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Abstract

We introduce e�ectiveness considerations into model theory of

intuitionistic logic. We investigate e�ectiveness of completeness (by

Kripke) results for intermediate logics such as for example, intuition-

istic logic, classical logic, constant domain logic, directed frames logic,

Dummett's logic, etc.

1 Motivation

The development of computable (equivalently, recursive) function theory
made it possible to investigate the computational aspects of many mathemat-
ical notions and constructions within the context of classical mathematics.

�The work of Khoussainov and Ishihara is supported by Japan Advanced Institute of
Science and Technology (JAIST). Khoussainov acknowledges the support of the University
of Auckland Research Committee. Nerode is partially supported by ARO under MURI
grant DAAH 04-96-10341, Integrated Approach to Intelligent Systems.
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In the 1930's Kleene and Church investigated computability on the integers
and in well{ordered sets and invented the notion of recursive ordinal. In
the 1950's Fr�oelich and Shepherdson [9] investigated computability in �elds.
In the 1960's Rabin [18] and Malcev[12] initiated the study of computable
algebra and computable model theory. In the 1970's, Ershov's school in Rus-
sia and Nerode's school in the United States began the systematic use of
the priority methods from computability theory to determine under what
conditions classical constructions in model theory or algebra can be made
computable. Since then, theories of computable algebraic systems and com-
putable models have been the subject of concentrated attention by many lo-
gicians. Computability has been investigated in such areas as vector spaces,
orderings, Boolean algebras, Abelian groups, �elds, rings, and lattices. We
refer the reader to Downey [8], Nerode-Remmel [15], Hazarinov [10] and Mil-
lar [13] for surveys. Nowdays there are many papers in many other areas
of mathematics which deal, in one or another sense, with computability in
mathematical structures. For example, there are theories of computability
in topological spaces, metric spaces, and Banach spaces. These latter all es-
tablish the relations between notions of computability on the one hand, and
continuity on the other.

In this paper we investigate e�ectiveness of Kripke models for �rst order
theories of intermediate logics, i.e. ones that lie between intuitionistic and
classical predicate logic. How does one �nd an appropriate notion of e�ec-
tiveness for these models and theories? We proceed by looking in detail at
how one went from model theory of classical �rst order logic to model theory
of intuitionistic logic. The completeness of classical predicate �rst order logic
can be expressed by the assertion that if a theory � is consistent, then � has
a classical model. Things are more complicated for the model theory of intu-
itionistic logic. There are several model theories for intuitionistic logic with
quite di�erent avors. One is lambda calculus models, leading to the work of
Girard and of Martin-L�of on typed lambda calculi, or, as Scott has observed,
equivalently leading to closed cartesian categories (untyped lambda calculi).
In such models existential quanti�ers are interpreted as functionals (lambda
terms). A second style of model is Kripke and/or Beth models. A third
is the topological models as introduced by Rasiowa and Sikorski from prior
work of Tarski, for their early 1950's proof of completeness of intuitionistic
predicate logic within classical mathematics. All these classes of models are
adequate to give classical proofs of completeness of intuitionistic predicate
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logic, although the literature is especially opaque when one looks for the
equivalences and proofs of completeness (see the work of L�auchli and also of
Scott). There is also a body of work on constructive proofs of completeness
of predicate intuitionistic logic. These are based on a very careful choice of
de�nition of model and a very careful formulation of the statement of com-
pleteness. These proofs use so-called feeble (in plain English, contradictory)
models, see Troelstra and Van Dalen, volume 2 of [21]. In this paper we look
only at Kripke models of intuitionistic predicate logic, leaving the others for
other papers.

Thus, a formulation of completeness (by Kripke) of intuitionistic predicate
logic can be expressed by the assertion that if � is consistent in intuitionistic
predicate logic, then � has a (single) Kripke model M such that the sen-
tences forced in M are exactly those intuitionistically provable from �. We
call such models adequate models of �. The standard proof of this theorem
can be thought of as generalizing to intuitionistic logic and its Kripke models
the Henkin 1949 proof for classical predicate logic, see [7] or [19]. In that
generalization the maximal �lters of the Lindenbaum Boolean algebra of �
are replaced by prime �lters of the Lindenbaum Heyting algebra of �: Thus,
a reasonable attempt to introduce e�ectiveness into model theory of intu-
itionistic logic is to begin by trying to understand the e�ective content of the
completeness (by Kripke) theorem for intuitionistic predicate logic and more
generally for intermediate logics. This leads us to investigate computable
intuitionistic theories and computable adequate Kripke models.

Here we mention some previous results concerning computability of Kripke
models and intuitionistic theories. Gabbay in [4] proved that for any de-
cidable �nitely axiomatized intuitionistic theory � and any sentence � not
intuitionistically derivable from �, there is a Kripke model (not necessarily
adequate) of � which does not force �, such that the underlying partially or-
dered set is a computable enumerable partial ordering, and such that forcing
restricted to atomic statements is computably enumerable. In [11] a more
sophisticated argument proves that any decidable intuitionistic theory � has
an adequate Kripke model M with decidable forcing such that for all sen-
tences �, � is an intuitionistic consequence of � if and only if M forces �.
This generalizes the theorem in classical computable model theory that a de-
cidable theory has a decidable model. This generalizes Gabbay's assumption
that � is �nitely axiomatized, while his conclusion that forcing for atomic
formulas is decidable is strengthened to the decidability of forcing in general,
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not merely atomic forcing, in the Kripke model constructed. However, the
proof in [11] guarantees only that the underlying partial ordering is a �0

2{set,
while here in section 5 we show that the underlying partial ordering can in
fact be made computable.

This paper deals with the e�ective content of semantic completeness, with
respect to Kripke models, of intuitionistic logic and some of its extensions
such as classical logic CPL, constant domain logic CD, directed frames logic
QJ, logic of frames with maximum elements KJ, logic of frames with maxi-
mum elements and constant domains KJC, Dummett's logic DL, etc. Our
results for intermediate logics are new, whereas the result for intuitionistic
logic re�nes [11] as mentioned above. The present paper is self{contained1

and covers basic notions and terminology from intuitionistic model theory
and computability theory. In the next section we briey explain the material
on Kripke models, forcing, computability, intermediate logics, and complete-
ness of intermediate logics for Kripke models.

2 Basic Notions

In this section we summarize Kripke models, forcing, intuitionistic logic, some
basic de�nitions from computability theory, intermediate logics, and Kripke
completeness.

Kripke Frames and Models. Let L =< P n0
0 ; : : : ; P nk

k : : : ; c0; c1; : : : >

be a countable �rst order language without function symbols. We sup-
pose that the language L is computable, and that the set of constants
C = fc0; c1; : : :g of the language and the function k ! nk are also com-
putable. We denote the set of all sentences of L by Sn(L).

A frame is a triple F = (W;�; D) consisting of a non-empty set W;
("states of knowledge" or "forcing conditions"), a partial order� onW ,
and a map D from W to a power set such that v � w implies D(v) � D(w).
D is called the domain function:The partially ordered set (W;�) is called
the base of the frame.

We suppose that we are given a mapping V , called a valuation , which
assigns to each pair consisting of a w 2 W and an n{ary predicate symbol

1We assume that the reader is familiar with basics of computability theory. The last
section uses Glivenko's theorem that states that a sentence � is provable in CPL if and
only if ::� is provable in KJ.
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P (constant c) from L , a n{ary relation on D(w) (element of D(w)): Thus
one can think that V (w) is a classical L{structure which is associated with
w.

Let L(w) be the extension of the language L obtained by adding to L
a constant (name) ca for each element a 2 D(w). Let A(w) be the set of
all atomic sentences of language L(w) classically true in D(w) under the
valuation V . Suppose that for all v � w the set of all atomic sentences from
A(v) is a subset of A(w). Then the 4{tuple M = (W;�; D; V ) is called
a Kripke model (over frame F ). Here is the de�nition of forcing in a
Kripke model.

De�nition 2.1 Let (W;�; D; V ) be a Kripke model of language L, w be in

W and � be a sentence from L(w). We give the de�nition of " w forces �"
by induction on the complexity of �.

1. For atomic sentences �, w forces � i� � 2 A(w).

2. w forces �!  i� for all v � w, v forces � implies v forces  .

3. w forces :� i� for all v � w, v does not force �.

4. w forces 8x� i� for all v � w and all constants c 2 L(v), v forces �(c).

5. w forces 9x� i� for some c 2 L(w), w forces �(c).

