
CDMTCS

Research

Report

Series

Practical Enumeration

Methods for Graphs of

Bounded Pathwidth and

Treewidth

Michael J. Dinneen

Department of Computer Science

University of Auckland

Auckland, New Zealand

CDMTCS-055

September 1997

Centre for Discrete Mathematics and

Theoretical Computer Science

Practical Enumeration Methods for

Graphs of Bounded Pathwidth and Treewidth

Michael J. Dinneen

Department of Computer Science

University of Auckland, Private Bag 92019

Auckland, New Zealand

Abstract. Using an algebraic representation for graphs of bounded path-

width or treewidth we provide simple methods for generating these families in

increasing order of the number of vertices and edges. We also study canonic

representions of �xed- and free- boundaried graphs of bounded width.

1 The Graph Theory Setting

Many combinatorial search problems can be limited to a domain of \bounded width"

graphs. The goal of this paper is to establish practical methods for generating graphs

of this type. For example, the enumeration techniques of this paper have been im-

plimented and successfully utilized in the search for forbidden minor characterizations

[CD94, CDF95]. This paper is very much self-contained and concerns the combinatorial

notions of pathwidth and treewidth. We de�ne and prove a few basic results about these

graph width parameters in Sections 2 and 3 before presenting our simple enumeration

methods in Section 4.

The reader is assumed to have a familiarity with graph theory, as may be obtained

from any one of the standard introductory graph theory texts (e.g. [BM76, CL86]). A

few of our basic graph-theoretical conventions follows, where we restrict our attention to

�nite simple undirected graphs (i.e., those �nite graphs without loops and multi-edges).

A graph G = (V;E), in our context, consists of a �nite set of vertices V and a set of edges

E, where each edge is an unordered pair of vertices. We use the variables n (sometimes

jGj) and m to denote the order (number of vertices) and size (number of edges) of a

graph.

We study the popular notions of treewidth and pathwidth, introduced by Robertson

and Seymour [RS83, RS84]. Informally, graphs of width at most k are subgraphs of

tree-like or path-like graphs where the vertices form cliques of size at most k+1. We are

interested in certain subsets of the set of all �nite graphs. In particular, the graph families

de�ned by all graphs with either pathwidth or treewidth at most k have \bounded

combinatorial width." In general, the width of a graph is de�ned in many possible ways,

1

often in
uenced by the graph problems that are being investigated. For example, for

VLSI layout problems we may de�ne the width of a planar graph (which represents

a circuit) as the least surface area needed over all layouts, where vertices and edge

connections are laid out on a grid. Two sets of graphs that we study are graphs of

bounded pathwidth and treewidth. These width metrics and the corresponding graph

families that are bounded by some �xed width are important for a variety of reasons:

1. These families are minor-order lower ideals.

2. They play a fundamental role in the proof of the Graph Minor Theorem.

3. Many popular classes of graphs are subsets of these families.

4. These widths are used to cope with intractability.

5. There are many natural applications.

The �rst statement is particularly important for forbidden-minor obstruction set com-

putations [CD94, CDF95]. Note that if H is a minor of a graph G then the pathwidth

(treewidth) of H is at most the pathwidth (treewidth) of G.

Regarding the development of graph algorithms, we want to emphasize that there is

a common trend in that practical algorithms often exist for restricted families of graphs

(such as trees or planar graphs), while the general problems remain hard to solve for

arbitrary input. This tendency for e�cient algorithms includes instances where the

problem's input is restricted to graphs of bounded pathwidth or bounded treewidth.

2 Introduction to Pathwidth and Treewidth

The use of bounded combinatorial width is important in such diverse areas as computa-

tional biology, linguistics, and VLSI layout design [KS93, KT92, M�oh90]. For problems

in these areas, the graph input often has a special tree-like (or path-like) structure. A

measure of width of these structures is formalized as the treewidth (or pathwidth). It

is easy to �nd examples of families of graphs with bounded treewidth such as the sets

of series-parallel graphs, Halin graphs, outer-planar graphs, and graphs with bandwidth

at most k (see Section 2.3 and [Bod86]). One also �nds other natural classes of graphs

with bounded treewidth in the study of the reliability of communication networks and in

the evaluation of queries on relational databases [MM91, Bie91, Arn85]. The treewidth

parameter also arises in places such as the e�ciency of doing Choleski factorization and

Gaussian elimination [BGHK95, DR83].

The pathwidth and treewidth of graphs have proven to be of fundamental importance

for at least two distinct reasons: (1) their role in the deep results of Robertson and

2

Seymour [RS83, RS86, RS91, RS], and (2) they are \common denominators" leading to

e�cient algorithms for bounded parameter values for many natural input restrictions

of NP-complete problems. To further explain this second phenomenon, consider the

classic NP-complete problem of determining if a graph G has a vertex cover of size

k, where both G and k are part of the input. It is known that if k is �xed (i.e., not

part of the input) then all yes instances to the problem have pathwidth at most k.

This restricted problem can be solved in linear time for any �xed k (e.g. see [CD94]).

For more examples see [Bod86, FL92, M�oh90]. In general, many problems, such as

determining the independence of a graph, can be solved in linear time when the input

also includes a bounded-width path decomposition (or tree decomposition) of the graph

(see [Arn85, AP89, Bod88a, CM93, WHL85] and [Bod86] for many further references).

Examples of this latter type are di�erent from the vertex cover example because a width

bound for the yes instances is not required (e.g., for every �xed k there exists a graph

of independence k with arbitrarily large treewidth).

Another well-known fact about the set of graphs of pathwidth or treewidth at most

k is that each set is characterizable by a set of forbidden minors. We denote these

parameterized lower ideals by k{Pathwidth and k{Treewidth. Some recently dis-

covered obstruction sets for k{Treewidth, 1 � k � 3, are given in [APC87]. Besides

the two obstructions, K3 and S(K1;3), for 1{Pathwidth, a set of 110 obstructions for

2{Pathwidth (see [Kin89]) is the only other known forbidden-minor characterization

for bounded pathwidth or treewidth.

2.1 Treewidth and k-trees

Informally, a graph G has treewidth at most k if its vertices can be placed (with repeti-

tions allowed) into sets of order at most k+1 and these sets arranged in a tree structure,

where (1) for each edge (u; v) of G both vertices u and v are members of some common

set and (2) the sets containing any speci�c vertex induces a subtree structure. Fig-

ure 1 illustrates several graphs with bounded treewidth (pathwidth). Below is a formal

de�nition of treewidth.

De�nition 1 A tree decomposition of a graph G = (V;E) is a tree T together with a

collection of subsets Tx of V indexed by the vertices x of T that satis�es:

1.
[
x2T

Tx = V .

2. For every edge (u; v) of G there is some x such that u 2 Tx and v 2 Tx.

3. If y is a vertex on the unique path in T from x to z then Tx \ Tz � Ty.

3

contains
at most k+1
vertices

Treewidth = 1 Treewidth = 2

Treewidth k Pathwidth k

contains
at most k+1
vertices

Figure 1: Demonstrating graphs with bounded treewidth (and pathwidth).

4

The width of a tree decomposition is the maximum value of jTxj � 1 over all vertices x

of the tree T . A graph G has treewidth at most k if there is a tree decomposition of G

of width at most k. Path decompositions and pathwidth are de�ned by restricting the

tree T to be simply a path (see Section 2.2 below).

De�nition 2 A graph G is a k-tree if G is a k-clique (complete graph) Kk or G is

obtained recursively from a k-tree G0 by attaching a new vertex w to an induced k-clique

C of G0, such that the open neighborhood N(w) = V (C). A partial k-tree is any subgraph

of a k-tree.

Alternatively, a graph G is a k-tree if

1. G is connected,

2. G has a k-clique but no (k + 2)-clique, and

3. every minimal separating set is a k-clique.

The above result was taken from one of the many characterizations given in [Ros73].

The next useful result appears in many places [ACP87, RS86, Nar89].

Theorem 3 The set of partial k-trees is equivalent to the set of graphs with treewidth

at most k

2.2 Pathwidth and k-paths

To generate graphs of bounded pathwidth (and treewidth) we build from graphs that

have a distinguished set of labeled vertices. These are formally de�ned next.

De�nition 4 For a positive integer k, a k-simplex S of a graph G = (V;E) is an

injective map @S : f1; 2; : : : ; kg ! V . A k-boundaried graph B = (G; S) is a graph

G together with a k-simplex S for G. Vertices in the image of @S are called boundary

vertices (often denoted by @). The graph G is called the underlying graph of B.

