}.

We make the convention that if Q = 0 (resp. w = 1) then we omit the weight so that Pn(K, 1) =

Pn(K) and L(CN ,K, 0) = L(CN ,K) and similar.

The definitions above make sense when w is admissible, but we will only study cases where

w is reduced. Of course, by Lemma 4.5 there is no loss in generality by restricting to reduced

weights.

Theorem 4.19 (Weighted H-Principle). Suppose w is a reduced weight on K ⊂ CN . Define

Kw
↑ := {(t, z) = (t, tζ) : |t| = w(ζ), ζ ∈ K}. Then the maps

(i.) Hn(CN+1,Kw
↑ ) 3 Qn(t, z)→ Qn(1, z) ∈ Pn(CN ,K,w),

(ii.) H(CN+1,Kw
↑ ) 3 u(t, z)→ u(1, z) ∈ L(CN ,K,Q),

are one to one. Moreover, the functions guaranteed by the maps above are the same as Theorem

4.17.
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Proof. By Theorem 4.17 it suffices to check that the functions determined by the maps in that

theorem satisfy the bounding conditions imposed. To this end, suppose thatQ ∈ Hn+1(CN ,K,w)

and let P be the corresponding polynomial determined by Theorem 4.17. We check that

‖w(ζ)nP (ζ)‖K = ‖tnP (z/t)‖Kw
↑

= ‖Q(t, z)‖Kw
↑

which implies the result for (i). Similarly, for (ii) let ũ ∈ H(CN ,Kw
↑ ) and u be the associated

function in L(CN ). Then we check that for (t, z) ∈ Kw
↑ ,

0 ≥ ũ(t, z) = ũ(1, ζ) + log |t| = u(z) + log |t|
− log |t| ≥ u(ζ)

− logw(z) ≥ u(ζ).

By construction of Kw
↑ it follows that Q(ζ) = − logw(ζ) ≥ u(ζ) holds for all ζ ∈ K. The

argument is clearly reversible and so the result for (ii) holds.∗

The main utility of the weighted H-principle is the ability to relate weighted theory in CN to

unweighted theory in CN+1 in a precise way. Thereby being able to prove weighted results

from using unweighted theory in one higher dimension. This idea is the basis of the paper of

Bloom-Levenberg [15] which culminates in relating Chebyshev constants between dimensions.

Since we are headed in the same direction we need an analogue of this result.

Theorem 4.20 (Weighted H-principle for Varieties). Suppose that w is admissible on K ⊂ V.

Define Kw
↑ := {(t, tz) ∈ V↑ : |t| = w(z)} ⊂ V↑. Then the following maps are one to one with

associated functions given by Theorem 4.19.

(i.) Hn(V↑,Kw
↑ ) 3 Qn(t, z)→ Qn(1, z) ∈ Pn(V,K,w).

(ii.) wH(V↑,Kw
↑ ) 3 u(t, z)→ u(1, z) ∈ L(V,K,Q).

Proof. First we verify that Kw
↑ is a subset of V↑. Suppose that V = {ζ ∈ CN : Pi(ζ) = 0, 1 ≤

i ≤ N −M}. Then V↑ = {(t, z) ∈ CN+1 : tdegPiPi(z/t) = 0, 1 ≤ i ≤ N −M}. Write z = tζ and

Qi(t, z) = Qi(t, tζ) = tdegPiPi(ζ). It follows that V↑ = {(t, tζ) : Qi(t, tζ) = 0, 1 ≤ i ≤ N −M}
and hence Kw

↑ is clearly a subset of V↑. The maps above are well defined by the same logic as

in Theorem 4.19.

Part (i) follows from the same argument given in Part (i) of Theorem 4.19. Part (ii) follows

in the smooth case from the same argument as in Part (ii) of Theorem 4.19 since in this case

wH(V↑,Kw
↑ ) = H(V↑,Kw

↑ ). We can thus apply the standard desingularisation argument to V↑
in the singular case and obtain the result.

∗The result makes sense because ζ is a dummy variable so in the last steps in each of (i) and (ii) it can be
replaced with a z.
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Remark 4.21. As a point of clarification, a point ζ ∈ V maps to a circle (t, tζ) ∈ V↑ and we let

tζ = z.

Remark 4.22. We can simplify the notation that we have been using thus far. Suppose that w is

an admissible weight on K ⊂ X where X = CN or X = V. Then we can extend w to be defined

on all of X by setting w = 0 on X\K. Such a globally defined weight w on X carries all the

necessary information to define Pn(X,K,w) so instead we can write Pn(w) with no ambiguity.

Similarly we can define Hn(w), L(Q) and H(Q). With the special notation convention when

w = 1 on K as set out in Definition 4.18 we employ that same convention; i.e. Pn(w) = Pn(K)

and so on.

As a first application we immediately get a polynomial formula for the weighted Robin

function.

Corollary 4.23. If V satisfies the standard hypothesis and K ⊂ V is compact and regular then

ρK,Q = ρV ∗E,Q = ΦK,Q(z) = sup

{
1

degP
log |P̂ | : ‖wdegPP‖E ≤ 1

}
.

Proof. Follow the same argument as in Theorem 3.24 with the H-principle replaced with the

weighted H-principle.

We also have convergence of weighted Chebyshev constants.

Definition 4.24. Let K ⊂ V be a compact set and w an admissible weight on K. We define

the weighted α-Chebyshev constant in the direction λj (recall Definition 1.133) to be

Tw(K,α, λ) = inf{‖w|α|p‖K : lt(p) = zαvλj}.

We define other weighted quantities τw(K, θ, λj) and τw(K) in the analogous way to Definition

1.139.

Remark 4.25. We will also use the notation dw(K) = τw(K) for convenience (observing that in

the unweighted case τ1(K) = d1(K) = d(K) = δ(K) by Zakharjuta [54]).

Corollary 4.26. lim
|α|→∞
α/|α|→θ

Tw(K,α, λj)
1/|α| = τw(K, θ, λj).

Proof. The weighted H-principle gives a correspondence to a homogeneous α′-Chebyshev con-

stants (where α′ is a multiindex in ZM+1
≥0 corresponding to the multiindex of lt(p̃)). Since K↑ is

circled it follows that homogeneous α′-Chebyshev constants converge by Corollary 1.149, which

implies the convergence of the limit in the hypothesis.

4.3 Homogeneous Transfinite Diameter

The homogeneous transfinite diameter has many practical applications in relating the weighted

transfinite diameter and the unweighted transfinite diameter. While the concepts discussed here
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should be valid in complete generality, it is sufficient for our purposes to work exclusively with

circled sets. In this setting we are assured convergence of the homogeneous Chebyshev constants

(see below) as they agree with the usual Chebyshev constants from Chapter 1 (Definition 1.139).

This avoids invoking the theory of weakly submultiplicative functions to prove convergence.

The framework developed in [23] combined with the arguments here is enough to prove the

convergence of the homogeneous transfinite diameter for arbitrary K.

Definition 4.27. Let (x, y) be a Noether presentation for V. Suppose that ei is the ith (reduced)

basis monomial for C[V] ordered by grevlex. We make the following definitions.

• m(V)(i) = the number of monomials of degree at most i for C[V],

• h(V)(i) = m(V)(i)−m(V)(i− 1) = the number of monomials degree exactly i,

• l(V)(i) =
∑i

j=1 jh
(V)(j) = the sum of degrees of the monomials of at most degree i.

Lemma 4.28. Let ei be the ith basis monomial for C[V] in grevlex. Define a graded order-

ing for the monomials of C[V↑] by letting the new variable t = x0 and then impose grevlex

on (x0, ..., xM , y1, ..., yN−M ). Then there is a bijective correspondence between the monomials

of degree at most n in C[V] and the monomials of exactly degree n in C[V↑]. In particular,

m(V)(n) = h(V↑)(n).

Proof. The H-principle for varieties provides the desired one to one map. It suffices then to

restrict the domain of the map so that it is a bijection. Then monomials of the form tnei(z/t)

where 0 ≤ i ≤ m(V)(n) are the only candidates we can form to make degree n monomials in

C[V↑]. But by the H-principle each of these elements is unique. It follows that this is onto the

degree n monomials in C[V↑] which completes the proof.

Lemma 4.29. Suppose that (x, y) is a Noether presentation for V and mY = max{|β| : yβ ∈
C[V]}. We have the inequality

m(V)(n)
Mn

M + 1
≤ l(V)(n) ≤ m(V)(n)

mY +Mn

M + 1
.

Proof. Recall that for a Noether presentation (x, y) for V that there are finitely many multi-

indices β such that yβ ∈ C[V]. Let mY = max{|β| : yβ ∈ C[V]}. Observe that we have the

decomposition for n ≥ mY

C≤n[V] =
⊕

β:yβ∈C[V]

yβC≤n−|β|[x].

Given a multiindex β such that yβ ∈ C[V] and n ≥ mY we can count the monomials of degree

n with a yβ term using CM theory;

cardinarlity({yβxα ∈ C[V] : |β + α| ≤ n}) = m(M)(n− |β|),
m(V)(n) =

∑
β

m(M)(n− |β|), (58)
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and

l(V)(n) =
∑
β

|β|m(M)(n− |β|) + l(M)(n− |β|)

=
∑
β

|β|m(M)(n− |β|) +
M

M + 1
(n− |β|)m(M)(n− |β|)

=
∑
β

m(M)(n− |β|)
( |β|+Mn

M + 1

)
. (59)

Using the obvious min/max estimates for |β| in equation (59) and the identification in equation

(58) yields the inequality

m(V)(n)
Mn

M + 1
≤ l(V)(n) ≤ m(V)(n)

mY +Mn

M + 1
.

Definition 4.30. Let B be a polynomial basis for C[V] (either the usual basis for C[V] or the

distinguished basis C). Let B=k be the monomials in B of exactly degree k. For s ≤ h(V)(k) we

define the kth homogeneous Vandermonde determinant of the points (ζ1, ..., ζs) to be

V DMHB=k(ζ1, ..., ζs) = det



e1,k(ζ1) e1,k(ζ2) ... e1,k(ζs)

e2,k(ζ1) e2,k(ζ2) ... e2,k(ζs)

...
...

. . .
...

es,k(ζ1) es,k(ζ2) ... es,k(ζs)


where ej,k is an enumeration of the elements in B=k with respect to grevlex.

Definition 4.31. Suppose that V satisfies the standard hypothesis and is homogeneous. Suppose

that K ⊂ V is a circled set. We define the homogeneous transfinite diameter of K to be

dH,h(V)(k)(K) := max
ζ1,..., ζh(V)(k)∈K

∣∣∣V DMHB=k(ζ1, ..., ζh(V)(k))
∣∣∣ .

dH(K) := lim sup
k→∞

dH,h(V)(k)(K)1/kh(V)(k).

Definition 4.32. Let V, K be as above. Let

CH(α, i) = {p ∈ C[V] : p(z) = zα + g(z), g(z) ≺ zαvi, p homogeneous}.

We define the homogeneous α-Chebyshev constant in the direction λi to be

TH(K,α, λi) = inf{‖p‖K : p ∈ CH(α, i)}.

117



We define the θ-partial homogeneous Chebyshev constant in the direction λi to be

τH(K, θ, λi) = lim sup
|α|→∞
α/|α|→θ

T (K,α, λi)
1/|α|.

We define the homogeneous Chebyshev constant in the direction λi to be

τH(K,λi) = exp

(
1

vol(Σ)

∫
Σ0

log τ(K, θ, λi) dθ

)
.

We define the principal Chebyshev constant for K to be

τH(K) =

(
d∏
i=1

τH(K,λi)

)1/d

.

Lemma 4.33. For K circled, τH(K,λi) = τ(K,λi) for all i.

Proof. Since Chebyshev polynomials can be chosen to be homogeneous (since K is circled) it

follows that TH(K,α, λi) = T (K,α, λi) for all α, i. From this the result follows.

Corollary 4.34. When K circled the lim sup in the definition above can be replaced with a

limit.

Corollary 4.35. When K is circled we have d(K) = τ(K) = τH(K).

Notation 4.36. To prove the convergence of dH(K) it will be convenient to define

TH(K,α, λ0) = inf{‖p̂‖K : deg(p) ≤ |α|+ deg(vi), lt(p) = zγzlMz
β, zMz

β ∈ B}

and analogous quantities to be Chebyshev constants without direction. Labeling this the ‘λ0’

direction is convenient in what is to follow, although we stress that there is no λ0 point at

infinity. We will also let h(V)(k) = h(k) and similar for this result since there is no ambiguity

as to what this means in the proof. Finally we set

DH(s, k) = max
ζ1,...,ζs∈K

|V DMHB=k(ζ1, ..., ζs)| .

Lemma 4.37. Suppose s ≤ h(k) and es,k = zαvi where |α| = k. Then we have the following

inequality

TH(K,α, λi) ≤
DH(s, k)

DH(s− 1, k)
≤ kTH(K,α, λi).

If instead es = zαzlMz
β and s > 1 then

TH(K,α, λ0) ≤ DH(s, k)

DH(s− 1, k)
≤ sTH(K,α, λ0).
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If s = 1 then

TH(K,α, λ0) ≤ DH(1, k) ≤ sTH(K,α, λ0).

