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Abstract

Lately there has been much interest concerning H systems, a generative mecha-

nism based on the splicing operation, itself a language-theoretic equivalent of DNA

recombination. P�aun et al. have shown that regular extended H systems are theo-

retically universal but one has not yet been explicitly constructed. In this paper we

explicitly construct a universal extended H system containing 182 axioms and 270

groups of rules.

1 Introduction

Molecular computing covers di�erent models of computation involving operations on

strands of DNA. As DNA is incredibly complex this potentially gives us a previously

unobtainable degree of parallelization.

The study of H systems is a new branch of formal language theory and a signi�cant the-

oretical component of molecular computing. H systems were �rst developed in 1987 by

Tom Head [2] as a model of computation based upon the splicing operation, a language-

theoretic model of DNA recombination. Extended H systems were then considered in

1996 by P�aun et al. [5] and are the primary focus of this paper.

One important property within formal language theory is universality. Universality en-

ables the comparison between various models of computability. It does this by consid-

ering the class of computable problems and determining whether or not a given model

can generate a solution for any such problem. This is a fundamental characteristic for

any computational model and especially relevant as regards H systems as evidenced by

many of the recent results, in particular P�aun [3] and Csuhaj-Varj�u et al. [1].

Gheorghe P�aun [4] posed us the following question :

Can we explicitly construct universal extended H systems of various types?

Theoretical results support this and it is the aim of this paper to o�er such a construction

where the resulting extended H system has a �nite set of axioms and a regular set of

rules.
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2 Notation, De�nitions and Previous Results

We denote by V � the free monoid generated by the alphabet V , by � the empty string

and by V + the set V � � f�g

A rewriting system is a pair � = (V; F ) where V is an alphabet and F a �nite set of

ordered pairs of words over V .

A rewriting system � = (V; F ) is called a Turing Machine i� the following conditions are

satis�ed.

i) V is divided into two disjoint alphabets S and VT , referred to as the state and tape

alphabets.

ii) Elements s1 2 S, # 2 VT , and a subset S1 � S are speci�ed, namely the initial

state, the boundary marker , and the �nal state set . The set V1 = VT � f#g is not

empty. An element 0 2 V1 and a subset VI � V1 are speci�ed.

iii) The productions in F are of the forms

sia! sjb (overprint)

siac! asjc (move right)

sia#! asj0# (move right and extend workspace)

csia! sjca (move left)

#sia! #sj0a (move left and extend workspace)

where si; sj 2 S and a; b; c 2 V1. Furthermore, for each si; sj 2 S and a 2 V1,

F either contains no productions of the second and third types or else contains

both for every c 2 V1 (respectively for productions of the fourth and �fth types).

Also for no si 2 S and a 2 V1 is the word sia a subword of the left side of two

productions of the �rst, third and �fth types.

We say that a word sP , where s 2 S and P 2 V �
T , is �nal i� P does not begin with a

letter a such that sa is a subword of the left side of some production in F .

We de�ne two Turing machines �1 and �2 to be equivalent i� L(�1) = L(�2).

The language accepted by a Turing Machine � is de�ned by

L(�) = fP 2 V �
I j #s1P#)� #P1siP2# for some si 2 S1;

P1; P2 2 V �
1 ; such that siP2# is �nalg

A analytic grammar is a quadruple G = (VN ; VT ;X0; FG) where VN and VT are disjoint

alphabets, X0 2 VN , and FG is a �nite set of ordered pairs (u; v) such that u and v are

words over the alphabet VN[VT and v contains at least one letter of VN . The elements of

VN are called nonterminals and those of VT terminals. X0 is called the initial letter and

the elements of FG are called rewriting rules or productions and are written as u! v.

A grammar G with no restrictions, as given above, is called a type-0 grammar.

The language accepted by G is de�ned by

L(G) = fP j P 2 V �
T ; P )� X0g
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The following result is given in Salomaa [7]. The construction within the proof is used in

the translation from a universal Turing machine to an equivalent type-0 grammar. Thus

for completeness we include the proof of this result in our paper.

