

Gordon Alford

Department of Computer Science
University of Auckland
Auckland, New Zealand

An Explicit Construction of a Universal Extended H System

CDMTCS-043
August 1997

Centre for Discrete Mathematics and
Theoretical Computer Science

An Explicit Construction of a Universal Extended H System

Gordon Alford
Department of Computer Science
University of Auckland
Private Bag 92019
New Zealand

Abstract

Lately there has been much interest concerning H systems, a generative mechanism based on the splicing operation, itself a language-theoretic equivalent of DNA recombination. Păun et al. have shown that regular extended H systems are theoretically universal but one has not yet been explicitly constructed. In this paper we explicitly construct a universal extended H system containing 182 axioms and 270 groups of rules.

1 Introduction

Molecular computing covers different models of computation involving operations on strands of DNA. As DNA is incredibly complex this potentially gives us a previously unobtainable degree of parallelization.
The study of H systems is a new branch of formal language theory and a significant theoretical component of molecular computing. H systems were first developed in 1987 by Tom Head [2] as a model of computation based upon the splicing operation, a languagetheoretic model of DNA recombination. Extended H systems were then considered in 1996 by Păun et al. [5] and are the primary focus of this paper.
One important property within formal language theory is universality. Universality enables the comparison between various models of computability. It does this by considering the class of computable problems and determining whether or not a given model can generate a solution for any such problem. This is a fundamental characteristic for any computational model and especially relevant as regards H systems as evidenced by many of the recent results, in particular Păun [3] and Csuhaj-Varjú et al. [1].
Gheorghe Păun [4] posed us the following question :
Can we explicitly construct universal extended H systems of various types?
Theoretical results support this and it is the aim of this paper to offer such a construction where the resulting extended H system has a finite set of axioms and a regular set of rules.

2 Notation, Definitions and Previous Results

We denote by V^{*} the free monoid generated by the alphabet V, by λ the empty string and by V^{+}the set $V^{*}-\{\lambda\}$

A rewriting system is a pair $\rho=(V, F)$ where V is an alphabet and F a finite set of ordered pairs of words over V.

A rewriting system $\tau=(V, F)$ is called a Turing Machine iff the following conditions are satisfied.
i) V is divided into two disjoint alphabets S and V_{T}, referred to as the state and tape alphabets.
ii) Elements $s_{1} \in S, \# \in V_{T}$, and a subset $S_{1} \subseteq S$ are specified, namely the initial state, the boundary marker, and the final state set. The set $V_{1}=V_{T}-\{\#\}$ is not empty. An element $0 \in V_{1}$ and a subset $V_{I} \subseteq V_{1}$ are specified.
iii) The productions in F are of the forms

$$
\begin{array}{cl}
s_{i} a \rightarrow s_{j} b & \text { (overprint) } \\
s_{i} a c \rightarrow a s_{j} c & \text { (move right) } \\
s_{i} a \# \rightarrow a s_{j} 0 \# & \text { (move right and extend workspace) } \\
c s_{i} a \rightarrow s_{j} c a & \text { (move left) } \\
\# s_{i} a \rightarrow \# s_{j} 0 a & \text { (move left and extend workspace) }
\end{array}
$$

where $s_{i}, s_{j} \in S$ and $a, b, c \in V_{1}$. Furthermore, for each $s_{i}, s_{j} \in S$ and $a \in V_{1}$, F either contains no productions of the second and third types or else contains both for every $c \in V_{1}$ (respectively for productions of the fourth and fifth types). Also for no $s_{i} \in S$ and $a \in V_{1}$ is the word $s_{i} a$ a subword of the left side of two productions of the first, third and fifth types.

We say that a word $s P$, where $s \in S$ and $P \in V_{T}^{*}$, is final iff P does not begin with a letter a such that $s a$ is a subword of the left side of some production in F.
We define two Turing machines τ_{1} and τ_{2} to be equivalent iff $L\left(\tau_{1}\right)=L\left(\tau_{2}\right)$.
The language accepted by a Turing Machine τ is defined by

$$
\begin{array}{r}
L(\tau)=\left\{P \in V_{I}^{*} \mid \# s_{1} P \# \Rightarrow^{*} \# P_{1} s_{i} P_{2} \# \text { for some } s_{i} \in S_{1}\right. \\
\left.P_{1}, P_{2} \in V_{1}^{*}, \text { such that } s_{i} P_{2} \# \text { is final }\right\}
\end{array}
$$

A analytic grammar is a quadruple $G=\left(V_{N}, V_{T}, X_{0}, F_{G}\right)$ where V_{N} and V_{T} are disjoint alphabets, $X_{0} \in V_{N}$, and F_{G} is a finite set of ordered pairs (u, v) such that u and v are words over the alphabet $V_{N} \cup V_{T}$ and v contains at least one letter of V_{N}. The elements of V_{N} are called nonterminals and those of V_{T} terminals. X_{0} is called the initial letter and the elements of F_{G} are called rewriting rules or productions and are written as $u \rightarrow v$. A grammar G with no restrictions, as given above, is called a type-0 grammar. The language accepted by G is defined by

$$
L(G)=\left\{P \mid P \in V_{T}^{*}, P \Rightarrow^{*} X_{0}\right\}
$$

The following result is given in Salomaa [7]. The construction within the proof is used in the translation from a universal Turing machine to an equivalent type-0 grammar. Thus for completeness we include the proof of this result in our paper.

Theorem 2.1. If a language is acceptable by a Turing machine τ, then it is of type- 0 .
Proof. Assume that $L=L(\tau)$ where in connection with τ we use the notations of the definition. We define a type-0 analytic grammar G which recognizes L. The terminal alphabet of G is V_{I}. The nonterminal alphabet consists of the letter in $V-V_{I}$ and of the additional letters X_{0}, X_{1} and X_{2}. The initial letter is X_{0}. The production set of G consists of the productions of τ and of the productions

$$
\begin{array}{ccc}
\lambda \rightarrow \# s_{1}, & \lambda \rightarrow \#, & s_{i} a \rightarrow X_{1}, \\
X_{1} b \rightarrow X_{1} \\
X_{1} \# \rightarrow X_{2}, & s_{i} \# \rightarrow X_{2}, & b X_{2} \rightarrow X_{2},
\end{array} \quad \# X_{2} \rightarrow X_{0}
$$

where s_{i} ranges over S_{1}, b ranges over V_{1}, and for each s_{i}, a ranges over such elements of V_{1} that $s_{i} a$ is final. It can now be verified that $L(G)=L(\tau)$.
If $P \in L(\tau)$, there is a derivation according to G where if $P=\lambda$

$$
P \Rightarrow \# s_{1} \Rightarrow \# s_{1} \# \Rightarrow \# X_{2} \Rightarrow X_{0}
$$

or alternatively if $P \neq \lambda$

$$
P \Rightarrow \# s_{1} P \Rightarrow \# s_{1} P \# \Rightarrow^{*} \# P_{1} s_{i} a P_{2} \# \Rightarrow \# P_{1} X_{1} P_{2} \# \Rightarrow^{*} \# P_{1} X_{2} \Rightarrow^{*} X_{0}
$$

