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Abstract. We introduce a new class of cooperating distributed H systems
which consist of a given set of splicing systems (sets of splicing rules plus
sets of axioms), similar in form to the cooperating distributed grammar sys-
tems. By applying iteratively the components of such a system (starting
from a given initial string), in a sequence which runs nondeterministically,

in such a way that a step is considered correctly �nished only if no more
splicing is possible, we obtain a language. Somewhat surprisingly if we take
into account the loose control on the operations we carry out, a character-
ization of recursively enumerable languages is obtained, by mechanisms as
above with only three components. We also characterize the recursively
enumerable languages by cooperating distributed H systems with the com-

ponents containing at most three splicing rules (in this case the number of
components is no longer bounded).

KEYWORDS: Formal languages, Grammar systems, DNA computing, H systems

1 Introduction

The splicing operation has been introduced in [8] as a formal model of the recombinant
behavior of DNA molecules under the inuence of restriction enzymes and ligases.

The passing from the biochemical reaction of recombination to the abstract opera-
tion of splicing is described in [9]. Informally speaking, two DNA sequences are cut

by two restriction enzymes and the fragments are recombined such that possibly new

sequences are produced. The sites where the enzymes can cut are encoded as pairs
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(u1; u2); (u3; u4), and the fact that they produce matching ends is represented by form-

ing the quadruple ((u1; u2); (u3; u4)). We say that this is a splicing rule. An H system

is a generative device consisting of a set of axioms (initial strings) and a set of splicing

rules. By an iterated application of these rules, starting from the axioms, we get a

language. If also a terminal alphabet is provided and only strings on that alphabet are

accepted, then we get the notion of an extended H system (introduced in [16]).

If only a �nite set of rules are used, then even starting from a regular set of axioms,

we can generate only regular languages. This has been proved in [5]; a simpler proof

can be found in [18]. When using extended H systems, we obtain a characterization of

regular languages ([16]).

If the set of splicing rules is a regular language (each rule ((u1; u2); (u3; u4)) is written

as a string u1#u2$u3#u4, hence the set of rules is a language), then extended H systems

(with �nite sets of axioms) characterize the recursively enumerable languages ([11]).

However, working with in�nite sets of rules, even regular, is not of much practical

interest. Finite sets of rules give only regular languages, hence they stop at the level of
�nite automata/regular Chomsky grammars. It is therefore necessary to supplement
the model with a feature able to increase its power. Many suggestions about how this
can be done come both from the regulated rewriting area in formal language theory,

see, e.g., [6], and from the very proof in [11]. Many characterizations of recursively
enumerable languages by means of H systems with �nite sets of splicing rules applied
in a controlled way were obtained. Surveys of results of this type can be found in [12],
[17].

Here we follow another idea, suggested by the distributed architectures in grammar

systems area ([3]): we consider a given set of H systems (with �nite sets of axioms and
of splicing rules) and we apply them iteratively (starting with a special initial string),
in a sequence which is not prescribed in advance. Applying an H system means to use
its rules as much as it is possible for splicing the string currently available (produced
at the previous step of the computation) with the axioms of the active system (this
corresponds to the maximal mode of derivation in cooperating distributed grammar

systems, [2], [3]). Moreover, we look for \computations", that is for the evolution of a
given input string, when processed as above. This suggests to take only one output of
the splicing operation (which is therefore de�ned as a ternary relation) and to use it

as an input for the next splicing. (This can be interpreted as a higher reactivity of the
strings obtained by splicing, in comparison with the strings provided as axioms { which

are always present in the test tube.) Although it seems to be weak, these conditions
on the correct use of our \operators" are enough in order to provide computational

completeness: a characterization of recursively enumerable languages is obtained by
systems as above composed of three components only.

This reminds the similar characterizations of recursively enumerable languages (but

not by systemswith three components) which are obtained for other types of distributed

H systems (see [4], [14]). However, the model considered here has some features which

make it more realistic from the control point of view: the components are nonde-
terministically enabled and there is no communication among them (for instance, by
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transmitting strings from one to another) di�erent from the communication carried

out through the strings on which they work (this is similar to the blackboard model in

distributed AI, see [10].)