Theorem 2.1. If a language is acceptable by a Turing machine � , then it is of type-0.

Proof. Assume that L = L(�) where in connection with � we use the notations of the

de�nition. We de�ne a type-0 analytic grammar G which recognizes L. The terminal

alphabet of G is VI . The nonterminal alphabet consists of the letter in V � VI and of

the additional letters X0;X1 and X2. The initial letter is X0. The production set of G

consists of the productions of � and of the productions

�! #s1; �! #; sia! X1; X1b! X1;

X1#! X2; si#! X2; bX2 ! X2; #X2 ! X0

where si ranges over S1, b ranges over V1, and for each si, a ranges over such elements

of V1 that sia is �nal. It can now be veri�ed that L(G) = L(�).

If P 2 L(�), there is a derivation according to G where if P = �

P ) #s1 ) #s1#) #X2 ) X0

or alternatively if P 6= �

P ) #s1P ) #s1P#)� #P1siaP2#) #P1X1P2#)� #P1X2 )
� X0

Consequently, P 2 L(G).

Assume, conversely, that P 2 L(G).

If P = �, there is a derivation according to G from #s1# to X0. Then � 2 L(�).

If P 6= �, there is a derivation according to G from #P1siaP2# to X0, and a derivation

from P to #P1siaP2# where si 2 S1; a 2 V1; P1; P2 2 V �
1 such that sia is �nal.

Thus P 2 L(�). 2

An extended H system is a quadruple  = (V; T;A;R) where V is an alphabet, T � V ,

A � V �, and R � V �#V �$V �#V �, with #; $ special symbols not in V .

We call V the alphabet of , T the terminal alphabet, A the set of axioms, and R the

set of splicing rules.

For x; y; z 2 V � and r : u1#u2$u3#u4 in R, we write

(x; y) `r z i� x = x1u1u2x2; y = y1u3u4y2 and z = x1u1u4y2 for some x1; x2; y1; y2 2 V �

With respect to an H system  and a language L � V �, we de�ne

�(L) = fz 2 V � j (x; y) `r z for some x; y 2 L; r 2 Rg

Then

��(L) =
[

i�0

�i(L) where �0(L) = L

�i+1(L) = �i(L) [ �(�i(L)); i � 0

The language generated by the H system  is then de�ned by L() = ��(A) \ T �
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The following result appears in P�aun [3]. The construction within the proof is used

in the translation from a universal type-0 grammar to an equivalent universal extended

H system. Thus for completeness we include an outline of the proof of this result in our

paper.

Theorem 2.2. The family of recursively enumerable languages coincides with the fam-

ily of languages generated by extended H systems  = (V; T;A;R), where the set of axioms

A is a �nite language and the set of rules R is a regular language.

Proof. Consider a type-0 grammar G = (VN ; VT ;X0; FG) and construct the extended H

system

 = (V; T;A;R)

where

V = VN [ VT [ fX;X
0; B; Y; Zg [ fY� j � 2 VN [ VT [ fBgg

T = VT
A = fXBX0Y;ZY;XZg [ fZvY j u! v 2 FGg [ fZY�;X

0�Z j � 2 VN [ VT [ fBgg

and R contains the following groups of rules :

1) Xw#uY $Z#vY for u! v 2 FG; w 2 (VN [ VT [ fBg)
�

2) Xw#�Y $Z#Y � for � 2 VN [ VT [ fBg; w 2 (VN [ VT [ fBg)
�

3) X 0�#Z$X#wY� for � 2 VN [ VT [ fBg; w 2 (VN [ VT [ fBg)
�

4) X 0w#Y�$Z#Y for � 2 VN [ VT [ fBg; w 2 (VN [ VT [ fBg)
�

5) X#Z$X 0#wY for w 2 (VN [ VT [ fBg)
�

6) #ZY $XB#wY for w 2 T �

7) #Y $XZ#

The rules in group 1 above encode only the productions of G. Groups 2-5 produce circular

permutations of a string Xw�Y and nothing more, thus enabling the rules in group 1

to be applied at any place in a sentential form w of G. This allows any production of

G to be simulated in . We now consider groups 6 and 7 but these will only produce

terminating strings if they are applied sequentially, in order, in which case they will only

give terminal forms of strings XBwY where w is composed only of elements of T , hence

L(G) � L(), L() � L(G) and thus L(G) = L(). 2

As the symbol # is used as a marker for the rules of the H systems we shall denote by T#
the translation of the symbol # from either Turing machines or grammars to H systems.