Consequently, $P \in L(G)$.
Assume, conversely, that $P \in L(G)$.
If $P=\lambda$, there is a derivation according to G from $\# s_{1} \#$ to X_{0}. Then $\lambda \in L(\tau)$.
If $P \neq \lambda$, there is a derivation according to G from $\# P_{1} s_{i} a P_{2} \#$ to X_{0}, and a derivation from P to $\# P_{1} s_{i} a P_{2} \#$ where $s_{i} \in S_{1}, a \in V_{1}, P_{1}, P_{2} \in V_{1}^{*}$ such that $s_{i} a$ is final.
Thus $P \in L(\tau)$.
An extended H system is a quadruple $\gamma=(V, T, A, R)$ where V is an alphabet, $T \subseteq V$, $A \subseteq V^{*}$, and $R \subseteq V^{*} \# V^{*} \$ V^{*} \# V^{*}$, with $\#, \$$ special symbols not in V.
We call V the alphabet of γ, T the terminal alphabet, A the set of axioms, and R the set of splicing rules.
For $x, y, z \in V^{*}$ and $r: u_{1} \# u_{2} \$ u_{3} \# u_{4}$ in R, we write
$(x, y) \vdash_{r} z$ iff $x=x_{1} u_{1} u_{2} x_{2}, y=y_{1} u_{3} u_{4} y_{2}$ and $z=x_{1} u_{1} u_{4} y_{2}$ for some $x_{1}, x_{2}, y_{1}, y_{2} \in V^{*}$
With respect to an H system γ and a language $L \subseteq V^{*}$, we define

$$
\sigma(L)=\left\{z \in V^{*} \mid(x, y) \vdash_{r} z \text { for some } x, y \in L, r \in R\right\}
$$

Then

$$
\begin{aligned}
\sigma^{*}(L)=\bigcup_{i \geq 0} \sigma^{i}(L) \quad \text { where }(L) & =L \\
\sigma^{i+1}(L) & =\sigma^{i}(L) \cup \sigma\left(\sigma^{i}(L)\right), i \geq 0
\end{aligned}
$$

The language generated by the H system γ is then defined by $L(\gamma)=\sigma^{*}(A) \cap T^{*}$

The following result appears in Păun [3]. The construction within the proof is used in the translation from a universal type-0 grammar to an equivalent universal extended H system. Thus for completeness we include an outline of the proof of this result in our paper.
Theorem 2.2. The family of recursively enumerable languages coincides with the family of languages generated by extended H systems $\gamma=(V, T, A, R)$, where the set of axioms A is a finite language and the set of rules R is a regular language.

Proof. Consider a type-0 grammar $G=\left(V_{N}, V_{T}, X_{0}, F_{G}\right)$ and construct the extended H system

$$
\gamma=(V, T, A, R)
$$

where

$$
\begin{aligned}
& V=V_{N} \cup V_{T} \cup\left\{X, X^{\prime}, B, Y, Z\right\} \cup\left\{Y_{\alpha} \mid \alpha \in V_{N} \cup V_{T} \cup\{B\}\right\} \\
& T=V_{T} \\
& A=\left\{X B X_{0} Y, Z Y, X Z\right\} \cup\left\{Z v Y \mid u \rightarrow v \in F_{G}\right\} \cup\left\{Z Y_{\alpha}, X^{\prime} \alpha Z \mid \alpha \in V_{N} \cup V_{T} \cup\{B\}\right\}
\end{aligned}
$$

and R contains the following groups of rules :

1) $X w \# u Y \$ Z \# v Y$ for $u \rightarrow v \in F_{G}, w \in\left(V_{N} \cup V_{T} \cup\{B\}\right)^{*}$
2) $X w \# \alpha Y \$ Z \# Y \alpha$ for $\alpha \in V_{N} \cup V_{T} \cup\{B\}, w \in\left(V_{N} \cup V_{T} \cup\{B\}\right)^{*}$
3) $X^{\prime} \alpha \# Z \$ X \# w Y_{\alpha}$ for $\alpha \in V_{N} \cup V_{T} \cup\{B\}, w \in\left(V_{N} \cup V_{T} \cup\{B\}\right)^{*}$
4) $X^{\prime} w \# Y_{\alpha} \$ Z \# Y$ for $\alpha \in V_{N} \cup V_{T} \cup\{B\}, w \in\left(V_{N} \cup V_{T} \cup\{B\}\right)^{*}$
5) $X \# Z \$ X^{\prime} \# w Y$ for $w \in\left(V_{N} \cup V_{T} \cup\{B\}\right)^{*}$
6) $\# Z Y \$ X B \# w Y$ for $w \in T^{*}$
7) $\# Y \$ X Z \#$

The rules in group 1 above encode only the productions of G. Groups 2-5 produce circular permutations of a string $X w \alpha Y$ and nothing more, thus enabling the rules in group 1 to be applied at any place in a sentential form w of G. This allows any production of G to be simulated in γ. We now consider groups 6 and 7 but these will only produce terminating strings if they are applied sequentially, in order, in which case they will only give terminal forms of strings $X B w Y$ where w is composed only of elements of T, hence $L(G) \subseteq L(\gamma), L(\gamma) \subseteq L(G)$ and thus $L(G)=L(\gamma)$.

As the symbol \# is used as a marker for the rules of the H systems we shall denote by $T_{\#}$ the translation of the symbol \# from either Turing machines or grammars to H systems.

3 Equivalent Turing Machines

As there are many ways of describing a given Turing machine we consider the equivalences between two descriptions and prove that they are equivalent.
The Turing machine that we consider is used in Rogozhin [6]. Productions are of the form $q_{i} x y I q_{j}$ where $q_{i}, q_{j} \in S, x, y \in V_{1}, I \in\{L, M, R\}$ and can be read as: start in state q_{i} with symbol x, write symbol y, move in direction I and change into state q_{j}.

