

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the publisher’s version. This version is defined in the NISO recommended
practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Maier, J. F., Wynn, D. C., Biedermann, W., Lindemann, U., & Clarkson, P. J.
(2014). Simulating progressive iteration, rework and change propagation to
prioritise design tasks. Research in Engineering Design, 25(4), 283-307.
doi:10.1007/s00163-014-0174-8

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

This is an open-access article distributed under the terms of the Creative
Commons Attribution License

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1007/s00163-014-0174-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
https://www.springeropen.com/about
http://www.sherpa.ac.uk/romeo/issn/0934-9839/

ORIGINAL PAPER

Simulating progressive iteration, rework and change propagation
to prioritise design tasks

Jakob F. Maier • David C. Wynn • Wieland Biedermann •

Udo Lindemann • P. John Clarkson

Received: 22 June 2013 / Revised: 21 April 2014 / Accepted: 26 April 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Design tasks need to be rescheduled and re-

prioritised frequently during product development. Inap-

propriate priority decisions generate rework; thus, the

policy used to guide such decisions may have a significant

effect on design cost and lead time. Generic priority rules

provide easily implementable guidelines for task prioriti-

sation and are theoretically effective for many planning

problems. But can they be used in design processes, which

include iteration, rework and changes? In this article, a

discrete-event simulation model is developed to investigate

priority policies in design. The model explores the com-

bined effects of progressive iteration, rework and change

propagation during design of interconnected parts in a

product architecture. Design progression is modelled as an

increase in the maturity of parts; rework and change

propagation cause maturity levels in certain parts to reduce.

Twelve product architecture models ranging in size from 7

to 32 elements are simulated to draw qualitative and gen-

eral insights. Sensitivity of the findings to assumptions and

model inputs is tested. Generally effective priority policies

are identified, and their impact is shown to depend on the

interconnectedness and organisation of product architec-

ture, as well as the degree of concurrency in the design

process.

Keywords Change propagation � Iteration � Process

simulation � Design maturity � Design structure matrix

1 Introduction

The interconnected parts of a design emerge gradually

together, through a process of incremental concretisation

in which information is passed back and forth between

teams working concurrently. There are usually many

pending jobs but only limited resources to address them;

thus, decisions must be made regarding which jobs have

highest priority. In practice, these decisions cannot be

fully planned out in advance, for instance, because

unanticipated rework generated during the design process

will disrupt the original plan. Priority decisions thus need

to be adjusted in light of the changing situation as a

project moves forward.

Considering these issues, this article sets out to:

1. Develop a model capable of exploring the com-

bined effects of progressive iteration, rework and

change propagation during design of intercoupled

subsystems.

2. Use the model to determine whether task priority

policies have a substantial effect on design process

duration; and if so, whether generally applicable

recommendations for task prioritisation can be

identified.

J. F. Maier (&) � D. C. Wynn � P. J. Clarkson

Department of Engineering, University of Cambridge,

Trumpington Street, Cambridge CB2 1PZ, UK

e-mail: jfm45@cam.ac.uk

D. C. Wynn

e-mail: wynn@cantab.net

P. J. Clarkson

e-mail: pjc10@cam.ac.uk

W. Biedermann � U. Lindemann

Lehrstuhl für Produktentwicklung, Technische Universität

München, Boltzmannstr. 15, 85748 Garching, Germany

e-mail: biedermann@mytum.de

U. Lindemann

e-mail: lindemann@pe.mw.tum.de

123

Res Eng Design

DOI 10.1007/s00163-014-0174-8

The model rests on a design structure matrix (DSM) rep-

resenting the structure of components and interfaces in the

system being designed.1 The state of design progress is

represented as maturity levels that are associated with each

component in the design. Undertaking work on a compo-

nent ideally increases its maturity level, but sometimes

reveals problems that reduce the maturity of the compo-

nent, requiring rework to correct. The simulation accounts

for knock-on effects of such maturity-reducing changes as

they propagate because of the interfaces between compo-

nents. The model combines the effects of three important

design issues: (1) iteration that is undertaken to progress

the design; (2) iteration needed to correct errors; and (3)

change propagation due to interdependencies in the design.

The issues outlined above have been studied in existing

research publications; however, a review reveals that they

have not been synthesised and considered in combination

(Sect. 2). The methodology for addressing Objective 1

above was therefore to construct a new model grounded in

assumptions that are accepted in the literature, but to

assemble them in a new way (Sect. 3).

To address Objective 2, simulation experiments were

undertaken using the developed model (Sect. 4). A key

consideration was to ensure that findings were generic, i.e.

not unique to a particular design being studied. The ana-

lysis was therefore based on data collected from the liter-

ature. This was possible because the model is based on a

product architecture DSM, which is widely used. Insights

for management were drawn from the results (Sect. 5), and

sensitivity analysis was conducted on the main assumptions

to evaluate robustness of the findings. Contributions and

implications are summarised in Sect. 6 prior to concluding

in Sect. 7.

2 Background and related work

2.1 Progression in design

A design for a system or component is not completed in a

single step, but requires a progressive process in which

parameters are incrementally defined and frozen, and in

which more accurate tools and analyses are gradually

brought to bear as increased confidence in the design jus-

tifies the increased effort for their application. One way of

perceiving design is thus as a gradual process of uncer-

tainty reduction, in which the design description begins as

a vague concept that allows for a wide range of final

designs. This concept is concretised through a sequence of

knowledge-generating activities and decision-making

tasks, reducing the space of possibilities until a precise

recipe for manufacture is reached (Antonsson and Otto

1995). According to this perspective, the aim of the design

process is to generate knowledge that reduces uncertainty

and increases design maturity.

There is a rich body of literature aiming to understand,

represent and support the progressive nature of design

processes. For instance, Antonsson and Otto (1995) dis-

tinguish between uncertainty, which represents uncon-

trolled stochastic variations, and imprecision, which is seen

as uncertainty in choosing among alternatives. They pro-

pose the Method of Imprecision (MoI), based on the

mathematics of fuzzy sets, for formal representation and

manipulation of imprecision in engineering design. It is

intended to support decision making and to facilitate co-

ordination of concurrent engineering. Wynn et al. (2011)

describe a process simulation model that captures iterative

progression as uncertainty reduction in design, using the

term ‘uncertainty’ to refer to everything that contributes to

a lack of definition, lack of knowledge or lack of trust in

knowledge. Their model considers the effects of design

process tasks on up to five aspects of uncertainty associated

with information that is iteratively developed during

design: imprecision, inconsistency, inaccuracy, indecision

and instability. The ‘level’ of each uncertainty aspect

associated with a given piece of design information is

modelled without reference to the information ‘content’

and is represented as a numeric value between predefined

extremes. O’Brien and Smith (1995) consider progression

in terms of design maturity, arguing that progress of

immature designs should be prevented and mature designs

should be progressed in concurrent design. They write that

‘a design is mature when it is complete enough to allow the

release of details to downstream activities, knowing that

the release of further details from the current activity will

not lead to redesign in any downstream activities. Knowing

when a design reaches maturity would reduce the risk of

releasing immature details to a following activity, and

remove the delays caused by the need to check, through

other methods, the validity of the design before its release’

(O’Brien and Smith 1995). According to these authors,

assessment of design maturity can prevent unnecessary

delays and wasteful redesign. Grebici et al. (2007) also

focus on maturity as a driver of design progress, presenting

a framework to facilitate the exchange of knowledge about

information maturity during design.

As hinted above, the fundamental process enabling

progression in engineering design is iteration (Smith and

Eppinger 1997b). Design is inherently iterative because of

the cyclic interdependencies between parts of any design

problem and because loops of synthesis, analysis and

1 A DSM of a system comprising n parts is an nxn matrix in which

each nonzero entry DSMij indicates that parts i and j are connected by

an interface (Steward 1981; Eppinger et al. 1994). We use the term

’component’ to represent either a subsystem or individual part in the

design, according to the level of decomposition of the model.

Res Eng Design

123

evaluation are fundamental to the design process (Braha

and Maimon 1997). Although iteration is therefore neces-

sary to progress a design, it is also considered to be a major

source of delays and budget overruns (Eppinger et al. 1994;

Browning and Eppinger 2002). Smith and Eppinger

(1997a) recommend two general strategies for accelerating

an iterative design process: Faster iterations and fewer

iterations. Both approaches require comprehension of the

whole process, especially the coupling between its tasks.

Considering the effects of hidden information in product

development, Yassine et al. (2003) identify three main

causes of churn leading to PD delays: interdependency,

concurrency and feedback delays. They propose resource-

based, rework-based and time-based strategies to mitigate

these issues. In the context of complex product develop-

ment networks, Braha and Bar-Yam (2004a, b, 2007) show

that the propagation of defects or rework can be contained

by prioritising resources at central components or tasks.

To summarise, modelling iteration is critical in any

simulation of the design process (Wynn et al. 2007); ide-

ally, the fundamental modes of progressive iteration and

unnecessary rework should both be considered.

2.2 Change propagation

A high degree of interconnection between parts of a product

leads to complex interactions during the design process

(Eckert et al. 2004). In particular, whenever a component is

changed during design (often due to iteration, although

change can also arise from other sources), this can cause

knock-on changes in other components so the design can

continue to ‘work together’ as a whole (Lindemann and

Reichwald 1998). This is termed change propagation.

Change can propagate through different paths, depending on

the connectivity between components of the product. It is

thus important ‘to be aware not only of individual change

chains but of complex change networks’ (Eckert et al. 2004).

Almost all design activity includes engineering changes

(Jarratt et al. 2011); Lindemann and Reichwald (1998)

conclude from an extensive study that effective management

of change propagation could provide a big advantage. This

can be achieved through effective change prediction, which

involves two activities: predicting the causes for change and

predicting its knock-on effects (Eckert et al. 2004).

Numerous change prediction models have been pro-

posed in the research literature, focusing mainly on

understanding knock-on effects (Jarratt et al. 2011). One of

the most established approaches is the Change Prediction

Method (CPM) by Clarkson et al. (2004). The basic prin-

ciple common to almost all the methods is that change can

only propagate between two components if they are

somehow connected. In CPM, for instance, the product

architecture must be modelled as two DSMs, respectively,

indicating the direct impact and likelihood of change

propagation between each pair of components in the

design. An algorithm accounts for the possibility that

change may propagate between two components via sev-

eral intermediate paths, thus increasing the possibility that

the propagation may occur. Koh et al. (2012) build on CPM

to develop a method which aims to support prediction and

management of undesired engineering change propagation

incorporating parameters and change options as well as

component linkages. Another recent approach to change

prediction is discussed by Yang and Duan (2012), who

explore change propagation paths using a parameter link-

age-based approach.

2.3 Design process simulation

Numerous articles have applied simulation to understand

the impact of interdependencies and rework on the sche-

dule and risk of design processes. Many are based on

DSMs that represent the network of dependencies between

tasks (Smith and Eppinger 1997b; Browning and Eppinger

2002; Yassine 2007). Approaches differ, among other

things, in their simulation method, treatment of concur-

rency and treatment of task duration and rework (Karniel

and Reich 2009). The main differences are discussed in the

following subsections.