We now de�ne a family of graphs where each member has a linear structure. As in

Theorem 3, a graph has pathwidth at most k � 1 if and only if it is a subgraph of an

underlying graph in the following set of k-boundaried graphs. Our de�nition of a k-path

is consistent (except for the base clique) with other de�nitions that use a labeled set of

boundary vertices with one fewer vertex (see for example [BP71]). Later in this section,

Lemmas 9 and 11, we justify these two claims.

De�nition 5 A graph G is a (k�1)-path if there exists a k-boundaried graph B = (G; S)

in the following family F of recursively generated k-boundaried graphs.

5

1. (Kk; S) 2 F where S is any k-simplex of the complete graph Kk.

2. If B = ((V;E); S) 2 F then B0 = ((V 0; E 0); S 0) 2 F

where V 0 = V [fvg for v 62 V , and for some j 2 f1; 2; : : : kg:

(a) E 0 = E [f(@S(i); v) j 1 � i � k and i 6= jg, and

(b) S 0 is de�ned by @S0(i) =

(
v if i = j

@S(i) otherwise
:

A partial k-path is subgraph of a k-path.

Item 2 in the above de�nition states that a new boundary vertex v can be added as

long as it is attached to any current (k� 1)-simplex within the active k-simplex S. The

set of boundary vertices of B0 is the closed neighborhood N [v] of the new vertex v.

The de�nition of a tree decomposition is easily specialized for this path-structured

case.

De�nition 6 A path decomposition of a graph G = (V;E) is a sequence X1; X2; : : : ; Xr

of subsets of V that satisfy the following conditions:

1.
[

1�i�r

Xi = V .

2. For every edge (u; v) 2 E, there exists an Xi, 1 � i � r, such that u 2 Xi and

v 2 Xi.

3. For 1 � i < j < k � r, Xi \Xk � Xj.

The pathwidth of a path decomposition X1; X2; : : : ; Xr is max1�i�r jXij � 1. The path-

width of a graph G, denoted pw(G), is the minimum pathwidth over all path decompo-

sitions of G.

The next de�nition makes the development of bounded pathwidth algorithms easier

to understand and prove correct.

De�nition 7 A path decomposition X1; X2; : : : ; Xr of pathwidth k is smooth, if for all

1 � i � r, jXij = k + 1, and for all 1 � i < r, jXi \Xi+1j = k.

It is evident that any path decomposition of minimum width can be transformed into

a smooth path decomposition of the same pathwidth. There is a corresponding notion

of a smooth tree decomposition. See [Bod93] for a simple procedure that converts any

tree decomposition into a smooth tree decomposition. From a smooth decomposition of

width k we can easily embed a graph in a k-path or k-tree (e.g., see proof of Lemma 11).

6

To initiate the reader (and for completeness), we now give two basic results regarding

the notion of pathwidth [RS91]. We use part of the second result when we prove that

our algebraic graph representation (given in Section 3) is correct.

Lemma 8 If a graph G has components C1; C2; : : : ; Cr then

pw(G) = max
1�i�r

fpw(Ci)g :

Proof. For 1 � i � r, let X i
1; X

i
2; : : : ; X

i
si
be a path decomposition for component Ci

with minimum width wi = pw(Ci). The sequence of sets

X1
1 ; X

1
2 ; : : : ; X

1
s1
; X2

1 ; X
2
2 ; : : : ; X

2
s2
; : : : ; Xr

1 ; X
r
2 ; : : : ; X

r
sr

is a path decomposition of G since (1)
Sr

i=1 V (Ci) = V (G), (2)
Sr

i=1E(Ci) = E(G), and

(3) Xa
i \ Xb

j = ; for 1 � i � sa, 1 � j � sb, and 1 � a < b � r. The width of this

decomposition is maxri=1fwig, so pw(G) � maxri=1fpw(Ci)g.

Let X1; X2; : : : ; Xs be a path decomposition of G of minimum width. For any com-

ponent Ci of G, let Dj = Xj \ V (Ci) for j = 1; 2; : : : s. We claim that D1; D2; : : : ; Ds

is a path decomposition of Ci. Since for all v 2 V (G) there is an Xk such that v 2 Xk,S
1�j�sDj = V (Ci). Likewise, since for every edge (u; v) 2 E(G) there is an Xk such

that u 2 Xk and v 2 Xk. So if (u; v) 2 E(Ci), then both u 2 Dk and v 2 Dk. Finally,

for 1 � i < j < k � s, Xi\Xk � Xj implies Di\Dk � Dj. Therefore, since jDkj � jXkj

for 1 � k � s, pw(Ci) � pw(G) for any component Ci of G. 2

The following well-known lemma shows that the pathwidth of a partial k-path is at

most k. Thus we can justi�ably think of partial k-paths as either subgraphs or as minors

of k-paths.

Lemma 9 If G is a k-path then pw(G) = k. Further, if H is a minor of G, H �m G,

then pw(H) � k.

Proof. We �rst prove that any k-path G obtained from a de�ning (k + 1)-boundaried

graph (G; S) has a path decomposition X1; X2; : : : ; Xr of width k where Xr = image(S)

(i.e., Xr is the set of boundary vertices). For the base case of G a (k + 1)-clique, the

hypothesis holds since X1 = f1; 2; : : : ; k + 1g = V (G) is a path decomposition of width

k. For the inductive step, assume X1; X2; : : : ; Xr is a path decomposition for G. Let

G0 be the k-path built from some (G; S) by applying case 2 of De�nition 5. If we set

Xr+1 = image(S 0) then X1; X2; : : : ; Xr; Xr+1 is the required path decomposition of G0. [

(1) The new vertex v is in Xr+1, (2) all new edges (u; v) in E(G0) nE(G) have u 2 Xr+1

and v 2 Xr+1, and (3) Xi \Xr+1 � Xi \Xr implies Xi \Xr+1 � Xj for 1 � i < j � r.]

7

To see that any k-path G has a lower bound of k for its pathwidth, �rst notice that

G contains a clique C of size k + 1. For any path decomposition X = X1; X2; : : : ; Xr

of G, let Yi = Xi \ V (C) for 1 � i � r. If any jYij > k then the width of X is at least

k. Suppose jYij � k for all Yi. There must then be a Yi and a Yj, 1 � i < j � r, such

that u 2 Yi n Yj and v 2 Yj n Yi for di�erent vertices u and v. Since (u; v) 2 E(C), there

must be some Yk, 1 � k � r, such that u 2 Yk and v 2 Yk. Now fu; vg 6� Yi \ Yj so

either k < i or k > j. But v 62 Yk for k � i, and u 62 Yk for k � j. This contradicts X

being a path decomposition (i.e., it fails the edge covering requirement). Therefore, the

pathwidth of any k-path is k.

For the second part of the theorem, we start with a path decomposition X =

X1; X2; : : : ; Xr of width k for a k-path G. It is su�cient to show that any one-step minor

H ofG has a path decomposition of width at most k. For edge deletions,H = Gnf(u; v)g,

the original path decomposition X is a path decomposition of the minor H. For isolated

vertex deletions, H = G n fvg, the path decomposition X1 n fvg; X2 n fvg; : : : ; Xr n fvg

is a path decomposition of the minor H. For edge contractions, H = G = (u; v), let

Yi =

(
Xi if Xi \ fu; vg = ;

Xi [fwg n fu; vg otherwise

for 1 � i � r, where w is the new vertex created by the contraction. The sequence

Y = Y1; Y2; : : : ; Yr is a path decomposition of the edge contracted minor H. The widths

of these path decompositions for the three types of one-step minors is at most k.

We justify the edge contraction case and leave the other two simpler cases to the

reader. By de�nition,
S
1�i�s Yi = V (H). Let (a; b) 2 E(H). If fa; bg \ fu; vg = ; then

some Yi = Xi contains both a and b. Otherwise, consider any edge (a; b) = (x; w). An

edge incident to vertex w implies that either (x; u) 2 E(G) or (x; v) 2 E(G). Thus

some Xi contains x and either one or both of u and v. And so, Yi = Xi [fwg n fu; vg

contains both x and w. Finally, let i be the minimum index such that w 2 Yi and k be

the maximum index such that w 2 Yk. Without loss of generality, assume u 2 Xi. If

u 2 Xk then Y ' X nfvg and Y is a path decomposition of H. Otherwise, v 2 Xk. Since

(u; v) 2 E(G), there exists a j, i � j � k, such that both u 2 Xj and v 2 Xj. Since X

is a path decomposition, u 2 Xm for i � m � j, and v 2 Xm for j � m � k. So w 2 Ym

for i � m � k, and w 62 Ym for m < i or m > k. Therefore, for 1 � i < j < k � s, we

have Yi \ Yk � Yj. 2

Corollary 10 Any graph of order n and pathwidth k has at most
�
k+1

2

�
+(n� k� 1) � k

edges.