The use of distributed architectures in the splicing area is also motivated from

a biochemical point of view: a splicing rule corresponds to two restriction enzymes

producing sticky ends which match. It is known that in general several restriction

enzymes cannot work together, each one requests speci�c reaction conditions. Thus,

it is natural to try to compute by using H systems which are as small as possible

(as the number of splicing rules). Also a result of this type is given: cooperating

distributed H systems with each component containing at most three splicing rules are

computationally complete, they also characterize the recursively enumerable languages.

No bound is obtained in this case on the number of components.

These results could suggest that a trade-o� exists between the two parameters, the

number of components and the number of splicing rules in each component. Actually,

such a trade-o� is not true for arbitrary values of the two parameters, it is possible to
bound both of them: the proofs in the following sections start from type-0 grammars
and e�ectively construct cooperating distributed H systems simulating them; if we
start from a universal type-0 grammar, then a �xed cooperating distributed H system

is obtained (in an e�ective way) which is also universal. Just changing its axiom we
can generate any given recursively enumerable language. Changing the axiom does not
change the two parameters mentioned above, hence they are simultaneously bounded
and still a characterization of recursively enumerable languages is obtained.

2 Formal Language Prerequisites

We �x here some notations and we introduce the cooperating distributed (CD) gram-
mar systems, the grammatical counterpart of the architectures we will later extend to
H systems.

For an alphabet V , by V � we denote the free monoid generated by V under the
operation of concatenation; the the empty string is denoted by �. Two languages are
considered equal if they di�er by at most the empty string.

A Chomsky grammar is denoted by G = (N;T; S; P ), where N is the nonterminal
alphabet, T is the terminal alphabet, S 2 N is the axiom, and P is the set of rewriting

rules; the rules are written in the form u ! v. The language generated by G is
denoted by L(G). The families of �nite, regular, linear, context-free, context-sensitive,

and recursively enumerable languages are denoted by FIN, REG, LIN, CF, CS, RE,
respectively. By MAT and ET0L we denote the families of languages generated by

matrix grammars with context-free rules (without using appearance checking) and by

extended tabled interactionless Lindenmayer systems, respectively (in both cases, �-

rules are allowed).

For other elements of formal language theory we refer to [19].
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A CD grammar system of degree n; n � 1, is a construct

� = (N;T; S; P1; : : : ; Pn);

where N;T are disjoint alphabets, S 2 N , and P1; : : : ; Pn are �nite sets of context-free

rules over N [ T (the elements of N are interpreted as nonterminals, those of T as

terminals).

For x; y 2 (N [ T )� and 1 � i � n we write x =)i y when x = x1Ax2; y = x1zx2
for some A ! z 2 Pi (a usual direct derivation step using a rule in Pi). We denote

by =)=k

i
; =)�k

i
; =)�k

i
; =)�

i
a derivation consisting of exactly k steps as above, at

most k steps, at least k steps, an arbitrary number of steps, respectively. We also write

x =)t

i
y i� x =)�

i
y and there is no z such that y =)i z

(a maximal derivation in the component Pi).

Denote D = f�; tg [ f� k;= k;� k j k � 1g: For f 2 D we de�ne

Lf (�) = fw 2 T � j S =)f

i1
w1 =)

f

i2
w2 =)

f

i3
: : : =)f

im
wm = w;

m � 1; 1 � ij � n; 1 � j � mg:

The family of languages generated by (�-free) CD grammar systems with at most
n components working in the f mode is denoted by CDn(f). When the number of
components is not restricted, we write CD1(f).