2.3.1 Simulation method

Karniel and Reich (2009) discern three main simulation

methods: deterministic, Markov chain and Monte Carlo.

Here, we distinguish between deterministic and stochastic

models, where the latter category includes Markov chains,

Monte Carlo methods, task- and agent-based simulations:

Deterministic models consider that the ‘process progress

is fully defined by its DSM structure’ (Karniel and Reich

2009). For instance, Smith and Eppinger (1997a) consider

the total work required to complete an intercoupled process

using a deterministic model, in which the amount of

rework created on each time step is related to the coupling

strength between activities. Focusing on information

transfer delays, Yassine and Braha (2003) use a similar

logic and capture the fraction of rework created within a

local group of tasks. Yassine et al. (2003) investigate

information hiding in product development and extend the

Work Transformation Matrix model of Smith and Eppinger

(1997a) by accounting for different autonomous comple-

tion rates per component, reflecting developer’s produc-

tivity levels. These are displayed along the diagonal of

their improved Work Transformation Matrix. Abdelsalam

and Bao (2006) discuss a deterministic model based on an

‘iteration factor’ representing coupling strength and the

number of iterations required for convergence.

Res Eng Design

123

Stochastic models Huberman and Wilkinson (2005) base

their work on the deterministic models by Smith and

Eppinger (1997a) and Yassine et al. (2003) and include a

stochastic component, which accounts for fluctuations in

task performance and interactions between related tasks.

Schlick et al. (2013) extend this further by formulating

a vector autoregression model of cooperative work.

Both recursive models incorporate inherent performance

fluctuations.

Markov Chain models describe a process as a me-

moryless progression between states according to transition

probabilities. For instance, Smith and Eppinger (1997b)

develop a design process simulation using reward Markov

chains generated from DSM sequencing. Sered and Reich

(2006) also base a simulation on reward Markov chains of

the sequential design process.

Monte Carlo models assume that a process behaves

stochastically according to model-specific logic. In their

task-based discrete-event simulation model, Browning and

Eppinger (2002) apply Monte Carlo simulation to explore

the impacts of activity sequence on cost and schedule risk

in product development. Cho and Eppinger (2005) extend

this approach by accounting for resource constraints and

enhancing certain assumptions regarding task concurrency

and rework.

Also falling within the category of stochastic models

and in some instances using Monte Carlo techniques,

recent engineering design literature has incorporated find-

ings from research into complex engineered systems. For

instance, Braha and Bar-Yam (2007) combine empirical

and mathematical analysis of large-scale product devel-

opment with stochastic simulation based on organisational

networks. They model each node (task) in the PD network

as having binary state, either resolved or unresolved. Sto-

chastic rules are employed to evolve the state of each node

based on its in-degree connectivity, the number of directly

connected unresolved nodes and the internal completion

rate of the node. Some findings from this class of model,

which bear directly on the present article, are discussed in

Sect. 2.4.

Agent-based models are another important class of sto-

chastic design process model. They view agents as distinct

information-processing entities whose actions are assumed

to be rational responses to the limited information they

receive, and the process emerges based on the resulting

interactions between the agents. Garcia (2005) gives an

overview of the use of agent-based modelling in product

development. One established model in this category, the

virtual design team, models the organisation, the work

plan and their interactions to simulate micro-level infor-

mation processing, communication and coordination

behaviour of designers (Cohen 1992; Christiansen 1993;

Levitt et al. 1999). Licht et al. (2007) propose a person-

centred simulation model, incorporating the simulated

product developer’s bounded rational decision making. A

recent contribution by Zhang et al. (2013) investigates

local scheduling behaviour of designers and resource

conflict resolution by managers in collaborative product

development projects using agent-based simulation.

2.3.2 Treatment of concurrency

Models can be classified into four groups according to their

treatment of concurrency (Karniel and Reich 2009). The

first three groups comprise models that take a multipath

approach; these execute activities fully in parallel (Smith

and Eppinger 1997a; Yassine and Braha 2003), in parallel

with possible overlap (Browning and Eppinger 2002;

Yassine 2007; Krishnan et al. 1997; Loch and Terwiesch

1998) or serialised (Smith and Eppinger 1997b; Sered and

Reich 2006). The fourth group is single-path approaches,

which assume tasks are executed one-at-a-time (Lévárdy

and Browning 2009).

2.3.3 Task and rework durations

The simplest approach here is to assume fixed, determin-

istic task durations that do not change on consecutive

attempts (Smith and Eppinger 1997b). However, this may

be oversimplistic (Smith and Morrow 1999). Many authors

assume that rework of a task requires less time than its first

execution. In the model reported by Browning and Epp-

inger (2002), for instance, task durations reduce on each

consecutive iteration according to a predefined learning

curve. Cho and Eppinger (2005) assume stochastic varia-

tion of task durations, which they write may also be

combined with a learning curve effect.

2.4 Complex networks in product development

A range of techniques and models have been developed to

increase understanding and enable the prediction of the

behaviour of social, biological and technological networks

(Newman 2003). Braha and Bar-Yam (2004a, b, 2007)

show that large-scale product development networks have

comparable structural properties and display similar sta-

tistical patterns to such systems. These structural properties

can provide information on the dynamics of the product

development process, for instance the characteristics of

rework and its propagation. Braha and Bar-Yam (2004a, b)

find that complex product development networks are

dominated by some highly central tasks and characterised

by an uneven distribution of nodal centrality measures and

asymmetry between incoming and outgoing links. Braha

and Bar-Yam (2007) consider priority rules based on the

in-degree and out-degree of nodes and show that significant

Res Eng Design

123

performance improvements can be achieved by focusing

efforts on central nodes in the design network. They see the

‘close interplay between the design structure (product

architecture) and the related organisation of tasks involved

in the design process’ (Braha and Bar-Yam 2007) as a

potential explanation for the characteristic patterns of

product development networks. Although their analysis

focuses on organisational networks rather than product

architecture, they argue that the statistical properties should

be similar.

Braha and Bar-Yam (2007) develop a stochastic product

development model and analysed its behaviour. They show

that if you run the PD process on top of a random network,

a threshold behaviour that depends on the average degree

of the network determines whether the PD is stable or

unstable, and how much time it takes.

In particular, they show that the dynamics of product

development is determined and is controlled by the extent

of (1) correlation among neighbouring nodes, and (2)

correlation between the in-degree and out-degree of indi-

vidual tasks. For weak correlations, a network with any

topology was found to exhibit the same behaviour as a

random network.

2.5 Resource-constrained project scheduling problem

Recalling that the objective of this article is to assess

priority rules in design, another relevant area of research is

the resource-constrained project scheduling problem

(RCPSP). The objective is to minimise the lead time of a

project by appropriately scheduling activities which are

subject to precedence and resource constraints, but not

iteration. Overviews of the many approaches to solving

this problem are provided by Brucker et al. (1999) and

Hartmann and Briskorn (2010). Because the problem itself

is well defined, standard problem sets have been devel-

oped and widely used to compare the performance of

different algorithms.

Commonly studied solution techniques include exact

and heuristic algorithms as well as meta-heuristics. One of

the most important solution techniques is priority rule-

based scheduling (Kolisch 1996; Buddhakulsomsiri and

Kim 2007; Chtourou and Haouari 2008). Browning and

Yassine (2010) combine the resource-constrained multi-

project scheduling problem (RCMPSP) with the use of

task-based DSMs to analyse the performance of priority

rule heuristics.

The RCPSP and RCMPSP literature demonstrates that

priority rules provide a powerful approach to support

managerial decision making. However, because these two

problems do not include iteration or rework, it is not

clear whether the insights are applicable to design

processes.

2.6 Summary and critique

Progression in design cannot be achieved through a linear

process, due to cyclic interdependencies between parts,

parameters and interfaces in the system being designed.

This necessitates an iterative process of progressively

increasing maturity, in which work must begin based on

incomplete or imprecise information, in the knowledge that

this may later require corrective changes. Such changes

propagate through the design via interfaces, creating

rework. The rework must be scheduled and prioritised;

inappropriate prioritisation may increase the total amount

of work that needs to be done.

Models have been developed to simulate the design

process considering different aspects of this behaviour and

to generate insights for scheduling and prioritisation. Most

task-based models capture the effect of rework, but do not

directly account for change propagation due to structural

connections within the developed product. Increasing

progress of individual components’ design maturity

towards a final solution is usually not considered explicitly.

Propagation effects have been extensively studied in

change prediction models based on product architecture

(component) DSMs; however, such models do not consider

the time and cost of change completion as the process

simulation models do. Finally, most scheduling algorithms

consider the impact of priority rules but do not account for

iteration and rework. No simulation model exists that

explicitly combines all the following characteristics: rests

on a component-based DSM; accounts for maturity pro-

gression in components; integrates the design process

characteristics of iteration, rework and change propagation;

and can evaluate the impact of task prioritisation in this

context.

3 Model

A discrete-event process simulation model was developed

to address the limitations summarised above. The model is

based on a DSM of components in a design, in which

numeric entries are used to describe the impact and like-

lihood of change propagation associated with each depen-

dency. In common with other models in the literature [e.g.

Clarkson et al. (2004)], it is assumed that the problem

structure, as represented by this DSM, can be modelled in

advance of the design process and does not change during

it.

Maturity levels are assigned to each component to

describe its state of progress, which changes during simu-

lation. m discrete levels of maturity are used, allowing for

m� 1 transformations between levels. Work on a compo-

nent increases its maturity level. A decrease can be

Res Eng Design

123

triggered by initiated or propagated change—rework

resulting from changes and their propagation is thus the

main cause for delays in the simulated design process. The

simulation starts with all components having the lowest

possible maturity (0) and ends when all components reach

their maximum maturity level (m - 1).

The algorithm is detailed in the following subsections,

under headings that describe its three steps which repeat in

a cycle until the simulated process is complete:

1. Identify task(s) to start.

2. Start task(s).

3. Complete task(s).

Model variables and the symbols used to refer to them are

defined in Table 1.

3.1 Identify task(s) to start

The tasks that can be started at any time depend on the

maturity levels of each component, availability of suitable

resource and the relative priorities of any components that

require the same resource. These aspects of the model are

discussed in Sects. 3.1.1, 3.1.2 and 3.1.3 respectively.

3.1.1 Accounting for maturity constraints

The structure of the design, and the current maturity levels

in each component, constrain the sequence of design pro-

gress. An example of constrained maturity level progres-

sion is a mechanical component moving from concept to

3D model to validated structural properties. In this case, it

is not suitable to validate the part for stress distribution

until the forces exerted by its opponents can be estimated.

This, however, requires at least 3D models. So, the designs

of all connected components have to be progressed to at

least 3D models before stress analysis can be attempted.