Proof. For the last inequality observe that matrix defining DH(1, k) consists only of the mono-

mial e1,k, as such the inequality is trivial. The proof of either of the remaining inequalities is

the same, so we only prove the first. To this end suppose that es,k = zαvi with |α| = k. Suppose

that (ζ1, ..., ζs−1) are points for which V DMHB=k
(ζ1, ..., ζs−1) obtains its maximum. Observe

that

qs(z) =
V DMHB=k

(ζ1, ..., ζs−1, z)

V DMHB=k(ζ1, ..., ζs−1)

is a homogeneous polynomial with leading term es,k(z). From the definition of the Chebyshev

constants we have immediately

T (K,α, λi) ≤ ‖qs‖K =
DH(s, k)

DH(s− 1, k)
.

For the other side, suppose that t(z) is a homogeneous polynomial such that ‖t‖K = TH(K,α, λi).

By adding multiple of one row to another we observe that

e1,k(ζ1) ... e1,k(ζs−1) e1,k(z)

...
. . .

...
...

es−1,k(ζ1) ... es−1,k(ζs−1) es−1,k(z)

es,k(ζ1) ... es,k(ζs−1) es,k(z)


∼



e1,k(ζ1) ... e1,k(ζs−1) e1,k(z)

...
. . .

...
...

es−1,k(ζ1) ... es−1,k(ζs−1) es−1,k(z)

t(ζ1) ... t(ζs−1) t(z)


Since the determinant is unchanged by these row operations it follows that maximising the

determinant of the RHS is equal to DH(s, k). Expanding the determinant along the bottom

row yield terms of the form

t(ζj)V DMHB=k(ζ1, ..., ζj−1, ζj+1, ..., ζs−1, z)

or

t(z)V DMHB=k(ζ1, ..., ζs).

Maximising each term separately yields an inequality of the form

DH(s, k) ≤ |t(z)DH(s− 1, k)|+
s−1∑
j=1

|t(ζj)DH(s− 1, k)| .

But since ‖t‖K = TH(K,α, λi) we can maximise the t terms to obtain

DH(s, k) ≤ sTH(K,α, λi)DH(s− 1, k)
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This proves the other side of the inequality and we are done.

Corollary 4.38.
d∏
i=0

∏
|α|=k

TH(K,α, λi) ≤ DH(h(k), k) ≤ h(k)!
d∏
i=0

∏
|α|=k

TH(K,α, λi).

Proof. Observe that

DH(h(k), k) =
DH(h(k), k)

DH(h(k)− 1, k)
· DH(h(k)− 1, k)

DH(h(k)− 2, k)
· ... · DH(2, k)

DH(1, k)
·DH(1, k).

Applying the estimate from Lemma 4.37 to each of the terms in the above expansion yields:

d∏
i=0

∏
|α|=k

TH(K,α, λi) ≤ DH(h(k), k) ≤ h(k)!
d∏
i=0

∏
|α|=k

TH(K,α, λi).

Lemma 4.39. lim
k→∞

h(k)!1/kh(k) = 1.

Proof. Firstly,

1 ≤ h(k)!1/kh(k) ≤ h(k)h(k)/kh(k) = h(k)1/k.

So it suffices to show that h(k)1/k → 1. If V↓ = {x1 = 0} ∩ V, then

h(k) = m(V↓)(k) ≤ m(M−1)(k) =

M − 1 + k

k

 =
(M − 1 + k)!

k!(M − 1)!
.

We calculate that

lim
k→∞

M−1∏
j=1

(k + j)

1/k

≤ lim
k→∞

(M − 1 + k)(M−1)/k = 1.

Hence

lim
k→∞

(
1

(M − 1)!

)1/k ((M − 1 + k)!

k!

)k
= lim

k→∞

(
1

(M − 1)!

)1/k
M−1∏

j=1

(k + j)

1/k

≤ 1.

From which it follows that limk→∞ h(k)1/k = 1

Lemma 4.40. lim
k→∞

 d∏
i=0

∏
|α|=k

TH(K,α, λi)

1/kh(k)

= τH(K).

Proof. Using log to rewrite the product in the LHS as a sum we obtain

exp

 d∑
j=0

1

kh(k)

∑
|α|=k

log TH(K,α, λi)


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Firstly we deal with the λ0 contribution. Recall that the construction of the distinguished basis

C for V is such that any monomial without a vi term precedes any term with a vi term of the

same degree (Definition 1.138). By the definition of TH(K,α, λ0) (Notation 4.36) it follows

that the sets of polynomials that the infimum is taken over cosnsist only of linear combinations

of type-1 monomials, and in particular has only finitely many powers of yi. Suppose that p

is a homogeneous polynomial such that ‖p‖K = TH(K,α, λ0) and lt(p) = xγiyβi for some

multiindices γi, βi. Let π be the projection onto x ∈ CM and let qi(x) be a homogeneous

polynomial with the property that

‖qi‖π(K) = inf{‖p̂‖π(K) : p ∈ C[x], lt(p) = xγi}.

Let R > 1 be sufficient large so that K ⊂ BR(0). Then we have the following chain of estimates

TH(K,α, λ0) = ‖p‖K ≤ ‖qiyβi‖K ≤ ‖qi‖π(K)‖yβi‖K ≤ ‖qi‖π(K)R
βi

By construction qi is a homogeneous Chebyshev polynomial for π(K) in the direction γi, so by

CM theory (i.e. [36] Section 6) we know that

‖qi‖π(K) ≤ TH(B′R(0), α) = Rdeg qi ≤ R|α|−|βi|+deg vi

Hence we have the upper esimate

TH(K,α, λ0) ≤ ‖qi‖π(K)R
βi ≤ R|α|+deg vi

If TH(K,α, λ0) = 0 for some α then τH(K) = 0 and equality above is trivial. Otherwise we know

that TH(K,α) is uniformly bounded below by some constant C independent of α as |α| → ∞
(i.e. [36] Section 4). It follows then that

exp

k logC

kh(k)
+

d∑
j=1

1

kh(k)

∑
|α|=k

log TH(K,α, λi)


≤ exp

 d∑
j=0

1

kh(k)

∑
|α|=k

log TH(K,α, λi)


≤ exp

2(k + deg(vi)) logR

kh(k)
+

d∑
j=1

1

kh(k)

∑
|α|=k

log TH(K,α, λi)

 (60)

We now turn our attention to any one of the λj terms. Let t = deg(vi). First note that

h(k) = a(k) + dh(M)(k) where a(k) is the number of type-1 monomials of degree k. Then

a(k) ≤ Ah(M−1)(k + t) where A = the number of zM , ..., zN monomials of degree strictly less
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than t. Then we calculate

a(k)

h(k)
≤ Ah(M−1)(k + t)

dh(M)(k)
−→ 0, k −→∞. (61)

This implies that

dh(M)(k)

h(k)
−→ 1, k −→∞. (62)

Using a standard trick originally due to Zakharjuta [54], observe that as k →∞

1

h(k)

∑
|α|=k

log TH(K,α, λj)
1/k −→ 1

d · vol(Σ)

∫
Σ0

log τH(K, θ, λj) dθ. (63)

To see this note that k = |α| so log TH(K,α, λj)
1/|α| → log TH(K, θ, λj) where α/|α| → θ ∈ Σ0.

Next, α/|α| is a point in the simplex Σ0. Treating TH(K,α, λ)1/|α| as a function in α, the sum

can be seen as evaluating TH at h(M)(k) uniformly distributed points over the simplex Σ0. But

h(k)→ dh(M)(k) as k →∞ by equation (61) and (62). Then the sum converges to the definition

of the Riemann integral of TH (with respect to α) on Σ0, up to a scale factor of 1
d , hence the

convergence in equation (63). Now we can take the limit as k →∞ in equation (60) to obtain

exp

(
1

d · vol(Σ)

∫
Σ0

log τH(K, θ, λj) dθ

)

≤ lim
k→∞

exp

 d∑
j=0

1

kh(k)

∑
|α|=k

log TH(K,α, λi)


≤ exp

(
1

d · vol(Σ)

∫
Σ0

log τH(K, θ, λj) dθ

)
.

Hence

lim
k→∞

exp

 d∑
j=0

1

kh(k)

∑
|α|=k

log TH(K,α, λi)

 = log τH(K)

which completes the proof.

Theorem 4.41. If V satisfies the standard hypothesis and K is circled then dH(K) = τH(K).

Proof. Take 1/kh(k) powers of everything in Corollary 4.38 and then take the limit as k →∞.

Using Lemmas 4.39, 4.40 and observing (by definition) that DH(h(k), k)1/k(hk) → dH(K) implies

the result.

Corollary 4.42. With hypotheses as in Theorem 4.41 we have δ(K) = τ(K) = τH(K) =

dH(K).

Proof. δ(K) = τ(K) and τH(K) = dH(K) are known. τ(K) = τH(K) follows from the fact

that K is circled, Corollary 1.149 implies that Chebyshev polynomials can be chosen to be

homogeneous which completes the proof.
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4.4 Weighted Transfinite Diameter

We are now ready to discuss the weighted transfinite diameter. We assume throughout that w

is a reduced weight on a compact set K ⊂ V. Recall the following definition from Chapter 1.

Definition 4.43. Suppose that V satisfies the standard hypothesis and let B be either the stan-

dard basis for C[V] or the distinguished basis. Let ei be the ith basis monomial for B ordered by

grevlex. Let w be an admissible weight on K. Then we define the weighted transfinite diameter

for a compact set K ⊂ V to be

δwn (K) := max
z1,...,zn∈K

V DMB(z1, ..., zn)w(z1)α(n) ... w(zn)α(n)

= max
z1,...,zn∈K

det


e1(z1) e1(z2) ... e1(zn)

...
...

. . .
...

en(z1) en(z2) ... en(zn)

w(z1)α(n) ... w(zn)α(n).

δw(K) = lim
n→∞

δwm(n)(K)1/l(n).

We will also use the terminology that a Fekete n-set is an n-tuple of points z1, ..., zn such that

the maximum in δwn (K) is obtained at that n-tuple.

Theorem 4.44. The limit limn→∞ δ
w
m(n)(K)1/l(n) exists.

Proof. Write m(n) = m(V)(n), h(n) = h(V)(n) and l(n) = l(V)(n). Our strategy is to show

that δwn (K) = dH,n(Kw
↑ ) and use the fact that dH,m(n)(K

w
↑ )1/nh

(V↑)(n) converges (noting that

h(V↑)(n) = m(n) by Lemma 4.28). Let ξ1, ..., ξn be an Fekete n-set for K. Let α(n) =

multideg(en). Then the polynomial given by

p(ζ) = V DMC[V](ξ1, ..., ξn−1, ζ)w(ξ1)|α(n)| ... w(ξn−1)|α(n)|

satisfies ‖w|α(n)|p‖K = δwn (K). From the weighted H-principle for varieties it follows that the

associated polynomial satisfies 1
δwn (K)q(t, z) ∈ Hn(Kw

↑ ). Using the identification from Remark
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4.21 we observe that

q(t, tζ) = det


e1(ξ1) ... e1(ξn−1) e1(ζ)

...
. . .

...
...

en(ξ1) ... en(ξn−1) en(ζ)

w(ξ1)|α(n)| ... w(ξn−1)|α(n)|t|α(n)|

= det


w(ξ1)|α(n)|e1(ξ1) ... w(ξn−1)|α(n)|e1(ξn−1) t|α(n)|e1(ζ)

...
. . .

...
...

w(ξ1)|α(n)|en(ξ1) ... w(ξn−1)|α(n)|en(ξn−1) t|α(n)|en(ζ)



= det


ẽ1(t′1, z

′
1) ... ẽ1(t′n−1, z

′
n−1) ẽ1(t, z)

...
. . .

...
...

ẽn(t′1, z
′
1) ... ẽn(t′n−1, z

′
n−1) ẽn(t, z)

 ,

where ẽi(t, z) = ẽi(t, tζ) = t|α(n)|ei(ζ) and (t′i, z
′
i) are points in Kw

↑ . By the H-principle

ẽi(t, z) is a monomial of degree |α(n)| for all i. It follows that q(t, z) is a homogeneous Van-

dermonde of degree |α(n)| monomials over the points (t′1, z
′
1), ..., (t′n−1, z

′
n−1), (t, z) and hence

δwn (K) = ‖q‖Kw
↑
≤ dH,n(Kw

↑ ).

For the converse, suppose (t′1, z
′
1), ..., (t′n−1, z

′
n−1), (t′n, z

′
n) is a homogeneous Fekete n-set and

let q(t, z) = V DMH((t′1, z
′
1), ..., (t′n−1, z

′
n−1), (t′n, z

′
n)). By the weighted H-principle the argu-

ment given above is reversible and produces a polynomial p such that dH,n(Kw
↑ ) = ‖q‖Kw

↑
=

‖w|α(n)|p‖K ≤ δwn (K) which shows δwn (K) = dH,n(Kw
↑ ). It follows that (presuming the limit

exists)

lim
n→∞

δwm(n)(K)1/l(n) = lim
n→∞

dH,m(n)(K
w
↑ )1/l(n).

Using Lemmas 4.28 and 4.29 and we obtain

h(V↑)(n)
Mn

M + 1
= m(n)

Mn

M + 1
≤ l(n) ≤ m(n)

mY +Mn

M + 1
= h(V↑)(n)

mY +Mn

M + 1
.

Hence

M

M + 1
≤ l(n)

nh(V↑)(n)
≤ mY /n+M

M + 1
.

Hence we have limn→∞ l(n)/nh(V↑)(n) = M/M + 1. So we deduce that:

dH(Kw
↑ )(M+1)/M = lim

n→∞
dH,m(n)(K

w
↑ )(M+1)/(Mnh

(V↑)(n)) = lim
n→∞

dH,m(n)(K
w
↑ )1/l(n)

which finishes the proof.
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Corollary 4.45. δw(K) = dH(Kw
↑ )(M+1)/M .