Proof. We easily prove that equality holds for k-paths by induction on the number of

vertices. Since the smallest k-path is the complete graph G = Kk+1, our base case holds

8

since jE(Kk+1)j =
�
k+1

2

�
. If a k-path G has n > k+1 vertices, then there exists a vertex

v that was added to a smaller k-path G0 = G n fvg (using the recursive de�nition of

k-paths). When vertex v was added to G0, there were exactly k new edges added too.

So G must have
�
k+1

2

�
+ ((n� 1)� k � 1) � k + k =

�
k+1

2

�
+ (n� k � 1) � k edges. 2

From the above corollary we see that graphs of bounded pathwidth have at most a

linear number of edges (with respect to n). It is not di�cult to show that graphs of

treewidth k also have this same bound. So, since the input size is linear in the number

of vertices (for our bounded width algorithms), there is no confusion when we talk about

having a linear time algorithm.

We now complete this subsection by proving the converse of Lemma 9.

Lemma 11 Any graph G of pathwidth at most k is a subgraph of a k-path.

Proof. If G has at most k + 1 vertices we can embed G in the base clique Kk+1, the

smallest k-path. Otherwise, let X1; X2; : : : ; Xr be a smooth path decomposition of G

of width k. We can map the vertices of X1 into the base clique Kk+1. By induction,

assume that we have embedded the vertices of [i
j=1Xj in a k-path where Xi is the set of

boundary vertices of the (k+1)-boundaried graphs Bi = (Gi; Si), generated by the rules

of De�nition 5. We can construct the next (k+1)-boundaried graph Bi+1 = (Gi+1; Si+1)

by adding the unique vertex v 2 Xi+1 n Xi in step 2 of De�nition 5 and dropping the

unique vertex v0 2 Xi nXi+1 from the simplex Si of the previous k-path Gi. Since each

Xi, 1 � i � r is mapped to a k + 1-clique, every edge of G is mapped to an edge of the

k-path Gr � G. 2

2.3 Other graph-theoretical widths

There are actually many types of combinatorial width metrics for graphs. Often a set of

graphs bounded by one type of combinatorial width is a subset of a class of graphs with

another bounded parameter. A relationship between treewidth and several graph widths

is given by Bodlaender in [Bod88b]. In addition, Wimer's dissertation [Wim87] explores

the relationships between 2-terminal recursive families (e.g., series-parallel graphs, outer-

planar graphs, and cacti). This work is now highlighted in Figure 2.

We brie
y describe two of the bounded width families, given in Figure 2, that orig-

inated from VLSI linear layout problems. A linear layout of a graph G = (V;E) is

a bijection f : V ! f1; 2; : : : ; jV jg, that is, an assignment of integers 1 to jV j to the

vertices. The bandwidth of a layout is the maximum value of jf(i)� f(j)j over all edges

(i; j) 2 E, that is, the maximum distance any edge has to span in the layout. The

cutwidth of a layout is the maximum number of edges (i; j) such that f(i) � k < f(j)

9

treewidth � k

k-outerplanar series-parallel

Halin graphs outerplanar

almost k trees

cutwidth � k

bandwidth � k pathwidth � k

forests

trees

interval graph, max clique � k

cyclic bandwidth � k

caterpillars

cacti

chordal graph, max clique � k

proper interval graph, max clique � k

Note that each constants k denotes a di�erent constant. For example,

the set of all graphs of bandwidth k is contained in the set of graphs of

cutwidth k0 = (k2 + k)=2.

Figure 2: A partial order of several bounded-width families of graphs.

10

over all 1 � k < jV j, that is, the maximum number of lines that can be cut between any

layout position k and k + 1. The bandwidth (cutwidth) of the graph is the minimum

bandwidth (cutwidth) over all linear layouts. Both of these \min of max" de�nitions

are similar to the pathwidth and treewidth de�nitions that we saw earlier. In fact, the

pathwidth of a graph is equivalent to the vertex separation of a graph which is also

de�ned as a linear layout problem [EST87].

The de�nition of interval graphs may be found in most introductory graph theory

books. We conclude this section with a description for two of the other less known

bounded-width families. A Halin graph is a planar graph G = T [C, where T is a tree

of order at least 4 with no degree two vertices and C is a simple cycle connecting all and

only the leaves of T . A cactus (member of the cacti family) is a connected outer-planar

graph that has single edges and simple cycles as its blocks.

3 Algebraic Graph Representations

Recall that we are mainly interested in �nite simple graphs. However, some of our

graphs have a vertex boundary of size k, meaning that they have a distinguished set of

vertices labeled 1; 2; : : : ; k. We sometimes use 0 (instead of k) as a boundary label. One

important operation on k-boundaried graphs is given next.

De�nition 12 Two k-boundaried graphs (each with a boundary of size k) can be \glued

together" with the � operator, called circle plus, that simply identi�es vertices with the

same boundary label.

Example 13 The binary operator � on two 3-boundaried graphs A and B is illustrated

below. Note that common boundary edges (in this case, the edges between boundary

vertices 1 and 2) are replaced with a single edge in G = A� B.

G = A� BBA

1

2

3

2

1

3

11

3.1 Operator sets and t-parses

In this section we show that (t + 1)-boundaried graphs of pathwidth at most t are

generated exactly by strings of unary operators from the following operator set �t =

Vt [Et:

Vt = f 0n; : : : ; tng and

Et = f i j j 0 � i < j � tg:

To generate the graphs of treewidth at most t, the additional binary operator � is added

to �t. The semantics of these operators on (t + 1)-boundaried graphs G and H are as

follows:

G in Add an isolated vertex to the graph G, and label it as

the new boundary vertex i.

G i j Add an edge between boundary vertices i and j of G (and

ignore if the edge already exists).

G�H Take the disjoint union of G and H except that bound-

ary vertices of G and H that are labeled the same are

identi�ed (i.e., the circle plus operator).

De�nition 14 A parse is a sequence (or tree, if � is used) of operators [g1; g2; : : : ; gn]

in ��

t that has vertex operators inand jnoccurring in [g1; g2; : : : ; gn] before the �rst

edge operator i j , 0 � i < j � t.

De�nition 15 A t-parse is a parse [g1; g2; : : : ; gn] in ��

t where all the vertex operators

0n, 1n, . . . , tnappear at least once in [g1; g2; : : : ; gn]. That is, a t-parse is a parse

with t+ 1 boundary vertices.

For clarity, we say that a treewidth t-parse is any t-parse containing at least one �

operator and a pathwidth t-parse is any t-parse without � operators.

Intuitively, t-parses represent (t + 1)-boundaried graphs that have pathwidth (or

treewidth) at most t. We justify this statement later in this section. These graphs

are constructed by using the rules de�ned for the unary vertex and edge operators and

the binary circle plus operator. The simplex S of a t-parse (i.e., the corresponding

boundaried graph) is informally de�ned to be @S(i) = in, 0 � i � t, where each inis

the last occurrence in the parse. The symbol @ is used to denote the set of boundary

vertices of a boundaried graph.

As we proceed with our study of graphs of bounded width, we use the phrase \a

t-parse G" in one of three ways:

� as a (t+ 1)-boundaried graph (also called G),

12

� as an implied path (or tree) decomposition of a graph, or

� as a data structure (e.g., for dynamic programs).

Thus, a t-parse G is used with standard object-oriented terminology (i.e., a t-parse G

\is a" boundaried graph and G \has a" decomposition), where any operations on graphs

may also be applied to a t-parse G.

De�nition 16 Let G = [g1; g2; : : : ; gn] be a t-parse and Z = [z1; z2; : : : ; zm] be any

sequence of operators over �t. The concatenation (�) of G and Z is de�ned as

G � Z = [g1; g2; : : : ; gn; z1; z2; : : : ; zm]:

The t-parse G �Z is called an extended t-parse, and Z 2 ��

t is called an extension. For

the treewidth case, G and Z are viewed as two connected subtree factors of a parse tree

G � Z instead of two parts of a sequence of operators.

A vertex operator gj = in, for any 0 � i � t, in a t-parse Gn = [g1; g2; : : : ; gn] is

called a boundary vertex if gk 6= infor j < k � n.

De�nition 17 A graph G is generated by �t if there is a (t + 1)-boundaried graph

(B; S) = Gn = [g1; g2; : : : ; gn] such that B ' G for some t-parse Gn. That is, G is

isomorphic to an underlying graph of a t-parse.

For ease of discussion throughout the remaining part of this section, we mainly limit

ourselves to graphs of bounded pathwidth. In certain situations, where required, we

provide additional information pertaining to graphs of bounded treewidth.