6. w forces � _  i� w forces � or w forces  .

7. w forces � ^  i� w forces � and w forces  .

We say that M forces a sentence � of language L if every w 2 W forces
�. By induction on the length of sentences � 2 L(w); one can prove that if
w forces � and v � w, then v forces �. If (W;�; D; V ) is a Kripke model
whose base is antichain, then all sentences forced in (W;�; D; V ) coincides
with the class of all sentences classically true in all structures V (w), w 2 W .

Let � be a subset of Sn(L). The closure of � is the set of all sentences
which are intuitionistically deducible from �. A set � of sentences is con-
sistent if the closure of � does not contain falsehood ?. Following the
lines of Henkin's proof for classical logic, one can prove the classical (Kripke)
completeness result of intuitionistic logic.
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Theorem 2.1 For any consistent set � of sentences of language L, there

exists a Kripke model M such that for all �, M forces � if and only if � is

deducible from �.

Full proofs of this theorem can be found in [7] or [19]. The proof pro-
ceeds by constructing "prime theories" containing �. These are consistent
sets extending � in a language obtained by adding to the original language
L in�nitely many new constant symbols which are prime �lters with the wit-
ness property in the Lindenbaum Heyting algebra de�ned by intuitionistic
deducibility from �. The base of the Kripke model is the set of all these
prime theories, the partial ordering is set{theoretic inclusion between two
such prime theories. This theorem leads us to an important de�nition.

De�nition 2.2 A Kripke modelM is adequate for � if for all �,M forces

� if and only if � is deducible from �.

Computability Theory. A function is computable if there is a Turing
machine which computes it. We denote the set of all natural numbers by
! or N . A subset of the natural numbers is computable if its characteristic
function is computable. A set of natural numbers is computably enumerable

(c.e.) if it is the range of a computable function. We �x a standard e�ec-
tive enumeration �X

0 ;�
X
1 ; : : : of all computable partial functions with oracle

X. We call number n an index of �X
n . A set A is called �0

1 if there is a
computable relation R such that x 2 A i� 9yR(x; y) holds. R is called �0

1

if ! � A is �0
1: Finally we call A �0

n+1 i� there is a �0
n relation R such that

x 2 A i� 9yR(x; y) holds (and similarly for �0
n+1). The �

0
n;�

0
n (n 2 !) sets

form a proper hierarchy called the arithmetical hierarchy. We assume that
the reader knows basic facts about the jump operator and Turing degrees.
Briey, for a set A, the set A0 = f(i; j)j�i(j)

Ais de�nedg is called the jump
of A. Iterating the jump operation n times we get n{th jump of A denoted
by An. 0n is the n{th jump of computable degree denoted by 0. 0! is the
degree of the set f(x; i)jx 2 0ig. The degree 01 is usually denoted by 00. We
refer to Soare [20] for the basic computability theory.

Intermediate Logics and Completeness. If we add the schema �_:�
to intuitionistic predicate logic IPL, then we obtain full classical predicate
logic CPL. It is natural to ask what logics arise by adding schema to IPL
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other than the law of the excluded middle. Here are some well{known inter-
mediate logics. Constant domain logic, denoted by CDL, is obtained by
adding the schema

8x(�(x) _ �)! 8x�(x) _ �;

where x is not free in �, to IPL. The logic denoted by QJ is obtained by
adding the schema

:� _ ::�

to IPL. The logic KJ is obtained by adding the schema

8x::�! ::8x�

to QJ. All of the �ve logics S above are closed under substitution. That
is, if � is intuitionistically deducible from S and �0 is obtained from � by
replacing any atomic subformula in � by some formula, then �0 is also in S.
Here is a formal de�nition of the notion of an intermediate logic.

De�nition 2.3 A set S of formulas provable in CPL is called an interme-
diate logic, or briey a logic, if S is closed under intuitionistic deduction

and substitution.

>From the de�nition it follows that IPL,CPL,CD,QJ,KJ are examples
of intermediate logics. A natural semantical way to obtain intermediate logics
is the following. Fix a class K of Kripke frames. Consider the set S(K) of all
sentences which are forced by all Kripke models over frames from K. Then
S(K) is an intermediate logic. Thus, one can consider logics of the type
S(K) for some natural classes of frames. We introduce several such classes.
Let F = (W;�; D) be a frame. F is antichain if for all u; v 2 W , the
condition u � v implies u = v. F is a tree frame if its base is a tree. F

is constant domain frame if for all u; v 2 W , D(u) = D(v). F is linear
frame if v � w or w � v for all v; w 2 W . F is directed if for all v; w 2 W
there z 2 W such that v � z and w � z. The frame (W;�; D) is a frame
with maximum element if there exists a w 2 W such that for all v 2 W ,
v � w. These are all suggested naturally by algebra. Thus, we have logics of
antichain frames, tree frames, constant domain frames, linear frames, etc.

Now we give one of the basic de�nitions in intuitionistic model theory.

De�nition 2.4 A logic S is complete for a class K of Kripke frames if the

following two conditions hold:
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1. All Kripke models over frames from K force all formulas from S.

2. For any � 2 Sn(L) if � is not provable in S, then there is a Kripke

model M over a Kripke frame in K such that M does not force �.

Thus, if S is complete for a class K, then S coincides with S(K).
The following completeness results are known from intuitionistic model

theory: Classical predicate logic CPL is complete for the class of antichain
frames; Intuitionistic predicate logic IPL is complete for the class of tree
frames; The logic CDL is complete for the class of constant domain frames;
The logic QJ is complete for the class of directed frames; The logic KJ is
complete for the class of frames with maximum elements; Dummett's logic
is complete for the class of linearly ordered frames, etc. For proofs of these
results and surveys of the subject, see [3] [7] [19] [5] [6].

In sections 3 and 4 we de�ne needed notions. We show that every com-
putable theory can be extended to a so{called complete computable theory.
We introduce saturated theories and show that every consistent computable
theory can be extended to a computable saturated theory. In section 5 we
de�ne decidable Kripke models. Briey, a Kripke model is decidable if its
base and forcing are computable relations. We prove that every computable
theory over IPL has an adequate decidable Kripke model. In section 6, we
show that every decidable �rst order theory over CPL has a decidable Kripke
model whose frame is antichain. In section 7, we introduce Henkin complete
theories and prove that every computable theory over CDL has a decidable
Kripke model over a constant domain frame. In the next two sections we
investigate the computability of adequate models in logics QJ and KJ. We
show, for example, that every computable theory in QJ has an adequate
Kripke model decidable in 0! over a directed frame. The last section con-
tains conclusions and acknowledgements. The proofs are based on recasting
classical completeness proofs for intermediate logics to expose their e�ective
content. This often requires substantial changes.

3 Theories and Their Extensions

We �x a language L and a logic S. When a sentence � is intuitionistically
deducible in logic S, we simply say that � is deducible or S{deducible and
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write `S �. The following de�nition is the basic one for this paper, and stems
from Stone's ideal and �lter theory of distributive lattices and also from the
theory of interpolants.

De�nition 3.1 1. A theory T is a pair (�;�), where � and � are sets

of sentences. We set lT = � and rT = �.

2. A Kripke model M is adequate for T if for all sentences �, � is

deducible from lT if and only if M forces �.

We say that a theory T = (�;�) is inconsistent if there exist �1, : : :,
�n 2 � and �1, : : :, �m 2 � such that �1 ^ : : : ^ �n ! �1 _ : : : _ �m is
S{deducible. A theory T = (�;�) is consistent if it is not inconsistent.

Proposition 3.1 Let T = (�;�) be a consistent theory. Then there exists a

theory T 0 = (�0;�0) such that

1. (�0;�0) is consistent,

2. �0 S�0 = Sn(L),

3. � � �0 and � � �0.

Proof. Let �0; �1; : : : be a list of all sentences of the language L. We
construct a sequence (�0;�0); (�1;�1); : : : of theories such that

1. For all i 2 !, �i � �i+1, �i � �i+1,

2. For all i 2 !, (�i;�i) is consistent,

3.
S
i(�i

S
�i) = Sn(L).

We build this sequence by stages.
Stage 0. Put (�0;�0) = T = (�;�).
Stage n + 1. Suppose that Tn = (�n;�n) has been constructed. Take

�n. We have two cases.
Case 1. The theory (�n;�n

S
f�ng) is consistent. Then simply put �n+1 =

�n and �n+1 = �n

S
f�ng.