3 Equivalent Turing Machines

As there are many ways of describing a given Turing machine we consider the equiva-

lences between two descriptions and prove that they are equivalent.

The Turing machine that we consider is used in Rogozhin [6]. Productions are of the

form qixyIqj where qi; qj 2 S, x; y 2 V1, I 2 fL;M;Rg and can be read as: start in state

qi with symbol x, write symbol y, move in direction I and change into state qj.

Let �r = (Vr; Fr) be a Turing machine of the type used in Rogozhin [6] and � = (V; F )

be a Turing machine as de�ned in section 2
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Theorem 3.1. Given an arbitrary Turing machine �r there exists an equivalent Turing

machine � .

Proof. Consider a machine � = (V; F ). We then construct a machine �r :

Let Vr = V .

Now construct Fr from F :

If P 2 F is of the form sia! sjb then de�ne a new production qiabMqj in Fr
If P 2 F is of the form siac! asjc then de�ne a new production qiaaRqj in Fr
If P 2 F is of the form csia! sjca then de�ne a new production qiaaLqj in Fr
If P 2 F is of the form sia# ! asj0# or #sia ! #sj0a then no productions need

to be added to Fr as there will be a P 0 2 F of the form siac ! asjc or csia ! sjca

respectively.

Thus L(�) � L(�r)

Consider a machine �r = (Vr; Fr). We then construct a machine � :

Let Vr = VT [ fqi j i 2 1::mg

Let r1::rm be new states not in Vr.

Then V = VT [ fsi j i 2 1::mg [ fri j i 2 1::mg

Now construct F from Fr :

If P 2 Fr is of the form qixyRqj then de�ne the following new productions in F :

six! riy (overprint)

riyc! ysjc (move right)

riy#! ysj0# (move right and extend workspace)

If P 2 Fr is of the form qixyMqj then de�ne a new production six! sjy in F

If P 2 Fr is of the form qixyLqj then de�ne the following new productions in F :

six! riy (overprint)

criy ! sjcy (move left)

#riy ! #sj0y (move left and extend workspace)

And so � ful�lls the conditions of the de�nition.

Thus L(�r) � L(�) and so we have that L(�) = L(�r). 2

The converse of the theorem also holds by the same argument.

4 An Explicit Universal H System

The universal Turing machine that we consider is UTM(24; 2) described in Rogozhin [6].

Let �r = (Vr; Fr) be the UTM(24; 2) where Vr and Fr are :

Vr = f0; 1;#g [ fqi j i 2 1::24g

Fr = fq100Rq5 q201Rq1 q300Lq4 q401Lq12 q501Rq1 q600Lq7
q111Rq2 q211Lq3 q310Lq2 q410Lq9 q510Lq6 q611Lq7
q700Lq8 q800Lq7 q900Rq19 q1001Lq4 q1100Lq4 q1200Rq19
q710Lq6 q811Rq2 q911Lq4 q1010Rq13 q111� q1211Lq14
q1300Rq10 q1400Lq15 q1500Rq16 q1600Rq15 q1700Rq16 q1800Rq19
q1311Rq24 q1411Lq11 q1511Rq17 q1611Rq10 q1711Rq21 q1811Rq20
q1901Lq3 q2001Rq18 q2100Rq22 q2201Lq10 q2301Rq21 q2400Rq13
q1911Rq18 q2010Rq18 q2111Rq23 q2211Rq21 q2310Rq21 q2410Lq3 g
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Using Theorem's 2.1 & 3.1 to transform �r = (Vr; Fr) into a type-0 grammar G gives :

