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 Abstract 

In recent years, the requirements of individual assistant systems for elderly and disabled people are 

daily increasing, as well as the function expansion of prosthetic control, military, residential and 

commercial robots. In this case, human-robot interactions have become a popular research area. 

Since these robots are directly interacted with the users, there are several challenges in the design 

and control of such human-robot interaction technology. Electromyography (EMG) signal is the 

electrical signals of the human body, which contains a wealth of information on human action and can 

be used to determine the user's intent. The purpose of this thesis is to develop an EMG-based 

human-robot interface, which can identify the body's response by signal processing and model 

calculations, and can also transform the response into the motion control instructions, and control 

the robot to complete the body movement intentions. 

The existing physiological models have provided a continuous motion prediction method. This 

method of the 'simplified musculoskeletal model' took the mechanical revolute instead of human 

joint, the straight line instead of skeleton, and the straight segment between the muscle starting 

point and adhesion point instead of the muscle. During the complex motion of human body, the 

prediction accuracy of this model is greatly reduced since it is not close to the human actual 

physiological structure. Also, it cannot be used for the calculation when the muscular force line 

crosses the joint center. Currently, the studies of the impact of physiological model parameters to the 

sensitivity of interface have three problems: the amount of assessed parameters was few, the 

evaluation method was single, and the results of different researches had disagreement. Especially, 

the analysis of overall parameters in the neuromuscular model was less. The existing sensitivity 

evaluation was focused on the impact of musculotendon parameters sensitivity to the model. 

Through two cases study of elbow flexion/extension and forearm pronation/supination, this thesis 

overviews the new progresses that aim to address the existing gaps in this research field. The elbow 

joint was selected to implement a new method of muscle modeling, which could improve the 

accuracy of model during the complex motion of the elbow, while ensuring the real-time processing 

of the interface. The forearm rotation was chosen because of the weak EMG of forearm muscles, 

the short moving time and small changes in muscle length. The interface for forearm rotation has its 

particularity. 

A new EMG-driven elbow physiological model has been developed to predict the elbow flexion and 

extension. In the process of modeling, this thesis made assumptions based on the physiological 

properties of muscle. Through the elbow experiments from a plurality of subjects and a variety of 
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movements, the model’s ability of accurately predicting different moving trajectories was verified. 

The model was also implemented and verified by a single degree of freedom (DOF) exoskeleton.  

A new EMG-driven physiological model for forearm pronation/supination has been established. It 

can predict the forearm continuous rotation movement by the EMG activations from the superficial 

part of three muscles. The model contained a unique physiology musculoskeletal model. The 

experiments from four subjects showed the effectiveness of this method. The establishment of this 

forearm physiological model has opened up a new way for the prediction of complex joint system 

with small amplitude motions. 

A new sensitivity assessment method of model parameters, three-step layered approach, has been 

established. By using this method, this thesis analyzed the characteristics of the model parameters. 

A relatively small subset of the parameters was generated for parameter tuning. This method 

provided a new way of thinking for the parameters sensitivity analysis. The purpose of parameter 

tuning is to make the model can precisely match every subject. This thesis programmed two kinds 

of evolutionary algorithm - Differential Evolution (DE) and Genetic Algorithm (GA), and 

experimentally compared their performances in three aspects. Because of the high accuracy and fast 

convergence capability, DE can be used for fast online tuning. And GA can only be used in offline 

tuning. 

A controller based on the fusion of EMG and force information has been proposed to validate the 

proposed models in real time control environment. A 5-DOF upper limb exoskeleton was developed 

by the Medical and Rehabilitation Research Group at the University of Auckland, the exoskeleton 

was used to evaluate the effectiveness of the EMG based controller (EBC). The results showed that 

the dynamic auxiliary effect of the exoskeleton is obvious (the decrease of muscle activation could 

be ensured above 52% when the assistance works), and the physiological model based EBC can 

adapt to different individuals. This also showed the effectiveness and online adaptability of the 

EMG-based Neuromuscular Interface proposed by this thesis. 
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 Introduction 

 

Electromyography (EMG) signal is the electrical signal accompanied by human muscle contraction. 

It contains a wealth of information on human action. In recent years, with the increasing 

requirements of individual assistant system for the elderly or disabled people, and the extensible 

needs of the prosthetic control, military robots, household robots and commercial robot [1], 

EMG-based human-robot interactive technology has become a very popular research field. 

However, the development of this human-robot interaction technology is facing great challenges in 

its design and control parts, because it is a direct interaction between the external device and users. 

The purport of this thesis is to develop an EMG-based human-robot interface and to assist the 

human upper limb movement as an example. This chapter summarizes the current researches of 

EMG-based human-robot interface and the existing gaps. It also presents the main purpose and 

outline of this thesis. 

1.1 EMG-based Human-Robot Interface 

The EMG-based human-robot interface is the study of interactions between humans and robots 

based on the input information from the EMG signal of human muscles. It achieves the function of 

transmitting the collected EMG signal to the action control instruction of the external device. Figure 

1.1 shows a superficial concept of the EMG-based human-robot interface. In the figure, EMG 

signals from users’ muscles are firstly collected and processed. Then based on the information of 

EMG, some models or algorithms (such as human physiological models, pattern recognition or 

neural networks) are used to identify the body's response to external stimulus. The output of these 

models or algorithms are normally the predicted human movement and they can be used to control 

the external devices (such as robots or prosthetic arms) through a specific controller. Till then, the 

human’s movement intention is conveyed to the devices through the interface. Since the 

EMG-based human-robot interface has the characteristics of simple structure, convenient operation, 

real time, natural harmony, and compliance with human behaviors, it has a wide range of 

applications in military, medicine, sports and family applications area. 
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Figure 1.1: The concept of an EMG-based interface 

1.1.1 Research Area 

Currently, the researches of EMG-based human-robot interface mainly focus on the following two 

aspects: 

1. Provide input to the controller by identifying limb movement patterns. 

The key technologies of this aspect are the signal analysis algorithms and human motion 

pattern recognition algorithms. In recent years, neural network is used widely for the signal 

classification and pattern recognition. The model based on neural network is a relationship 

model between the EMG signal and kinematic data. The complex relationship between EMG, 

kinematic data and dynamics data is modeled by the nonlinear relationship of neural network. 

The neural network model simplifies the modeling computation, and the influence between 

systems is considered. So it is more simple, easy to solve, without complex mathematical 

formulas or time delay on EMG generation, compared with the previously method which relays 

on the inverse model. Besides that, one neural network model can address several muscle 

activation models. However, this model needs to collect large amounts of data, and its 

effectiveness is only applicable within the range of motion training samples. Further, the model 

cannot explain the mechanics of body movement system, since it is not based on the 

biomechanics. 

2. Provide input to the controller by human movement, dynamic parameter estimation 
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This method identifies limb movement intentions by extracting EMG signals feature and using 

the musculoskeletal physiology model, so its key technologies are the muscle physiology 

model and musculoskeletal physiological system model. This method is simple, real-time, and 

combined with the biomechanical properties of the human body. Since surface EMG (sEMG) 

signal, with the advantages of non-invasive and easy to be collected, is easier for the users or 

patients to accept. However, the sEMG signal of deep muscle is hard to measure. This method 

is the main content of this thesis. 

1.1.2 Challenges of the EMG-based Neuromusculoskeletal Interface 

At present, the challenges of EMG-based neuromusculoskeletal interface are mainly at following 

five aspects: 

1. The quality of signal processing 

EMG has non-stationary nature in physiological characteristics. How to effectively process the 

EMG signals, extract the appropriate feature and eliminate as much noise as possible, all greatly 

impacts the properties of human-robot interface.  

2. Contradictions between running time and the number of muscles 

The contributions to the potential joint torque from muscles wrapped the entire join are different. 

Since the joint actions depend on the coordination between different muscles, the more 

calculated muscles means a higher bionic precision and a higher accuracy of movement 

prediction. However, too many muscles also increases the complexity of interface computing. 

Thus, how to balance the contradictions between the number of muscles and interface running 

time, becomes another conditionality for existing interface researches. 

3. The accuracy of models 

The accuracy of models is one of the most important indicators of whether the model is feasible. 

According to current interface researches, the root mean square error (RMSE) of EMG based 

models are about 10°-34° in single elbow flexion or extension movements [2-6], and the error 

was even bigger in continues and random movement. The problem of low accuracy of the 

interface is mainly related to the accuracy of the model, interface feedback and parameters 

tuning. 

4. Parameters tuning and individual differences of the model 
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In order to make the interface adapt to different individuals, and to improve the accuracy, the 

model parameters need to be tuned. Till now, there is not a proper and comprehensive 

parameter analysis method especially for the physiological interfaces. And the most common 

interface tuning method are still Genetic algorithms (GA), Simulate Anneal Arithmetic (SAA), 

non-liner least square optimization, many calibration trials (manually) and Nelder-Mead simplex 

method. Most of them cannot achieve real-time tuning for the interface. 

5. The influences of fatigue 

Practice has proved that, the EMG signal is significantly affected by fatigue [7]. The 

temperature and muscle fatigue lead the EMG to a reducing frequency and increasing 

amplitude [8]. How to reduce its effect and improve the adaptability of the interface comes to 

be another challenge. 

A review of the current researches on these issues is in Section 2.4. This thesis will try to solve 

some of these problems for improving this kind of human-robot interface. 

1.2 Electromyography (EMG) 

1.2.1 Advances of EMG 

In 1781, Galvani confirmed the close relationship between muscle contraction and electrical signals, 

which opened a new era of electrophysiology [9]. Rowbottom found that the electrical activity 

could be recorded during the active muscle contraction, and he proposed the concept of "action 

potentials" [9]. In 1890, Marey recorded the first "electrical activity", which was what we call EMG 

(electromyogram) today. Thereafter, human biological signals were used in various application 

fields. 

Currently, the main research areas of EMG are as follows: 

1. Used in human-robot interface  

EMG is used for the human-robot interface since it contains the information of muscle 

activation. An interface can extract the feature quantity in the EMG signal as input, calculate 

with physiological models or mathematic algorisms, and predict the users’ movement intention 

as output (such as Figure 1.1). 

2. Used in the study of control mechanism of neuromuscular system  
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As shown in Figure 1.2, the control mechanism researches of EMG-based neuromuscular 

system aim at extracting the recruitment, distribution information of neuromuscular motor units 

and the MUAP waveform information from the EMG, then studying the control mechanism of 

neuromuscular system, in the end, providing the diagnosis basis for the neuromuscular 

diseases. 

 

Figure 1.2: EMG-based control mechanism of neuromuscular system 

Currently, the MUAP detection algorithms include neural networks, high order statistics,   

frequency-based blind source separation algorithm, fuzzy logic algorithms, scalogram analysis 

of continuous wavelet transform, and so on. 

1.2.2 Characteristics of EMG-based Human-robot Interface 

For the design of human-robot interface, there are three main performance requirements: the 

accuracy of action recognition, real-time performance of the system, and consistency with human 

instinct. The EMG as information source can meet these requirements, because of the following 

reasons: 

1. During operation of the intelligent action assistance system, the movement of assistant 

devices needs to co-operate with human limbs motion based on the human's subjective 

intention. EMG can most accurately reflect the nervous-muscular motion and be used to 

quantitatively analyze human motion intent, such as the size of the muscle force, muscle fatigue, 

muscle contraction, stretching and relaxation. 

2. The feature space of EMG signals must contain the appropriate motion commands from the 

cerebral cortex motor area. By analyzing the muscular EMG signals, the human movement can 

be ‘prophesied’ even before the real action took place (due to the electro- mechanical delay 
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which can be 20- 80 ms). If the "prophecy" information of motor neurons can be clearly 

identified, the control of intelligent assistance systems is equivalent to the control directly by 

human brain. 

3. Compared to conventional sensors, the weak EMG signal is easier to be detected. For the 

case when actual action did not occur due to muscle weakness or physical over load, the body 

intent to complete this action target can still be detected by using EMG signals. 

4. EMG measurements are less affected by the sensor itself. 

5. In order to drive human limb movement, the mechanical structure of intelligent assistance 

system needs to directly connect with the assisted human limb. Therefore, it is more convenient 

to use EMG as an information source. 

6. Based on human physiology to control assist devices, the system is more intuitive, natural, 

easy learning and can achieve autonomous control at the same time. Also, surface EMG has the 

advantages of non-invasive measurements and easy extraction process. 

However, due to the randomness and low voltage of EMG, the noise in signals is difficult to be 

removed. The noise mainly comes from: a) electromagnetic noise signal from electronic equipment 

and environment, b) artifacts signal from electrode movement, c) the electrocardiogram inside body 

or heart activity, d) EMG interaction from adjacent muscles. 

The electromagnetic interference from Electronic equipment and environment can only be reduced 

through the use of high-quality electronic components. The artifacts from the relative motion 

between electrodes and skin are low-frequency signals and can be filtered by a high-frequency filter. 

The effect of ECG also needs to be filtered by signal filtering techniques. The impact of EMG 

interaction from adjacent muscles can be reduced by carefully arranging the electrodes. 

1.3 Upper Limb Exoskeleton 

Since the world population is rapidly ageing, and with the increased number of diseases such as 

arthritis, stroke and paralysis, traditional artificial rehabilitation training can no longer meet the 

current medical needs. Exoskeleton technologies provide new solutions for rehabilitation and 

support for disabled people. An exoskeleton is the external skeleton that supports and protects the 

human's body, in contrast to the internal skeleton. Since the development of the first real exoskeleton 

in the 1960s, it plays a more and more important roles in rehabilitation, military, prosthetic, auxiliary 

areas over the last fifty years. 

https://en.wikipedia.org/wiki/Skeleton
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1.3.1 Advances of Upper Limb Exoskeleton 

Upper limb is the main sport body in human life. Exclude the finger joints, upper limb totally 

contains 9 degrees of freedom from the shoulder to the wrist [10]. The 9 DOF support the upper 

limb exceptionally high operability and allow hands to reach a wide workspace. Since upper limb is 

able to complete the most complex movements, the quality of its motion function directly 

determines the people's ability of independently living.  

The early upper limb rehabilitation robots were evolved from the end-effectors. They ingeniously 

adjusted human hands and forearms through the physical interaction. Figure 1.3 is an example of an 

end-effector. However, the motion range of the end-effector robot is limited. With the progress of 

the study, upper limb rehabilitation robot comes more diversification in resettlement ways and 

training patterns, so it can provide a more appropriate rehabilitation programs for patients. At 

present, the mainstream structure of rehabilitation robot is exoskeleton robot. Exoskeleton can be 

"worn" on the operator, closely contact with the body and move with the operator's movement. The 

exoskeleton has also been applied in reality. 

Figure 1.4 is the robot, named ARMin, developed by Tobias Nef from the University of Zurich, 

Switzerland [11]. It was an exoskeleton robot with six degrees of freedom, four motors, some 

displacement sensors and force / torque sensors for position, speed and physical strength 

measurements. This system had a gravity compensation mechanism, to assist patients to complete 

the elbow and shoulder rehabilitation. 

 
 

Figure 1.3: The MIT-MANUS end-effector 

rehabilitation robot [12] 

Figure 1.4: ARMin rehabilitation device 

[11] 
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Joel Perry from University of Washington designed the exoskeleton robot named CADEN-7, which 

contained seven degrees of freedom, as shown in Figure 1.5 [13]. It was designed based on the 

kinematic and dynamic characteristics of normal human activities in free space. It could assist the 

patient to complete shoulder, elbow and wrist rehabilitation training, also it could be used for the 

virtual reality simulation of normal people's experimental research  

 
 

Figure 1.5: CADEN-7 rehabilitation robot 

[13] 

Figure 1.6: Armeo Spring rehabilitation 

robot [14] 

Hocoma Company in Switzerland developed a robot named Armeo Spring, as shown in Figure 1.6. 

It can assist the patient to complete the multi-articulation motions of upper limb [14]. This system 

did not provide power, only depending on the patient’s voluntary movement to complete 

rehabilitation training, through the games provided by the system. In addition, the system also had a 

gravity compensation mechanism to ensure the patient in a smooth motion processes. 

1.3.2 Current Limitations 

Although the exoskeleton design and power realization have made a great progress, there are still 

many limitations in applications. 

1. The existing exoskeletons are mostly already set with a sports program, which means, they 

cannot be real-time interaction with the patient or cannot change sport strategy. 

2. The existing exoskeleton shapes are not beautiful. So it cannot inspire the patient to actively 
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complete the rehabilitation training. 

3. The power supply is not long-lasting enough, and very expensive. The durability of the 

actuator is poor and its life is short. 

4. The matches between the exoskeleton physical interface and users have some drawbacks. 

Herr believed, the limitations of information exchange between a user's nervous system and an 

exoskeleton device were the ultimate issue of relevant requirements, which means, when the user 

moves his arm, how exoskeleton device can identify the movement trends and do the right response. 

EMG-based neuromuscular interface has been regarded as one of the most effective ways to achieve 

this goal. 

1.4 Research Objectives 

The overall objective of this thesis is to develop a new EMG-based neuromuscular interface, and try 

to overcome the current problems in this area. This case study of the thesis is the human elbow 

flexion/extension and forearm pronation/supination system. Reports on the elbow interface have 

been very common, but the accuracy of their established models is not high. The forearm rotation is 

a kind of very complicated movement. This is the first time to build an interface model based on the 

forearm biomechanical system with a real-time tuning. To this end, a new controller has been 

developed to control a 5 DOF upper limb exoskeleton. It is an example to verify the feasibility of 

the human-robot interface in this thesis. The overall objective can be broken down into the 

following five objectives: 

1. Establishment of an EMG-driven elbow physiological model 

Establish an EMG-driven elbow physiological model to explore the methods for improving 

model accuracy, especially to solve the problem of a sharp decline in model prediction 

accuracy during multi-cycle motions, and verify the applicability and stability of this interface 

through experiments. The accuracy of EMG-driven interface is closely related to the accuracy of 

each sub-model: signal processing, activation kinetics, muscle contraction dynamics, 

musculoskeletal geometry and kinematic model. Among these, the accuracy of musculoskeletal 

geometry model affects most to the interface. This thesis attempts to simplify the muscles path in 

new ways, to improve the model accuracy with ensuring the operation speed as a premise. 
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2. Development of a new method for parameters sensitivity analysis 

Grade and classify all the adjustable parameters of the model. Try to assess the parameters 

sensitivity in a new way, which means to analyze them from offline, online, different actions 

and different individuals. And develop an online tuning algorithm for the EMG-driven model. 

The purpose of parameter tuning is to make the model can precisely match each subject. However, 

the complexity of the model and parameters determining make it hard and time-consuming to obtain 

the optimal parameters. A multi-angle analysis of model parameters, helps to build online tuning 

algorithm. Genetic Algorithm (GA) and Differential evolution (DE) are programmed and separately 

used for offline and online interface tuning. 

3. Establishment of an EMG-driven forearm rotation physiological model 

Create an EMG-driven forearm rotation physiological model and experimentally verify the 

validity of this model. Compared with elbow flexion/extension, the movement amplitudes of 

forearm muscles are relatively small, no matter from the human physiological structure and exercise 

or daily life. Therefore, the EMG signals of forearm rotation muscles are weak, the motion are 

short-time, and the muscle length changes are small. Thus, the interface of forearm rotation has its 

particularity. This thesis discusses the method of establishing a biomechanical model of this kind of 

joints. 

4. Establishment of a 2-DOF human-robot interface 

Establish a 2-DOF human-robot interface for human upper limb movement based on EMG 

and physiological musculoskeletal model. This interface will provide three kinds of assisting 

operations of elbow flexion / extension, forearm pronation / supination and the forearm 

complex motion. For the forearm complex motion, the choice of muscle signal channels, muscle 

model, musculoskeletal geometry, especially parameter tuning problem are all discussed. The 

parameters of complex motion can be divided into two kinds: parameters those only affect one of 

this complex movement, and parameters those affect both flexion/extension and 

pronation/supination. 

5. Design of a controller for the upper limb exoskeleton 

In order to verify this EMG-based neuromuscular interface, a 5-DOF wearable exoskeleton is 

designed. And a controller based on EMG and force information is developed, to achieve the 

purpose of controlling the exoskeleton robot based on the human subjects' intention. This 
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exoskeleton design considers the mechanical interference, matching with different users’ arm 

lengths, security, and other features. The result of the interaction between the user and the 

exoskeleton is the robot or the user to control arm movement. The controller can achieve the 

interactions of these two types, and also can combine these two types of action to obtain qualifying 

compound actions. The controller will be applied to the exoskeleton prototypes to validate their 

performance. And finally the demonstration of the EMG-based neuromusculoskeletal interface are 

completed. 

1.5 Thesis Outline and Contributions 

The research of this thesis has been described in Section 1.1. There are total eight chapters of this 

thesis, including this introduction chapter. 

Chapter 2 introduces the latest input technologies of the human-robot interface, and reviews the 

EMG application fields. It refers the development status of the EMG-based neuromuscular 

interfaces, and discusses the current challenges facing this area: including the quality of EMG, the 

number of EMG channels, interface accuracy and model parameters tuning. 

Chapter 3 introduces a new method of modeling: a simplified method of the musculoskeletal model, 

and uses it in the EMG-based elbow neuromuscular interface. Also, the parameters of the 

physiological model have been comprehensive analyzed and the methods for obtaining 

physiological parameters have been explored. 

Chapter 4 introduces a new thinking to assess the parameters sensitivity. It can evaluate the 

parameters' hierarchy, individual difference and action difference from multiple angles. A group of 

multi-subjects and multi-movements experiments are also designed to verify the physiological 

model of elbow joint and signal processing method. 

Chapter 5 details the physiological structure of the forearm bones, forearm rotation axis and 

forearm rotation muscles related to the forearm neuromuscular interfaces. The assumption for 

human forearm rotation modeling is given and the forearm rotation musculoskeletal geometry 

model is established. This is the first time to reverse the real-time forearm rotation biomechanical 

model as the research object and the accuracy of the model is verified by experiments. 

Chapter 6 establishes a 2-DOF human-robot interface for upper limb movement. This interface 

provides three kinds of operation mode to assist human elbow flexion / extension, forearm 

pronation / supination, and the complex movement. This chapter also analyzes the muscle signal 
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selection, muscle model, musculoskeletal geometry treatment during complex movement. It also 

programs Genetic Algorithm (GA) and Differential Evolution (DE) Algorithm in Matlab, and 

discusses the test performances of GA and DE as two methods of evolutionary for model 

parameters tuning. The result shows that DE algorithm can be used in quick online tuning. 

Chapter 7 presents a 5-DOF upper limb exoskeleton and a Graphical User Interface (GUI) for the 

demonstration of interface. The exoskeleton considers the exoskeleton mechanical interference, the 

match of different users' arm length, and the security features. Based on the two-DOF human-robot 

interface, the GUI connects users to the exoskeleton, simplifies the operation, and makes the control 

process and the results are visualized. 

Chapter 8 presents a control strategy for the 5-DOF exoskeleton based on the human subjects’ 

intention. It contains two kinds of controller: the EMG based controller uses the integration 

information of EMG signals as an input and the human-robot interface as control method; the force 

based controller takes the wrist force sensor signals as an input and the impedance control as control 

method. Some control experiments for elbow movement are also carried out to assess the 

effectiveness of EMG-based neuromusculoskeletal interface. 

Finally, Chapter 9 summarizes all the research work of this thesis, as well as the contribution and 

suggestion for future work. 

1.6 Chapter Summary 

This chapter describes the meaning of EMG- based interactive technology in military, medical, 

sports, family and other applications. It shows the current two main research directions of this 

human-robot interaction technology. It illustrates the challenges of EMG-based 

neuromusculoskeletal human-robot interface. Also it recalls the progress of upper limb exoskeleton 

research and the limitations of existing upper exoskeleton. 

This chapter lists the five main objectives of thesis and briefly overviews its implementation. The 

first thrust is to create a highly accurate EMG driven model for elbow joint. The second one is to 

grade, classify and assess the parameters sensitivity and develops an online tuning algorithm. The 

third is to create an EMG-driven model of forearm rotation. And the fourth is to develop a 2-DOF 

human-robot interface based on EMG and human physiological musculoskeletal model. The last is 

to present a 5-DOF exoskeleton and design an EMG and force based information fusion controller 

to demonstrate the interface. 
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 Literature Review 

 

In order to enhance the acting ability of limb-damaged patients, restore their normal social life and 

improve their mental and physical state, the assisted rehabilitation robots have been paid more and 

more attention to. In addition, the development of human-robot interaction technology in the 

military, medicine, sports, family, and other fields also needs an intelligent interface. The intelligent 

human-robot interface system requires the ability to qualitatively and quantitatively analyze the 

people's request, to accurately and quickly sense the operator input, and to quickly make the 

appropriate response in accordance with the operators' different movements and intentions. 

This chapter summarizes the input technology of human-robot interface and the applications of 

EMG. It also reviews the researches of EMG-based neuromuscular interface, and discusses the 

challenges. 

2.1 Input of Interface  

In the development of the human-computer intelligent system, researchers have been looking for a 

different control source to control the interface for a long time. Currently, the main types of control 

sources include human mechanical movement, voice, electroencephalogram (EEG), 

electromyography (EMG), and so on. 

2.1.1 Mechanical Movement of the Human Body 

This method is mainly using movement function of the human body, and achieves the mechanical 

control through the transmission device to trigger the corresponding switch .The rotation of the 

wrist, elbow flexion, and even the movement of head can all be used as the information input 

sources of device drivers. There are two methods to obtain the body’s mechanical movement: using 

computer vision and using generic sensor. 

1. Use computer vision to acquire the body’s movement information 
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The body's movement is mainly reflected by the joint motion. The human motion analysis 

based on computer vision collects moving images in sequences by means of three-dimensional 

video or high-speed camera, then, processes the image sequence or video to analyze joint motion 

parameters and trajectory [15]. It uses three-dimensional reconstruction method to obtain the 

spatial coordinates of the photographed object, and use the time series of coordinate values to 

calculate the corresponding kinematic parameters such as velocity or acceleration [16, 17]. 

This method is easy to use. Since it uses non-contact way to record, it does not need to impose 

any constraints to the human body. Thus it can reflect the actual human movement. It can be 

applied in the motion analysis of sport players, clinical diagnosis assistant, medical gait 

analysis, computer animation and game production, and the establishment of large-scale of 

multimedia databases. However, during human joint movement, the computer vision is easily 

affected by changes of ambient light, interference of background chaos, shadow and occlusion 

of the moving target and so on. These may increase the difficulty of motion recognition. 

Meanwhile, the sequence of images requires a large storage space, and the analysis algorithms 

of images are complexity which makes it difficult to real-time processing. And Due to the space 

constraints, complexity of device and the high cost, it is hard to meet the needs of applications 

of intelligent assistance system. 

2. Use generic sensors to acquire the body’s movement information 

This method installs some generic information sensors (such as position sensors, angle sensors, 

acceleration sensors, force sensors and inertial sensors) between user and interface to obtain the 

real-time dynamic data of the human body (or parts), and then use appropriate mathematical 

models to obtain the motion information of the human body [18-21]. Such as Bouten used the 

acceleration sensor in the tracking identification of daily movement [22]. Zhou estimated the 

human upper limb movement by inertial sensors [23]. 

The human motion is impacted by the force of contact interface in environment. Therefore, 

many scholars did a lot of researches about the human’s mechanical behavior in the course of 

the campaign to discover a deterministic relationship between the force and human movement 

state. Sazonov used the changes of plantar pressure and heel movement acceleration as variable 

parameters, and classified different movement patterns by a neural network algorithm[24]. 

Monika Kohle did the gait analysis through ground reaction force. He used a neural network for 

abnormal gait identification, and applied it in the clinical gait auxiliary diagnostic and treatment 

[25]. Chao was also cited plantar pressure information in the gait research and obtained some 

certain results [26]. 
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With the development of Micro Electro Mechanical Systems, MEMS, the volume of inertial 

sensors (such as accelerometers, gyroscopes, magnetometers, etc) are becoming smaller and 

smaller, the sensitivity and the ratio of signal to noise are getting higher and higher, also the 

power consumption and cost are greatly decreased. Combined with wireless data 

communication technology, it can be made to wireless wearable device and form a body sensor 

network which has the perception of motion information and may monitor human movement 

for a long time. The obtained motion data can be applied in clinical application, 3D animation, 

virtual reality, and ubiquitous computing. Keith MW in Metro Health centre implanted MEMS 

force sensors and optical sensors in the disabled patients, to measure the force and torque 

information of limb joints and muscles. At the same time, Keith used the Hall Effect sensor to 

provide angle information for the rehabilitation research. Through more than 2 years study, he 

gained many useful results [27-29]. However, due to the human body's biological reject 

testability and individual differences, the signal interference is quite large. Also it is not 

possible to rely on implanting too many kinds of sensors to complete the task of acquiring 

human motion information. 

2.1.2 Voice of the Human Body 

Researchers treat the sound information of the patient through a digital processing technology (DSP) 

and then convert it to the corresponding control instruction. The voice-activated prosthetic has a great 

advantage in helping paraplegic patients to restore motor function. At present, the voice control 

method becomes popular in the market, such as the ‘simple language prosthetic control system’ 

designed by Udayashankara [30]. Its downside is that the patients’ normal communication with 

others may also lead to prosthetic malfunction. It is also has a problem about how to improve the 

ability of voice prosthesis to anti the noise from environment. 

2.1.3 Electroencephalogram (EEG) 

The subjective will of human motion usually comes from cerebral cortex, and the EEG signal from 

cerebral cortex does not need to relay on residual limb muscles to convey the excitement 

characteristics. Thus, the information acquisition based on EEG is theoretically the best method to 

help disabled people communicate with others. Roberts put the detected EEG signals through an 

8-order AR model and Bayesian logic classifier to classify the data in order to control the up and 

down movement of the mouse. The overall performance researched 82% [31]. One of the important 
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functions of brain-computer interface (BCI) is to be used for the recovery of stroke or paralyzed 

patients. Using BCI in rehabilitation training may help to improve the quality of the patients’ life. 

By this recovery methods, the cortex area of the patient after treatment has an indications of 

recombinant [32]. 

Brain as the center of human nervous system contains complex electrical signals. And the working 

mechanism of brain still has many unsolved part. Therefore EEG-based action identifying and 

control are limited to simple body movements. For diverse and complex actions, there still needs 

in-depth researches. 

2.1.4 Electromyography (EMG) 

EMG signal is a kind of bioelectricity released by neuromuscular excitability of the human’s 

voluntary movement. The EMG information reflects the functional state of muscles, so it can be 

used for sensing the body's state of motion and predicting future actions. Cavanagh et al [33] 

researched on human electromyography phenomenon and experimental proved that: the human’s 

movements, in all forms, are mainly achieved by muscle contraction, and these mechanical 

contraction movements always occur 20-80ms after the action potential appears. Therefore, it can be 

trusted that EMG is the root of the electrical signal which generated muscle force. EMG can be used 

to recognize the human movement patterns, especially in the joint motion identification of the upper 

and lower limb. The recognition results have already been widely used in the control strategy of 

humanoid mechanical and artificial prosthesis. Meanwhile, as a nerve stimulation signal, it can also 

contribute to further applications in human rehabilitation therapy. The surface EMG (sEMG) as a 

control source is relatively mature. By using the human physiological way to control, it is easy to 

learn and able to achieve self-control, so it has been regard as an ideal information source for the 

current research. 

Some examples of real input technology for interface are shown in Figure 2.1, and includes the 

cyber glove system and cybergrasp from CyberGlove Systems LLC in USA [34], sample of haptic 

interface [35], force sensor gloves, EMG and EEG capture system and sensors [36]. 

http://www.iciba.com/humanoid_robot
http://emerald.tufts.edu/programs/mma/emid/projectreportsS04/kriete.html
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Figure 2.1：Photos of real input technology for interface [34-36] 

2.2 Current Applications of EMG  

Under well-controlled conditions, changes in EMG signal can quantitatively reflect the muscle 

activity and the variation rule of the central control features, such as the level of muscle strength, 

muscle activation patterns, conduction velocity of excited motor unit, local fatigue of muscle 

activity and the coordination between different muscles. The EMG is closely associated with the 

active and functional status of muscles. Since it can reflect neuromuscular activity, EMG has some 

great theoretical significance and practical value in the following aspects. 

1. EMG used in sport research 

Sport analysis refers to apply the person's physical activity to sports, dance and other training 

activities. Currently, in many sports, by testing the athletes' physical characteristics, their 

degree of physical exertion and operation standards can be detected. By referring to the 

monitoring results, athletes can design proper training programs to improve their acting 

performance. 

For example, EMG can be used to determinate the electro-mechanical delay in human activities, 

as well as the training of biological recover and psychological state adjustment. By studying the 

EMG Sensor EEG Sensor
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EMG, the sequence of muscle activation and muscle force can be assessed. The result can be 

used to analyze and evaluate the athletes' movement. Also, EMG is used to assess the training 

level of athletes' muscle. 