4.5 The Kw
ρ Lemmas.

The following are important technical lemmas that will be used in subsequent sections. These

will be proven using Rumely’s formula for varieties. Some of these results are known in the CN

case without needing to invoke the formula.

Lemma 4.46. Suppose that K ⊂ V and w an admissible weight on K. Define

Kw
ρ := {z ∈ Vh : ρK,Q ≤ 0}.

Then log δw(K) = log δ(Kw
ρ )− 1

dM(2π)M

∫
K Q(ddcVK,Q)M .

Proof. First suppose that K is regular. By Corollaries 4.42 and 4.45,

log(δw(K)) =
M + 1

M
log(dH(Kw

↑ )) =
M + 1

M
log(δ(Kw

↑ )).

If Xj = {x0 = ... = xj−1 = 0, xj = 1} ∩ V↑ then Rumely’s formula for varieties says that

− log(δ(Kw
↑ )) =

1

(M + 1)d

M∑
j=0

1

(2π)M−j

∫
Xj

ρKw
↑

(x, y) (ddcρKw
↑

)M−j .

Observe that since Kw
↑ is circled, so Kw

ρ = Kw
↑ ∩ {x0 = 0} is a circled set. For a circled set,

the homogeneous extremal function equals the extremal function i.e. max{0, ρKw
ρ
} = VKw

ρ
on

Vh. But ρKw
↑

(0, z) is a log homogeneous function with the same zero set as ρKw
ρ

(z) hence by

maximality (Lemma 3.27) they must be equal. It follows that

1

d(M + 1)

M∑
j=0

1

(2π)M−j

∫
Xj

ρKw
↑

(x, y) (ddcρKw
↑

)M−j

=
1

d(M + 1)

1

(2π)M

∫
X0

ρKw
↑

(x, y) (ddcρKw
↑

)M +
1

dM

M∑
j=1

1

(2π)M−j

∫
Xj

ρKw
↑

(x, y) (ddcρKw
↑

)M−j

=
1

d(M + 1)

1

(2π)M

∫
X0

ρKw
↑

(x, y) (ddcρKw
↑

)M

+
1

d(M + 1)

M∑
j=1

1

(2π)M−j

∫
{x1=...=xj−1=0,xj=1}

ρKw
ρ

(x, y) (ddcρKw
ρ

)M−j

=
1

d(M + 1)

1

(2π)M

∫
X0

ρKw
↑

(x, y) (ddcρKw
↑

)M − M

M + 1
log d(Kw

ρ ).

Hence

log δw(K) = log δ(Kw
ρ )− 1

dM(2π)M

∫
X0

ρKw
↑

(x, y)(ddcρKw
↑

)M . (64)

Since Kw
↑ is a circled set, it follows by the same logic as before that VKw

↑
= ρKw

↑
and by the
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weighted H-principle, VKw
↑

(1, z) = VK,Q(z). By Lemma 4.11 supp ddc(VK,Q)M ⊂ K and by

Lemma 4.12 VK,Q = Q q.e. on K. It follows that∫
X0

ρKw
↑

(x, y)(ddcρKw
↑

)M =

∫
K
Q(ddcVK,Q)M .

Putting this into equation (64) we obtain

log δw(K) = log d(Kw
ρ )− 1

dM(2π)M

∫
K
Q(ddcVK,Q)M

as claimed.

Now suppose that K is not regular. Take a sequence of regular sets Kj decreasing to K and wj

continuous and admissible on Kj decreasing to K. Let

Kw
j,↑(∆) = {(t, z) ∈ V↑ : |t| ≤ wj(z)}.

Then Kw
j,↑(∆) is the homogeneous polynomial hull of Kw

j,↑ so dH(Kw
j,↑) = dH(Kw

j,↑(∆)). By

construction, Kw
j,↑(∆) ⊃ Kw

j+1,↑(∆). Hence

dH(Kw
j,↑) = dH(Kw

j,↑(∆) ≥ dH(Kw
j+1,↑(∆) = dH(Kw

j+1,↑).

Since Kw
j+1,↑(∆) decreases to Kw

↑ (∆) it follows that the transfinite diameters above converge to

dH(Kw
↑ ). Hence δwj (Kj)→ δw(Kj).

The convergence δ(K
wj
j,ρ)→ δ(Kw

ρ ) follows since K
wj
j,ρ decreases to Kw

ρ . Finally the convergence

of ∫
Kj

Qj(dd
cVKj ,Qj )

M →
∫
K
Q(ddcVK,Q)M

follows from Theorem 2.12. Putting all these convergences together yields the result.

Lemma 4.47. Suppose that K ⊂ V and w is an admissible weight on K. Let C = max{V ∗K,Q(z) :

z ∈ K} and define

Z(K) = {z ∈ V : V ∗K,Q(z) ≤ C}.

Then dw(K) = δ(Z(K))e−C .

Recall Definition 4.24 for the definition of dw(K).

Proof. We show that for any λ, α that e−|α|CT (Z(K), α, λ) = Tw(K,α, λ) which is enough to

imply the result. To this end, suppose that q is an α-Chebyshev polynomial in the direction λ

for Z(K) (that is, ‖q‖Z(K) = T (Z(K), α, λ)). Observe then that ‖w|α|q‖K is a competitor for
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the weighted α-Chebyshev polynomial in the direction λ for K. This implies that

Tw(K,α, λ) ≤ ‖w|α|q‖K ≤ ‖w|α|‖K‖q‖K ≤ ‖w|α|‖K‖q‖Z(K) ≤ e−|α|CT (Z(K), α, λ).

Note that we have used the fact that ‖w|α|‖K = e−|α|‖Q‖K = e−|α|C by Lemma 4.12. For the

converse, suppose that p is a weighted α-Chebyshev polynomial in the direction λ for K (that

is, ‖w|α|p‖K = Tw(K,α, λ)). Then for z ∈ K

1

|α| log
|p(z)|
‖w|α|p‖K

=
1

|α| log |w|α|p(z)| − log |w(z)| − 1

|α| log ‖w|α|p‖K ≤ − log |w(z)| = Q(z).

This implies

1

|α| log
|p(z)|
‖w|α|p‖K

≤ VK,Q(z)

log |p(z)| ≤ |α|VK,Q(z) + log ‖w|α|p‖K
|p(z)| ≤ Tw(K,α, λ) exp(|α|VK,Q(z))

T (Z(K), α, λ) ≤ ‖p‖Z(K) ≤ Tw(K,α, λ) exp(|α|C)

Combining these inequalities we deduce e−|α|CT (Z(K), α, λ) = Tw(K,α, λ) which completes

the proof.

Corollary 4.48. τw(K, θ, λ) = e−Cτ(Z(K), θ, λ).

Corollary 4.49. If Z(K,C) = {VK,Q ≤ C} 6= ∅ then Tw(K,α, λ) = e−|α|CT (Z(K,C), α, λ).

Proof. Follows in exactly the same way as the proof of Lemma 4.47.

Corollary 4.50. If Z(K,C) = {z ∈ V : V ∗K,Q(z) ≤ C} then dw(K) = d(Z(K,C))e−C .

Proof. Use the exact same argument as in Lemma 4.47.

Lemma 4.51. Let K ⊂ V and suppose that w is an admissible weight on K. Then dw(K) =

d(Kw
ρ ).

Proof. By Lemma 4.47 dw(K) = d(Z(K))e−C . Observe that by construction of Z(K) that

VZ(K) = VK,Q − C outside of Z(K). It follows by taking Robin functions of both sides that

ρZ(K) = ρK,Q−C. Since d(Z(K)) = δ(Z(K)) we can use Lemma 4.46 to show that d(Z(K)) =

d(Z(K)ρ) (recall that Q = 0 since this is the unweighted situation so there is no integral term).

Now

Z(K)ρ := {z ∈ Vh : ρZ(K) ≤ 0} = {z ∈ Vh : ρK,Q ≤ C}.

Noting that ρK,Q is the weighted extremal function for Kw
ρ and using Corollary 4.50 in conjunc-

tion with the observation above it follows that d(Kw
ρ ) = e−Cd(Z(K)). Hence, dw(K) = d(Kw

ρ )

as claimed.
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Remark 4.52. Alternatively, we could invoke Rumely’s formula to obtain the final conclusion.

− log d(Z(K)) =
1

dM

M−1∑
j=0

1

(2π)M−j−1

∫
Xj

ρZ(K)(dd
cρZ(K))

M−j−1

=
1

dM

M−1∑
j=0

1

(2π)M−j−1

∫
Xj

ρK,Q − C(ddcρK,Q)M−j−1

= − log d(Kw
ρ )− C

dM

M−1∑
j=0

d(2π)M−j−1

(2π)M−j−1

= − log d(Kw
ρ )− C

which implies d(Kw
ρ ) = e−Cd(Z(K)).

Corollary 4.53.

dw(K) = δw(K) exp

(
1

dM(2π)M

∫
K
Q(ddcVK,Q)M

)
.

Proof. Apply Lemma 4.51 to Lemma 4.46.

Corollary 4.54.

dw(K) = dH(Kw
↑ )(M+1)/M exp

(
1

dM(2π)M

∫
K
Q(ddcVK,Q)M

)
.

Proof. Apply Corollary 4.45 to Corollary 4.53.

Lemma 4.55. With notation as Lemma 4.51, τw(K, θ, λ) = τ(Kw
ρ , θ, λ).

Proof. Observe that ρK,Q = ρZ(K) + C where C = max{VK(z) : z ∈ K} ≥ 0. Hence we have

Kw
ρ = {ρK,Q ≤ 0} = {ρZ(K) ≤ −C}.

Observe that since Kw
ρ is circled, max{ρKw

ρ
, 0} = VKw

ρ
. Then

Z(K)ρ = {ρZ(K) ≤ 0} = {ρKw
ρ
≤ C} = {VKw

ρ
≤ C} = Z(Kw

ρ , C).

It follows that

T (Z(K)ρ, α, λ) = T (Z(Kw
ρ , C), α, λ) = e−|α|CT (Kw

ρ , α, λ) (65)

by Corollary 4.49. By Corollary 4.48 we have

Tw(K,α, λ) = e−|α|CT (Z(K), α, λ). (66)

We must now relate T (Z(K), α, λ) and T (Z(K)ρ, α, λ). To do this note that for an α-Chebyshev
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polynomial in the direction λ, say p, we have

1

deg p
log

|p(z)|
‖p‖Z(K)

≤ VZ(K)(z).

Taking Robin functions of both sides;

1

deg p
log

|p̂(z)|
‖p‖Z(K)

≤ ρZ(K)(z).

For any z ∈ Z(K)ρ we observe that

|p̂(z)|1/deg p ≤ ‖p‖1/ deg p
Z(K) = T (Z(K), α, λ).

Since lt(p̂) = lt(p) it follows that p̂ is a competitor for the α-Chebyshev polynomial in the

direciton λ of Z(K)ρ. Hence we conclude T (Z(K)ρ, α, λ) ≤ T (Z(K), α, λ). This implies for any

θ ∈ Σ0 and direction λ that

τ(Z(K)ρ, θ, λ) ≤ τ(Z(K), θ, λ). (67)

Suppose that the inequality were strict for some θ and λ. Since τ is log-convex on θ (by Lemma

1.140) there exists some open subset S ⊂ Σ0 such that the inequality is strict for all θ ∈ S. By

Lemma 4.51 we know that d(Z(K)) = d(Z(K)ρ). Unwinding definitions we obtain

log d(Z(K)) =
1

d · vol(Σ)

∑
i=1

d

∫
Σ0

log τ(Z(K), θ, λi) dσ

=
1

d · vol(Σ)

∑
i=1

d

∫
Σ0

log τ(Z(K)ρ, θ, λi) dσ

= d(Z(K)ρ).

Since
∫
S log τ(Z(K)ρ, θ, λ) dσ <

∫
S τ(Z(K), θ, λ) dσ it must be true that∫

Σ0\S
log τ(Z(K)ρ, θ, λ) dσ >

∫
Σ0\S

τ(Z(K), θ, λ) dσ,

which contradicts equation (67). It follows that the inequality in equation (67) is never strict,

so we have equality.

The result now follows by comparing equations (65) and (66) by observing

τw(K, θ, λ) = e−Cτ(Z(K), θ, λ) = e−Cτ(Z(K)ρ, θ, λ) = e−CeCτ(Kw
ρ , θ, λ).
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4.6 Convergence of Fekete Polynomials to the Extremal Function

Theorem 4.56. Suppose that F ⊂ E and d(E) = d(F ). Then ρ∗E = ρ∗F .

Proof. We start with the integral formula Proposition 3.52.

1

d(2π)M−1

∫
Ṽh

[ρ̃∗E − ρ̃∗F ]

M−1∑
j=0

(ddcρ̃∗E + ω)j ∧ (ddcρ̃∗F + ω)M−j−1

=
M∑
j=1

1

d(2π)M−j

(∫
Xj

ρ∗E(x, y) (ddcρ∗E)M−j −
∫
Xj

ρ∗F (x, y) (ddcρ∗F )M−j

)
.

By the Rumely formula this is equal to

M∑
j=1

1

d(2π)M−j

(∫
Xj

ρ∗E(x, y) (ddcρ∗E)M−j −
∫
Xj

ρ∗F (x, y) (ddcρ∗F )M−j

)

=
1

d(2π)M−1

∫
Ṽh

[ρ̃∗E − ρ̃∗TV ]

M−1∑
j=0

(ddcρ̃∗E + ω)j ∧ (ddcρ̃∗TV + ω)M−j−1

− 1

d(2π)M−1

∫
Ṽh

[ρ̃∗F − ρ̃∗TV ]
M−1∑
j=0

(ddcρ̃∗F + ω)j ∧ (ddcρ̃∗TV + ω)M−j−1

= − log d(E) + log d(F ) = 0.