Case 2. The theory (�n;�n

S
f�ng) is inconsistent. Then put �n+1 =

�n
S
f�ng and �n+1 = �n.
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This ends the construction.
Put �0 =

S
n �n and �0 =

S
n�n. Since at each stage �n 2 �n+1

S
�n+1,

we see that Sn(L) = �0 S�0.
We need to prove that T = (�0;�0) is consistent. It su�ces to show

that for every n, the theory (�n;�n) is consistent. We show it by induction
on n. Clearly (�0;�0) = T = (�;�) is consistent. Suppose that Tn =
(�n;�n) is consistent. Consider stage n + 1. If the theory (�n;�n

S
f�ng)

is consistent, then obviously Tn+1 = (�n+1;�n+1) is consistent. Suppose
that (�n;�n

S
f�ng) is inconsistent. Consider Tn+1 = (�n+1;�n+1) which is

(�n
S
f�ng;�n). Suppose that Tn+1 = (�n+1;�n+1) is inconsistent. Then

there exist �0
1; : : : ; �

0
k 2 �n+1 and �1; : : : ; �m 2 �n+1 = �n such that

�0
1 ^ : : : ^ �

0
k ! �1 _ : : : _ �m:

is deducible in S. By the induction hypothesis Tn = (�n;�n) is consistent.
Hence �n 2 f�0

1; : : : ; �
0
kg. Since (�n;�n

S
f�ng) is inconsistent, there exist

�00
1; : : : ; �

00
t 2 �n and � 0

1; : : : ; �
0
r 2 �n+1 = �n

S
f�ng such that

�00
1 ^ : : : ^ �

00
t ! � 0

1 _ : : : _ �
0
r

is deducible in S. Hence, it is not hard to see that Tn = (�n;�n) is incon-
sistent. This is a contradiction. It follows that T = (�0;�0) is a consistent
theory. The proposition is proved.

De�nition 3.2 A theory T = (�;�) is complete if it is consistent and

Sn(L) = �
S
�.

We also say that T = (�0;�0) extends T = (�;�) if � � �0 and � � �0.
Thus, we have the following

Corollary 3.1 Every consistent theory has a complete extension in the same

language. 2

De�nition 3.3 A proper subset � of Sn(L) is prime if the following con-

ditions are satis�ed:

1. � is closed under deduction in S.

2. For all �; � 2 Sn(L) if � _ � 2 �, then either � 2 � or � 2 �.
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For any subset X � Sn(L) let �X be the complement of X in Sn(L), that
is �X = Sn(L) nX.

Proposition 3.2 A set � � Sn(L) is prime if and only if the theory (�; ��)
is complete.

Proof. Suppose that � is prime. Clearly �
S �� = Sn(L). We need to

show that (�; ��) is consistent. Suppose not. Then there exist �1; : : : ; �k 2 �
and �1; : : : ; �m 2 �� such that

�1 ^ : : : ^ �k ! �1 _ : : : _ �m:

is provable in S. Hence, �1 _ : : :_ �m 2 � since � is closed under deduction.
Since � is prime a �i belongs to � for some i � n. Contradiction.

Now suppose that (�; ��) is complete. If � is deducible from � in logic S,
then � 2 �. Otherwise, (�; ��) would be inconsistent. Suppose that �_� 2 �
but neither � nor � belongs to �. Hence �; � 2 �� and � _ � ! � _ � 2 �.
Hence (�; ��) is inconsistent. Contradiction. The proposition is proved.

De�nition 3.4 We say that a set � of sentences is �{consistent if T =
(�;�) is consistent. When � = f�g, then �{consistent set is called �{
consistent.

Thus, � � Sn(L) is consistent if and only if � is ?{consistent.

De�nition 3.5 A theory T = (�;�) is computable if the deductive closure

of � in logic S and the set � are computable.

We can relativize the above de�nition by saying that T = (�;�) is com-
putable in X if the deductive closure of � in logic S and the set � are
computable in X. From the proof of Proposition 3.1, we now have the fol-
lowing result.

Proposition 3.3 Suppose that T = (�;�) is a computable consistent theory

and � is �nite. Then T has a complete computable extension.
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Proof. Let T = (�;�) be a computable consistent theory with ��nite.
Let � = f�1; : : : ; �ng be a �nite set of sentences. Then by the deduction
theorem �

S
� proves � if and only if � proves ^ni=1�i ! �. It follows

that the closure of �
S
� is also computable. Therefore for �nite subsets

�1;�2 � Sn(L), the theory (�
S
�1;�

S
�2) is computable. Since � is

�nite and the closure of � is computable, the construction of the proof of
Proposition 2.1 can be carried out e�ectively. We need to show that the
extension �0 obtained in the construction is a computable set. Indeed take
a sentence �. Then there is an n such that � = �n. Then � 2 �0 if and
only if �n 2 �n+1. Hence the theory T = (�0;�0) obtained by applying the
construction in Proposition 3.1 to the given theory T = (�;�) is computable.
The proposition is proved.

Corollary 3.2 Any consistent theory T = (�;�) computable in X with �
�nite has a complete extension computable in X. 2

4 Saturated Theories

In proving completeness theorems, constant expansions of the original lan-
guage L play an important role. Thus, let L be a language and C be an
in�nite set of symbols, called constants, such that L

T
C = ;. We put

L(C) = L
S
C.

De�nition 4.1 Let L be a language. A theory T = (�;�) is saturated if:

1. T = (�;�) is consistent.

2. � is prime.

3. For every formula 9x�(x), the condition 9x�(x) 2 � implies that there

exists a constant c 2 L such that �(c) 2 �.

Proposition 4.1 Every consistent theory T = (�;�) of the language L can

be extended to a saturated theory T = (�0;�0) of the language L(C).

Proof. Let �0; �1; : : : be a list of all sentences of the language L(C). We
construct a sequence (�0;�0); (�1;�1); : : : of theories such that
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1. For all i 2 !, �i � Ti+1, �i � �i+1,

2. For all i 2 !, (�i;�i) is consistent,

3.
S
i(�i

S
�i) = Sn(L(C)).

We construct this by stages.
Stage 0. Put (�0;�0) = T = (�;�).
Stage n + 1. Suppose that Tn = (�n;�n) has been constructed. Take

�n. We have two cases.
Case 1. The theory (�n;�n

S
f�ng) is consistent. Then simply put �n+1 =

�n and �n+1 = �n

S
f�ng.

Case 2. The theory (�n;�n

S
f�ng) is inconsistent and �n is not of the

form 9x�(x). Then put �n+1 = �n
S
f�ng and �n+1 = �n.

Case 3. The theory (�n;�n

S
f�ng) is inconsistent and �n is of the form

9x�(x). Then put �n+1 = �n
S
f�n; �(c)g and �n+1 = �n, where c is the

�rst constant in C not used in the previous stages.
This ends the construction.
Put �0 =

S
n �n and �0 =

S
n�n. Since at each stage �n 2 �n+1

S
�n+1,

we see that Sn(L(C)) = �0 S�0.
Now we need to prove that T 0 = (�0;�0) is consistent. It su�ces to show

that for each n the theory Tn = (�n;�n) is consistent. We show it by induc-
tion on n. The case n = 0 is trivial. Suppose that Tn = (�n;�n) is consistent.
If Tn+1 = (�n+1;�n+1) is obtained from Tn = (�n;�n) by either Case 1 or
Case 2, then we simply repeat the corresponding proof from Proposition 3.1.
Suppose that Tn+1 = (�n+1;�n+1) is obtained from Tn = (�n;�n) by Case

3. Then Tn+1 = (�n+1;�n+1) coincides with (�n
S
f�n; �(c)g;�n). If Tn+1 =

(�n+1;�n+1) were inconsistent, then for some �1; : : : ; �m from �n+1 = �n the
sentence �1 _ : : :_ �m would belong to the closure of �n

S
f�n; �(c)g: Since c

does not occur in Tn and (�n;�n

S
f�ng), one can see that Tn is inconsistent.

This contradicts with the inductive assumption.
Now we need to prove the last requirement for saturation. Suppose that

9x�(x) is in �0. Let n be such that �n = 9x�(x). Note that (�n;�n

S
f�ng)

is inconsistent, otherwise, �n 62 �0. Hence by construction, at stage n+ 1 we
have Case 3. It follows that �(c) 2 �0 for some c. The proposition is proved.