VN = fX0;X1;X2g; VT = f0; 1;#g [ fsi j i 2 1::24g and

FG = f�! # X10! X1 X11! X1 X1#! X2

�! #s1 0X2 ! X2 1X2 ! X2 #X2 ! X0

s111! X1

s1#! X2 s2#! X2 s3#! X2 s4#! X2

s5#! X2 s6#! X2 s7#! X2 s8#! X2

s9#! X2 s10#! X2 s11#! X2 s12#! X2

s13#! X2 s14#! X2 s15#! X2 s16#! X2

s17#! X2 s18#! X2 s19#! X2 s20#! X2

s21#! X2 s22#! X2 s23#! X2 s24#! X2

s100! 0s50 s101! 0s51 s10#! 0s50# s110! 1s20

s111! 1s21 s11#! 1s20# s200! 1s10 s201! 1s11

s20#! 1s10# 0s21! s301 1s21! s311 #s21! #s301

0s30! s400 1s30! s410 #s30! #s400 0s31! s200

1s31! s210 #s31! #s200 0s40! s1201 1s40! s1211

#s40! #s1201 0s41! s900 1s41! s910 #s41! #s900

s500! 1s10 s501! 1s11 s50#! 1s10# 0s51! s600

1s51! s610 #s51! #s600 0s60! s700 1s60! s710

#s60! #s700 0s61! s701 1s61! s711 #s61! #s701

0s70! s800 1s70! s810 #s70! #s800 0s71! s600

1s71! s610 #s71! #s600 0s80! s700 1s80! s710

#s80! #s700 s810! 1s20 s811! 1s21 s81#! 1s20#

s900! 0s190 s901! 0s191 s90#! 0s190# 0s91! s401

1s91! s411 #s91! #s401 0s100! s401 1s100! s411

#s100! #s401 s1010! 0s130 s1011! 0s131 s101#! 0s130#

0s110! s400 1s110! s410 #s110! #s400

s1200! 0s190 s1201! 0s191 s120#! 0s190# 0s121! s1401

1s121! s1411 #s121! #s1401 s1300! 0s100 s1301! 0s101

s130#! 0s100# s1310! 1s240 s1311! 1s241 s131#! 1s240#

0s140! s1500 1s140! s1510 #s140! #s1500 0s141! s1101

1s141! s1111 #s141! #s1101 s1500! 0s160 s1501! 0s161

s150#! 0s160# s1510! 1s170 s1511! 1s171 s151#! 1s170#

s1600! 0s150 s1601! 0s151 s160#! 0s150# s1610! 1s100

s1611! 1s101 s161#! 1s100# s1700! 0s160 s1701! 0s161

s170#! 0s160# s1710! 1s210 s1711! 1s211 s171#! 1s210#

s1800! 0s190 s1801! 0s191 s180#! 0s190# s1810! 1s200

s1811! 1s201 s181#! 1s200# 0s190! s301 1s190! s311

#s190! #s301 s1910! 1s180 s1911! 1s181 s191#! 1s180#

s2000! 1s180 s2001! 1s181 s200#! 1s180# s2010! 0s180

s2011! 0s181 s201#! 0s180# s2100! 0s220 s2101! 0s221

s210#! 0s220# s2110! 1s230 s2111! 1s231 s211#! 1s230#

0s220! s1001 1s220! s1011 #s220! #s1001 s2210! 1s210

s2211! 1s211 s221#! 1s210# s2300! 1s210 s2301! 1s211

s230#! 1s210# s2310! 0s210 s2311! 0s211 s231#! 0s210#

s2400! 0s130 s2401! 0s131 s240#! 0s130# 0s241! s300

1s241! s310 #s241! #s300 g
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We then use Theorem 2.2 to translate G = (VT ; VN ;X0; FG) to a universal H system.