Proofs of the following relations can be found in [2], [3]:

Theorem 1. (i) CD1(f) = CF; f 2 f�;= 1;� 1g [ f� k j k � 1g:
(ii) CF = CD1(f) � CD2(f) � CD3(f) � : : :� CD1(f) �MAT;

f 2 f= k;� k j k � 2g:
(iii) CF = CD1(t) = CD2(t) � CD3(t) = CD1(t) = ET0L:

3 Splicing Systems

We now introduce the basic variant of H systems, those without restrictions on the
splicing operation.

Let us consider an alphabet V and two special symbols, #; $, not in V .

A splicing rule over V is a string u1#u2$u3#u4, where u1; u2; u3; u4 2 V �. For a

splicing rule r = u1#u2$u3#u4 and three strings x; y; w 2 V � we write

(x; y) `r w i� x = x1u1u2x2; y = y1u3u4y2;

w = x1u1u4y2; for some x1; x2; y1; y2 2 V �:

We say that we splice the strings x; y at the sites u1u2; u3u4, respectively.
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A pair � = (V;R), where V is an alphabet and R is a set of splicing rules over V

is called an H scheme. With respect to a splicing scheme � = (V;R) and a language

L � V � we de�ne

�(L) = fw 2 V � j (x; y) `r w; for some x; y 2 L; r 2 Rg;

�0(L) = L;

�i+1(L) = �i(L) [ �(�i(L)); i � 0;

��(L) =
[

i�0

�i(L):

An extended H system is a construct

 = (V; T;A;R);

where V is an alphabet, T � V;A � V �, and R � V �#V �$V �#V �. (T is the terminal

alphabet, A is the set of axioms, and R is the set of splicing rules.) When T = V , the
system is said to be non-extended. The pair � = (V;R) is the underlying H scheme of
.

The language generated by  is de�ned by

L() = ��(A) \ T �:

(We iterate the splicing operation according to rules in R, starting from strings in A,
and we keep only the strings composed of terminal symbols.)

We denote by EH(F1; F2) the family of languages generated by extended H systems
 = (V; T;A;R), with A 2 F1; R 2 F2, where F1; F2 are two given families of languages.
(Note that R is a language, hence the de�nition makes sense.)

Two basic results concerning the power of extended H systems are the following.

Theorem 2. ([5], [18]) EH(FIN;FIN) = EH(REG;FIN) = REG:

Theorem 3. ([11]) EH(FIN;REG) = RE:

4 Cooperating Distributed H Systems

The way of working in a CD grammar system can be considered also for H systems.

Taking into consideration the nondeterministic behavior of restriction enzymes, we

introduce here only the maximal mode of derivation (we asume that the use of a set of
splicing rules ends when no further splicing is possible). From a mathematical point

of view, also the other derivation modes can be considered (especially = k;� k are
probably interesting, like in the case of grammars), but we do not investigate them

here.

An extended cooperating distributed (in short, CD) H system (of degree n; n � 1)

is a construct
� = (V; T;w; (A1; R1); : : : ; (An; Rn));
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where V is an alphabet, T � V , w 2 V �, Ai is a �nite subset of V
�, Ri is a �nite subset

of V �#V �$V �#V �, 1 � i � n.

V is the alphabet of �, T is the terminal alphabet, w is the axiom, (Ai; Ri) is called

a component of the system; Ai is the set of axioms of the component i, Ri is the set of

splicing rules of the component i, 1 � i � n.

The work of � consists of iterated applications of the splicing schemes �i = (V;Ri)

to pairs (x; z); (z; x) for x 2 Ai, where z is the string obtained at the previous step,

taking w as the starting string; moreover, the use of �i is maximal in the sense that

we stop using it only if no further splicing is possible. Formally, for x; y 2 V � and

i 2 f1; 2; : : : ; ng, we de�ne

x!i y i� (x; z) `r y or (z; x) `r y; for some z 2 Ai; r 2 Ri;

x!�

i
y i� x = y; or x = x0 !i x1 !i : : :!i xk = y; k � 1; xj 2 V �; 1 � j � k;

x =)i y i� x!�

i
y and there is no u 2 V � such that y!i u:

The language generated by � is de�ned by

L(�) = fx 2 T � j w =)i1
w1 =)i2

: : : =)im
wm;

x = wm;m � 1; wj 2 V �; 1 � ij � n; 1 � j � mg:

Note that, although we work systematically on strings which are obtained from the
axiom w, we do not have here multisets (sets with a speci�ed number of copies of each
element); each string is assumed to appear in an arbitrary number of copies. This is
especially important for the sets Ai; 1 � i � n, which are continuously available in
their initial form.