Let $\tau_{r}=\left(V_{r}, F_{r}\right)$ be a Turing machine of the type used in Rogozhin [6] and $\tau=(V, F)$ be a Turing machine as defined in section 2

Theorem 3.1. Given an arbitrary Turing machine τ_{r} there exists an equivalent Turing machine τ.

Proof. Consider a machine $\tau=(V, F)$. We then construct a machine τ_{r} :
Let $V_{r}=V$.
Now construct F_{r} from F :
If $P \in F$ is of the form $s_{i} a \rightarrow s_{j} b$ then define a new production $q_{i} a b M q_{j}$ in F_{r}
If $P \in F$ is of the form $s_{i} a c \rightarrow a s_{j} c$ then define a new production $q_{i} a a R q_{j}$ in F_{r}
If $P \in F$ is of the form $c s_{i} a \rightarrow s_{j} c a$ then define a new production $q_{i} a a L q_{j}$ in F_{r}
If $P \in F$ is of the form $s_{i} a \# \rightarrow a s_{j} 0 \#$ or $\# s_{i} a \rightarrow \# s_{j} 0 a$ then no productions need to be added to F_{r} as there will be a $P^{\prime} \in F$ of the form $s_{i} a c \rightarrow a s_{j} c$ or $c s_{i} a \rightarrow s_{j} c a$ respectively.
Thus $L(\tau) \subseteq L\left(\tau_{r}\right)$
Consider a machine $\tau_{r}=\left(V_{r}, F_{r}\right)$. We then construct a machine τ :
Let $V_{r}=V_{T} \cup\left\{q_{i} \mid i \in 1 . . m\right\}$
Let $r_{1} . . r_{m}$ be new states not in V_{r}.
Then $V=V_{T} \cup\left\{s_{i} \mid i \in 1 . . m\right\} \cup\left\{r_{i} \mid i \in 1 . . m\right\}$
Now construct F from F_{r} :
If $P \in F_{r}$ is of the form $q_{i} x y R q_{j}$ then define the following new productions in F :

$$
\begin{array}{cl}
s_{i} x \rightarrow r_{i} y & \text { (overprint) } \\
r_{i} y c \rightarrow y s_{j} c & \text { (move right) } \\
r_{i} y \# \rightarrow y s_{j} 0 \# & \text { (move right and extend workspace) }
\end{array}
$$

If $P \in F_{r}$ is of the form $q_{i} x y M q_{j}$ then define a new production $s_{i} x \rightarrow s_{j} y$ in F If $P \in F_{r}$ is of the form $q_{i} x y L q_{j}$ then define the following new productions in F :

$$
\begin{aligned}
& s_{i} x \rightarrow r_{i} y \\
& c r_{i} y \text { (overprint) } \\
& \# s_{j} c y \\
& \text { (move left) } \\
& \# r_{i} y \rightarrow s_{j} 0 y
\end{aligned} \text { (move left and extend workspace) }
$$

And so τ fulfills the conditions of the definition.
Thus $L\left(\tau_{r}\right) \subseteq L(\tau)$ and so we have that $L(\tau)=L\left(\tau_{r}\right)$.
The converse of the theorem also holds by the same argument.

4 An Explicit Universal H System

The universal Turing machine that we consider is $\operatorname{UTM}(24,2)$ described in Rogozhin [6]. Let $\tau_{r}=\left(V_{r}, F_{r}\right)$ be the $\operatorname{UTM}(24,2)$ where V_{r} and F_{r} are:
$V_{r}=\{0,1, \#\} \cup\left\{q_{i} \mid i \in 1 . .24\right\}$

Using Theorem's $2.1 \& 3.1$ to transform $\tau_{r}=\left(V_{r}, F_{r}\right)$ into a type-0 grammar G gives :
$V_{N}=\left\{X_{0}, X_{1}, X_{2}\right\}, \quad V_{T}=\{0,1, \#\} \cup\left\{s_{i} \mid i \in 1 . .24\right\} \quad$ and