Let VH = f0; 1g [ fT#g [ fX0;X1;X2g [ fBg [ fsi j i 2 1::24g

Then the translation is :

V = VH [ fX;X
0; Y; Zg [ fY� j � 2 VHg

T = f0; 1g

A = fXBX0Y;ZY;XZ;

ZT#s1Y;ZT#Y;ZX0Y;ZX1Y;ZX2Y;

ZY�;X
0�Z;

Z1s10Y;Z1s11Y;Z1s10T#Y;

Zs200Y;Zs210Y;ZT#s200Y;Z1s20Y;Z1s21Y;Z1s20T#Y;

Zs300Y;Zs310Y;ZT#s300Y;Zs301Y;Zs311Y;ZT#s301Y;

Zs400Y;Zs410Y;ZT#s400Y;Zs401Y;Zs411Y;ZT#s401Y;

Z0s50Y;Z0s51Y;Z0s50T#Y;

Zs600Y;Zs610Y;ZT#s600Y;

Zs700Y;Zs710Y;ZT#s700Y;Zs701Y;Zs711Y;ZT#s701Y;

Zs800Y;Zs810Y;ZT#s800Y;

Zs900Y;Zs910Y;ZT#s900Y;

Zs1001Y;Zs1011Y;ZT#s1001Y;

Z0s100Y;Z0s101Y;Z0s100T#Y;Z1s100Y;Z1s101Y;Z1s100T#Y;

Zs1101Y;Zs1111Y;ZT#s1101Y;

Zs1201Y;Zs1211Y;ZT#s1201Y;

Z0s130Y;Z0s131Y;Z0s130T#Y;

Zs1401Y;Zs1411Y;ZT#s1401Y;

Zs1500Y;Zs1510Y;ZT#s1500Y;

Z0s150Y;Z0s151Y;Z0s150T#Y;

Z0s160Y;Z0s161Y;Z0s160T#Y;

Z1s170Y;Z1s171Y;Z1s170T#Y;

Z0s180Y;Z0s181Y;Z0s180T#Y;Z1s180Y;Z1s181Y;Z1s180T#Y;

Z0s190Y;Z0s191Y;Z0s190T#Y;

Z1s200Y;Z1s201Y;Z1s200T#Y;

Z0s210Y;Z0s211Y;Z0s210T#Y;Z1s210Y;Z1s211Y;Z1s210T#Y;

Z0s220Y;Z0s221Y;Z0s220T#Y;

Z1s230Y;Z1s231Y;Z1s230T#Y;

Z1s240Y;Z1s241Y;Z1s240T#Y j � 2 VH g

R = fXw#s100Y $Z#0s50Y; Xw#s101Y $Z#0s51Y; Xw#s10T#Y $Z#0s50T#Y;

Xw#s110Y $Z#1s20Y; Xw#s111Y $Z#1s21Y; Xw#s11T#Y $Z#1s20T#Y;

Xw#s200T$Z#1s10Y; Xw#s201T$Z#1s11Y; Xw#s20T#T$Z#1s10T#Y;

Xw#0s21Y $Z#s301Y; Xw#1s21Y $Z#s311Y; Xw#T#s21Y $Z#T#s301Y;

Xw#0s30Y $Z#s400Y; Xw#1s30Y $Z#s410Y; Xw#T#s30Y $Z#T#s400Y;

Xw#0s31Y $Z#s200Y; Xw#1s31Y $Z#s210Y; Xw#T#s31Y $Z#T#s200Y;

Xw#0s40Y $Z#s1201Y; Xw#1s40Y $Z#s1211Y; Xw#T#s40Y $Z#T#s1201Y;

Xw#0s41T$Z#s900Y; Xw#1s41T$Z#s910Y; Xw#T#s41T$Z#T#s900Y;

Xw#s500Y $Z#1s10Y; Xw#s501Y $Z#1s11Y; Xw#s50T#Y $Z#1s10T#Y;

Xw#0s51Y $Z#s600Y; Xw#1s51Y $Z#s610Y; Xw#T#s51Y $Z#T#s600Y;

Xw#0s60Y $Z#s700Y; Xw#1s60Y $Z#s710Y; Xw#T#s60Y $Z#T#s700Y;