We denote by CDEHn the family of languages generated by extended cooperating
distributed H systems of degree at most n; n � 1, and by CDEH1 the union of all
these families.

Let us consider a simple example: for the system

� = (fa; b; c; c0; d; d0; eg; fa; b; c; dg; cabd; (A1; R1); (A2; R2));

with
A1 = fc0ae; ebd0g; R1 = fc0a#e$c#; #d$e#bd0g;

A2 = fce; edg; R2 = fc#e$c0#; #d0$e#dg;

we obtain

L(�) = fcanbnd j n � 1g:

Indeed, it is easy to see that the only correct derivations =)i consist of applying both
rules in Ri at the ends of the current string; thus, these relations are

cambmd =)1 c
0aambmbd0; for m � 1;

c0ambmd0 =)2 ca
mbmd; for m � 1:
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Remark 1. The previous CD H system can also be considered as working in one of

the = 2 or � 2 modes and the generated language is the same. This proves that, as we

mentioned above, these modes of derivation are of interest also for CD H systems: in

these modes, CD H systems with only two (�nite) components can generate non-regular

languages.

5 The Power of Cooperating Distributed H Sys-

tems

We are here interested in the size of the families CDEHn; n � 1.

We start with some preliminary results:

Lemma 1. (i) CDEH1 � CDEH2 � : : : � CDEH1 � RE: (ii) REG � CDEH1.
(iii) REG � CDEH2.

Proof. (i) These inclusions follow directly from the de�nitions.
(ii) The extended H system in the proof of the inclusion REG � EH(FIN;FIN)

in [16] works in the maximal mode as de�ned here (it simulates a regular grammar and
stops when no nonterminal is present in the current string).

(iii) The strictness of this inclusion is proved by the example at the end of the
previous section. 2

The hierarchy in point (i) above is not in�nite: it collapses at the third level.

Theorem 4. RE = CDEH3.

Proof. We prove only the inclusion �. The opposite inclusion can be proved by a
straightforward construction of a type-0 grammar simulating a CD H system, or we
can invoke the Church-Turing thesis.

Consider a type-0 Chomsky grammar G = (N;T; S; P ). Consider a new symbol B
and assume that

N [ T [ fBg = f�1; : : : ; �ng;

with B = �1; because both N and T are nonempty, we have n � 3.
We construct the extended cooperating distributed H system

� = (V; T;w; (A1; R1); (A2; R2); (A3; R3));

where

V = N [ T [ fX;X 0;X; Y; Y 0; Y 00; Y ; Z;B;Cg;

w = XBSY;

A1 = fZvY j u! v 2 Pg

[ fZC iY 0 j 1 � i � ng
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[ fZY 00;XZ;XZg;

R1 = f#uY $Z#vY j u! v 2 Pg

[ f#�iY $Z#C
iY 0 j 1 � i � ng

[ f#CY 0$Z#Y 00; X 0#$X#Z; X#$X#Z; #Y $XZ#g;

A2 = fX 0CZ;ZY 0; ZY g;

R2 = fX 0C#Z$X#; #Y 00$Z#Y 0; XB#$#ZY; #Y $Z#Y g;

A3 = fX�iZ;X�iCZ j 1 � i � ng

[ fZY;XBZ;ZY ;ZCY;XCZ;ZY 00g;

R3 = fX�i#Z$X
0C i# j 1 � i � ng

[ f#Y 0$Z#Y; XB#Z$XC#; #Y 0$Z#Y ;