$F_{G}=\{\lambda \rightarrow \#$	$X_{1} 0 \rightarrow X_{1}$	$X_{1} 1 \rightarrow X_{1}$	$X_{1} \# \rightarrow X_{2}$
$\lambda \rightarrow \# s_{1}$	$0 X_{2} \rightarrow X_{2}$	$1 X_{2} \rightarrow X_{2}$	$\# X_{2} \rightarrow X_{0}$
$s_{11} 1 \rightarrow X_{1}$			
$s_{1} \# \rightarrow X_{2}$	$s_{2} \# \rightarrow X_{2}$	$s_{3} \# \rightarrow X_{2}$	$s_{4} \# \rightarrow X_{2}$
$s_{5} \# \rightarrow X_{2}$	$s_{6} \# \rightarrow X_{2}$	$s_{7} \# \rightarrow X_{2}$	$s_{8} \# \rightarrow X_{2}$
$s_{9} \# \rightarrow X_{2}$	$s_{10} \# \rightarrow X_{2}$	$s_{11} \# \rightarrow X_{2}$	$s_{12} \# \rightarrow X_{2}$
$s_{13} \# \rightarrow X_{2}$	$s_{14} \# \rightarrow X_{2}$	$s_{15} \# \rightarrow X_{2}$	$s_{16} \# \rightarrow X_{2}$
$s_{17} \# \rightarrow X_{2}$	$s_{18} \# \rightarrow X_{2}$	$s_{19} \# \rightarrow X_{2}$	$s_{20} \# \rightarrow X_{2}$
$s_{21} \# \rightarrow X_{2}$	$s_{22} \# \rightarrow X_{2}$	$s_{23} \# \rightarrow X_{2}$	$s_{24} \# \rightarrow X_{2}$
$s_{1} 00 \rightarrow 0 s_{5} 0$	$s_{1} 01 \rightarrow 0 s_{5} 1$	$s_{1} 0 \# \rightarrow 0 s_{5} 0 \#$	$s_{1} 10 \rightarrow 1 s_{2} 0$
$s_{1} 11 \rightarrow 1 s_{2} 1$	$s_{1} 1 \# \rightarrow 1 s_{2} 0 \#$	$s_{2} 00 \rightarrow 1 s_{1} 0$	$s_{2} 01 \rightarrow 1 s_{1} 1$
$s_{2} 0 \# \rightarrow 1 s_{1} 0 \#$	$0 s_{2} 1 \rightarrow s_{3} 01$	$1 s_{2} 1 \rightarrow s_{3} 11$	$\# s_{2} 1 \rightarrow \# s_{3} 01$
$0 s_{3} 0 \rightarrow s_{4} 00$	$1 s_{3} 0 \rightarrow s_{4} 10$	$\# s_{3} 0 \rightarrow \# s_{4} 00$	$0 s_{3} 1 \rightarrow s_{2} 00$
$1 s_{3} 1 \rightarrow s_{2} 10$	$\# s_{3} 1 \rightarrow \# s_{2} 00$	$0 s_{4} 0 \rightarrow s_{12} 01$	$1 s_{4} 0 \rightarrow s_{12} 11$
$\# s_{4} 0 \rightarrow \# s_{12} 01$	$0 s_{4} 1 \rightarrow s_{9} 00$	$1 s_{4} 1 \rightarrow s_{9} 10$	$\# s_{4} 1 \rightarrow \# s_{9} 00$
$s_{5} 00 \rightarrow 1 s_{1} 0$	$s_{5} 01 \rightarrow 1 s_{1} 1$	$s_{5} 0 \# \rightarrow 1 s_{1} 0 \#$	$0 s_{5} 1 \rightarrow s_{6} 00$
$1 s_{5} 1 \rightarrow s_{6} 10$	$\# s_{5} 1 \rightarrow \# s_{6} 00$	$0 s_{6} 0 \rightarrow s_{7} 00$	$1 s_{6} 0 \rightarrow s_{7} 10$
$\# s_{6} 0 \rightarrow \# s_{7} 00$	$0 s_{6} 1 \rightarrow s_{7} 01$	$1 s_{6} 1 \rightarrow s_{7} 11$	$\# s_{6} 1 \rightarrow \# s_{7} 01$
$0 s_{7} 0 \rightarrow s_{8} 00$	$1 s_{7} 0 \rightarrow s_{8} 10$	$\# s_{7} 0 \rightarrow \# s_{8} 00$	$0 s_{7} 1 \rightarrow s_{6} 00$
$1 s_{7} 1 \rightarrow s_{6} 10$	$\# s_{7} 1 \rightarrow \# s_{6} 00$	$0 s_{8} 0 \rightarrow s_{7} 00$	$1 s_{8} 0 \rightarrow s_{7} 10$
$\# s_{8} 0 \rightarrow \# s_{7} 00$	$s_{8} 10 \rightarrow 1 s_{2} 0$	$s_{8} 11 \rightarrow 1 s_{2} 1$	$s_{8} 1 \# \rightarrow 1 s_{2} 0 \#$
$s_{9} 00 \rightarrow 0 s_{19} 0$	$s_{9} 01 \rightarrow 0 s_{19} 1$	$s_{9} 0 \# \rightarrow 0 s_{19} 0 \#$	$0 s_{9} 1 \rightarrow s_{4} 01$
$1 s_{9} 1 \rightarrow s_{4} 11$	$\# s_{9} 1 \rightarrow \# s_{4} 01$	$0 s_{10} 0 \rightarrow s_{4} 01$	$1 s_{10} 0 \rightarrow s_{4} 11$
$\# s_{10} 0 \rightarrow \# s_{4} 01$	$s_{10} 10 \rightarrow 0 s_{13} 0$	$s_{10} 11 \rightarrow 0 s_{13} 1$	$s_{10} 1 \# \rightarrow 0 s_{13} 0 \#$