De�nition 18 Let Gn = [g1; g2; : : : ; gn] be a boundaried graph represented as some parse

over �t. A pre�x graph (of length m) of Gn is Gm = [g1; g2; : : : ; gm], 1 � m � n.

Lemma 19 Every t-parse Gn = [g1; g2; : : : ; gn] represents a graph with a path decompo-

sition of width t.

Proof. Without loss of generality, let Gn = [g1; g2; : : : ; gn] be a (t+1)-boundaried graph.

Let vi denote the index of the i-th vertex operator in the t-parse Gn. Let I be the set

of these vi and for i 2 I,

Xi = fj j gvj is a boundary vertex of Gvig

We claim that X = X1; X2; : : : ; XjIj is a path decomposition of width t for Gn.

13

For any vertex operator gk, de�ne label(gk) to be i if gk is the i-th vertex operator

in Gn. By de�nition of the Xi's,
S
Xi = f1; 2; : : : ; jIjg = V (Gn). For any edge operator

gk = i j of Gn, let b1(gk) and b2(gk) denote the indices of the preceding vertex operators

inand jn, respectively. For each edge operator gk = i j of Gn, let u = label(b1(gk))

and v = label(b2(gk)). Since edge operators add edges to the current boundary of a

pre�x graph, either Xu or Xv must contain both u and v. Assuming i < j, Xi \ Xj

represents the boundary vertices of Gvj that did not change from Gvi . So for any k,

i < k < j, we have Xi \Xj � Xi \Xk. This implies that Xi \Xj � Xk.

Finally, since only (and exactly) the vertex operators 0n, 1n, . . . , tnappear in

Gn we have max1�i�jIj fjXijg = t+ 1. So X is a path decomposition of width t for Gn.

2

And next we prove the result in the other direction.

Lemma 20 Every partial t-path of order at least t + 1 is represented by some t-parse.

Proof. We �rst show that every t-path can be represented by some t-parse. We prove

inductively from the recursive de�nition of t-paths. The initial (t + 1)-clique can be

represented by the following sequence of operators over �t.

[0n; 1n; 0 1 ; 2n; 0 2 ; 1 2 ; 3n; 0 3 ; 1 3 ; 2 3 ; : : : ; tn; 0 t ; 1 t ; : : : ; t{1 t]

For the inductive step, assume that any t-path G with an active t + 1 simplex S is

represented by an operator string Gm = [g1; g2; : : : ; gm] such that @S is de�ned properly.

The recursive operation of \replacing a simplicial vertex with a new vertex v (forming

a new clique)" can be modeled by appending the operator sequence of the form

[in; 0 i ; : : : ; i{1 i ; i i+1 ; : : : ; i t]

to Gm depending on which simplicial vertex (boundary vertex i) should be replaced.

Thus, any t-path can be represented by a t-parse over �t.

To represent partial t-paths, note that each edge is represented by one or more edge

operators. By simply deleting all of these edge operators, any edge in the t-parse is

removed. Thus, by repeatedly deleting edges, we get a t-parse for any partial t-path.

2

Note that many t-parse representations may exist for a partial t-path since many path

decompositions are generally possible. Finally, combining the previous two lemmas we

have the following theorem.

Theorem 21 The family of graphs (t-parses) generated by �t equals the family of partial

t-paths of order at least t + 1.

14

Corollary 22 A graph G has pathwidth t if and only if it is generated by �t but not

�t-1.

Proof. If a graph G is generated by �t-1 then it has pathwidth t�1. If G has pathwidth

t then it is a partial t-path and by the above theorem it has a t-parse representation

over �t. 2

For a treewidth analog to Theorem 21, we have the following result.

Theorem 23 The set of treewidth t-parses represents the set of graphs of order at least

t+ 1 and treewidth at most t.

Proof. We �rst show that any t-parse G has a tree decomposition (T; fTxg) of width t

where the current boundary of G is in some Tx, x 2 T . We prove this by induction on

the number of operators in G and whether or not G has any � operators. For the base

cases of no � operators, we have by Lemma 19, a path decomposition X = X1; : : : ; Xr

of width t. Thus G has a tree decomposition (Pr; fXi j i 2 V (Pr)g), where Pr denotes

a path of length r. Note that by our constructive proof the set Xr contains the current

boundary of G.

Now assume G contains at least one � operator. We have three cases. If G = G1�G2

then let (T 0; fT 0

xg) and (T 00; fT 00

xg) be tree decompositions for G1 and G2, respectively.

Since both G1 and G2 have fewer operators than G, there exists sets T 0

x and T 00

x that

contain the boundary of G1 and G2 (or of G itself). A tree decomposition of G of the

desired form is constructed by identifying T 0

x and T 00

x in the two subtree decompositions.

If G = G1 � [i j] then let (T 0; fT 0

xg) be a tree decomposition of the desired form for G1.

Since both boundary vertices i and j are in some vertex set T 0

x for some x 2 T 0, (T 0; fT 0

xg)

is the required tree decomposition for G. Similarly, if G = G1 � [i
n], let (T 0; fT 0

xg) be

a tree decomposition of the desired form for G1. Let T be the tree constructed by

attaching a vertex i to T 0 at vertex x, where T 0

x contains all the boundary vertices of

G1. Set Ti = T 0

x n fi
0g [fig where i0 represents the old boundary vertex. This proves

that every t-parse has treewidth at most t.

Now we show that any t-tree G with at least t + 1 vertices contains a t-parse repre-

sentation. As in the proof of Lemma 20, any partial t-tree is representable by removing

the appropriate edge operators. Our proof is based on a smooth tree decomposition

(T; fTxg) of G. In particular, jTxj = t + 1 for all x 2 T and jTu \ Tvj = t whenever u

and v are adjacent in T . We recursively build a t-parse for G by arbitrarily picking a

root vertex r of T and having Tr as the �nal t-parse boundary.

We �rst require a function �i;j that takes a t-parse H and returns a t-parse H 0 where

the boundary labels i and j have been interchanged. (The reader should observe that the

15

function �i;j is easy to construct.) For the proof below we assume that the underlying

graph G is labeled 1; 2; : : : ; jGj, and that any partial t-parse will have boundary vertex

i less than boundary j, whenever the underlying label for i is less than the underlying

label for j. This boundary order is needed to keep things aligned when we use the �

operator.

If G has t+ 1 vertices (i.e., a clique Kt+1) then the construction given in Lemma 20

for the t-path case is su�cient. We now recursively build a t-parse for G based on the

degree d � 1 of a root vertex r. Let v1; : : : ; vd be the neighbors of vertex r in T . For

each 1 � i � d consider the subtree decomposition (T i; fT i
xg) induced by the subtree

of T rooted at vi. By induction we have t-parses G1; : : : ; Gd for these pieces of G with

boundary sets Tv1 ; : : : ; Tvd, respectively.

If d = 1, we have the following t-parse, where i denotes the boundary vertex repre-

senting the single vertex in Tv1 n Tr, for the original t-parse G (using the proof method

of Lemma 20).

G1 � [i
n; 0 i ; : : : ; i{1 i ; i i+1 ; : : : ; i t]

If the new boundary vertex i is out of boundary order with respect to Tr then we can

apply the �i;j function (possibly several times with di�erent vertices i and j).

If d > 1 then we apply one vertex operator for each subtree parse and a total of d�1

circle plus operators to combine the pieces. The vertex operator is chosen the same way

as in the d = 1 case and we may have to permute with the �i;j function. Let G
0

i denote

a particular t-parse, for 1 � i � d. The t-parse for G is then created by the following

parse.

�

G0

1 G0

2

G0

d�1

G0

d

�

�

G0

3

�

Note that multi-edges created by the repeated � operators are ignored. 2

3.2 Some t-parse examples

The next three examples illustrate our algebraic representation of t-boundaried graphs

of bounded width. The �rst two t-parse examples are graphs of pathwidth 2 which are

then combined with the circle plus operator to form a graph of treewidth 2.

16

Example 24 A t-parse with t = 2, and the graph it represents. (The shaded vertices

denote the �nal boundary.)

0

1

2

0

1

2

[0n; 1n; 2n; 0 1 ; 1 2 ; 1n; 0 1 ; 1 2 ; 0n; 0 1 ; 0 2 ; 2n; 0 2 ; 1 2]

Example 25 Another 2-parse and the graph it represents.

0

1

2

0

1

2

1

[0n; 1n; 2n; 0 1 ; 1 2 ; 1n; 0 1 ; 1 2 ; 1n; 0 1 ; 1 2 ; 0n; 0 1 ; 0 2 ; 2n; 0 2 ; 1 2]

Example 26 We demonstrate the circle plus operator � with the 2-boundaried graphs

(2-parses) given in the previous two examples. The second graph is re
ected and glued

onto the �rst graph's boundary. In general, the pathwidth of a t-parse usually increases

when the binary operator � is used (although not in this example).