Xw#0s61Y $Z#s701Y; Xw#1s61Y $Z#s711Y; Xw#T#s61Y $Z#T#s701Y;

Xw#0s70Y $Z#s800Y; Xw#1s70Y $Z#s810Y; Xw#T#s70Y $Z#T#s800Y;

7



Xw#0s71Y $Z#s600Y; Xw#1s71Y $Z#s610Y; Xw#T#s71Y $Z#T#s600Y;

Xw#0s80Y $Z#s700Y; Xw#1s80Y $Z#s710Y; Xw#T#s80Y $Z#T#s700Y;

Xw#s810Y $Z#1s20Y; Xw#s811Y $Z#1s21Y; Xw#s81T#Y $Z#1s20T#Y;

Xw#s900Y $Z#0s190Y; Xw#s901Y $Z#0s191Y; Xw#s90T#Y $Z#0s190T#Y;

Xw#0s90Y $Z#s401Y; Xw#1s90Y $Z#s411Y; Xw#T#s90Y $Z#T#s401Y;

Xw#0s100Y $Z#s401Y; Xw#1s100Y $Z#s411Y; Xw#T#s100Y $Z#T#s401Y;

Xw#s1010Y $Z#0s130Y; Xw#s1011Y $Z#0s131Y; Xw#s101T#Y $Z#0s130T#Y;

Xw#0s110Y $Z#s400Y; Xw#1s110Y $Z#s410Y; Xw#T#s110Y $Z#T#s400Y;

Xw#s1200Y $Z#0s190Y; Xw#s1201Y $Z#0s191Y; Xw#s120T#Y $Z#0s190T#Y;

Xw#0s121Y $Z#s1401Y; Xw#1s121Y $Z#s1411Y; Xw#T#s121Y $Z#T#s1401Y;

Xw#s1300Y $Z#0s100Y; Xw#s1301Y $Z#0s101Y; Xw#s130T#Y $Z#0s100T#Y;

Xw#s1310Y $Z#1s240Y; Xw#s1311Y $Z#1s241Y; Xw#s131T#Y $Z#1s240T#Y;

Xw#0s140Y $Z#s1500Y; Xw#1s140Y $Z#s1510Y; Xw#T#s140Y $Z#T#s1500Y;

Xw#0s141T$Z#s1001Y; Xw#1s141T$Z#s1011Y; Xw#T#s141T$Z#T#s1001Y;

Xw#s1500Y $Z#0s160Y; Xw#s1501Y $Z#0s161Y; Xw#s150T#Y $Z#0s160T#Y;

Xw#s1510Y $Z#1s170Y; Xw#s1511Y $Z#1s171Y; Xw#s151T#Y $Z#1s170T#Y;

Xw#s1600Y $Z#0s150Y; Xw#s1601Y $Z#0s151Y; Xw#s160T#Y $Z#0s150T#Y;

Xw#s1610Y $Z#1s100Y; Xw#s1611Y $Z#1s101Y; Xw#s161T#Y $Z#1s100T#Y;

Xw#s1700Y $Z#0s160Y; Xw#s1701Y $Z#0s161Y; Xw#s170T#Y $Z#0s160T#Y;

Xw#s1710Y $Z#1s210Y; Xw#s1711Y $Z#1s211Y; Xw#s171T#Y $Z#1s210T#Y;

Xw#s1800Y $Z#0s190Y; Xw#s1801Y $Z#0s191Y; Xw#s180T#Y $Z#0s190T#Y;

Xw#s1810Y $Z#1s200Y; Xw#s1811Y $Z#1s201Y; Xw#s181T#Y $Z#1s200T#Y;

Xw#0s190Y $Z#s301Y; Xw#1s190Y $Z#s311Y; Xw#T#s190Y $Z#T#s301Y;

Xw#s1910Y $Z#1s180Y; Xw#s1911Y $Z#1s181Y; Xw#s191T#Y $Z#1s180T#Y;