Extending this argument, the model assumes that com-

ponents which are interconnected in the DSM cannot be

designed independently and must progress in lockstep. A

component can thus only be selected for further work if the

Table 1 Model parameters

Parameter Description Definition

Model assumptions

m No. of maturity levels m 2 N

Dmmax Max. allowed maturity level difference Dmmax 2 N j Dmmax\m

pC Probability of change initiation pC 2 R j 0� pC\1

cr Change initiates in worked-on component (1) or any component (0)? cr 2 0; 1f g
smax Max. no. of change propagation steps smax 2 Z

lmin Minimum proportion of original task duration after learning effects lmin 2 R j 0\lmin� 1

ls Proportional reduction in task duration on each consecutive attempt ls 2 R j 0� ls� lmin

Design situation to be simulated

n No. of components in the design n 2 N

q No. of resources q 2 N j q� n

D Duration to complete each component in absence of rework (days) D 2 R
n j Di [0 8i

L Likelihood DSM L 2 R
n�n j 0� Lij\1 8i; j

I Impact DSM I 2 Z
n�n j 0� Iij\m 8i; j

Q Component-resource mapping Q 2 0; 1f gn�q

Priority rule to be evaluated

fi Priority of task i (see Table 2 for priority rules studied) fi : ðD;L; I;M;NR;NTÞ ! p; p 2 R j p� 0

State variables which change during simulation

t Current simulation time t 2 R j t� 0

E Queue of forthcoming task completion events (component and completion time) E 2 ðC; tÞn
0
j C 2 N j C� n j n0 2 N j n0 � n

W Is each resource currently idle (1) or not (0)? W 2 0; 1f gq

X Is each component currently being worked on (0) or not (1)? X 2 0; 1f gn

M Current maturity level of each component M 2 Z
n j 0�Mi\m 8i

NR No. of times each component was reworked since last maturity increase NR 2 Z
n

NT No. of times each component has been attempted in total NT 2 Z
n

Z is the set of all integers. N is the set of all nonzero positive integers. R is the set of all rational numbers. In definitions of matrices and vectors,

e.g. Q 2 0; 1f gn�q
indicates that Q is drawn from the set of all matrices having n rows and q columns, where Qik refers to the value in row i,

column k, and each such value is drawn from the set 0; 1f g

Res Eng Design

123

maturity levels of all other components it is dependent on are

no more than Dmmax steps lower than its own. With Xi

indicating whether component i is currently being worked

on, Mi indicating the current maturity level of component i,

and Lij indicating the probability that a change to component

j will propagate to cause change in component i;Hi deter-

mines whether component i is eligible for work (1) or not (0):

ð1Þ

a ¼ 0f g; b ¼ fx 2 N j Dmmax� x\mg; c ¼ m� 1f g
In Eq. 1, the indicator function returns the value 1

if x lies in subset a and the value 0 otherwise. The term

is a binary DSM whose entries are 0 if the

corresponding entry in the likelihood DSM is 0 and 1

otherwise. indicates whether the maturity

difference is less than Dmmax (returns 0), or not (returns 1).

The product of these factors has to be 0 for all combina-

tions of component i with components j it is dependent on.

Xi indicates whether component i is currently worked on

(0), or not (1). indicates if component i has

reached the maximum maturity level (0), or not (1).

Only if all these requirements are fulfilled, Hi ¼ 1 and

component i is thus eligible for work. If no components are

found eligible for work, the simulation is complete.

3.1.2 Accounting for resource constraints

Executing a design activity requires resource, which in this

article is interpreted as the team or individual that can work

on progressing the respective component. The model

allows for two resource limitation schemes:

1. A resource is only able to work on certain specified

components (thus simulating specialised skills of, e.g.,

control system engineers). This is denoted in the input

matrix Q. If resource k can work on component

i;Qik ¼ 1. Otherwise, Qik = 0.

2. Any resource can work on any component (thus

simulating generic skills of, e.g. software developers

on some kinds of project). In this case, Qik ¼ 18i; k.

An eligible component is only possible to progress at the

current time if at least one resource is both idle and capable

of working on it. With Wk defining whether a resource is

idle, eligibility of component i accounting for both matu-

rity level constraints and resource constraints may be

written as Ui:

Ui ¼ Hi � min
X

k

ðQik �WkÞ; 1

 !
ð2Þ

3.1.3 Making priority decisions

U may identify more eligible components than there are

resources available to work on them; a priority decision is

required to account for such cases. The priority decision is

simulated using a function that evaluates the priority for

each eligible task; the task having highest priority is chosen

to execute, and the others must wait. For each simulation

reported in this article, one of 25 priority rules is used

(Table 2). For binary DSMs, policies 9–20 are identical to

policies 5–8, and for symmetric DSMs, active and passive

sums are similar. The priority rules we test are adopted

Table 2 25 decision policies used in the simulation experiments

Variables and a defined previously

Res Eng Design

123

from Braha and Bar-Yam (2007) who derive them based on

a strong empirical and theoretical basis. In the present

article, these rules are tested in a more specific context,

namely the progressive design of component structures

through increasing maturity levels, occasionally set back

by change initiation and propagation.

The selected decision policy fi determines the priority of

component i. The maximum priority among eligible tasks

is thus:

f ¼ max
i

Ui � fið Þ ð3Þ

The set of highest-priority tasks competing for resource k

may thus be written:

gk ¼ arg max
i

Ui � Qik � fið Þ ð4Þ

If no components are currently possible for resource k; gk is

an empty set. If multiple components have identical pri-

ority f; gk contains multiple items. In this situation, a ran-

dom tiebreaker is used to choose between the candidate

tasks.

3.2 Start task(s)

After choosing the task to be started by each idle resource,

as explained above, the durations are calculated and the

model state updated accordingly. These steps are explained

below.

3.2.1 Calculating task duration accounting for learning

The input D indicates the total time necessary to design

each component. Task durations are deterministic

(although stochastic variation could easily be added).

Possible delays due to resource limitations, changes and

rework are not included in this estimated total duration,

because they are calculated by the model.

The time to complete each started task depends on its

purpose:

1. Progressing between any two maturity levels for the

first time is assumed to require a fixed and identical

proportion of the total duration, ie. Di

m�1
because there

are m� 1 possible transitions.

2. The duration of a task executed to account for change

(thus, to return a component to a maturity level that

had previously been reached) is subject to learning

effects. This reflects the fact that it ‘often [...] takes less

effort to rework an activity than to do it the first time’

(Browning and Eppinger 2002). The model assumes a

linear relationship between the task duration and

the number of rework iterations until a minimum

proportion (lmin) is reached. This learning curve was

selected to reflect the design process simulation model

by Cho and Eppinger (2005), which is well established

in the literature.

Taking both cases into account, when a task i is attempted

during simulation, given that NRi rework iterations have

been completed to date, its duration Dti is:

Dti ¼
Di � maxð1� ls � NRi; lminÞ

m� 1
ð5Þ

3.2.2 Updating model state to start tasks

To recap, each entry in g contains a set of tasks (either one

task or the empty set) to be started at the current time, by

resource k.

For each resource k, the task i to be started (if any) is

identified from gk. The task is added to the event list E so

that it will complete at time t þ Dti. Resource k is flagged

as working and component i is flagged as being worked on:

Wk ¼ 0; Xi ¼ 0 ð6Þ

3.3 Complete task(s)

After starting the selected tasks, the simulation is advanced

to the next event in E at which a task is due for completion.

The model state is updated and the possibility of change

initiation and propagation is considered. Once the task

completion has been processed as explained below, the

state has changed and new tasks may become possible to

start. The model thus returns to the first step (Sect. 3.1).

3.3.1 Updating model state to complete tasks

The next event is removed from E and the simulation time t

advanced accordingly. Resource k is flagged as idle,

component i is flagged as not being worked on, the matu-

rity level of component i and the total iteration counter for i

are incremented:

Wk ¼ 1; Xi ¼ 1; Mi ¼ Mi þ 1; NTi ¼ NTi þ 1

ð7Þ

If more than one completion event occurs at the same time,

they are each processed in the same way.

3.3.2 Change initiation at task completion

Modelling occurrence of rework and changes as a random

event occurring when an activity is completed is thought to

be realistic (Browning and Eppinger 2002; Yassine et al.

2001). This model uses a similar logic to represent changes

both internal and external to the product development

process. In other words, when a change is initiated, it could

be interpreted either as the task causing a change directly

Res Eng Design

123

or revealing a problem that may have originated elsewhere.

If a change occurs in a component that is currently worked

on, the activity is interrupted and the respective resource

becomes available. The probability pc of initiating change

upon completion of a task is constant. The actions at task

completion depend on whether a change is found to occur:

• If a change occurs, the component that is affected must

first be determined. The model allows for two different

assumptions here:

1. Change occurs in the component just worked on (if

cr ¼ 0);

2. Change occurs in a component selected at random

(if cr ¼ 1).

After identifying the affected component, change is

taken into account by reducing its maturity level:

Mi ¼ maxðMi � 1; 0Þ ð8Þ

If a change occurs in a component that is currently

worked on, this activity is interrupted.

• If a change does not occur and the component has just

reached a new maturity high, the iteration counter is

reset:

NRi ¼ 0 ð9Þ

3.3.3 Change propagation at task completion

When a change is initiated, it may propagate to other,

directly connected, components. This is assumed to occur

within the same time step as the initiated change. The

rationale is that when dealing with design changes, com-

panies typically follow a formal process in which the scope

of the change is assessed prior to beginning work (Jarratt

et al. 2012).2

When a change occurs, its effect in the simulation is

determined using the change propagation model developed

by Clarkson et al. (2004), which is well established in the

research literature. The entries in the likelihood DSM L are

consulted to determine the probability of change propa-

gating from the initiating component to each component

that is dependent on it. A Monte Carlo approach is used to

determine whether each of these propagations occurs in the

case at hand. For propagations that do occur, the process is

repeated to identify second-order propagations, and so

forth. Thus, the initiated change fans out through the

product structure.

When a component i is subject to change propagated

from component j, the maturity level is reduced according

to the impact DSM entry:

Mi ¼ maxðMi � Iij; 0Þ ð10Þ

The more interconnected the product architecture and the

higher the likelihoods of change propagation, the more

extensive the resulting propagation tree is thus likely to be

for any given change (see Clarkson et al. (2004) for further

discussion of this property of the adopted propagation

model; see Braha and Bar-Yam (2007) for application of

similar logic to study organisational networks). Each branch

is terminated when it exceeds smax propagation steps,

because in practice a change would not (be allowed to)

propagate indefinitely (Pasqual and Weck 2012; Clarkson

et al. 2004). It is further assumed that a change does not

continue to propagate if the algorithm revisits a component

that has already been selected for a change in the current

timestep of the simulation. This reflects the logic of the

propagation model reported by Clarkson et al. (2004).

3.4 Model summary

The model integrates existing concepts in the literature,

namely iteration as a progression between maturity levels,

rework initiation as an uncertain event that occurs on the

completion of design tasks and propagation of initiated

changes through the design according to likelihood and

impact values. The model can be classified using the scheme

referred to in Sect. 2.3 (Karniel and Reich 2009). It uses

Monte Carlo simulation methods to account for occurrence

and propagation of changes. Concurrency is treated using a

multipath approach to execute activities in parallel with

possible overlap. The model assumes rework to require less

time than the first execution and thus accounts for learning

effects to otherwise deterministic task durations.