2. EMG used in medical research 

Based on the electrophysiological properties of the nerve and muscle, and by using the 

electrical stimulation of nerves, researchers kept track of the patient's action and reaction wave 

of feeling, to help the diagnosis of neuromuscular diseases. Till now, this method has a great 

achievement in treating chronic nonspecific back pain, scoliosis, stroke and Parkinson. 

In 2004, Cheung tested on 30 adolescent idiopathic scoliosis patients and concluded that: 

Simultaneously determining the growth rate of spine and sEMG ratio has a certain value to 

assess the progress type of adolescent idiopathic scoliosis [37]. Wen Wu took 37 patients who 

were suffering with lumbar disc herniation as a test. He compared the differences of sEMG 

from vertical spine muscle and multifidus before and after treatment [38]. The results showed 

that sEMG can be used as one of the objective indicators of clinical efficacy evaluation of 

lumbar disc herniation and has a good clinical value. Randy Neblett [39] collected sEMG and 

ROM (range of motion) to measure and evaluate the lumbar flexion relaxation phenomenon. 

And he found that all normal subjects had flexion relaxation phenomenon which means that the 

EMG in extensor state is similar with the one in resting state when lumbar is in maximum 

flexion. In 1980s, Kralj and Bajd put hand control device into the paralyzed patients walk system 

and achieved the fusion of walking devices and FES neural prosthetic [40]. Later, ParaCare team 

in Zurich University invented a hand function recovery system based on the EMG signal FES 

neural prosthesis, through acquisition of the deltoid EMG signals of the upper limb [41]. Since 

FES can help patients to complete the task of explicit action, it is regarded the most promising 

technology in the reconstruction of limb function. And it has successfully helped paraplegics to 

stand and walk from the wheel chair. 

3. EMG used in rehabilitation research 

In the design and control system of external skeletal, artificial limbs, wheel chairs and other 

intellectual products, EMG signals are always used as the control source to drive the intelligent 

assistance systems working through the way as human intention prefers.  

In the exoskeleton system, Sankai, in the University of Tsukuba, successfully developed the 

HALL (Hybrid Assistive Limb, HAL) system [42](shown in Figure 2.2) which was used to assist 

in the daily walking and rehabilitation, based on the method of using sEMG and ground reaction 
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force to predict user's intention [42]. Aiming at clinical rehabilitation, The University of 

Michigan used EMG signals from calf soleus for control source and established a linear 

relationship between EMG signal and muscle force, to control the leg movement auxiliary 

systems [43], shown in Figure 2.3. German Ottobock Company developed an automatic 

induction hand (SUVA) (shown in Figure 2.4), which can easily and naturally control the 

prosthetic hand open, close and crawl depending on the strength of EMG signals [44, 45]. It is the 

mainstream prosthetic hand of the market products. 

4. EMG used in gesture recognition and human-computer interaction  

Gesture recognition is a method that obtains information related with the gesture by the sensor 

and use pattern recognition to discriminate the type of the gesture. An EMG-based control 

system collects different EMG signals from corresponding muscles and identifies different hand 

gestures to control peripheral devices with the recognition results. The recognition result not only 

reflects the flexion state and flexion strength of joint, but also reflects the completion process 

such as shape, position, orientation of the hand gesture in real time. Therefore, EMG is used for a 

variety of computer interface control, including the electrical device control, automatic sign 

language translation, assisted Living for people with disabilities, interactive gaming 

entertainment, battle command, and so on.  

 

Figure 2.2: HALL( Hybrid Assistive Limb，HAL) system [42] 

The EMG-based gesture recognition is not easily impact by the environmental, and its 

advantages such as lightweight, convenient and inexpensive suit for the application of family 

living environment. For example, Jong-Sung, Kim et al classified and identified 6 kinds of wrist 

action to achieve a real-time system to control a computer mouse through sEMG signals from 
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gestures [46]. Enrico successfully controlled a phone by analyzing different EMG signals [47]. 

Shinichi used sEMG recognition results of hand and neck movements to control an electric car 

[48]. Kevin developed a set of virtual joystick based on the sEMG gesture recognition, to control 

the gaming aircraft flight [49, 50]. He also improved the number of classified gesture category to 

nine kinds of wrist and finger movements, as shown in Figure 2.5. 

Using EMG to identify specific actions can be in advance of the actual action, therefore, the 

process which extracts EMG signals from human surface and operates by computer can simplify 

the transfer and treatment process of brain movement instruction. It improves the speed of 

human-devices interface. This method are widely used in modern military and racing sports, 

because these applications need a higher flexibility and faster control. The one who manipulates 

executing agency through EMG gains a quicker interface speed then the opponent, and gets a 

head start in the battle or the game. 

 

Figure 2.3：The University of Michigan rehabilitation robot [43] 
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Figure 2.4: Prosthetic hand from 

Otto bock Company [44, 45] 

Figure 2.5: Virtual joystick based on sEMG gesture 

recognition [49, 50] 

5. EMG is used in emotion recognition 

In the research of physiological signals-based emotion recognition, the physiological signals are 

always electromyography (EMG), galvanic skin response (GSR), blood volume pulse (BVP) 

photoplethysmogram (PPG), skin temperature (SKT), respiration (RSP), Electroencephalogram 

(EEG), electrocardiogram (ECG) and heart rate signal (Hate Rate). Firstly, extract a certain 

amount of statistical features based on the characteristics of the different physiological signals. 

And then, select features by SBS, SFS, SFFS / Fisher, ANOVA or other feature selection methods. 

Finally, classify through Fisher or KNN classifier and achieve the purpose of emotional 

identification. 

Prendinger et al, from Tokyo University, used EMG and SC for emotional identification [51]. 

Kim and Bang from Korea gathered the physiological signals of 50 participants in their natural 

emotion, and identified three and four kinds of emotional states by Support Vector Machine 

[52]. 

There are two examples of emotional identification: the smart, portable personal body care and 

monitoring systems can measure the wearer's breathing, heart rate, blood pressure, sweating, 

body temperature, muscle reaction and galvanic skin signature to determine the emotional state 

of the wearer, and physically record the wearer’s condition.  After a certain time, it may 

automatically publish a health alarm and propose some care advice or adjustment method to the 

wearer. Another example is the safe driving intelligent monitoring system: this system uses a 

non-contact signal acquisition device which can obtain the behavior signature of the driver at 

any time, examine the driver's "active or passive reactive" particular emotional state and 

evaluate the driver's attention and physical condition. This system ensures that the driver is in 
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good condition and reduces the incidence of traffic accidents. 

2.3 EMG-based Neuromuscular Interface 

Using EMG as input to the musculoskeletal model has been used by researchers at different 

anatomical locations in isometric or dynamic tasks, such as elbow [53-55], shoulder [56], knee 

[57-61], ankle [62], jaw, lower back [63, 64] and wrist [65]. The theoretical basis is that: if the EMG 

signals can be measured precisely and processed adequately to reflect the activation of each muscle 

crossing the joint and if the activation can be modulated properly by models, it is possible to 

accurately estimate individual muscle forces over a wide range of tasks and contraction modes. 

Buchanan, in [66], used a mixing method of forward and inverse dynamics to cross-validate the 

forward model. From more than 200 knee flexion/extension torque tests, he found that the 

calibrated EMG-driven model had a very good forecast, on average R2= 0.91 ± 0.04. In addition, if 

maintaining muscle - tendon parameters unchanged, and only allowing the EMG activation 

parameters' adjustment, the model can predict the joint angle in the test for two weeks without 

prediction losses. However, this model has some problems of offline tuning, large computation, 

time-consuming, and cannot guarantee real-time.  

Koo et al [2], noted that before EMG-driven model were used as a reliable tool to estimate muscle 

force, a supplementary verification test of different tasks and configurations must be completed. 

Koo firstly determine particular individual parameters for the musculotendon model (based on a 

series of nine elbow maximum isometric flexion locations: 0-120 °, in a step of 15 °). Then after the 

calibration, he used the same set of parameters and EMG signals as inputs to the model. By 

comparing the accuracy and consistency of the model, he predicted the effectiveness and versatility 

of the model during different dynamic sports activities. 

Koo in [2], proposed to test the model's performance by two indexes: the match of joint track and 

root mean square (RMS), and to show the model forecast accuracy is mission-dependent by 

univariate variance analysis. With the voluntary loading agreement of elbow flexion (Task 1), he 

used the linear envelope method to get a result with RMS = 13.71 ° ± 5.89 °. And with the voluntary 

unloading agreement of elbow extension (Task 2), the RMS=34.64°±7.79°. With the voluntary 

unloading agreement of elbow flexion (Task 1), the RMS=18.67°±8.49°. 

Cavallaro [67] established an EMG driven interface to control a 7 DOF upper limb exoskeleton. He 

proposed four performance indexes (maximum error, root mean square error, correlation coefficient, 

https://en.wikipedia.org/wiki/Root_mean_square
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the percentage of time of the absolute error below a specific threshold value) to assess the model 

predictive capabilities. He also established a functional relationship between the model task 

execution time (TET) and the number of modeling muscles. 

Shao [68] improved the model based on article [66]. He added the viscous resistance to the muscle 

contraction kinetics ( FVE = FMax × bm × v × cos φ ), and used the Parallel Simulate Anneal 

Arithmetic (SAA) as a tuning method. 

Sartori and Lloyd [69] presented two methods to achieve real-time modeling. One was the high 

stiffness tendon treatment, which reduced the computation time. The second one is the design of a 

new (data processing) method to reduce memory requirements. By using a two-dimensional cubic 

spline interpolation, instead of 4-dimensional musculotendon estimated value interpolation method, 

they relaxed the memory requirements. They run the model in real time by placing all the 

EMG-driven computing models under a common framework - SIMM.  

Lloyd in [57], found that the model has the ability to accurately predict the single cycle 

movement(average RMSE = 6.53 °). However, when there is more than one cycle of movement, a 

sharp decline appeared in the accuracy of the model (average RMSE = 22 °). This is because the 

EMG signal has a low reproducibility; the same movement can be generated by a different mode of 

EMG signals. This means a same tuning model may not work to suit all EMG input mode. 

Currently, some research results are summarized in Appendix I. It summaries six group of 

EMG-based interface systems, including their mechanical structure, number of muscles, signal filter, 

modeling details and tuning methods. 

2.4 Challenges 

From the relevant literatures, a great improvement can be seen in the interface development in recent 

years. However, there are still some gaps between the experimental environment and practical 

applications. Currently, the challenges of this area are mainly shown in the five following parts: 

2.4.1 Quality of Signal Processing 

EMG has non-stationary nature in physiological characteristics. How to effectively process EMG 

signals, extract the appropriate feature and eliminate as much noise as possible, all greatly impacts 

the properties of human-robot interface. Currently, the filtering techniques includes time-domain 
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(such as mean value, root mean square value RMSE), frequency domain (such as median 

frequency), and time-frequency domain (such as wavelet transform). 

The advantage of the time-domain method is computationally simple. The disadvantage is the poor 

stability of identification, since its character changes greatly when the muscle contraction changes. 

However, it has been widely used, because of its simple character. Currently, the mature prosthetic 

hand is controlled by the time domain features. The time domain features include: the integral of 

absolute value (IVA), zero crossing (ZC), variance (VAR), histogram of EMG (HEMG), integrated 

EMG value (iEMG), and root mean square error (RMSE). 

The advantage of the frequency domain method is that, the description of EMG in the frequency 

domain is relatively stable which conducive to the subsequent EMG pattern recognition. The 

disadvantage is that the traditional Fourier transform can only characterize the overall frequency 

characteristics of the signal, but there is no time-resolved feature. So it can only be applied to the 

stationary signal analysis. The commonly used frequency domain characteristics are: mean power 

frequency (MPF), media frequency (MF), power spectrum, and so on. 

The method of time-frequency domain can provide the information of both time domain and 

frequency domain. It has been paid more and more attention in the non-stationary signal analysis. 

Commonly used time-frequency methods include short-time Fourier transform, wavelet transform, 

Wigner-Ville transform and Choi-Williams transformation. 

Since EMG signal is the sole or principal information source of the interface input, an effective 

signal processing method should be developed to improve the quality of interface input. Apart from 

optimizing the EMG acquisition process (the selection of electrodes and their positions) to reduce 

the noise, the signal processing method should also be improved, while ensuring the fast operation 

time of interface. This is the prerequisites for the performance of existing EMG-based interfaces. 

2.4.2 Contradictions between Running Time and Number of Muscles 

The contributions to the potential joint torque from muscles wrapped the entire join are different. 

Since the joint actions depend on the coordination between different muscles, for the human 

physiology-based interfaces, the more calculated muscles means a higher bionic precision. However, 

too many muscles also increase the complexity of interface computing. Thus, how to balance the 

contradictions between the number of muscles and interface running time, becomes another 

conditionality for existing interface research. How many muscle signals should be selected as the 

input of human-robot interface, is a worthy study problem.  
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Koo in [2], tested all the 7 muscles which wrap the entire elbow joint. The muscles include Biceps 

Brachii long head, Biceps Brachii short head, Brachioradialis, triceps brachii longus, Triceps 

Brachii   lateralis, Triceps Brachii medialis and Anconeus. He found that: for the flexion without 

load, the activation of BIC and BRD is quite small, and BRA contributes most to this flexion; for 

the flexion with load, other elbow flexor start working besides BRA. Koo also found that, the elbow 

smooth stretch relays on the cooperation of different flexor and extensor. Koo’s research did neither 

fully model the influence range between different muscles, nor accurately simulate in real-time. 

These may because of the unreliable nature of BRA EMG signal during extension. 

In [70], a function of muscle number and task execution time (TET) has been established, shown in 

Figure 2.6. The black solid line stands for average TET changing with different number of muscles, 

the dotted line and dash-dotted line represent the maximum and minimum TET. From the picture, 

the relationship between TET and number of muscles is non-linear. The different complexity results 

modeled by different muscles also have a non-linear relationship. 

There are still problems of choosing a suitable electrode. The size of electrode should be big enough 

to cover the whole muscle surface, however, that will lead to a crosstalk between adjacent muscles. 

Meanwhile, some muscles (such as brachialis) will be covered by others, and the surface EMG of 

these muscles may not able to be measured directly. The standard of maximum endurance of 

musculoskeletal function has been used to predict BRA’s function [31]. This technique can be beyond 

its current uses and may allow furthering reducing the number of required sEMG electrodes, thereby 

to achieve a satisfice torque prediction. In the future, a general method to analysis the contributions of 

related muscles to the joints movement will be established. 

 

Figure 2.6: The function of number of muscles and TET [70]. 
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2.4.3 Accuracy of Model 

At present, the predictive ability of the human-robot interfaces developed so far is limited. 

The RMSE of the model from Koo and Mak was 34.64 ± 7.79 ° in single elbow flexion, and 18.67 

± 8.49 ° in single extension [2]. Au and Kirsch, had a method to test both shoulder and elbow, but 

the movement RMSE was about 20 ° and the elbow RMSE was 19.6 ± 5.9 ° [3]. Artemiadis and 

Kyriakopoulos achieved a better result, the RMSE was from 1.76 ° to 9.0 ° with the limited of arm 

movement only in the horizontal planet [4]. The model from Paul [6, 71] had a lower average 

RMSE (from 4.18 ° to 10.1 °) in single cycle elbow motion, however, for multi-cycle motion 

(continuous cycle test), his model's accuracy had a sharp decline (RMSE from 15.98 ° -36.06 °). 

And there were more variability between different individuals. 

The problem of low accuracy of the interface is related to three aspects: a) the accuracy of the 

model itself, including all parts of EMG-driven model: signal processing, activation kinetics, 

muscle contraction dynamics, musculoskeletal geometry and kinematics. b) human-robot interface 

feedback mechanism. c) Online tuning algorithm. 

2.4.4 Parameters Tuning and Individual Differences 

According to the structure of the model, the calibration parameters can be divided into two kinds: 

the ones without physiological significance (such as gain or error factor) and the ones with 

physiological significance (such as muscle parameters, etc.).The accuracy of anatomical data 

greatly impacts the model’s accuracy.  

Currently, tuning of the model is mainly divided into two kinds: online and offline. The most popular 

tuning algorithms are Genetic algorithms (GA), Simulate Anneal Arithmetic (SAA), non-liner least 

square optimization, many calibration trials (manually) and Nelder-Mead simplex method. Different 

methods have been used to determine the calibration of parameters.  

1. Using a number of calibration tests. During the tests, operate several settled conditions, while 

maintaining the other conditions are constant, so that the contribution of individual muscles can 

be isolated [61, 72]. 

2. Using a group of calibration tests at the same time to determine a plurality of calibration 

parameters. During tests, use a nonlinear least squares optimization system to change parameters, 

until the difference between the measured and predicted net joint torque is minimum [59, 73-75]. 
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3. Use electrical stimulation to selectively activate specific muscles, in order to determine the 

parameters of this specific muscle [75, 76] 

Several of documents have highlighted the importance of parameters tuning, and the limitations of 

existing methods also increases the difficulty to achieve the goals. Offline tuning is large 

computation and time-consuming. It cannot guarantee real-time operation. In addition, one tuning 

model cannot work for all EMG input models. Similarly, the RMS has a huge difference with 

different tests of one subject, or with different subjects [6, 71]. When the tuning process 

successfully identifies a global (or close to its local) minimum value, during different input period, 

the result is a compromise in accuracy, in order to obtain the best overall error. 

2.4.5 Impact of Fatigue 

Practice has proved that, the EMG signal is significantly affected by fatigue [7]. The amplitude and 

spectral energy of EMG signals are closely related to the muscle fatigue. Petrofsky [8] studied the 

relationship between EMG and muscle temperature, muscle fatigue and muscle blood flow under 

conditions of muscle isovolumetric contraction. The results showed that blood flow has little effect 

on the EMG amplitude and frequency, and temperature and muscle fatigue lead the EMG to a 

reducing frequency and increasing amplitude. 

The main methods to assess fatigue are: The root mean square value (RMS), median frequency (MF) 

and mean power frequency (MPF). Moritani et al. [77] found that, under normal circumstances, the 

Fourier spectrum curve of EMG may occur in varying degrees to the left, caused by muscle fatigue. 

It leaded the MPF and MF (which reflect the spectral curves) to a corresponding decline. Park and 

Meek have tried to consider the issue of fatigue [78]. This process will mainly focus on a certain 

type of interface parameters in online tuning. It needs a feedback. 

2.5 Chapter Summary 

This chapter reviewed the input technology of human-robot interface, summarized the applications 

of EMG. It also recalled the previous studies of EMG-driven neuromuscular interfaces, including 

the ones used in different anatomical parts: for elbow, shoulder, knee, ankle, jaw, lower back and 

wrist. From the related literatures, EMG-based interface methods have been developed in recent 

years. But for now, this area is still facing a number of issues: the low quality of EMG, which used 

to determine the level of muscle activation; the low accuracy of model, especially the 
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musculoskeletal model is too simple; the unreasonable feedback mechanism, which lacks of a fast 

on-line tuning algorithm; too many model parameters, which lacks of comprehensive parameter 

sensitivity analysis and cannot solve the individual difference problem. These limits provide a basis 

for this thesis study. The in depth and detailed reviews are shown in the following chapters.
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 A Neuromusculoskeletal 

Model for the Elbow Joint 

 

This chapter develops an EMG-driven elbow physiological model, it describes the elbow flexion / 

extension movement in the sagittal plane. Upper limb is considered as two rigid body components 

(upper arm, forearm and hand). Elbow flexion / extension motion is modeled as a friction hinge 

joint while ulna rotates around the humerus. The axis of rotation is through the center of small head 

and pulley sulcus [79]. The elbow physiological model is combined of musculotendon dynamic 

model and musculoskeletal geometry model. The interface gains each muscle's muscle force by 

musculotendon model, the joint torque by musculoskeletal geometry model, and the joint angle and 

the angular velocity by kinematics model. This chapter also analyzes the 23 parameters of 

EMG-driven model, gives their ranges, to prepare for parameters sensitivity analysis of the model 

and parameter tuning. 

3.1 Background  

Human-robot interface, as a precise interaction platform between human and machine, should be 

able to quickly and accurately response, calculate, predict and feedback to the human actual 

movement. Human action is actually a process from a muscle making the appropriate contraction 

with nerve stimulation, to the promote bone and join making the corresponding movement. An 

effective interface model can be used to mimic this process. EMG signal, as a kind of 

electromyography generated during muscle contraction after nerve stimulation, can cover all of the 

information of muscle contraction. It can provides a reliable information source to the interface 

[80]. 

Song and Ge [81, 82] established an assumed function model by using statistical theory to reflect 

neuromuscular activity and obtain human motion parameters. Song and Ge used the Cosine tuning 

function based on periodic regression theory to describe the neuromuscular activation. In order to 
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estimate the elbow angle, an upper limb model was developed to clarify the relationship between 

the surface EMG (sEMG) readings and the direction of movement of the elbow in the horizontal 

plane. A genetic algorithm was used not only to tune the model parameters, but also to verify 

whether the triple cosine tuning function was sufficiently accurate to describe the muscle activity. 

Song and Ge also proposed the usage of fractal theory in analyzing sEMG signals. They analyzed 

system characteristics from the different levels of signal fractals, extracted the speed signal of limb 

movement and provided information for real-time control. Since EMG comes from a group of 

muscles, it is random and easily gets chaotic, so the accuracy of the elbow angle estimated by this 

model remains to be further improved. Also, the placement of electrodes and human skin conditions 

limit this model’s adaptability for different patients.  

In recent years, researchers attempted to use neural network methods to analyze human 

musculoskeletal function. Neural network-based models were used to build up a relationship 

between EMG signals and the correspondent kinematic data of human movement [83-86]. 

Compared with the original method of solving the inverse model, neural network-based models are 

much simpler, because they do not have complicated mathematical formula or time delays which 

are generated and associated by EMG. One neural network model can address multiple muscle 

activation models. For example, Heller established a single hidden layer neural network and  

reconstructed the EMG signals of semitendinosus and vastus medialis from the kinematic data [87]. 

Sepulveda developed an EMG model with joint features of two single hidden layer neural networks. 

The input of the model is the data for 16 muscles through normalized EMG values, and the output is 

the angle and torque of the hip, knee and ankle [84, 86]. The system was later improved for 

neuro-fuzzy control [85] and emotion-based interaction [88]. Another representative neural network 

model is Prentice’s model. It used a two-step rate frequency sinusoidal signal as input and the EMG 

of eight lower limb muscles as output. Later, the author upgraded the model’s input with 21 

kinematic parameters to describe the muscle activation [83, 89]. The common issue for neural 

network based models is that they need to collect a large amount of experimental data. Also, the 

effectiveness normally depends on the training process and is only applicable within the range of 

motion of the training samples. 

Since the structure of neuromusculoskeletal based model [90] is closer to the human physiology, 

this model is easier and more accurate in reflecting the human body's movement characteristics, 

which can achieve the intelligent control of interface. 

This chapter established an EMG-based nerve musculoskeletal model of human elbow joint for the 

upper limb, based on the actual physical structure of human body. This model is consisted by 



Chapter 3 A Neuromusculoskeletal Model for the Elbow Joint 

31 
 

several sub-modules: EMG signal processing, muscle activation calculation, musculotendon model, 

musculoskeletal model and kinematics model, shown in Figure 3.1. The EMG signals collected 

from human muscle firstly go to the signal processing model and activation kinetics model to gain 

the muscle activation, then, from musculotendon model, to gain the muscle force of each muscle, 

and to obtain the joint torque from musculoskeletal geometry model, finally to calculate the joint 

angle, angular velocity by kinematics model. Among these, the signal processing techniques, 

musculotendon model and kinematics model are very mature: The signal processing is mainly 

completed by linear envelope or nonlinear dynamics. The musculotendon model is mainly based on 

Hill model (which uses elastoplastic elements to simulate human muscle, tendon and joints, and 

uses the relationship of muscle length- force and speed-force to gain muscle force). The kinematic 

model is based on joint torque to seek motion acceleration and then gets the angular displacement 

by integration.  

Therefore, in the research of Neuromusculoskeletal Interface (NI), the musculoskeletal model is a 

major factor which restricted the accuracy and stability of the human-robot NI.  

 

 
Figure 3.1：Flowchart of EMG-based neuromuscular interface 
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3.2 Musculoskeletal Geometry Model 

In the current studies, there are two main methods to establish the musculoskeletal geometry model.  

The first method is to create a large '3D human musculoskeletal platform' by using the computed 

tomography (CT), magnetic resonance images (MRI) or cadaver colour cryosection (CCC) data, 

such as SIMM (MusculoGraphics, Inc.), Visual3-D (C-Motion, Inc.), and AnyBody (AnyBody 

Technology). These platforms modeled the surface of bone in accordance with the actual physical 

structure of human body, and lined the muscle origin and insertion point by a series of line segments 

as the muscle path. For example, Koo and Mak analyzed the human elbow flexion and extension 

movements by OpenSim, and successfully predicted the elbow trajectory with moderate loads [2]. 

Lloyd et al. used a 3D lower limb musculoskeletal model which was established by Delp and was 

extended by Buchanan [58, 91], to estimate and predict the ankle joint torque and muscle force [57]. 

Erdemir et al. analyzed prediction outcomes of three lower limb joints based on musculoskeletal 

platform [92]. Tang et al analyzed the walking motion based on a systemic 3D musculoskeletal 

model, and predicted the related muscle force [93]. The advantage of this kind of large-scale data 

platform model is in line with human physiological structure and to have high precision. However, 

since they have a large amount of calculation, they are poor in real-time as the human-robot 

interface. 

The other method is to represent the human joint by a single degree of freedom mechanical revolute, 

and bones and muscles by straight line segments. This kind of model is called 'simplified 

musculoskeletal model', such as the simplified elbow model in [5, 94-96] and lower limb knee 

model in [97]. Figure 3.2 was the simplified elbow musculoskeletal model and simplified BRD, 

BRA path by Murray [98]. JC was the hinge center. The muscular start point and the insertion point 

formed a straight line. ma was the moment arm. The advantages of this approach are fast calculation 

and real-time processing. However, the accuracy of the model is not good enough, since it is not 

close to the human actual physical structure. Also, this kind of model cannot calculate when the line 

of muscle force crosses the joint center. 
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For this reason, this chapter designed a new musculoskeletal model for the human-robot interface, 

to solve the problems of the existing models. This design took the complexity of the human muscle 

path into consideration, to make it not only close to the human physiology structure, but also ensure 

the simple processing requirements of this real-time interface. 

This chapter uses the human elbow motion as an example, and the human physiology and anatomy 

as the theoretical basis, establishes a musculoskeletal model by simplifying the biceps, triceps, 

humerus, radius and ulna. For the elbow flexion and extension movement, the elbow can be 

approximated as a single degree of freedom hinge joint. Since the wrist is stationary to the forearm 

for this movement, the palm and forearm can be simplified as a whole part. To ensure the 

uniqueness of elbow motion, the shoulder is set immobility, and the upper arm is held naturally 

saggy. The initial state of the model is: the arms drooping naturally and the palm facing the body 

side. At the initial state, the angle between the forearm and the extension cord of upper arm is the 

resting angle. 

According to the initial state, the coordinate system of elbow joint model is as follows: Set the 

sagittal plane as coordinate plane, the elbow center as the origin of coordinates, upper arm as the 

Y-axis, the angle between forearm and the extension cord of upper arm as joint angle d, and the 

elbow flexion corresponding to a positive displacement, shown in Figure 3.3. 

 
Figure 3.2：Simplified elbow model by Murray [98] 
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The musculoskeletal model is established in this coordinate system, shown in Figure 3.4, where A is 

the shoulder, E is the elbow, the straight line AE is the simplified humerus with defined length as 

Hum, EF is the simplified forearm (including the radius and ulna) and hand with a defined total 

length as LArm. For the elbow flexion and extension movements, biceps and triceps muscles 

contribute most, so this research only take these two muscle groups as research subjects. Based on 

the anatomical data, the muscle starting points of biceps and triceps are simplified to point A 

(shoulder), the attachment points on forearm are respectively B3 and T3, the distances between the 

attachment points and the elbow joint are respectively defined as Ubi and Utr. The insertion points 

on muscle path are respectively set as B2 and T2, which means the bicep is simplified into segment 

AB2 and B2B3, the triceps is simplified as segment AT2 and T2T3.  

The proportion constant of the two segments length of biceps muscle is defined as Kpbi, which 

means Kpbi =
AB2̅̅ ̅̅ ̅̅

B2B3̅̅ ̅̅ ̅̅ ̅
 . Also, the proportion constant of triceps path is defined as Kptr, so the Kptr =

AT2̅̅ ̅̅ ̅̅

T2T3̅̅ ̅̅ ̅̅ ̅
 . 

 
Figure 3.3: Coordinate system of elbow joint model 
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Based on the physiological properties of muscle, the assumptions of geometry model are as follows: 

1. Suppose point A (connecting humerus with muscle groups) is fixed, point B3 and T3 

(connecting the radius and ulna with muscle groups) are changing with individual differences. 

So the Ubi and Utr are individual differences tuning parameters. 

2. Suppose during muscles stretching process, the unit length of the muscle changes uniformly, 

which means the Kpbi and Kptr remain intact with the same test subject, and the changes in 

muscle force and muscle length are proportionally distributed by Kpbi and Kptr.  

3. Suppose the relative position of muscle path is remains unchanged ( α and α1  are 

unchanged), shown in Figure 3.5, which means the muscle path only contract during movement, 

 
Figure 3.4: Musculoskeletal model of elbow joint.   The blue lines are the muscle path, black lines are 

the skeleton, and dashed line is the moment arm of segmented muscles 
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not bent. 

 

The detailed calculation is as follows: 

Bicep is simplified into segment AB2 and B2B3, so the Biceps muscle length (Bilength Length) is 

calculated as: 

Bilength = AB2
̅̅ ̅̅ ̅ + B2B3

̅̅ ̅̅ ̅̅ ̅ (3.1) 

where: 

AB3
̅̅ ̅̅ ̅ = √Hum2 + Ubi

2 − 2 ∙ Hum ∙ Ubi ∙ cos(π − d) 
(3.2) 

 
Figure 3.5: Geometry of the musculoskeletal model 
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sin β = sin α ∙ Kpbi (3.3) 

B2B3
̅̅ ̅̅ ̅̅ ̅ =

AB3
̅̅ ̅̅ ̅ ∙ sin α

sin(π − α − β)
 

(3.4) 

AB2
̅̅ ̅̅ ̅ = Kpbi ∙ B2B3

̅̅ ̅̅ ̅̅ ̅ (3.5) 

The moment arms of biceps muscle (rAB2
 and rB2B3

):  

γ = sin−1(sin(π − d) ∙
Ubi

AB3
̅̅ ̅̅ ̅

) 
(3.6) 

rAB2
= sin(γ + α) ∙ Hum (3.7) 

rB2B3
= sin(d − γ + β) ∙ Ubi (3.8) 

Therefore, the total moment of biceps (Mbi) can be summed by the moment of each separate 

sections: 

Mbi = MAB2
+ MB2B3

= Fbi ∙
1

Kpbi + 1
∙ (Kpbi ∙ rAB2

+ rB2B3) 
(3.9) 

Similarly, for the triceps muscle length (Trlength): 

Trlength = AT2
̅̅ ̅̅ ̅ + T2T3

̅̅ ̅̅ ̅̅  (3.10) 

where: 

AT3
̅̅ ̅̅ ̅ = √Hum2 + Utr

2 − 2 ∙ Hum ∙ Utr ∙ cos d 
(3.11) 

sin β1 = sin α1 ∙ Kptr (3.12) 

T2T3
̅̅ ̅̅ ̅̅ =

AT3
̅̅ ̅̅ ̅ ∙ sin α1

sin(π − α1 − β1)
 

(3.13) 

AT2
̅̅ ̅̅ ̅ = Kptr ∙ T2T3

̅̅ ̅̅ ̅̅  (3.14) 

The moment arms of triceps muscle (rAT2
 and rT2T3

):  
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γ1 = sin−1(sin d ∙
Utr

AT3
̅̅ ̅̅ ̅

) 
(3.15) 

rAT2
= sin(γ1 + α1) ∙ Hum (3.16) 

rT2T3
= sin(d + γ1 − β1) ∙ Utr (3.17) 

Therefore, the total moment of triceps (Mtr) is as follow: 

Mtr = Ftr ∙
1

Kptr + 1
∙ (Kptr ∙ rAT2

+ rT2T3
) 

(3.18) 

Discussions of this model: 

The establishment of this new musculoskeletal model provides a new idea for the muscles path 

simplification of real-time neuromuscular interface. One or several insertion points can be selected 

in the muscle path to form the polyline segments muscle path instead of the traditional straight line 

path. While ensuring the geometry relationship of the same muscle but different segments 

unchanged, (e.g. the geometry of triangle AB2B3  is unchanged), and ensuring the stretching 

proportion the same (e.g. Kpbi), the model can calculate the sub-force, sub-moment arm and 

sub-moment of each muscle segment to thereby obtain the total joint moment. 