0

1

2

17

3.3 Other operator sets

The t-parse representation for graphs of pathwidth (or treewidth) at most t is not unique.

We now present two di�erent operator sets for representing graphs of bounded combina-

torial width. Many other algebraic representations are available, sometimes in disguised

form, by other sources (e.g., see [Bor88, BC87, CM93, Wim87]). The following two ex-

amples illustrate two extremes regarding the number of operators required to represent

graphs of pathwidth (or treewidth) of at most k. The �rst set shows that only a constant

number (4) of operators is needed, independent of the width k [Fel]. The second set uses

a polynomial number of operators per boundary size, but generates k-boundaried graphs

for pathwidth k (instead of graphs with boundary size k+1). We point out that another

\middle ground" operator set based on a combination of these two sets is given in [Lu93].

A constant sized operator set 	k, for graphs with pathwidth at most k, consists of two

boundary permutation operators p1 and p2 and the two t-parse graph building operators

0nand 0 1 . The domain for these operators is again (k + 1)-boundaried graphs. The

permutation operators are used to relabel the boundary. These permutations, given in

the standard cyclic form, are p1 = (0; 1) and p2 = (0; 1; : : : ; k). These two permutations

generate the symmetric permutation group Sk+1 and hence, by applying in succession,

arbitrary relabelings of the boundary are possible. It is easy to see that 	k, with its 4

operators, generates exactly the same set of boundaried graphs as our pathwidth t-parse

operator set �k. We also observe the following:

Observation 27 A graph G has treewidth at most k if and only if it is obtainable by

using the 5 operators 	k [f�g.

A big pathwidth operator set, called
k, for k-boundaried graphs of pathwidth at

most k, contains the t-parse operator set �k�1 and has the following two additional

operator types. In the de�nitions below G denotes any k-boundaried graph.

G i Add a pendent vertex to the current boundary vertex i

of G, and label it as the new boundary vertex i.

G fb1; b2; : : : ; bpg Add a new interior vertex and attach it to all of the

boundary vertices b1; b2; : : : ; bp of G, 1 � p < k.

Example 28 Below we illustrate the operator set
3 in generating a 3-boundaried graph

of pathwidth 3.

18

0

1

22

1

0

[0n; 1n; 2n; 0 1 ; 1 2 ; 0 ; 0 1 ; 0 2 ; 1n; f0; 1; 2g ; 0 1 ; 2 ; 1 2 ; f0; 1g]

We now prove that this operator set that uses a smaller boundary size can be used

to represent graphs of bounded pathwidth.

Theorem 29 The operator set
k generates precisely the set of graphs of pathwidth at

most k.

Proof. Clearly if a graph has n � k vertices (which means it has pathwidth at most

k� 1) then it is representable by a sequence that starts with n distinct vertex operators

and an edge operator for each edge.

We next show, without loss of generality, that every (well-de�ned) sequence

S = [0n; 1n; : : : ; k-1�

��

; s1; s2; : : : ; sr]

of
k operators represents a graph of pathwidth at most k. We do this by showing

how to build a t-parse G, t = k, for representing the underlying graph. For each pre�x

Si = [: : : ; s1; s2; : : : ; si], we have a corresponding pre�x t-parse G�(i) of G, where � is

some increasing integer function. The construction uses a \spare" (but variably labeled)

boundary vertex of �k for simulating the fb1; b2; : : : ; bpg and i operators. For the

following discussion we use �(j) to denote a injective map from the boundary of Si to

the boundary of G�(i) and the integer v to denote the unique boundary label not in the

image of �. We start by setting G�(0) = [0n; 1n; : : : ; k-1�

��

], � to be the identity map,

and v = k. Now we have four cases for the inductive steps:

1. If sr = inthen for i0 = �(i), G�(r) = G�(r�1) � [i
0n].

2. If sr = i j then G�(r) = G�(r�1) � [�(i) �(j)].

3. If sr = i then G�(r) = G�(r�1) � [v
n; �(i) v]. Swap the values of �(i) and v.

4. If sr = fb1; b2; : : : ; bpg then

G�(r) = G�(r�1) � [v
n; �(b1) v ; �(b2) v ; : : : ; �(bp) v]:

19

Thus, since any pathwidth t-parse, t = k, has pathwidth at most k so does any k-

boundaried graph generated by
k.

We now show that any k-path G is representable by a string of
k operators. Again

this is su�cient since we can remove edge operators i j or replace fb1; b2; : : : ; bpg

operators to obtain any partial k-path. Let X = X1; X2; : : :Xr be a smooth path

decomposition of G. We constructively build a partial parse Pi using
k operators for

each vertex induced k-path de�ned by
S
1�j�iXj. The current boundary of Pi will be

@(Pi) = Xi\Xi+1, for 1 � i < r. For each vertex u 2 G that is on the current boundary

of Pi, de�ne @i(u) to be the corresponding boundary label in 0; 1; : : : ; k � 1. The initial

Kk+1 clique is parsed by

P1 = [0n; 1n; 0 1 ; 2n; 0 2 ; 1 2 ; 3n; 0 3 ; 1 3 ; 2 3 ; : : : ;

k-1�

��

; 0 k{1 ; 1 k{1 ; : : : ; k{2 k{1 ; f0; 1; : : : ; k{1g]

where @1(u) is assigned arbitrarily for the vertices X2 nX1. Let oldi denote the unique

vertex in Xi nXi+1 and newi denote the unique vertex in Xi+1 nXi, for 1 � i < r. We

have two cases to consider when constructing Pi+1 from Pi, for 1 � i � r � 2.

If newi = oldi+1 then

Pi+1 = Pi � [f0; 1; : : : ; k{1g]

else (i.e., newi 6= oldi+1) for j = @i(oldi)

Pi+1 = Pi � [j ; 0 j ; : : : ; j{1 j ; j j+1 ; : : : ; j k{1]

then @i+1(newi) = j. The �nal parse for G is simply Pr = Pr�1 � [f0; 1; : : : ; k{1g] to

end with a Kk+1 clique (assuming r > 1). 2

One of the reasons why we picked the t-parse operator set �t over other possible

sets is that we want each unary operator to add something signi�cant (but not too

complex) to its (t + 1)-boundaried graph argument. For example, for obstruction set

computions, we want a smooth and rapid path, via these graph building operators, to the

obstructions (but do not want to overshoot the graph family too far by adding complex

graph pieces). That is, we believe that the search tree is smaller using our choice of

operators. An analogy from the computer architecture world is that we would prefer a

RISC chip over one with a full and powerful instruction set (or, in the other extreme,

one with only tedious nano-code primitives). Another reason for our choice is that we

want a pre�x property of the parse strings for obstruction set searching [Din95].

20

4 Simple Enumeration Schemes

As indicated by the topic of this paper, the two main invariants that we study are the

pathwidth and the treewidth metrics. Many combinatorial graph search problems can

be restricted to domains of bounded width (e.g., obstruction set searches). To take

advantage of a particular bounded invariant a practical method is needed to generate

all these restricted graphs. How to do this smartly is the topic of this section.

As seen by the examples in Section 3, it is easy to represent (with a computer)

graphs of pathwidth or treewidth of at most t by strings of unary operators or by trees

with the additional binary � operator. This suggests a natural way of enumerating all

these bounded width graphs: Just enumerate all possible valid combinations of t-parse

strings (or t-parse trees). Unfortunately, many di�erent t-parses correspond to the same

underlying graph. To reduce our search process we need to know when two t-parses

represent the same graph. We formalize this concept next.

De�nition 30 Two k-boundaried graphs B1 = (G1; S1) and B2 = (G2; S2) are free-

boundary isomorphic, denoted B1 '@f B2, if there exists a graph isomorphism � between

G1 and G2 such that

f�(@S1(i)) j 1 � i � kg = f@S2(i) j 1 � i � kg :

That is, boundary vertices of G1 are mapped under � to boundary vertices of G2. And

B1 and B2 are �xed-boundary isomorphic if there exists an isomorphism � such that

�(@S1(i)) = @S2(i) for 1 � i � k :

That is, each boundary vertex i of G1 is mapped under � to boundary vertex i of G2.

There exists known polynomial-time algorithms to determine whether two graphs of

bounded treewidth are isomorphic [Bod90] (also see [YBdFT97]). However, we would

still like to avoid the isomorphism problem (as much as possible, anyway).

Our goal is to �nd an enumeration scheme that generates each free-boundary iso-

morphic t-parse at most once.