Hence

1

d(2π)M−1

∫
Ṽh

[ρ̃∗E − ρ̃∗F ]

M−1∑
j=0

(ddcρ̃∗E + ω)j ∧ (ddcρ̃∗F + ω)M−j−1 = 0.

Recognising that

M−1∑
j=0

(ddcρ̃∗E + ω)j ∧ (ddcρ̃∗F + ω)M−j−1 =
M−1∑
j=0

(ddcṼ ∗E(0, z))j ∧ (ddcṼ ∗F (0, z))M−j−1

we see that the integral as a multiple of the integral in Theorem 3.9. Since V ∗F ≥ V ∗E the

hypothesis of the theorem is satisfied. Using that result we observe

∫
V
V ∗F (ddcV ∗E)M ≤

∫
V
V ∗E(ddcV ∗F )M + 2π

∫
Ṽh

[ρ̃∗E − ρ̃∗F ]

M−1∑
j=0

(ddcρ̃∗E + ω)j ∧ (ddcρ̃∗F + ω)M−j−1

=

∫
V
V ∗E(ddcV ∗F )M .

We now argue as in Theorem 3.11. Since (ddcV ∗F )M is supported in F and V ∗E ≡ 0 on E ⊃ F

we conclude that the RHS of the above inequality is 0. Hence as V ∗F ≥ 0 it follows that∫
V V

∗
F (ddcV ∗E)M = 0. This in turn implies that {V ∗F > 0} is a set of (ddcV ∗E)M -measure 0. Since

{V ∗F > V ∗E} ⊂ {V ∗F > 0} it follows that {V ∗F > V ∗E} is a (ddcV ∗E)M -set of measure 0. By Lemma

130



3.10 it follows that V ∗F ≤ V ∗E which can only be true if there is equality. Since these functions

are the same, it follows that their Robin functions are the same as claimed.

Corollary 4.57. If F ⊂ E satisfies d(E) = d(F ) then E\F is pluripolar.

Theorem 4.58. Let K ⊂ V be compact, regular and polynomially convex. Let w be a continuous

admissible weight function on K. For each i, let {pj,i}j∈N be a sequence of polynomials such

that for all θ there exists a subsequence Yθ,i ∈ Z≥0 with pj,i ∈ {p : lt(p) = vλix
αj}, j ∈ Yθ,i and

lim
j∈Yθ,i

‖wdeg pj,ipj,i‖1/ deg pj,i
K = τw(K, θ, λi).

Then

max
1≤i≤d

[
lim sup
j→∞

1

deg pj,i
log

|pj,i(z)|
‖wdeg pj,ipj,i‖K

]∗
= VK,Q(z), z 6∈ K.

Proof. Let v denote the LHS of the above equality. By Theorem 3.11 it suffices to show that

ρv = ρK . Observe that {ρv ≤ 0} ⊃ {ρK,Q}, we seek the converse. We employ methods due to

Bloom ([12], Theorem 4.1) to obtain this. It suffices to show that Z = {z ∈ Vh : ρv(z) ≤ 0} is

the interior of Kw
ρ . To this end, suppose that z0 ∈ ∂Kw

ρ ∩Z and let B = {‖z0−z‖ ≤ r : z ∈ Vh}
with r chosen so that B ⊂ Z. By hypothesis, given θ ∈ Σ0 and 1 ≤ i ≤ d there exists Yθ,i ⊂ Z≥0

with desirable convergence properties. For z ∈ Kw
ρ ∪ B we have ρv ≤ 0 so for such z we have

for any i (as v is a maximum)

lim sup
j∈Yθ,i

1

deg pj,i
log |p̂j,i(z)| ≤ lim sup

j∈Yθ,i

1

deg pj,i
log ‖wdeg pj,ipj,i‖K = log τw(K, θ, λi).

By Hartogs lemma (Theorem 1.7) we conclude that

lim sup
j∈Yθ,i

1

deg pj,i
log ‖p̂j,i‖Kw

ρ ∪B ≤ log τw(K, θ, λi).

Hence τ(Kw
ρ ∪ B, θ, λi) ≤ τw(K, θ, λi) = τ(Kw

ρ , θ, λi) where we have used Lemma 4.55 in the

equality on the RHS. But by monotonicity of τ it follows that τ(Kw
ρ ∪B, θ, λi) ≥ τ(Kw

ρ , θ, λi).

Hence τ(Kw
ρ , θ, λi) = τ(Kw

ρ ∪B, θ, λi). This is true for all θ and 1 ≤ i ≤ d so d(Kw
ρ ) = d(Kw

ρ ∪B).

By Theorem 4.56 it follows that ρKw
ρ

= ρKw
ρ ∪B. But then ρKw

ρ
≤ 0 on B which implies B ⊂ Kw

ρ .

But B\Kw
ρ 6= ∅ by construction (since B is a ball centered at boundary point of Kw

ρ ) so we

have a contradiction. It follows that {ρv ≤ 0} ⊂ {ρK,Q} which provides the desired equality.

Corollary 4.59. Let K ⊂ V be compact, regular and polynomially convex. Let w be a continuous

admissible weight function on K. Let {pj}j∈N be a sequence of polynomials such that for all θ

and 1 ≤ i ≤ d there exists a subsequence Yθ,i ∈ Z≥0 with pj ∈ {p : lt(p) = vλix
αj}, j ∈ Yθ,i for
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all j ∈ Yθ,i and

lim
j∈Yθ,i

‖wdeg pjpj‖1/deg pj
K = τw(K, θ, λi).

Then [
lim sup
j→∞

1

deg pj
log

|pj(z)|
‖wdeg pjpj‖K

]∗
= VK,Q(z), z 6∈ K.

Proof. If v denotes the function on the LHS then it is clear that v ≤ VK,Q; we seek the converse.

Suppose we have a sequence which satisfies the hypothesis and denote this sequence S. Define

Si := {p ∈ S : lt(p) = vλix
α}. Then each Si satisfies the hypothesis of Theorem 4.58 so

max
1≤i≤d

lim sup
j→∞
pj∈Si

1

deg pj
log

|p(z)|
‖wdeg pjp‖K


∗

= VK,Q(z).

Let u denote the function on the LHS. Since S contains each Si it follows that u ≤ v and since

u = VK,Q we have shown the converse and the proof is complete.

Remark 4.60. The proof of Theorem 4.58 works for Corollary 4.59, so could alternatively be

proven directly via that method.

With the formula in Corollary 4.59 we can solve the problem of convergence of Fekete

polynomials to the extremal function. The proof given of the CN case by Bloom in [12] invokes

Lagrange interpolation theory. However this is needlessly complex and standard arguments

based on those given by Zakharjuta [54] suffice.

Theorem 4.61. Let K ⊂ V be compact, regular and polynomially convex. Let w be a continuous

admissible weight function on K. Recalling the notation from Definition 4.43, we define the jth

Fekete polynomial to be

Fj(z) =
V DMC[V](ζ1, ..., ζj , z)

V DMC[V](ζ1, ..., ζj)

where {ζ1, ..., ζj} are a Fekete j-set for K (where the elements may change as j changes). Then

for z ∈ V\K we have [
lim sup
j→∞

1

degFj
log |Fj(z)|

]∗
= VK,Q(z). (68)
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Proof. Write ζ̂i = (ζ1, ..., ζi−1, ζi+1, ..., ζj). Observe that

|V DMC[V](ζ1, ..., ζj , z)| =

∣∣∣∣∣∣∣∣∣∣
det


e1(ζ1) ... e1(ζj) e1(z)

...
. . .

...
...

ej+1(ζ1) ... ej+1(ζj) ej+1(z)

w(ζ1)α(j+1)...w(z)α(j+1)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ej+1(z)V DM(ζ1, ..., ζj)−
j∑
i=1

ciei(z)

∣∣∣∣∣ .
It follows then that if ej+1(z) = xαvλ(z) then Fj is a competitor for the weighted α(j + 1)-

Chebyshev constant in the direction λ. That is,

T (K,α(j + 1), λ)|α(j+1)| ≤ ‖w|α(j+1)|Fj‖K . (69)

Suppose that t = ej+1(z) +
∑j

i=1 ciei(z) is a weighted α Chebyshev polynomial in the direction

λ. Let α(j + 1) = multideg(ej). Then observe that

|V DMC[V](ζ1, ..., ζj , z)|

=

∣∣∣∣∣∣∣∣∣∣
det


e1(ζ1) ... e1(ζj) e1(z)

...
. . .

...
...

ej+1(ζ1) ... ej+1(ζj) ej+1(z)

w(ζ1)|α(j+1)|...w(z)|α(j+1)|

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
det


e1(ζ1) ... e1(ζj) e1(z)

...
. . .

...
...

t(ζ1) ... t(ζj) t(z)

w(ζ1)|α(j+1)|...w(z)|α(j+1)|

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
det


w(ζ1)|α(j+1)|e1(ζ1) ... w(ζj)

|α(j+1)|e1(ζj) w(z)|α(j+1)|e1(z)

...
. . .

...
...

w(ζ1)|α(j+1)|t(ζ1) ... w(ζj)
|α(j+1)|t(ζj) w(z)|α(j+1)|t(z)


∣∣∣∣∣∣∣∣∣∣

where we have added c1 times the first row to the j + 1st row, ..., and cj times the jth row

to the j + 1st row and used the fact that determinants are unchanged under such operations.

Doing a cofactor expansion along the bottom row and using the triangle inequality we have

|V DMC[V](ζ1, ..., ζj , z)| ≤|w(z)|α(j+1)|t(z)||V DMC[V](ζ1, ..., ζj)w(ζ1)...w(ζj)

+

j∑
i=1

|w(ζi)
|α(j+1)|t(ζi)||V DMC[V](ζ̂i, z)w(ζ̂i)|. (70)

where w(ζ̂i) = w(ζ1)...w(ζi−1)w(ζi+1)...w(ζj)w(z). Observe the following for z ∈ K;

(i) |w|α(j+1)|t(ζj)| ≤ ‖w|α(j+1)|t‖K = Tw(K,α, λ)|α(j+1)|

133



(ii) |V DMC[V](ζ̂i, z)| ≤ |V DMC[V](ζ1, ..., ζj) since ζ1, ..., ζj is a j-Fekete set for K.

(iii) There is a constant C such that ‖w(ζ̂i)‖K ≤ C for all i and |w(ζ1)...w(ζj)| ≤ C.

Using all these estimates in equation (70) we obtain

|V DMC[V](ζ1, ..., ζj , z)| ≤ C(j + 1)Tw(K,α(j + 1), λ)|α(j+1)||V DMC[V](ζ1, ..., ζj)|. (71)

From equations (69) and (71) we deduce that

Tw(K,α(j + 1), λ)|α(j+1)| ≤ ‖w|α(j+1)|Fj‖K ≤ C(j + 1)Tw(K,α(j + 1), λ)|α(j+1)|.

This estimate shows that given θ, λ and a subsequence Yθ of {Fj} such that α(j+1)/|α(j+1)| →
θ and lt(Fj) = xβvλ we have

lim
j∈Yθ

Tw(K,α(j + 1), λ) ≤ lim
j∈Yθ
‖wα(j+1)Fj‖1/|α(j+1)|

K ≤ lim
j∈Yθ

(C(j + 1))1/|α(j+1)|Tw(K,α(j + 1), λ)

τw(K, θ, λ) = lim
j∈Yθ
‖wα(j+1)Fj‖1/|α(j+1)|

K = τw(K, θ, λ).

Hence the sequence {Fj} satisfies the hypothesis of Corollary 4.59 and the result follows.

Remark 4.62. One might expect a factor of 1
d or d to appear in the formula (68) since we saw

this factor turn up in other places where the transfinite diameter and the extremal function

are related. However, because Fekete polynomials are ‘normalised’ by dividing through by a

Vandermonde determinant any factor that would be incorporated is canceled out.

4.7 Unions of Sets on Different Varieties

For this section we assume that V1 = {pi(z) = 0 : 1 ≤ i ≤ m1} ⊂ CN and V2 = {qj(z) = 0 :

1 ≤ j ≤ m2} ⊂ CN are smooth algebraic varieties satisfying the standard hypothesis with d1

and d2 directions respectively. We assume that there are no overlap in directions, that is if λi

are the directions for V1 and µj are the directions for V2 then λi 6= µj for all i, j. We want to

study the variety

V = V1 ∪ V2 = {pi(z)qj(z) = 0 : 1 ≤ i ≤ m1, 1 ≤ j ≤ m2}.

This variety is singular at all points z ∈ V1∩V2, hence Vsing is an algebraic subvariety of both V1

and V2. By Demailly [24] Monge-Ampère is locally bounded near Vsing (as Vsing is pluripolar)

and we may use the techniques discussed in Section 2.8 to study this case.

Theorem 4.63. Suppose that E ⊂ V1, F ⊂ V2 are compact sets and wE, wF are admissible
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weight functions on E and F respectively. If w =


wE(z), z ∈ E,

wF (z), z ∈ F,
then

VE∪F,Q(z) =


VE,QE (z), z ∈ V1\Vsing,

VF,QF (z), z ∈ V2\Vsing,

max{VE,QE (z), VF,QF (z)}, z ∈ Vsing.