$0 s_{11} 0 \rightarrow s_{4} 00$	$1 s_{11} 0 \rightarrow s_{4} 10$	$\# s_{11} 0 \rightarrow \# s_{4} 00$	
$s_{12} 00 \rightarrow 0 s_{19} 0$	$s_{12} 01 \rightarrow 0 s_{19} 1$	$s_{12} 0 \# \rightarrow 0 s_{19} 0 \#$	$0 s_{12} 1 \rightarrow s_{14} 01$
$1 s_{12} 1 \rightarrow s_{14} 11$	$\# s_{12} 1 \rightarrow \# s_{14} 01$	$s_{13} 00 \rightarrow 0 s_{10} 0$	$s_{13} 01 \rightarrow 0 s_{10} 1$
$s_{13} 0 \# \rightarrow 0 s_{10} 0 \#$	$s_{13} 10 \rightarrow 1 s_{24} 0$	$s_{13} 11 \rightarrow 1 s_{24} 1$	$s_{13} 1 \# \rightarrow 1 s_{24} 0 \#$
$0 s_{14} 0 \rightarrow s_{15} 00$	$1 s_{14} 0 \rightarrow s_{15} 10$	$\# s_{14} 0 \rightarrow \# s_{15} 00$	$0 s_{14} 1 \rightarrow s_{11} 01$
$1 s_{14} 1 \rightarrow s_{11} 11$	$\# s_{14} 1 \rightarrow \# s_{11} 01$	$s_{15} 00 \rightarrow 0 s_{16} 0$	$s_{15} 01 \rightarrow 0 s_{16} 1$
$s_{15} 0 \# \rightarrow 0 s_{16} 0 \#$	$s_{15} 10 \rightarrow 1 s_{17} 0$	$s_{15} 11 \rightarrow 1 s_{17} 1$	$s_{15} 1 \# \rightarrow 1 s_{17} 0 \#$
$s_{16} 00 \rightarrow 0 s_{15} 0$	$s_{16} 01 \rightarrow 0 s_{15} 1$	$s_{16} 0 \# \rightarrow 0 s_{15} 0 \#$	$s_{16} 10 \rightarrow 1 s_{10} 0$
$s_{16} 11 \rightarrow 1 s_{10} 1$	$s_{16} 1 \# \rightarrow 1 s_{10} 0 \#$	$s_{17} 00 \rightarrow 0 s_{16} 0$	$s_{17} 01 \rightarrow 0 s_{16} 1$
$s_{17} 0 \# \rightarrow 0 s_{16} 0 \#$	$s_{17} 10 \rightarrow 1 s_{21} 0$	$s_{17} 11 \rightarrow 1 s_{21} 1$	$s_{17} 1 \# \rightarrow 1 s_{21} 0 \#$
$s_{18} 00 \rightarrow 0 s_{19} 0$	$s_{18} 01 \rightarrow 0 s_{19} 1$	$s_{18} 0 \# \rightarrow 0 s_{19} 0 \#$	$s_{18} 10 \rightarrow 1 s_{20} 0$
$s_{18} 11 \rightarrow 1 s_{20} 1$	$s_{18} 1 \# \rightarrow 1 s_{20} 0 \#$	$0 s_{19} 0 \rightarrow s_{3} 01$	$1 s_{19} 0 \rightarrow s_{3} 11$
$\# s_{19} 0 \rightarrow \# s_{3} 01$	$s_{19} 10 \rightarrow 1 s_{18} 0$	$s_{19} 11 \rightarrow 1 s_{18} 1$	$s_{19} 1 \# \rightarrow 1 s_{18} 0 \#$
$s_{20} 00 \rightarrow 1 s_{18} 0$	$s_{20} 01 \rightarrow 1 s_{18} 1$	$s_{20} 0 \# \rightarrow 1 s_{18} 0 \#$	$s_{20} 10 \rightarrow 0 s_{18} 0$
$s_{20} 11 \rightarrow 0 s_{18} 1$	$s_{20} 1 \# \rightarrow 0 s_{18} 0 \#$	$s_{21} 00 \rightarrow 0 s_{22} 0$	$s_{21} 01 \rightarrow 0 s_{22} 1$
$s_{21} 0 \# \rightarrow 0 s_{22} 0 \#$	$s_{21} 10 \rightarrow 1 s_{23} 0$	$s_{21} 11 \rightarrow 1 s_{23} 1$	$s_{21} 1 \# \rightarrow 1 s_{23} 0 \#$
$0 s_{22} 0 \rightarrow s_{10} 01$	$1 s_{22} 0 \rightarrow s_{10} 11$	$\# s_{22} 0 \rightarrow \# s_{10} 01$	$s_{22} 10 \rightarrow 1 s_{21} 0$
$s_{22} 11 \rightarrow 1 s_{21} 1$	$s_{22} 1 \# \rightarrow 1 s_{21} 0 \#$	$s_{23} 00 \rightarrow 1 s_{21} 0$	$s_{23} 01 \rightarrow 1 s_{21} 1$
$s_{23} 0 \# \rightarrow 1 s_{21} 0 \#$	$s_{23} 10 \rightarrow 0 s_{21} 0$	$s_{23} 11 \rightarrow 0 s_{21} 1$	$s_{23} 1 \# \rightarrow 0 s_{21} 0 \#$
$s_{24} 00 \rightarrow 0 s_{13} 0$	$s_{24} 01 \rightarrow 0 s_{13} 1$	$s_{24} 0 \# \rightarrow 0 s_{13} 0 \#$	$0 s_{24} 1 \rightarrow s_{3} 00$
$1 s_{24} 1 \rightarrow s_{3} 10$	$\left.\# s_{24} 1 \rightarrow \# s_{3} 00\right\}$		