An immediate corollary of this result is its e�ective version:
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Proposition 4.2 If T = (�;�) is a computable consistent theory with �nite

�, then there exists a computable saturated extension T 0 = (�0;�0) of T =
(�;�) in the expansion L(C).

Proof. The proof follows from the facts that under the assumptions, all
the stages in the construction of (�0;�0) from the previous proposition can
be carried out e�ectively. Moreover, for any �n, we have have �n 2 �0 if and
only if �n 2 �n. The proposition is proved.

Corollary 4.1 If T = (�;�) is computable in X and is a consistent theory

with �nite �, then there exists a computable in X saturated extension T 0 =
(�0;�0) of T = (�;�) in the expansion L(C). 2

5 Decidable Adequate Models in IPL

For this section, S is IPL. We begin by de�ning the notion of decidable
frame.

De�nition 5.1 Let X be a set of natural numbers. A frame (W;�; D) is

decidable in X if the relation

w 2 W ^ w1 � w2 ^ x 2 D(w)

is computable in X. If X is computable, then the frame is called decidable.

Thus if F is a decidable frame, then from the de�nition it follows that we
can assume that W is a computable subset of !, or in fact that it is !, that
the order relation is a computable subset of W 2, and that the subsets D(w),
w 2 W are uniformly computable.

The next de�nition formalizes the notion of a decidable Kripke model.
Informally, a Kripke model over a computable frame is decidable if the forcing
in the model is a computable relation. Here is the de�nition.

De�nition 5.2 A Kripke model (W;�; D; V ) over a decidable in X frame

(W;�; D) is X{decidable if the set

f(w; �(c1; : : : ; cn))jw 2 W;�(c1; : : : ; cn) 2 Sn(L(w)); w forces �(c1; : : : ; cn)g

is computable in X. If X is computable, then the Kripke model is called

decidable.

14



Now we are ready to prove an e�ective version of the model existence
theorem of intuitionistic logic. We give a detailed proof of this theorem since
we will re�ne this proof to obtain our further results.

Theorem 5.1 Any computable theory (�;?) has a decidable model M such

that for all � 2 Sn(L), � is deducible from � if and only if M forces �.

Proof. We set L0 = L and Ln+1 = L(Cn+1), where C1; C2; : : : is an
e�ective sequence of in�nite, uniformly computable, and pairwise disjoint
sets of constant symbols.

Lemma 5.1 There exists an e�ective procedure p which for all x; i 2 ! and

all �nite subsets �, if x is regarded as an index of a computable consistent

theory (�;�) of the language Li, produces an index p(x;�) of a computable

complete saturated theory (�(x;�);�(x;�)) in the language Li+1 extending

(�;�).

Proof. The proof follows from the construction in the proof of Propo-
sition 3.1. The proof shows that knowing an index of a consistent theory
(�;�) with �nite given �, one can e�ectively build a saturated, complete
and computable extentsion (�0;�0) of (�;�). The theory (�0;�0) is a theory
of the language Li+1. Moreover, the construction provides an algorithm to
decide T = (�0;�0). Hence the lemma is proved.

We want to de�ne the base (W;�) of the desired decidable adequate
Kripke model for theory (�;?).

Let �0 : : : �n be a sequence of sentences with the following properties:

1. Every �i belongs to Sn(Li).

2. Every �i is either of the form � !  or 8y�(y).

We de�ne a procedure described below which depends on �0 : : : �n and
consists of at most n+ 1 steps.

Step 0. The step is unsuccessful if (�; �0) is inconsistent. If this
happens we terminate the procedure. Otherwise, we consider two cases:

Case 1. �0 is of the form � ! . In this case (�
S
f�g; fg) is consis-

tent. We e�ectively take an index x of this theory (�
S
f�g; fg). Applying
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Lemma 5.1, we get the theory (�
S
f�g(x; fg);�(x; fg)). We set T (�0) to

be (�
S
f�g(x; fg);�(x; fg)).

Case 2. �0 is of the form 8y�(y). In this case there is a constant
c 2 L1 such that (�; f�(c)g) is consistent. We e�ectively take an in-
dex x of this theory (�; f�(c)g). Applying Lemma 5.1, we get the theory
(�(x; f�(c)g);�(x; f�(c)g)). We set T (�0) = (�(x; f�(c)g);�(x; f�(c)g)).

Step i + 1, i � n. Suppose that T (�0; : : : ; �i) has been constructed.
Consider lT (�1; : : : ; �i). The step is unsuccessful if (lT (�1; : : : ; �i); f�i+1g)
is inconsistent. If this happens we terminate the procedure. Otherwise,
consider two cases:

Case 1. �i+1 is � ! . In this case the theory (lT (�1; : : : ; �i)
S
f�g; fg)

is consistent. We e�ectively take an index x of this theory. Applying Lemma
5.1, we get the theory (lT (�1; : : : ; �i)

S
f�g(x; fg);�(x; fg)). We set

T (�0; : : : ; �i+1) = (lT (�1; : : : ; �i)
[
f�g(x; fg;�(x; fg)):

Case 2. �i+1 is of the form 8y�(y). In this case there is a constant
c 2 Li+2 such that (lT (�1; : : : ; �i); f�(c)g) is consistent. We e�ectively com-
pute an index x of this theory. Applying Lemma 5.1, we get the theory
(lT (�1; : : : ; �i)(x; f�(c)g);�(x; f�(c)g)). We set

T (�1; : : : ; �i+1) = (lT (�1; : : : ; �i)(x; f�(c)g);�(x; f�(c)g)):

This concludes the description of the procedure.

De�nition 5.3 We say that the sequence �0 : : : �n is T{ordered if the

theory T (�0; : : : ; �n) is de�ned.

Let W be the set of all T{ordered sequences. Let w; v be elements of W .
We put w � v if and only if w is an initial segment of v, that is v = w�k : : : �m
for some �k; : : : ; �m 2 Lm+1. The relation � is a computable relation, and is
in fact a partial ordering of W . The next lemma follows from the de�nition
of W and �.

Lemma 5.2 The partially ordered set (W;�) is computable. Moreover it

is isomorphic to a disjoint union of countably many copies of an in�nitely

branching tree. 2
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We de�ne a frame (W;�; D) as follows, Let w = �0 : : : �n. Then,

D(w) = the set of all constants of the language Ln+1:

By Lemma 4.2 and the de�nition ofD, the frame (W;�; D) is computable.
We de�ne a valuation V on the frame as follows. Let w = �0 : : : �n 2 W and
P 2 L be a predicate symbol. Then

P (c1; : : : ; cn) is (classicaly) true i� P (c1; : : : ; cn) belongs to lT (�0; : : : ; �n):

Thus, we have a Kripke model (W;� D; V ). We need the following

Lemma 5.3 Let w = �o : : : �n be a "state of knowledge" from the Kripke

model M de�ned above. Let � and �0 be sentences of the language L(w).
Then:

1. �! �0 2 lT (w) if, and only if, for all v � w, the condition � 2 lT (v)
implies �0 2 lT (v).

2. :� 2 lT (w) if, and only if, for all v � w we have � 62 lT (v).

3. � = 8x�0 2 lT (w) if, and only if, for all v � w and c 2 V (v) we have

�0(c) 2 lT (v).

4. � ^ �0 2 lT (w) if, and only if, � and �0 belong to lT (w).

5. � _ �0 2 lT (w) if, and only if, either � or �0 belong to lT (w).

Proof. Let T (w) = (�(w);�(w)). We prove the lemma by induction on
the length of sentences �. If � is atomic, then we have nothing to prove.

We prove part 1. If � ! �0 2 �(w), � 2 �(v) and �(w) � �(v), then
since �(v) is closed under deduction we obtain that �0 2 �(v). Suppose that
� ! �0 62 �(w). It follows that � ! �0 is not intuitionistically deducible
from �(w). Hence, w�! �0 2 W and T (w�! �0) is a saturated consistent
theory such that �(w�! �0) contains � but does not contain �0. This proves
Part 1. Parts 2 and 3 can be proved in a similar way.

To prove parts 4 and 5 note that if � is �0 ^�00 or �0 _�00, then the proofs
of these parts of the lemma follows from the facts that �(w) is closed under
deduction and is a prime theory.
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>From this lemma, again using induction on �, we deduce that in the
Kripke modelM = (W;�; D; V ), the state of knowledge w forces a sentence
� if and only if � belongs to �(w). By the lemma above combined with
Lemma 4.1, we conclude that the forcing in M is computable. Hence the
model is decidable. Moreover, by the previous lemma we see that for any
� 2 Sn(L), � is deducible from T if and only if � is forced in model M.
Hence M is adequate. The theorem is proved.