Table 3 summarises the simulation algorithm. As well

as the likelihood-impact DSMs L and I and the resource

mapping matrix Q, a number of parameters defining model

assumptions are required. Suggested values are provided in

Table 4. Some of these values may be justified by reference

to prior studies as shown in Table 4. Even where such

justification is not possible, making assumptions explicit in

this way is useful because it allows their impact to be

evaluated using sensitivity analysis. This is done in Sect. 5.

3.5 Example

This subsection illustrates the model logic by presenting an

application to a product model of the Westland Helicopters

EH101. The input for the simulation is a DSM indicating

2 This distinguishes our approach from rework propagation models,

in which propagation occurs between the input of a task and its

output, and a propagation network is spread out over time according

to the durations of the affected tasks. Further research would be

needed to determine the effect of this focus on change propagation,

rather than rework, on the model results.

Res Eng Design

123

impact and likelihood of change propagation between

components in the helicopter. In this context, the term

component refers to a helicopter subsystem, such as

hydraulics or transmission. To generate the likelihood and

impact matrices, a workshop and interviews were held with

company personnel [see Clarkson et al. (2004) for details].

For the present article, this information was supplemented

with an approximate duration for designing each compo-

nent,3 thus completing the input data required for the

simulation model (Fig. 1).

In this example, policy 6 [highest active sum (binary)]

and the assumption parameter values in Table 4 are used.

For illustrative purposes, three identical resources are used

and assumed to be able to work on all components. Sim-

ulating 10,000 runs results in a histogram of total process

duration (Fig. 2). Each bin of this histogram represents a

number of possible process outcomes. One of these out-

comes is plotted as a Gantt chart in Fig. 3. Figure 4 shows

the performance of all policies relative to the mean of

random task selection.

The Gantt chart reveals the mechanics of the simulation.

Up to three subsystems can be worked on at the same time,

because this is the number of available resources. The four

green bars in every row reflect that maturity has to be

increased to a new high four times to complete a compo-

nent’s design. If changes cause rework in a component, a

previously accomplished maturity level has to be reat-

tained. As explained in sect. 3.2.1, such tasks are subject to

learning effects. This is visible in Fig. 3 as a gradual

decline of task duration between two green bars. The chart

also shows that rework due to propagated changes occurs

more frequently than rework caused by initiated changes,

because of the fan-out of change through the product

architecture.

The order of task execution is determined by the priority

policy and is independent of the sequence in the DSM. In

Table 3 Overview of the simulation algorithm for a single run; this is

repeated many times for Monte Carlo sampling

1. Load input data (D;L; I;Q) and initialise model
variables (t;E;W;X;M;NR;NT; Table 1)

2. Determine eligible components accounting for
maturity constraints (Eq. 1) and resource
constraints (Eq. 2)

3. If components eligible and resources
allocatable: next task to be inserted in the
queue of forthcoming task completion events E
is determined by selected decision policy
(Eq. 4; Table 2) and its duration is calculated
accounting for learning effects (Eq. 5)

Otherwise: Check for next task completion
event and go to 4.

4. Update current status for occurring event
(advance simulation time, increase
respective maturity level and counter for
attempted tasks; Eq. 7)

5. Monte Carlo methods determine if an initiating
change occurs

If change occurs: reduce maturity level
accordingly (Eq. 8)

Account for change propagation (Sect. 3.3.3) and
reduce maturity level according to impact DSM
I (Eq. 10)

Otherwise: Go to 6

6. Check if design is complete (all components
have reached maximum maturity)

If no: Continue simulation run and go to 2

If yes: Terminate simulation run and go to 7

7. Calculate process performance metrics
(Sect. 4.3) and save simulation trace

The bold letters refer to matrices and vectors

Table 4 Suggested values for the model assumption parameters

Variable Value Rationale

m 5 A larger number of maturity levels give a more

interleaved process; this does not have

significant effect on process duration, but takes

longer to simulate because more discrete events

must be processed

Dmmax 2 Design progress on a component is assumed to be

strongly constrained by progress in connected

components (see sensitivity analysis in Sect.

5.2)

pc 0.1 Calibration shows this value to give an amount of

rework in line with empirical studies in the

literature (see Sect. 5.3.1)

cr 0 Work on a component seems more likely to reveal

problems in that component than in some other

component (sensitivity analysis shows the

assumption made here to have limited effect; see

Sect. 5.3.3)

smax 5 Justified by Clarkson et al. (2004) using a

theoretical analysis and a study by Pasqual and

Weck (2012). Increasing smax has little effect

(because the probability of longer propagation

chains is low) but reducing it reduces process

duration (because less propagated change is

generated)

ls; lmin 0.25 The improvement curve is based on that used by

Cho and Eppinger (2005), assuming an

improvement by a certain percentage (25 %) on

each consecutive attempt until a minimum

percentage (25 %) of the original duration is

reached

3 The approximate durations were not collected during the original

workshops. They were estimated by the authors, one of whom

participated in the Westlands EH101 project, for the purposes of

demonstrating the algorithm. It is important to note that the material

in this section is intended only to clarify the simulation model’s

operation prior to the experiments in sect. 5. Numerical results in this

section should thus not be taken to provide definitive insights into the

EH101 case.

Res Eng Design

123

this case, under policy 6 the first component to be worked

on has the most entries in its DSM column and the last

component to be started has the fewest. For example,

‘cabling and piping’ and ‘auxiliary electrics’ both only

have one outgoing relation to another component—‘bare

fuselage’. The design of both components is therefore

started towards the end of the project. Because the design

of ‘bare fuselage’ is dependent on the other components, it

can only be advanced to a certain level once both prede-

cessors have gained a certain maturity.

4 Analysis of priority rule performance

The simulation model introduced above addresses the first

objective of this article, as stated in Sect. 1. To recap, the

second objective was to use the new model to study the

impact of priority rules on the performance of design pro-

cesses incorporating iteration, rework and change propaga-

tion. To generate insights that are independent of a particular

product and simulation configuration, a set of experiments

was run using different configurations and input data.

4.1 Product models used in the experiments

The experiments used 12 product architecture DSMs drawn

from the literature (Fig. 5). Each of these models was created

through analysis of real products by the respective authors as

listed in the figure caption. Three of the models include

asymmetric input and likelihood data. The other nine models

provide only symmetric binary DSMs. For simulation, these

were transformed into impact and likelihood DSMs by

assuming all likelihoods are 0.5 and all impacts are 1.

To study the influences of symmetry and sparsity as well as

the sensitivity of the model to changes in the input data,

additional input models were created based on the DSM of a

chainsaw by adding entries. Ten or 20 entries were either

randomly added to the upper and lower triangle (to create less

sparse, less symmetric architectures) or symmetrically to both

triangles (to create less sparse, more symmetric architectures).

4.2 Characterising the product models for comparison

To study the impact of a given priority rule across multiple

product models, it is necessary to reduce the DSMs to a set

of metrics that can be easily compared on one or more

scales that ideally should be cardinal. Four metrics were

used to characterise product models in the simulation

experiments:

1. the number of items in the system decomposition (n),

which is a direct input to the model.

2. the number of nonzero entries (NZ) in the likelihood

DSM L:

ð11Þ

3. The nonzero fraction (NZF), which is the fraction of

nonzero entries in L, not counting the main diagonal.4

Fig. 1 Impact and likelihood DSM of subsystems in the Westlands

EH101 helicopter (Clarkson et al. 2004). The upper value in each

matrix cell indicates the likelihood of change propagation and lower

value its impact, i.e. by how much the maturity of an affected

component would be reduced in case of change

Fig. 2 Histogram of process duration resulting from 10,000 simula-

tion runs of the EH101 model with policy 6

4 This metric is referred to as density in graph theory and complex

networks theory. It was earlier used and analysed in the context of

large-scale product development by Braha and Bar-Yam (2004b),

where it was shown that complex engineered networks are sparse, that

is they have only a small fraction of the possible number of links.

Res Eng Design

123

It is thus a measure of the density of the DSM (Braha

and Bar-Yam 2004b; Hölttä-Otto and de Weck 2007):

NZFðLÞ ¼ NZðLÞ
nðn� 1Þ ð12Þ

4. The symmetry factor (SF), which is the proportion of

symmetric entries in all nonzero entries (NZ):

SFðLÞ ¼
Pn�1

i¼0

Pn�1
j¼0 jLij � Ljij

NZðLÞ
ð13Þ

NZFðLÞ and SFðLÞ are normalised metrics with values

in the range 0 to 1.

4.3 Characterising process performance

The sets of process traces resulting from simulation must

also be comparable on ideally cardinal scales to evaluate

policy performance under different conditions. The

following metrics were used to compare performance of

processes across simulation setups:

1. The total number of tasks attempted, considering every

task that has been started, no matter if it was interrupted

or requires less effort due to learning effects.

2. The total process duration, considering learning

effects, idle times and interruptions.

Because the simulation results in a profile of possible pro-

cesses, for each configuration 10,000 runs were used and the

mean values of each metric calculated. The lower these two

values are for a policy, the better its performance is assumed

to be. Because of the simplifications made by the simulation

model, relative performance is assumed to be more signif-

icant than the absolute results for total duration and tasks

attempted. For each configuration studied, the performance

of each policy is therefore presented as a percentage

improvement or reduction in the metric values obtained

from the random task selection policy for that configuration.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-40

-30

-20

-10

0

10

20

30

40

50

60

T
ot

al
 d

ur
at

io
n

re
la

tiv
e

to
 r

an
do

m
 (

in
 %

)

Active prioritisation policy

Fig. 4 Performance of all policies (relative to the mean of policy 0)

for the EH101 model. The bottom and top of the box show the first

and third quartile of each distribution, the band inside the box is the

median and the circle is the mean. The ends of the whiskers represent

the lowest (highest) datum still within 1.5 interquartile range of the

lower (upper) quartile

Engines
Transmission
Flight control system
Ice and rain protection
Fuselage and additional items
Bare fuselage
Weapons and defence
Hydraulics
Engine auxiliaries
Main rotor blades
Fuel
Air conditioning
Tail rotor
Avionics
Main rotor head
Equipment and furnishings
Fire protection
Auxiliary electrics
Cabling and piping

0y 1y 2y 3y

Tasks executed to increase component maturity to a new high
Work done to account for an initiated change
Work done to account for propagated change
Second or higher order rework (i.e. tasks executed to regain the prior highest level
of maturity, but not directly caused by initiated nor directly propagated change)

Fig. 3 Gantt chart showing the trace from an example simulation run on the EH101 model with policy 6

Res Eng Design

123

4.4 Simulation experiments undertaken

The objective of the simulation experiments was to reveal

general insights regarding whether the choice between

policies in Table 2 has a significant impact on process

performance, and what contextual factors influence which

policy performs best. The factors that can be studied are

determined by the parameters of the model, which were in

3. Ballpen 2 2. Ballpen 1 1. Turbine

5. Desk Phone 6. Laptop 4. Cell Phone

8. Desktop PC 9. Vacuum Cleaner 7. Chainsaw

n=7 NZ=20
NZF=0.4762

n=8 NZ=18
NZF=0.3214

n=8 NZ=22
NZF=0.3929

n=11 NZ=32
NZF=0.2909

n=14 NZ=40
NZF=0.2198

n=16 NZ=44
NZF=0.1833

n=18 NZ=60
NZF=0.1961

n=23 NZ=76
NZF=0.1502

n=30 NZ=116
NZF=0.1333

11. Helicopter 12. Jet Engine 10. Hairdryer

n=6 NZ=22
NZF=0.7333
SF=0.5909

n=19 NZ=110
NZF=0.3216
SF=0.3636

n=32 NZ=275
NZF=0.2772
SF=0.6000

Fig. 5 Sparsity patterns of input

DSMs. The models are based on

a turbine (Maurer 2011), ballpen

1 (Maurer 2011), ballpen 2

(Lindemann et al. 2009), a cell

phone, a desk phone, a laptop, a

desktop PC (Hölttä-Otto and de

Weck 2007), a chainsaw

(Einögg 2009), a vacuum

cleaner (Schmitz et al. 2011), a

hairdryer, a helicopter (Clarkson

et al. 2004) and a jet engine

(Jarratt 2004)

Res Eng Design

123

turn constructed from important issues identified during

the literature review. Considering the available parame-

ters, the following questions were identified for analysis:

1. Impact of design situation on policy performance

(a) Does policy performance depend on size

and interconnectedness of the design? (Sect.