We then use Theorem 2.2 to translate $G=\left(V_{T}, V_{N}, X_{0}, F_{G}\right)$ to a universal H system.
Let $V_{H}=\{0,1\} \cup\left\{T_{\#}\right\} \cup\left\{X_{0}, X_{1}, X_{2}\right\} \cup\{B\} \cup\left\{s_{i} \mid i \in 1 . .24\right\}$
Then the translation is :

$$
\begin{aligned}
& V=V_{H} \cup\left\{X, X^{\prime}, Y, Z\right\} \cup\left\{Y_{\alpha} \mid \alpha \in V_{H}\right\} \\
& T=\{0,1\} \\
& A=\left\{X B X_{0} Y, Z Y, X Z,\right. \\
& Z T_{\#} s_{1} Y, Z T_{\#} Y, Z X_{0} Y, Z X_{1} Y, Z X_{2} Y \text {, } \\
& Z Y_{\alpha}, X^{\prime} \alpha Z, \\
& Z 1 s_{1} 0 Y, Z 1 s_{1} 1 Y, Z 1 s_{1} 0 T_{\#} Y \text {, } \\
& Z s_{2} 00 Y, Z s_{2} 10 Y, Z T_{\#} s_{2} 00 Y, Z 1 s_{2} 0 Y, Z 1 s_{2} 1 Y, Z 1 s_{2} 0 T_{\#} Y \text {, } \\
& Z s_{3} 00 Y, Z s_{3} 10 Y, Z T_{\#} s_{3} 00 Y, Z s_{3} 01 Y, Z s_{3} 11 Y, Z T_{\#} s_{3} 01 Y \text {, } \\
& Z s_{4} 00 Y, Z s_{4} 10 Y, Z T_{\#} s_{4} 00 Y, Z s_{4} 01 Y, Z s_{4} 11 Y, Z T_{\#} s_{4} 01 Y \text {, } \\
& Z 0 s_{5} 0 Y, Z 0 s_{5} 1 Y, Z 0 s_{5} 0 T_{\#} Y \text {, } \\
& Z s_{6} 00 Y, Z s_{6} 10 Y, Z T_{\#} s_{6} 00 Y \text {, } \\
& Z s_{7} 00 Y, Z s_{7} 10 Y, Z T_{\#} s_{7} 00 Y, Z s_{7} 01 Y, Z s_{7} 11 Y, Z T_{\#} s_{7} 01 Y \text {, } \\
& Z s_{8} 00 Y, Z s_{8} 10 Y, Z T_{\#} s_{8} 00 Y \text {, } \\
& Z s_{9} 00 Y, Z s_{9} 10 Y, Z T_{\#} s_{9} 00 Y \text {, } \\
& Z s_{10} 01 Y, Z s_{10} 11 Y, Z T_{\#} s_{10} 01 Y \text {, } \\
& Z 0 s_{10} 0 Y, Z 0 s_{10} 1 Y, Z 0 s_{10} 0 T_{\#} Y, Z 1 s_{10} 0 Y, Z 1 s_{10} 1 Y, Z 1 s_{10} 0 T_{\#} Y \text {, } \\
& Z s_{11} 01 Y, Z s_{11} 11 Y, Z T_{\#} s_{11} 01 Y \text {, } \\
& Z s_{12} 01 Y, Z s_{12} 11 Y, Z T_{\#} s_{12} 01 Y \text {, } \\
& Z 0 s_{13} 0 Y, Z 0 s_{13} 1 Y, Z 0 s_{13} 0 T_{\#} Y \text {, } \\
& Z s_{14} 01 Y, Z s_{14} 11 Y, Z T_{\#} s_{14} 01 Y \text {, } \\
& Z s_{15} 00 Y, Z s_{15} 10 Y, Z T_{\#} s_{15} 00 Y \text {, } \\
& Z 0 s_{15} 0 Y, Z 0 s_{15} 1 Y, Z 0 s_{15} 0 T_{\#} Y \text {, } \\
& Z 0 s_{16} 0 Y, Z 0 s_{16} 1 Y, Z 0 s_{16} 0 T_{\#} Y \text {, } \\
& Z 1 s_{17} 0 Y, Z 1 s_{17} 1 Y, Z 1 s_{17} 0 T_{\#} Y \text {, } \\
& Z 0 s_{18} 0 Y, Z 0 s_{18} 1 Y, Z 0 s_{18} 0 T_{\#} Y, Z 1 s_{18} 0 Y, Z 1 s_{18} 1 Y, Z 1 s_{18} 0 T_{\#} Y \text {, } \\
& Z 0 s_{19} 0 Y, Z 0 s_{19} 1 Y, Z 0 s_{19} 0 T_{\#} Y \text {, } \\
& Z 1 s_{20} 0 Y, Z 1 s_{20} 1 Y, Z 1 s_{20} 0 T_{\#} Y \text {, } \\
& Z 0 s_{21} 0 Y, Z 0 s_{21} 1 Y, Z 0 s_{21} 0 T_{\#} Y, Z 1 s_{21} 0 Y, Z 1 s_{21} 1 Y, Z 1 s_{21} 0 T_{\#} Y \text {, } \\
& Z 0 s_{22} 0 Y, Z 0 s_{22} 1 Y, Z 0 s_{22} 0 T_{\#} Y \text {, } \\
& Z 1 s_{23} 0 Y, Z 1 s_{23} 1 Y, Z 1 s_{23} 0 T_{\#} Y \text {, } \\
& \left.Z 1 s_{24} 0 Y, Z 1 s_{24} 1 Y, Z 1 s_{24} 0 T_{\#} Y \mid \alpha \in V_{H}\right\} \\
& R=\left\{X w \# s_{1} 00 Y \$ Z \# 0 s_{5} 0 Y, \quad X w \# s_{1} 01 Y \$ Z \# 0 s_{5} 1 Y, \quad X w \# s_{1} 0 T_{\#} Y \$ Z \# 0 s_{5} 0 T_{\#} Y,\right. \\
& X w \# s_{1} 10 Y \$ Z \# 1 s_{2} 0 Y, \quad X w \# s_{1} 11 Y \$ Z \# 1 s_{2} 1 Y, \quad X w \# s_{1} 1 T_{\#} Y \$ Z \# 1 s_{2} 0 T_{\#} Y, \\
& X w \# s_{2} 00 T \$ Z \# 1 s_{1} 0 Y, \quad X w \# s_{2} 01 T \$ Z \# 1 s_{1} 1 Y, \quad X w \# s_{2} 0 T_{\#} T \$ Z \# 1 s_{1} 0 T_{\#} Y \text {, } \\
& X w \# 0 s_{2} 1 Y \$ Z \# s_{3} 01 Y, \quad X w \# 1 s_{2} 1 Y \$ Z \# s_{3} 11 Y, \quad X w \# T_{\#} s_{2} 1 Y \$ Z \# T_{\#} s_{3} 01 Y, \\
& X w \# 0 s_{3} 0 Y \$ Z \# s_{4} 00 Y, \quad X w \# 1 s_{3} 0 Y \$ Z \# s_{4} 10 Y, \quad X w \# T_{\#} s_{3} 0 Y \$ Z \# T_{\#} s_{4} 00 Y \text {, } \\
& X w \# 0 s_{3} 1 Y \$ Z \# s_{2} 00 Y, \quad X w \# 1 s_{3} 1 Y \$ Z \# s_{2} 10 Y, \quad X w \# T_{\#} s_{3} 1 Y \$ Z \# T_{\#} s_{2} 00 Y \text {, } \\
& X w \# 0 s_{4} 0 Y \$ Z \# s_{12} 01 Y, \quad X w \# 1 s_{4} 0 Y \$ Z \# s_{12} 11 Y, X w \# T_{\#} s_{4} 0 Y \$ Z \# T_{\#} s_{12} 01 Y \text {, } \\
& X w \# 0 s_{4} 1 T \$ Z \# s_{9} 00 Y, \quad X w \# 1 s_{4} 1 T \$ Z \# s_{9} 10 Y, \quad X w \# T_{\#} s_{4} 1 T \$ Z \# T_{\#} s_{9} 00 Y \text {, } \\
& X w \# s_{5} 00 Y \$ Z \# 1 s_{1} 0 Y, \quad X w \# s_{5} 01 Y \$ Z \# 1 s_{1} 1 Y, \quad X w \# s_{5} 0 T_{\#} Y \$ Z \# 1 s_{1} 0 T_{\#} Y \text {, } \\
& X w \# 0 s_{5} 1 Y \$ Z \# s_{6} 00 Y, \quad X w \# 1 s_{5} 1 Y \$ Z \# s_{6} 10 Y, \quad X w \# T_{\#} s_{5} 1 Y \$ Z \# T_{\#} s_{6} 00 Y \text {, } \\
& X w \# 0 s_{6} 0 Y \$ Z \# s_{7} 00 Y, \quad X w \# 1 s_{6} 0 Y \$ Z \# s_{7} 10 Y, \quad X w \# T_{\#} s_{6} 0 Y \$ Z \# T_{\#} s_{7} 00 Y, \\
& X w \# 0 s_{6} 1 Y \$ Z \# s_{7} 01 Y, \quad X w \# 1 s_{6} 1 Y \$ Z \# s_{7} 11 Y, \quad X w \# T_{\#} s_{6} 1 Y \$ Z \# T_{\#} s_{7} 01 Y, \\
& X w \# 0 s_{7} 0 Y \$ Z \# s_{8} 00 Y, \quad X w \# 1 s_{7} 0 Y \$ Z \# s_{8} 10 Y, \quad X w \# T_{\#} s_{7} 0 Y \$ Z \# T_{\#} s_{8} 00 Y,
\end{aligned}
$$