4.1 Canonic pathwidth t-parses

One simple way of generating each free-boundary isomorphic t-parse is to de�ne equiva-

lence classes of t-parses and generate one representative for each class of free-boundary

isomorphic graphs. A t-parse is said to be canonic, with respect to some linear ordering

of t-parses, if it is a minimum t-parse within its equivalence class. For an enumeration

scheme, these minimum representatives should be de�ned so that extending the set of

21

canonic representatives of order n generates a set (or superset) of the canonic represen-

tatives of order n+1. Here, if we generate a non-canonic t-parse of order n+1 we discard

it before generating the canonic representatives of order n+ 2. We call an enumeration

order (scheme) simple if this property holds.

The simplest linear ordering of t-parses is a lexicographical order of the parse strings.

We de�ne the lex-canonic order between two t-parses by comparing operators at equal

indices (from the beginning of each string) until a di�erence is found. The individual

operators in �t are related as follows:

1. Vertex operator inis less than any edge operator j k .

2. Vertex operator inis less than any vertex operator jnwhenever i < j.

3. Edge operator i j , where i < j, is less than edge operator k l , where k < l,

whenever i < k, or i = k and j < l.

A canonic t-parse in the lex-canonic order <l (called a lex-canonic t-parse) is any

t-parse G such that G <l H for any free-boundary isomorphic t-parse H '@f G where

H 6= G. Since any pre�x of a lex-canonic t-parse is also lex-canonic, a simple enumeration

scheme is possible using this form of canonicity. (This pre�x property is easily seen by

assuming that a pre�x P of a lex-canonic t-parse G = P � S is not lex-canonic then a

contradiction arises regarding G being lex-canonic. That is, consider a lexicographically

less t-parse P 0 � S 0 <l G that is free-boundary isomorphic to G, where P 0 <l P and

P 0 '@f P .)

Example 31 Several t-parses are listed below in increasing lex-canonic order. The

fourth t-parse is not lex-canonic since it is free-boundary isomorphic to the second

t-parse. Likewise, the �fth t-parse is free-boundary isomorphic to the �rst (which is

also lex-canonic).

[0n; 1n; 2n; 0 1 ; 0n; 0 1]

[0n; 1n; 2n; 0 1 ; 0 2 ; 0n; 0 1 ; 0 2]

[0n; 1n; 2n; 0 1 ; 0 2 ; 0n; 0 1 ; 0 2 ; 1n; 0 1]

[0n; 1n; 2n; 0 1 ; 1 2 ; 1n; 0 1 ; 1 2]

[0n; 1n; 2n; 0 1 ; 1 2 ; 2n]

We now present an alternate canonic representation for pathwidth t-parses. The

main bene�t of this scheme, based on a non-lexicographical order, is that most non-

canonic t-parses are easily determined (by checking for required canonicity properties of

the parse string). For any t-parse P , let vseq(P) be the vertex subsequence of the parse,

that is, just the vertex operators infor some i, and let vpos(P) be the positions of the

vertex operators in the original t-parse.

22

Example 32 For the t-parse

G = [0n; 1n; 2n; 0 1 ; 0 2 ; 0n; 0 1 ; 0 2 ; 1n; 0 1 ; 2n]
we have

vseq(G) = (0n; 1n; 2n; 0n; 1n; 2n)
and

vpos(G) = (1; 2; 3; 6; 9; 11) .

De�nition 33 For two t-parses P1 and P2 of the same free-boundary graph, we de�ne

a linear order <c as follows where the symbol < denotes the lexicographical order on

integer sequences and <l denotes the lex-canonic order on �t operator sequences.

1. If vpos(P1) < vpos(P2) then P1 <c P2.

2. Else if vseq(P1) <l vseq(P2) then P1 <c P2.

[Here vpos(P1) = vpos(P2).]

3. Else if P1 <l P2 then P1 <c P2.

[Here vpos(P1) = vpos(P2) and vseq(P1) = vseq(P2).]

The order <c is a linear order because <l is a linear order (i.e., if case 3 is ever

reached then either P1 <c P2 or P2 <c P1 holds).

For the remainder of this section, a t-parse P of a free-boundary graph G is termed

canonic if there is no other parse P 0 such that P 0 '@f P and P 0 <c P . The idea behind

this t-parse order is that we want vertex operators to come earlier in the parse. For the

linear order <c we note that any vertex operator inand any edge operator j k do not

need to be compared lexicographically.

We now state some useful facts about canonic t-parses (using the <c order).

Lemma 34 Let Gn = [g1; g2; : : : ; gn] be a canonic t-parse. If gk1 = inand gk2 = jn
are consecutive vertex operators, then for any edge operator gk = a b , k1 < k < k2,

either a = j or b = j.

Proof. Assume that, for some k1 < k < k2, gk = a b where a 6= j and b 6= j. Clearly

the following parse, G0

n, represents the same free-boundary graph.

G0

n = [g1; g2; : : : ; gk1 = in; : : : ; gk�1; gk+1; : : : ; gk2 = jn; gk = a b ; gk2+1; : : : ; gn]

But vpos(G0

n) is lexicographically less than vpos(Gn). This can not happen since Gn is

canonic. So, we must have either a = j or b = j in order to prevent the possible edge

shift. 2

23

The previous lemma states that any edge operators that immediately precedes a

vertex operator inmust be adjacent to the previous in. The next result regarding the
position of the boundary edges follows easily from the previous lemma.

Lemma 35 Let Gn be a canonic t-parse. If gm = i j is a boundary edge of Gn,

1 � m < n, then there are no vertex operators in positions m + 1; m+ 2; : : : ; n.

Proof. If not, the next vertex operator would have to be inor jn. 2

The following lemma states that any pre�x of a canonic t-parse is also canonic.

This means that using <c to de�ne t-parse canonicity is suitable for a simple t-parse

enumeration scheme.

Lemma 36 If Gn is a canonic t-parse then the pre�x Gn�1 is a canonic t-parse.

Proof. If this is not true, then there exists Hn�1 '@f Gn�1, with Hn�1 <c Gn�1. Let

� : V (Gn�1) ! V (Hn�1) be a free-boundary isomorphism mapping between Gn�1 and

Hn�1. De�ne

hn =

8<
: �i
n if gn = in

�i �j if gn = i j
:

Now consider Hn = Hn�1 �hn. The parse Hn is isomorphic to Gn with Hn <c Gn. So we

must have Hn�1 6<c Gn�1. 2

We now turn to the problem of determining when an extension of a canonic t-parse

is also canonic.

Lemma 37 Let Gn be a canonic t-parse. If Z = [i j] is a single edge operator ex-

tension, then Gn+1 = Gn � Z can be tested for canonicity with a constant number of

isomorphism calls.

Proof. Suppose Gn+1 is not canonic. Then there exists a free-boundary isomorphic

t-parseHn+1 '@f Gn+1 withHn+1 <c Gn+1. Since bothGn+1 andHn+1 contain boundary

edges we know from Lemma 35 that the last vertex operator has index k � n (that is,

k = n + 1 � \number of boundary edges"). An isomorphism mapping � : V (Gn+1) !

V (Hn+1) shows that the t-parses Hk and Gk are free-boundary isomorphic. This is seen

by noting that for any edge (a; b) of Gn+1, Gn+1 n f(a; b)g '@f Hn+1 n f(�a; �b)g. Since

Gn is canonic the pre�x Gk is also canonic (likewise Hk), so Hk '@f Gk impliesHk = Gk.

Thus, if Gn+1 is not canonic then its canonic t-parse representation is identical to

Gn+1 except for the boundary edges at the end of the parse. If there are i boundary

edges then we have at most
�
(t+12)

i

�
possible t-parses to consider. 2

24

Example 38 Below is an instance of where a constant number of isomorphism calls

would tell us that the extended t-parse H is not canonic. This example is created by

adding an edge between a pendent vertex and an isolated boundary vertex of the canonic

t-parse G. The t-parse K is free-boundary isomorphic to H and canonic.

G = [0n; 1n; 2n; 3n; 0 1 ; 0n; 0 2]

H = [0n; 1n; 2n; 3n; 0 1 ; 0n; 0 2 ; 1 3]

K = [0n; 1n; 2n; 3n; 0 1 ; 0n; 0 1 ; 2 3]

We can easily eliminate an isomorphism check for several of the possible t-parses

mentioned in the previous lemma. For a prospective t-parse Hn+1 to be free-boundary

isomorphic to Gn+1, the degree sequences of the boundaries must be identical. These

degree sequences can be re�ned to include both the number of boundary and non-

boundary incident edges. That is, these two \ordered pair" degree sequences (one for

Gn+1 and one for Hn+1) must coincide.

Observation 39 Let Gn be a canonic t-parse. If Z = [in], a single vertex operator

extension, then Gn � Z is non-canonic if Lemma 34 is violated, which is likely and easy

to check.