5.1.1)

(b) Given that some product models found in the

literature are symmetric and some are asymmet-

ric, does policy performance depend on the

degree of symmetry of the product architecture?

(Sect. 5.1.2)

(c) Does policy performance depend on the number

of available resources? (Sect. 5.1.3)

(d) Does the flexibility of resources affect policy

performance? (Sect. 5.1.4)

2. Impact of progressive iteration

(a) How is policy performance affected by the

maximum maturity level difference prior to

starting a task? (Sect. 5.2)

3. Impact of rework and change propagation

(a) How is policy performance affected by the

probability of change initiation? (Sect. 5.3.1)

(b) How is policy performance affected by the

likelihood and impact of change propagation?

(Sect. 5.3.2)

(c) Does policy performance depend on whether

change initiates in the completed task only, or in

any task? (Sect. 5.3.3)

4. Overall policy performance

(a) Can policies that perform well in most situations

be identified? (Sect. 5.4)

Each of these eight questions was investigated through

systematic variation of the simulation parameters followed

by in-depth study of the outcomes. Table 5 summarises the

experiments that were undertaken. In each case, 10,000

runs were performed using the indicated combinations of

parameters and inputs. For most experiments, all input

models and policies were initially included, although

Table 5 only lists the configurations that are used to present

the findings.

5 Results and implications

5.1 Impact of design situation on policy performance

5.1.1 Size and interconnectedness of the design

Question 1(a): Does policy performance depend on size

and interconnectedness of the design?

The design of seven products modelled using DSMs of

different size and interconnectedness was simulated to

explore the impact of these factors. The effect of higher

Table 5 Overview of the simulation experiments undertaken

Product model
(Figure 5)

Priority
policy (fi;
see Table 2)

Number
of re-
sources
(q)

Flexibility
of
resources
(Q)

Probability
of
initiating
change
(pc)

Max.
change
propaga-
tion steps
(smax)

Max.
allowed
ML
difference
(Δ mmax)

Changes
initiated in
random
location?
(cr)

§5.1.1
1-7 (plus DSMs with
randomly added entries)

all 1 flexible 0.1 5 2 1

§5.1.2

6, 7, 11 (plus 7 with
added entries and
specifically created
asymmetrical DSMs)

1-8, 23, 24 3 flexible 0.1 5 2 1

§5.1.3 2-6, 8 0, 5 1-5 flexible 0.1 5 2 1

§5.1.4 342,32,8-17
flexible or
inflexible

0.1 5 2 1

§5.2 51.0elbixefl342,32,8-17 1-4 1

§5.3.1 elbixefl3011 0-0.2 0-5 2 1

§5.3.2
11 (original and with
equalised entries)

1-8, 23, 24
(plus 9-20)

3 flexible 0.1 5 2 1

§5.3.3 251.0elbixefl342,32,8-17 0, 1

Rows indicate experiments and columns show the simulation parameters, with the shaded cells indicating the focus of each experiment

Res Eng Design

123

nonzero fractions was further investigated by randomly

adding entries to an existing DSM. All policies were tested

and other parameter values for this experiment were as

shown in Table 5.

Figure 6 shows the effect of n and NZ on the total

duration for two policies relative to random task selection.

Figure 7 shows the total simulated duration under the

random policy.

These figures illustrate the general trend that higher

values for n (system decomposition size) and NZ (con-

nectivity) lead to greater process duration and variance and

also amplify the relative differences in policy performance.

In other words, the more decomposed and more intercon-

nected a system design, the more important it is to take the

right decisions regarding prioritisation of design tasks. This

arises because products with many interrelated components

are more susceptible to change propagation and thus create

more priority decisions. The result confirms the more

general finding of Braha and Bar-Yam (2007) that the

average degree of the network determines whether the PD

is stable or unstable, and how fast it converges, although

the mechanics of our model differ from their article. It also

aligns with the findings of Yassine et al. (2003) who show,

using different model mechanics again, that total PD

duration decreases when the dependency strength between

coupled components is reduced.

5.1.2 Degree of symmetry of the product architecture

Question 1(b): Does policy performance depend on the

degree of symmetry of the product architecture?

To investigate the impact bi- and unilateral dependen-

cies between components have on the total project dura-

tion, entries were either added to one triangle of a DSM or

symmetrically to both triangles. To explore the effect

symmetry has on the performance of various policies, two

symmetric DSMs were compared with one asymmetric

DSM and some specifically created, strongly asymmetric

DSMs (for all other parameter values see Table 5).

For an identical number of added entries, the symmetric

entries were found to result in a significantly higher total

duration for most policies. This confirms the findings of

Braha and Bar-Yam (2007), who use more general model

mechanics to show that a high correlation between in-

degree and out-degree of nodes in a task network can lead

to instability and increased project lead time. A subset of

results is plotted in Fig. 8. These show that the first two,

symmetric DSMs give qualitatively similar performance

whereas the third, non-symmetric shows differences for

DSM-based policies. Results for DSMs with added asym-

metrical entries confirm this trend and show more pro-

nounced differences for lower symmetry factors.

6 8 10 12 14 16 18 20 22 24

-15

-10

-5

0

5

10

15

20
P

er
fo

rm
an

ce
 r

el
at

iv
e

to
 r

an
do

m
 (

in
 %

)

Size of DSM (n)

20 30 40 50 60 70 80

-15

-10

-5

0

5

10

15

20

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 r
an

do
m

 (
in

 %
)

Non - zero entries (NZ)

Fig. 6 Average simulated performance of selected policies relative to

random (O lowest ML first, X highest ML first) according to n (upper

diagram) and NZ (lower diagram)

7 8 8 11 14 16 18 23
0

500

1000

1500

T
ot

al
 d

ur
at

io
n

(d
)

Size of DSM (n)

Fig. 7 Total simulated duration under random policy for DSMs with

different n

Res Eng Design

123

In general, symmetric DSM entries have a higher impact

on the results than the same number of asymmetric entries.

It can be observed that symmetry and dependency structure

affect performance of policies based on product DSMs,

which is usually not the case for policies based on other

factors.

Prioritising components with high active sums and low

passive sums corresponds to prioritising the tasks in the

order they would appear if the DSM was resequenced with

the aim to reach a lower triangular form, such that com-

ponents having high active sums and low passive sums

would appear towards the top-left of the DSM. It can be

concluded that, although the particular dependency struc-

ture being simulated has a strong influence on process

performance, prioritising the component with the least

passive dependencies is usually a good strategy.

5.1.3 Number of resources

Question 1(c): Does policy performance depend on the

number of available resources?

To investigate the relation between the number of

resources and the total duration to complete a design, four

product models (3, 4, 6, 8) and two policies were com-

pared for a range of one to five available resources. The

influence of system size and degree of parallelisation was

explored by comparing policy performance for six dif-

ferently sized product models and a range of one to five

available resources. All other parameters were as shown in

Table 5.

Figure 9 depicts the relation of total working time and

the degree of parallelisation. The total working time

(total duration multiplied by the number of available

resources) gives an indication of the effect of concur-

rency. It shows an increase in the total working time for

higher numbers of available resources. This is more

pronounced for the ’lowest active sum first’ policy and

for smaller systems. Figure 10 highlights this and shows

a trade-off between the number of attempted tasks and

the total duration for higher degrees of parallelisation

and smaller systems.

It can thus be stated that the higher the number of

resources, the less effect most policies have on the total

duration. Specifically, for smaller systems and high degrees

of parallelisation, trade-offs can occur between reducing

the total duration and the number of attempted tasks.

While parallelisation generally leads to a faster com-

pletion of the design process, the total duration does not

decrease by the same proportion the number of available

resources increases. It is still possible to improve on ran-

dom task selection, but the relative differences to random

task selection are lower. The trade-offs that occur in

smaller systems highlight the difficulty of scheduling

design tasks for higher degrees of parallelisation and the

importance of choosing the right degree of concurrency.

5.1.4 Flexibility of resources

Question 1(d): Does the flexibility of resources affect pol-

icy performance?

The experiments discussed in previous sub-sections

assumed that any resource was capable of working on any

task. This may be appropriate for some situations, such as

software development, but does not reflect the organisation

of most engineering companies into teams who have spe-

cific skills that are required to develop certain components.

Sensitivity analysis was thus undertaken to compare the

assumption of fully flexible resources to the situation in

which specific teams are mapped to certain components

they can work on. Simulations were run with the chainsaw

product model for both assumptions. All other parameter

values for this experiment are given in Table 5.

As shown in Figure 11, the total impact of this

assumption on the policy performance is marginal,

depending on the selected policy. The differences can

affect magnitude while relative policy ranking remains

very similar. However, it is notable that the mean total

duration for random task selection is only about 4 % lower

when resources are assumed to be identical. Similar

behaviour was observed for other input models and varia-

tion of resource assignment.

The reason for this only marginal difference is that the

impact of resource flexibility depends on the constraints on

task sequencing, which in this case are governed by the

maximum maturity level difference as well as the assign-

ment of tasks across teams. If tasks can be attempted in

many different sequences, which is the case when the

maximum maturity level difference is significant, a

1 2 3 4 5 6 7 8 23 24
-60

-40

-20

0

20

40

60

80

100

120

140
T

ot
al

 d
ur

at
io

n
re

la
tiv

e
to

 r
an

do
m

 (
in

 %
)

Active prioritisation policy

Chainsaw
Laptop
Helicopter

Fig. 8 Comparison of relative policy performance for three different

product models and ten policies

Res Eng Design

123

reduction in resource flexibility may not be overly con-

straining because a task sequence that avoids bottlenecks

will often be possible. In the chainsaw simulation used to

generate the figure, the 18 components are grouped into

three groups of six components each. Each group of

components can only be developed by one of the three

teams. Thus, there remains a fair degree of flexibility in the

simulated scenario.