Corollary 5.1 Any consistent theory (�;?) computable in X has an X{

decidable model M such that for all � 2 Sn(L), � is deducible from � if and

only if M forces �.

Proof. Relativize the proof of the previous theorem. 2

De�nition 5.4 We say that a theory T = (�;?) is complete for a class K

of Kripke models if for any � not intuitionistically deducible from � there is

a Kripke model M from K such that M is a model of � but not �.

The next result directly follows from Theorem 5.1 and the de�nition
above.

Corollary 5.2 Every computable intuitionistic theory T is complete for the

class of decidable Kripke models 2

6 Decidable Adequate Models in CPL

In this section we assume that the logic S is the classical predicate logic
CPL. Classically, we know that if T = (�;�) is a theory, then there is a
sequence M0;M1; : : : of classical models such that the set of all sentences
classically true in all models from the sequence is exactly the set of all sen-
tences deducible from �. We can transform the above sequence of models into
a Kripke model (W;�; D; V ) as follows. We set W = !, �= f(i; i)ji 2 !g,
D(i) = Mi, V (i) =Mi, where Mi is the domain of the model Mi. In other
words, frames (W;�; D) such that v � w implies v = w characterize �rst
order logic. We call such frames antichains. The main result of this section
is the following theorem.
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Theorem 6.1 Let T = (�;?) be a computable theory over CPL. Then T

has a decidable adequate Kripke model over a computable antichain.

Proof. Our proof follows the lines of a proof of [2] , used there for a
di�erent purpose. First, we expand the original language L to L(C), where
C is a computable in�nite set of new constants. Let �0; �1; : : : be an e�ec-
tive sequence of all sentences of the language L not deducible from T . Let
�0; �1; : : : be an e�ective sequence of all sentences in the expanded language.
We present an e�ective procedure which. uniformly in i, i 2 !, constructs
a computable maximal consistent set �i of the language L(C) such that
:�i 2 Ti. We proceed in stages.

Stage 0. Put �i;0 = �
S
f:�ig.

Stage n + 1. Suppose that �i;n has been constucted. Consider �n. If
�i;n

S
f�ng is inconsistent, then set �i;n+1 = �i;n. Otherwise, we have two

cases. If �n is not of the form 9x(x), then �i;n+1 = �i;n
S
f�ng. If �n is

of the form 9x(x), then �i;n+1 = �i;n
S
f�n; (c)g, where c is the �rst new

constant not appeared in �i;n.
Put �i =

S
n �i;n. The following facts can be proved from the construction

using induction.

1. Every �i is a consistent theory.

2. Every �i is a maximal consistent set.

Indeed, the �rst fact can be proved using induction on n. The second fact
follows easily from the fact that a �n belongs to �i if and only if �n belongs
to �i;n+1. The construction also shows that the set

f(i; �(c1; : : : ; cn))j�(c1; : : : ; cn) 2 L(C); �(c1; : : : ; cn) 2 �ig

is a computable set. Now de�ne the antichain (W;�) as follows: W = !,
�= f(i; i)ji 2 !g. Let D(i) be the set of all constants of the expanded
language. For each i de�ne a valuation V (i) as follows. Value P (c1; : : : ; cn)
true if and only if P (c1; : : : ; cn) 2 �i. By induction on the complexity of
sentences �(c1; : : : ; cn), we can show that �(c1; : : : ; cn) is classically true in
V (i) if and only if �(c1; : : : ; cn) 2 �i. Since (W;�) is an antichain, the forcing
on every w 2 W coincides with classical truth on V (w) [16]. Hence forcing is
computable in the Kripke model (W;�; D; V ). It follows that (W;�; D; V )
is a decidable Kripke model.
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By the construction of �i, we also see that for every � 2 Sn(L), � belongs
to T if and only if � belongs to

T
i �i. Hence (W;�; D; V ) is an adequate

model of T . The theorem is proved.

7 Decidable Adequate Models in CDL

A Kripke frame (W;�; D) is a constant domain frame if for all v; w 2 W ,
we have D(v) = D(w). Thus, a frame (W;�; D) is computable constant
domain frame if it is a computable and constant domain frame. Let us recall
that the constant domain logic denoted byCDL extends IPL by adding the
following axiom schema:

8x(�(x) _  )! 8x�(x) _  ;

where x is not free in  . One of the well{known results in model theory
of intuitionistic logic states thatCDL is complete for the class of constant
domain Kripke frames [3] [17]. The goal of this section is to show that this
result can be e�ectivized. Indeed, we prove that any computable theory over
CDL is complete for the class of decidable constant domain frames. Thus,
the main result of this section is the following theorem.

Theorem 7.1 Let T = (�;?) be a computable theory over CDL. Then the

theory T possesses an adequate, decidable, constant domain Kripke model.

Proof. Our proof is an e�ectivization of completeness proofs of CDL
from [3] [17]. The proof also incorporates the ideas of the proof of Theorem
5.1. We will need several de�nitions and lemmas. We begin our proof by
giving the following de�nition.

De�nition 7.1 A theory (�;�) is Henkin complete if it is complete and

the following conditions hold:

1. For all �(x), if �(c) 2 � for every constant c 2 L, then 8x�(x) 2 �.

2. For every formula 9x�(x), if 9x�(x) 2 �, then �(c) 2 � for some

c 2 L.
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It is clear that every Henkin complete theory is saturated as well. We
now prove the following proposition whose proof is similar to the proofs of
Propositions 3.1 and 4.1 but is more delicate.

Proposition 7.1 Every consistent theory (�;�) over language L can be ex-

tended to a Henkin complete theory over the expanded language L(C).

Proof of the Proposition. We �rst expand the language L to L(C).
Now consider the following three sequences of sentences. The �rst sequence

8x�0(x); 8x�1(x); 8x�2(x); : : :

contains all universal sentences in L(C). The second sequence

9x�0(x); 9x�1(x); 9x�2(x) : : :

contains all existential sentences in L(C). The third sequence

0; 1; 2 : : :

contains all sentences in L(C). We construct a sequence (�0;�0); (�1;�1); : : :
of theories such that each (�i;�i) extends (�i�1;�i�1). The construction will
guarantee that the union (

S
i �i;

S
i�i) is the desired extension.

Stage �1. We put (��1;��1) = (�;�).
Stage n + 1. We assume that (�n;�n) has been constructed and is

consistent.
Suppose that n + 1 = 3k. We have two cases.
Case 1a. The theory (�n;�n

S
f8x�k(x)g) is consistent. Then put �n+1 =

�n and �n+1 = �n

S
f8x�k(x); �(c)g, where c is the �rst constant not used

in the previous stages.
Case 2a. The theory (�n;�n

S
f8x�k(x)g) is inconsistent. Then set

�n+1 = �n
S
f8x�k(x)g and �n+1 = �n.

Suppose that n + 1 = 3k + 1. We have two cases.
Case 1b. The theory (�n;�n

S
f9x�k(x)g) is consistent. Then put �n+1 =

�n and �n+1 = �n

S
f9x�k(x)g.

Case 2b. The theory (�n;�n

S
f9x�k(x)g) is inconsistent. Then set

�n+1 = �n and �n+1 = �n
S
f9x�k(x); �k(c)g, where c is the �rst constant

not used in the previous stages.
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Suppose that n + 1 = 3k + 2.
Case 1c. The theory (�n;�n

S
fkg) is consistent. Then put �n+1 = �n

and �n+1 = �n

S
fkg.

Case 2c. The theory (�n;�n

S
fkg) is inconsistent. Then set �n+1 = �n

and �n+1 = �n
S
fkg.

This ends the construction at stage n+ 1.
Now put �0 =

S
i�i and �

0 =
S
i �i. Using similar ideas as in the proofs of

propositions 2.1 or 3.1, one can see that (�0;�0) is a consistent and complete
theory. We need to prove that (�0;�0) is Henkin complete. Indeed, suppose
that 9x�(x) 2 �0. Let n be such that 9x�n(x) = 9x�(x). It follows that at
stage 3n + 1, we have Case 2b. Hence �(c) 2 �0. Suppose that �(c) 2 �0

for all c but 8x�(x) 6 2�0. Let 8x�n(x) be equal to 8x�(x). It follows that
at stage 3n, we have Case 1a. Then �n(c) 2 �n+1 for some constant c. It
follows that �(c) 2 �0. Contradiction. Thus, we have proved the proposition.