#CY $Z#CY; XC#$XC#Z; #Y 00$Z#Y 00g

[ fX�iC#$X�iC#Z j 1 � i � ng:

Let us examine the work of the system �.
Each component contains certain splicing rules which are meant to be trap rules:

if they can be applied once, they can be applied for ever, hence the corresponding
component cannot stop correctly its work. Such rules are X#$X#Z in the �rst com-
ponent, #Y $Z#Y in the second one, and #CY $Z#CY; XC#$XC#Z; #Y 00$Z#Y 00;

X�iC#$X�iC#Z, 1 � i � m, in the third component.
Thus, if a string of the form XxY; x 2 (N [T [fBg)� (initially, we have x = BS) is

processed by the second component, then the system is blocked. The third component
cannot modify such a string, hence it is passed away unchanged.

In the �rst component, a string XxY is processed as follows. At the end of x we
can simulate rules of G ((Xx1juY;ZjvY ) ` Xx1vY , for x = x1u and u ! v 2 P ; the
vertical bars indicate the place of splicing). Also, a symbol �i can be cut from the end

of x ((Xx1j�iY;ZjC
iY 0) ` Xx1C

iY 0, when x = x1�i); the removed symbol is replaced
by i occurrences of the symbol C and the replacement is also indicated by replacing
Y with Y 0. We have to continue with (Xx1C

i�1jCY 0; ZjY 00) ` Xx1C
i�1Y 00. Note that

one occurrence of C has been removed and Y 0 has been replaced with Y 00.
No further splicing can be done in the �rst component involving the obtained

string Xx1C
i�1Y 00, so it has to be passed to another component. The only possi-

bility which does not block the system is to start working in the second component.

Two splicings can be done here, at the ends of the string: (X 0CjZ;Xjx1C
i�1Y 00) `

X 0Cx1C
i�1Y 00; (X 0Cx1C

i�1jY 00; ZjY 0) ` X 0Cx1C
i�1Y 0: In this way, one occurrence of

C has been introduced in the left end of the string and the markers at the ends of the

string have become X 0; Y 0. No further splicing can be done here. We have two cases:

(1) If the string is passed to the �rst component, then, after using the rule

X 0#$X#Z, we obtain the string XCx1C
i�1Y 0 and again we have to cut one occur-

rence of C from its right hand and to replace Y 0 with Y 00. As above, the string must

be passed to the second component and the process can be iterated. In this way, any

number of occurrences of the symbol C can be removed from the right hand end of the
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string and reintroduced in the left hand end.

(2) If the string is passed to the third component, then again two splicings will be

done here, at the ends of the string. Assume that we start working in (A3; R3) on a

string of the form X 0Cjx1C
kY 0 for some j; k � 0. The symbol Y 0 is replaced by Y . If

k � 1, then the rule #CY $Z#CY can be used for ever. Therefore, we must start from

a string X 0Cjx1Y
0. If we perform a splicing (X�sjZ;X

0CsjCj�sx1Y ) ` X�sC
j�sx1Y

with j > s, then again the system is blocked: the rule X�sC#$X�sC#Z can be

used inde�nitely. A correct continuation is possible only when we have s = j; this

leads to the string X�sx1Y . In this way, all occurrences of C were replaced by the

corresponding symbol in N [ T [ fBg. This means that exactly the symbol �i which

has been removed from the right hand end of the string has been reintroduced in the

left hand end (with the notation above, i = j = s). Thus, any circular permutation of

the string can be obtained.

The string produced by the third component is of the form XzY , hence it can only

be processed by the �rst component, where it is possible to simulate other rules in P

in the end of z.
By iterating this rotate-and-simulate procedure, we can simulate in � any derivation

in G.

Note that B is circulated as any other symbol. Initially, B in introduced in the
left hand of S, the axiom of G. Because at every moment exactly one occurrence of B
is present, it indicates the actual beginning of the sentential form of G simulated by
� in a permuted form: if the string produced by � is Xz1Bz2Y , possibly with X;Y

replaced with some primed versions of them, then z2z1 is a sentential form of G.