Proof. Suppose that η : V̂ → V is a desingularisation of V. Let η−1(V1) = V̂1 and η−1(V2) = V̂2

and observe that V̂1 ∪ V̂2 = V̂, V̂1 ∩ V̂2 = ∅. Since being plurisubharmonic is a local property

and V̂1 and V̂2 are disjoint it follows that u ∈ PSH(V̂) induces a psh function u1 on V1 (by

restriction and usc regularisation) and u2 on V2.

By Lemma 2.32 there is a function l̂og ∈ PSH(V̂) such that log+ ‖z‖ = maxx=η−1(z) l̂og
+

(x). It

follows then that the associated function to u ∈ wL(V) guaranteed by Lemma 2.32, û, satisfies

û(x) ≤ l̂og
+

(x) + α for some α ∈ R. Write

L̂(V̂) := {u ∈ PSH(V̂) : u(x) ≤ l̂og
+

(x) + α, for some α ∈ R}.

Write V̂K̂,Q̂ := sup{u ∈ L̂(V̂) : u(x) ≤ Q̂(x), x ∈ K}. Then it follows that for any K ⊂ V with

admissible weight wK and associated set K̂ ⊂ V̂ with associated admissible weight ŵK that

VK,QK (z) = max
x=η−1(z)

V̂K̂,Q̂K (x).

From the fact that V̂1 and V̂2 are disjoint, we can find V̂
Ê∪F ,Q̂ by finding the supremum on V̂1

and V̂2 separately, that is

V̂
Ê∪F ,Q̂(x) =


V̂Ê,Q̂E (x), x ∈ V̂1,

V̂F̂ ,Q̂F (x), x ∈ V̂2.
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Pushing this forward to V we deduce

VE∪F,Q(z) = max
x=η−1(z)

V̂
Ê∪F ,Q̂(x)

= max
x=η−1(z)


V̂Ê,Q̂E (x), x ∈ V̂1,

V̂F̂ ,Q̂F (x), x ∈ V̂2.

=


VE,QE (z), z ∈ V1\Vsing,

VF,QF (z), z ∈ V2\Vsing,

max{VE,QE (z), VF,QF (z)}, z ∈ Vsing.

Remark 4.64. Writing V to be the claimed weighted extremal function for E ∪ F , we have the

following observation;∫
V

(ddcV (z)∗)M =

∫
V1\Vsing

(ddcV (z)∗)M +

∫
V2\Vsing

(ddcV (z)∗)M +

∫
Vsing

(ddcV (z)∗)M

=

∫
V1\Vsing

(ddcVE(z)∗)M +

∫
V2\Vsing

(ddcVF (z)∗)M + 0

=

∫
E

(ddcVE(z)∗)M +

∫
F

(ddcVF (z)∗)M .

That is, (ddcV ∗)M is (compactly) supported on E ∪ F . A similar argument shows that V = Q

q.e. on E ∪ F . From these observations one can deduce the equality of the regularisation of V

and VE∪F,Q which offers an alternate method to proving the result.

Corollary 4.65. With setup as in Theorem 4.63,

ρE∪F =


ρE(z), z ∈ Vh1 \Vh,sing

ρF (z), z ∈ Vh2 \Vh,sing

max{ρE(z), ρF (z)}, z ∈ Vh,sing.

We need a version of Rumely’s formula for varieties of the form V1 ∪ V2 which has distinct

intersections at infinity. Careful observation of the arguments shows that the only claims that

need to be verified are the two relations involving the Monge-Ampère energy bracket. The other

arguments carry through without modification. This is captured in the following result.

Proposition 4.66. Suppose that V = V1 ∪ V2 satisfies the standard hypothesis except for being

smooth. Without loss of generality (e.g. by a linear transformation if necessary), assume that

TV∩V ⊂ Vreg. Let E ⊂ V1 and F ⊂ V2. Let ν = 1
d(2π)M

(ddcVTV )M and Sk an L2(ν)-orthonormal

basis for C[V]. Then
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(i) lim
k→∞

1

kNk
log ‖ det[Sk]‖L∞(E∪F ) =

E(VTV , V
∗
E∪F )

M + 1

(ii) E(VTV , V
∗
E∪F ) = 2π

∫
Ṽh

(ρ̃TV − ρ̃E∪F ) ∧
M−1∑
j=0

(ddcρ̃TV )j ∧ (ddcρ̃E∪F )M−j−1.

Proof. For (i) observe that

E(VTV , V
∗
E∪F ) =

∫
V

(VTV − V ∗E∪F )
M∑
j=0

(ddcVTV )j ∧ (ddcV ∗E∪F )M−j

=

∫
V\Vsing

(VTV − V ∗E∪F )
M∑
j=0

(ddcVTV )j ∧ (ddcV ∗E∪F )M−j ,

since the currents in the integral place no mass on pluripolar sets. Now the result follows

from applying Corollary A [7] (i.e. Theorem 3.49 in full generality) to the complex manifold

Vreg = V\Vsing. For (ii) observe that

E(VTV , V
∗
E∪F ) =

∫
V

(VTV − V ∗E∪F )

M∑
j=0

(ddcVTV )j ∧ (ddcV ∗E∪F )M−j (72)

=

(∫
V1

+

∫
V2

)
(VTV − V ∗E∪F )

M∑
j=0

(ddcVTV )j ∧ (ddcV ∗E∪F )M−j (73)

=

∫
V1

(VTV∩E − V ∗E)
M∑
j=0

(ddcVTV∩E)j ∧ (ddcV ∗E)M−j

+

∫
V2

(VTV∩F − V ∗F )

M∑
j=0

(ddcVTV∩F )j ∧ (ddcV ∗F )M−j (74)

= 2π

∫
Ṽh1

(ρ̃TV∩E − ρ̃E) ∧
M−1∑
j=0

(ddcρ̃TV∩E)j ∧ (ddcρ̃E)M−j−1

+ 2π

∫
Ṽh2

(ρ̃TV∩F − ρ̃F ) ∧
M−1∑
j=0

(ddcρ̃TV∩F )j ∧ (ddcρ̃F )M−j−1 (75)

= 2π

∫
Ṽh

(ρ̃TV − ρ̃E∪F ) ∧
M−1∑
j=0

(ddcρ̃TV )j ∧ (ddcρ̃E∪F )M−j−1, (76)

where we have used the following logic to pass from line to line; from (72) to (73) we have used

the pluripolarity of Vsing, from (73) to (74) we have used Theorem 4.63, from (74) to (75) we

have used the smooth result (Theorem 3.43), from (75) to (76) we have used Corollary 4.65.

This completes the proof.

Corollary 4.67. Rumely’s formula for varieties (Theorem 3.53) is valid under the weaker

hypothesis that V = V1 ∪V2 where V1 and V2 are smooth varieties and moreover that V satisfies

the standard hypothesis except for the smooth condition.
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Theorem 4.68. Let V1 and V2 be smooth M -dimensional varieties with d1 and d2 branches

respectively. Moreover suppose that V = V1∪V2 is M -dimensional and has distinct intersections

at infinity. Suppose that E ⊂ V1, F ⊂ V2 are compact, polynomially convex and non-pluripolar

(with respect to V1 and V2 respectively). Then d(E ∪ F )d1+d2 = d(E)d1d(F )d2.

Proof. From the Rumely formula with Xj = Vh ∩ {z1 = ... = zj−1 = 0, zj = 1}, Xj,1 = Vh1 ∩Xj

and Xj,2 = Vh2 ∩Xj ;

− log d(E ∪ F ) =
1

M(d1 + d2)

M∑
j=1

1

(2π)M−j

∫
Xj

ρE∪F (z)(ddcρE∪F )M−j

=
1

M(d1 + d2)

M∑
j=1

1

(2π)M−j

[∫
Xj,1

ρE∪F (z)(ddcρE∪F )M−j +

∫
Xj,2

ρE∪F (z)(ddcρE∪F )M−j

]
.

From Corollary 4.65 we have

ρE∪F =


ρE(z), z ∈ Vh1 \Vh,sing,

ρF (z), z ∈ Vh2 \Vh,sing,

max{ρE(z), ρF (z)}, z ∈ Vh,sing.

Since no mass is placed on the singular part of Vh (since ρE and ρF are locally bounded away

from 0) we have

−M(d1 + d2) log d(E ∪ F ) =

M∑
j=1

1

(2π)M−j

[∫
Xj,1

ρE(z)(ddcρE)M−j +

∫
Xj,2

ρF (z)(ddcρF )M−j

]
= −Md1 log d(E)−Md2 log d(F ).

Hence d(E ∪ F )d1+d2 = d(E)d1d(F )d2 as claimed.

Proposition 4.69. Let V1 and V2 be smooth M1-dimensional and M2-dimensional varieties

respectively with d1 and d2 branches respectively. Suppose further that M1 > M2 so that V =

V1 ∪V2 has dimension M1. Suppose that E ⊂ V1 and F ⊂ V2 are compact, polynomially convex

and non-pluripolar (with respect to V1 and V2 respectively). Then

d(E ∪ F ) = d(E)

where the transfinite diameter on the LHS is understood in the context of Berman-Boucksom

(Theorem 3.49).

Proof. In this case V2 is a pluripolar subset of V so it suffices to study the non-pluripolar part

of V, i.e. V1. The result follows from this observation.

Remark 4.70. This Theorem 4.68 captures the spirit of Proposition 3.5 from [2] due to Baleiko-
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rocau and Ma’u which showed that for algebraic curves V1,V2, V = V1∪V2 and E ⊂ V1, F ⊂ V2

we have

τ(E ⊂ V1, λ) = τ(E ⊂ V, λ) = τ(E ∪ F ⊂ V, λ).

where the E ⊂ V argument denotes the monomial basis from which the Chebyshev polynomials

are taken from. Taking the geometric average over λ recovers the transfinite diameter and the

result from Theorem 4.68. The following is a direct generalisation of that result. It also shows

that we can drop the polynomial convexity hypothesis.

Theorem 4.71. Let V1 and V2 be smooth M -dimensional algebraic varieties such that V =

V1 ∪V2 has distinct intersections with infinity. Suppose that E ⊂ V1, F ⊂ V2 are non-pluripolar

compact sets, λ is a direction of V1 and E ∪ F ⊂ V. Then τ(E ⊂ V1, λ) = τ(E ⊂ V, λ) =

τ(E ∪ F ⊂ V, λ) for all directions λ.

Proof. Let P (V1, E, α, λ) ⊂ C[V1] denote the set of competitor Chebyshev polynomials of degree

α for the set E ⊂ V1 in the direction λ and similar for P (V, E ∪ F, α, λ) ⊂ C[V]. If I(V) is the

ideal for the variety V observe that

C[V] = C[z]\I(V) = C[z]\I(V1 ∪ V2) = C[z]\(I(V1)I(V2)).

Note that I(V1)I(V2) ⊂ I(V1) so C[z]\(I(V1)I(V2)) ⊃ C[z]\I(V1). Hence P (V1, E, α, λ) ⊂
P (V, E, α, λ) so τ(E ⊂ V1, θ, λ) ≥ τ(E ⊂ V, θ, λ). Integrating over θ ∈ Σ0 yields τ(E ⊂
V1, λ) ≥ τ(E ⊂ V, λ).

Suppose that vi is the polynomial from Lemma 1.134 which is associated to the direction λ.

Choose a polynomial g ∈ I(V2)\I(V1)I(V2) which satisfies ‖g‖E > 0 and lt(g) = vix
β and

suppose t ∈ P (V, E, α, λ) is a Chebyshev polynomial. Then (using the notation of Theorem

1.113) lt([g · t]) = Cvix
α+γ for some multi-index γ and constant C. It follows then that

CT (E ∪ F ⊂ V, α+ γ, λ)|α+γ| ≤ ‖[g · t]‖E∪F = ‖[g · t]‖E ≤ ‖g‖E‖t‖E = ‖g‖ET (E ⊂ V, α, λ)|α|.

Since g (and hence ‖g‖E , C and γ) are fixed, taking |α|th roots and letting α/|α| → θ as

|α| → ∞ shows that τ(E ∪ F ⊂ V, θ, λ) ≤ τ(E ⊂ V, θ, λ). Hence the inequality remains after

integrating over θ ∈ Σ0 i.e. τ(E ∪ F ⊂ V, λ) ≤ τ(E ⊂ V, λ).

Finally, if t ∈ P (V, E ∪ F, α, λ) is a Chebyshev polynomial then

T (E ∪ F ⊂ V, α, λ)|α| = ‖t‖E∪F ≥ ‖t‖E ≥ T (E ⊂ V1, α, λ)|α|.

The same argument used in the previous cases yields τ(E ∪ F ⊂ V, λ) ≥ τ(E ⊂ V1, λ). Hence

139



we have

τ(E ⊂ V1, λ) ≤ τ(E ⊂ V, λ) ≤ τ(E ∪ F ⊂ V, λ) ≤ τ(E ⊂ V1, λ)

which proves the result.

Remark 4.72. Weighted versions of the previous results can be easily obtained using Corollaries

4.48 and 4.50.
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5 Further Research

5.1 Rumely Formula for Principal Chebyshev Constants

Suppose that V is a smooth algebraic variety of dimension M with d branches with unique

intersection at infinity, let K ⊂ V be a compact set. We know that d(K) is the geometric

average of the principal Chebyshev constants T (K,λi) so we may rewrite the Rumely formula

to be

−1

d

d∑
i=1

log τ(K,λi) =
1

dM

M∑
j=1

1

(2π)M−j

∫
Xj

ρK(z) (ddcρK)M .

Given how nicely the directional Chebyshev constants behave in Section 4 one might expect a

formula like the following to hold.