5.2 Impact of progressive iteration

Question 2(a): How is policy performance affected by the

maximum maturity level difference prior to starting a task?

The parameter Dmmax (see Table 4) constrains the

activity sequence by specifying the maximum maturity

level difference allowed between connected components

for a task to be attempted. Using the chainsaw model,

Dmmax was varied (Dmmax : 1� 4) to investigate the effect

maturity level constraints have on policy performance. All

other parameter values for this experiment remained as

shown in Table 5.

Figure 12 shows that in most cases, differences between

mean policy performance increase while the variance of

results decreases if Dmmax is assumed to be higher. In most

cases, this has no effect on qualitative policy performance.

It has to be noted that the absolute duration to finish the

design increases with decreasing Dmmax. Based on

Dmmax ¼ 4 total duration for random task selection

increases by 5, 13 and 21 %, respectively.

It can be concluded that the more strongly interfaces

between parts constrain the activity sequence, the less the

choice of policy affects design completion time. The

choice between policies has the greatest impact if the

activity sequence is not constrained at all. As the allowed

maturity level difference between interconnected parts is

reduced, policies become less important as they have fewer

alternatives to choose among. In this case, the total dura-

tion to finish the design generally increases.

5.3 Impact of rework and change propagation

5.3.1 Probability of change initiation

Question 3(a): How is policy performance affected by the

probability of change initiation?

The total duration to finish the design of the helicopter

case was simulated using a range of values for the likeli-

hood of change initiation (pc : 0� 0:2) and the number of

change propagation steps (smax : 0� 5). All other param-

eters remained as shown in Table 5.

A subset of results is plotted in Fig. 13. This shows that

if changes do not propagate, the total duration increases

proportionally with the likelihood of change occurrence.

The increase becomes incrementally more exponential

when changes can propagate further. This effect weakens

for four or five propagation steps. Depending on the sim-

ulation set-up, raising the likelihood for change occurrence

eventually leads to a non-convergent behaviour in which

the design cannot be finished. A similar increasingly

exponential behaviour can be observed when the change

propagation likelihoods in the DSM are all increased by the

same proportion.

Figure 13 also shows that the total design time is about

80 % greater than the theoretical minimum completion

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5

To
ta

l w
o

rk
in

g
 t

im
e

Number of resources

Random Task Selection

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5

Number of resources

Lowest Active Sum first

Ballpen 2

Cell Phone

Laptop

Desktop PC

Fig. 9 Average simulated working time for an increasing number of available resources (1–5) and six input models. The percentages are based

on sequential task execution

Res Eng Design

123

time for the helicopter model, given by the sum of all

component durations. In other words, about 44 % of the

total work is rework. Although the focus of the model

reported in this article lies on generating qualitative

insights about policy performance and not on predicting

design process duration, comparison to prior studies sug-

gests that these results lie in a sensible range. For instance,

Chang (2002) found an average schedule increase of 69 %

due to rework in four engineering projects. Ford and

Sterman (2003a, b) report schedule changes of more twice

the planned time, arising from rework. It can be concluded

that assuming a 10 % likelihood of initial change occur-

rence gives sensible results and a model that is adequately

realistic for the purpose of this article.

To summarise, the experiments in this subsection show

that total duration and number of attempted tasks increase

exponentially with higher likelihoods for occurrence of

emergent changes and number of propagation steps. The

former parameter was thus calibrated to give results in the

region suggested by several prior studies, and the latter

parameter uses the value from an earlier study reported by

Clarkson et al. (2004).

5.3.2 Likelihood and impact of change propagation

Question 3(b): How is policy performance affected by the

likelihood and impact of change propagation?

1 2 3 4 5
-40

-20

0

20

40

60

Ballpen 1

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 r
an

do
m

 (
in

 %
)

1 2 3 4 5
-40

-20

0

20

40

60

Ballpen 2

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 r
an

do
m

 (
in

 %
)

1 2 3 4 5

-40

-20

0

20

40

60

Cell Phone

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 r
an

do
m

 (
in

 %
)

1 2 3 4 5

-40

-20

0

20

40

60

Desk Phone

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 r
an

do
m

 (
in

 %
)

1 2 3 4 5

-60

-40

-20

0

20

40

60

Laptop

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 r
an

do
m

 (
in

 %
)

Number of resources

1 2 3 4 5

-60

-40

-20

0

20

40

60

Desktop PC

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 r
an

do
m

 (
in

 %
)

Number of resources

Total Duration Total Tasks

Fig. 10 Performance of ‘lowest active sum first’ (durations relative to ‘random’) for six input models depending on the number of available

resources (1–5)

Res Eng Design

123

The helicopter product model was simulated in its original

state with distinct values for likelihood and impact of change

propagation. This was compared to an equalised version that

replaces all likelihoods with an average and all impacts with

the value 1. See Table 5 for other parameter values.

Figure 14 shows little difference between the two set-

ups. Policies that can generally be recommended perform

well regardless of the type of input information. Even

policies incorporating combined risk, impact or likeli-

hood values show only marginal performance differences

when applied to models where all impact and likelihood

values are assumed to be equal. The variance of simu-

lation results is slightly higher for the equalised input

DSM.

Therefore, policy performance is qualitatively similar if

the input model or the policy is based on binary or impact

and likelihood DSMs. For the analysis reported in this

article, it was not critical to elicit detailed dependency

strength information.

5.3.3 Location of change initiation

Question 3(c): Does policy performance depend on whether

change initiates in the completed task only, or in any task?

The results reported in previous subsections assumed

that changes only initiate in the completed task (i.e.

1 2 3 4 5 6 7 8 23 24
-60

-40

-20

0

20

40

60

80

100

120
T

ot
al

 d
ur

at
io

n
re

la
tiv

e
to

 r
an

do
m

 (
in

 %
)

Active prioritisation policy

3 similar resources
3 distinct resources

Fig. 11 Comparison of policy performance for the chainsaw product

model. Simulations were run with (1) three identical resources that

can work on all components and (2) three different resources that can

only work on specific components

1 2 3 4 5 6 23 24

-60

-40

-20

0

20

40

60

80

100

120

140

160

T
ot

al
 d

ur
at

io
n

re
la

tiv
e

to
 r

an
do

m
 (

in
 %

)

Active prioritisation policy

 m
max

 = 1

 m
max

 = 2

 m
max

 = 3

 m
max

 = 4

Fig. 12 Policy performance for different allowed maturity level

differences in the chainsaw model

5 Steps
4 Steps

3 Steps

2 Steps

1 Step

0 Steps

0%

20%

40%

60%

80%

100%

120%

140%

160%

0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
1

0.
11

0.
12

0.
13

0.
14

0.
15

To
ta

l d
u

ra
ti

o
n

 (
re

la
ti

ve
 t

o
 m

in
u

m
u

m
)

Likelihood of initial change occurrence

Fig. 13 Average simulated duration to finish design of the helicopter

product model with random task selection for increasing likelihoods

of initial change occurrence and numbers of change propagation steps

1 2 3 4 5 6 7 8 23 24
-40

-20

0

20

40

60

80
T

ot
al

 d
ur

at
io

n
re

la
tiv

e
to

 r
an

do
m

 (
in

 %
)

Active prioritisation policy

Helicopter
Helicopter (equalised DSM)

Fig. 14 Comparison of policy performance for the original product

model with distinct impact and likelihood DSMs and an equalised

version with identical entries across the DSM

Res Eng Design

123

cr ¼ 1). To analyse the sensitivity of the model to this

assumption, results were compared to the case where

changes may initiate randomly anywhere in the system

when a task is completed (i.e. cr ¼ 0). The chainsaw

product model is used to illustrate this, while all other

parameter values are as shown in Table 5.

Figure 15 shows that most policies are not strongly

affected by the location in which changes initiate. Rec-

ommendable policies perform well either way. However, it

is worth noting that for symmetric DSMs prioritising

highest active/passive sums leads to similar results as

random task selection if changes can only initiate in the

component that has previously been worked on. If changes

can occur randomly anywhere in the system, these policies

lead to increased total durations.

5.4 Overall policy performance

Question 4(a): Can policies that perform well in most sit-

uations be identified?

Analysis of the results revealed the three most effective

policies under a range of conditions to be:

1. Lowest passive sum first

2. Highest maturity level first

3. Least reworked first

These policies were found to be more effective than others

tested across most of the scenarios studied. However, the

specific situation does influence how well each policy

performs. Therefore, this ranking is rather qualitative and

should be understood as a suggestion of policies that per-

form well in most situations.

The performance of these policies can be explained in

terms of the logic of the model. Lowest passive sum first

can be interpreted as ensuring that tasks that could receive

propagated change from many dependencies are not

attempted until after those dependencies are finalised.

Highest maturity level first and least reworked first can be

interpreted as ensuring that the components which are

thought to be least susceptible to change at any given point

in the design process (because they have been reworked

less than other tasks) are treated first. Work done to pro-

gress these components is less likely to be invalidated than

work done to progress components that are historically

more likely to receive change. These latter two policies

may be valuable from a pragmatic point of view, because

their use requires only knowledge of the history of the

design process. Unlike lowest passive sum first, an explicit

model of the product architecture is not required.

The least-recommended policy is lowest maturity level

first. This policy always prioritises components that are

lagging behind the rest. It may be interpreted as promoting

firefighting, a phenomenon that often occurs in practice

(Repenning 2001). The simulation results reported here

confirm again that excessive firefighting may be detrimental

to successful product development. The reason is that

problems which keep occurring should usually be left until

as late as possible, because repeated rework implies they are

highly sensitive to changes elsewhere in the design.

6 Discussion

6.1 Summary and recap of contributions

This article makes two main contributions. Firstly, a new

task-based model shows how design process simulation can

account for the combined effects of progressive iteration,

rework and change propagation in concurrent engineering.

This is the first time these specific effects have been

combined in a simulation study of the resource-limited

design process. In future, widening the model’s scope and

combining its features with other approaches to simulating

the design process could lead to a more realistic and thus

more accurate representation of design practice.

Secondly, the model was used to study the impact of

selected priority rules on design process performance,

under different assumptions and for different products. The

results, summarised in Table 6, show that certain priority

rules are generally effective in reducing the impact of

change propagation and unnecessary rework during design.

Results also confirm that effective management of the jobs

competing for attention becomes more important as the

interconnectedness and concurrency of design projects

increases.

1 2 3 4 5 6 7 8 23 24

-40

-20

0

20

40

60

80

100

120

T
ot

al
 d

ur
at

io
n

re
la

tiv
e

to
 r

an
do

m
 (

in
 %

)

Active prioritisation policy

random occurrence
active component

Fig. 15 Comparison of policy performance for the ‘chainsaw’ model.