Compared with the traditional single muscle line model, this multi-segment model has the 

following advantages: With the ensuring of operation speed, multi-segment model is closer to the 

actual human physical structure. When the joint angle d=0°, the muscle path of single line model 

crosses the joint center, which leads the joint torque equal to 0. This multi-segment model can easily 

solve the 'passing body' issues and expand the calculation of joint angle range to [-5 ~ 130 °], which 

is more consistent with the human actual joint angle range. Also, this simplification has a more 

accurate result (shown in Section 4.2.4). 

3.3 Musculotendon Model 

Since muscles, tendons and joints combine into a mechanical redundancy system, muscle force 

cannot be uniquely determined. In order to forecast or measure the muscle force during motion, a 

physiological musculotendon model needs to be developed. In recent years, the most representative 

of musculotendon models are based on the traditional Hill model, Huxley model and rheological 



Chapter 3 A Neuromusculoskeletal Model for the Elbow Joint 

39 
 

model. 

In 1938, Hill first proposed the three-element muscle model: a non-linear contractile element 

arranged in series with a linear elastic elements, then paralleled an elastic element. It assumes that the 

contractile elements are truly linear elastic when muscle is stationary and use the length changes to 

describe the change of muscle force and distribution between elastic and contractile elements[99].  

Even though many improvements have been made to adapt to newly discovered muscle structures, 

the Hill model still contains the limitation that its accuracy is based on a series of assumptions. 

Without these assumptions, it cannot correctly distribute the muscle force. Also, these models do not 

consider the factors of neural regulation which means the models cannot be directly used in dynamic 

situations. 

The Hill model contains muscle physical and mechanical properties. However, it still has some 

limitations. First the transformation from muscle activation to muscle force is not completely 

understood. Secondly, it is hard to determine muscle–tendon moment arms and the lines of action. 

There are lots of difficulties with measuring in cadavers, and even harder in a living person accurately. 

Finally, it is difficult to estimate joint moments, because it is prone to error to accurately obtain the 

estimates of force from each muscle, and there are seldom standards to verify whether the forces 

predicted are correct [91]. 

In 1957, Based on the anatomical structure and physiological contraction of muscles，Huxley 

proposed a cross-bridge kinetics model, also named as Huxley model, which was combined by 

cross-bridge and actin-binding [100]. This model expressed the constitutive model of muscle 

contraction and gave the relationship between tension and speed in microcosmic point. However, the 

Huxley model is a one-dimensional model and does not take the impact of neural networks into 

consideration. 

The muscle rheological model is a further development of the Huxley model. Different from the 

Huxley model, it considers the inherent flexibility of each muscle microfilament and uses nonlinear 

contraction (CE) instead of the cross-bridge. Also, the one-dimensional rheological model is similar 

to the Hill model, but it only describes the muscle movements within the scope of continuum 

mechanics and regards the whole muscle as a combination of a series of such rheological models. 

Through the way of contraction dynamics, the musculotendon model associates the muscle activation 

to the musculotendon force as a result. This block simulates muscle as an active tissue, models the 

interaction between the muscle fibers and the tendon, and considers the mechanical properties of the 

tendon tissue [101]. This chapter take the musculotendon model similar to the one's of Q. Shao [68], 
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shown in Figure 3.6. The muscle unit consists of a contractile force element (FCE), passive elastic 

force (FPE) and viscous force (FVE). 

 

Since the elbow tendon stiffness is quite high and the length is very short comparing to the muscles, 

the parameters of tendon can be settled as limited values or simplified as a spring [2, 66, 68, 70].  The 

total muscle force is the summary of muscle active contractile force (FCE), muscle passive force (FPE) 

and muscle Viscous force (FVE).  

F = FCE + FPE + FVE (3.19) 

Based on other researches, the active contractile force FCE relates to muscular activation a(t) , 

muscle force-length relationship fl, muscle force-velocity relationship fv and the maximum muscle 

force Fmax [66, 68, 70].  

FCE = R ∗ a(t) ∗ fl ∗ fv ∗ Fmax ∗ cos 𝜑    (3.20) 

where R is a subject-specific parameter, that is related to muscle size and strength, and φ is the 

pennation angle of the muscle. 

The muscle force-length relationship fl  and muscle force-velocity relationship fv [6] can be 

calculated as follow: 

f𝑙 = 1 − (
𝑙𝑛 − 1

0.5
)

2

         
(3.21) 

𝑤ℎ𝑒𝑟𝑒                                                                𝑙𝑛 =
𝑙

𝑙𝑜𝑝𝑡
 

(3.22) 

 
Figure 3.6: Musculotendon model [68] 
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f𝑣 =
0.1433

0.1074 + exp(−1.409 ∗ sinh(3.2 ∗ 𝑣𝑛 + 1.6))
           

(3.23) 

 𝑤ℎ𝑒𝑟𝑒                                                 𝑣𝑛 =
𝑣

0.5 ∗ 𝑣0 ∗ (𝐴 + 1)
 

(3.24) 

𝑙 is the current muscle length, 𝑙𝑜𝑝𝑡  is the optimum muscle length. 

The muscle passive force [66] 

FPE = FMax ∗
e10∗CPass(ln−1)

e5
∗ cos φ 

(3.25) 

where CPassis a parameter that allows adjustment to suit subject specific passive elastic properties. 

The muscle Viscous force FVE is given by [68]: 

FVE = FMax ∗ B ∗ vn ∗ cos φ (3.26) 

where B is the damping coefficient for the viscosity. 

3.4 Kinematic Model 

Once the force of each muscle group is calculated, these forces are applied to determine the entire 

joint torques. If there are some external loads or intersegment dynamics or gravitational forces 

contributed to the moments, all of these must be summed to calculate the total joint moment [66]. The 

movement caused by joint moments can be computed by basic dynamics (i.e., Lagrangean or Eulerian 

dynamics). Also, the equations depend on the number of joints and the number of degrees of freedom 

at each joint [66]. 

This method is widely accredited nowadays; however it still has some limitations. Once the joint 

movement is beyond a simple single-joint one, the equations can become very complex. Also, in 

order to solve these equations, inertial parameters must be estimated for each of the moving body 

segments [66]. 

The damping moment of elbow motion can be calculated as follow:  

MP = −βω (3.27) 
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where β is the damping coefficient of elbow. ω is the angular velocity of the forearm. 

The moment caused by forearm and hand gravity can be calculated as follow:  

Mw = −m ∙ g ∙
1

2
LArm ∙ sin d 

(3.28) 

where m is the mass of the forearm and hand, g is the gravitational constant，LArm is the forearm 

length from elbow joint centre to the ending point。 

The total moment of elbow joint is: 

MTot = KBi ∗ Mbi − KTr ∗ Mtr + MP − MW + ML + O (3.29) 

where the subscript Bi and Tr stands for biceps and triceps, KBi  and KTr  are the constant 

representing the error in musculoskeletal model, O is the moment compensation constant. ML is 

the external load moment. ML = 0, when there is no external load. 

For each time step, the angular displacement and angular velocity can be obtained using the 

following equations: 

d(t + ∆t) = d(t) + ω(t) ∙ ∆t +
MTot

2I
∙ ∆t2 

(3.30) 

ω(t + ∆t) = ω(t) +
MTot

I
∙ ∆t 

(3.31) 

where d(t) is the angular displacement, ω(t) is the angular velocity, I is the inertia moment of the 

forearm and hand, ∆t is the sampling period. 

3.5 Preliminary Verification of the Neuromuscular Elbow 

Interface 

In order to verify the elbow physiological model developed in this chapter, a simple elbow 

neuromuscular interface has been used in this section to drive an 1-DOF elbow robot [102]. This 

1-DOF interface hardware was developed by Pau and Chen [102] and this thesis connect it to the 

neuromuscular model in this chapter for the elbow model verification. This verification can also 

help to evaluate the feasibility of neuromuscular interface and the ability of elbow physiological 
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model. 

3.5.1 A Prototype of Elbow Neuromuscular Interface 

The interface was consisted by a printed circuit board (PCB) (includes EMG leads for signal 

acquisition, amplification and analogue filtering), a STM32F4 Discovery development board (for 

EMG signal processing, forearm displacement calculation and motor control), and a single DOF joint 

(with attached motor and rotary encoder for position feedback). 

1. Analogue Signal Filtering  

The signal acquisition and filter circuits were settled on a PCB by using a standard operational 

amplifier. Two identical circuits with the same ground were used for the biceps and triceps muscles. 

The raw EMG signal acquisition and filtering occurs in five stages (Figure 3.7), which are the signal 

amplifier, high pass filter, precision rectifier, low pass filter and the finial amplifier. This PBC board 

contains all the components to perform the five steps. 

 

2. Microcontroller Implementation 

After the EMG signal was filtered at 1200Hz, an STM32F4 Discovery board (STMicroelectronics, 

Switzerland) was used to acquire and process the signal, in order to calculate the forearm movement 

angle. The hardware system is shown in Figure 3.8. The elbow physiological model was converted 

from the Simulink into embedded C to implement on the microcontroller board. The output is an 

analogue voltage signal of the predicted displacement from the physiological model. A LCD and 

several push buttons allow the users to easily view and adjust the model parameters.  

 
Figure 3.7: Stages in hardware to create a linear envelope from raw EMG signals [102].  
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3. A SDOF Elbow Joint 

A simple single degree of freedom (SDOF) was used to represent the elbow joint and rapid 

prototyped using a 3D printer, shown in Figure 3.9. Its joint is actuated by a 25V DC motor (driven 

by a LSC30/2 motor driver from Maxon, Switzerland). The forearm component rotates while the 

upper arm was fixed as a base. A rotary potentiometer with a closed loop control system was used to 

keep tracking the rotation joint. The joint can move over a -20°to 150°. A proportional controller 

was put in the prototypes to manage the feedback data from the potentiometer, and to adjust the 

input of motor driver based on the reference signal from neuromuscular model. The flowchart is 

shown in Figure 3.10. EMG signal was firstly detected and filtered as the input of the 

neuromuscular interface. With the calculation of musculotendon model, musculoskeletal model and 

kinematic model, the interface predicted the joint angle. Then the angle was compared with the 

measured position from rotary potentiometer. Finally, the compared result was used to control the 

SDOF through a motor controller. 

 
Figure 3.8: The neuromuscular interface hardware system [102].  
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3.5.2 Preliminary Verification of Elbow Neuromuscular Interface 

 
Figure 3.9: Single degree of freedom representation of the elbow joint [102].  

 
Figure 3.10: Neuromuscular interface and single degree of freedom joint in a closed loop 

system. 
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Raw sEMG data from one subject was tested as the input for the preliminary verification. The 

sEMG signal was recorded with the g.USBamp, and the elbow joint position output from SDOF 

were compared with the measured angles from the Polaris system (In details in Section 4.2.1). 

Three types of movements for elbow flexion and extension were tested: a) A single cycle full range 

flexion-extension movement from nature position, b) continues multi cycles and full range 

movement from nature position, c) random movement from any position.  

The SDOF output results (which was also the interface predicted movement results) and the 

measured actual angle results are compared in Figure 3.11-3.13 (a). Also the absolute value of 

errors between them is shown in Figure 3.11-3.13 (b). Figure 3.11 is one of the results in single 

cycle elbow flexion and extension movement. It shows the changes of measured angle (red line) and 

predicted angle (blue line) during 7 second moving time. The root mean square error (RMSE) is 

13.3768. During a simple flexion and extension, the model is accurate in the beginning and end, but 

has a larger error in the wave peak (the elbow angle close to 135°). Figure 3.12 shows the result of 

continues cycle test, and its RMSE is 17.7737. During continues movement, the problems in model 

accuracy starts to appear. The main error still occur at the limit position (wave peaks). And in 

Figure 3.13, the elbow is in random motion. The trend of predicted movement can still follow the 

measured angle, however the accuracy is hard to be guaranteed. Its RMSE is 18.3193. 

By comparing all the results, it is clear that the model prediction is broadly in line with the 

movement trends. It means elbow interface and SDOF control system can approximately predict the 

subject’s movement. However, the accuracy of prediction is not good, especially in random 

movement. The main reasons for this deviation are because that the model parameters cannot 

perfectly match the collected sEMG and cannot catch up with the individual differences from 

different experiment subjects. In order to improve the model’s accuracy, the parameters need to be 

further analyzed and tuned to better fit the individual differences. 
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Figure 3.11: Preliminary result of elbow single cycle flexion and extension (a) predicted angle 

and measured angle of elbow joint (b) the absolute errors between them 

 

Figure 3.12: Preliminary result of elbow continues cycle flexion and extension (a) predicted 

angle and measured angle of elbow joint (b) the absolute errors between them 

  
(a)            (b) 

  
(a)            (b) 
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Figure 3.13: Preliminary result of elbow random movement (a) predicted angle and measured 

angle of elbow joint (b) the absolute errors between them 

3.6 Model Parameters 

The previous sections of this chapter have described the musculotendon model, musculoskeletal 

model, kinematic model of elbow joint and the periodical result. The models include a number of 

personalization parameters. They provide the deformability and adaptability of model to better fit 

the individual characteristics. Based on the structure of the model, the parameters can be divided 

into two kinds: the ones without physical significance (such as gain, error coefficient, etc.), and the 

ones with physiological significance (such as muscle parameters, etc.). The accuracy of anatomical 

data greatly impacts the accuracy of model. 

The EMG-driven model has 23 feature parameters. Table 3.1 lists the symbols, belonging models, 

their definitions and physiological ranges of these 23 parameters. The physiological ranges are either 

from direct anthropometry, or anatomy and physiology literatures. The most important model 

parameters include: optimum muscle length (lopt), tendon slack length (LTs), pennation angle (∅), 

maxi mum muscle force (Fmax) and the musculoskeletal parameters related to moment arm (MA). 

The accuracy of movement prediction is particularly sensitive to these parameters. 

The parameters about muscle force in Holzbaur's model [103] were obtained from test. The optimal 

fiber length was renormalized to an optimal sarcomere length of 2.2–2.8 μm. The optimal 

sarcomere length was consistency. Fmax is the product of physiological cross-sectional area (PCSA) 

and a particular stress. The PCSA of each muscle is the muscle mass divided by the generalized 

optimal fiber length. In Holzbaur's model, the specific tension 45N/cm2 was used on forearm and 

  
(a)            (b) 
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hand muscles, 140 N/cm2 was on elbow and shoulder muscles. The tendon slack length cannot be 

measured directly, its choice needs to match the operation length of the muscle, and the individual 

measurements of active and passive muscle moment. The selection of tendon slack length is related 

to the muscle tendon length from the estimates of cadavre research. Garner and Pandy [104] chose 

another method of determining the muscle parameters. They use optimization algorithms to select 

muscle parameters from the predefined physiological limit parameters. Although this approach may 

be effective, but it is also possible to lead unknown error into the all parameters of the system. 

Optimal fiber length, tendon slack length, and pennation angle can be measured from cadaver 

studies [91] . Among these three, the tendon slack length is the most difficult one to measure, but it 

can be unlimited approximated using a numerical method [105]. 

There are some inertial parameters of human body, such as the quality, centroid position and the 

rotation inertia of each body segment. They are the basic parameters of musculoskeletal 

biomechanics research. These parameters can be derived from statistical formulas. And the 

variables in these formulas are actually the physiological parameters, including age, gender, height 

and weight.  

Furthermore, the age-related model parameters includes: isometric strength, force-velocity relation, 

active force-length relation, passive force-length relation, activation dynamics, tendon stiffness and 

so on [106]. 

These parameters in the model need to be tuned to accommodate individual variations so that the 

interface can be used by different patients. The tuning process requires a defined objective function 

and a search algorithm to minimize the error. By using nonlinear optimization, Buchanan reduced 

the chances of converging to a local minimum [91]. Also, some researches, such as [97], provided 

experimental values and scope of muscle length and joint angles. Though, the more parameters have 

been used, the better adaptation between estimated and measured joint moments has been achieved. 

But too many parameters may not be good [66]. For example, some parameters have limited 

predictive abilities. By choosing too many this kind of parameters, the model will be ‘overfit’  

[107]. 

The Section 4.1 discusses the model parameter sensitivity analysis, which lays the foundation for 

parameter tuning. Section 7.2 describes the parameter tuning algorithm. 
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Table 3.1 The summary of all the tunable parameters in neuromusculoskeletal model. 

Belonging 

model 
Parameter Definition 

Physiologi

cal 

limitation 

Physiological range 

[68, 108-110] 
Unit 

Musculoten

don 

Dynamics 

Model 

 

Rbi, Rtr 
User-specific coefficient for 

muscle size 
Yes Specific by users — 

Loptbi,Lopttr Optimal fiber length Yes 0.15-0.35 m 

LTs Tendon slack length Yes 0.15-0.3 m 

trbi  ,
 

Pennation angle Yes 
 0bi

 12-9tr  

° 

Fmaxbi, Fmaxtr Maximum muscle force Yes 0.5-1.5 kN 

Bbi, Btr 
User-specific coefficient for 

viscosity 
Yes 0.05-0.15 Ns/m 

Cpassbi, Cpasstr 
User-specific coefficient for 

elasticity 
Yes 1~6 — 

Musculoske

letal 

Geometry 

Model 

Hum Length of humerus Yes From anthropometry m 

Ubi, Utr 
Muscle attachment distance to 

joint center 
Yes From anthropometry m 

Kinematics 

model 

 

Kbi, Ktr 
User-specific skeletal error 

coefficient 
None Specific by users — 

β Overall damping coefficient Yes β = 0.1 − 0.5 
Nms/ra

d 

O Moment compensation constant None 0-1 Nm 

dr Resting angle Yes 5-15° ° 

LArm Length of forearm Yes From anthropometry m 

m Mass of forearm and hand Yes From anthropometry kg 

Parameters in Table 3.1 are sorted by the model it owns. Wherein the subscript bi represents biceps, tr represents triceps. 

3.7 Chapter Summary 

This chapter has developed an EMG-driven physiological model of elbow joint, which includes the 
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Hill-type musculotendon model, a musculoskeletal geometry and a kinemics model to predict the 

elbow movement. In the previous simplified musculoskeletal geometry model of elbow, the muscle 

is simplified as a line from starting point to the attaching point. This leads to the following problems: 

First, the model's accuracy is poor, especially when the forearm moves randomly. Second, this 

model is not based on human actual physical structure, it cannot calculate the situation when muscle 

force lines cross the joint. This chapter designs a new musculoskeletal model, based on the 

anatomical data. It simplifies the biceps and triceps muscles to two-segments-polyline from muscle 

starting point, through insertion point, to the attachment point, and reasonable assumptions are built 

based on the physiological properties of muscle. This design solves the above problems of the prior 

models and still keep the advantage of real-time. 

EMG-driven model includes many personalized parameters. They provide a better deformability 

and adaptability of model to the individual characteristics. From a preliminary verification, based 

on the comparison results between a SDOF elbow joint output and measured actual joint angle, the 

feasibility of the model has been proved, but also, the gaps in model accuracy has shown as well. In 

order to improve the elbow model, the parameters need to be further analyzed and tuned. This chapter 

basically analyzes some of the main parameters and their determining methods, and details the 

ranges of 23 elbow physiological parameters. This lays the foundation to the sensitivity analysis of 

model parameters and the parameters tuning.
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 Feasibility Analysis and 

Validation of the Elbow Model 

 

Based on the preliminary test of the elbow neuromusculoskeletal model in Chapter 3, there are 

some urgent requirments for tuning the model parameters to improve the model accuracy and to 

adapt to individuals. Before that, a sensitivity analysis must be completed in order to reduce the 

number of parameters used in the tuning. This chapter establishes a new sensitivity analysis method 

of model parameters. Based on the analysis results, all the parameters have been grouped for further 

treatment. This chapter also describes the method of EMG signal processing, which is to extract the 

muscle activation by linear envelope and nonlinear dynamics. By designing multi subjects and multi 

movement’s experiments for elbow joint, the elbow neuromusculoskeletal model and proposed 

signal processing methods are further and fully validated. 

4.1 Parameter Sensitivity 

4.1.1 Background  

Chapter 3 has introduced an EMG-based physiological musculoskeletal model for elbow joint. In 

this model, there are lots of parameters whose values are mainly from anatomical experiments or 

literatures. These parameters are listed in Table 3.1. Since the impact of these parameters to the 

model is not clear and their values directly affect the accuracy of prediction result, therefore, a 

parameter tuning model needs to be established to ensure the reliability of the model and 

adaptability to specific individuals. In order to reduce the number of online tuning parameters and 

ensure the real-time property of the system, a sensitivity experiment is set up in this section to 

evaluate the parameters sensitivity to the model. 

In the current publications, parameter sensitivity studies to neuromuscular model were limited, 

especially for the number of analyzed parameters was quite few. The existing literatures were mainly 
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focusing on the impact of general musculotendon parameters sensitivity [111-114] to model, but lack 

of the impact of muscle-skeleton parameters. Secondly, most of the existing researches were based on 

human lower limb model and its parameters [111-113]. For example, Scovil and Ronsky analyzed the 

muscle force in human running and walking and motion simulation [111]. Groote et al. assessed five 

main parameters sensitivity to Hill model in gait dynamic simulations [112]. Redl et al. only studied 

three muscle parameters sensitivity: optimal muscle-fiber length, muscle physiological 

cross-sectional area (PCSA), and tendon rest length [113]. Garner and Pandy also estimated three 

muscle parameters of upper limb：peak isometric force, optimal muscle-fiber length, and tendon slack 

length [114].  

For the assessment methods, an earlier and standardized sensitivity analysis method has been 

employed [115-117]. It defined that the sensitivity was the normalized output change divided by 

normalized parameter change. However, the method could only be used in evaluating individual 

output, not in multi-outputs (such as running and walking) [111]. Another method was to calculate the 

partial derivative of the muscle equations with respect to each model parameter [115, 118]. This 

method could provide a continuous state over time and parameter change, but it required the 

calculation formula to be simple and well known, so it could not suit the complex human 

physiological model or a large number of numerical solution [111]. To date, some new sensitivity 

assessment methods are gradually applied, such as static optimization [113], summed 

cross-sensitivity [113], local and global assessment method [119], and so on. However, these methods 

were not commonly used in bio-complex structure, and did not meet the individual adaptive needs of 

interface model. Therefore using one single assessment method may easily cause the one-sidedness 

of parameter analysis and incomplete understand of parameter properties. 

Disagreements also existed between the sensitivity results of different studies. Such as the 

compliance parameter sensitivity to Hill model in the series elastic unit and the maximum muscle 

force sensitivity to simulation result had arguments in literatures [111, 120-122]. Such sensitivity 

variation may be due to the usage of different models, or different movement [111], or the subjects' 

individual characteristics (like age or muscle active level) [113]. In this case, besides the sensitivity 

level (high or low) analysis, parameter properties (individual difference or action difference) are also 

need to be classified, to achieve a comprehensive understanding of the model parameters 

Based on the limitations of current researches and the variability in reported sensitivity results, This 

thesis improved the standard sensitivity assessment method by Lehman and Stark [115], and built a 

new three-step layered approach  to assess 19 parameters sensitivity to the neuromusculoskeletal 

model in elbow flexion and extension simulation. 
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4.1.2 Experimental Setup for Sensitivity Analysis 

Six subjects (3 male and 3 female) were chosen to join this experiment. They were asked to achieve 

three kinds of elbow joint motion. Each motion needed to be repeated five times. Then the EMG 

signals of biceps and triceps and the joint actual movement angles were recorded. The detailed trial is 

explained as follow: 

 Single cycle fully flexion and extension: The subjects were asked to fully flex and extend his arm 

with a natural speed from a relaxing position. 

 Continuous cycle fully flexion and extension: The continuous cycle test required the subjects to 

keep fully flexing and extending with a natural speed for 20 seconds. 

 Variable motion: The variable motion test required the subjects to flex and extend continuously in 

different ranges and speed. The movement continued about 20 seconds. 

4.1.3 Sensitivity Analysis Method 

The sensitivity analysis has two main purposes: First, to determine which parameters affect the 

accuracy of model prediction; the second is to analyze whether these parameters sensitivities are 

affected by different individuals or different actions. To achieve these two objectives, we designed a 

three-step layered approach. The first step is to determine the sensitivity level of each parameter to 

the model by offline and none signal quantification calculation. The second step is to use the same 

subject but different motions to compare the differences in model's prediction result. This step can 

analyze the action difference of parameters. The third step is to change the subjects (with different age, 

gender and muscle activity) to compare the individual difference of parameters. 

1.Non-Signal Quantization Layer (NSQL) 

This is a preliminary layer for model parameters. The model runs without human EMG data and 

the normalized muscle activation is fixed as a constant value (0.05) to compare the differences in 

prediction results (Figure 4.1 (A)). The sensitivity rate is calculated in Equation (4.1): 

SnonP =
(DPn+1

− DPn
)/DPn

(Pn+1 − Pn)/Pn
 

(4.1) 

Where Pn is the n-th (from small to big) value of parameter P in its biological range. DPn
is the 

predicted angle output of the model when parameter P gets to Pn. SnonP is the sensitivity rate 
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when parameter P changes, and it is the proportional change in normalized output divided by 

normalized parameter and it represents the effect of this parameter sensitivity to the model. 

2. Action Difference Analysis (ADA) 

On the basis of NSQL, 19 tunable parameters are analyzed through action prediction test (Figure 

4.1 (B)). By inputting a subject's EMG signal from three experiments to the model, the RMSE 

(root-mean-square error) between predicted joint angle and actual joint angle is recorded with the 

changes of parameter. Also, the sensitivity rate is used as a quantified comparison of this RMSE 

change. The calculation is in Equation (4.2) and (4.3): 

RMS = √
1

j
∑(Dpred − Dactu)2

1

j

 

(4.2) 

SmovP =
(RMSPn+1

− RMSPn
)/RMSPn

(Pn+1 − Pn)/Pn
 

(4.3) 

where Dpred and Dactu are the predicted and actual measured angle sequence, RMS stands for 

the root mean square, j is the number of sample angles, and SmovP is the sensitivity ratio of 

parameter P. 

3. Individual Difference Analysis (IDA) 

Some individual parameters have great impact on model's output only when changing the subject, 

but have lower sensitivity with the same subject doing different movements. These parameters 

only need to be measured or offline tuned before the test start or replace interface users. This can 

not only guarantee the model suitability for individuals, but also reduce the number of real-time 

tuning parameters. In order to separate the individual parameters, a sensitivity test is done as 

follow: input the EMG signals of 'continuous cycle movements' from subjects A, B and C; then 

change the value of adjustable parameters (within the physiology range) and calculate the 

differences in RMS (by the same flowchart in Figure.4.1 (B).); finally, count the sensitivity rate 

of parameters by Equation (4.4). 

SindAP =
(RMSAP n+1

− RMSAPn
)/RMSAPn

(PAn+1 − PAn)/PAn
 

(4.4) 

where the subscript A represent the individual subject A. 
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Figure 4.1: Model sensitivity evaluation methods. (A) With settled muscle activation (NSQL). 

(B) Movement simulation which include ADA and IDA 

4.1.4 Sensitivity Analysis Results 

The elbow physiological model has been programmed by Simulink (Matlab), to obtain predicted 

joint angle. In the sensitivity analysis, the output value of the original model should be firstly 

determined. Then, the specified parameter is adjusted. The model runs two time steps to get the 

result with new parameter after change. Based on the method in Section 4.1.3, 19 tunable 

parameters (listed in Table 4.1), which are the most impact ones to the model, are analyzed. The 

results are as follows: 

The first step of sensitivity analysis (with given activation) excludes the impact of activation degree 

to the predicted results, so as to make the change of model parameters as the only factor in results 

changing. Parameters, according to their sensitivity rates, have been divided into 

high level (SnonP > 1), low level (1 > SnonP > 0.1), and extremely low level (SnonP < 0.1). The 

sensitivity rates of the 19 tunable parameters are shown in Table 4.1. From the result, we could see 

the Loptbi, Hum, Kbi, Lopttr, and so on are the most sensitive parameters, and Cpasstr, and Btr 

are the least sensitive ones. 

Given activation 
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Model Calculate the P 

sensitivity rate 

Model 
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Predicted joint angle 

Predicted joint angle 

Parameter P 

Model 

 

Model 
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Table 4.1 Sensitivity rates and layer of 19 tunable parameters 

Parameters Range in trials 
Sensitivity 

rates 
Sensitivity layer 

Loptbi 0.15-0.35 16.0453 

High（8） 

Hum 0.2-0.28 6.1995 

Kbi 0.1-1.9 4.3958 

Lopttr 0.25-0.35 3.4768 

Cpassbi 1-3 2.9388 

Ubi 0.03-0.08 1.9900 

Rbi 1-3 1.2270 

Fmaxbi 1000-1500 1.1348 

m 1-3 0.8839 

Low（9） 

Rtr 1-3 0.7369 

Ktr 0.1-1.9 0.7182 

LArm 0.3-0.5 0.6315 

Utr 0.02-0.06 0.4050 

β 0.1-0.5 0.3157 

O 0-1 0.2174 

Fmaxtr 1000-1500 0.1699 

Bbi 0.05-0.15 0.1403 

Cpasstr 1-3 0.0795 
Extremely low（2） 

Btr 0.05-0.15 0.0440 

The parameters listing order in Table 4.1-4.4 is based on the descending order of their off-line sensitivity rates. 

Changes in the model prediction result caused by parameters from different sensitivity layer are 

shown in Figure 4.2. Figure 4.2 (A) is the changes of predicted angle during a single cycle elbow 

flexion and extension movement. With different value of Loptbi, the angle wave change is obvious, 

which means the Loptbi is a high sensitivity parameter. Figure 4.2 (B) is the angle change with 

different value of Utr. As Utr is a low sensitive parameter, the angle wave does not change much. From 

the Figure we could visually see the different effect of different parameters on model properties. 
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Figure 4.2: Single cycle flexion and extension movement angle with different parameter value. 

(A) The predict result with high sensitive parameter 𝐋𝐨𝐩𝐭𝐭𝐫. (B) The result with low sensitive 

parameter 𝐔𝐭𝐫 

Table 4.2 shows the results of Action Difference Analysis (ADA). For comparison purposes, all the 

values of sensitivity rate are normalized between 0-1. The sensitivity rates of Lopttr, Rbi, Bbi, 

Cpasstr and  Btr change a lot in all kinds of movements, which shows that they are significant 

Action Difference Parameters. The sensitivity rates of some other parameters, such as Fmaxbi, LArm, 

Utr, β,   Fmaxtr have a mutation only for some special movement, so they do not belong to Action 

Difference Parameters, they still need to be taken more care of during tuning. 

(A) 

(B) 
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Table 4.2 Sensitivity rates of 19 tunable parameters in different actions 

Parameters 
Settled 

activation 

Single cycle 

fully flexion 

and extension 

Continuous 

cycle fully 

flexion and 

extension 

Variable 

motion 

Loptbi 0.8023 0.8226 0.8957 0.8213 

Hum 0.3100 0.7994 0.7734 0.7147 

Kbi 0.2198 0.1467 0.0864 0.0682 

Lopttr * 0.1738 0.9028 0.0256 0.0026 

Cpassbi 0.1469 0.1620 0.1862 0.2320 

Ubi 0.0995 0.3068 0.2080 0.1780 

Rbi * 0.0614 0.1274 0.0084 0.0013 

Fmaxbi 0.0567 0.1527 0.0867 0.0676 

m 0.0442 0.1420 0.0906 0.0788 

Rtr 0.0368 0.0140 0.0444 0.0333 

Ktr 0.0359 0.0250 0.0490 0.0321 

LArm 0.0316 0.1465 0.0906 0.0780 

Utr 0.0203 0.1060 0.0077 0.0041 

β 0.0158 0.0202 0.0160 0.0043 

O 0.0109 0.0304 0.0346 0.0359 

Fmaxtr 0.0085 0.0271 0.0075 0.0043 

Bbi * 0.0070 0.0201 0.0009 0.0005 

Cpasstr * 0.0040 0.0701 0.0003 0.0004 

Btr * 0.0022 0.0001 0.0014 0.0005 

The parameters with * in the table are the ones with large variation in different actions. 