After receiving a string X 0Cjx1Y
0; j � 1; the third component can also use the rules

of the formXB#$XC#;#Y 0$Z#Y . If both these rules are used, then we get the string
XBCj�1x1Y . If j � 1 � 1, then the system is blocked by the rule XBC#$XBC#Z.
Therefore, the string must be XBx1Y . The �rst component is blocked if receiving this
string; the second one can work one step, removing the pre�x XB. The obtained string
has to be taken by another component. The third one cannot modify it, the �rst one

will remove the symbol Y from its end. If the obtained string is terminal, then it is
an element of the generated language. Because the unique occurrence of the symbol B
has been removed when placed in the leftmost position, it follows that the string is in

the same circular permutation as the corresponding sentential form of G.
Finally, assume that the third component produces a string with only one bar

symbol. If this string is of the form XBxY , then no component can process it without

blocking the system: the �rst component contains the rule X#$X#Z, the second one
contains the rule #Y $Z#Y . If the string is of the form XBxY , then it can reach both

the �rst and the second components.

In the �rst component, the string XBxY will lose the symbol Y , then it has to be

moved to the second component. Here, a symbol C is added in the left end, producing

X 0CBx. This string can go back to the �rst component; iterating these steps, we can

produce X 0C iBx for some i � 1. Eventually, the string will be processed by the third
component, and a string X�iBx is produced. If �i 6= B, then B can never be removed:

9



it cannot be moved near X, because no rotation phase is possible (the symbol Y is no

longer present). If �i = B (hence i = 1), then XB can be removed, but we get Bx,

which is not a terminal string.

If the string XBxY arrives in the second component, then again we can introduce

an occurrence of C in its left end, the obtained string X 0CBxY is then processed by

the �rst component, which removes Y , and we have returned at a situation as above:

no terminal string can be produced, because the symbol B cannot be removed.

In conclusion, every derivation in G can be simulated in � and, conversely, if a

terminal string is produced by the system �, then it is an element of L(G). That is,

L(G) = L(�). 2

Open problem: Which of the inclusions CDEH1 � CDEH2 � CDEH3 are pro-

per ? In particular, is the result in Theorem 4 optimal, or we have RE = CDEH2 ?

In the case of grammars, systems with two components working in the maximal mode

are as powerful as systems with one component { hence as usual grammars. We prob-

ably do not have such a result in our case: REG � CDEH2 (Lemma 1 (iii)) and
EH(FIN;FIN) = REG (Theorem 2). Note however that the mode of working in
usual H systems is di�erent from that in the components of cooperating distributed
H systems: in the latter case we use at each step an axiom and the derivation stops
correctly only when no further step is possible. On the other hand, we also believe
that CDEH2 � RE (hence that the result in Theorem 4 is sharp): if we have only two

components, then a computation proceeds by cyclically using the two components, in
a rather deterministic way. This is expected to decrease the generative power.

It is interesting to note the similarity of the result above with that pointed out in
Theorem 1: in the maximal mode of using the components, CD grammar systems with
three context-free components are as powerful as systems with any larger number of

components (however, such systems do not characterize the family RE, but the family
ET0L, which is strictly included in CS).

6 Limiting the Size of Components

The motivation of CD H systems steaming from the di�culty of putting several restric-

tion enzymes to work in the same reaction conditions makes it natural the problem of

bounding the number of splicing rules in each component of a system.
For a CD H system � = (V; T;w; (A1; R1); : : : ; (An; Rn)) we de�ne

size(�) = maxfcard(Ri) j 1 � i � ng:

We also denote by deg(�) the number n of components of �.