$X w \# 0 s_{7} 1 Y \$ Z \# s_{6} 00 Y$, $X w \# 0 s_{8} 0 Y \$ Z \# s_{7} 00 Y$, $X w \# s_{8} 10 Y \$ Z \# 1 s_{2} 0 Y$, $X w \# s_{9} 00 Y \$ Z \# 0 s_{19} 0 Y$, $X w \# 0 s_{9} 0 Y \$ Z \# s_{4} 01 Y$, $X w \# 0 s_{10} 0 Y \$ Z \# s_{4} 01 Y, \quad X w \# 1 s_{10} 0 Y \$ Z \# s_{4} 11 Y, \quad X w \# T_{\#} s_{10} 0 Y \$ Z \# T_{\#} s_{4} 01 Y$, $X w \# s_{10} 10 Y \$ Z \# 0 s_{13} 0 Y, \quad X w \# s_{10} 11 Y \$ Z \# 0 s_{13} 1 Y, \quad X w \# s_{10} 1 T_{\#} Y \$ Z \# 0 s_{13} 0 T_{\#} Y$, $X w \# 0 s_{11} 0 Y \$ Z \# s_{4} 00 Y, \quad X w \# 1 s_{11} 0 Y \$ Z \# s_{4} 10 Y, \quad X w \# T_{\#} s_{11} 0 Y \$ Z \# T_{\#} s_{4} 00 Y$, $X w \# s_{12} 00 Y \$ Z \# 0 s_{19} 0 Y, \quad X w \# s_{12} 01 Y \$ Z \# 0 s_{19} 1 Y, \quad X w \# s_{12} 0 T_{\#} Y \$ Z \# 0 s_{19} 0 T_{\#} Y$, $X w \# 0 s_{12} 1 Y \$ Z \# s_{14} 01 Y, \quad X w \# 1 s_{12} 1 Y \$ Z \# s_{14} 11 Y, \quad X w \# T_{\#} s_{12} 1 Y \$ Z \# T_{\#} s_{14} 01 Y$, $X w \# s_{13} 00 Y \$ Z \# 0 s_{10} 0 Y, \quad X w \# s_{13} 01 Y \$ Z \# 0 s_{10} 1 Y, \quad X w \# s_{13} 0 T_{\#} Y \$ Z \# 0 s_{10} 0 T_{\#} Y$, $X w \# s_{13} 10 Y \$ Z \# 1 s_{24} 0 Y, \quad X w \# s_{13} 11 Y \$ Z \# 1 s_{24} 1 Y, \quad X w \# s_{13} 1 T_{\#} Y \$ Z \# 1 s_{24} 0 T_{\#} Y$, $X w \# 0 s_{14} 0 Y \$ Z \# s_{15} 00 Y, \quad X w \# 1 s_{14} 0 Y \$ Z \# s_{15} 10 Y, \quad X w \# T_{\#} s_{14} 0 Y \$ Z \# T_{\#} s_{15} 00 Y$, $X w \# 0 s_{14} 1 T \$ Z \# s_{10} 01 Y, \quad X w \# 1 s_{14} 1 T \$ Z \# s_{10} 11 Y, \quad X w \# T_{\#} s_{14} 1 T \$ Z \# T_{\#} s_{10} 01 Y$, $X w \# s_{15} 00 Y \$ Z \# 0 s_{16} 0 Y, \quad X w \# s_{15} 01 Y \$ Z \# 0 s_{16} 1 Y, \quad X w \# s_{15} 0 T_{\#} Y \$ Z \# 0 s_{16} 0 T_{\#} Y$, $X w \# s_{15} 10 Y \$ Z \# 1 s_{17} 0 Y, \quad X w \# s_{15} 11 Y \$ Z \# 1 s_{17} 1 Y, \quad X w \# s_{15} 1 T_{\#} Y \$ Z \# 1 s_{17} 0 T_{\#} Y$, $X w \# s_{16} 00 Y \$ Z \# 0 s_{15} 0 Y, \quad X w \# s_{16} 01 Y \$ Z \# 0 s_{15} 1 Y, \quad X w \# s_{16} 0 T_{\#} Y \$ Z \# 0 s_{15} 0 T_{\#} Y$, $X w \# s_{16} 10 Y \$ Z \# 1 s_{10} 0 Y, \quad X w \# s_{16} 11 Y \$ Z \# 1 s_{10} 1 Y, \quad X w \# s_{16} 1 T_{\#} Y \$ Z \# 1 s_{10} 0 T_{\#} Y$, $X w \# s_{17} 00 Y \$ Z \# 0 s_{16} 0 Y, \quad X w \# s_{17} 01 Y \$ Z \# 0 s_{16} 1 Y, \quad X w \# s_{17} 0 T_{\#} Y \$ Z \# 0 s_{16} 0 T_{\#} Y$, $X w \# s_{17} 10 Y \$ Z \# 1 s_{21} 0 Y, \quad X w \# s_{17} 11 Y \$ Z \# 1 s_{21} 1 Y, \quad X w \# s_{17} 1 T_{\#} Y \$ Z \# 1 s_{21} 0 T_{\#} Y$, $X w \# s_{18} 00 Y \$ Z \# 0 s_{19} 0 Y, \quad X w \# s_{18} 01 Y \$ Z \# 0 s_{19} 1 Y, \quad X w \# s_{18} 0 T_{\#} Y \$ Z \# 0 s_{19} 0 T_{\#} Y$, $X w \# s_{18} 10 Y \$ Z \# 1 s_{20} 0 Y, \quad X w \# s_{18} 11 Y \$ Z \# 1 s_{20} 1 Y, \quad X w \# s_{18} 1 T_{\#} Y \$ Z \# 1 s_{20} 0 T_{\#} Y$, $X w \# 0 s_{19} 0 Y \$ Z \# s_{3} 01 Y, \quad X w \# 1 s_{19} 0 Y \$ Z \# s_{3} 11 Y, \quad X w \# T_{\#} s_{19} 0 Y \$ Z \# T_{\#} s_{3} 01 Y$, $X w \# s_{19} 10 Y \$ Z \# 1 s_{18} 0 Y, \quad X w \# s_{19} 11 Y \$ Z \# 1 s_{18} 1 Y, \quad X w \# s_{19} 1 T_{\#} Y \$ Z \# 1 s_{18} 0 T_{\#} Y$, $X w \# s_{20} 00 Y \$ Z \# 1 s_{18} 0 Y, \quad X w \# s_{20} 01 Y \$ Z \# 1 s_{18} 1 Y, \quad X w \# s_{20} 0 T_{\#} Y \$ Z \# 1 s_{18} 0 T_{\#} Y$, $X w \# s_{20} 10 Y \$ Z \# 0 s_{18} 0 Y, \quad X w \# s_{20} 11 Y \$ Z \# 0 s_{18} 1 Y, \quad X w \# s_{20} 1 T_{\#} Y \$ Z \# 0 s_{18} 0 T_{\#} Y$, $X w \# s_{21} 00 Y \$ Z \# 0 s_{22} 0 Y, \quad X w \# s_{21} 01 Y \$ Z \# 0 s_{22} 1 Y, \quad X w \# s_{21} 0 T_{\#} Y \$ Z \# 0 s_{22} 0 T_{\#} Y$, $X w \# s_{21} 10 Y \$ Z \# 1 s_{23} 0 Y, \quad X w \# s_{21} 11 Y \$ Z \# 1 s_{23} 1 Y, \quad X w \# s_{21} 1 T_{\#} Y \$ Z \# 1 s_{23} 0 T_{\#} Y$, $X w \# 0 s_{22} 0 Y \$ Z \# s_{10} 01 Y, \quad X w \# 1 s_{22} 0 Y \$ Z \# s_{10} 11 Y, \quad X w \# T_{\#} s_{22} 0 Y \$ Z \# T_{\#} s_{10} 01 Y$, $X w \# s_{22} 10 Y \$ Z \# 1 s_{21} 0 Y, \quad X w \# s_{22} 11 Y \$ Z \# 1 s_{21} 1 Y, \quad X w \# s_{22} 1 T_{\#} Y \$ Z \# 1 s_{21} 0 T_{\#} Y$, $X w \# s_{23} 00 Y \$ Z \# 1 s_{21} 0 Y, \quad X w \# s_{23} 01 Y \$ Z \# 1 s_{21} 1 Y, \quad X w \# s_{23} 0 T_{\#} Y \$ Z \# 1 s_{21} 0 T_{\#} Y$, $X w \# s_{23} 10 Y \$ Z \# 0 s_{21} 0 Y, \quad X w \# s_{23} 11 Y \$ Z \# 0 s_{21} 1 Y, \quad X w \# s_{23} 1 T_{\#} Y \$ Z \# 0 s_{21} 0 T_{\#} Y$, $X w \# s_{24} 00 Y \$ Z \# 0 s_{13} 0 Y, \quad X w \# s_{24} 01 Y \$ Z \# 0 s_{13} 1 Y, \quad X w \# s_{24} 0 T_{\#} Y \$ Z \# 0 s_{13} 0 T_{\#} Y$, $X w \# 0 s_{24} 1 Y \$ Z \# s_{3} 00 Y, \quad X w \# 1 s_{24} 1 Y \$ Z \# s_{3} 10 Y, \quad X w \# T_{\#} s_{24} 1 Y \$ Z \# T_{\#} s_{3} 00 Y$,
$X w \# Y \$ Z \# T_{\#} s_{1} Y$, $X w \# Y \$ Z \# T_{\#} Y$, $X w \# X_{1} 0 Y \$ Z \# X_{1} Y, \quad X w \# 0 X_{2} Y \$ Z \# X_{2} Y$, $X w \# X_{1} 1 Y \$ Z \# X_{1} Y, \quad X w \# 1 X_{2} Y \$ Z \# X_{2} Y$, $X w \# X_{1} T_{\#} Y \$ Z \# X_{2} Y, \quad X w \# T_{\#} X_{2} Y \$ Z \# X_{0} Y$, $X w \# s_{11} 1 Y \$ Z \# X_{1} Y$, $X w \# s_{i} T_{\#} Y \$ Z \# X_{2} Y$, $X w \# \alpha Y \$ Z \# Y_{\alpha}$, $X^{\prime} \alpha \# z \$ X \# w Y_{\alpha}$, $X^{\prime} w \# Y_{\alpha} \$ Z \# Y$, $X \# Z \$ X^{\prime} \# w Y$, $\# Z Y \$ X B \# x Y$,
$\left.\# Y \$ X Z \# \quad \mid w \in V_{H}^{*}, i \in 1 . .24, x \in T^{*}\right\}$