An immedate corollary of this proposition is the following result.

Corollary 7.1 If (�;�) is a consistent and computable theory with �nite �,
then one can e�ectively extend the theory to a Henkin complete computable

theory (�0;�0) , computing an index of a computable characteristic function

for (�0;�0). 2

We give the following important de�nition.

De�nition 7.2 Let � be a consistent set of sentences of a language L.

1. � is strongly universal if for all 8x�(x) and �nite � � Sn(L), the
condition (�; f8x�(x)g

S
�) is consistent implies that (�; f�(c)g

S
�)

is consistent for some c in L.

2. � strongly existential if for all 9x�(x) and �nite � � Sn(L), the
condition (�

S
f9x�(x)g;�) is consistent implies that (�

S
f�(c)g;�) is

consistent for some c in L.

The following follows from Proposition 7.1.

Corollary 7.2 For every Henkin complete theory (�0;�0) the set �0 is

strongly universal and strongly existential. Hence every consistent theory

(�;�) can be extended to a theory (�0;�0) such that �0 is strongly universal

and strongly existential.
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Proof. The proof follows from Proposition 7.1 and the above de�nition.
2

Now we prove one of the basic lemmas. We borrow the proof from [3]
[17].

Lemma 7.1 Suppose that T = (�;�) is a theory in a language L with

strongly universal and strongly existential �. Let S be a logic containing

CDL. Then for every sentence � 2 Sn(L), the extension �
S
f�g is also

strongly universal and strongly existentional.

Proof. We �rst prove that �
S
f�g is strongly universal. Take any �nite

set � � Sn(L) and a formula 8x�(x). Suppose that (�
S
f�g;�

S
f8x�(x)g)

is consistent. Suppose that for every constant c 2 L, (�
S
f�g;�

S
f�(c)g) is

inconsistent. Hence, for every c there is a 1; : : : ; n 2 � such that

`S ^
n
i=1i ^ �! _� _ �(c);

where _� is the disjunction of all sentences from �. It follows that

� `S �! _� _ �(c)

for all c. Hence (�; f� ! _� _ �(c)g) is inconsistent for all c. It follows
that (�; f8x(�! _� _ �(x))g) is inconsistent. Indeed, otherwise since � is
strongly universal there would exist a constant c such that (�; f� ! _� _
�(c)g) is consistent. This would be a contradiction. Now using the fact that S
contains CDL, we get that (�; f�! _�_8x�(x)g) is inconsistent. But this
can not happen since (�

S
f�g; f8�(x)g

S
�) is consistent, a contradication.

Thus, the �rst part of the lemma is proved.
Now we prove the second part of the lemma. We need to show that

�
S
f�g is strongly existential. Suppose that (�

S
f9x�(x)g

S
f�g;�) is con-

sistent. Suppose that (�; f�(c)! _�g) is inconsistent for every constant c.
Then by the �rst part (�

S
f�g; f8x(�(x) ! _�)g) is inconsistent. Hence

(�
S
f�g; f9x�(x) ! _�g) is inconsistent by intuitionistic logic. Hence we

have a contradiction with the original assumption that (�
S
f�g; f9x�(x)!

_�g) is consistent. The lemma is proved.

Now we can repeat the proof of Theorem 5.1. We set L0 = L and L1 =
L(C1), and Ln+1 = Ln, where C1 is in�nite and computable set of constant
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symbols. We can de�ne the base W in the same way as we did in the proof
of Theorem 5.1. The point is that the lemmas above allow us to proceed
constructing Henkin complete theories corresponding to the nodes w of W
without expanding the language L1. Therefore for all w 2 W , the set D(w)
is the set of all constants of the language L1. Hence there exists a decidable,
adequate, constant domain Kripke model for (�;?). This proves the theorem.

De�nition 7.3 An adequate Kripke model of a theory (�;�) is a Henkin
model if for every w and every sentence 8x�(x) 2 L(w) the condition w

does not force 8x�(x) implies that there is a c 2 D(w) such that w does not

force �(c).

Corollary 7.3 Every theory possesses a Henkin model. Moreover every

computable theory possesses a decidable Henkin model.

Proof. The proof follows from the Proposition 7.1 and Theorem 5.1 2

8 Computability of Adequate Models in QJ

Let S be a logic complete for a class K of frames. The results of the previous
sections suggest the following natural question:

If T is a computable theory, then what can be said about computability of

adequate models of T over frames from K?

>From the previous sections we see that in the case when S is either
IPL or CPL or CDL), then computability of T implies that T possesses
decidable adequate Kripke models over the class of tree frames, antichain
frames, constant domain frames, respectively. But it is not possible in general
to contsruct decidable Kripke models for computable theories if we consider
Kripke Models over a �xed class of frames K; even when S is complete for
K. In this and the next section we show that proofs of completeness results
for logic QJ as well as KJ do not necessarily produce decidable adequate
Kripke models for computable theories.

We �x the logic QJ and begin with the investigation of computability of
adequate models for computable theories over logic QJ. We follow ideas of
the completeness proof of QJ from [5]. The completness result for QJ states
that QJ is complete for the class of directed Kripke frames. The goal of the
section is to prove the following theorem. Our proof is an efectivization of
the proof from [5].
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Theorem 8.1 Let T = (�;?) be a computable saturated theory over logic

QJ. Then T possesses an adequate Kripke model which is decidable in 0!

and whose base is a directed frame.

In proving this theorem we provide several de�nitions and lemmas which
can be of independent interest. We begin with considering the partially
ordered set (N?;�), where N? is the set of all �nite words over natural
numbers, and � is de�ned as follows. For v; w 2 N? v � w i� w is an
extension of v, that is, there exists a z 2 N? such that v = wz. � denotes the
empty word. Hence � is the least element of (N?;�). This partially ordered
set is in fact isomorphic to an in�nitely branching tree. We �x a computable
theory T = (�;?) with only one assumption, that � is saturated. Now we
give a de�nition which carries all the information needed to construct an
adequate model of T .

De�nition 8.1 A subordination model for � is a triple (N?;�; ��)
which satis�es the following properties.

1. �� is a mapping which assigns to every w 2 N? a saturated theory ��(w)
of the language L(w) = L + C(w), where C(w) is an inifnite set of

constants.

2. For all v � w, L(v) � L(w) and ��(w) � ��(w).

3. If w1 = wnv1, w2 = wkv2, and n 6= k, then (C(w1) n C(w))
T
(C(w2) n

C(w)) = ;.

4. If � ! � 62 ��(w), then there exists an n such that � 2 ��(wn) and

� 62 ��(wn).

5. If 8x�(x) 62 ��(w), then there exists an n such that �(c) 62 ��(wn) for
some c 2 C(wn).

6. ��(�) = �.

Here is the lemma which shows that a subordination model for � carries
all the information needed to construct an adequate model of T .
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Lemma 8.1 Let T = (�;?) be a saturated theory. Every subordination

model (N?;�; ��) for � can be transformed into an adequate Kripke modelM
for T . Moreover the base of M is (N?;�).

Proof. We de�ne the domain function D and the valuation V in the
following natural way. For every w, we set D(w) to be the set of all constants
of the language L(w). For every w and predicate P , we set P (c1; : : : ; cn) to
be true i� P (c1; : : : ; cn) 2 ��(w). Now one can check (see for example Lemma
5.3) that the Kripke model constructed is the desired one. The lemma is
proved. 2

De�nition 8.2 We say that a subordination model (N?;�; ��) for � is X{
decidable if the set f(�; w)j� 2 Sn(Lw) ^ � 2 ��(w)g is computable in X.

If X is a computable set, then the X{decidable subordination model is called

decidable.

Lemma 8.2 1. For every saturated theory T = (�;?) computable in X;

there exists an X{decidable subordination model for �.

2. Every X{decidable subordination model (N?;�; ��) for � can be trans-

formed into an X{decidable adequate Kripke modelM for T . Moreover

the base of M is (N?;�).

Proof. Slightly modifying the proof of Theorem 5.1, one can see that
every computable in X theory T = (�;?) possesses an X{decidable subordi-
nation model for �2. The proof of the second part follows from the fact that
if subordination model (N?;�; ��) is X{decidable, then the adequate Kripke
model constructed in the previous lemma is X{decidable as well. 2

The next lemma, �rst proved in [5], uses the schema of the logic QJ and
the de�nition of subordination model in an essential way.