Theorem 5. For each type-0 grammar G = (N;T; S; P ) we can construct a coop-

erating distributed H system � such that L(G) = L(�) and

deg(�) = 2 � card(N [ T ) + card(P ) + 10;

size(�) = 3:
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Proof. For a type-0 grammar G = (N;T; S; P ), consider a new symbol, B, and

denote, for an easy reference, N [ T [ fBg = f�1; : : : ; �ng. Because N 6= ;; T 6= ;, we

have n � 3. Assume the rules in P labelled in a one-to-one manner with r1; : : : ; rm,

for m = card(P ). We construct the CD H system � with the total alphabet

V = N [ T [ fX;X 0;X 00; Y; Y 0; Y 00; Z;B;C;Eg;

the terminal alphabet T , the axiom

w = XBSY;

and with the components described below. We identify these components with elements

� in the set

M = f1; 2; 3; 4; 5; 6; 7; 8g [ f�i; �
0

i
j 1 � i � ng [ fri j 1 � i � mg:

� = ri : A� = fZviY
00;XCZg;

R� = f#uiY $Z#viY
00; XC#Z$XC#g;

where 1 � i � m;

� = 1 : A� = fZY;X 00Zg;

R� = f#Y 00$Z#Y; X 00#Z$X 00#g;

� = �i : A� = fZC iY;XCZ;X 0Zg;

R� = f#�iY $Z#C
iY; XC#Z$XC#; X 0#Z$X 0#g;

where 1 � i � n;

� = 2 : A� = fZY 0;X 0Zg;

R� = f#CY $Z#Y 0; X 0#Z$X 0#g;

� = 3 : A� = fX 0CZ;ZY 00; ZY g;

R� = fX 0C#Z$X#; #Y 00$Z#Y 00; #Y $Z#Y g;

� = 4 : A� = fZY;XZg;

R� = f#Y 0$Z#Y; X#Z$X#g;

� = 5 : A� = fXZ;ZY 0; ZEg;

R� = fX#Z$X 0#; #Y 0$Z#Y 0; #E$Z#Eg;

� = �0
i
: A� = fX�iZ;X�iCZ;ZCY g;

R� = fX�i#Z$XC i#; X�iC#Z$X�iC#; #CY $Z#CY g;

where 1 � i � n;

� = 6 : A� = fZE;X 0Z;XCZg;

R� = f#BY $Z#E; X 0#Z$X 0#; XC#Z$XC#g;

� = 7 : A� = fX 00Z;ZY;ZY 0g;

R� = fX 00#Z$X#; #Y $Z#Y; #Y 0$Z#Y 0g;

� = 8 : A� = fZZ;ZY 00g;

R� = f#ZZ$X 00#; #E$ZZ#; #Y 00$Z#Y 00g:

11



Let us examine the work of �. The idea of the construction is similar to that

used in the proof of Theorem 4: the rotate-and-simulate procedure, combined with

the trap rules feature made possible by the maximal mode of working in each compo-

nent; by such trap rules we can control the correct simulation of derivations in G by

computations in �.

Speci�cally, the components identi�ed by � = ri; 1 � i � m, simulate the cor-

responding rules in P . A rule #uiY $Z#viY
00 can be used only once, starting from

a string XwuiY and obtaining XwviY
00; because of the trap rule XC#Z$XC#, the

string w cannot begin with C. The component (A1; R1) returns XwviY
00 to XwviY

(when X 00 is not present), hence any number of rules of P can be simulated.

The components identi�ed by � = �i; 1 � i � n, start the rotation of the string

bounded by X;Y , by replacing an occurrence of �i by C
i. The work of these compo-

nents is correctly ended only when no symbol C is present near X and X 0 is not present

in the string. The components with � = 2; 3; 4; 5 cut a symbol C from the rightmost

position (replacing Y by Y 0), reintroduce it in the leftmost position (replacing X by
X 0), then return Y 0 to Y and X 0 to X, respectively. Always the trap rules prevent the
use of these rules in a wrong order (for splicing wrong strings). The reader can check
the details. The components identi�ed by � = �0

i
; 1 � i � n, conclude the move of the

symbol �i from the rightmost position to the leftmost one:

(X�ijZ;XC ijwY ) ` X�iwY:

Note that the presence of X is necessary and that w cannot begin or end with oc-
currences of C: in the latter cases, the trap rules can be aplied and the work of this
component is never correctly �nished.