 

Through the third step (IDA), the sensitivity rates of each parameter to different subjects are listed in 

Table 4.3. In general, Hum, Lopttr, Cpassbi , Fmaxbi , Utr, Fmaxtr and Cpasstr  are the Individual 

Difference Parameters.  
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Table 4.3 Sensitivity rates of 19 tunable parameters in different subjects 

Parameters Subject A Subject B Subject C 

Loptbi 0.8710 0.8438 0.8518 

Hum * 0.8464 0.7057 0.6882 

Kbi 0.1553 0.1411 0.2202 

Lopttr * 0.9559 0.4970 0.4970 

Cpassbi * 0.1715 0.1179 0.0990 

Ubi 0.3249 0.2239 0.2211 

Rbi 0.1349 0.0931 0.1461 

Fmaxbi * 0.1616 0.1410 0.2127 

m 0.1503 0.1418 0.1956 

Rtr 0.0149 0.0183 0.0645 

Ktr 0.0265 0.0175 0.0626 

LArm 0.1551 0.1428 0.1890 

Utr * 0.1122 0.0363 0.0181 

β 0.0213 0.0395 0.0277 

O 0.0322 0.0239 0.0503 

Fmaxtr * 0.0287 0.0051 0.0160 

Bbi 0.0213 0.0380 0.0072 

Cpasstr * 0.0743 0.0163 0.0013 

Btr 0.0001 0.0003 0.0003 

The parameters with * are the ones with large variation in different subjects. 

 

4.1.5 Discussion 

Based on the results of above three steps of analysis, the parameters can be analyzed as follows:  

Optimal fiber length 𝐋𝐨𝐩𝐭𝐛𝐢 and 𝐋𝐨𝐩𝐭𝐭𝐫 

These two parameters have shown high sensitivity in all the above tests. It is the similar result with 

the conclusion by [111, 122, 123]. The sensitivity rate of  Loptbi was the highest one in offline test 

and two action tests. Also, it stayed in high level during a wide range of  Loptbi. in Figure 4.3 (a-c). 

The sensitivity of Lopttr showed a large variations (0.1738, 0.9028, 0.0256, 0.0026) in ADA, which 
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certifies Lopttr as an Action Difference Parameter. At the same time, in IDA test, it still showed a 

large change of sensitivity (0.9559, 0.4970, 0.4970), which means  Lopttr is also an Individual 

Difference Parameter. Based on Figure 4.4 (a-c), it only had a larger mutations in the start, but the 

sensitivity had gradually leveled off followed by the progress of action. 

 

Figure 4.3: The sensitivity of Loptbi  

(a) The sensitivity of Loptbi during NSQL test，it changed over time (corresponding joint Angle） and the physiological 

range of parameter. (b) The sensitivity of Loptbi during 'Continuous cycle' movement test over the change of parameter. 

The peak was 8.9568 (without normalization)/ 0.8957 (with normalization). (c) The sensitivity of Loptbi during ' 

Variable motion' test. The peak was 6.5702 (without normalization)/ 0.8213 (with normalization). 

 

Figure 4.4: The sensitivity of Lopttr  

(a) The sensitivity of Lopttr with settled activation in NSQL test (b) The sensitivity of Lopttr from subject A. The peak 

was 81.2507 (without normalization)/ 0.9559 (with normalization). (c) The sensitivity of Lopttr from subject C. The 

peak was 17.3938 (without normalization)/ 0.4970 (with normalization). 

Length of humerus Hum 

In the NSQL test, it belonged to high sensitivity parameter (Figure 4.5 (a)), and showed a large 

differences (0.8464, 0.7057, 0.6882) in IDA test (Figure 4.5 (b) and (c)), whereas in the case of 

different action from the same subject, sensitivity changed was small. Based on this, we conclude that 

Hum is an Individual Difference Parameter. This result is consistent with the physiological 

 
(a)        (b)        (c) 

 
 (a)        (b)       (c) 
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significance. Although this parameter cannot be directly actually measured, but it can be estimated 

from the length of subject's upper arm by anthropometry method. 

 

Figure 4.5: The sensitivity of Hum  
(a) The sensitivity of Hum in NSQL test. (b) The sensitivity of Hum from subject C. The peak was 24.6985 (without 

normalization)/ 0.7057 (with normalization). (c) The sensitivity of Hum from subject B. The peak was 12.3869 (without 

normalization)/ 0.6882 (with normalization). 

 

User-specific elasticity coefficient 𝐂𝐩𝐚𝐬𝐬𝐛𝐢 and 𝐂𝐩𝐚𝐬𝐬𝐭𝐫 

Cpassbi had a high sensitivity in NSQL test, and a large difference in IDA test (Figure 4.6 (a-c)). It shows 

that Cpassbi, as an Individual Difference Parameter, is easily influenced by different subjects. For 

Cpasstr, even though it had both of the Action Difference (0.0040, 0.0701, 0.0003, 0.0004) and 

Individual Difference (0.0743, 0.0163, 0.0013), but since its sensitivity rates in all cases were quite 

low (less than 0.1), which means the effect on model result was small. This parameter does not need 

any tuning process. 

 

Figure 4.6: The sensitivity of Cpassbi  

(a) The sensitivity of Cpassbi in NSQL test. (b) The sensitivity of Cpassbi from subject A. The peak was 14.5767 (without 

normalization)/ 0.1715 (with normalization). (c) The sensitivity of Cpassbi from subject C. The peak was 4.1259 

(without normalization)/ 0.1179 (with normalization). 

 
(a)       (b)       (c) 

 

 
(a)       (b)       (c) 
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Muscle attachment distance to joint center 𝐔𝐛𝐢, 𝐚𝐧𝐝 𝐔𝐭𝐫  

These two parameters cannot be directly measured inside human body, and the so called muscle 

group is just an assumed theory and non-existence in actual physiology. The sensitivity of  Ubi 

showed the differences in ADA or IDA test, but because of its high value in the whole process (Figure 

4.7) and all tests,  Ubi needs to be regarded as an online tuning parameter. 

In IDA test, Utr had a special performance. To some subjects, such as subject A, it produced a higher 

sensitivity effect. But to the other subject, its sensitivity was quite low (Figure 4.8). Therefore, 

sensitivity of these parameters needs to be re-tested when the subject changes. 

 

 

Figure 4.8: The sensitivity of Utr (a) The sensitivity of Utr in NSQL test. (b)The sensitivity of Utr from subject 

A. The peak was 9.5386 (without normalization)/ 0.1122 (with normalization). (c) The sensitivity of Utr from subject C. 

The peak was 1.2699 (without normalization)/ 0.0363 (with normalization). 

 

 
Figure 4.7: The changes of sensitivity of 𝐔𝐛𝐢 during NSQL test over time and parameter. 

 
(a)       (b)       (c) 
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User-specific coefficient of bicep muscle size 𝐑𝐛𝐢 

Its sensitivity rate showed no difference in IDA test, but a significant one in ADA test (0.0614, 0.1274, 

0.0084, and 0.0013). So it belongs to an Action Difference Parameter (in Figure 4.9 (a-c)). In other 

people's studies, this parameter was directly ignored in the muscle force process, in [2, 68]. Although 

Sartori et al. [69] proposed to consider the individual differences in muscle size and strength, but they 

did not analyze the value and performance of this parameter in their research. 

 

Figure 4.9: The sensitivity of Rbi (a) The sensitivity of Rbi in NSQL test. (b) The curve of Rbi during ' Single 

cycle' movement test. The peak was 11.4645 (without normalization)/ 0.1274 (with normalization).(c) The curve of Rbi 

during ' Continuous cycle ' movement test. The peak was 0.0841 (without normalization)/ 0.0084 (with normalization). 

 

Maximum muscle force of biceps 𝐅𝐦𝐚𝐱𝐛𝐢 

Maximum muscle force of biceps (Fmaxbi) is important, because it affects the muscles active and 

passive contraction strength. With the same subject but different actions, the changes of sensitivity 

were not obvious, but in IDA test, the sensitivity rate showed big differences (0.1616, 0.1410, 0.2127), 

so it belongs to the Individual Difference Parameter. As can be seen from Figure 4.10, during the 

entire simulation process, the sensitivity ratio kept in a high degree, indicating that it impacted a lot 

on the model's sensitivity. So the Fmaxbi requires an online real-time tuning. 

 
(a)       (b)       (c) 
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The other parameters 

The two parameters including the mass of forearm and hand (m) and the length of forearm (LArm), 

belong to human physiological parameters. The parameter m will affect the two physical variables: 

the torque generated by the gravity of forearm and hand, and the inertia of forearm. Since these two 

parameters did not show high sensitivity in the offline NSQL test (Figure 4.11), they only need to be 

measured by human biology method according to different individuals, before the model runs. For 

parameter Btr and Cpasstr, although they respectively belong to Action Difference and Individual 

Difference Parameters, but because of its low sensitivity in all tests, they do not require tuning. The 

remaining parameters are in low sensitivity and have little effect on the model, so they do not need to 

be considered tuning. 

 

Figure 4.11: (a) The sensitivity of 𝐦 in NSQL test. (b) The sensitivity of 𝐋𝐀𝐫𝐦 in NSQL test. 

 
Figure 4.10: The sensitivity of 𝐅𝐦𝐚𝐱𝐛𝐢 in NSQL test. 

  
(a)               (b) 
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Since the musculotendon model in this thesis is an upper limb model, which means the tendon length 

in upper limb muscle groups is much shorter than the muscle length, so the tendon can be simplified 

as a rigid body. Meanwhile, due to the pennation angle of upper limb muscle is quite small, this thesis 

has not taken the pennation angle ∅ into consideration. However, when the research comes to lower 

limb, especially about the muscles connected to knee joint, the impacts of tendon parameters cannot 

be ignored. For example, articles [111-113] all have analyzed the importance of tendon slack length. 

Based on the results above, the 19 tunable parameters' property, sensitivity layer and processing 

methods in tuning or optimization can be summed up in Table 4.4. 

Table 4.4 Property, layer and processing method of 19 tunable parameters 

Parameters Property Sensitivity 

layer 

Processing method 

Loptbi General parameter High Online tuning 

Hum Individual difference High 
Measurement and 

offline tuning 

Kbi General parameters High Online tuning 

Lopttr 
Individual difference and action 

specificity 
High 

Measurement and 

offline tuning 

Cpassbi Individual difference High 
Measurement and 

offline tuning 

Ubi General parameters High Online tuning 

Rbi Action specificity High Online tuning 

Fmaxbi Individual difference High 
Measurement and 

offline tuning 

m Individual difference High Measurement 

Rtr General parameters Low Constant 

Ktr General parameters Low Constant 

LArm Individual difference High Measurement 

Utr Individual difference Low 
New sensitivity test 

with subject change 

β General parameters Low Constant 

O General parameters Low Constant 

Fmaxtr Individual difference Low Offline tuning 

Bbi Action specificity Low Constant 

Cpasstr 
Individual difference and action 

specificity 
Low Constant 

Btr Action specificity Low Constant 

During the tests, the changing ranges of parameters in this thesis were their actual human 
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physiological ranges, rather than the perturbing range in the vicinity of the standard value in literature 

[111-113]. Such settings can fully exhibit the impacts on model parameters sensitivity of all the 

possibilities. 

4.2 The Elbow Physiological Model Validation 

This section describes the experimental setup for elbow movement, EMG signal processing and test 

results, to verify the elbow physiological model developed in Chapter 3. This test sets up multiple 

subjects, their movements including simple elbow flexion/extension to complex random motion. 

The performance of the new model is validated, with multiple individual data. Also, linear envelope 

and muscle activation dynamics are used to extract the muscle activation. The data in this section is 

based on the parameters sensitivity analysis in Section 4.1, and the GA offline parameters tuning. 

Section 7.2 in this thesis introduces two kinds of parameter tuning algorithm and designed an online 

tuning method. 

4.2.1 Experimental Setup for Model Validation 

4.2.1.1 Subjects 

6 subjects (3 males and 3 females, age 25±5) volunteered as subjects for this study. None of the 

subjects were experiencing upper limb disease. The males’ height was 175±5 cm, weight was 80±10 

kg. The females’ height and weight were 160±5cm and 55±5 kg. The study was approved by the  

University of Auckland Human Participants Ethics Committee (UAHPEC) and all participants 

provided informed consent. 

4.2.1.2 Apparatus 

The flowchart of experiment apparatus setup is shown in Figure 4.12. During subject’s movement, 

the surface EMG (sEMG) signals are collected from subject’s skin by electrodes, then the raw 

sEMG signals are transferred to the amplifier for the preliminary processing. At the same time, the 

Spherical arm rig moves with the subject’s arm, and the Polaris Spectra motion capture can record the 

rig’s moving angle in order to record the actual elbow joint motion. After the signals from amplifier 

are transferred into the models in computer, the model will calculate and predict the joint angle. 

Finally, the predicted movement can be compared with the actual movement in Matlab software. 

http://www.auckland.ac.nz/uoa/site/central/re-uahpec
http://www.auckland.ac.nz/uoa/site/central/re-uahpec
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Signal Acquisition System 

The muscle sEMG was recorded by disposable Red Dot Monitoring electrodes (3M, USA), and they 

a) Electrodes 

b) g.USBamp signal amplifier d) Polaris Spectra for motion capture 
 

c) Spherical Arm Rig for arm position 

e) Model in Matlab 
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were placed with a inter electrode distance of 20 mm around the recommended sensor locations with 

the orientation parallel to the muscle fibres. The electrode placement was noted from literature to be 

over the middle to lower bicep group and in the center of the triceps group (Figure 4.12 (a)). The 

ground however was chosen to be positioned over the olecranon which is located just lower of the 

elbow joint. This location is chosen as there is very little muscle located near this area causing less 

chance for disturbance such as cross over noise from other muscle groups or unknown artifacts.  

A g.USBamp bio signal amplifier (Guger Technologies, Austria) (16 channels)( Figure 4.12 (b)) was 

used for the raw signal filtering. The bipolar EMG channels were sampled at 1200Hz and hardware 

filtered with a 50Hz notch filter. 

Motion Capture System  

The arm movement was recorded by the Polaris Spectra (Northern Digital Incorporated, USA) 

(Figure 4.12 (d)). It is a motion tracking system that can track passive markers with high accuracy (up 

to 0.3 mm RMS) at up to 60Hz. It has been used to track the subject arm position and orientation in 

3D space. The setup has to be very precise, or it won’t register the users’ movements on the NDI 

motion capture system. Figure 4.12 (c) displays how the rig is to be placed over the arm.  

4.2.1.3 Experimental design 

The subjects were asked to have meal 2 hours before experiment and to not physically exercise in the 

previous 24 hours. Participant arm hair was shaved if needed and the skin was cleaned with alcohol. 

The conductive paste and electrodes were placed on the skin after the alcohol vaporization. A stand 

still position was required during the experiment. This natural position is neutral as all joints are 

relaxed and the hands are facing the front. 

This trail design consisted of a 3×5×5×5×5×5 repeated measures design where the MVC test was 

repeated three times, the single or circle movements were five times. The groups of movement were 

as follow: 

(1) MVC test was the first step to measure the maximum isometric contractions of each muscle 

group. The subject was asked to pull up and push down against a stationary desk by his maximum 

force and keep each movement up to 10 seconds. This test was recorded three times and 

averaged. 

A minimum1 minutes rest should be placed after this step. 

(2) Single cycle test required the subject to fully flexed his arm with a natural speed from a whole 
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arm relaxing position, (and stopped for 5 second), then fully extended, again with a natural speed. 

(3) Continuous cycle full range test required the subject to keep fully flexing and extending with 

a natural speed for 20 seconds. 

(4) Continuous cycle half range test required the subject to flex and extend from the range about 

180˚ to 90˚ of elbow joint.  

(5) Continuous cycle increasing range test started with small amplitude that gradually increases 

till fully flexing and extending.  

(6) Random movement test required the subject to flex and extend in continues and any range of 

flexion and extension in different speed，to estimate the effect of non-linear dynamics.  

4.2.2 EMG Signal Processing and Muscle Activation 

Since the EMG signal has a character of weakness, low-frequency and high-resistance, it is 

unavoidable to introduce different kinds of noise. The main sources of noise include 50Hz frequency 

interference, background noise, high-frequency interference and artificial motion. To cancel the noise, 

a linear envelope method (LE) [5, 6] has been used for effectively gathering the muscle activations 

from the EMG signal. Specific steps are as follows: 

High-pass filter: 

High pass filter removes the DC offsets and low-frequency noise generated by the motion of 

electrodes. Based on the type of filter and electrode, the cut-off frequency is generally from 10 to 

30Hz. A good filter should have a zero phase delay, so it will not shift the EMG signal in time. For this 

research, a 2nd order Butterworth high-pass filter has been used with a 20Hz cut-off frequency. 

Full-wave rectification:  

Full-wave rectification is used to invert the negative components of EMG signal, in order to reflect all 

signal activity in positive domain.  

Low pass filter: 

The general cut-off frequency ranges about 3-10Hz. In this study, a 2nd low-pass Butterworth filter 

with 3Hz cut-off frequency has been chosen to produce the linear envelope. 

Normalization: 

EMG signal values are normalized by dividing the peak during maximum voluntary contraction 
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(MVC), to conform the values to be between 0-1. 

The rationality of linear envelope processing is that, during a single Motor Unit Action Potential 

(MUAP) activation, the muscle will produce a contraction response. The full-wave rectifier is 

considered as a summation of all action potential waves from a variety of amplitudes of motor unit 

action. Muscle tension can be seen as the sum of muscle contraction caused by all active power units 

[2]. According to the literature, the different muscles time delay (or electromechanical delay) is about 

10-100ms [124]. This means that if a 2nd order low-pass Butterworth filter with a cutoff frequency of 

3Hz is used, the delay equals to 50 milliseconds of motor delay. So, the substance of the linear 

envelope is to simulate the tension waveform during isometric muscle contractions. 

Muscle activation 

The result from this linear envelope can be directly regarded as neural activation u(t). It is mainly 

about the nonlinear problem between neural activation u(t) and muscle activation a(t). Muscle 

activation may be the most important uncertainty source within the EMG-driven model, so the 

accuracy of this block will affect the accuracy of the whole interface a lot.  

Then the muscle activation can be calculated from: 

a(t) =
eAu(t) − 1

eA − 1
 

(4.5) 

Where A determines the degree of nonlinearity[70] 

For the neural activation u(t), the transition point(i.e., approximately 30% value)  from nonlinear to 

linear is not a constant. The parameter A is used to describe the curvature. Also, it relates to the 

nonlinear quantity between EMG and activation. The actual value of A is decided by calibration or 

commissioning process, normally -3 <A <0. 

Thresholding:  

A threshold is given below which the a(t) is floored to zero. This is to account for uncertain or 

environmental activities in the EMG signal, even when there are no active contractions present. 

4.2.3 Model Validation 
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4.2.3.1 Model Setup 

For the elbow physiological model in Chapter 3, according to the anatomy and physiology, the 

length proportionality constant of two biceps muscle path segments Kpbi and of two triceps muscle 

path segments Kptr are set to constant values, which means Kpbi =
AB2̅̅ ̅̅ ̅̅

B2B3̅̅ ̅̅ ̅̅ ̅
= 1.081, and Kptr =

AT2̅̅ ̅̅ ̅̅

T2T3̅̅ ̅̅ ̅̅ ̅
= 4.053. The relative positional angles of muscle path are set to constant values as well, 

namely α = 6.28°  and α1 = 9.26°. 

Based on the Table 4.1, 14 parameters are chosen for the tuning, includes all the high sensitive 

parameters (Loptbi，Hum，Kbi，Lopttr，Cpassbi，Ubi，Rbi，Fmaxbi), part of the low sensitive 

parameters (m，LArm，Utr，Fmaxtr), and two signal processing parameters (A, ThreTr). Table 4.5 

lists the tuning parameters and their ranges. Wherein, A is the degree of nonlinearity, ThreTr is 

triceps threshold. The values of other remaining parameters are fixed from measuring or literatures 

[125].  

Table 4.5 Tuning parameters 

Test Port 
parameters range in experiments 

1 Loptbi 0.25-0.35 

2 Lopttr 0.25-0.35 

3 Fmaxbi 1000-1500 

4  Fmaxtr 1000-1500 

5 Cpassbi 1-3 

6 Rbi 1-3 

7 Kbi 0.8-1.9 

8 Hum 0.2-0.35 

9 Ubi 0.01-0.06 

10 Utr 0.02-0.06 

11 A -1-+1 

12 m 1.3-1.6 

13 LArm 0.2-0.45 

14 
ThreTr 0.02-0.05 

This thesis designed two kinds of parameter tuning algorithm (GA and DE) in MATLAB software, 
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GA is used for offline tuning, and DE for online tuning. The detailed information is shown in 

Section 7.2. The data in this section are offline tuned by GA. For each individual experiment, the 

optimization process was repeated at least four times, to minimize the probabilities of GA returned 

local minima. 

4.2.3.2 Experimental Results 

By modeled and simulated in Matlab and Simulink, the prediction angle and actual angle of elbow 

motion in a variety of subjects are obtained. The root mean square error (RMSE) between them can 

be calculated as follow: 

RMSE = √
1

𝑛
∑(Dpred − Dactu)2

𝑛

𝑖=1

 

(4.6) 

where, n is the number of samples, Dpred is the predicted joint angles, Dactu is the actually 

measured joint angles.  

Single cycle test 

For the single-cycle full flexion and extension movements of six subjects, the predicted results are 

very accuracy, which means the test is quite reproducible. The RMSEs of all subjects were 4.51 ° ± 

2.25 °. Figure 4.13 shows the comparison of the predicted and actual angle of subject E. As can be 

seen from the figure, the model is accurate during the elbow flexion and extension movements and 

in the maximum flexion angle, but has a bigger error during relaxing in the natural state before and 

after the operation began. The main cause of this error is due to the difference of resting angle for 

different subjects. The predictive ability of this model in single-cycle movement is similar 

compared with Pau's result [5] (Table 4.6).  

Continuous cycle full range test 

For continuous movement, the advantage of this model is more significant. The RMSEs of all 

subjects were 12.64 ° ± 4.11 °. One representative result is shown in Figure 4.14. From the figure, 

during the entire 22 seconds of the test, the prediction results of the model are well matched with 

the actual results for the flexion and extension movements. It has some errors only when the elbow 

reaches the maximum flexion due to the fast speed in changes. The result of this subject has also 

shown that, the model can still accurately predict the joint movement when the elbow is fully 

extended (the joint angle reaches 0 °). Thus, it is verified that this model can solve the forecasting 
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problems when the muscular force line through the joint center.  

 

 

Continuous cycle half range test 

For the continuous cycle half range test, the results validate the predictive ability of model to the 

smaller amplitude vibration. The RMSEs of all subjects were 12.5 ° ± 3.25 °. During the 

experiments, occasionally the prediction point was generated in advance of the actual movement 

 
Figure 4.12: Result of a single cycle test with RMSE of 4.42°. 

 

 
Figure 4.13: Result of a Continuous cycle full range test with RMSE of 12.97°. 
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occurrence, such as the first two and the last two waveforms in Figure 4.15. The cause of this 

phenomenon is due that the EMG signal is directly from the muscle electrical stimulation signal, 

which means it is produced before the beginning of the real muscle contraction. Also, because of the 

real-time property of the model, there is almost no time delay in the calculation speed. Therefore, 

the model prediction can be synchronous or slightly ahead of the actual human movement.  

 

Continuous cycle increasing range test   

For the Continuous cycle increasing range test, the results show the predictive ability of the model 

to the changing magnitude movements. The RMSEs of all subjects were 10.98 ° ± 3.57 °. For 

example, the result of Subject F is shown in Figure 4.16. The predicted angle was perfectly matched 

with measured angles in the first few waves. 

Random movement test 

Finally, the random movement test for elbow motion is the ultimate test of the predictive ability of 

the model. This test is closer to the body movement in real life situation, compared to the previous 

movements. Thus it is more able to assess the actual practical value of the model. For this variable 

magnitude, variable speed and completely random movement form, this model still shows its good 

stability: The RMSEs of all subjects were 13.7 ° ± 2.13 °. For example, Figure 4.17 shows that the 

predicted angle curve can perfectly follow the actual angle curve. Even at the position with the 

largest angle differences (the fourth curve peaks), the prediction angle curve can still completely fit 

 
Figure 4.14：Result of a Continuous cycle half range test with RMSE of 12.71° 
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the changing trend of the actual movement. 

 

 

 
Figure 4.15: Result of a Continuous cycle increasing range test with RMSE of 9.86°. 

 
Figure 4.16: Result of a Random movement test with RMSE of 11.57° 
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4.2.3.3 Discussion 

In this chapter, six subjects and five kinds of elbow flexion/extension movements were used in the 

experiments to evaluate the overall performance of the physiological model. The results prove that 

the interface not only has a good predictive ability in simple movements, but also can make a good 

match in the predictions and actual results for the complex amplitude or random motion. This is 

superior to other studies. For all subjects, each action was repeated five times. The RMSE ranges of 

all results were within 50% of its average. This indicates that the designed experiments are 

repeatable, and the interface has a high stability and individual adaptability to external disturbances. 

Table 4.6 shows the comparison of RMSEs from the model of Pau [71] and the model in this thesis 

under the same experimental conditions. For simple movement such as single cycle motion, the 

predictive abilities of these two models are similar. However, when the movement complexity 

increases, such as the random variation of magnitude and trajectory, the accuracy of Pau's model is 

sharp declined, while, the model of this thesis is not only able to identify different new track and 

motion magnitude, but also still maintaining a high accuracy. 

This good performance is due to the new musculoskeletal model in this thesis. It took the elasticity 

segments combination to simulate the muscle paths, which is closer to the actual physical structure 

of the elbow joint, in order to improve the accuracy of the predicted results. Furthermore, this 

design solves the problem that the single linear model cannot calculate the joint torque when the 

joint angle is close to 0 °. This extended the range of model prediction to [-5-135 °], which matches 

the normal human range of motion. 

In addition, the results of this study are comparable to the results of other research teams. For the 

model of Koo et al [2], the RMSE of the single cycle elbow flexion was 34.64±7.79°, and the 

RMSE of the single cycle elbow extension was 18.67±8.49°. For the model designed by Artemiadis 

and Kyriakopoulos [126], the RMSE was from 1.76 ° to 9.0 °, since their experiment limited the 

arm to move only in the horizontal plane. The model from Smith and Brown [127] could predict the 

elbow motion in the sagittal plane, the RMSE of the model changes from 6.5 ° to 34.3 °. 

The rest angle errors may be caused by the parameters without tuning. This Chapter only tuned the 

14 main parameters and got the quite accurate results. More parameters joined in the tuning may 

lead to a better result, but will surely reduce the performance of real-time. 
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Table 4.6 Accuracy comparison of the models of James Pau and this thesis 

Test RMSE in Pau's model RMSE in this thesis 

Single cycle test 6.53°±3.2° 4.51°±2.25° 

Continuous cycle full range test 22.00°±6.6° 12.64°±4.11° 

Continuous cycle half range test 18.6°±6.5° 12.5°±3.25° 

Continuous cycle increasing range test 19.5°±5.3° 10.98°±3.57° 

Random movement test 22.4°±5.0° 13.7°±2.13° 

The data are the RMSE from all subjects. 

4.3 Chapter Summary 

In this chapter, all 23 parameters of the EMG-driven model proposed in the previous chapter were 

analyzed, and among them, 19 parameters with the greater impact to the model were chose. These 

19 adjustable parameters were graded on sensitivity and classified on characteristics from three 

points of view. The hierarchy of importance of these parameters，action difference and individual 

difference were assessed. . The parameters sensitivity analysis to the model resulted in a relatively 

small subset used for tuning. Finally, 14 parameters were used in the model tuning. The other 

parameters were from literatures. 

The EMG signals were processed by linear envelope and nonlinear dynamics method. A group of 

experiments with several subjects and several kinds of movement were designed in this chapter, for 

the verification of the elbow physiological model and signal processing methods. The results 

showed that the model designed in chapter 3 can accurately identify new tracks and different range 

of motions, such as the average RMSE of random movement test was 13.7 °. Compared with the 

results in Section 3.5, the result in this Chapter is much more improve. It shows the performance 

and importance of parameter sensitivity analysis and tuning. Also, the accurate results indicates that 

the method based on physiological model can easily identify new movements.
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 A Neuromusculoskeletal 

Model for the Forearm Pronation and 

Supination 

 

This Chapter established a neuromusculoskeletal model as an implementation of the human-robot 

interface for forearm pronation/supination movement. The flowchart of human-robot interface is 

shown in Figure 3.1, Chapter 3. Wherein, the EMG signal processing, nonlinear muscle activation 

dynamics, musculotendon dynamics and the kinematic model are similar to the corresponding 

models of elbow flexion / extension in Chapter 3. Only the musculoskeletal geometric model for 

forearm rotation is different. 

Based on a large number of studies, there are some researches about forearm physiological 

simplification [128-132], however, the neuromusculoskeletal model of forearm rotation as the 

implementation of human-robot interface has seldom been reported. A neuromusculoskeletal 

interface model must comply with human physiological structure, simple, practical, and easy for 

online tuning. In this respect, this chapter will firstly study the related human physiology structures 

to forearm pronation/supination, then establish the musculoskeletal geometry model of forearm 

motion, and analyze the related model parameters. Finally, experiments are used to verify the 

effectiveness of the model. 

5.1 Physiological Structure of the Forearm Rotation 

The human body is a complex living structure. From the anatomical point of view, the human body 

is consisted of bones, joints and muscle. The bones and joints are the overall framework of the 

human body, and the muscles are the power source of human movement. The human physiological 
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processes are all dominated by the nervous system. From the origin of life to the development so far, 

the body's nervous system is the most complex and most comprehensive control system. 

5.1.1 Physiological Skeleton Structure of the Forearm 

The forearm of human body is the part between the elbow and wrist joints. Forearm includes the 

radius and ulna, as shown in Figure 5.1. The ulna locates to the close side of human body, and the 

radius locates to the far side of human body. The radius and ulna are connected by the interosseous 

membrane, and they forms the proximal radioulnar joint near the elbow, and forms the distal 

radioulnar joint near the wrist. The proximal and distal radioulnar joints are the combined joint. 

These constitute the anatomical basis of forearm rotation. 

 

Forearm skeletal system is simple, but the forearm rotation is a very complicated movement. The 

proximal radioulnar joint is rounded by an annulus from the radial head cylindrical lip and radial 

notch in ulna. The annular ligament accounts about 3/4 of the fibers annulus. So it can adapt to 

rotation of the elliptical radial head. 

During forearm rotation, the ulna is generally considered fixed, the rotation axis is from the center 

of the radial head to the bottom of the ulnar styloid process. Along this axis, radius has the upper 

and lower two lordosis which are the pronation bow and supination bow. The radial curve locates on 

the connection of radial neck and radial body, which is the radial tuberosity projecting to the ulnar, 

about 11.3 °. It is the ending point of biceps. The lower and outer side are the ending point of 

supinator. The radial tuberosity locates 1/3 of the radial outer side projecting to the radial side, 

 
 

Figure 5.1: The forearm skeleton 
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about 9.3 °. The pronator teres contacts and stops here, called 'supination bow' and 'pronation bow'. 

Radius rotates along the rotation axis of two bow. In the proximal radioulnar joint, radius does the 

'rotation' movement along the radial notch of ulna. In the distal radioulnar joint, radius does the 

'revolution' movement along ulna head. 

There is a fibrous tissue between the forearm bones, known as the interosseous membrane, as 

shown in Figure 5.2. The interosseous membrane connects almost the entire length of the ulna. The 

tightness of the interosseous membrane is changed with the rotation of the forearm. When the 

forearm is in neutral position, the two bones are nearly parallel, the gap between the backbones are 

the largest, the tightness in the upper and lower interosseous membrane are the same, which leads 

the radius and ulna in a stabilizing position. When the forearm is pronation or supination, the gap 

between backbones is more narrow, and the tightness of upper and lower membrane are different, so 

the stability between bones is disappeared. 

 

Figure 5.2: The forearm interosseous membrane 

The oblique cord and interosseous membrane limit a maximum range for the forearm 

pronation/supination movement. When the forearm pronation 15 ° -20 °, the oblique cord begins to 

tense. When till the 70 °, the oblique cord and upper interosseous membrane are totally tensed, 

which limits the rotation of the forearm. During supination at 20 ° to the neutral position, the 

interosseous membrane is in the substantially isotonic state and the gaps between ulnar and radial is 

the largest. By proceeding pronation or supination, the upper and lower interosseous membrane are 

no longer in isotonic state. The oblique cord and upper interosseous membrane are tense during 

pronation, and the lower interosseous membrane are tense during supination, which limits excessive 

forearm supination. So the maximum angle of pronation movement is 80°- 90°, and the maximum 

angle of supination movement is 90°-100°. 
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5.1.2 Forearm Rotation Axis and Rotation Center of the Distal 

Radioulnar Joint 

With the continuous study of the distal radioulnar joint movement, people have a more in-depth 

understanding of the forearm rotation axis and the rotation center of ulnar head [133]. Generally 

believed that the axis of the forearm rotation through the proximal radial head and the cross-section 

center of the distal ulnar head, shown in Figure 5.3. When the distal radioulnar joint in level, the 

rotation axis is slightly to the back side in pronation, and slightly to the palm side in supination. 