Xw#s2000Y $Z#1s180Y; Xw#s2001Y $Z#1s181Y; Xw#s200T#Y $Z#1s180T#Y;

Xw#s2010Y $Z#0s180Y; Xw#s2011Y $Z#0s181Y; Xw#s201T#Y $Z#0s180T#Y;

Xw#s2100Y $Z#0s220Y; Xw#s2101Y $Z#0s221Y; Xw#s210T#Y $Z#0s220T#Y;

Xw#s2110Y $Z#1s230Y; Xw#s2111Y $Z#1s231Y; Xw#s211T#Y $Z#1s230T#Y;

Xw#0s220Y $Z#s1001Y; Xw#1s220Y $Z#s1011Y; Xw#T#s220Y $Z#T#s1001Y;

Xw#s2210Y $Z#1s210Y; Xw#s2211Y $Z#1s211Y; Xw#s221T#Y $Z#1s210T#Y;

Xw#s2300Y $Z#1s210Y; Xw#s2301Y $Z#1s211Y; Xw#s230T#Y $Z#1s210T#Y;

Xw#s2310Y $Z#0s210Y; Xw#s2311Y $Z#0s211Y; Xw#s231T#Y $Z#0s210T#Y;

Xw#s2400Y $Z#0s130Y; Xw#s2401Y $Z#0s131Y; Xw#s240T#Y $Z#0s130T#Y;

Xw#0s241Y $Z#s300Y; Xw#1s241Y $Z#s310Y; Xw#T#s241Y $Z#T#s300Y;

Xw#Y $Z#T#s1Y;

Xw#Y $Z#T#Y;

Xw#X10Y $Z#X1Y; Xw#0X2Y $Z#X2Y;

Xw#X11Y $Z#X1Y; Xw#1X2Y $Z#X2Y;

Xw#X1T#Y $Z#X2Y; Xw#T#X2Y $Z#X0Y;

Xw#s111Y $Z#X1Y;

Xw#siT#Y $Z#X2Y;

Xw#�Y $Z#Y�;

X 0�#z$X#wY�;

X 0w#Y�$Z#Y;

X#Z$X 0#wY;

#ZY $XB#xY;

#Y $XZ# j w 2 V �
H ; i 2 1::24; x 2 T � g
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The resulting extended H system  = (V; T;A;R) is then universal as it is the result of

a transformation from a universal Turing machine. The proof of this is a direct result

of composing the proof of Theorem 3.1 with the proofs of Theorem's 2.1 and 2.2. The

latter two proofs are described in more detail in Salomaa [7] and P�aun [3] respectively.

When one compares the complexity of the resulting H system with that of the original

Turing machine, one obtains the following results :

jV j = 2(n+m+ 7)

jT j = n

jAj � (n+ 1)(nm� jFinalj) + 2(n+m+ 5) + 8

jRj � (n+ 1)(nm� jFinalj) + 3(n+m+ 5) + 2(n+ 1) +m+ 5 + jFinalj

where m is the number of states and n is the number of symbols of the Turing machine

�r = (Vr; Fr), Final = fXw#saY $Z#X1Y 2 R j s 2 fsi j i 2 1::24g; a 2 Tg, and jRj

is de�ned in respect to the number of groups of rules.

Note that while equality for jRj is achievable simply through the use of an optimal Turing

machine (where optimal implies that every state-symbol pair is used), equality for jAj is

not so simple. In fact if one assumes that every state is used then we may obtain a lower

bound for jAj :

(n+ 1)(m� 1) + 2(n+m+ 5) + 8 � jAj � (n+ 1)(nm� jFinalj) + 2(n+m+ 5) + 8

If we now consider the numerical values for the complexity of our universal extended H

system we �nd that :

jV j = 66

jT j = 2

jAj = 182

jRj = 270

and thus we see that this agrees with our analytic results above with jAj 2 [139; 211] and

with equality for jRj. We also note that jAj will tend towards the lower bound when the

respective Turing machine has a signi�cant number of intensive states where a state is

intensive i� it is the resultant state of more than two productions.
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