Conjecture 5.1. Suppose that Xi
j is the ith branch of Xj and that λi ∈ Xi

j for all j, i.

− log τ(K,λi) =
1

M

M∑
j=1

1

(2π)M−j

∫
Xj

ρK(z) (ddcρK)M .

Proving this conjecture is somewhat different to proving the transfinite diameter relation.

The machinery developed by Berman-Boucksom ([7, 41]) obtains the classical result through

an auxiliary concept of taking ratios of polynomial ball volumes. Their work showed that the

transfinite diameter and the Monge-Ampère bracket were both asymptotically equal to these

ball volumes (subject to a suitable ‘ground level’ energy i.e. the unit torus).

The important point here is that everything is set up to compare to the transfinite diameter;

or rather the Vandermonde matrix formulation of the transfinite diameter. A principle Cheby-

shev constant does not naturally lend itself to a ‘Vandermonde’ type formulation so it becomes

difficult to understand these constants within the Berman-Boucksom framework.

One approach which may be fruitful is to change the ground level energy from VTV to another

set which in some way incorporates the directionality of the Chebyshev constant.

The other approach to proving Rumely’s formula given by Rumely in [49] involves deriving the

Rumely formula from the ‘sectional capacity’ which under appropriate conditions equals the

transfinite diameter. Again, this is an approach which chooses to relate the Robin function

directly to the transfinite diameter rather than the Chebyshev constant. The theoretical under-

pinnings of Rumely work is not something that we understand fully so cannot offer a starting

point to attempting to prove the conjecture in this manner.
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5.2 Robin Function Formulae when Vh Singular & Branched at Infinity

Recall that we restricted our focus to V having ‘nice’ behaviour at infinity in order to deduce

properties of the Robin function; e.g. the Bedford-Taylor formula which was a critical compo-

nent of the Rumely formula. It is reasonable to ask whether similar results hold for when V
is badly behaved at infinity. It is sufficient to consider how the proof of Theorem 2.67 (the

Bedford-Taylor formula) would proceed in this circumstance.

The strategy to prove this result was to take two branch cuts, study the respective projection,

recover the result there then project back to V. Suppose that V is singular at infinity. Re-

calling that the branches of V ‘feed into’ an irreducible component of V↑ along {t = 0} given

a distinguished branch cut, it appears as if the arguments should go straight through on each

irreducible component. The end formula for this case should look like the following

Conjecture 5.2. Let Xj be the jth irreducible component of V↑ along {t = 0} and ρu,j the

Robin function defined on Xj. Suppose that there are k irreducible components. Then

∫
V

(uddcv − vddcu) ∧ T = 2π

k∑
j=1

∫
X̃j

(ρ̃∗u,j − ρ̃∗v,j) ∧ T̃j .

When V is branched at infinity we observed that the Robin function could not be determined

solely by considering projections, ultimately we had to max over Robin functions defined on

branch points to get a sensible definition. The arguments used in Theorem 2.67 should still

work, up to being aware of when to max Robin functions. However this looks like an involved

process and we wonder if there is an easier way to go about it. Nevertheless, we expect a formula

such as the following.

Conjecture 5.3. Let Xj be the jth irreducible component of V↑ along {t = 0} and ρu,j the

Robin function defined on Xj. Suppose that there are k irreducible components. Then

∫
V

(uddcv − vddcu) ∧ T = 2π

k∑
j=1

∫
X̃j

oπ([z])(ρ̃∗u,j − ρ̃∗v,j) ∧ T̃j ,

where oπ([z]) is the branching order at [z] ∈ X̃j.

The oπ([z]) term accounts for the possible branching at [z] ∈ X̃j ⊂ Ṽh. It effectively plays

the role of accounting for the possible multiplicity arising from the branching. This conjecture

agrees with the example computed in Section 2.7.

With a sensible Bedford-Taylor formula we imagine that the results of Section 3 can be ap-

proached in a similar manner, in particular recovering a Rumely type formula for this case.
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5.3 Polynomial Convexity

This section is a half-answer to an extension problem for VK on an algebraic variety. Interesting

machinery was developed along the way but we eventually ran into a roadblock which we could

not resolve. See the end of this section for details on this roadblock.

We open with a motivating example. For this we assume A ⊂ CN is a hypersurface (an

algebraic variety of codimension 1) with (x, y) a Noether presentation for A. If A is quadratic

C[A] = span{xj , yxj : j ∈ N}. Motivated by polynomial convexity in CN we define the following;

Definition 5.4. Let K ⊂ A. We define the reduced polynomial hull of K (in CN ) to be the set

K̂A := {z ∈ C2 : |p(z)| ≤ ‖p‖K , ∀p ∈ C[A]}.

Lemma 5.5. VK(z) = VK̂A.

Proof. Recall that

VK(z) = sup

{
1

deg p
log |p(z)| : ‖p‖K ≤ 1, p ∈ C[A]

}
.

But by definition if p ∈ C[A] then ‖p‖K ≤ 1 implies ‖p‖K̂A ≤ 1. It follows that VK(z) ≤ 0 on

K̂A and hence by maximality VK(z) = VK̂A(z).

If K̂A extends off of A then we have an explicit and natural extension of VK to a function

in L(CN ). Hence we are interested in the question of which sets satisfy K̂A = K, K̂ = K̂A or

K̂A ∩ A 6= K̂A. This last case being of particular interest.

Example 5.6. Let A = {z2
1 + z2

2 = 1} and K = A ∩ R × R = {(z1, z2) ∈ A : z1, z2 ∈ R}. This

is just the circle in R2. We claim that K̂A = K̂convex. First of all, note that C[A] contains all

linear functions in (z1, z2) and so necessarily K̂A ⊂ K̂convex.

K K̂A

Suppose that t ∈ (−1, 1) and consider the intersection Kt = K ∩ {z1 = t}. This will always

give two points; (t,±
√

1− t2). Let p ∈ C[A] and write p = q1(z1) + z2q2(z1) where q1, q2 ∈
C[z1]. Note p|Kt = p(t, z2) defines a one variable polynomial in z2 (for fixed t) and so define

p̃(z2) = p(t, z2). Note that p̃(z2) is a linear function (since q1(t) and q2(t) are constant for fixed

t). Under the ∼ map, K̃t is the z2-projection of the set Kt, or K̃t = {±
√

1− t2}. It follows that

{z2 ∈ C : |p̃(z2)| ≤ ‖p‖K} ⊃ {z2 ∈ C : |p̃(z2)| ≤ ‖p̃‖K̃t} ⊃ ( ˆ̃Kt)convex.
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Since this is true for any polynomial in C[A], it follows that the set (K̂t)convex ⊂ K̂A for all

t ∈ (−1, 1). Since ∪t∈[−1,1](Kt)convex = K̂convex, it follows that K̂convex ⊂ K̂A ⊂ K̂convex.

Thus K̂A = K̂convex and so K̂A extends off of A.

Example 5.7. Let L = A ∩ R × R+ = {(z1, z2) : z1, z2 ∈ R, z2 ≥ 0}. We claim that L̂A = L.

Firstly note that the previous argument cannot be applied to this instance since the correspond-

ing Lt sets would only intersect L once, and the convex hull of a single point is the same point.

However, it is still true that L̂A ⊂ L̂convex so we need only show that any point in L̂convex\L is

not in L̂A.

L L̂A

Suppose that w = (w1, w2) ∈ L̂convex\L. Consider the function f(z) = e−az
2
1 (1− z2). Restricted

to L̂convex, this function takes its maximum at (0, 0) and minimum at (0, 1) and restricted to

L it has maximum at (±1, 0) and minimum at (0, 0). The maximum at (±1, 0) has value e−a.

The function increases in the z2 direction, so the points below the graph of e−a = e−az
2
1 (1− z2)

satisfy |f(z)| > ‖f‖L. We solve

e−a = e−az
2
1 (1− z2)

⇐⇒ −a = −az2
1 + log(1− z2)

⇐⇒ a =
log(1− z2)

z2
1 − 1

.

We note that on L̂convex\L that this equation for a is well defined. In particular, we can put in

the point (w1, w2), find a using the formula above, and then choose an a slightly larger than this

so ensure (w1, w2) falls below the graph. Of course, f(z) is not a polynomial, but the Taylor

polynomial approximation given by

Pn(z) = (z2 − 1)

n∑
j=0

(−z1)2j

j!

converges uniformly to f on L̂convex and Pn(z) ∈ C[A] for all n. Thus given (w1, w2), we can

find n such that |Pn(w)| > ‖P‖L. Thus w 6∈ L̂A and L = L̂A.

This contrasts starkly with the next example.

Example 5.8. Let M = A ∩ R+ × R = {(z1, z2) : z1, z2 ∈ R, z1 ≥ 0}. Then M̂A = M̂convex since

the argument applied to the circle case (Example 5.6) can be used in this case.
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M M̂A

Example 5.9. For this example take A := {z2
1 +z2

2 = 0}, which is the curve consisting of the two

lines z1 = z2 and z1 = −z2. Suppose that K = BR(0)∩A for some R > 0. Using the argument

from example 1 it follows that K̂A = {z2 = tz1 : |t| ≤ 1} ∩ {|z1| ≤ R}.

Suppose now that L ⊂ {z1 = z2}. Note that the polynomial z1 − z2 ∈ C[A] and z1 − z2 = 0 on

L. It follows that L̂A ⊂ A i.e. the reduced polynomial hull does not extend off of A.

Lastly, consider M defined by {z ∈ A : z1, z2 ∈ R, z2 ≥ 0}. We can use the function f(z) =

z2e
−z21 and a similar argument to Example 5.7 to conclude that M̂A = M .

These examples indicate that there is some interesting phenomena occurring here. In partic-

ular, the choice of Noether presentation for A can change the resulting reduced polynomial hull

as seen in Examples 5.7 and 5.8. It follows that VK (with K taken from Example 5.6) extends

off of A and is equal to the extremal function of the real circle (which is known by Lundin’s

formula i.e. Theorem 5.4.6 [37] or see Burns-Levenberg-Ma’u [19]).

The primitive arguments used in the previous examples can be used to understand quadratics

on a case by case basis. Higher degree curves are more difficult to understand because there is

essentially no theory on quadratic, cubic, ... hulls of sets (only the convex and polynomial hulls

are useful and hence studied). Hence we don’t know if we have extensions for higher degree

hypersurfaces.

Polynomial hulls in CN are closely related to the study of uniform algebras (see Stout [52] or

Gamelin [30] for this theory). Motivated by this, we lay the foundation for studying this prob-

lem in the context of uniform algebras and in doing so provide a complete description of the

quadratic case. This essentially means building a uniform algebra theory on subspaces of C[z].

5.3.1 Restriction of C[z] to a Subspace

Our study is motivated by the algebraic curve case so we will primarily consider hypersurfaces

of the form V = {p(z) = 0} with Noether presentation z = (x1, ..., xN−1, y) so that C[z] =

C[x] + yC[x] + ... + ydC[x] for some d. We remark that the construction given here is general

enough to cover more complex cases, but the results are clearer in the hypersurface case.
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Let A be the (commutative) algebra C[z] with identity 1. We are interested in studying the

restriction of A to the subspace S = C[x] + yC[x] + ...+ ydC[x]. A can be endowed with a norm

and completed such that A becomes a Banach algebra. Precisely, a norm ‖.‖ which satisfies

‖fg‖ ≤ ‖f‖‖g‖ for f, g ∈ A and ‖1‖ = 1. For instance, such a norm could be the sup norm of

polynomials over a compact set K ⊂ CN .

With this setup, S inherits a lot of structure from A. In particular, if ‖.‖ is a norm on A then

‖.‖ defines a norm on S. In our study S will always contain the multiplicative identity 1 and

‖1‖ = 1. Moreover, S can be completed with respect to this norm and become a complete

subspace of A, again we denote this completion as S. This completion will be of great interest.

5.3.2 Ideals of a Subspace

Throughout this section we assume that A = C[z], not with any norm nor completion.

Definition 5.10. We say J is an ideal of S if it is the restriction of an ideal I of A to S. We

denote restriction of an ideal J to S by J |S := {j ∈ J : j ∈ S} = J ∩ S.

Corollary 5.11. Ideals of S are closed under multiplication by C[x].

Corollary 5.12. Ideals of S are subgroups of S (with respect to addition).

Definition 5.13. We say an ideal J of S is a maximal ideal if the only proper ideal containing

J is S.

Lemma 5.14. For every maximal ideal J of S there is a maximal ideal J̃ of A which satisfies

J̃ |S = J .

Proof. Suppose that J is a maximal ideal in S. Then there is some f ∈ S such that f 6∈ J .

By definition of ideals in S, it follows there is an ideal J ′ of A such that J ′|S = J . Now J ′ is

contained in some proper ideals, and in particular J ′ = ∩J ′⊂IαIα. Since f 6∈ J ′ it follows that

there exists Iα such that f 6∈ Iα. Let Iα = J̃ and claim that this is our desired maximal ideal

i.e. that J̃ |S = J .

By construction of J̃ it follows that J ⊂ J̃ |S so we only need to show the converse. Suppose

that g ∈ J̃ |S with g 6∈ J . Then J̃ |S is an ideal of S which properly contains J . However since

J is maximal in S we must have that J̃ |S = S. In particular, f ∈ J̃ |S and hence f ∈ J̃ which

is absurd. So by contradiction, the result is proven.