Since the curvature of ulnar head is greater than the curvature of the radial sigmoid notch [134], the 

ulna head will have a sliding and rolling movement on the sigmoid notch during the forearm 

rotation. The sliding direction of ulna head is to the back side in pronation and to the palm side in 

supination. 

In 2010, Matsuki [135] measured the maximum rotation angle of radius was 157 ° (80 ° for 

pronation and  77 ° for supination), through a study of dynamic rotation activities of normal people 

with X-ray and CT scan. When the ulnar head moved to the 30 ° position of forearm supination 

from the extreme starting position, the rotation center of the spin ulnar head moved about 1.3mm to 

the palm side. Also, in the extreme position of pronation, the center moved 2.6mm to the backside. 

Therefore, during the forearm rotated from the extreme position of supination to the extreme 

position of pronation, the ulnar head moved totally 3.9mm from the palm side to the back side. At 

the position of supination 30°, neutral position, pronation 30° and pronation 60° of forearm 

movements, there is a significant change of the rotation center of ulnar head (Figure 5.3(b)). 

 In 2008 and 2010, Tay et al. [136, 137] used the vivo CT scan to test the forearm rotation axis, and 

found that the rotation axis of forearm located from the palm side radial head to the back side radial 

head, and the axis was changing during forearm rotation. With forearm pronation, the rotation 

center of ulnar head mildly shifted to the back side. With the forearm supination, the center moved 

towards to the palm side. The proximal rotation center of forearm was close to the center of joint 

surface of the radial head, and the distal end of the rotation center was at the back side of the dorsal 

ulnar head. The center changed with the forearm movement. The rotation center of the distal 

radioulnar joint was 1.9mm back side of the ulnar head and 0.5mm palm side of the ulnar head 

[135]. 
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Figure 5.3: The axis of the forearm rotation [135-137] 

In 2012, Kataoka [138] rebuilt the radius and ulna based on the CT scans of 28 volunteers forearms, 

to study the relationship between the distance of forearm rotation center to the anatomic distal ulna 

center and ulna variance. When the negative variation of ulnar was obvious, the distance between 

rotation axis centers and anatomical distal ulna center was lager, and the rotation center was more 

close to the base of the ulnar styloid. 

In short, although the axis of forearm rotation is changing during the forearm moves, the basic axis 

proximally through the radial head, and distally through the center of ulnar head cross-section. In 

the horizontal plate of distal radioulnar joint, the rotation axis is slightly close to the back side in 

pronation, and close to the palm side in supination. 

5.1.3 Forearm Muscles  

Muscles can transfer the body's internal chemical energy into mechanical energy, so it is the power 

source of human motion. According to the form and distribution of muscle cells, muscles can be 

divided into skeletal muscle, smooth muscle and cardiac muscles three categories. Among them, the 

skeletal muscles are controlled by the nervous system, and cardiac muscles and smooth muscles are 

not controlled by the nervous system. Skeletal muscles are the basis of human motion and take part 

in all kinds of human physical movement. The skeletal muscles mainly place in the human limbs 

and trunk, and take up 2/5 of body weight. Usually one muscle crosses one or two joints, the muscle 

across one joint is called single-joint muscle, and the one across two joint is called two joint muscle.  

    
(a)            (b) 
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The main muscles involved in forearm rotating includes pronator teres, pronator quadratus, 

brachioradialis, biceps, supinator muscle, etc. Researches have shown that the pronator teres and 

pronator quadratus play a major role in pronation movement, and the supinator is the major muscle 

in supination movement. Biceps can also help with the supination. In addition, the so call "forearm 

rotation regulator"- brachioradialis helps the pronator in pronation and supinator in supination. 

Based on the structural characteristics, the pronation and supination muscles are divided into two 

groups: a) the pronator quadratus and supinator, their ending points are away from the rotating bow. 

One of this two muscles is contraction while the other is relaxation during forearm rotation. b) 

pronator teres and biceps, their ending points are at the rotation bow, and they are longus. Pronator 

teres, pronator quadratus and supinator all have shallow muscle parts, which are easier for the 

collection of EMG signal. The muscles position are shown in Figure 5.4. Generally, the connection 

point which is in the front of human or near the limbs is called the starting point, and the one away 

from the limbs is called ending point. 

Pronator teres has two starting points. They are respectively from the humeral medial epicondyle 

and ulna tuberosity. The ending point of pronator teres is the outer edge of the middle radial 

(pronator tuberosity) on the lower bow part of radius. According to the fiber directions and different 

starting and ending points, pronator quadratus is divided into the superficial and deep layers. The 

main role of the superficial muscular is to help forearm pronation. It starts from the 1/4 of front 

distal ulna, and ends 1/4 of distal radius. The fibers of deep muscle limit the ulna and radius for the 

stability of the distal radioulnar joint. Supinator starts from the epicondyle of the humerus and 

bypass the radial to end at 1/3 of outside of the radial tuberosity. It is a small piece of muscle at the 

rear side of axis, and divided into superficial muscle and deep muscle. 

 

 
Figure 5.4: Muscles for forearm pronation and supination 
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5.2 Development of the Forearm Musculoskeletal Model 

From a number of literatures, the researches about forearm movement are mainly about the muscles 

contribution or biological structure analysis [129, 139-141], joint force and moment calculation 

[131], forearm signal analysis [128, 130, 142], and some large 3D model kinematic analysis[135, 

137, 143]. There is no neuromusculoskeletal model as the implementation of human-robot interface 

with real-time tuning for forearm pronation and supination. Currently, the studies involving the 

musculoskeletal system functional model, are mainly some simulation software platforms of 

musculoskeletal modeling, such as SIMM (MAC MusculoGraphics company), AnyBody 

(AnybodyTechnology), Adams (MSC Software), Visual3-D (C-Motion company), or one point joint 

simplification. 

SIMM is a computational model of biological systems which can be used for models establishment, 

animation and three-dimensional musculoskeletal system analysis. It can accurately simulate the 

movements of human and animal. Now the human musculoskeletal models of SIMM were created 

by hundreds of biomechanics to simulate the motions such as stepping, running, cycling and stair 

climbing. It allows the researchers to develop a model which can faithfully reproduce the known 

neuromuscular skeletal system function. SIMM is an interactive software package which allows 

users to develop, evaluate and modify almost all musculoskeletal structures [134, 144]. SIMM 

allows users to build model for an accurate reflection of the muscle force generation, skeleton 

geometry, joint kinematics and dynamics.  

However the establishment of SIMM model requires the SIMM file loader to create a data structure 

representing the musculoskeletal model by reading a set of bone, a joint document and a muscle file. 

It has a large database of skeletons with complex geometry and muscles with complex muscle path. 

Therefore, it cannot achieve real-time tuning, and not suitable for this kind of human-robot 

interface. 

This thesis is going to establish a kind of human-robot interface for forearm pronation and 

supination. The musculoskeletal model of this interface must meet the human body physiological 

structure as reference, simple and practical, and easy for online tuning. 

5.2.1 Assumptions of the Forearm Modeling 

In order to build a model suitable for human-robot interface, necessary simplification is the first 

thing to consider. Because of the complexity of human physiological structure, it is difficult for a 
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model to full compliance with human physiological characteristics. Also, a real physiological 

structure model cannot quickly respond to the changes of users or actions because of the lots of 

tuning time. So a simplified model for the uses of real-time interface need to be established based 

on human anatomy, and the assumptions of this model are shown as follow: 

1. Definition of forearm rotation 

The neutral position of forearm refers to the shoulder close to the body side, elbow in 

90 °flexion, palm straight and inward side and thumbs up side. The movement with palm 

downward is the pronation, and the movement with palm upward is supination. Figure 5.5 

shows the relative position of the radius and ulna in forearm pronation, supination and neutral 

position. 

 

Figure 5.5: Definition of forearm rotation and the relative position of the radius and ulna 

2. Motion range of forearm rotation 

The maximum angle of normal pronation and supination are 180 ° -190 °, wherein pronation 

80 ° - 90 °, supination 90 ° - 100 °. 

3. Rotation axis 

During rotation, the ulna is regarded as fixed, and the axis is through the center of the radial 

head at proximal side, and through the center of cross-section of ulnar head at distal side. The 
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offset of rotation axis is ignored during forearm supination/pronation [135].  

4. Forearm modeling 

In order to make the musculoskeletal geometry of the forearm movement more close to the 

human physiological characteristics, the ulna size and radius size of a cadaveric forearm in 

hospital have been measured as a reference to the model. The measurement position of bone 

and corresponding size data are in Figure 5.6 and Table 5.1. 

5. Muscle modeling 

Three muscles, pronator teres, pronator quadratus and supinator, are selected to establish the 

physiological model of forearm rotation. 

Table 5.1 The size of ulna and radius of a cadaveric forearm 

Position 

Radial 

diameter

（mm） 

Ulna diameter（mm） 

Space between 

Radial and Ulna 

（mm） 

Cross-section A 

 (maximum diameter of the top) 
14.17 21.95 - 

Cross-section B 

(constriction below the maximum 

diameter) 

11.10 16.87 - 

Cross-section C 

(1/4 from the top) 
11.97 12.0 - 

Cross-section D 

(1/2 from the top) 
14.90 10.21 4.3 

Cross-section E 

(1/4 from the bottom) 
13.99 9.97 11.05 

Cross-section F  

(maximum diameter of the bottom) 
22.63 13.72 11.79 

Radial length: 201mm. Ulna length: 217mm; 

 

6. Muscle path 

The muscle path directly affects the calculation of muscle length and muscle force, also affects 

the accuracy of the musculoskeletal model. The method of modeling muscle path must be both 

to meet the physiological characteristics of the muscle and to achieve the purpose of rapid 

calculation. According to the characteristics of pronator teres, pronator quadratus and supinator, 

the pronator teres and pronator quadratus are simplified to the straight lines connected to the 

muscle starting and ending point. The supinator is simplified to a straight line segment and an 

arc.  
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Figure 5.6: Measured skeleton Figure 5.7: Coordinate system of forearm 

rotation model 

5.2.2 Musculoskeletal Model of Forearm Rotation 

Based on the above assumptions, the muscles were simplified by straight lines and arcs, and the 

skeletons are simplified by circles. This simplification aims at most simplifying the complex 

biological structures into the more clearly geometric structures which are easier for calculation. The 

coordinate system of forearm musculoskeletal model is shown in Figure 5.7. During the forearm 

rotation, ulna is fixed and radial rotates around the central axis OO'. The coordinate origin passed 

the center of radial head, Y axis is along the center axis OO' to the above direction, X axis is to the 

front direction, Z axis direction is determined with the right-hand rule.  

The musculoskeletal model involves three computations: muscle length, twisting moment and 

moment arm. The twisting moment and moment arm are calculated in profile M1N1 and M2N2. 

M1N1 is a profile through the starting point of supinator and perpendicular to the central axis OO'. 

The twisting moment and moment arm of supinator are calculated in profile M1N1, so does the ones 

of pronator teres. This is because, the length change of pronator teres above M1N1 is small and can 

be ignored. The profile M2N2 is through the starting point of pronator quadratus and perpendicular 

to the central axis OO'. The twisting moment and moment arm of pronator quadratus are calculated 

in profile  M2N2. 

The musculoskeletal models of these three muscles are as follows: 
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1. Supinator (SUP) 

Figure 5.8 shows the musculoskeletal model of the projection of supinator in profile M1N1. 

The M1N1 is on the XZ plane with Y =-22. A1 is the fixed point of muscle (the projection of 

supinator starting point in M1N1). B1  is the moving point of muscle (the projection of 

supinator ending point in M1N1). The circle O is the radial, and circle O1 is the ulnar. O is the 

rotation axis (in profile M1N1, the rotation axis is approximately coincident with the radius 

center ). 

 

In YOZ plane, the angle between supinator and profile M1N1 is  αsup.  

Suppose the coefficient: 

 Ksup =
1

cos  (αsup)
   

(5.1) 

𝑂𝐴1=Usup  (5.2) 

Radius of rotation: 

rsup = 𝑂𝐵1 = 𝑂𝐷1 (5.3) 

where B1 is the ending point of supinator on neutral position. 

For any angle d, it is delimited that supination is positive and pronation is negative. Thus: 

 
Figure 5.8: The musculoskeletal model of supinator 
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βsup = ∠𝑂𝐴1𝐷1 = sin−1
rsup

Usup
 

(5.4) 

The projection length of supinator on profile M1N1: 

lsup1 = 𝐴1𝐷1
̅̅ ̅̅ ̅̅ ̅ + 𝐷1𝐵1′̂ = Usup cos(βsup) + rsup( 90 + βsup − d) ∗

π

180
 (5.5) 

The actual length of supinator is: 

lsup = lsup1Ksup (5.6) 

The moment arm and twisting moment of supinator are as follow: 

MAsup = rsup (5.7) 

Msup = MAsupFsup/Ksup (5.8) 

where Fsup is the muscle force of supinator. 

2. Pronator Teres (PT) 

Figure 5.9 shows the musculoskeletal model of the projection of pronator teres in profile M1N1. 

A3 is the fixed point of muscle  (the projection of pronator teres starting point in M1N1). B3 

is the moving point of muscle (the projection of pronator teres ending point in M1N1). O is the 

rotation axis (in profile M1N1, the rotation axis is approximately coincident with the radius 

center ). 

 

 
Figure 5.9: The musculoskeletal model of pronator teres 
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In YOZ plane, the angle between pronator teres and profile M1N1 is αPT.  

Suppose the coefficient: 

   KPT =
1

cos  (αPT)
  

(5.9) 

𝑂𝐴3 = UPT (5.10) 

Radius of rotation: 

rPT = OB3 (5.11) 

Based on the physiological structure, the angle between  OA3 and Z axis is  δ3 = 28°. B3 is 

the ending point of pronator teres on neutral position. The length of pronator teres on neutral 

position  lPT0 = A3B3 = 44mm.  Thus: 

β3 = ∠A3OB3 = cos−1
OA3

2 + OB3
2 − A3B3

2 · OA3 · OB3
= 100.05° (5.12) 

For any angle d, the projection length of pronator teres on profile M1N1: 

lPT1 = A3B3
′ = √rPT

2 + UPT
2

−2rPTUPTcos(β3 + d) 
(5.13) 

The actual length of pronator teres is: 

lPT = lPT1KPT (5.14) 

From the law of sine: 

γ3 = ∠ O A3B3
′ = sin−1

rPT sin(β3 + d)

lPT1
 

(5.15) 

The moment arm and twisting moment of pronator teres are as follow: 

MAPT = OC3 = UPT sin γ3 (5.16) 

MPT = MAPTFPT/KPT (5.17) 

where Fsup is the muscle force of pronator teres. 
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3. Pronator Quadratus (PQ) 

Figure 5.10 shows the musculoskeletal model of the projection of pronator quadratus in profile 

M2N2. The M2N2 is on the XZ plane with Y =-200. A2 is the fixed point of muscle  (the 

projection of pronator quadratus starting point in M2N2), B2 is the moving point of muscle 

(the projection of pronator quadratus ending point in M2N2). O is the rotation axis (in profile 

M2N2, the rotation axis is approximately coincident with the ulna center ). 

 

Circle O2 is radius, the radius of radius circle is as follow: 

O2B2 = O2
′ B2′ = 9mm  (5.18) 

The radius of radius rotation around the rotational center O is: 

rPQ = OO2 (5.19) 

In YOZ plane, the angle between pronator quadratus and profile M2N2 is   αPQ = 0°.  

Suppose:  

OA2 = UPQ (5.20) 

B2 is the ending point of pronator quadratus on neutral position. For any angle d: 

 
Figure 5.10: The musculoskeletal model of pronator quadratus 
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A2O2
′ = √rPQ

2 + UPQ
2

−2rPQUPQcos(90° + d) 
(5.21) 

∠OO2
′A2 = sin−1

UPQ sin(90° + d)

A2O2′
 

(5.22) 

The actual length of pronator quadratus is: 

lPQ = A2B2
′ = √O2B2

2 +A2O2
′2

− 2 · O2B2 · A2O2
′ · cos(90° − ∠OO2

′A2) 
(5.23) 

The moment arm of pronator quadratus is: 

∠OA2O2’ = 90° − d − ∠OO2
′A2 (5.24) 

∠  B2′A2O2’ = sin−1
O2B2 sin(90° − ∠OO2

′A2)

lPQ
 

(5.25) 

MAPQ = OC2 = UPQsin (∠OA2O2’ + ∠B2′A2O2’) (5.26) 

The twisting moment of pronator quadratus is as follow: 

MPQ = MAPQFPQ (5.27) 

where FPQ is the muscle force of pronator quadratus. 

 

The total joint twisting moment is as follow: 

MTot =
MAPTFPT

KPT
+ MAPQFPQ − MAsupFsup/Ksup + Mp + O 

(5.28) 

where  

Mp = −βω (5.29) 

Mp is the dynamic torque between joints, β is the damping coefficient of forearm motion, ω is 

the forearm angular velocity (rad/s), O is a compensation amount. 
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Finally, coincide the profile M1N1 and M2N2, with the projections of muscle SUP, PT and PQ, 

along Y axis, to obtain a geometry model of three muscles and skeletons in neutral position, as 

shown in Figure 5.11. This is a beautifully and simple geometry. It also proves such a truth while 

the structure of the human body is perfect and complex, but also coincidence with the simple 

geometry. Figure 5.12 is the geometry model of three muscles in any position. 

 

 

 
Figure 5.11: Musculoskeletal geometry model of three muscles in neutral position 

 
Figure 5.12: Musculoskeletal geometry model of three muscles in any position 
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5.3 Model Validation 

5.3.1 Test procedures 

The experimental data was acquainted from four healthy subjects (two male and two female), 

between 25 and 28 years old. The experimental procedure for this study was approved by the Ethics 

Committee of the University of Auckland, and also with the subjects well informed and consent to 

participate in. Each subject was instructed to perform five different actions. The neutral position is 

the standing position, shoulder close to the body in inner side, elbow 90 °flexion, palm straight and 

inward side, and the thumb upside. The rotation with palm downward is pronation, and the one with 

palm upward is supination. There are five group of movement for the subjects forearm, as follow: 

 The first set of motion involves a basic movement, the forearm rotates from the palm 

downward extreme position to the palm upward extreme position (Sup-Pro), at a moderate 

speed. 

 The second set of movement is also a basic movement, the forearm rotates from the palm 

upward extreme position to the palm downward extreme position (Pro-Sup), at a moderate 

speed. 

 The third set of motion is an extended consecutive movement, the forearm rotates continuously 

from fully pronation to supination and backwards to pronation with full rotation range (Forearm 

Continuous Cycles Test). 

 The fourth set of motion is an example of daily life activities, the forearm rotates continuously 

with random amplitudes and different speeds (Random movement test). 

 The fifth set is a supplement experimental group, the forearm rotates from the palm downward 

extreme position to the palm upward extreme position (Sup-Pro) at a moderate speed, but holds 

a weight of 0.5kg.  

Each movement trials lasted 2 to 8 seconds and five trials were performed for each type of 

movement set. To prevent fatigue, there were several 60 seconds rests between the trials. 

5.3.2 Results 

The flowchart is shown in Figure 5.13, where MATLAB / Simulink module has been used to 

program the signal processing, muscle force, joint torque and kinematic calculation models, to 
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simulate the forearm rotation.  

 

Figure 5.13: Flowchart of model simulation for forearm rotation 

The model parameters were divided into two groups, one is the fixed value (with little effect to the 

model while the value changing), another group can be measured from an individual or be tuned. 

Based on the sensitivity study similar to the elbow model sensitivity analysis in Chapter 4, 14 

parameters were eventually selected for the tuning parameters (Table 5.2), and 10 less sensitive 

parameters were fixed as in Table 5.3. The genetic algorithms (GA) and differential evolution (DE) 

were used respectively to optimize these parameters. The tuning objective function is the minimum 

of the root mean square error (RMSE) between predicted and measured forearm rotation angle. For 

each of the subjects and their actions, GA and DE tuning algorithms were respectively run for four 

times. 

Table 5.2 Tuning parameters in forearm pronation and supination model 

Parameters Description Unit Tuning Range 

RSUP Individual coefficient of SUP - 1-3 

RPT Individual coefficient of PT - 1-3 

CpassSUP User-specific coefficient for elasticity of SUP - 1-3 

CpassPT User-specific coefficient for elasticity of PT - 1-3 

FMaxsup Maximum muscle force of SUP N 300-600 

FMaxPT Maximum muscle force of PT  N 200-400 

FMaxPQ Maximum muscle force of PQ  N 50-200 

loptsup Optimization muscle length of SUP m 0.01-0.04 

loptPT Optimization muscle length of PT m 0.02-0.05 
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loptPQ Optimization muscle length of PQ  m 0.01-0.03 

Usup    
Distance from SUP starting point to the 

Radius rotation center 
mm 15-20 

UPT 
Distance from PT starting point to the 

Radius rotation center 
mm 22-27 

rsup 
Distance from SUP ending point to the 

Radius rotation center 
mm 6-10 

rPT 
Distance from PT ending point to the 

Radius rotation center 
mm 30-34 

The PT represents pronator teres, PQ represents pronator quadratus, and SUP represents supinator. 

The information of muscle force and muscle length is from OpenSim, and the other remaining parameters 

information is from the anatomy test or calculation. 

Table 5.3 Fixed parameters in forearm pronation and supination model 

Parameters Description Unit Value 

RPQ Individual coefficient of PQ - 1 

CpassPQ User-specific coefficient for elasticity of PQ - 1 

BPQ User-specific coefficient for viscosity of PQ Ns/m 0.1 

BPT User-specific coefficient for viscosity of PT Ns/m 0.1 

BSUP User-specific coefficient for viscosity of SUP Ns/m 0.1 

β Damping coefficient of forearm motion Nms/rad 0.2 

UPQ 
Distance from PQ starting point to the 

Radius rotation center 
mm 6 

rPQ 
Distance from PQ ending point to the 

Radius rotation center 
mm 30.5 

Ksup 
In YOZ plane, coefficient of the angle 

between SUP and profile M1N1 
- 3.16 

KPT 
In YOZ plane, coefficient of the angle 

between PT and profile M1N1 
- 1.62 

O Moment compensation constant Nm 0.2 

I Moment of inertia of forearm and hand kgm2 0.0055 

The PT represents pronator teres, PQ represents pronator quadratus, and SUP represents supinator. 

The information of muscle force and muscle length is from OpenSim, and the other remaining parameters 

information is from the anatomy test or calculation. 

5.3.2.1 Characteristics of Forearm Musculoskeletal Model 

Compared with elbow flexion/extension, the amplitude of forearm muscles usage is much smaller, 

in terms of human physiological structure, or circumstances of daily life and exercise. In addition, 

the rotation joint range of forearm motion is relatively small. Thus, the musculoskeletal model of 
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forearm rotation has its particularity, and mainly represented in the following aspects: 

1. The weakness of muscle signals 

In a complete forearm Pro- Sup process, Figure 5.14 is the sEMG signal and activation of the 

pronator teres (PT). Figure 5.15 is the signal and activation of PT with a 0.5kg weight. In contrast, 

the sEMG signals was significantly enhanced when the hand held weights. This is because, the 

muscle strength and motion stability are enhanced with external weights. 

Figure 5.16 shows the sEMG signal and activation of biceps (Bi) during a complete elbow 

flexion/extension process. Compared with Figure 5.14, the sEMG signal of Bi is much larger than 

the one of PT. This is due to the different physiological structure and different frequency of muscle 

usage in people's daily lives, which leads the muscles for flexion/extension stronger than the 

muscles for pronation/ supination. 

 

Figure 5.14: The sEMG signal and activation of pronator teres (PT) in Sup-Pro 

  
(a)                                     (b) 
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Figure 5.15: The sEMG signal and activation of PT with a 0.5kg weight in Sup-Pro 

 

Figure 5.16: The sEMG signal and activation of biceps (Bi) in flexion-extension 

2. The small changes in muscle length and moment arm 

Figure 5.17 shows the length changes of PT, PQ and SUP during Sup-Pro process. Especially the 

muscle length changes of PQ and SUP were only 0.0103m and 0.0159m (Lpt1 = 0.0465m). These 

results are similar to the muscle length changes in OpenSimm models. Also, from Figure 5.17 (b), 

the changes in moment arm of PT, PQ SUP were small as well. This is due to the physical structure 

of the forearm and the three muscles. Thus, the total joint moment and moment changes, which is 

  
(a)                                     (b) 

 
(a)                                     (b) 
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generated by muscle length, muscle force and moment arm, are correspondingly small. The trend of 

moment is similar to the result of Hale’s [139]. 

Overall, the sEMG signals of forearm rotation muscles are weak, the movement time is short, and 

the signals are more susceptible to be interfered. The muscle length changes of PQ is small. Also, 

since PT, PQ and SUP all have both deep and shallow portions, the signal capture is more difficult. 

 

Figure 5.17: (a) The changes of muscle length of PT, PQ and SUP（in Sup-Pro）. (b) The 

changes of moment arm of PT,PQ and SUP（in Sup-Pro） 

5.3.2.2 Prediction Results of Forearm Rotation 

The sample RMSE results and joint angle curves of Sup-Pro, Pro- Sup, Forearm Continuous Cycles 

and Random movement Test are shown in Figure 5.18-5.21. 

For a basic pronation or supination movement (such as in Figure 5.18 and Figure 5.19), the tuned 

predicted joint angles were accurately matched the measured joint angle. The RMSEs in all Sup-Pro 

tests with different subjects and different times were within 3.15°-8.47°. The RMSEs in Pro- Sup 

Tests were within 4.71°- 9.69°.  

For a complex forearm movement (such as in Figure 5.20 and Figure 5.21), the RMSEs of all 

Continuous Cycles Tests were within 12.75°-18.25°, and the RMSEs of Random Movement Tests 

were within 10.5°-16.36°. Compared with basic movement test, although there were some 

prediction errors in the curve peak or valleys, where related to the extreme positions of pronation or 

supination, but the movement trends were still consistent. The reason is that, when the forearm just 

starts to a opposite direction, such as from max Sup to Pro, the main effective muscle - pronator 

starts to contract and generates muscle force, however, the supinator has not fully relaxed yet. In 

 
(a)                                   (b) 
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this case, the EMG-based model will calculate both pronation moment and supination moment at 

the angle-curve peak, and may leads to a error. When the forearm is smoothly into a basic 

movement process (Pro- Sup or Sup-Pro ), the EMG signals are more clear and easier to be detected, 

so the predicted joint angle is more accurate. This forearm prediction problem does not occur during 

elbow flexion/extension movement tests, because of the specific characteristics of forearm 

musculoskeletal model discussed in Section 5.3.2.1. 

 
 

Figure 5.18: A result of the basic Sup-Pro 

Test. (RMSE=5.10°) 

Figure 5.19: A result of the basic Sup-Pro Test 

(RMSE=3.71°) 

  

Figure 5.20: Result of the Forearm 

Continuous Cycles Test. 

RMSE=16.80°  

Figure 5.21 A result of the Random movement 

test. 

RMSE=12.86° 
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Table 5.4 shows the summary of RMSEs for 4 subjects and 5 set of tests. The overall average is the 

average of all subjects RMSEs in one set of movement, which were 5.88 °, 5.94 °, 15.31 °, 13.35 ° 

and 5.58 °.These results indicate that the musculoskeletal model of forearm has a certain accuracy 

and stability in pronation and supination movement prediction. 

Table 5.4 Summary of forearm experimental results (RMSE in Degrees) 

Subject Sup-Pro Pro- Sup 
Continuous 

Cycles  

Random 

Movement 

Sup-Pro 

(With 0.5 kg weight)  

A 

B 

C 

D 

3.15°±2.83° 

6.45°±3.22° 

5.45°±4.25° 

8.47°±3.68° 

4.71°±3.25° 

4.78°±4.65° 

6.56°±3.88° 

9.69°±2.67° 

12.75°±6.83° 

15.43°±3.43° 

14.82°±7.81° 

18.25°±8.46° 

10.5°±5.85° 

14.41°±4.76° 

12.12°±4.75° 

16.36°±6.78° 

3.22°±3.25° 

6.28°±4.34° 

5.33°±3.29° 

7.48°±3.79° 

Total 

Average 
5.88° 6.44° 15.31° 13.35° 5.58° 

5.3.3 Discussion 

The results in Table 5.3 shows the variability of this EMG-based forearm model. For the above 5 

sets of movement, there is a large difference in the RMSE value of the same subject in different 

tests. The difference in RMSE of different subjects in a similar movement is small. 

In test Group 1 (Sup-Pro), Group 2 (Pro- Sup) and Group 5 (Sup-Pro, Holding a weight of 0.5 kg), 

the average RMSEs of all one-way movements are low (from 5.58° to 6.44°). This means the model 

can accurately predict all the one-way movement. 

For the complex movement in Group 3(Continuous Cycles), the accuracy of the model is reduced, 

and there is more variability between different individuals. For the Group 4 of random motion, the 

total average RMSE is smaller compared with continuous cycles movement. The elbow 

flexion/extension tests in Chapter 4 also had a similar result. This may be the reason that the 

freedom of random motion makes the subjects easier to relax. 

The above results show that the forearm pronation/supination model in this chapter can accurately 

identify and predict the movement coming from different subjects, so it is able to meet the different 

individual variability. 

The next step is the extension on the number of subject and the diversity of the movement, in order 

to complete a more in-depth statistical analysis and the more certainty observations. Meanwhile, 

fatigue should be considered in the experiment, since EMG signals are significantly influenced by 

fatigue. Online parameters tuning is considered to solve the fatigue issues. 
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5.4 Chapter Summary 

This chapter has established a neuromusculoskeletal model for forearm rotation. 

In view of the forearm rotation is a very complicated movement, this chapter firstly analyzed the 

physiological structure of the forearm skeletal system, and determined the forearm rotation center 

that is proximally through the radial head and distally through the center of ulnar head cross-section. 

Also, the forearm major muscles and their positions have been analyzed. 

The sizes of a hospital cadaver ulna and radius were measured in this chapter, as a reference to the 

model establishment. According to relevant physiological data, a musculoskeletal model, including 

three muscles (PT, PQ, SUP) and two skeletons (ulna, radius), has been established. By the 

comprehensive usage of the actual measurement data and the theoretical formulas, the model 

parameters have been initially determined. With MATLAB / Simulink for programming, the 

biomechanical model of forearm rotation has been successfully simulated. 

Five groups of experiments of forearm rotation have been designed. According to the results, the 

particularity of this forearm musculoskeletal model has been pointed out. 14 selected model 

parameters are respectively tuned by Genetic Algorithms (GA) and Differential Evolution (DE). The 

cost function is the root mean square error (RMSE) between the predicted and measured forearm 

rotation angle. By analyzing the experimental RMSEs of five groups test, the accuracy and 

feasibility of this forearm biomechanical model has been confirmed. During the vilification, the 

forearm model can mostly achieve real-time when the tuning takes only the key parameters and 

with a not large tuning range. And the limitation of running time is all because of the tuning method, 

not the model itself. Further information about real-time tuning is informed in Chapter 6. 
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 A Neuromuscular Interface  

for Motion Prediction of the Upper 

Limb 

In previous chapters, this thesis has discussed EMG signal processing and established the muscle 

model, musculoskeletal geometry model and kinematics model of elbow joint flexion / extension. 

Also, based on the physiological structure of forearm pronation / supination, a new musculoskeletal 

geometry model of forearm rotation has been developed. Since the movement of human upper limb 

is a combination of elbow joint movement and forearm movement, so this chapter presents a two 

degree of freedom (2-DOF) neuromuscular interface (NI) for the human upper limb movements by 

integrating the elbow and forearm models. So till now, the interface can predict three kinds of upper 

limb movements: elbow flexion / extension, forearm pronation / supination and complex movement. 

Also, in order to improve the performance of this 2-DOF NI, two kinds of tuning methods are 

developed and compared in this chapter. 

6.1 Interface Design  

The elbow flexion / extension and forearm pronation / supination can be regarded as two 

independent movements or combined into a composite motion (shown in Figure 6.1). They are 

independent from each other in the muscle signal selection: the elbow flexion / extension relies on 

biceps and triceps, the forearm pronation / supination depends on supinator, pronator teres and 

pronator quadratus. When the human arm acting as complex motion, ten channels are used to 

separately measure the five muscles EMG. The results for all muscles from signal envelope and 

muscle activation dynamics processing are put in one data file. 

The muscle models of elbow flexion / extension and forearm pronation / supination are the same. 

They are formed based on the Hill model and full consideration of active force, passive force and 
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viscous force. However, some muscle model parameters of these two movement, such as the 

maximum muscle force (FMax) or the optimal muscle fiber length (lopt), are different. 