Simulations were run with changes either initiated randomly

anywhere in the system or initiating in the task just completed

Res Eng Design

123

Several of the conclusions drawn from the simulation

results are implied by prior theoretical and empirical results

of Yassine et al. (2003) and Braha and Bar-Yam (2007), as

noted in the text. The article thus confirms those prior

results and their applicability to the specific context of

engineering design as progression between maturity levels,

set back by stochastic initiation and propagation of chan-

ges. The article also contributes new insights regarding

progressive iteration through increasing maturity levels, a

feature which is not explicitly incorporated in those prior

models.

The box plots throughout this article reveal two insights

about the variance in the results, which arises from the

stochastic nature of the model. Firstly, the effect of the

policies shifts the mean and also the whole distribution by

an amount that is meaningful relative to the spread shown

by the box. Secondly, in most cases, it is clear that the

policies, which result in a reduction in time and effort, also

result in a reduction in spread. Thus, the most effective

policies can be expected to reduce variability (risk) as well

as the expected (mean) performance. It may be noted that a

differentiation of roughly 10 % in design process duration,

as provided by comparing some of the policies studied in

this article, can be significant in real terms. For instance it

might imply avoiding a delay of 6 months on a 5-year

aircraft program.

6.2 Comments on model validity

A key issue regarding any simulation model, and especially

in cases where general insights are derived from simula-

tion, is to understand the validity of the model and its input

data.

In this case, the model is thought to have high face

validity because it is synthesised from concepts that are

well established and accepted in the research literature

(Browning and Eppinger 2002; Clarkson et al. 2004; Cho

and Eppinger 2005). The findings are developed directly

from these assumptions, which might be refined in future

studies but provide a reasonable basis for the current

Table 6 Summary of main observations and implications

Main observations Implications

Section

5.1.1

Absolute and relative differences in the results are more

pronounced for bigger DSMs and higher nonzero fractions

Decisions become more critical in the development of strongly

interconnected products. Decision policies can help to improve

the outcome significantly

Section

5.1.2

Symmetric DSM entries have higher impact on the results than

asymmetric entries. Symmetry and dependency structure affect

the performance of policies that use active or passive sums as

decision criteria

Mutual dependencies between components affect the design

process more strongly than asymmetrical dependencies. It is

important to keep dependency structure and symmetry-related

issues in mind when choosing a DSM-based policy

Section

5.1.3

The higher the number of resources (i.e. the more parallelised the

design), the less advantageous most policies are in terms of

reducing the total duration. Specifically, for smaller systems and

high degrees of parallelisation trade-offs can occur between

reducing the total duration and the number of attempted tasks

A high degree of parallelisation can lead to performance losses of

the policies because they do not regard the occupancy of

resources or possible idle times. This affects especially simpler

products, which makes it hard to choose the best policy in such

scenarios

Section

5.1.4

Results vary only marginally according to whether resources are

assumed to be able to work on any component or distinct and

assigned to specific components

For the purpose of analysing policy performance in this

simulation, the mapping of resources and tasks/components

does not reveal major insights

Section

5.2

The stronger interfaces between parts constrain the activity

sequence, the less effective policies are in reducing the design

completion time

When prioritisation decisions have a broad scope of action,

policies have a higher potential for improving the situation

Section

5.3.1

Total duration and number of attempted tasks increase

exponentially with higher likelihoods for occurrence of

emergent changes and number of propagation steps

The number of initiating changes has a big effect on the absolute

results. The assumption made here leads to results in a

reasonable range

Section

5.3.2

Policy performance is qualitatively similar regardless of whether

the input model or the policy is based on binary or impact and

likelihood DSMs

While the dependency structure remains crucial, for this

simulation it does not seem worth the effort to elicit detailed

dependency strength information

Section

5.3.3

In most cases, policy performance is qualitatively similar

regardless of whether change is modelled as (1) initiating in the

task just completed, or (2) initiated randomly anywhere in the

system

The assumption of when and where emergent changes appear has

an effect on the results albeit not a substantial one. This

simplification seems to be acceptable for the purpose of this

simulation

Section

5.4

The three most effective policies are: (1) Lowest passive sum first

(2) Highest maturity level first (3) Least reworked first. The

least-recommended policy is lowest maturity level first

These three policies perform well in most situations. Therefore,

they can be recommended to serve as guidelines to help

managers choosing and prioritising design tasks. Focusing

attention on components that are lagging behind in terms of

design maturity appears to be detrimental to performance

Res Eng Design

123

article. Additionally, certain results of the simulation

were found to reflect prior work in which more general

models were used to analyse the impact of priority

policies in PD (Braha and Bar-Yam 2007). This align-

ment of results with prior research further support the

validity of the new model.

In terms of input data, the model was deliberately

constructed in such a way that existing product DSM

models can be used directly to provide most required data.

Of the assumptions that are not captured in a product

DSM, several of the required parameter values (maximum

number of change propagation steps, average learning

curve steepness, etc.) were sourced from previous widely

cited research studies. Finally, the effects of most

assumptions embedded in the model were evaluated

through a series of sensitivity analyses. Most of these

assumptions were found to have little or no impact on the

qualitative results as presented in Table 6. A critical

assumption was found to be the probability of change

initiation. This value was calibrated by reference to

existing reports on the amount of rework found in typical

development projects.

The findings are therefore believed to be well justified

and relatively robust, although there is still scope for

improvement of the model and for further sensitivity

studies. Some suggestions for enhancement are identified

below.

6.3 Limitations and opportunities for further work

regarding the model

The approach presented in this article, in common with all

models, simplifies actual conditions in a number of ways.

Some of these simplifications and opportunities for further

work are discussed below.

6.3.1 Simplifications regarding maturity level progression

The model assumes discrete maturity levels, and each

progression is assumed to require equal effort. In practice,

it is likely that the effort required to reach a given maturity

level will change as the process progresses and also that

different components will have different numbers of nat-

ural maturity levels. The design of a component could be

further divided into a network of tasks that involves engi-

neers from several disciplines. Components may be

designed concurrently, with designers transferring infor-

mation in a less structured way than at maturity level

transitions. The effects of these simplifications could be

studied in future work.

6.3.2 Simplifications regarding resource constraints

In reality, the constraints regarding which personnel can

work on which components are more complex than inclu-

ded in our model. For instance, highly specialised domain

experts might constrain the task sequence and lead to

bottlenecks. Also, personnel may have varying skill levels,

which could affect the duration of tasks and the likelihood

of creating rework. Further analysis, possibly including

empirical study, could investigate extending the model to

incorporate such issues.

6.3.3 Simplifications regarding the learning curve

The simulation uses a plateau learning curve model in

which the task duration decreases linearly with the number

of rework iterations until a minimum is reached. While this

is an established approach in the PD simulation literature

[see, e.g. Cho and Eppinger (2005)], the validity of this

assumption can still be questioned. Further work could

focus on adapting more sophisticated learning curve

models, such as power functions or exponential functions

(Anzanello and Fogliatto 2011).

6.3.4 Simplifications regarding the initiation of change

Following the logic of Browning and Eppinger (2002),

changes are assumed to be initiated only on completion of a

task. Further refinement of the model could incorporate the

more realistic scenario in which changes initiate stochasti-

cally during task execution, rather than only at the end of the

originally scheduled task. This could be expected to slightly

reduce the negative impact of changes as calculated by the

algorithm, because part of the initiating task would not need

to be completed in case of change initiation. Consequently

the effects of priority rules might be slightly less differenti-

ated. Because most of the cost of change arises from dealing

with propagation effects, not from completing the initiating

tasks, this refinement would not be expected to significantly

alter the results presented in this article.

6.3.5 Organisational and human behaviour issues

Inappropriate task sequencing is only one cause of

unnecessary rework and poor coordination. In practice,

organisational and human behaviour can also have signif-

icant impact on how design processes unfold. For instance,

behaviour may change as time pressure increases. Such

issues are not represented in the model.

Res Eng Design

123

6.3.6 Summary

All these factors were not explicitly considered in the

model and could be investigated as part of future work.

However, they are all essentially refinements to the basic

scheme of resource-limited progressive iteration, occa-

sionally set back by rework and change propagation. They

are thus not expected to affect the main findings of the

simulation study.

6.4 Limitations and opportunities for further work

regarding the simulation study

6.4.1 Limitations regarding DSMs used in the study

Most of the DSMs used in the simulation study are binary;

thus, the results are determined mostly by the topology of

the networks under study, and not their impact and likeli-

hood values. Further work could focus on using more

DSMs incorporating distinct impacts and likelihoods of

change propagation between components.

Additionally, the size of the DSMs used is relatively

small, and thus, the findings cannot be generalised to very

large models. Further research should investigate whether

the results of this study would apply to product decom-

positions of larger size. Nevertheless, the DSMs were

sourced from existing engineering design research litera-

ture; despite their small size they are therefore appropriate

to the research context.

6.4.2 Limitations regarding priority policies chosen

for the study

The priority policies studied are relatively simple. They do

not explicitly consider issues arising from concurrency such

as occupancy of resources and slack. To reduce the lead time

in highly concurrent processes, special attention should be

paid to avoid idle times and task interruptions due to changes

and rework. Another strategy might be to define rules that

aim to ensure a reprioritised project includes a degree of

robustness to future changes. Such issues are beyond the

scope of the present article, but the model could potentially

be extended to study them in future work. We also did not test

priority rules that combine in-degree and out-degree mea-

sures. This is an important opportunity for further work given

that Braha and Bar-Yam (2007) show that both in-degree and

out-degree contribute to PD dynamics.

Another opportunity for further research is to study the

application of prioritisation policies in initial project

planning, complementing their use in response to unplan-

ned events as studied in this article, and validating the

simulation results against real-world projects.

7 Concluding remarks

Scheduling and prioritising tasks can have a significant

effect on product development cost and lead time. In this

article, the effects of different priority policies were eval-

uated using a new simulation model incorporating the

combined effects of progressive iteration, rework and

change propagation during design of interconnected sub-

systems. The model integrates these factors into one model

which uses a system architecture DSM as the basis for

design process simulation. The underpinning of the model

is a stepwise progression of individual component’s

maturity levels during the design process. Components

cannot be developed independently because interfaces

between them constrain the activity sequence.

Task prioritisation decisions have to be made throughout

the design process and, because of the certainty of

unforeseen events, cannot be fully planned in advance. The

prioritisation policies evaluated in this article can provide

rules of thumb for practitioners when many jobs compete

for attention and a quick decision is required with limited

information. The simulations suggest that certain policies

are effective in reducing unnecessary rework, regardless of

the scope of the project and a number of other contextual

variables. Equally important, some policies that seem

reasonable, such as focusing effort on components whose

progress is lagging behind the rest, were found to amplify

the total amount of rework. Although the simulation may

initially appear complicated, the policies that were evalu-

ated are straightforward to apply, and thus, the findings

should provide pragmatic insight.