The next lemma helps us detect other non-canonic situations for any t-parse of length

n that ends with a vertex operator.

Lemma 40 With m < n being the smallest index of any edge operator of a canonic

t-parse Gn, there are no consecutive vertex operators gi and gi+1 in Gn, for m < i < n.

Proof. First consider two identical vertex operators inconsecutive in Gn. One of

these can be replaced by a 0nand moved to the �rst of the string since the semantics

of [. . . , in, in] causes an internal isolated vertex. Now a su�x of Gn with two di�erent

consecutive vertex operators can be rewritten as (assuming Gn�1 is canonic)

Gn�1 � [j
n] = [: : : ; i k ; i j ; in; jn] >c [: : : ; i j ; jn; i k ; in]

that is less in the <c order. If there are more than two consecutive vertex operators,

[: : : ; a b ; in; jn; kn; : : :] then we can also shift one of these earlier. Here, the vertex

that can be shifted before the edge operator a b is determined by fi; j; kg n fa; bg. 2

One thing that is not quite resolved is how to e�ciently handle the not so easy

vertex operator cases. If both Lemmas 34 and 40 are not violated we still do not know

if a t-parse Gn � [i
n] is canonic. We believe that a non-canonic t-parse can pass both

these lemmas for only a very few special cases (maybe not even enough times to worry

25

about). Even without a fast canonic algorithm for this case, we still have a fast method

for generating all bounded pathwidth graphs. Since the set of graphs of pathwidth at

most t is obtained from the set of canonic t-parses (and we generate a superset), the

above statements provide us with an e�cient means of generating each such partial

t-path with a constant sized boundary exactly once. If one wishes, a free-boundary

isomorphism algorithm can be used to check for redundancies. Our implementation uses

a variation of the one presented in [SD76]; but there exists theoretically more e�cient

algorithms (e.g. [Bod90]).

4.2 Canonic treewidth t-parses

It is known that both free and rooted tree generation can be done e�ciently (in constant

amortized time) with one of the algorithms given in [Wil89, WROM86, BH80]. To alge-

braically represent a graph of bounded treewidth (i.e., a generalized \bounded-width"

tree) we model its underlying tree decomposition structure as an equivalent tree (of

maximum degree three) using our treewidth operator set �t (see Theorem 23). Again,

since many tree decompositions of minimum width exist for a given graph we strive for

a canonic representation. In the discussion given below, we incorporate the additional

binary operator � within the pathwidth lexicographical canonic scheme (i.e., we expand

the domain for the <l order).

We view a treewidth t-parse T as a rooted parse tree where the current set of active

boundary vertices are inferred from the operator semantics.

The �rst simpli�cation for our enumeration scheme is to restrict the t-parse argu-

ments for the � operator. We simply require that no boundary edges occur in both

t-parses G1 and G2 before G1 �G2 is enumerated. Any edge that needs to be adjacent

to two boundary vertices is added with edge operators after (or above) the circle plus.

To compare two t-parses that have di�erent underlying tree decomposition trees, we

use a ranking method similar to the one commonly used for ranking rooted trees [BH80].

The idea for our new linear order (details to come shortly) is to de�ne another set of

t-parse equivalence classes (with respect to each tree decomposition structure) and then

linearly order these classes.

De�nition 41 Let v(G) denote the number of vertex operators in a t-parse G. A sig-

nature s(G) for a t-parse G is an integer sequence de�ned recursively with respect to the

root's operator type:

1. If G = G1 � [i j] then s(G) = s(G1).

2. If G = G1 � [i
n] then s(G) = [v(G); s(G1)].

26

3. If G = G1 � G2, where without loss of generality s(G1) � s(G2), then s(G) =

[s(G1); s(G2)].

A signature s1 is less than a signature s2 if js1j < js2j, or js1j = js2j and s1 < s2 in

lexicographic order.

For any two t-parses G1 and G2 that have the same signature, let (B1
1 ; B

1
2 ; : : :) and

(B2
1 ; B

2
2 ; : : :) be the pathwidth t-parse branches of G1 and G2, respectively, obtained

from a post-order traversal of the structural tree. These vertex and edge operators are

sequenced from leaves to root. Two t-parses G1 and G2 (not necessarily free-boundary

isomorphic) can be compared lexicographically by comparing B1
i with B2

i , starting at

i = 1, and increasing i until a di�erence is found.

Example 42 A treewidth 1-parse is shown below for S(K1;3), a subdivided K1;3.

0 0 0

111

A = [0n; 1n; 0 1 ; 0n; 0 1 ; 1n] A� A (A� A) � [0 1 ; 0n; 0 1]

With the far right edge operator 0 1 being the root, the signature of this 2-boundaried

graph is [9; 4; 3; 2; 1; 4; 3; 2; 1].

De�nition 43 A treewidth t-parse G is structurally canonic if it has the smallest signa-

ture over all t-parse representations of graphs free-boundary (�xed-boundary) isomorphic

to G. In addition, the t-parse G is treewidth canonic if it is the lexicographic mini-

mum t-parse over all structurally canonic representations within the free-boundary (�xed-

boundary) isomorphic equivalence class. We call these orderings of treewidth t-parses the

free-boundary (or �xed-boundary) lex-rank order.

It is understood from the context whether we are talking about the free or �xed

boundary cases, with the latter case being more common.

Lemma 44 If a graph G of treewidth t also has pathwidth t then the structurally canonic

(and treewidth canonic) t-parse for G has no � operators.

Proof. This follows from the fact that a t-parse with more � operators also has more

vertex operators (the circle plus operator absorbs t + 1 vertices). Since the length of

a signature for a t-parse equals the number of vertex operators, any signature without

� operators (i.e., a pathwidth t-parse) is less in the treewidth t-parse comparison order

than any non-trivial treewidth t-parse. 2

27

The above lemma allows us to do computations (enumerations) for pathwidth t-parses

and then reuse (if using the lex-canonic pathwidth scheme) any partial results for these

t-parses when computing within the treewidth t-parse domain. For example, for the

obstruction set search method described in [Din95] we could reuse any proofs of graph

minimality or nonminimality from a previous search that was restricted to pathwidth

t-parses.

Our treewidth analog to Lemma 36's \pre�x of canonic is canonic" is given below.

Lemma 45 For the �xed-boundary case, any rooted induced subtree S of a treewidth

canonic t-parse T is also treewidth canonic.

Proof. By induction on the number of operators, it su�ces to look at pre�xes with one

less operator. Let gn denote the last operator of T . The validity of this statement for the

pathwidth operators (gn = inor gn = j k) follows from the left associative semantic

interpretation of these unary operators. That is, if there exists a pre�x S with a more

canonic parse, then applying the unary operator gn to S contradicts T being treewidth

canonic. For the treewidth operator case, gn = �, assume T = G1 � G2 is a treewidth

canonic t-parse. By de�nition of treewidth canonic, we can also assume G1 � G2 (in lex-

rank order). If there exists a t-parse H1 that is �xed-boundary isomorphic to G1 that has

a smaller rank, then the �xed-boundary isomorphic t-parse T 0 = H1�G2 contradicts the

fact that T is treewidth canonic. This contradiction can take place either in or outside

T 's structurally canonic equivalence class. That is, if s(H1) < s(G1) then we can �nd a

better structural equivalence class for T . The same argument holds for the child parse

G1 replaced with G2. 2

As a consequence of the above lemma there is a simple enumeration scheme (as

was given in Section 4.1 for the pathwidth t-parses) for generating all �xed-boundaried

t-parses of treewidth at most t. Note that like our free-boundary pathwidth case, ex-

tending a canonic �xed-boundaried t-parse G may yield a non-canonic t-parse G � Z,

but any pre�x (subtree) of a �xed-boundary canonic H is canonic. An example of the

former problem is given below.

'@

0

1

2 2

1

0

G � Z = = H

[0n; 1n; 2n; 0 1 ; 0 2 ; 0n] � [1n] '@ [0
n; 1n; 2n; 0 1 ; 0n; 1 2 ; 1n]

The subtree property of Lemma 45 does not hold for the free-boundary treewidth

case since the semantics of the binary operator � require �xed-boundary vertices. For

28

example, consider the free-boundary canonic 1-parse A � B, where A is taken from

Example 42 and B = [0n; 1n; 0 1 ; 1n; 0 1 ; 0n]. Here both subtrees A and B are

free-boundary isomorphic but B is not treewidth canonic for the free-boundary case.

Acknowledgement

Most of the pathwidth t-parse theory presented here was obtained during several tea-time

discussions with Kevin Cattell with regards to feasible obstruction set search strategies

(e.g., [CD94]). Of course, I take all responsibility for the correctness of the material that

is presented here.