The musculoskeletal geometry models of elbow flexion / extension and forearm pronation / 

supination are totally different. Most parameters of these two models vary widely. Thus, in the 

composite movement, the two musculoskeletal models are operated as two completely independent 

modules. The kinematic models of the elbow and forearm rotation are the same, and some 

parameters such as the forearm length (lArm) and the quality of forearm (m) are also the same. 

Therefore, when the elbow flexion / extension and forearm pronation / supination models are 

combined, the operation of each model is independent unit and not interfere with each other. 

However, in parameters tuning, some new considerations should be taken: Some parameters belong 

to the independent movement, which means they only affect flexion / extension or pronation / 

supination movement, such as the maximum muscle force (FMax), the optimal muscle fiber length 

(lopt), the distance from the muscles SUP start point to the radius rotation center (Usup), the 

distance from muscles SUP end point to the radius rotation center (rsup) and so on. And some other 

parameters belong to both of the movements, which means they affect the flexion / extension and 

pronation / supination movements at the same time, such as the forearm length (lArm), the quality of 

forearm (m). Thus, these common parameters are important to be considered in the composite 

movement. 

 

Figure 6.1 2-DOF interface of the elbow flexion/extension and forearm pronation/supination 
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6.2 Tuning Methods to Model Parameters 

The purpose of parameter tuning is to make the model precisely match each subject. The objective 

function of tuning is minimizing the RMS (root mean square) between the model predicted joint 

angle and the actual joint angle. Since each tuning parameter has its certain range, mainly the 

physiological limitations of human body. Thus, the model tuning belongs to the optimization 

problem to obtain the combinatorial variables for minimizing the objective function under the given 

constraints. In nearly 30 years, in order to meet the needs of solving different optimization problems, 

the evolutionary algorithms get more and more attention, and are widely used in various fields, 

based on its high parallelism, self-organizing, self-adaptive and self-learning characters. 

Evolutionary algorithms are a class of algorithm referencing the biological law of evolution[145]. 

They simulate the biological reproduction, mutation, recombination and selection. For an 

optimization problem, they randomly select a certain number of candidate solutions from the 

solution space to form an initial population, and use an encoding method for encoding the initial 

population. The initial population forms a new generation by the heredity, variation and 

hybridization. Then the algorithms determine the merits of this new population by its fitness 

function, to simulate the natural survival through this process. After several generations’ survival, 

the fittest optimum population is gained, namely the optimal solution. The evolutionary algorithms 

have the following advantages: 1. By using the genetic code of optimization variables as calculating 

and searching objects, the algorithms can not only work for numerical optimization problems, but 

also for non-numerical optimization problems. 2. By only using the "fitness" message as the 

optimization information, and without other supporting information, the evolutionary algorithms 

can be applied to various optimization problems. 3. With the group search strategy, the algorithms 

can achieve the parallel searching and is more particularly suitable for multi-objective optimization 

strategy. 4. With random searching mechanism, the robustness of the algorithm is enhanced. Overall, 

the evolution algorithm, as a global search method, has the advantages of universality, parallelism, 

robustness and simplicity. 

In the 2-DOF human-robot interface for upper limb movement, two kinds of evolutionary algorithm 

have been used for the model parameters tuning: Genetic Algorithm (GA) and Differential 

Evolution (DE) 
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6.2.1 Genetic Algorithm (GA) 

GA was firstly proposed by professor Holland J at the University of Michigan (United States) in 

1975. The basic flowchart of GA is shown in Figure 6.2. GA includes two processes: initialization 

and evolution, and the process of evolution includes three genetic manipulation: selection, crossover 

and mutation. 

 

Figure 6.2: The Flowchart of Genetic Algorithm  

When programming in MATLAB, the GA option in the Global Optimization Toolbox can be used 

for the tuning work. However, the time of tuning processing is too long. 

In this chapter, GA was programmed in MATLAB for tuning calculation. The running speed was 

much faster than using the toolbox. The RMS between the predicted joint angle and the actual 

measured joint angle was set as the objective function of GA. The equation of objective function is 

shown in Equation (6.1) 
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min𝑓 = √
1

𝑛
∑(Dpred − Dactu)2

𝑛

𝑖=1

 (6.1) 

where f is the fitness function, n is the number of samples, Dpred is the predicted joint angle, 

Dactu is the actual measured angle. 

For example, for the elbow flexion and extension model, a total of 14 parameters (the physical 

meanings of these parameters is shown in Chapter 3) were tuned, which comprising: 

X(1) = params. Loptbi  

X(2) = params. Lopttr  

X(3) = params. Fmaxbi  

X(4) = params. Fmaxtr  

X(5) = params. Cpassbi  

X(6) = params. Rbi  

X(7) = params. Kbi  

X(8) = params. Hum  

X(9) = params. Ubi  

X(10) = params. Utr  

X(11) = params. A  

X(12) = params. m  

X(13) = params. LArm  

X(14) = params. ThreTr  

The X ,which could make the objective function reach minimum, is the optimal solution. 

The algorithm parameters of GA were defined as follows: 

number of population members：NIND=50； 

maximum number of iterations：MAXGEN=100； 
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number of variables：NVAR=14； 

precision of variables：PRECI=20； 

crossover probability：GGAP=0.8； 

By the usage of Global Optimization Toolbox in MATLAB, the tuning time was about 1 hour. By 

the usage of self-programmed GA, the time was around 40 minutes. 

One of the tuning results of single cycle test for elbow flexion/extension is shown as follow: The 

tuned RMSE=3.3056º. The optimal solution of the 14 tunable parameters is shown in Table 6.1. The 

pictorial representation of these 14 parameters in optimal solution is in Figure 6.3. Where the 

abscissa represents the 14 parameters in Table 6.1 and the ordinate represents the optimal solution 

for these 14 parameters. Figure 6.4 represents the change in RMSE and the population mean, over 

the course of the 100 iterations. At the beginning (RMSE error is large), the convergence speed is 

faster. As the number of iterations increases, the convergence speed decreases as the solution 

becomes closer to the optimal solution. 

Table 6.1 The optimal solution of 14 tunable parameters 

Test Port Parameter Optimal solution 

1 Loptbi 0.331506520754357 

2 Lopttr 0.347649476670720 

3 Fmaxbi 1360.14076246334 

4  Fmaxtr 1248.36983525260 

5 Cpassbi 1.39150389814749 

6 Rbi 2.00340519276161 

7 Kbi 1.21064959588012 

8 Hum 0.313466990916243 

9 Ubi 0.0301293469708890 

10 Utr 0.0460200271797439 

11 A -0.00617270581503469 

12 m 1.57408196838567 

13 LArm 0.377477147557399 

14 ThreTr 0.0496197124669194 



Chapter 6 A Neuromuscular Interface for Motion Prediction of the Upper Limb 

110 
 

 

 

Since GA was proposed, it was widely used for project design, machine learning, pattern 

recognition, image processing, etc. Nevertheless, there are still many limitations in GA theory and 

 

Figure 6.3: The optimal solution of 14 tunable parameters 

 

 

 

Figure 6.4: The change of the optimal solution and the change of population 

mean 
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application methods, such as premature convergence, slow speed for convergence and low 

efficiency. In this thesis, each of experimental tests in chapter 4 and 5 has been tuned by GA for 

four times. As shown in Table 4.6, Chapter 4, all the RMSEs of this study are significantly smaller 

than James Pau’s study. This indicates that the accuracy of GA is still relatively high. 

6.2.2 Differential Evolution (DE) 

DE was first proposed by Storn and Price in 1995. It is a new simple and efficient global 

optimization algorithm. The main steps are consistent with other evolutionary algorithms, including 

mutation, crossover and selection. The most important operator of DE is the differential mutation. 

Two individual vectors randomly selected from the population are firstly differenced. After the 

difference vector is weighted, it is summed with the third individual vector according to certain 

rules to get individual mutant vector. Then, the mutant vector is crossed with the parent individuals 

to get trial vector. Lastly, by comparing the fitness of trial vector and parent vector, the better one is 

saved in the next generation population. Thus, the populations of DE are continuously iterative 

calculated by differential mutation, crossover and selection, until the termination condition is 

reached. Since DE algorithm is used in one-to-one selection operation, the elitism will not be lost in 

the process of evolution. At the same time, DE can better maintain the diversity of the population 

compared to the sort or tournament selection [146]. The basic processes of DE is shown in Figure 

6.5. 

DE algorithm has been widely studied and successfully applied within 20 years. It has the following 

advantages:  

1. Simple structure and easy to use: The mainly genetic manipulation of DE is the differential 

mutation. Since this mutation is only related to the addition and subtraction of vectors, it is easy 

to implement. 

2. Superior performance: DE algorithm is reliable, efficient and robust in features, so its 

performance is better than many other evolutionary algorithms. 

3. Adaptability: The differential mutation of DE has self-adaptive capacity in evolution step and 

searching direction. It can automatically adjust depending on the objective function scene. 

4. Low complexity in time: The time complexity of basic DE algorithm is zero [147]. It allows 

the algorithm to solve large-scale and expensive computational problems. 
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Figure 6.5: The flowchart of basic differential evolution algorithm  

This thesis used the Function ' differential evolution ' from DE algorithm by Kenneth Price and 

Rainer Storn, and compiled the DE calculation program. The running time of DE was significantly 

shorter than GA. The RMS between the predicted joint angle and the actual measured joint angle 

was set as the objective function of DE. The equation of objective function is shown in Equation 

(6.1). The algorithm parameters of DE were defined as follows: 

number of population members：Np=140； 

maximum number of iterations：Maxiter=300； 

number of variables：NVAR=14； 

DE-stepsize：F=0.7； 

crossover probability：CR=0.9； 

One of the tuning results of single cycle test for elbow flexion/extension is shown as follow: The 

tuned RMS=5.8799º. The optimal process only took 8 minutes. The pictorial representation of the 

14 parameters in optimal solution is shown in Figure 6.6. The change of the optimal solution during 

optimization is in Figure 6.7. As can be seen from Figure 6.7, compared with GA, the cost function 
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value of DE is jumping during iteration, but the cost function value of GA is gradually changing 

from large to small (shown in Figure 6.3). 

 

 

The performances of DE and GA algorithm were compared by a group of experiments at the 

following three aspects: the quality of the final solution, the speed of convergence and the success 

rate. Under the same set conditions in parameters, the quality of the final solution of GA algorithm 

was slightly higher than that of DE algorithm. For example, in a single cycle test of elbow joint, 

 

Figure 6.6: The optimal solution of 14 tunable parameters 

 

 

 

Figure 6.7: The changes of the optimal solution 
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during a total of 10 times optimization, the RMS of DE algorithm could quickly converge to 

3.59º-10.78º, and the RMS of GA could converge to 2.45º-5.32º. However, the convergence speed 

of GA was significantly lower than that of DE. For all the elbow single cycle test, every 

optimization in DE could be finished within 8 minutes, while the optimization of GA needed about 

40 minutes. And the success rates of GA algorithm and DE algorithm were comparable. 

Therefore, in view of the high accuracy and fast convergence of DE algorithm, it can be used for 

fast online tuning. The GA algorithm can only be used for offline tuning. 

6.3 Chapter Summary 

This chapter established a 2-DOF human-robot interface for upper limb movement. This is a new 

neuromuscular interface based on human EMG and physiology musculoskeletal model. This 

interface provides the operations to predict human elbow flexion / extension, forearm pronation / 

supination, and the complex movements. The treatment methods of signal selection, muscle model 

and musculoskeletal geometry model were given during the composite movement formed by elbow 

flexion / extension and forearm pronation / supination. 

This chapter focused on GA and DE the two kinds of evolutionary algorithms as the model 

parameter tuning method. GA and DE calculations were programmed in MATLAB. The 

performances of DE and GA algorithm were compared by experiments in three aspects (the quality 

of final solution, the speed of convergence, the success rate), and the results showed that: Under the 

same set conditions of parameters, the quality of the final solution of GA algorithm was slightly 

higher than that of DE algorithm. The convergence rate of GA was significantly lower than that of 

DE algorithm. The success rates of GA algorithm and DE algorithm were comparable. Thus, DE 

algorithm can be used for fast online tuning, and GA algorithm can only be used for offline tuning.
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 A GUI Design to Facilitate the 

NI Validation 

 

In order to validate the Neuromuscular Interface (NI) of upper limb, a 5 Degree of Freedom (DOF) 

upper limb exoskeleton has been designed by our research group [148]. This chapter will show the 

basic information about the hardware of this exoskeleton. By aiming at connecting the exoskeleton 

to the designed NI (in Chapter 6) and for the purpose of easier usage, a Graphical User Interface 

(GUI) is designed. This GUI also acts as a bridge between the lab research and the commercial or 

public applications. 

7.1 Introduction of a 5-DOF Upper Limb Exoskeleton 

In another study of our research group, a 5-DOF left upper limb exoskeleton has been developed 

[148]. Among the 5-DOF, 4-DOF were used to drive the spherical 3-DOF movement of human 

shoulder, and completed the shoulder adduction and abduction, internal and external rotation, 

flexion and extension. And the rest 1-DOF was used to drive the elbow flexion and extension 

movement. Figure 7.1 shows the CAD model of this exoskeleton, and Figure 7.2 is an application 

of this exoskeleton. The Joint 1-3 represent the 3-DOF of human shoulder joint. The Joint 4 is 

connected to the human upper arm to compensate the position changes of upper arm during 

shoulder moves. The Joint 5 is the elbow joint, with a handle on the top for users to hold. The whole 

exoskeleton has been hold by a metal frame, so its weight will not be attached to the users. 
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There are many important design considerations in the prototype of exoskeleton, to ensure that the 

exoskeleton can complete its operational requirements, and are friendly to the user. The 

considerations include the range of exoskeleton joint motion, joint alignment, actuators and sensors, 

and safety features. These are going to be introduced as follows. 

 

 

Figure 7.1: CAD model of the 5-DOF upper limb exoskeleton [148]. 

 

 

 

Figure 7.2: The 5-DOF exoskeleton used by a healthy person [148]. 
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7.1.1 Range of Exoskeleton Joint Motion 

In the workspace of human upper limb, the exoskeleton should not have interferences with the users 

or between the different parts of the exoskeleton. The limitation of each joint displacement is based 

on the warranty of no interferences. The limited angular range of each exoskeleton joints are listed 

in Table 7.1 

Table 7.1 Range of motion of exoskeleton joints 

Exoskeleton Joint Clockwise Limit /° Counter-Clockwise Limit /° Total Range of Motion/° 

1 14 -89 103 

2 120 -25 145 

3 -57 -132 75 

4 18 -78 96 

5 180 55 125 

7.1.2 Joint Alignment 

Within the entire workspace, the five joints of exoskeleton are aligned with the corresponding 

human joints. Joint 1,2,3,4 are aligned with the shoulder joints and the Instantaneous Center of 

Rotation (ICOR) of shoulder. Joint 5 is always aligned with the user's elbow joint. To accommodate 

users with different upper limb lengths, the link lengths of the exoskeleton corresponding to human 

upper arm and forearm portion were adjustable, so the joints could be aligned. When the users take 

a sitting position, the height of the exoskeleton can also be adjusted by changing the support frame, 

to ensure the shoulder alignment. Table 7.2 shows the size of the typical human body segments and 

the corresponding adjustable range of exoskeleton segments. The upper limb length of adult are 

obtained from the average value in literature [149]. 

Table 7.2 Dimensions of upper limb and exoskeleton segments 

Segment  
Average Adult 

Dimensions (mm)  

Exoskeleton Dimensions (mm)  

Lower Limit  Upper Limit 

Shoulder ICOR to Elbow  278 255 335 

Elbow to Palm  349 125 365 

Shoulder to Ground 1000 800 1200 
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7.1.3 Actuators and Sensors 

Compared with ordinary robots, although the load of the rehabilitation robot is small, there are more 

high requirements to the response speed and accuracy of the drive system. Therefore, the DC motor 

and gear box are chosen as the exoskeleton driver. The Maxon 24V brushless DC motor and the 

gearbox (MAXON motor, Switzerland) [150] are chosen for driving the five exoskeleton joints. The 

controllers of Maxon ESCON are used to drive each motor. The parameters of each gearbox and the 

combination joint output are shown in Table 7.3.  

Sensors are installed on the exoskeleton in order to measure the five joints rotation angle of 

exoskeleton and the force between users upper limb and exoskeleton. The angular displacement is 

used to determine the posture and control of the exoskeleton upper limb for real-time. The 

measurement of interaction force is applied for the interactive control. The AMS magnetic encoders 

(AMS, Austria) [151] are installed on the outer side of skeleton joints to directly measure the 

angular displacement of the joint. The measurement of force is achieved by the customized force 

sensor [148]. 

Table 7.3 Specifications of the motor-gearbox units 

 

Joint 
Motor-Gearbox Combination Nominal Gearbox Output 

Maxon Motor Gearbox (r :1) Speed (rpm) Torque (Nm) 

1 

2 

3 

4 

5 

EC 45 Flat 50W 24V 

EC 90 Flat 90W 24V 

EC 45 Flat 50W 24V 

EC 45 Flat 50W 24 

EC 45 Flat 50W 24V 

156:1 Planetary 

91:1 Planetary 

319:1 Planetary 

47:1 Spur 

156:1 Planetary 

33.7 

28.8 

16.5 

111.7 (18.6*) 

33.7 

9.3 

29.0 

16.9 

3.0 (18.0*) 

9.3 
*Values after a further reduction of 6:1 by the Joint 4 rail mechanism. 

7.1.4 Safety Features 

Exoskeleton is directly connected with the body of the user, so the accident or failure would easily 

cause serious damage to the user. In the exoskeleton robot system, many features have already been 

considered to ensure users safe and comfortable operation. The mechanical stops are used for each 

joint, to prevent the joint movement of exoskeleton beyond the standard operating range. The 

magnetic encoder sensors were used to monitor the position of each joint, and to prevent the joint 

beyond the limitation. When there was a problem, the exoskeleton users or external users can 

effectively stop the exoskeleton robot via an emergency stop button. 
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7.2 System Architecture and Graphical User Interface 

Graphical User Interface (GUI) is the interface for information exchange between the human and 

robot. The users of exoskeleton are normally patients, they need to move following the exoskeleton. 

The whole movement process is in high degree of automation, and with little human intervention 

operation. Therefore, it is indispensable to provide an application interface which can be easily 

understood by all users. 

7.2.1 The Operating Procedures of the Interface 

The flowchart of Operating Procedures for the interface is shown in Figure 7.3 Firstly, the system 

initialization is used to detect whether all hardware connection. Then, the state of exoskeleton is 

judged whether it is normal. If abnormal, the abnormality alarm displays and the system returns to 

the start. If normal, the exoskeleton starts to formal work. In Signal Acquisition and Processing 

Module, the EMG signal acquired by the system is pretreated to get the muscle activation. Then, the 

Joint Angle Prediction module is used to get the RMS error between the measured and predicted 

joint angles. If the RMS error is too large, it indicates that the parameters of physiological model 

are inappropriate. The Tuning Model is used. After tuning, the exoskeleton controller is chosen 

depending on the size of the muscle activation, The Expected Joint Torques is converted to Control 

Commands, driving the exoskeleton robot movement. 

7.2.2 Graphical User Interface (GUI) 

A GUI was developed in Matlab for operating the 2-DOF interface and the 5-DOF exoskeleton. It 

includes two main parts: motion selection and module selection. Figure 7.4 shows the main 

interface of the GUI. The first step is to select a motion type. There are three types can be chosen: 

elbow flexion and extension, forearm pronation and supination, and cooperative movement. After 

selecting a motion, the interface can start predicting joint movement with its original settings by 

pressing the start button. If the users want to change the settings of each module or check the 

phased results, the four module buttons will work. The main modules of software system include: 

Signal Acquisition and Processing System Module, Joint Angle Prediction System Module, 

Physiological Parameters Tuning Module, EMG Based Controller Module (EBC), Force Sensors 

Based Controller Module (FBC) 
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Figure 7.3:  The human-robot interface operating procedures 
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Module 1. Signal Acquisition and Processing System Module 

It is used for setting the acquisition parameters of EMG signal (Sample Rate Per Chan, Samples 

Per Chan, Num Chan), and for obtaining the EMG signals. Envelope method has been used for 

data processing of the human muscle surface signal (details in Chapter 4) to obtain the degree of 

muscle activation. The interface of this module is shown in Figure 7.5. The module includes 

three parts: the signal collection part is used to show the raw EMG signals from biceps or 

triceps; the parameter setting part is used for changing the collection parameters; and the signal 

processing part shows the result of signals after linear envelop processing.  

 

Figure 7.4: The main interface of this GUI 
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Module 2. Joint Angle Prediction System Module 

This module is the main module of the software system. It includes the configurations of 

musculotendon model, musculoskeletal model and kinematics model, programming by Matlab 

Simulink software. The program of Joint Angle Prediction System is shown in Figure 7.6, and 

its interface is shown in Figure 7.7. This module is the main calculation of the neuromuscular 

interface. It contains the models developed in Chapter 3, 4 and 5. It takes the processed EMG 

signals from last module and predict the joint angle. In the module interface (Figure 7.7), the 

changes of predicted angle (blue line) and measured angle (green line) are shown, as well as 

RMSE between them. 

 

Figure 7.5: Signal Acquisition and Processing System interface 
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Figure 7.6: Joint Angle Prediction System program 

 

 

 

Figure 7.7: Joint Angle Prediction System interface 
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Module 3. Physiological Parameters Tuning Module 

If the RMS error between the measured and predicted joint angle exceeds the threshold, it 

means the parameters of physiological model is inappropriate and the data enter the Tuning 

Model. The acceptable tuning methods include: Genetic Algorithm (GA), Differential Evolution 

(DE), Simulated Annealing (SA), and Partial Derivative Algorithm. The interface (shown in 

Figure 7.8) displays a tuning result and all the parameter values during the optimal solution.  

 

After the operations of the first three modules, the motion prediction for individual users has been 

completed. If the exoskeleton is needed for the rehabilitation patients’ assessment, then the control 

strategies are ready to be selected in the following modules. The controller of exoskeleton is chosen 

depending on the level of the muscle activation. It includes the EMG Based Controller (EBC) 

Module and Force Sensors Based Controller (FBC) Module, the details are in Chapter 8. 

Module 4. Force Sensors Based Controller Module (FBC)  

This controller has been completed by another research in this research group [148]. 

Module 5. EMG Based Controller Module (EBC) 

 

Figure 7.8: Physiological Parameters Tuning interface 
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This controller is used to convert the expected joint torques calculated by musculoskeletal 

model to control commands for driving the exoskeleton. The interface of this EMG Based 

Controller (EBC) Module is in Figure 7.9. It shows the real-time control result (joint angle) and 

the motor torque changing with running time. This design helps the users to check the running 

conditions of the exoskeleton.  

 

7.3 Chapter Summary 

In order to verify the 2-DOF neuromuscular interface of upper limb, a 5-DOF exoskeleton has been 

used in this chapter. The EMG-based controller of this exoskeleton will be developed in detail in 

Chapter 8. For the convenience of users, a graphical user interface (GUI) has also been designed in 

Matlab for operating the 2-DOF interface and the 5-DOF exoskeleton. This chapter introduced the 

main module of the software system and showed the usage of this GUI. 

 

Figure 7.9: EMG Based Controller Module (EBC) interface 
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 NI Validation through 

Exoskeleton Control  

 

A 5 Degree of Freedom (DOF) upper limb exoskeleton has been introduces in Chapter 7. It was 

used to be controlled by the impedance control [148]. At present, the common control strategies 

used for exoskeletons are mainly position control and impedance control [152-156]. Rahman et al 

tracked the exoskeleton by non-linear torque calculation control [157]. Some other researchers used 

the EMG signal to control the exoskeleton [70, 158, 159]. Also, some commercial exoskeleton 

device, such as Hand Mentor and Robot Suit HAL-5, can all be controlled by EMG. For the 

human-robot interaction of exoskeleton, EMG signals are used in many of the upper limb 

exoskeletons [70, 158, 159]. Baklouti et al proposed to use face and mouth posture as exoskeleton 

control command [160]. 

There are many ways for the upper limb exoskeleton to obtain the human movement intention, such 

as force / torque signal, neuromuscular electrical signal, EEG signal and so on. In this thesis, the 

upper limb exoskeleton combined the EMG signals and wrist force signal to analyze the human 

movement intent. Two types of human-robot interaction approaches were used, one was the 

EMG-based interface controller, and the other was the impedance-based interface controller. 

For the EMG-based control (EBC), the EMG from disabled arm or healthy side upper limb of the 

patient is used to "understand" the user's subjective moving intents. This control method can 

achieve the information interaction between the upper limb exoskeleton and the patient, to complete 

the autonomy rehabilitation process. For the impedance control, the exoskeleton applies a force to 

the user through its structure motion, which means the mobile exoskeleton moves the human upper 

limb, and the exoskeleton has a current position, but when the user exerts force to it, the system will 

deviate from this position. This makes the interaction between the user and exoskeleton can achieve 

flexible position control. 

This chapter develops an EBC controller, and with the combination of FBC controller, it achieves 
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the verification propose of the EMG-based Neuromuscular Interface. 

8.1 Control Strategies of the 5-DOF Exoskeleton  

8.1.1 Overall Design of the Control System  

The exoskeleton robot developed in this thesis is used to assist the movement of body weaken 

person (such as the elderly, the disabled, and the injured people). If the exoskeleton can offer power 

assist to them in daily activities and rehabilitation, according to the user's movement intention, this 

will be a very bright future. The EMG signal from human muscle directly reflects human movement 

intent. The feature space of EMG signal contains many motion commands from the corresponding 

cortex region. By analyzing muscle EMG signals, it possible to "Prophecy" the action before the 

real action took place (due to the electro-mechanical delay which can be 20-80 ms). If the 

"prophecy" information of motor neurons can be clearly identified, it is equivalent to control the 

exoskeleton directly by the brain. In that way, a new intelligent human-robot interface can be 

achieved. 

In this thesis, the patient's muscle EMG is the main input of the exoskeleton control. However, there 

are two problems of the EMG signal based controller. First, different users for the same action will 

not create the same EMG signals (individual differences). Second, the muscle EMG signals are 

susceptible to fatigue, electrode position changes, EMG training and other factors, which may led to 

a low muscle activation. The solution of the first problem is adding a tuning model in the EMG 

signal based controller (EBC), to help the controller adapt to different users. The method of solving 

the second problem is changing to use a Force sensor-based controller (FBC) when the levels of 

muscle activation are low. The FBC takes an impedance control, and enables a flexible position 

control between the upper limb of users and exoskeleton. 

The overall structure of the exoskeleton controller is shown in Figure 8.1. In Figure 8.1, the 

information data from human subject is calculated through two close loops: One is the EBC which 

takes the EMG signal as input, calculates each muscles’ force by musculotendon model, computes 

the joint torque by musculoskeletal model and results the joint torque to the controller selection. 

Also, a real-time tuning based on the comparison of measured and predicted joint angle is included 

in the EBC controller. The other is the FBC which takes the wrist force and elbow angle as input, 

and uses the exoskeleton joint feedback to optimize the output torque. By making the wrist force to 

0, through the PD control, impedance control and admittance control, the FBC achieve the desired 
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auxiliary results. The choice of these two controller for expected assisting force is depended on the 

amount of input, which mainly means the activation of muscles. When the activation is high, the 

EBC is chosen. When the activation is low, the FBC starts to work. When the activation is moderate, 

both EBC and FBC start to control. By the fusion of EBC and FBC as the input information for 

control system, the purposes to control exoskeleton based on human intention can be achieved. The 

first phase of the exoskeleton controller work is to select the input control signal. The second stage 

is to complete the exoskeleton control work according to the type of input signals. 

8.1.2 EMG Based Controller (EBC) 

The control principle of EBC is as follow: With the layout of EMG electrodes on user's upper limb, 

the users move the upper limb according to their own wishes. After the weak upper limb EMG 

signals are captured by electrodes, filtering, amplification and A/ D conversion processing are used 

to analyze the signal information, then the signal information is send to the host computer via a 

USB port. The regular monitoring thread within the host computer constantly monitors whether 

there are any action EMG generated. When the judgment operation starts, a message is send to start 

the EMG acquisition thread. The EMG acquisition thread collects the EMG signal of motion in 

1200HZ frequency, and a linear envelope method is used to extract muscle activation. Then the 

muscle force is gained through musculotendon model, and the joint torque is obtained by 

musculoskeletal model. Finally, the joint torque is converted into the torque command to drive 

motors of the upper limb exoskeleton, in accordance with the user's motion intention. 

In order to adapt the EBC controller to different users, the individual parameters of the user need to 

be tuned before the exoskeleton robot formal work. This tuning is introduced in Chapter 4. 
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Figure 8.1: Schematic diagram of the controller 
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8.1.3 Force Based Controller (FBC) 

Wrist force (which is the force caused by difference motions between exoskeleton wrist and the 

patient wrist) is also used as a kind of input information for the controller. The FBC is based on the 

principle of impedance control, to lead the wrist force caused by the differences of joint motion to 

zero. This part is shown in another study [148] of our research group.  

The equation of impedance control is written as: 

τ = M (θ̈r − θ̈) + B(θ̇r − θ̇) + K(θr − θ) (8.1) 

where τ is the desired joint torque, θr is the desired joint angle of the exoskeleton, θ is the 

measured joint angle of the exoskeleton. K, B, M are the spring coefficient，viscous coefficient，

moment of inertia. 

Finally, the joint torque is converted to the torque command to drive motors and the exoskeleton 

robot. 

8.1.4 Motor Driver Settings 

In the control flowchart, after controller selection, the desired joint torque is obtained as the motor 

driver input. Then the desired joint torque is converted to the driving commands of the motor to 

drive the exoskeleton. 

This thesis selected the EC45 servo motor and ESCON36 / 3EC motion controller produced by 

Maxon. The servo motor comes with a Hall sensor. ESCON controllers can be connected to a PC 

via USB cable, and be set by ESCON Studio application configuration. ESCON36 / 3EC is the 

efficient four-quadrant PWM controller. And ESCON36 / 3EC has both digital and analog input and 

output functions. J1 is the power connector. J2 and J2A are the link connectors of motor and the 

Hall sensor. J5 is the digital input and output connector. J6 is the analog input and output connector. 

J7 is the USB connector. 

ESCON controller can be set by three following aspects: 

1. Set the motor parameters  

Based on the specifications of the motor (in Maxon's manual), the motor speed constant, the 

thermal time constant of the winding, and the pole pair number of the motor are settled. 
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2. Select the control mode 

ESCON controller has speed control, speed adjustment and electric current control, three 

modes. The electric current control has been chosen for this thesis. It is a comparison between 

the actual motor current (actual motor torque) and the set current value (desired joint torque). If 

there is a deviation, the motor current is adjusted. Since the large current represents to the high 

torque, during the servo motor operation, the torque control can be completed by the current 

control. The current control loop is within the motion controller, it has the characteristics of 

small calculation and fast response. 

In EBC controller, the desired joint torque can be obtained through the EMG signal processing, 

musculotendon model and musculoskeletal model calculation. One group of results are shown 

in Figure 8.2-8.6. They are the total desired joint torque (including both biceps and triceps) for 

elbow flexion / extension from different experiments. Figure 8.2 is the joint torque for elbow 

single cycle movement during seven seconds. Figure 8.3 is the result of elbow continuous 

movement with the increasing amplitude, in 12 seconds. Figure 8.4 is the result of elbow 

random movement in 13 seconds. Figure 8.5 is the elbow joint torque in continuous full range 

movement during 24 seconds. And Figure 8.6 is the joint torque of elbow continuous half range 

movement. 

  

Figure 8.2: Desired torque for Single cycle 

test. 

Figure 8.3 Desired torque for Continuous 

cycles starting with a small amplitude that 

gradually increases test 
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Figure 8.4: Desired torque for Random 

movement test. 

Figure 8.5 Desired torque for Continuous 

cycles test. 

 

3. Set the digital input configuration 

Three enter lines are used to set the ESCON: One is used to enable the motor, one is used to 

select the direction of actuator, and the last one is used for the PWM to set the output level. 

(Note: the PWM sent to ESCON controller must have 10% -90 % duty cycle).  

The flowchart of motor control calculation is shown in Figure 8.7. The motor control takes the 

desired joint torque as input, calculate the motor current, convert to PWM and then control the 

motor movement. 

 
Figure 8.6: Desired torque for elbow flexion motion for Continuous cycles at half the 

range of capable motion   
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For a given desired torque τ, the desired motor current i can be calculated as follow: 

i =
τ

kt × kr × η
 (8.2) 

where kt  is the motor torque constant, kr  is the gearbox reduction constant, η is the total 

efficiency of the gearbox and motor. 

For the conversion from desired output current i to PWM, firstly, a suitable maximum output level 

is set as 90% of duty cycle of the PWM. Then the output of the duty cycle is calculated by Simulink 

model. 

8.2 Validation of the Elbow Neuromuscular Interface  

The EBC purposed in this chapter and the 5-DOF upper limb exoskeleton were tested to verify the 

EMG-based neuromusculoskeletal interface. 