Lemma 8.3 Let T = (�;?) be a saturated theory and let (N?;�; ��) be a sub-
ordination model for �. Then the set �(1) =

S
w2N?

��(w) is ?{consistent.

2To see this, in the proof of Theorem 5.1 for every w 2W and all immediate extensions
w� of w introduce iniformly computable sequence Cw� of pairwise disjoint sets of new
constants
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Proof. It su�ces to prove that for every m 2 !, the set �m =
S
jwj=m

��w
is ?{consistent, where jwj is the length of w. Suppose that there exists an
m such that �m is not ?{consistent. We prove that in this case �m�1 is
also not ?{consistent. In this way by induction, one can show that � is not
?-consistent.

Since �m is not ?{consistent there exist �nite words w1k1; : : : ; wnkn of
lengthm such that ��(w1k1)

S
: : :
S ��(wnkn) is not?{consistent. Hence, there

exist sentences �1(�a1;�b1) 2 ��(w1k1), : : :, �n(�an;�bn) 2 ��(wnkn) such that

`QJ �1(�a1;�b1) ^ : : : ^ �n(�an;�bn)!?;

where bi 2 C(wi), ai 2 C(wiki) nC(wi) for all i, 1 � i � n. By the de�nition
of subordination model we have (C(wiki) n C(wi))

T
(C(wjkj) n C(wj)) = ;.

Therefore, from intuitionistic logic we obtain

`QJ 9�x1�1(�x1;�b1) ^ : : : ^ 9�xn�n(�xn;�bn)!? :

Again from intuitionistic logic it also follows that

`QJ ::9�x1�1(�x1;�b1) ^ : : : ^ ::9�xn�n(�xn;�bn)!? :

Note that 9�xi�i(�xi;�bi) 2 Sn(L(wi)). From the the fact that the logic is QJ,
we see that

��(wi) `QJ ::9�xi�i(�xi;�bi) _ :9�xi�i(�xi;�bi):

Since ��(wi) is prime we get that ::9�xi�i(�xi;�bi) 2 ��(wi) or :9�xi�i(�xi;�bi) 2
��(wi). It follows that ::9�xi�i(�xi;�bi) 2 ��(wi). Consequently

S
jwj=m�1

��(w)
is not ?{consistent. Continuing this reasoning, we obtain that � is not ?{
conistent. This is a contradiction. This proves the lemma.

Now we introduce another partially ordered set and de�ne the notion of
n{subordination model, where n 2 !. We consider the partially ordered set
(f0; 1; : : : ; ng�N?;�), where � is de�ned as follows: (k; w) � (m; v) if and
only if either k < m � n or if k = m, then v extends w. Informally, this
partially ordered set can be thought as a disjoint union of in�nitely branching
tees A0, A1, A2, : : :, An such that every element in tree Ai is greater than all
elements in Ai�1.

De�nition 8.3 Let T = (�;?) be a theory. An n{subordination model
for � is a triple (f0; : : : ; ng �N?;�; ��) which satis�es the following proper-

ties.
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1. �� is a mapping which assigns to every w 2 f0; 1; : : : ; ng�N? a saturated

theory ��w of the language L(w) = L+ C(w).

2. For every k � n, the triple (fkg�N?;�n; ��n) is a subordination model

for ��((k; �)), where �k; ��k are restrictions of �; �� to fkg �N?.

3. For all k � n,
S
w<(k;�)

��(w) � ��((k; �)) and
S
w<(k;�)C(w) � C((k; �)).

4. For all k � n, (��((k; �));?) is a saturated theory.

5. ��((0; �)) = �.

A standard technique developed in the previous lemmas shows that the
following lemma is true.

Lemma 8.4 Let T = (�;?) be a theory. Every n{subordination model

(f0; 1; : : : ; ng � N?;�; ��) for � can be transformed into an adequate Kripke

model M for T . Moreover the base of M is (f0; 1; : : : ; ng �N?;�). 2

Theorem 8.2 For every computable saturated theory T = (�;?); there ex-

ists an adequate Kripke model M with the following properties:

1. The base of M is (f0; 1; : : : ; ng �N?;�).

2. The model M is decidable in 0n.

Proof. From Lemma 8.2, we see that every computable theory T = (�;?
) possesses a decidable subordination model (N?;�; ��) for �. Consider the
theory T = (

S
w2N?

��(w);?). This theory is computably enumerable. It fol-
lows that the deductive closure of

S
w2N?

��(w) is computable in 00. We can ex-
tend this theory to a saturated theory T 0 = (�0;?) over an expanded language
such that T 0 is computable in 00. Now we can develop a subordination model
(N?;�; ��0) for �0 in a such way that the set f(w; �)j� 2 Lw ^ � 2 ��0(w)g is
computable in 00. This shows that we can construct a 1{subordination model
for � for which the set f(w; �)j� 2 L(w) ^ � 2 ��0(w)g is computable in 00.
Hence by the previous lemma we can transform this 1{subordination model
into an adequate model of T which is decidable in 00. Iterating this procedure
n�1 times and using Lemma 8.2, we see that � has an n{subordination model
f0; 1; : : : ; ng �N?;�; ��(n) for which the set f(w; �)j� 2 L(w) ^ � 2 ��(n)(w)g
is computable in 0n. This proves Theorem 8.2.
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De�nition 8.4 Let T = (�;?) be a saturated theory. An !{subordination
model for � is a triple (! �N?;�; ��) such that.

1. �� is a mapping which assigns to every w 2 ! � N? a saturated theory
��w of the language L(w) = L+ C(w).

2. For every n 2 !, the triple (fng�N?;�n; ��n) is a subordination model

for ��((n; �)), where �n; ��n are restrictions of �; �� to fng �N?.

3. For all n 2 !,
S
w<(n;�)

��(w) � ��((n; �)) and
S
w<(n;�) C(w) �

C((n; �)).

4. For all n 2 !, (��((n; �));?) is a saturated theory.

5. ��((0; �)) = �.

The following lemma is immediate

Lemma 8.5 Let T = (�;?) be a saturated theory. Every !{subordination

model (!�N?;�; ��) for � can be transformed into an adequate Kripke model

M for T . Moreover the base of M is (! �N?;�). 2

Note that (! � N?;�) is a directed partially ordered set. Now we are
ready to prove the main theorem of this subsection.

Proof of Theorem 8.1. Iterating the proof of Theorem 8.2 countably
many times de�ne a triple (! �N?;�; ��) such that:

1. (f0g � N?;�0; ��0) is a decidable subordination model for �, where
�0; ��0 are restrictions of � and �� to f0g �N?

2. ��(n; �) is a saturated extension of
S
w<(n;�)

��(w).

3. For every n 2 !, (f0; 1; : : : ; ng�N?;�n; ��n) is a n{subordination model
for � computable in 0n, where �n, ��n are restrictions of � and �� to
f0; 1; : : : ; ng �N?

4. The set f(�; w)jw 2 !�N?; � 2 L(w); � 2 ��(w)g is computable in 0!.

By Lemma 8.2 and 8.3 above we see that the triple (! � N?;�; ��) is an
!{subordination model for T . Hence this subordination model de�nes an
adequate Kripke model M for T by Lemma 8.5. By the last item of the
properties �� we see that M is decidable in 0!. This proves Theorem 8.1.
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9 Almost Decidable Adequate Models

In this subsection we investigate computability of adequate models in logic
KJ. All the deductions are in KJ. We also assume that the given theory
T = (�;?) is saturated. The completness result for this logic states that
KJ is complete for the class of frames with maximum elements. Our basic
de�nition is the following.

De�nition 9.1 Kripke model (W;�; D; V ) is almost decidable if there is

a �nite subset F of W such that

1. The Kripke model (W n F;�; D; V ) is decidable.

2. The Kripke model (W nF;�; D; V ) and the Kripke model (W;�; D; V )
force the same sentences.

The goal of this subsection is to prove the following theorem.

Theorem 9.1 Let T = (�;?) be a computable saturated theory. Then T

possesses an adequate model M with the following properties:

1. The frame of M is a frame with maximum element.

2. M is decidable in 00.

3. M is almost decidable.

Our proof is an e�ectivization of the completeness proof from [5]. In our
proof we use the following result, known as Glivenko's theorem. For the proof
of this theorem, see for example [3].

Theorem (Glivenko) For any sentence �, ::� is provable in KJ if

and only if � is provable in CPL.