References

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of

�nding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods,

8:277{284, April 1987.

[AP89] Stefan Arnborg and Andrzej Proskurowski. Linear algorithms for NP-hard prob-

lems restricted to partial k-trees. Discrete Applied Mathematics, pages 11{24,

1989.

[APC87] Stefan Arnborg, Andrzej Proskurowski, and Derek G. Corneil. Minimal forbidden

minor characterization of a class of graphs. Colloquia Mathematica Societatis

J�anos Bolyai, 52:49{62, 1987.

[Arn85] Stefan Arnborg. E�cient algorithms for combinatorial problems on graphs with

bounded decomposability { A survey. BIT, 25:2{23, 1985. Invited paper.

[BC87] Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings.

Mathematical System Theory, 20:83{127, 1987.

[BGHK95] Hans L. Bodlaender, John R. Gilbert, Hj�almt�yr Hafsteinsson, and Ton Kloks. Ap-

proximating treewidth, pathwidth, and minimum elimination tree height. Journal

of Algorithms, 18:238{255, 1995.

[BH80] Terry Beyer and Sandra Mitchell Hedetniemi. Constant time generation of rooted

trees. SIAM Journal on Computing, 9:706{712, 1980.

[Bie91] Daniel Bienstock. Graph searching, path-width, tree-width and related problems

(a survey). In Reliability of Computer and Communication Networks, volume 5

of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,

pages 33{49. Association for Computing Machinery, 1991.

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. MacMillan,

1976.

29

[Bod86] Hans L. Bodlaender. Classes of graphs with bounded tree-width. Technical Re-

port RUU-CS-86-22, Dept. of Computer Science, University of Utrecht, P.O. Box

80.012, 3508 TA Utrecht, the Netherlands, December 1986. (Also in Bulletin of

the EATCS 36 (1988), 116{126).

[Bod88a] Hans L. Bodlaender. Dynamic programming algorithms on graphs with bounded

treewidth. In Proceedings of the International Colloquium on Automata, Lan-

guages and Programming, volume 317 of Lecture Notes on Computer Science,

pages 105{119. Springer-Verlag, 1988. 15th ICALP.

[Bod88b] Hans L. Bodlaender. Some classes of graphs with bounded treewidth. Bulletin of

the EATCS, 36:116{126, 1988.

[Bod90] Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic

index on partial k-trees. Journal of Algorithms, 11:631{644, 1990.

[Bod93] Hans L. Bodlaender. A linear time algorithm for �nding tree-decompositions

of small treewidth. In Proceedings of the ACM Symposium on the Theory of

Computing, volume 25, 1993.

[Bor88] Richard Brian Borie. Recursively Constructed Graph Families: Membership and

Linear Algorithms. Ph.D. thesis, Georgia Institute of Technology, School of Infor-

mation and Computer Science, 1988.

[BP71] L.W. Beineke and R.E. Pippert. Properties and characterizations of k-trees. Math-

ematika, 18:141{151, 1971.

[CD94] Kevin Cattell and Michael J. Dinneen. A characterization of graphs with vertex

cover up to �ve. In Vincent Bouchitte and Michel Morvan, editors, Orders, Algo-

rithms and Applications, ORDAL'94, volume 831 of Lecture Notes on Computer

Science, pages 86{99. Springer-Verlag, July 1994.

[CDF95] Kevin Cattell, Michael J. Dinneen, and Michael R. Fellows. Obstructions to

within a few vertices or edges of acyclic. In Proceedings of the Fourth Workshop

on Algorithms and Data Structures, WADS'95, volume 955 of Lecture Notes on

Computer Science, pages 415{427. Springer-Verlag, August 1995.

[CL86] Gary Chartrand and Linda Lesniak. Graphs and Digraphs. Wadsworth Inc., 1986.

[CM93] Bruno Courcelle and M. Mosbah. Monadic second-order evaluations on tree-

decomposable graphs. Theoretical Computer Science, 109:49{82, 1993.

[Din95] Michael J. Dinneen. Bounded Combinatorial Width and Forbidden Substructures.

Ph.D. dissertation, Dept. of Computer Science, University of Victoria, P.O. Box

3055, Victoria, B.C., Canada V8W 3P6, December 1995.

[DR83] I. S. Du� and J. K. Reid. The multifrontal solution of inde�nite sparse symmetric

linear equations. ACM Transactions on Mathematical Software, 9:302{325, 1983.

30

[EST87] J. A. Ellis, I. H. Sudborough, and J. Turner. Graph separation and search number.

Report DCS-66-IR, Dept. of Computer Science, University of Victoria, P.O. Box

3055, Victoria, B.C. Canada V8W 3P6, August 1987.

[Fel] Michael R. Fellows. private communication. Dept. of Computer Science, Univer-

sity of Victoria.

[FL92] Michael R. Fellows and Michael A. Langston. On well-partial-order theory and its

application to combinatorial problems of VLSI design. SIAM Journal on Discrete

Mathematics, 5:117{126, February 1992.

[Kin89] Nancy G. Kinnersley. Obstruction set isolation for layout permutation problems.

Ph.D. Thesis, Dept. of Computer Science, Washington State University, Pullman,

WA 99164, 1989.

[KS93] Haim Kaplan and Ron Shamir. Pathwidth, bandwidth and completion problems

to proper interval graphs. Technical report 285/93, The Moise and Frida Eskenasy

Institute of Computer Sciences, Tel Aviv University, November 1993.

[KT92] Andr�as Kornai and Zsolt Tuza. Narrowness, pathwidth, and their application in

natural language processing. Discrete Applied Mathematics, 36:87{92, 1992.

[Lu93] Xiuyan Lu. Finite state properties of bounded pathwidth graphs. Master's project

report, Dept. of Computer Science, University of Victoria, P.O. Box 3055, Victo-

ria, B.C., Canada V8W 3P6, 1993.

[MM91] E. Mata-Montero. Resilience of partial k-tree networks with edge and node fail-

ures. Networks, 21:321{344, 1991.

[M�oh90] Rolf H. M�ohring. Graph problems releted to gate matrix layout and PLA fold-

ing. In G. Tinhofer, E. Mayr, H. Noltemeier, and M. Syslo (in cooperation with

R. Albrecht), editors, Computational Graph Theory, Computing Supplementum 7,

pages 17{51. Springer-Verlag, 1990.

[Nar89] Chandrasekharan Narayanan. Fast parallel algorithms and enumeration techniques

for partial k-trees. Ph.D. dissertation, Dept. of Computer Science, Clemson Uni-

versity, August 1989.

[Ros73] Donald J. Rose. On simple characterizations of k-trees. Discrete Mathematics,

7:317{322, 1973.

[RS] Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner's conjecture.

in progress.

[RS83] Neil Robertson and Paul D. Seymour. Graph Minors. I. Excluding a Forest.

Journal of Combinatorial Theory, Series B, 35(1):39{61, 1983.

[RS84] Neil Robertson and Paul D. Seymour. Graph Minors. III. Planar tree-width.

Journal of Combinatorial Theory, Series B, 36:49{64, 1984.

31

[RS86] Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic aspects of

tree-width. Journal of Algorithms, 7:309{322, 1986.

[RS91] Neil Robertson and Paul D. Seymour. Graph Minors. X. Obstructions to tree-

decompositions. Journal of Combinatorial Theory, Series B, 52:153{190, 1991.

[SD76] D. C. Schmidt and L. E. Dru�el. A fast backtracking algorithm. Journal of the

Association Computing Machinery, 23(3):?{445, July 1976.

[WHL85] T. V. Wimer, S. T. Hedetniemi, and R. Laskar. A methodology for constructing

linear time graph algorithms. Congressus Numerantium, 50:43{60, 1985.

[Wil89] Herbert S. Wilf. Combinatorial Algorithms: An Update, volume 55 of CBMS-NSF

Regional Conference Series in Applied Mathematics, chapter Listing Free Trees,

pages 31{36. SIAM, 1989.

[Wim87] T. V. Wimer. Linear algorithms on k-terminal graphs. Ph.D. dissertation, Dept.

of Computer Science, Clemson University, August 1987. Report No. URI-030.

[WROM86] Robert A. Wright, Bruce Richard, Andrew Odlyzko, and Brendand D. McKay.

Constant time generation of free trees. SIAM Journal on Computing, 15:540{548,

1986.

[YBdFT97] Koichi Yamazaki, Hans L. Bodlaender, Babette de Fluiter, and Dimitrios M.

Thilikos. Isomorphism for graphs of bounded distance width. Technical report

25, Dept. of Computer Science, University of Utrecht, P.O. Box 80.089, 3508 TB

Utrecht, the Netherlands, 1997.

32