8.2.1 Experimental Setup 

In order to assess the effectiveness of the proposed method, a group of control experiments of 

elbow movement have been conducted. The experimental subjects are three healthy male (coded as 

A, B, C). In this experiment, each subject was asked to complete the elbow flexion/extension in five 

different kinds of movement. These movements occurred in the sagittal plane, standing posture. The 

forearms and hands were relaxed during all the actions, to prevent the interference from wrist and 

finger movements. Each experiment lasted approximately 10 to 20 seconds, and every movement is 

instanced five trials. To prevent the fatigue effect, there were several 60 seconds rests within the test 

interval. The five kinds of movements were as follow: 

1. Single cycle of full flexion and full extension from a neutral, relaxed position at a moderate 

speed.  

 
Figure 8.7: The flowchart of motor control calculation 
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2. Random movement performed at the discretion of the user, with different amplitudes and at 

varying speeds.           

3. Continuous cycles of full flexion and full extension. 

4. Continuous cycles at half the range of capable motion (about 90˚ elbow angle). 

5. Continuous cycles starting with a small amplitude that gradually increases over the course of 

the trial. 

In order to clearly verify the results of EBC, each experiment respectively has a comparison of the 

test with exoskeleton robot assisting and without assisting. 

The elbow flexion / extension motion is a collaborative effort of different muscles. The muscles for 

flexion are biceps brachii, brachioradialis and brachialis, and the muscles for extension are the 

triceps brachii, and anconeus. In this study, two major muscles are chosen to place the electrodes. 

The EMG signal of biceps (Channel 1) and triceps (Channel 2) are obtained to control the elbow 

flexion / extension motion. 

8.2.2 Experimental Results and Analysis 

Firstly, a single cycle elbow flexion/extension test (Group 1) was conducted. Figure 8.8 showed the 

experimental results of subject A, while the results without the assistance of exoskeleton are shown 

in part (a), and the results with assistance are in (b). During elbow flexion/ extension, biceps 

contribute most, therefore, the experimental results only showed the surface EMG (sEMG) signal 

from biceps (Channel 1). The results (Figure 8.8) shows that the muscle activation in Channel 1 was 

lower with exoskeleton assistance, for the same movement. In this set of experiments, compared 

with the no exoskeleton assistance movement, the sEMG signals of A has a 81.5% decrease. This 

proved the obvious effect of the EBC controlled exoskeleton assistance. 

Figure 8.9 and 8.10 showed the test results of random motion (Group 2) of subject A and B. As 

described above, the results without exoskeleton assistance are shown in (a), and the results with 

assistance are in (b). The results only shows the sEMG signals of biceps muscle (Channel 1). The 

results show that: the muscle activation with assistance was significantly lower. And in these 

cooperation tests, the muscle activation levels of A and B were respectively decreased 65.9% and 

58.3%, with the exoskeleton assistance.  

In addition, with the same test settings, the activation decrease of subject A and B are different. This 

indicates that the EBC is able to well adapt to the physiological condition of different individuals. 
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This is because all the individual physiological parameters (In Chapter 4) of each subject were 

tuned by genetic algorithm to fit the models before the experiment. Thus, the EMG-based 

neuromusculoskeletal interface can adapt to any physiological condition of the test subjects. 

 

 

 

 

  
(a) Without assistance        (b) With assistance 

Figure 8.9: Random movement test results（Channel 1） for elbow flexion motion with Subject 

A  

Blue line: predicted angle, Red line: measured angle, Green line: EMG signal 

  
(a) Without assistance from controller                   (b) With assistance 

Figure 8.8: Single cycle test results（Channel 1） for elbow flexion motion with Subject A 

Blue line: predicted angle, Red line: measured angle, Green line: EMG signal 
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Figure 8.11 shows the results of subject A with the full-size continuous motion (Group 3). The set of 

test is the same with above tests. The results show that, the muscle activation levels decreased 72.7% 

with the exoskeleton’s assistance. 

Figure 8.12 shows the results of half range continuous motion test (Group 4) by the subjects A. 

Similarly, the activation decrease is 69.2%. 

 

  
(a) Without assistance        (b) With assistance 

Figure 8.11: Continuous cycles test results（Channel 1）for elbow flexion motion with 

Subject A 

Blue line: predicted angle, Red line: measured angle, Green line: EMG signal 

 

  
(a) Without assistance        (b) With assistance 

Figure 8.10: Random movement test results（Channel 1） for elbow flexion motion with 

Subject B 

Blue line: predicted angle, Red line: measured angle, Green line: EMG signal 
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Figure 8.13 and 8.14 shows the results of Continuous cycles at increasing range movement test 

(Group 5) with subject A and B. Respectively, the decreases of muscle activation are 52.7% and 

62.1%. The differences in decrease rate also show the online adaptability of the EMG-based 

neuromusculoskeletal interface. 

From all the results in different kinds of movement test, the decreases of muscle activation were all 

over 52% when the assistance worked. It showed that the assistance effect offered by exoskeleton 

robot is obvious. At the same time, it proved the good control performance of the EBC. Therefore, 

the exoskeleton systems can effectively support the usage of any elbows movements and with any 

subjects. 

 

  
(a) Without assistance        (b) With assistance 

Figure 8.13: Continuous cycles starting with a small amplitude that gradually increases test 

results（Channel 1） for elbow flexion motion with Subject A    

Blue line: predicted angle, Red line: measured angle, Green line: EMG signal 

  
(a) Without assistance        (b) With assistance 

Figure 8.12: Continuous cycles at half the range of capable motion test results（Channel 1） 

for elbow flexion motion with Subject A 

Blue line: predicted angle, Red line: measured angle, Green line: EMG signal 
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8.3 Chapter Summary 

This chapter proposed a new controller, which uses the fusion information of EMG signal and wrist 

force signal as the controller input, to control the 5-DOF exoskeleton. The purposes of controlling 

exoskeleton based on the human intention have been achieved. In this chapter, EMG has been used 

as the main input information of the exoskeleton. In EBC, the neuromusculoskeletal model is the 

main part of the control system. In order to solve the individual difference properties of the EMG 

signals, the tuning model has been added in the EBC, so that the controller can adapt to different 

users. Since the EMG signal is easily susceptible to muscle fatigue, electrode position changes and 

other factors, the wrist force sensor-based controller (FBC) has taken in charge when the muscle 

activation is too low.  

This chapter also gave the setup of the motor driver. The current controller was chosen for the 

elbow joint control. The flowchart and calculation formula of motor control were given, and the 

three digital inputs of ESCON drives were set, as well, in this chapter. 

In order to evaluate the EMG-based Neuromuscular Interface proposed in this thesis, the 5-DOF 

exoskeleton prototype and its EBC controller were tested in a group of elbow movement 

experiments. Each experiment respectively has a comparison between the control with exoskeleton 

assessment and without assessment. All the results have proved the obvious effect of proposed 

  
(a) Without assistance        (b) With assistance 

Figure 8.14: Continuous cycles starting with a small amplitude that gradually increases test 

results（Channel 1） for elbow flexion motion with Subject B   

Blue line: predicted angle, Red line: measured angle, Green line: EMG signal 
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exoskeleton on assessment. To verify the individual adaptability of the EBC, the experimental 

results with same motion but different subjects have been obtained. The results indicate the 

adaptability of EBC to all kinds of physiological conditions of different individuals. They also show 

the online adaptability of the EMG-based Neuromuscular Interface
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 Conclusions 

 

Currently, the requirements of individual assisting systems for elderly and disabled people are daily 

increasing, as well as the function expansion of prosthetic control, military, residential and 

commercial robots. However, due to the limitations of traditional human-robot interface (HRI), they 

cannot be controlled according to the user's intention. EMG-based HRI is one of the promising 

approaches to solve these problems, so it becomes a popular research area in recent years. 

The existing EMG-based HRIs have the problems of low accuracy in model, no online tuning for 

model parameters, large individual differences and so on. This thesis has achieved its main goal - to 

develop a new method of neuromuscular interface which could be applied to any human joint. This 

thesis took the elbow flexion/extension and forearm pronation/supination as case studies, and 

showed the process of establishing EMG-based models for real time human robot interaction. 

Firstly, the elbow and forearm physiological models were established to predict the elbow and 

forearm rotation movement. Experiments were used to verify the practicability and stability of the 

interfaces. Secondly, the parameter sensitivities of the models were analyzed in multi-angles. An 

online tuning algorithm for the EMG-driven models was developed and validated. Finally, a 2 

degree of freedom (DOF) upper limb exoskeleton was designed with an EMG and force information 

fusion controller. It achieved the purpose of controlling an exoskeleton robot based on the human 

subjects' intention. This chapter summarizes the whole work, and indicates the potential areas for 

future research. 

9.1 Main Achievements and Contributions 

The main achievement of this thesis was to develop a new EMG-based neuromuscular interface. 

Through a comprehensive review of literatures the main research gaps in the past EMG-based HRIs 

were identified. Several new ideas to solve some of these problems were proposed including the 

following key areas: a) Improve the accuracy of the model by changing the muscle path; b) Assess 

the parameters sensitivity by a new idea, and classify all the adjustable parameters of the model in 

details. This is conducive to establish an online tuning algorithm. c) Based on a 5-DOF wearable 

exoskeleton robot, design a controller based on the fusion of EMG and force information to verify 



Chapter 9 Conclusions 

141 
 

the feasibility of the above EMG neuromuscular interface. It helps to achieve the purposes of 

controlling the exoskeleton robot with subjects' intention. 

These new ideas proposed in the thesis are entirely feasible. Firstly, a new elbow physiological 

model was developed. By evaluating the RMSE indicators, the accuracy of this model has 

significantly improved compared to the accuracy of models in literatures. Also, an EMG-driven 

forearm pronation/supination model was developed. This is the first time such a model is proposed 

to reveal the forearm biomechanical structure for predicting movements based on EMG 

measurements. Secondly, based on the three-step layered approach proposed in this thesis, 19 

adjustable parameters were graded and their characteristics were classified. The Action Difference 

Parameters and Individual Difference Parameters were identified as well. This method of parameter 

estimation provides foundation for tuning parameters to accommodate the differences between 

users and has universal significance. Thirdly, an online differential evolution algorithm was 

designed for parameters tuning. The evaluation and tuning of model parameters can not only 

improve the performance of the interface, but also partly solve the problems of individual 

differences. Finally, an upper limb assisting system was developed. It included a 2-DOF (one was 

for the elbow flexion/extension, the other was for the forearm pronation/supination) neuromuscular 

interface (NI), a 5-DOF exoskeleton, and a fusion exoskeleton control. This exoskeleton was 

user-friendly by a designed GUI. Also, the controller based on the fusion of the EMG and force 

information was designed to verify that the EMG controller could control the exoskeleton robot 

based on human subjects' intention. Further details of the above research results are set forth below. 

An EMG-driven physiological model of the elbow joint 

In the prior studies, there are two mainly modeling methods of simulating human physiology. The 

first method is to create a large '3D human musculoskeletal platform' by using the computed 

tomography (CT), magnetic resonance images (MRI) or cadaver colour cryosection (CCC) data, 

such as SIMM (MusculoGraphics, Inc.). Koo and Mak analyzed the human elbow flexion and 

extension movements by OpenSim, and successfully predicted the elbow trajectory with moderate 

loads [2]. Erdemir et al. analyzed prediction outcomes of three lower limb joints based on a 

musculoskeletal platform [92]. Tang et al analyzed the walking motion based on a systemic 3D 

musculoskeletal model, and predicted the related muscle force [93]. This kind of model is accurate, 

but hard to achieve real-time because of its large amount of calculations required. The other method 

is to represent the human joint by a single degree of freedom mechanical revolute, and bones and 

muscles by straight line segments. This 'simplified musculoskeletal models', such as the elbow 

model in [5, 94-96] and lower limb knee model in [97], are fast in calculation and can achieve 
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real-time processing. However they are poor in accuracy during complex random movement of the 

forearm, and cannot calculate when the line of muscle force crosses the joint center. 

This thesis designed a new elbow musculoskeletal model based on the anatomical data, simplified 

the biceps and triceps muscle groups by a two-segments-polyline through muscle starting point, 

insertion point , and adhesion point, and built some reasonable assumptions based on the 

physiological properties of muscle. This model solved the above problems of the prior literature 

models. It included the musculotendon model, musculoskeletal model and kinematics model. By the 

experiments of multi-subjects and multi-movements, the new model was verified to be able to 

accurately identify different new track and range of motions. For example, the average RMSE of 

random motion test was only 13.7 °. The performance was greatly enhanced than the previous 

models (such as the model in [5]). Meanwhile, on the premise of ensuring the operation speed, the 

new model was closer to actual human physiological structure. It solved the 'passing body' issues 

(when the joint angle d=0°, the muscle path of single line model crosses the rotation center.), and 

expand the calculation of joint angle range to [-5 ~ 130 °], which is more consistent with the human 

actual joint angle range. 

An EMG-driven physiological model of the forearm rotation. 

The forearm pronation / supination motion is completed by groups of muscles working together. In 

terms of human physiological structure or daily life and exercise, the usage of muscles for forearm 

rotation is relatively few. In addition, the movement range of forearm rotation joint is relatively 

small. Thus, the human-robot interface for forearm rotation is particularly difficult. The difficulty 

mainly lies in the weakness of muscle EMG, shortness of movement time, easy interference of the 

signal, small length changes of muscle. And since, some muscles have both deep and shallow 

portions contributing to the movement, their signals are more difficult to be captured. In view of 

this, the studies of small amplitude movement, such as forearm pronation / supination movements, 

are less. Kiguchi in [161] used the EMG from forearm muscles and nerve fuzzy controller to control 

the assisting forearm exoskeleton. This neuro-fuzzy control method is complicated, and without 

physiological significance. Forearm rotation physiological model in this thesis was evolved from 

the elbow model, and it was the first one of this kind of model. It could only use the EMG activities 

from the shallow parts of pronator teres (PT), pronator quadratus (PQ), and supinator (SUP) three 

muscles to predict continuous rotation movements. This model contained three EMG signal 

processing, three Hill-typed musculotendon models, a physiological musculoskeletal model and a 

kinematics model. The experiments with four human subjects showed the effectiveness of this 

method. The RMSE of a basic Sup-Pro Test was 5.88 °. The average RMSE of Forearm Continuous 
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Cycles Test was 15.31 °. And the average RMSE of Random Movement Test was 13.35 °. The 

establishment of this forearm rotation physiological model has opened up a new way for studying 

the complex motion prediction system of small amplitude joint movement. 

Sensitivity grading and properties classification of model parameters 

In the current publications, sensitivity studies of neuromuscular model are limited, especially for the 

number of analyzed parameters is quite few. The existing literatures were mainly focusing on the 

impact of general musculotendon parameters sensitivity [111-114] to model, but lack of the impact 

of individual parameters or muscle-skeleton parameters. Secondly, most of the existing researches 

were based on human lower limb model and its parameters [111-113]. For example, Groote et al. 

assessed five main parameters sensitivity to Hill model in gait dynamic simulations [112]. Redl et al. 

only studied three main parameters sensitivity to muscle model: optimal muscle-fiber length, 

muscle physiological cross-sectional area (PCSA), and tendon rest length [113]. Though Garner and 

Pandy estimated the properties of upper limb muscles, they still only optimized three parameters - 

peak isometric force, optimal muscle-fiber length, and tendon slack length [114]. More 

comprehensive parametric analysis for upper limb is needed. 

This thesis used the EMG-based elbow physiological model as an example, and designed a 

three-step layered approach for model parameter sensitivity analysis. Firstly, an offline and no test 

signal calculation was used to determine the optimization level of each parameter. Then, the action 

difference and individual difference of each parameter are analyzed in step two and three. The three 

steps cooperate with each other to comprehensively show the parameters characters and the impacts 

on the model. Sensitivity analysis of the model parameters resulted in a relatively small subset of 

the parameters used for parameter tuning. It laid a good foundation for parameter tuning. Also, this 

three-step layered approach provided a new way for the analysis of other model parameters. 

An online tuning method for EMG driven models 

The purpose of parameter tuning is to enable the model to match a subject based on the EMG 

measurements and predicted outputs. Many researchers were looking for a quick and easy method 

of tuning operation. At present, genetic algorithm (GA) is one of the most widely tuning algorithms 

used EMG-driven models [66, 162, 163]. The nonlinear least squares optimization is also been used 

to tune the parameters until the minimum difference between the measured and predicted joint 

torques [59, 74, 75, 164]. The tuning algorithm in [66] was Parallel Simulate Anneal Arithmetic 

(SAA). Genetic algorithms can achieve high accuracy, but it is time-consuming and it does not 

always get the global minimum. Thus, GA cannot be used for online tuning. For the single elbow 
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flexion/extension test, of tuning 14 parameters, the minimum RMSE was low to 3.3056º. The 

tuning time by MATLAB Global Optimization Toolbox was about one hour, and was about 40 

minutes by self-programmed GA. Differential Evolution (DE) algorithm is a new simple and 

efficient global optimization algorithm. This thesis compiled a DE calculation program, and its 

calculation was significantly faster than the GA. 

This thesis compared the performances of DE and GA in three aspects (quality of the final solution, 

the convergence speed, the success rate) by experiments. Under the same parameters setting 

conditions, the quality of the final solution of GA algorithm was slightly better than DE algorithm. 

For example, for the single cycle elbow flexion/extension, with 10 times optimization, the RMS by 

DE could quickly converge to 3.59º-10.78º, and the RMS of GA was 2.45º-5.32º. However, the 

convergence speed of GA was significantly lower than the DE algorithm. For example, for the 

single cycle elbow movement, the tuning with DE could always be completed within 8 minutes 

(sometimes even quick to below 2 minutes), while the GA needed about 40 minutes. The success 

rates of GA algorithm and DE algorithm were comparable. Therefore, in view of the high accuracy 

and fast convergence capability of DE algorithm, it can be used for fast online tuning. The GA 

algorithm can only be used for off-line tuning. 

The human-robot interface of 2-DOF movement 

This thesis established an EMG and physiological musculoskeletal model based human-robot 

interface system. This interface provided different auxiliary operations for single elbow flexion / 

extension, forearm pronation / supination, and complex movements. It also gave the methods of 

handling muscle signal channel, muscle model and musculoskeletal geometry model, during the 

complex motions of forearm. During the combination of elbow model and forearm rotating model, 

the calculating of each model is independent and without interference. However, in parameters 

tuning, there were some new considerations. Some parameters belonged to the independent 

movement, such as FMax, lopt and Usup. And some other parameters belonged to the complex 

movement, such as the forearm length and forearm quality. Thus, in the complex movement, these 

common parameters needed to take more considerations. Finally, a graphical user interface (GUI) 

was developed in Matlab for operating the 2-DOF interface and a 5-DOF exoskeleton. 

A controller based on the fusion of EMG and force information 

This thesis proposed a controller based on the fusion of EMG and force information. The EMG 

signals or wrist force were used as an information input to the control system. It achieved the 

purposes of controlling the exoskeleton based on the intention of human subjects. In the 
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EMG-based controller (EBC), the neuromusculoskeletal model was the main body of the control 

system. In order to solve the individual different properties of the EMG signals, a tuning model was 

added in the EBC to adapt to different users. Since the EMG signal was easily affected by muscle 

fatigue and the electrode position change, when the muscle activation was too low, a wrist force 

sensor based controller (FBC) was directly into usage. The FBC used the impedance control, it 

could enable the exoskeleton to achieve flexible position control when interacting with the user’s 

limb. 

In order to assess the effectiveness of the EMG-based Neuromuscular Interface, the control 

experiments with different subjects and elbow movements were conducted, on the 5-DOF 

exoskeleton and the EBC controller. During each experiment, the movement with or without the 

exoskeleton-assisted system were compared. In 5 sets of experiments, compared to the ones without 

assisting exoskeleton, the biceps muscle activations of one subject ware reduced by 81.5%, 65.9%, 

72.7%, 69.2 % and 52.7%, with the help of exoskeleton. These results proved that the power 

assisting effect of proposed exoskeleton was obvious. The same motion control experiments with 

different individuals also verified the adaptability of EBC to different individuals. It also showed 

the online adaptabilities of the EMG-based Neuromuscular Interface. 

9.2 Future Work 

This thesis has developed a 2-DOF neuromuscular interface. It is hoped that this method can be 

applied to other joints in human body and military, medical, entertainment and other fields. 

Throughout the study, the establishment of the physiological model for forearm rotation movement 

was very difficult, thus the thesis measured the muscle and skeleton sizes of a cadaveric forearm as 

modeling basis. The advantage of selecting physiological model as human-robot interface was that 

it did not need training data, and there was a clear physiological significance. But also there were 

many challenges. Wherein, the minimum number of muscle in the physiological model was hard to 

choose. The number of muscles affected the accuracy of the model, the complexity and the task 

execution time of the model system. A set of experiments can be designed to test this: To try to 

simplify the model and ensure the model without distortion as the principle, in the beginning of the 

experiment, as much as possible EMG channels are used. Then evaluate the signals by linear 

envelope, feature selection or correlation analysis to determine the optimal number of channels and 

EMG sampling location. Finally, establish a set of common methods of analyzing the related 

muscle’s contributions to the joint movement. 
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The greatest impact to the accuracy of EMG-driven model is the characteristic parameters. 

According to the model structure, the calibration parameters can be divided into two kinds: the 

parameters without physiological significance (such as gain), and the parameters with physiological 

significance (such as muscle parameters). The accuracy of anatomical data greatly impacts model 

accuracy. This thesis determines the main parameters affecting the musculoskeletal model 

performance by sensitivity analysis. However, the effect of age (such as the elderly muscle atrophy), 

disease, physical training and muscle fatigue to musculoskeletal model are not analyzed. Since 

these factors affect EMG signals, this study also has a very practical significance. 

In this thesis, the elbow flexion / extension and forearm pronation / supination could be regarded as 

single movement or a complex movement. In the muscle signal selection, they were independent: 

the biceps and triceps were selected for elbow flexion / extension, and the supinator, pronator teres 

and pronator quadratus were selected for forearm pronation / supination. When the forearm does 

complex motion, five channels were used to measure the surface EMG of these five muscles, and 

the results by signal envelope and muscle activation dynamics processing were saved in one data 

file. However, in the complex movement, the model still needs some improvements, including the 

muscles choice which affect the two separate motion at the same time, the signal processing of 

common muscles, the interaction of this 2-DOF, and the analysis of common parameters. 

EMG can well express the users' intention and actually be applied to the interface. However, due to 

the randomness and low voltage resistance of EMG, the noise in the signal is difficult to be 

removed. And the situations of subjects' physical health, muscles and physiological changes (fatigue) 

compositely affect the determination of muscle activation. For the patients with very weak EMG 

(such as stroke patients), it is recommended to measure the EMG from patient's healthy limb. There 

still needs more detailed study of muscle fatigue. The EMG data used in this thesis were only from 

healthy subjects, so the usage of this interface for patients with physical disabilities also needs to be 

verified. 

Both of the elbow flexion/extension and forearm pronation/supination models can normally follow 

movement intension based on human EMG signals. However, since EMG signal is the only 

information source, in some specific cases, these models still have some limitations. For example, 

when the subject holds his joint but generates muscle strength, the EMG signal will change 

according to the muscle contraction, causing the models to calculate the corresponding muscle force 

and joint moment, and predict the joint motion angle. However, with the fact that the joint of 

subject is still, there is a difference between the predicted movements and the actual movements. 

Similarly, this model does not accurately predict the pause of the joint movement in cases when the 



Chapter 9 Conclusions 

147 
 

muscles of patient is healthy but the joint is damaged (blocked or cannot not fully complete the 

intended movement). An external motion tracking sensor in real-time should be added, to work with 

the tuning model, to adjust the predicted joint angle in real time based on the changes of actual 

angle in this particular case. 

The exoskeleton developed in this thesis was used to assist movements of the body weaken people 

(such as the elderly, the disabled, and the injured people). The EMG signals and wrist force were 

used as input information to the control system, and EMG-based controller (EBC) and wrist 

force-based controller (FBC) were also designed. EBC was as the main controller. When the level 

of muscle activation for weakening human body was low, the impedance control of FBC was in use. 

In this thesis, the elbow motion experiments were used to assess the effectiveness of the EBC 

control. However, all of the test data were from healthy subjects. How EBC applicants in 

weakening human body and how to set the threshold of low level muscle activation are still need to 

be experimentally determined. 

In the future, this kind of interface can not only be applied to the daily lives of people with 

disabilities, but also can be extended to support the human complex movements, such as interactive 

games and entertainment, sports competition or military tasks. It can help the pilots control the 

aircraft to combat the enemy in air, help the F1 racer drive the formula one racing car in complex 

road conditions, and give the players more interactive gaming experience. 

9.3 Chapter Summary 

This thesis has presented a method of developing an EMG-based neuromuscular interface for the 

effective interaction between humans and automatic devices, established EMG-based 

neuromuscular models for elbow and forearm rotation, completed the sensitivity grading and 

characteristics classification of model parameters, developed the offline and online tuning methods 

suitable for EMG-driven models to verify the validity of the model, designed a controller based on 

the fusion of EMG and force information and verify the adaptability of EMG-based neuromuscular 

interface, by the elbow joint as case study. The tools developed in this thesis can provide valuable 

experience for the EMG-based interface researches. The continued development of this approach 

will ultimately achieve the seamless integration between humans and automatic devices. 
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Appendix I 

The researches summary of EMG-based human-robot interface systems  

 

No./Author [70](2006) 

E. E. Cavallaro 

University of 

Washington 

[5, 6, 165](2012) 

James W. L. Pau 

The University of 

Auckland 

[2] (2005) 

Terry K.K. Koo 

The Hong Kong 

Polytechnic University 

[66] (2004) 

Thomas S. Buchanan 

University of Delaware 

[68] (2009) 

Related to No.9 

Qi Shao 

 

University of Delaware 

 

[69] (2010) 

Massimo Sartori 

 

University of Padova 

 

Mechanical structure 1 DOF Cybex exercise 

machine 

potentiometer 

Used for：7 DOF 

Exoskeleton arm 

1 DOF 

Polaris Spectra 

(NDI,Canada) 

 

Electrogonio 

-meter 

 

1 DOF 

video cameras 

force plates 

（in a gait laboratory） 

1 DOF 

(knees) 

video cameras 

force plates 

（in a gait laboratory） 

7 DOF 

(lower limb) 

dynamometer 

(Biodex, USA) 

 

Number of muscles 7 2 7 7 4 13 

Signal processing 

(Filter) 

4th Butterworth Butterworth Butterworth Butterworth Butterworth  
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Appendix II 

Publications 

 

During the course of the PhD the following were primary authored: 

Journal articles: 

 R. Tao, S. Xie, Y. Zhang et al., “Review of EMG-based neuromuscular interfaces for 

rehabilitation: elbow joint as an example,” International Journal of Biomechatronics and 

Biomedical Robotics, vol. 2, no. 2, pp. 184-194, 2013. 

 R. Tao., S. Xie., M Zhang., “A New Musculoskeletal Model in Predicting Forearm Pronation 

and Supination for Use in Human-robot Interaction” Journal of Biomechanics. (Under 

review) 

Conference papers: 

 Tao, R., Xie S. Q., and Zhang Y. X., “Review of EMG-based Neuromuscular Interface for 

Upper Limb Control”, 19th International conference on Mechatronics and Machine Vision 

in Practice, Auckland, New Zealand, November 28-30 2012. 

 Tao, R., Xie, S. Q., Zhang Y. X. and Pau, J., “sEMG-based Neural-musculoskeletal Model 

for Human-robot Interface”, The 9th IEEE Conference on Industrial Electronics and 

Applications (ICIEA 2014), 2014, Hangzhou, China.  

 Ran Tao, Shane (Shengquan) Xie, James W.L. Pau, “A Study of EMG-based Neuromuscular 

Interface for Elbow Joint”, the 7th International Conference on Intelligent Robotics and 

Application (ICIRA 2014), 2014, Guangzhou, China 

 

  



References 

153 
 

References 

 

[1] O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, “A human-assisting manipulator 

teleoperated by EMG signals and arm motions,” IEEE Transactions on Robotics and 

Automation, vol. 19, no. 2, pp. 210-222, 2003. 

[2] T. K. Koo, and A. F. Mak, “Feasibility of using EMG driven neuromusculoskeletal model 

for prediction of dynamic movement of the elbow,” J Electromyogr Kinesiol, vol. 15, no. 1, 

pp. 12-26, Feb, 2005. 

[3] A. T. Au, and R. F. Kirsch, “EMG-based prediction of shoulder and elbow kinematics in 

able-bodied and spinal cord injured individuals,” IEEE Transactions on Rehabilitation 

Engineering, vol. 8, no. 4, pp. 471-480, 2000. 

[4] P. K. Artemiadis, and K. J. Kyriakopoulos, “EMG-based control of a robot arm using 

low-dimensional embeddings,” IEEE Transactions on Robotics, vol. 26, no. 2, pp. 393-398, 

2010. 

[5] J. W. L. Pau, S. S. Q. Xie, and A. J. Pullan, “Neuromuscular Interfacing: Establishing an 

EMG-Driven Model for the Human Elbow Joint,” Biomedical Engineering, IEEE 

Transactions on, vol. 59, no. 9, pp. 2586-2593, 2012. 

[6] J. W. L. Pau, H. Saini, S. S. Q. Xie, A. J. Pullan, and G. Mallinson, "An EMG-driven 

neuromuscular interface for human elbow joint." pp. 156-161. 

[7] R. M. Enoka, S. Baudry, T. Rudroff, D. Farina, M. Klass, and J. Duchateau, “Unraveling the 

neurophysiology of muscle fatigue,” Journal of Electromyography and Kinesiology, vol. 21, 

no. 2, pp. 208-219, 2011. 

[8] J. S. Petrofsky, and C. A. Phillips, “Interactions between fatigue, muscle temperature, blood 

flow and the surface EMG,” NAECON 1980, pp. 520-527, 1980. 

[9] M. Rowbottom, and C. Susskind, Electricity and medicine: history of their interaction: 

Palgrave Macmillan, 1984. 

[10] J. Yang, K. Abdel-Malek, and K. Nebel, The Reach Envelope of a 9 Degree-of-Freedom 

Model of the Upper Extremity, DTIC Document, 2003. 

[11] T. Nef, M. Guidali, V. Klamroth-Marganska, and R. Riener, "ARMin-exoskeleton robot for 

stroke rehabilitation." pp. 127-130. 

[12] H. I. Krebs, J. J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B. T. Volpe, and 

N. Hogan, “Rehabilitation robotics: Performance-based progressive robot-assisted therapy,” 

Autonomous robots, vol. 15, no. 1, pp. 7-20, 2003. 

[13] J. C. Perry, J. Rosen, and S. Burns, “Upper-limb powered exoskeleton design,” IEEE/ASME 

transactions on mechatronics, vol. 12, no. 4, pp. 408, 2007. 

[14] D. Gijbels, I. Lamers, L. Kerkhofs, G. Alders, E. Knippenberg, and P. Feys, “The Armeo 

Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot 

study,” Journal of NeuroEngineering and Rehabilitation, vol. 8, no. 1, pp. 5, 2011. 

[15] M. Nixon, and A. S. Aguado, Feature Extraction & Image Processing for Computer Vision: 

Academic Press, 2012. 

[16] T. B. Moeslund, and E. Granum, “A survey of computer vision-based human motion 

capture,” Computer Vision and Image Understanding, vol. 81, no. 3, pp. 231-268, 2001. 

[17] N. M. Oliver, B. Rosario, and A. P. Pentland, “A Bayesian computer vision system for 

modeling human interactions,” Pattern Analysis and Machine Intelligence, IEEE 

Transactions on, vol. 22, no. 8, pp. 831-843, 2000. 



References 

154 
 

[18] G. E. Loeb, R. Davoodi, M. Mileusnic, R. Ananth, A. Inmann, and I. E. Brown, "Strategic 

development of sensorimotor prosthetic technology." pp. 1539-1542 Vol.2. 

[19] B. Brunner, K. Arbter, and G. Hirzinger, "Task directed programming of sensor based 

robots." pp. 1080-1087 vol.2. 

[20] W. Sansen, A. Claes, D. De Wachter, L. Callewaert, and M. Lambrechts, "A smart sensor for 

biomedical applications." pp. 1088-1089 vol.4. 

[21] B. J. Hosticka, "Analog circuits for sensors." pp. 97-102. 

[22] W. Bouten, E. W. Baaij, J. Shamoun-Baranes, and K. C. Camphuysen, “A flexible GPS 

tracking system for studying bird behaviour at multiple scales,” Journal of Ornithology, vol. 

154, no. 2, pp. 571-580, 2013. 