Definition 5.15. By 〈f〉 we mean the ideal generated by f using elements from A. By 〈f〉S
we mean the ideal generated by f using elements from A and then restricted to S (the order

of generating and then restricting is important!). The notation 〈I〉 where I is a set is used to

denote the ideal generated by elements in that set (using elements from A). We will us the
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notation 〈I, f〉 to be the ideal generated by I and f (using elements from A) and 〈I, f〉S to be

the restriction of 〈I, f〉 to S.

Corollary 5.16. If J is an ideal of S then 〈J〉S = J .

Proof. By definition of an ideal of S, there is some ideal J ′ such that J = J ′|S . Since J ⊂ J ′|S
it follows that 〈J〉 ⊂ 〈J ′〉 = J ′. In particular, J ⊂ 〈J〉S ⊂ J ′|S = J .

Lemma 5.17. The only ideal of A that contains S is A. Equivalently, the only ideal of S

containing 1 is S.

Proof. Firstly, S is an ideal of S since A|S = S and A is an ideal of A. Now since S contains

1, it follows that any ideal of A which restricts to S must contain the element 1. But the only

ideal which contains 1 is A itself.

Lemma 5.18. If I is a maximal ideal in A then I|S is a maximal ideal of S.

Proof. The previous lemma shows that I|S is not S. Thus there exists f ∈ S such that f 6∈ I|S
and hence f 6∈ I. It follows that 〈f, I〉 = A from the maximality of I. From Corollary 5.16,

〈f, I|S〉S = 〈f, I〉S = S. Since this is true for any choice of f 6∈ I|S it follows that I|S cannot be

properly contained within any proper ideal of S. Hence I|S is a maximal ideal of S.

Corollary 5.19. An ideal J is a maximal ideal of S if and only if there exists a maximal ideal

J̃ such that J̃ |S = J .

We will use the notation MS to mean the maximal ideal space of S, or precisely, MS := {J :

J is a maximal ideal of S}.

Definition 5.20. Let J be an ideal of S. We define the quotient S/J to be the equivalence

classes of the relation f ∼ g ⇐⇒ ∃j ∈ J, f = g + j.

Lemma 5.21. ∼ is an equivalence. We denote equivalence classes under ∼ on S by [f ]S.

Proof. Reflexivity is clear. Since J is an ideal, if j ∈ J it follows that −j ∈ J and so the

relation is symmetric. If j1, j2 ∈ J, then j1 + j2 ∈ J and from this it follows that the relation is

transitive.

Notation 5.22. By [f ] ∈ A/J we denote the usual equivalence f ∼ g ⇐⇒ ∃j ∈ J, f = g + j.

Lemma 5.23. Suppose that J is an ideal of S and J̃ an ideal of A such that J̃ |S = J . Then

the set (A/J̃)|S = {[f ] ∈ A/J̃ : ∃g ∈ [f ], g ∈ S} (the set of equivalence classes which have an

element in S) are isomorphic to S/J .

Proof. Observe that [0]S + J = [0]S + J̃ |S , so the restriction map |S : J̃ 7→ J̃ |S preserves the

additive identity. Let f, g ∈ (A/J̃)|S such that [f ] = [g]. Then f = g + j for some j ∈ J . It

follows that f−g = j ∈ J and hence [f ]− [g] = [0] ∈ A/J̃ . Applying the restriction map to both

sides yields ([f ]− [g])S = [f ]S − [g]S = [0]S ∈ S/J (where we have used the fact that S is closed
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under addition to distribute the restriction map and the hypothesis to ensure the restriction is

non-empty). Hence [f ]S = [g]S ∈ S/J . Observe that this logic is reversible. So if f, g ∈ S and

[f ] = [g] ∈ A/J̃ then [f ]S = [g]S ∈ S/J and conversely. From this the result follows.

Recall the following standard fact from uniform algebra theory.

Theorem 5.24 (Theorem 2.2, [30]). Every maximal ideal of A is closed. If J is a maximal

ideal of A, then A/J is isometrically isomorphic to the field of complex numbers.

Theorem 5.25 (Theorem 2.3, [30]). Let φ be a non-zero complex-valued homomorphism on A

and Aφ the kernel of φ. The correspondence φ → Aφ is a bijective correspondence of non-zero

complex valued homomorphisms of A and maximal ideals in A. In particular Aφ is a maximal

ideal and if f ∈ A then φ(f) is the unique complex number λ such that f +Aφ = λ+Aφ.

Using these we can deduce the same facts concerning maximal ideals of S.

Lemma 5.26. An ideal J of S is maximal if and only if S/J is a field isomorphic to the complex

numbers.

Proof. We know that J induces a maximal ideal J̃ of A and that A/J̃ is isomorphic to the

complex numbers by Theorem 5.24. It follows that S/J is isomorphic to a subset of the complex

numbers. From Theorem 5.25 maximal ideals are ‘point evaluation’, that is a maximal ideal J̃

takes the form J̃ = 〈x1 − a1, ..., xN−1 − aN−1, y − aN 〉 for some (a1, ..., aN ) ∈ CN . But each of

x1 − a1, ..., y − aN ∈ S since S contains all linear polynomials, so the corresponding maximal

ideal in S guaranteed by Lemma 5.18 is given by 〈x1 − a1, ..., y − aN 〉S . Let λ ∈ C, then the

polynomial λ + (x1 − a1) + ... + (y − aN ) ≡ λ mod J . Since this is valid for any λ, it follows

that J maximal implies S/J is isomorphic to all of C.

Now suppose that S/J is isomorphic to C. Suppose that I is an ideal properly containing

J . Then there exists f ∈ I such that f + J is a nonzero element of S/J . Then there exists

f−1 + J ∈ S/J such that (f + J)(f−1 + J) = ff−1 + J = 1 + J since S/J is a field. Now

ff−1 ∈ I as f−1 ∈ S and from the calculation we just did ff−1 − 1 ∈ J ⊂ I. It thus follows

that 1 = (1− ff−1) + ff−1 ∈ I. The only ideal of S which contains 1 is S and so I = S and it

follows that J must be maximal.

Corollary 5.27. Maximal ideal of S are ‘point evaluation’ i.e. generated by linear factors

〈(x1 − a1), ..., (xN−1 − aN−1), y − aN 〉S.

Definition 5.28. A (complex valued) homomorphism of S is a map φ : S → C which satisfies

φ(f + g) = φ(f) + φ(g) for all f, g,∈ S and φ(fg) = φ(f)φ(g) when fg ∈ S.

Note that we require the homomorphism to preserve the multiplicative structure only when

the multiplication is defined. From Corollary 5.11 it follows that when φ is a homomorphism,

p(x) ∈ C[x] and f ∈ S then φ(p(x)f) = φ(p(x))φ(f) so our definition above is essentially a C[x]-

module homomorphism with the added restriction that if fg is ever defined that φ preserves

this multiplication.

148



Lemma 5.29. φ : S → C is a homomorphism if and only if there exists a homomorphism

φ̃ : A→ C such that φ̃|S = φ.

Proof. The ‘only if’ direction is clear, since any complex valued homomorphism of A is a com-

plex valued homomorphism of S. To prove the ‘if’ direction, note that φ(xi) and φ(i) are

defined for all 1 ≤ i ≤ N − 1. Given an element f(x, y) of A define φ̃ to be the function

φ̃(f(x1, ..., xN−1, y)) := f(φ(x1), ..., φ(xN−1), φ(y)). Checking that φ̃ is a homomorphism and

that φ̃|S = φ is immediate.

Lemma 5.30. There is a bijection between the kernel of homomorphisms φ : S → C and the

maximal ideals of S.

Proof. Homomorphisms associated to the maximal ideals of A restricted so that their domain

is S gives the desired homomorphisms on S. The fact that they are a bijection to the maximal

ideals follows since every maximal ideal of A induces a maximal ideal in S and conversely.

We will need the flexibility of working with canonically associated functions defined on the

maximal ideal space to work up to a absolute fluidity between CN and MS in subsequent work.

We formally identify each maximal ideal with the homomorphism whose kernel induces that

maximal ideal. Since these are all point evaluation, we may take MS to be a subset of CN by

identifying each homomorphism with the point to be evaluated at. Of course, with A and S set

up as in this section, MS = MA = CN . This will change shortly.

5.3.3 The uniform algebra A(K) and the ‘uniform module’ S(K)

Suppose that ‖.‖ is a norm such that A completed with respect to this norm is a Banach algebra.

In particular we will be interested in ‖.‖K , the supremum norm over a compact set K. In this

section we will take A(K) = A to be the completion of C[x, y] with respect to ‖.‖K = ‖.‖. We

will take S(K) = S to be the completion of C[x] + ... + ydC[x] with respect to ‖.‖. Note that

S ⊂ A but not conversely. As a consequence, it follows that MS ⊃MA.

Definition 5.31. The Gelfand transform of f ∈ S is the complex-valued function f̌ on MS

defined by f̌(φ) = φ(f).

Note it is customary to denote the Gelfand transform by f̂ , however due to our frequent use

of ˆas a symbol we will use the notation f̌ when needed. That said, this distinction will not

normally be necessary.

Lemma 5.32. f̌ : MS → C equals the usual Gelfand transform on A restricted to elements

from S.

Proof. Let us temporarily denote the Gelfand transform on A of a function f as f̃ . We must

check that when f ∈ S, f̃ = f̌ for φ ∈MS . Let φ ∈MS then f(φ) = f̌(φ) = f̃(φ) which verifies

this claim.
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Corollary 5.33. The Gelfand transform is a homomorphism (in the sense of Definition 5.28)

of S onto the set Š of continuous functions of MS. The subset Š separates points of MS and Š

contains the constants.

Proof. The first claim follows as ˇ(f + g)(φ) = φ(f + g) = φ(f) + φ(g) = f̌ + ǧ and ˇ(fg)(φ) =

φ(fg) = φ(f)φ(g) = f̌ ǧ when fg ∈ S. The fact that the Gelfand transform separates points is

checked by letting φ, ψ ∈MS be such that f̌(φ) = f̌(ψ) for all f ∈ S which forces φ(f) = ψ(f)

for all f ∈ S and hence φ = ψ. Finally, the Gelfand transform of the identity is the function

which is constant everywhere on MS and so Š contains the constants.

MS may be unbounded unlike the uniform algebra case. To see this first observe that without

the uniform completion, MS = MA = CN by Corollary 5.27. Suppose that V = {x2 + y2 = 1}
and take L as in Example 5.7 (i.e. the upper half of the real circle) then MS is unbounded in

the y direction. To see this observe that the uniform completion of S = S(L) is

{f(x) + g(x)y : f, g holomorphic for x ∈ [−1, 1]}.

It follows by Corollary 5.27 that 〈x−a1, y−a2〉 is a maximal ideal when a1 ∈ [−1, 1] and a2 ∈ C.

In particular MS
∼= {(x, y) : x ∈ [−1, 1], y ∈ C}.

L

MS

This is in contrast to MA which is always a compact subset of CN (provided K is compact). For

instance, MA
∼= L in the previous example. The difference is due to the fact that MA contains

all holomorphic functions in y as well as x, so situations like what happened above cannot occur.

We need to make the following definition to make the maximal ideal space a useful concept for

the uniform module.

Definition 5.34. We define MS(K) := {φ ∈ MS : |φ(f)| ≤ ‖f‖K , ∀f ∈ S} to be the reduced

maximal ideal space for S.

Lemma 5.35. MS(K) is the largest subset of MS such that the Gelfand transform is norm-

decreasing.
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Proof. Suppose φ ∈MS\MS(K), then there exists f ∈ S such that |f̌(φ)| = |f(φ)| > ‖f‖K and

so the Gelfand transform cannot be norm decreasing on MS(K) ∪ {φ} and so MS(K) cannot be

enlarged without voiding this property.

Lemma 5.36. Suppose φ ∈MS(K), then ‖φ‖ = 1 = φ(1) and φ is continuous.

Proof. φ(1) = 1 follows since φ(1)2 = φ(1) and so either φ(1) = 1 or φ(1) = 0. φ ∈ MS(K)

excludes the latter case since φ(1) = 0 implies φ is identically zero. By construction of the set

MS(K) we have |φ(f)| ≤ ‖f‖K for all f ∈ S with equality taken when f = 1, it follows that

‖φ‖ = 1. Since φ is a bounded linear functional on S it follows that φ is continuous.

Lemma 5.37. MS(K) is a compact Hausdorff.

Proof. The weak-star limit of homomorphisms satisfying φ(1) = 1 is again a non-zero homomor-

phism. Hence MS(K) is a closed subset of the unit ball of S∗. By Alaoglu’s theorem (Theorem

3.15, [48]), the unit ball of S∗ is weak-star compact. Hence MS(K) is compact.

We are interested in two things; firstly the relationship between the reduced maximal ideal

space MS(K) and the reduced polynomial hull of K and secondly the extension of the module

S by a function f which we will denote [S, f ].

Definition 5.38. The reduced polynomial hull or S-polynomial hull of a compact set K (denoted

K̂S) is the set

K̂S = {z ∈ Cn : |p(z)| ≤ ‖p‖K , ∀p ∈ S(K)}.

Lemma 5.39. Suppose that K ⊂ Cn is compact. Then K̂S ⊂MS(K).

Proof. Suppose that {pn}∞n=1 is a sequence of polynomials converging uniformly on K to f ∈ S.

From the definition of the reduced polynomial hull it follows that

‖pn − pm‖K̂S ≤ ‖pn − pm‖K

for all n and m. Consequently, {pn}∞n=1 converges uniformly on K̂S to a function f̂ on K̂S which

is an extension of f (i.e. f̂ |K = f). It follows that the point evaluation homomorphisms of f̂

are well defined on K̂S and hence we can view K̂S as a subset of MS(K).