The components with � = 6; 7; 8 conclude the work of �, by removing the control
symbols X and Y . Speci�cally, Y is replaced by E provided that B is adjacent to Y ;

this means that the current string generated by � corresponds to a sentential form of
G and, moreover, the two strings are in the same circular permutation. The operation
is possible only if X 0 is not present and no occurrence of C appears adjacent to X. The
component (A7; R7) cannot be applied to strings ended with Y or Y 0. If it is applied
to a string ended with Y 00, then Y 00 is never removed: the component (A8; R8) cannot
be applied, hence X 00 cannot be removed, and in the presence of X 00 the component

(A1; R1) is not applicable.

Consequently, L(�) = L(G).
Because � contains 2 � card(N [ T [ fBg)+ card(P ) + 8 components, each of them

with two or three splicing rules, the proof is complete. 2

The maximum length of the strings ui; 1 � i � 4, in a splicing rule u1#u2$u3#u4
is called the radius of the rule. An H system (distributed or not) is said to be of radius

k if k is the largest radius of its splicing rules. Because the pattern recognized by the
restriction enzymes is of a restricted length, it is also important to bound the radius of

the CD H systems we use. It is an open problem whether or not this can be achieved
without increasing the size of the components of the obtained systems. (The techniques
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used in [13] do not directly work in the new framework: instead of a codi�cation rule

#�iY $Z#C
iY one uses a rule #�iY $Z#Yi, which memorizes the removed symbol in

the subscript of Y . Now, we have to introduce a symbol �j in the leftmost position

of a string XwYi in such a way to ensure the fact that j = i; this can be done by

considering trap rules for all Yj with j 6= i, but this means involving n � 1 trap rules,

hence the size of the component increases in an uncontrolled way.)

7 Final Remarks

In general, in the descriptional complexity area, one cannot simultaneously improve

in two parameters, a trade-o� principle is almost always valid (see, e.g, [7]). This is

not the case for the two measures considered in the previous sections, the number of

components and the size of components of a CD H system. We can bound both these

measures and still we can characterize the recursively enumerable languages. This is
due, on the one hand, to the fact that there exist universal type-0 grammars (see an
explicit construction in [1]) and, on the other hand, to the very constructions in the
proofs of Theorem 4 and 5. A grammar Gu = (Nu; T;�; Pu) (without an axiom) is

called universal if for every type-0 grammar G = (N;T; S; P ) there is a string code(G)
such that the grammarGu(G) = (Nu; T; code(G); Pu) generates the language L(G) (the
work of Gu(G) starts from the string axiom code(G)). Now, start the constructions of
CD H systems in the proofs of Theorems 4 and 5 from a given Gu; we obtain a system
�u with all components �xed (depending on Gu), without an axiom XBSY . For a
speci�c grammar G, consider the variant of �u with the axiom w = XBcode(G)Y .

From the universality of Gu it is clear that in this way we generate the language L(G).
Consequently, the size and the degree of �u are bounds for all CD H systems associated
as above to grammars G, hence to systems which are su�cient in order to characterize
RE.

Results similar to Theorems 4, 5 are obtained also for the so-called communicating

distributed H systems introduced in [4]: systems with seven components (and with
the size not bounded in advance) ([14]) and systems with only one splicing rule per
component (without a bound on the number of components; [15]) can characterize the
recursively enumerable languages. Note the di�erences with the results in the present

paper: here three components are enough, but when bounding the size we have used

three rules in each component. We do not know whether or not this last bound can be
improved.

Note. Long and useful discussions with Prof. Corrado B�ohm during a visit of the
second author to the University of Rome \La Sapienza" are gratefully acknowledged.

Actually, the idea of a CD H system has appeared during these discussions, as a possible
answer to the question of introducing also in the H system area of a counterpart of the

way of computing in combinatory logic, by sequencing operators (combinators) from a

�nite set.
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