Acknowledgments This work was supported by an Industrial

CASE studentship funded by the UK Engineering and Physical Sci-

ences Research Council and BT [EP/K504282/1]. Figures 2 and 3

were generated using Cambridge Advanced Modeller (CAM) (Wynn

et al. 2010).

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Abdelsalam HME, Bao HP (2006) A simulation-based optimization

framework for product development cycle time reduction. IEEE

Trans Eng Manag 53(1):69–85

Antonsson EK, Otto KN (1995) Imprecision in engineering design.

ASME J Mech Des 117(2):25–32

Anzanello MJ, Fogliatto FS (2011) Learning curve models and

applications: Literature review and research directions. Int J Ind

Ergonom 41(5):573–583

Braha D, Bar-Yam Y (2004a) Information flow structure in large-

scale product development organizational networks. J Inf Tech-

nol 19(4):244–253

Res Eng Design

123

Braha D, Bar-Yam Y (2004b) Topology of large-scale engineering

problem-solving networks. Phys Rev E 69(016):113

Braha D, Bar-Yam Y (2007) The statistical mechanics of complex

product development: empirical and analytical results. Manag

Sci 53(7):1127–1145

Braha D, Maimon O (1997) The design process: properties,

paradigms, and structure. Syst Man Cybern A Syst Hum IEEE

Trans 27(2):146–166

Browning TR, Eppinger S (2002) Modeling impacts of process

architecture on cost and schedule risk in product development.

IEEE Trans Eng Manag 49(4):428–442

Browning TR, Yassine AA (2010) Resource-constrained multi-

project scheduling: priority rule performance revisited. Int J

Prod Econ 126(2):212–228

Brucker P, Drexl A, Mohring R, Neumann K, Pesch E (1999)

Resource-constrained project scheduling: notation, classification,

models, and methods. Eur J Oper Res 112(1):3–41

Buddhakulsomsiri J, Kim DS (2007) Priority rule-based heuristic for

multi-mode resource-constrained project scheduling problems

with resource vacations and activity splitting. Eur J Oper Res

178(2):374–390

Chang AST (2002) Reasons for cost and schedule increase for

engineering design projects. J Manag Eng 18(1):29–36

Cho SH, Eppinger S (2005) A simulation-based process model for

managing complex design projects. IEEE Trans Eng Manag

52(3):316–328

Christiansen TR (1993) Modeling efficiency and effectiveness of

coordination in engineering design teams. PhD thesis, Depart-

ment of Civil Engineering, Stanford University

Chtourou H, Haouari M (2008) A two-stage-priority-rule-based

algorithm for robust resource-constrained project scheduling.

Comput Ind Eng 55(1):183–194

Clarkson PJ, Simons C, Eckert C (2004) Predicting change propa-

gation in complex design. J Mech Des 126(5):788–797

Cohen GP (1992) The virtual design team: an object-oriented model

of information sharing in project teams. PhD thesis, Department

of Civil Engineering, Stanford University

Eckert C, Clarkson PJ, Zanker W (2004) Change and customisation in

complex engineering domains. Res Eng Des 15(1):1–21

Einögg F (2009) Netzwerk-FMEA: Methodik und Anwendung.

Unveröffentlichte Semesterarbeit, TU Munich, Institute of

Product Development

Eppinger SD, Whitney DE, Smith RP, Gebala DA (1994) A model-

based method for organizing tasks in product development. Res

Eng Des 6(1):1–13

Ford DN, Sterman JD (2003a) The liar’s club: concealing rework in

concurrent development. Concurr Eng Res Appl 11(3):211–219

Ford DN, Sterman JD (2003b) Overcoming the 90% syndrome:

iteration management in concurrent development projects.

Concurr Eng 11(3):177–186

Garcia R (2005) Uses of agent-based modeling in innovation/new

product development research. J Prod Innov Manag 22(5):

380–398

Grebici K, Goh YM, Zha S, Blanco E, McMahon C (2007)

Information maturity approach for the handling of uncertainty

within a collaborative design team. In: Proceedings of the 2007

11th International Conference on Computer Supported Cooper-

ative Work in Design, Vols 1 and 2, pp 280–285.

Hartmann S, Briskorn D (2010) A survey of variants and extensions

of the resource-constrained project scheduling problem. Eur J

Oper Res 207(1):1–14

Hölttä-Otto K, de Weck O (2007) Degree of modularity in

engineering systems and products with technical and business

constraints. Concurr Eng 15(2):113–126

Huberman BA, Wilkinson DM (2005) Performance variability and

project dynamics. Comput Math Organ Theory 11(4):307–332

Jarratt T, Eckert C, Caldwell N, Clarkson P (2011) Engineering

change: an overview and perspective on the literature. Res Eng

Des 22(2):103–124

Jarratt TAW (2004) A model-based approach to support the

management of engineering change. PhD thesis, University of

Cambridge

Karniel A, Reich Y (2009) From DSM-based planning to design

process simulation: a review of process scheme logic verification

issues. IEEE Trans Eng Manag 56(4):636–649

Koh E, Caldwell N, Clarkson P (2012) A method to assess the

effects of engineering change propagation. Res Eng Des 23(4):

329–351

Kolisch R (1996) Efficient priority rules for the resource-constrained

project scheduling problem. J Oper Manag 14(3):179–192

Krishnan V, Eppinger SD, Whitney DE (1997) Model-based frame-

work product to overlap development activities. Manag Sci

43(4):437–451

Lévárdy V, Browning TR (2009) An adaptive process model to

support product development project management. IEEE Trans

Eng Manag 56(4):600–620

Levitt RE, Thomsen J, Christiansen TR, Kunz JC, Jin Y, Nass C

(1999) Simulating project work processes and organizations:

toward a micro-contingency theory of organizational design.

Manag Sci 45(11):1479–1495

Licht T, Schmidt L, Schlick CM, Dohmen L (2007) Person-centred

simulation of product development processes. Int J Simul Proc

Model 3(4):204–218

Lindemann U, Reichwald R (1998) Integriertes Änderungsmanage-

ment. Springer, Berlin

Lindemann U, Maurer M, Braun T (2009) Structural complexity

management: an approach for the field of product development.

Springer, Berlin

Loch CH, Terwiesch C (1998) Communication and uncertainty in

concurrent engineering. Manag Sci 44(8):1032–1048

Maurer M (2011) Komplexitätsmanagement für die industrielle praxis

Unterlagen zur Vorlesung. Institute of Product Development, TU

Munich

Newman M (2003) The structure and function of complex networks.

SIAM Rev 45(2):167–256

O’Brien C, Smith SJE (1995) Design maturity assessment for

concurrent engineering co-ordination. Int J Prod Econ 41(1–3):

311–320

Pasqual MC, de Weck OL (2012) Multilayer network model for

analysis and management of change propagation. Res Eng Des

23(4):305–328

Repenning NP (2001) Understanding fire fighting in new product

development. J Prod Innov Manag 18(5):285–300

Schlick CM, Duckwitz S, Schneider S (2013) Project dynamics and

emergent complexity. Comput Math Organ Theory 19(4):480–

515

Schmitz S, Wynn D, Biedermann W, Clarkson PJ, Lindemann U

(2011) Improving data quality in DSM modelling: A structural

comparison approach. In: Proceedings of the 18th International

Conference on Engineering Design (ICED11)

Sered Y, Reich Y (2006) Standardization and modularization driven

by minimizing overall process effort. Comput Aided Des

38(5):405–416

Smith RP, Eppinger SD (1997a) Identifying controlling features of

engineering design iteration. Manag Sci 43(3):276–293

Smith RP, Eppinger SD (1997b) A predictive model of sequential

iteration in engineering design. Manag Sci 43(8):1104–1120

Smith RP, Morrow JA (1999) Product development process

modeling. Des Stud 20(3):237–261

Steward DV (1981) The design structure-system: a method for

managing the design of complex-systems. IEEE Trans Eng

Manag 28(3):71–74

Res Eng Design

123

Wynn DC, Eckert CM, Clarkson PJ (2007) Modelling iteration in

engineering design. In: Proceedings of the 16th International

Conference on Engineering Design (ICED07), pp 693–694

Wynn DC, Wyatt DF, Nair S, Clarkson PJ (2010) An introduction to

the Cambridge Advanced Modeller. In: Proceedings of the 16th

International Conference on Modelling and Management of

Engineering Processes (MMEP 2010)

Wynn DC, Grebici K, Clarkson PJ (2011) Modelling the evolution of

uncertainty levels during design. Int J Interact Des Manuf

(IJIDeM) 5(3):187–202

Yang F, Duan GJ (2012) Developing a parameter linkage-based

method for searching change propagation paths. Res Eng Des

23(4):353–372

Yassine AA (2007) Investigating product development process

reliability and robustness using simulation. J Eng Des 18(6):

545–561

Yassine AA, Braha D (2003) Complex concurrent engineering and

the design structure matrix method. Concurr Eng 11(3):165–176

Yassine AA, Whitney DE, Zambito T (2001) Assessment of rework

probabilities for simulating product development processes using

the design structure matrix (DSM). In: Proceedings of DETC

2001

Yassine AA, Joglekar N, Braha D, Eppinger SD, Whitney D (2003)

Information hiding in product development: the design churn

effect. Res Eng Des 14(3):145–161

Zhang X, Li Y, Zhang S, Schlick CM (2013) Modelling and

simulation of the task scheduling behavior in collaborative

product development process. Integr Comput Aided Eng

20(1):31–44

Res Eng Design

123

	Simulating progressive iteration, rework and change propagation to prioritise design tasks
	Abstract
	Introduction
	Background and related work
	Progression in design
	Change propagation
	Design process simulation
	Simulation method
	Treatment of concurrency
	Task and rework durations

	Complex networks in product development
	Resource-constrained project scheduling problem
	Summary and critique

	Model
	Identify task(s) to start
	Accounting for maturity constraints
	Accounting for resource constraints
	Making priority decisions

	Start task(s)
	Calculating task duration accounting for learning
	Updating model state to start tasks

	Complete task(s)
	Updating model state to complete tasks
	Change initiation at task completion
	Change propagation at task completion

	Model summary
	Example

	Analysis of priority rule performance
	Product models used in the experiments
	Characterising the product models for comparison
	Characterising process performance
	Simulation experiments undertaken

	Results and implications
	Impact of design situation on policy performance
	Size and interconnectedness of the design
	Degree of symmetry of the product architecture
	Number of resources
	Flexibility of resources

	Impact of progressive iteration
	Impact of rework and change propagation
	Probability of change initiation
	Likelihood and impact of change propagation
	Location of change initiation

	Overall policy performance

	Discussion
	Summary and recap of contributions
	Comments on model validity
	Limitations and opportunities for further work regarding the model
	Simplifications regarding maturity level progression
	Simplifications regarding resource constraints
	Simplifications regarding the learning curve
	Simplifications regarding the initiation of change
	Organisational and human behaviour issues
	Summary

	Limitations and opportunities for further work regarding the simulation study
	Limitations regarding DSMs used in the study
	Limitations regarding priority policies chosen for the study

	Concluding remarks
	Acknowledgments
	References