The resulting extended H system $\gamma=(V, T, A, R)$ is then universal as it is the result of a transformation from a universal Turing machine. The proof of this is a direct result of composing the proof of Theorem 3.1 with the proofs of Theorem's 2.1 and 2.2. The latter two proofs are described in more detail in Salomaa [7] and Păun [3] respectively. When one compares the complexity of the resulting H system with that of the original Turing machine, one obtains the following results :

$$
\begin{aligned}
& |V|=2(n+m+7) \\
& |T|=n \\
& |A| \leq(n+1)(n m-\mid \text { Final } \mid)+2(n+m+5)+8 \\
& |R| \leq(n+1)(n m-\mid \text { Final } \mid)+3(n+m+5)+2(n+1)+m+5+\mid \text { Final } \mid
\end{aligned}
$$

where m is the number of states and n is the number of symbols of the Turing machine $\tau_{r}=\left(V_{r}, F_{r}\right)$, Final $=\left\{X w \# s a Y \$ Z \# X_{1} Y \in R \mid s \in\left\{s_{i} \mid i \in 1 . .24\right\}, a \in T\right\}$, and $|R|$ is defined in respect to the number of groups of rules.
Note that while equality for $|R|$ is achievable simply through the use of an optimal Turing machine (where optimal implies that every state-symbol pair is used), equality for $|A|$ is not so simple. In fact if one assumes that every state is used then we may obtain a lower bound for $|A|$:

$$
(n+1)(m-1)+2(n+m+5)+8 \leq|A| \leq(n+1)(n m-\mid \text { Final } \mid)+2(n+m+5)+8
$$

If we now consider the numerical values for the complexity of our universal extended H system we find that :

$$
|V|=66
$$

$$
|T|=2
$$

$$
|A|=182
$$

$$
|R|=270
$$

and thus we see that this agrees with our analytic results above with $|A| \in[139,211]$ and with equality for $|R|$. We also note that $|A|$ will tend towards the lower bound when the respective Turing machine has a significant number of intensive states where a state is intensive iff it is the resultant state of more than two productions.

Acknowledgments

This research has been made possible through the efforts and contributions of many people. In particular I would like to thank my supervisor Prof. Cristian Calude for the assistance and opportunities that he has given me. Many thanks also go to Prof. Gheorghe Păun for numerous comments and suggestions made regarding this research.

References

[1] Erzsébet Csuhaj-Varjú, R. Freund, Lila Kari, and Gheorghe Păun. DNA computation based on splicing: Universality results. In Biocomputing: Proceedings of the 1996 Pacific Symposium, 1996.
[2] Tom Head. Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bulletin of Mathematical Biology, 49(6):737-759, 1987.
[3] Gheorghe Păun. Regular extended H systems are computationally universal. Journal of Automata, Languages, Combinatorics, 1(1):27-36, 1996.
[4] Gheorghe Păun. Email to G. Alford, May 1997.
[5] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. Computing by splicing. Theoretical Computer Science, 168:321-336, 1996.
[6] Yurii Rogozhin. Small universal turing machines. Theoretical Computer Science, 168: 215-240, 1996.
[7] Arto Salomaa. Formal Languages. Academic Press, New York, 1973.