The proof of Theorem 9.1 is based on the technique developed in the
previous section. Indeed, we use a modi�cation of the notion of subordination
model. We extend the partially ordered set (N?;�) to the partially ordered
set (N? Sf1g;�), where for all w 2 N? we declare w <1.
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De�nition 9.2 A subordination model with maximum element for
� is a triple (N? Sf1g;�; ��) which satis�es:

1. (N?;�; ��) is a subordination model form �.

2. For all w 2 N?, ��(w) � ��(1).

3. (��(1);?) is Henkin complete.

4. If �! � 62 ��(1), then � 2 ��(1) and � 62 ��(1).

The following lemma is immediate:

Lemma 9.1 Let T = (�;?) be a saturated theory. Every subordination

model with maximum element (N?
S
f1g;�; ��) for � can be transformed into

an adequate Kripke modelM for T , Moreover the base ofM is (N? Sf1g;�
). 2

We need another lemma about extensions of consistent theories. Say
that (�; f�g) is �{maximal if for any sentence � of the language of � if
(�
S
f�g; f�g) is consistent, then � 2 �.

Lemma 9.2 Suppose that T = (�; f 0g) is a consistent theory in language

L . Let L(C) = L
S
C where C is an in�nite set of constants such that

L
T
C = ;. Then there is a  0{maximal saturated theory T 0 = (�0; f 0g) of

the language L(C) extending (�; f 0g).

Proof. Let �0, �1, �2, : : : be a computable sequence of all sentences of
the language �L in which every sentence appears in�nitely many times. We
construct �0 by stages. At stage t+1 we de�ne �t+1 such that �t � �t+1. At
the end we put �0 =

S
t �t. At each stage t+1 we treat the sentence �t. If we

do not put �t into �t+1, then �t will not belong to �
0. Since the procedure is

e�ective, �0 will be computable.
Stage 0. �0 = �.
Stage t + 1. Suppose that �t has been constructed. Take �t. We have

three cases.
Case 1. �t is A _B. If  0 is not deducible from �t

S
fAg, then we de�ne

�t+1 = �t
S
fAg. Suppose that  0 is deducible from �t

S
fAg. Then if  0 is
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not deducible from �t
S
fBg, we de�ne �t+1 to be �t

S
fBg. Otherwise, we

de�ne �t+1 = �t.
Case 2. �t is 9x�(x). If  0 is not deducible from �t

S
f�tg, then we de�ne

�t+1 to be �t
S
f�t; �(c)g, where c is the �rst constant not belonging to �t.

Otherwise, we de�ne �t+1 = �t.
Case 3. Suppose that neither of the previous cases holds. If  0 is not

deducible from �t
S
f�tg, then we set �t+1 = �t

S
f�tg. Otherwise, we de�ne

�t+1 = �t.
This ends the construction.
De�ne �0 to be

S
t �t. We prove that (�0; f 0g) is a  0{maximal theory.

First, we show that  0 is not intuitionistically deducible from �. Suppose
otherwise. Then there exists a t such that  0 is deducible from �t+1. We
prove by induction on k that  0 is not deducible from �k . Clearly,  0 is not
deducible from �0 . Suppose that  0 is not deducible from �t .

Suppose that Case 1 of stage t + 1 holds. Then �t+1 properly extends
�t since by inductive hypothesis  0 is not deducible from �t. It follows that
�t = A _ B and that either �t+1 is �t

S
fAg or �t

S
fBg. If �t+1 is �t

S
fAg,

then by the de�nition of �t+1,  0 is not deducible from �i+1
S
fAg. Similarly,

if �t+1 is �t
S
fBg, then  0 is not deducible from �t+1. This is a contradiction.

Suppose that Case 2 holds. Then �t+1 is �t
S
f�t; �(c)g. Then  0 is

deducible from �t
S
f�t; �(c)g, hence  0 is deducible from �t

S
f�tg.

Suppose that Case 3 holds, then  0 is not deducible from �t+1 .
It follows that  0 is not deducible from �0:

We need to show that �0 is closed under deduction. Suppose that � is
deducible from �0. There is a t such that � = �t. It follows that  0 is not
deducible from �t

S
f�g. So, by the de�nition of �t+1, � belongs to �t+1.

Suppose that � _  2 �0. There is a t such that � _  2 �t+1. Since
every sentence � appears in�nitely many time in the sequence �0; �1; : : :, we
see that there is a k > t such that �k = �_  . Hence at stage k+ 1 either �
or  enters �0.

Suppose that 9x�(x) 2 �0. There is a k such that �k = 9x�(x). At stage
k + 1, �(c) enters �0 for some c by the de�nition of the stage.

Now we prove that if  0 is not a consequence of �0 Sf�g, then � 2 �0.
There is a t such that �t = � _ �. Then at stage t + 1, � enters �0. The
lemma is proved.

>From the proof of this lemma we get the following corollary.
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Corollary 9.1 Consider a saturated theory (�;?) computable in X. There

is a maximal saturated extension (�0;?) of (�;?) which is computable in X.

2

Lemma 9.3 Suppose that (�;?) is a maximal and saturated theory. Then

(�;?) is Henkin complete. Moreover, if �! � 62 �, then � 2 � and � 62 �.

Proof. Recall that the logic isKJ. Also note that since (�;?) is maximal,
for every sentence  either  belongs to � or : belongs to �. We need to
prove that � is Henkin complete. Suppose that 8x�(x) 62 � but for all
constants of the language of �, �(c) 2 �. Since 8x�(x) 62 � it follows that
:8x�(x) 2 �. We know that :8x�(x)! 9x:�(x) is classically true. Hence,
by Glivenko's theorem we have that :(:8x�(x) ! 9x:�(x)) belongs to �.
Therefore (:8x�(x)! 9x:�(x)) belongs to �. It follows that 9x:�(x) 2 �.
Since (�;?) is saturated, we see that :�(c) 2 �. This is a contradiction.

Now we prove the second part of the lemma. Suppose that � ! � 62 �.
Then :(� ! �) 2 �. By intuitionistic logic ::� ^ :� 2 �. It follows that
::� 2 � and :� 2 �. Hence � 2 � ,but � 62 �. The lemma is proved.

Proof of the Theorem 9.1. Consider a computable saturated theory
T = (�;?). Develop a decidable subordination model (N?;� ��). This
de�nes a decidable Kripke model M1 with base (N?;�). By Lemma 8.3,
the theory

S
w2N?

��(w) is consistent. Note that
S
w2N?

��(w) is computably
enumerable. Hence its deductive closure is computable in 00. By Lemma 9.2
we can extend the theory (

S
w2N?

��(w);?) to a maximal theory (��(1);?).
Thus, we have a subordination model with maximum element (N? Sf1g;�
; ��) for �. By Lemma 9.1 we can transform this subordination model to a
Kripke model M2 for T . Note that by Corollary 9.1 this model is decidable
in 00. The base of this model is the frame (N?

S
f1g;�). Clearly M2 is

almost decidable since M1 is decidable. This proves the theorem. 2

10 Conclusion

The reader can see that results similar to the results of the previous sections
can be obtained for many other intermediate logics. We state without proofs
two other results for two intermediate logics which are known to be complete.
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The �rst logic is Dummett's logic, denoted by DL. This logic is ob-
tained by adding the schema

(�! �) _ (� ! �)

to IPL. The second logic, denoted byKJC, is obtained by adding the schema

8x::�(x)! ::8x�(x)

to QJ + CD.
Dummett's logic DL is complete for the class of frames (W;�; D) such

that for u; w 2 W either u � w or w � w. These frames are called linear
frames. The proof of this result is in [6]. A careful checking of this proof
shows that the following theorem is true.

Theorem 10.1 Every computable theory over logicDL possesses a decidable

Kripke model whose frame is a linear frame. 2

The logicKJC is complete for the class of frames with maximum elements
and with constant domain. A proof of this fact is in [5]. One can check that
the proof of this completeness result leads to the following

Theorem 10.2 Every computable theory over logic KJC possesses an al-

most decidable Kripke model whose base is a frame with a maximum element

and constant domains. Moreover the model is decidable in 00. 2

Further investigation of computable model theory of intuitionistic logic
looks to be fruitful and interesting. We believe that this kind of computability
theory brings new ideas and insight into the understanding of Kripke models
of intuitionistic theories.

Finally, the �rst two authors would like to thank Guram Bezhanishvili
for many discussions during the process of writing of this paper. The authors
also thank referees for their useful comments on improvement of the paper.
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