[23] H. Zhou, T. Stone, H. Hu, and N. Harris, “Use of multiple wearable inertial sensors in upper 

limb motion tracking,” Medical engineering & physics, vol. 30, no. 1, pp. 123-133, 2008. 

[24] E. S. Sazonov, T. Bumpus, S. Zeigler, and S. Marocco, "Classification of plantar pressure 

and heel acceleration patterns using neural networks." pp. 3007-3010. 

[25] M. Kohle, D. Merkl, and J. Kastner, "Clinical gait analysis by neural networks: issues and 

experiences." pp. 138-143. 

[26] I. J. Alexander, E. Y. Chao, and K. A. Johnson, “The assessment of dynamic foot-to-ground 

contact forces and plantar pressure distribution: a review of the evolution of current 

techniques and clinical applications,” Foot & Ankle International, vol. 11, no. 3, pp. 

152-167, 1990. 

[27] M. W. Keith, P. H. Peckham, G. B. Thrope, K. C. Stroh, B. Smith, J. R. Buckett, K. L. 

Kilgore, and J. W. Jatich, “Implantable functional neuromuscular stimulation in the 

tetraplegic hand,” The Journal of hand surgery, vol. 14, no. 3, pp. 524-530, 1989. 

[28] B. Smith, P. H. Peckham, M. W. Keith, and D. D. Roscoe, “An externally powered, 

multichannel, implantable stimulator for versatile control of paralyzed muscle,” Biomedical 

Engineering, IEEE Transactions on, no. 7, pp. 499-508, 1987. 

[29] K. L. Kilgore, P. H. Peckham, M. W. Keith, G. B. Thrope, K. S. Wuolle, A. M. Bryden, and 

R. L. Hart, “An implanted upper-extremity neuroprosthesis. Follow-up of five patients,” The 

Journal of Bone and Joint Surgery (American), vol. 79, no. 4, pp. 533-41, 1997. 

[30] V. Udayashankara, and M. Shivaram, "Sound sensitive artificial hand." pp. 2337-2338. 

[31] P. Sykacek, S. J. Roberts, and M. Stokes, “Adaptive BCI based on variational Bayesian 

Kalman filtering: an empirical evaluation,” IEEE Transactions on Biomedical Engineering, 

vol. 51, no. 5, pp. 719-727, 2004. 

[32] E. Buch, C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. 

Soekadar, and A. Fourkas, “Think to move: a neuromagnetic brain-computer interface (BCI) 

system for chronic stroke,” Stroke, vol. 39, no. 3, pp. 910-917, 2008. 

[33] P. R. Cavanagh, and P. V. Komi, “Electromechanical delay in human skeletal muscle under 

concentric and eccentric contractions,” European journal of applied physiology and 

occupational physiology, vol. 42, no. 3, pp. 159-163, 1979. 

[34] CyberGlove. "CyberGlove Systems." 

[35] T. H. Massie, and J. K. Salisbury, "The phantom haptic interface: A device for probing 

virtual objects." pp. 295-300. 

[36] L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. 

Braun, “Automated cortical projection of EEG sensors: Anatomical correlation via the 

international 10–10 system,” NeuroImage, vol. 46, no. 1, pp. 64-72, 5/15/, 2009. 

[37] K. M. Cheung, T. Wang, G. Qiu, and K. D. Luk, “Recent advances in the aetiology of 

adolescent idiopathic scoliosis,” International orthopaedics, vol. 32, no. 6, pp. 729-734, 

2008. 

[38] W. WU, H. Guozhi, and X. LIU, “Department of Physical Medicine and Rehabilitatio n, 

Zhujiang Hospital, The First Military Medical University, Guangzhou 510282, China; 

Application of surface EMG in evaluation of effectiveness of clinical interventions for 



References 

155 
 

lumbar intervertebral disc prolapse [J],” Chinese Journal of Physical Medicine and 

Retabulitation, vol. 9, 2002. 

[39] R. Neblett, R. J. Gatchel, and T. G. Mayer, “A clinical guide to surface-EMG-assisted 

stretching as an adjunct to chronic musculoskeletal pain rehabilitation,” Applied 

psychophysiology and biofeedback, vol. 28, no. 2, pp. 147-160, 2003. 

[40] A. R. Kralj, and T. Bajd, Functional electrical stimulation: standing and walking after 

spinal cord injury: CRC press, 1989. 

[41] S. Jezernik, G. Colombo, T. Keller, H. Frueh, and M. Morari, “Robotic orthosis lokomat: A 

rehabilitation and research tool,” Neuromodulation: Technology at the neural interface, vol. 

6, no. 2, pp. 108-115, 2003. 

[42] Y. Sankai, "HAL: Hybrid assistive limb based on cybernics," Robotics Research, pp. 25-34: 

Springer, 2010. 

[43] L. J. Huston, and E. M. Wojtys, “Neuromuscular performance characteristics in elite female 

athletes,” The American journal of sports medicine, vol. 24, no. 4, pp. 427-436, 1996. 

[44] R. C.-D. Lovely, “Commercial Hardware for the Implementation of Myoelectric Control,” 

Powered Upper Limb Prostheses: Control, Implementation and Clinical Application; 11 

Tables, 2004. 

[45] Z.-X. Huang, X.-D. Zhang, and Y.-N. Li, "Design of a grasp force adaptive control system 

with tactile and slip perception." pp. 1101-1105. 

[46] K. Jong-Sung, J. Huyk, and S. Wookho, "A new means of HCI: EMG-MOUSE." pp. 

100-104 vol.1. 

[47] E. Costanza, S. A. Inverso, and R. Allen, "Toward subtle intimate interfaces for mobile 

devices using an EMG controller." pp. 481-489. 

[48] S. Aso, A. Sasaki, H. Hashimoto, and C. Ishii, "Driving electric car by using EMG 

interface." pp. 1-5. 

[49] K. R. Wheeler, and C. C. Jorgensen, “Gestures as input: Neuroelectric joysticks and 

keyboards,” IEEE pervasive computing, vol. 2, no. 2, pp. 56-61, 2003. 

[50] K. R. Wheeler, "Device control using gestures sensed from EMG." pp. 21-26. 

[51] H. Prendinger, and M. Ishizuka, “The empathic companion: A character-based interface that 

addresses users'affective states,” Applied Artificial Intelligence, vol. 19, no. 3-4, pp. 267-285, 

2005. 

[52] H.-C. Kim, S. Pang, H.-M. Je, D. Kim, and S.-Y. Bang, "Support vector machine ensemble 

with bagging," Pattern recognition with support vector machines, pp. 397-408: Springer, 

2002. 

[53] C. J. Feng, A. F. Mak, and T. K. Koo, “A surface EMG driven musculoskeletal model of the 

elbow flexion-extension movement in normal subjects and in subjects with spasticity,” 

Journal of Musculoskeletal Research, vol. 3, no. 02, pp. 109-123, 1999. 

[54] T. Buchanan, S. Delp, and J. Solbeck, “Muscular resistance to varus and valgus loads at the 

elbow,” Journal of biomechanical engineering, vol. 120, no. 5, pp. 634, 1998. 

[55] J. Soechting, and M. Flanders, “Evaluating an integrated musculoskeletal model of the 

human arm,” Journal of biomechanical engineering, vol. 119, no. 1, pp. 93, 1997. 

[56] B. Laursen, B. R. Jensen, G. Németh, and G. Sjøgaard, “A model predicting individual 

shoulder muscle forces based on relationship between electromyographic and 3D external 

forces in static position,” Journal of Biomechanics, vol. 31, no. 8, pp. 731, 1998. 

[57] D. G. Lloyd, and T. F. Besier, “An EMG-driven musculoskeletal model to estimate muscle 

forces and knee joint moments in vivo,” Journal of Biomechanics, vol. 36, no. 6, pp. 

765-776, 2003. 

[58] D. Lloyd, and T. Buchanan, “A model of load sharing between muscles and soft tissues at 

the human knee during static tasks,” Journal of biomechanical engineering, vol. 118, no. 3, 

pp. 367, 1996. 

[59] D. G. Lloyd, and T. S. Buchanan, “Strategies of muscular support of varus and valgus 



References 

156 
 

isometric loads at the human knee,” Journal of Biomechanics, vol. 34, no. 10, pp. 

1257-1267, 2001. 

[60] S. J. Olney, and D. A. Winter, “Predictions of knee and ankle moments of force in walking 

from EMG and kinematic data,” Journal of Biomechanics, vol. 18, no. 1, pp. 9-20, 1985. 

[61] S. C. White, and D. A. Winter, “Predicting muscle forces in gait from EMG signals and 

musculotendon kinematics,” Journal of Electromyography and Kinesiology, vol. 2, no. 4, pp. 

217-231, 1992. 

[62] D. P. Ferris, K. E. Gordon, G. S. Sawicki, and A. Peethambaran, “An improved powered 

ankle–foot orthosis using proportional myoelectric control,” Gait &amp; Posture, vol. 23, 

no. 4, pp. 425-428, 2006. 

[63] K. P. Granata, and W. Marras, “An EMG-assisted model of trunk loading during 

free-dynamic lifting,” Journal of Biomechanics, vol. 28, no. 11, pp. 1309-1317, 1995. 

[64] M. A. Nussbaum, and D. B. Chaffin, “Lumbar muscle force estimation using a 

subject-invariant 5-parameter EMG-based model,” Journal of Biomechanics, vol. 31, no. 7, 

pp. 667-672, 1998. 

[65] T. S. Buchanan, M. J. Moniz, J. P. A. Dewald, and W. Z. Rymer, “Estimation of muscle 

forces about the wrist joint during isometric tasks using an EMG coefficient method,” 

Journal of Biomechanics, vol. 26, no. 4–5, pp. 547-560, 1993. 

[66] T. S. Buchanan, D. G. Lloyd, K. Manal, and T. F. Besier, “Neuromusculoskeletal Modeling: 

Estimation of Muscle Forces and Joint Moments and Movements From Measurements of 

Neural Command,” JOURNAL OF APPLIED BIOMECHANICS, vol. 20, no. 4, pp. 367-395, 

2004. 

[67] S. Cososchi, R. Strungaru, A. Ungureanu, and M. Ungureanu, "EEG Features Extraction for 

Motor Imagery." pp. 1142-1145. 

[68] Q. Shao, D. N. Bassett, K. Manal, and T. S. Buchanan, “An EMG-driven model to estimate 

muscle forces and joint moments in stroke patients,” Comput Biol Med, vol. 39, no. 12, pp. 

1083-8, Dec, 2009. 

[69] M. Sartori, D. G. Lloyd, M. Reggiani, and E. Pagello, "Fast operation of anatomical and stiff 

tendon neuromuscular models in EMG-driven modeling." pp. 2228-2234. 

[70] E. E. Cavallaro, J. Rosen, J. C. Perry, and S. Burns, “Real-Time Myoprocessors for a Neural 

Controlled Powered Exoskeleton Arm,” Biomedical Engineering, IEEE Transactions on, vol. 

53, no. 11, pp. 2387-2396, 2006. 

[71] J. W. Pau, S. S. Xie, and A. J. Pullan, “Neuromuscular interfacing: establishing an 

EMG-driven model for the human elbow joint,” Biomedical Engineering, IEEE 

Transactions on, vol. 59, no. 9, pp. 2586-2593, 2012. 

[72] A. Hof, and J. Van den Berg, “EMG to force processing II: Estimation of parameters of the 

Hill muscle model for the human triceps surae by means of a calfergometer,” Journal of 

Biomechanics, vol. 14, no. 11, pp. 759-770, 1981. 

[73] T. Buchanan, S. Delp, and J. Solbeck, “Muscular resistance to varus and valgus loads at the 

elbow,” TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS 

JOURNAL OF BIOMECHANICAL ENGINEERING, vol. 120, pp. 634-639, 1998. 

[74] Y.-W. Chang, F.-C. Su, H.-W. Wu, and K.-N. An, “Optimum length of muscle contraction,” 

Clinical Biomechanics, vol. 14, no. 8, pp. 537-542, 1999. 

[75] T. K. Koo, A. F. Mak, and L. Hung, “In vivo determination of subject-specific 

musculotendon parameters: applications to the prime elbow flexors in normal and 

hemiparetic subjects,” Clinical Biomechanics, vol. 17, no. 5, pp. 390-399, 2002. 

[76] K.-k. T. Koo, “Neuromusculoskeletal modeling of the elbow joint in subjects with and 

without spasticity,” 2002. 

[77] T. Moritani, M. Muro, and A. Nagata, “Intramuscular and surface electromyogram changes 

during muscle fatigue,” Journal of Applied Physiology, vol. 60, no. 4, pp. 1179-1185, 1986. 

[78] E. Park, and S. G. Meek, “Fatigue compensation of the electromyographic signal for 



References 

157 
 

prosthetic control and force estimation,” IEEE transactions on biomedical engineering, vol. 

40, no. 10, pp. 1019-1023, 1993. 

[79] J. London, “Kinematics of the elbow,” J Bone Joint Surg Am, vol. 63, no. 4, pp. 529-535, 

1981. 

[80] R. Tao, S. Xie, Y. Zhang, and J. W. Pau, “sEMG-based neural-musculoskeletal model for 

human-robot interface,” in Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th 

Conference on, 2014, pp. 1039-1044. 

[81] Q. Song, and Y. Ge, “Extraction of elbow joint intention from surface EMG signals in 

horizontal plane ” in the 7th World Congress on Intelligent Control and Automation, 

Chongqing, China, 2008, pp. 1931 - 1934  

[82] Q. Song, M. Liu, L. Tong, Y. Yu, and Y. Ge, “Extraction of elbow joint intention from sEMG 

signals in horizontal plane using cosine tuning functions,” in Robotics and Biomimetics, 

2007. ROBIO 2007., Sanya, China, 2007, pp. 2206- 2211. 

[83] S. D. Prentice, A. E. Patla, and D. A. Stacey, “Artificial neural network model for the 

generation of muscle activation patterns for human locomotion,” Journal of 

electromyography and kinesiology : official journal of the International Society of 

Electrophysiological Kinesiology, vol. 11, no. 1, pp. 19-30, 2001. 

[84] F. Sepulveda, D. M. Wells, and C. L. Vaughan, “A neural network representation of 

electromyography and joint dynamics in human gait,” Journal of Biomechanics, vol. 26, no. 

2, pp. 101-109, 1993. 

[85] S. Micera, W. Jensen, F. Sepulveda, R. R. Riso, and T. Sinkjaer, “Neuro-fuzzy extraction of 

angular information from muscle afferents for ankle control during standing in paraplegic 

subjects: an animal model,” IEEE transactions on bio-medical engineering, vol. 48, no. 7, 

pp. 787-794, 2001. 

[86] F. Sepulveda, M. H. Granat, and A. Cliquet, “Two artificial neural systems for generation of 

gait swing by means of neuromuscular electrical stimulation,” Medical engineering & 

physics, vol. 19, no. 1, pp. 21-28, 1997. 

[87] B. Heller, P. Veltink, N. Rijkhoff, W. Rutten, and B. Andrews, “Reconstructing muscle 

activation during normal walking: a comparison of symbolic and connectionist machine 

learning techniques,” Biological Cybernetics, vol. 69, no. 4, pp. 327-335, 1993. 

[88] E. Leon, G. Clarke, V. Callaghan, and F. Sepulveda, “Real-time detection of emotional 

changes for inhabited environments,” Computers & Graphics, vol. 28, no. 5, pp. 635-642, 

2004. 

[89] S. D. Prentice, A. E. Patla, and D. A. Stacey, “Simple artificial neural network models can 

generate basic muscle activity patterns for human locomotion at different speeds,” 

Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale, vol. 

123, no. 4, pp. 474-480, 1998. 

[90] R. Tao, S. Xie, Y. Zhang, and J. W. Pau, “Review of EMG-based neuromuscular interfaces 

for rehabilitation: elbow joint as an example,” International Journal of Biomechatronics and 

Biomedical Robotics, vol. 2, no. 2, pp. 184-194, 2013. 

[91] T. S. Buchanan, D. G. Lloyd, K. Manal, and T. F. Besier, “Estimation of Muscle Forces and 

Joint Moments Using a Forward-Inverse Dynamics Model,” Medicine & Science in Sports 

& Exercise, vol. 37, no. 11, pp. 1911-1916, 2005. 

[92] A. Erdemir, S. McLean, W. Herzog, and A. J. van den Bogert, “Model-based estimation of 

muscle forces exerted during movements,” Clinical Biomechanics, vol. 22, no. 2, pp. 

131-154, 2007. 

[93] G. Tang, L.-w. Qian, G.-f. Wei, H.-s. Wang, and C.-t. Wang, “Development of software for 

human muscle force estimation,” Computer methods in biomechanics and biomedical 

engineering, vol. 15, no. 3, pp. 275-283, 2012. 

[94] Q. Ding, X. Zhao, A. Xiong, and J. Han, "A novel motion estimate method of human joint 

with EMG-driven model." pp. 1-5. 



References 

158 
 

[95] D. Kistemaker, A. Van Soest, and M. Bobbert, “A model of open-loop control of equilibrium 

position and stiffness of the human elbow joint,” Biological Cybernetics, vol. 96, no. 3, pp. 

341-350, 2007. 

[96] E. P. Doheny, M. M. Lowery, M. J. O'Malley, and D. P. Fitzpatrick, “The effect of elbow 

joint centre displacement on force generation and neural excitation,” Med Biol Eng Comput, 

vol. 47, no. 6, pp. 589-98, Jun, 2009. 

[97] C. Fleischer, and G. Hommel, “A Human--Exoskeleton Interface Utilizing 

Electromyography,” Robotics, IEEE Transactions on, vol. 24, no. 4, pp. 872-882, 2008. 

[98] W. M. Murray, S. L. Delp, and T. S. Buchanan, “Variation of muscle moment arms with 

elbow and forearm position,” Journal of biomechanics, vol. 28, no. 5, pp. 513-525, 1995. 

[99] A. V. Hill, “The Heat of Shortening and the Dynamic Constants of Muscle,” Proceedings of 

the Royal Society of London. Series B, Biological Sciences, vol. 126, no. 843, pp. 136-195, 

1938. 

[100] A. F. Huxley, “Muscle structure and theories of contraction,” Progress in biophysics and 

biophysical chemistry, vol. 7, pp. 255-318, 1957. 

[101] G. Pipeleers, B. Demeulenaere, I. Jonkers, P. Spaepen, G. Van der Perre, A. Spaepen, J. 

Swevers, and J. De Schutter, “Dynamic simulation of human motion: numerically efficient 

inclusion of muscle physiology by convex optimization,” Optimization and Engineering, vol. 

9, no. 3, pp. 213-238, 2007. 

[102] J. W. Pau, T. S. Chen, S. S. Xie, and A. J. Pullan, "A neuromuscular interface for the elbow 

joint." pp. 214-219. 

[103] K. S. Holzbaur, W. Murray, and S. Delp, “A Model of the Upper Extremity for Simulating 

Musculoskeletal Surgery and Analyzing Neuromuscular Control,” Annals of Biomedical 

Engineering, vol. 33, no. 6, pp. 829-840, 2005. 

[104] B. A. Garner, and M. G. Pandy, “Musculoskeletal model of the upper limb based on the 

visible human male dataset,” Computer methods in biomechanics and biomedical 

engineering, vol. 4, no. 2, pp. 93-126, 2001. 

[105] L. M. Schutte, M. M. Rodgers, F. E. Zajac, and R. M. Glaser, “Improving the efficacy of 

electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic 

musculoskeletal model,” Rehabilitation Engineering, IEEE Transactions on, vol. 1, no. 2, 

pp. 109-125, 1993. 

[106] D. G. Thelen, “Adjustment of muscle mechanics model parameters to simulate dynamic 

contractions in older adults,” Journal of biomechanical engineering, vol. 125, no. 1, pp. 

70-77, 2003. 

[107] N. Zheng, G. S. Fleisig, R. F. Escamilla, and S. W. Barrentine, “An analytical model of the 

knee for estimation of internal forces during exercise,” Journal of Biomechanics, vol. 31, no. 

10, pp. 963-967, 1998. 

[108] T. S. Buchanan, D. G. Lloyd, K. Manal, and T. F. Besier, “Neuromusculoskeletal modeling: 

estimation of muscle forces and joint moments and movements from measurements of 

neural command,” Journal of applied biomechanics, vol. 20, no. 4, pp. 367, 2004. 

[109] R. Raikova, and H. Aladjov, “The influence of the way the muscle force is modeled on the 

predicted results obtained by solving indeterminate problems for a fast elbow flexion,” 

Computer methods in biomechanics and biomedical engineering, vol. 6, no. 3, pp. 181-196, 

2003. 

[110] D. A. Kistemaker, A. J. K. Van Soest, and M. F. Bobbert, “A model of open-loop control of 

equilibrium position and stiffness of the human elbow joint,” Biological cybernetics, vol. 96, 

no. 3, pp. 341-350, 2007. 

[111] C. Y. Scovil, and J. L. Ronsky, “Sensitivity of a Hill-based muscle model to perturbations in 

model parameters,” J Biomech, vol. 39, no. 11, pp. 2055-63, 2006. 

[112] F. De Groote, A. Van Campen, I. Jonkers, and J. De Schutter, “Sensitivity of dynamic 

simulations of gait and dynamometer experiments to hill muscle model parameters of knee 



References 

159 
 

flexors and extensors,” J Biomech, vol. 43, no. 10, pp. 1876-83, Jul 20, 2010. 

[113] C. Redl, M. Gfoehler, and M. G. Pandy, “Sensitivity of muscle force estimates to variations 

in muscle-tendon properties,” Hum Mov Sci, vol. 26, no. 2, pp. 306-19, Apr, 2007. 

[114] B. A. Garner, and M. G. Pandy, “Estimation of Musculotendon Properties in the Human 

Upper Limb,” Annals of Biomedical Engineering, vol. 31, no. 2, pp. 207-220, 2003. 

[115] S. L. Lehman, and L. W. Stark, “Three algorithms for interpreting models consisting of 

ordinary differential equations: Sensitivity coefficients, sensitivity functions, global 

optimization,” Mathematical Biosciences, vol. 62, no. 1, pp. 107-122, 1982. 

[116] M. G. Pandy, "An analytical framework for quantifying muscular action during human 

movement," Multiple muscle systems, pp. 653-662: Springer, 1990. 

[117] J. M. Winters, and L. Stark, “Analysis of fundamental human movement patterns through 

the use of in-depth antagonistic muscle models,” Biomedical Engineering, IEEE 

Transactions on, no. 10, pp. 826-839, 1985. 

[118] W. Zangemeister, A. Arlt, and S. Lehman, “Sensitivity functions of a human head movement 

model,” Medical engineering & physics, vol. 16, no. 2, pp. 163-170, 1994. 

[119] Z. Zi, “Sensitivity analysis approaches applied to systems biology models,” IET Syst Biol, 

vol. 5, no. 6, pp. 336-6, Nov, 2011. 

[120] F. C. Anderson, and M. G. Pandy, “Storage and utilization of elastic strain energy during 

jumping,” Journal of biomechanics, vol. 26, no. 12, pp. 1413-1427, 1993. 

[121] M. Bobbert, “Dependence of human squat jump performance on the series elastic 

compliance of the triceps surae: a simulation study,” Journal of Experimental Biology, vol. 

204, no. 3, pp. 533-542, 2001. 

[122] L. Out, T. G. Vrijkotte, A. J. van Soest, and M. F. Bobbert, “Influence of the parameters of a 

human triceps surae muscle model on the isometric torque-angle relationship,” Journal of 

biomechanical engineering, vol. 118, no. 1, pp. 17-25, 1996. 

[123] C. N. Maganaris, “A predictive model of moment–angle characteristics in human skeletal 

muscle: application and validation in muscles across the ankle joint,” Journal of theoretical 

biology, vol. 230, no. 1, pp. 89-98, 2004. 

[124] D. M. Corcos, G. L. Gottlieb, M. L. Latash, G. L. Almeida, and G. C. Agarwal, 

“Electromechanical delay: An experimental artifact,” Journal of Electromyography and 

Kinesiology, vol. 2, no. 2, pp. 59-68, 1992. 

[125] J. W. L. Pau, “A physiological model driven neuromuscular interface for exoskeleton 

assisted rehabilitation,” Mechanical Engineering, University of Auckland, 2013. 

[126] P. K. Artemiadis, and K. J. Kyriakopoulos, "EMG-based teleoperation of a robot arm using 

low-dimensional representation." pp. 489-495. 

[127] A. Smith, and E. E. Brown, “Myoelectric control techniques for a rehabilitation robot,” 

Applied Bionics and Biomechanics, vol. 8, no. 1, pp. 21-37, 2011. 

[128] K. Kiguchi, T. D. Lalitharatne, and Y. Hayashi, “Estimation of Forearm 

Supination/Pronation Motion Based on EEG Signals to Control an Artificial Arm,” Journal 

of Advanced Mechanical Design, Systems, and Manufacturing, vol. 7, no. 1, pp. 74-81, 

2013. 

[129] P. Ibáñez-Gimeno, I. Galtés, X. Jordana, A. Malgosa, and J. Manyosa, “Biomechanics of 

forearm rotation: force and efficiency of pronator teres,” PloS one, vol. 9, no. 2, pp. e90319, 

2014. 

[130] F. Al Omari, and L. Guohai, “Analysis of extracted forearm sEMG signal using LDA, QDA, 

K-NN classification algorithms',” The Open Automation and Control Systems Journal, vol. 6, 

pp. 108-116, 2014. 

[131] T. Nishimura, Y. Nomura, and R. Sakamoto, "A restrained-torque-based motion instructor: 

forearm flexion/extension-driving exoskeleton." pp. 86620J-86620J-7. 

[132] M. Gazzoni, N. Celadon, D. Mastrapasqua, M. Paleari, V. Margaria, and P. Ariano, 

“Quantifying forearm muscle activity during wrist and finger movements by means of 



References 

160 
 

multi-channel electromyography,” PloS one, vol. 9, no. 10, pp. e109943, 2014. 

[133] J. Tang, Rao gu yuan duan gu zhe (in Chinese): Shanghai ke xue ji shu chu ban she, 

2013.1.1. 

[134] F. A. Ekenstam, and C. G. Hagert, “Anatomical studies on the geometry and stability of the 

distal radio ulnar joint,” Scandinavian journal of plastic and reconstructive surgery, vol. 19, 

no. 1, pp. 17-25, 1985. 

[135] K. O. Matsuki, K. Matsuki, S. Mu, T. Sasho, K. Nakagawa, N. Ochiai, K. Takahashi, and S. 

A. Banks, “In vivo 3D kinematics of normal forearms: analysis of dynamic forearm rotation,” 

Clinical biomechanics, vol. 25, no. 10, pp. 979-983, 2010. 

[136] S. C. Tay, R. van Riet, T. Kazunari, M. F. Koff, K. K. Amrami, K.-N. An, and R. A. Berger, 

“A method for in-vivo kinematic analysis of the forearm,” Journal of biomechanics, vol. 41, 

no. 1, pp. 56-62, 2008. 

[137] S. C. Tay, R. Van Riet, T. Kazunari, K. K. Amrami, K.-N. An, and R. A. Berger, “In-vivo 

kinematic analysis of forearm rotation using helical axis analysis,” Clinical Biomechanics, 

vol. 25, no. 7, pp. 655-659, 2010. 

[138] T. Kataoka, H. Moritomo, S. Omokawa, A. Iida, T. Murase, and K. Sugamoto, “Ulnar 

variance: its relationship to ulnar foveal morphology and forearm kinematics,” The Journal 

of hand surgery, vol. 37, no. 4, pp. 729-735, 2012. 

[139] R. Hale, D. Dorman, and R. V. Gonzalez, “Individual muscle force parameters and fiber 

operating ranges for elbow flexion–extension and forearm pronation–supination,” Journal of 

biomechanics, vol. 44, no. 4, pp. 650-656, 2011. 

[140] Y. R. Chen, and J. B. Tang, “In vivo gliding and contact characteristics of the sigmoid notch 

and the ulna in forearm rotation,” The Journal of hand surgery, vol. 38, no. 8, pp. 1513-1519, 

2013. 

[141] Y. R. Chen, and J. B. Tang, “Changes in contact site of the radiocarpal joint and lengths of 

the carpal ligaments in forearm rotation: an in vivo study,” The Journal of hand surgery, vol. 

38, no. 4, pp. 712-720, 2013. 

[142] M. Yung, and R. P. Wells, “Changes in muscle geometry during forearm pronation and 

supination and their relationships to EMG cross-correlation measures,” Journal of 

Electromyography and Kinesiology, vol. 23, no. 3, pp. 664-672, 6//, 2013. 

[143] H. A. Rahman, Y. C. Fai, and E. S. L. Ming, “Analysis of Human Hand Kinematics: 

Forearm Pronation and Supination,” Journal of Medical Imaging and Health Informatics, 

vol. 4, no. 2, pp. 245-249, 2014. 

[144] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and 

D. G. Thelen, “OpenSim: open-source software to create and analyze dynamic simulations 

of movement,” IEEE transactions on bio-medical engineering, vol. 54, no. 11, pp. 

1940-1950, 2007. 

[145] T. Back, U. Hammel, and H. P. Schwefel, “Evolutionary computation: comments on the 

history and current state,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 

3-17, 1997. 

[146] S. Das, and P. N. Suganthan, “Differential Evolution: A Survey of the State-of-the-Art,” 

IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4-31, 2011. 

[147] K. Zielinski, D. Peters, and R. Laur, "Run time analysis regarding stopping criteria for 

differential evolution and particle swarm optimization." 

[148] H. S. Lo, “Exoskeleton Robot for Upper Limb Rehabilitation: Design Analysis and Control,” 

Mechanical Engineering, The University of Auckland, New Zealand, 2014. 

[149] P. De Leva, “Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters,” Journal of 

biomechanics, vol. 29, no. 9, pp. 1223-1230, 1996. 

[150] " DC motors and drive systems by Maxon motor. Available: http://www.maxonmotor.com." 

[151] "ams. Available: http://www.ams.com/eng." 

[152] C. Carignan, J. Tang, and S. Roderick, "Development of an exoskeleton haptic interface for 

http://www.maxonmotor.com./
http://www.ams.com/eng.


References 

161 
 

virtual task training." pp. 3697-3702. 

[153] R. A. R. C. Gopura, K. Kiguchi, and Y. Li, "SUEFUL-7: A 7DOF upper-limb exoskeleton 

robot with muscle-model-oriented EMG-based control." pp. 1126-1131. 

[154] J. C. Perry, “Design and development of a 7 degree-of-freedom powered exoskeleton for the 

upper limb,” University of Washington, 2006. 

[155] S. Kousidou, N. Tsagarakis, C. Smith, and D. Caldwell, "Task-orientated biofeedback 

system for the rehabilitation of the upper limb." pp. 376-384. 

[156] T. Nef, M. Mihelj, and R. Riener, “ARMin: a robot for patient-cooperative arm therapy,” 

Medical & biological engineering & computing, vol. 45, no. 9, pp. 887-900, 2007. 

[157] M. H. Rahman, M. Saad, J. P. Kenné, and P. S. Archambault, "Modeling and control of a 

7DOF exoskeleton robot for arm movements." pp. 245-250. 

[158] M. H. Rahman, K. Kiguchi, M. M. Rahman, and M. Sasaki, "Robotic exoskeleton for 

rehabilitation and motion assist." pp. 241-246. 

[159] M. Lee, J. Son, J. Kim, and Y. Kim, "Development and assessment of an EMG-based 

exoskeleton system." pp. 648-650. 

[160] M. Baklouti, E. Monacelli, V. Guitteny, and S. Couvet, "Intelligent assistive exoskeleton 

with vision based interface." pp. 123-135. 

[161] K. Kiguchi, and Y. Hayashi, “An EMG-Based Control for an Upper-Limb Power-Assist 

Exoskeleton Robot,” IEEE Transactions on Systems, Man, and Cybernetics, Part B 

(Cybernetics), vol. 42, no. 4, pp. 1064-1071, 2012. 

[162] M. F. Eilenberg, H. Geyer, and H. Herr, “Control of a powered ankle–foot prosthesis based 

on a neuromuscular model,” IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, vol. 18, no. 2, pp. 164-173, 2010. 

[163] E. Cavallaro, J. Rosen, J. C. Perry, S. Burns, and B. Hannaford, "Hill-based model as a 

myoprocessor for a neural controlled powered exoskeleton arm-parameters optimization." 

pp. 4514-4519. 

[164] T. S. Buchanan, S. L. Delp, and J. Solbeck, “Muscular resistance to varus and valgus loads 

at the elbow,” Journal of biomechanical engineering, vol. 120, no. 5, pp. 634-639, 1998. 

[165] J. W. L. Pau, T. S. W. Chen, S. S. Q. Xie, and A. J. Pullan, "A neuromuscular interface for 

the elbow joint." pp. 214-219. 

 

 

 


	coversheet.pdf
	General copyright and disclaimer