Theorem 5.40. Suppose that K ⊂ Cn is compact. Then MS(K) = K̂S i.e. the reduced maximal

ideal space of S(K) is equal to the reduced polynomial hull of K.

Proof. The homomorphisms in MS(K) are point evaluation for a particular subset of Cn. Note

that K̂S ⊂ MS(K) by Lemma 5.39, so we must check that the opposite inclusion holds. Let

x ∈MS(K), we want to show that for any f ∈ S that |f(x)| ≤ ‖f‖K . To see this write

|f(x)| = |φx(f)| ≤ ‖f̌‖MS(K)
≤ ‖f‖K ,
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which follows from the definition of MS(K). This completes the proof.

We can now characterise the elements of S(K).

Lemma 5.41. Elements in S = S(K) are of the form f0(x) + yf1(x) + ... + ydfd(x) where

f0, ..., fd are analytic functions on MS(K) ∩ {x ∈ CN−1} = MS(K),x.

Proof. Suppose f(x, y) = f0(x) + yf1(x) + ... + ydfd(x) where f0, ..., fd are analytic functions

on MS(K) ⊂ CN−1. f0, ..., fd being analytic on MS(K) implies that there exists sequences

f0,j ..., fd,j of polynomials which unformly approximate f on MS(K). That is, given ε > 0

there exists j0 ∈ N such that for all j0 ≥ j we have ‖fi,j − fi‖K ≤ ‖fi,j − fi‖MS(K),x
< ε. If

fj(x, y) = f0,j(x, y) + ...+ ydfd(x, y) Then

‖fj − f‖K =

∥∥∥∥∥
d∑
i=0

yi(fi,j − fj)
∥∥∥∥∥
K

≤
d∑
i=0

‖yi‖K‖(fi,j − fi)‖K =
d∑
i=0

‖yi‖K‖(fi,j − fi)‖MS(K),x
≤Mε

where M depends on d and max0≤i≤d ‖yi‖K . It follows that fj → f uniformly so f is an element

of the uniform closure of S.

We must now show any element of the uniform closure has the form of the hypothesis. Let

{fj = f0,j(x)+yf1,j + ...+ydfd,j(x)}j∈N ∈ C[x, y] be a sequence uniformly convergent to g(x, y)

with respect to ‖.‖K . Fix a value of x0 ∈ K and let y vary. Then fj(x0, y) is a polynomial of

degree d in the variable y which is uniformly convergence to g(x0, y). Since finite dimensional

spaces are complete, it follows that g(x0, y) is a polynomial of degree d in y. Of note the

sequence of each coefficient converges for any x0 and hence uniformly. That is,

lim
j→∞

‖fi,j − gi‖K = 0 where g(x, y) =
d∑
i=0

yigi(x).

Finally, write ri,j(x) = fi,j(x)− gi(x) for each j. Then

‖gi(x)‖MS(K),x
= ‖fi,j − rj‖MS(K),x

≤ ‖fi,j‖MS(K),x
+ ‖ri,j‖MS(K),x

= ‖fi,j‖K + ‖ri,j‖MS(K),x

where ‖ri,j‖MS(K),x
→ 0 as j →∞. It follows that ‖gi‖MS(K),x

≤ limj→∞ ‖fi,j‖K+‖ri,j‖MS(K),x
=

‖gi‖K for each i. Since the coefficients of fj are absolutely convergence in MS(K),x to g it follows

that g is analytic on MS(K),x as claimed.

Definition 5.42. We say a function f is S-holomorphic at a point x ∈ MS(K) if there is a

neighbourhood U ⊂MS(K) of x such that f can be approximated uniformly by elements in S. A

function f is S-holomorphic on E ⊂MS(K) if it is S-holomorphic at every point in E.

Note that we must only consider points in the reduced maximal ideal space to ensure uniform

convergence. Of course, one could take any compact set of MS and this definition would make

sense, however MS(K) has interesting properties when studied with this definition in mind. Also
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note that on MS one could define an analogous concept by declaring S-holomophic require that

f can be approximated locally uniformly by elements in S. Again, we will not pursue this

direction.

Definition 5.43. The (module) extension of S by a continuous function f (denoted [S, f ]) is

the uniform closure of the set C[x] + yC[z1] + ... + ydC[x] + fC[x]. The set M[S,f ](K) is the

reduced maximal ideal space of [S, f ] which is defined in the same manner as Definition 5.34.

Theorem 5.44. Suppose K ⊂ E ⊂ MS(K). Let f be a continuous function on E such that f

is S-holomorphic on E\{f−1(0)}. Then M[S,f ](K) = E.

Proof. Without loss of generality we may assume that E ∩ {f−1(0)} = ∅. We first must verify

that φ(f) is defined for φ ∈ E. Since f is S-holomorphic on E, for each x ∈ E there exists

an open neighbourhood U of x such that f can be uniformly approximated by elements of S.

Suppose {fk} is such a sequence. Since fk ∈ S it follows that φx(fk) is defined, and since φx

is weak-star continuous on S, it follows that limk→∞ φx(fk) = φx(f) and so φx(f) is defined.

Repeating this for all x ∈ E verifies that φ(f) is defined for all φ ∈ E.

Now suppose v ∈ [S, f ], i.e. v is locally the uniform limit of vj(z) = pj0(x) + ... + ydpjd(z1) +

f(z)pjd+1(x) as j →∞ where pj0, ..., p
j
d, p

j
d+1 ∈ S. Then v is a continuous function on E and so

φ(v) is defined for φ ∈ E. We must check that the Gelfand transform is norm decreasing for v.

First we check that vj satisfies this property. To see this note that for φ ∈ E

|φ(vj)| =

∣∣∣∣∣∣φ
 lim
k→∞

d∑
j=0

yipji (x) + fk(z)p
j
d+1(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ lim
k→∞

φ

 d∑
j=0

yipji (x) + fk(z)p
j
d+1(x)

∣∣∣∣∣∣
≤ ‖ lim

k→∞

d∑
i=0

y̌ip̌ji + f̌kp̌
j
d+1‖E

≤ ‖ lim
k→∞

d∑
i=0

y̌ip̌ji + f̌kp̌
j
d+1‖MS(K)

≤ ‖ lim
k→∞

d∑
i=0

y̌ip̌ji + f̌kp̌
j
d+1‖K

= ‖vj‖K .

Where we have used the weak-star continuity of φ. Using the same ideas as in Lemma 5.41

and repeating these arguments with v we deduce that |φ(v)| ≤ ‖v‖K for all φ ∈ E. Hence

‖v̌‖E ≤ ‖v‖K .

Lemma 5.45. If f is S-holomorphic on E as in the previous theorem, then there exists an

S-holomorphic extension f̃ of f to MS(K) such that f̃ |E = f .
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Proof. We know that on E there exists a sequence vj(x, y) =
∑d

j=0 y
ipji (x) which is uniformly

convergence to f on E. But since K ⊂ E we can use Lemma 5.41 to extend this convergence

to MS(K). This gives the required extension of f .

Corollary 5.46. In Theorem 5.44 we may take E = MS(K).

Proof. In the proof of Theorem 5.44 we used the fact that∣∣∣∣∣∣φ
 d∑
j=0

yipji (x) + fk(z)p
j
d+1(x)

∣∣∣∣∣∣ ≤ sup
φ∈MS(K)

∣∣∣∣∣∣φ
 d∑
j=0

yipji (x) + fk(z)p
j
d+1(x)

∣∣∣∣∣∣
which came from the definition of MS(K). It follows that φ ∈MS(K) is defined for this function,

and moreover defined in the limit along k, and then j.

Remark 5.47. The proof for the analogous result for the uniform algebra is more involved due to

the possibility that fn is in the algebra for all n ∈ N meaning it’s plausible that a new element

would be introduced meaning a straight forward verification, as above, is insufficient.

Theorem 5.48. Suppose that V ⊂ C2 is an algebraic curve of degree 2 with Noether presentation

(x, y). Let K ⊂ V be such that K = {(x, f(x)) : x ∈ U ⊂ C} for some f ∈ S and U polynomially

convex in C. Then MS(K) = K.

Proof. S(K) = C[x] + yC[x] ∼= C[x] + f(x)C[x] for points in K. It follows that MS(K)
∼=

M[C[x],f ](K) = M[C[x]] by the previous theorem, where the uniform closure in M[C[x]] is taken

with respect to U (which is the projection of K onto the x plane). Since U is polynomially

convex is follows that M[C[x]] = U . So MS(K) = {(x, f(x)) : x ∈ U} = K.

Notation 5.49. Write Kconv y to denote the convex y-hull of a set K ⊂ C2, that is the set

{(x, y) ∈ C2 : |L(y)| ≤ ‖L‖K , L is a linear function of y}. A set satisfying K = Kconv y will be

called y-convex.

Theorem 5.50. Suppose that V ⊂ C2 is an algebraic curve of degree 2 with Noether presentation

(x, y). Let K ⊂ V be compact. Then MS(K) = M conv y
S(K) i.e. MS(K) is y-convex.

Proof. Clearly MS(K) ⊂ M conv y
S(K) by definition of the y-convex hull. But note that any y-linear

function has the form L(y) = a + by for a, b ∈ C which implies that L ∈ C[x] + yC[x] = S.

Hence M conv y
S(K) ⊂ M̂S(K)S

= MS(K) which completes the proof.

These two results show what the S-convex hull of K is when V is a quadratic curve. Given

the comprehensive understanding of the convex hull in the literature we also know when K̂S

extends off of V. The arbitrary hypersurface case has similar conditions on K̂S but the lack of

understanding of high-degree polynomial hulls prevents us from giving a description of whether

there is an extension or not.
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Theorem 5.51. Let V ⊂ CN be a hypersurface with Noether presentation (x, y) of degree d+1.

Let π be the projection onto x. Suppose that K ⊂ V is compact, π|K is biholomorphic, and is

contained in at most d branches of V. Then MS(K) ⊂ V.

Proof. Since π|K is biholomorphic it follows that each branch of V is representable by an analytic

function f1(x), ..., fd(x) i.e. that V ∩K = {y− f1(x), ..., y− fd(x)}. So each fi is in the uniform

closure of C[x]. Suppose that the f1, ..., fj contains K, then g(x, y) = (y−f1(x))...(y−fj(x)) ∈ S
and is identically 0 on a subset of V containing K. By Corollary 5.33 we know that the Gelfand

transform satisfies

‖ǧ‖MS(K)
≤ ‖g‖K = 0.

It then follows that φ ∈ MS(K) implies φ(g) = 0. So MS(K) ⊂ {(x, y) ∈ CN : g(x, y) = 0}. But

by construction, {g(x, y) = 0} ⊂ V so it follows that MS(K) ⊂ V.

This shows that a necessary condition for the S-polynomial hull of K to extend off of V is

that K does not lie in the zero set of an S(K)-holomorphic function.

Theorem 5.52. Suppose that V ⊂ CN is a hypersurface of degree d+1 with Noether presentation

(x, y). Let K ⊂ V be such that K = {(x, π−1
i (x)) : x ∈ U ⊂ CN−1, 1 ≤ i ≤ j ≤ d + 1} and

U polynomially convex in CN−1 and K is a j-sheeted covering of U with π biholomorphic on

branches (so π−1
i ∈ S). Then MS(K) = K when j ≤ d and if j = d + 1 then MS(K) ∩ {x ∈

CN−1} = U and MS(K) ⊃ K.

Proof. On any branch of K we can locally write f ∈ S as fk(x) =
∑d

i=0 pi(x)(π−1
k (x))i for some

k ∈ {1, ..., j}. Then since π−1
k (x) ∈ S it follows that (πk(x))i ∈ S for each i. Hence f(x) is an

element of the uniform completion of C[x]. Suppose that x ∈ U , then |f(x)| ≤ ‖fk‖U ≤ ‖f‖K .

Since this argument is valid on any branch it follows that {(x, π−1
k (x)) : x ∈ U, 1 ≤ k ≤ j} ⊂ K̂S .

This proves the j = d + 1 statement. If j ≤ d then by Theorem 5.51 there can be no other

points contained in K̂S , i.e. K = K̂S .

This shows that the S-polynomial hull restricted to V can be thought of as the inverse image

of a polynomially convex set in CN−1, as one would expect. There may be extension in the y

direction.

Notation 5.53. Write Kconv yd to denote the convex yd-hull of a set K ⊂ CN , that is the set

{(x, y) ∈ CN : |g(y)| ≤ ‖g‖K , g is a polynomial in y of degree d}. A set satisfying K = Kconv yd

will be called yd-convex.

Theorem 5.54. Suppose that V ⊂ CN is a hypersurface of degree d+1 with Noether presentation

(x, y). Let K ⊂ V be compact. Then MS(K) = M conv yd

S(K) i.e. MS(K) is yd-convex.

Proof. The proof is effectively the same as Theorem 5.50. Clearly MS(K) ⊂M conv y
S(K) by definition

of the y-convex hull. But note that any yd-polynomial has the form g(y) = a0 + ... + ady
d for
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a0, ..., ad ∈ C which implies that g ∈ C[x]+...+ydC[x] = S. Hence M conv yd

S(K) ⊂ M̂S(K)S
= MS(K)

which completes the proof.

Corollary 5.55. Suppose that V ⊂ CN is a hypersurface of degree d+ 1 with Noether presenta-

tion (x, y). Let K ⊂ V be compact. Then MS(K) is characterised by the polynomial hull of the

x variables and the yd-hull in the y variables.

It follows that studying the yd-hull may lead to an explicit extension of the extremal function

to a function in L(CN ).
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