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Abstract: Type 2 diabetes (T2D) is characterised by hyperglycaemia resulting from defective insulin
secretion, insulin resistance, or both. The impact of over-nutrition and reduced physical activity,
evidenced by the exponential rise in obesity and the prevalence of T2D, strongly supports the
implementation of lifestyle modification programs. Accordingly, an increased consumption of
fruits and plant-derived foods has been advocated, as their intake is inversely correlated with T2D
prevalence; this has been attributed, in part, to their contained polyphenolic compounds. Over the
last decade, a body of work has focussed on establishing the mechanisms by which polyphenolic
compounds exert beneficial effects to limit carbohydrate digestion, enhance insulin-mediated glucose
uptake, down-regulate hepatic gluconeogenesis and decrease oxidative stress; the latter anti-oxidative
property being the most documented. Novel effects on the inhibition of glucocorticoid action and the
suppression of amylin misfolding and aggregation have been identified more recently. Amyloid fibrils
form from spontaneously misfolded amylin, depositing in islet cells to elicit apoptosis, beta cell
degeneration and decrease insulin secretion, with amyloidosis affecting up to 80% of pancreatic
islet cells in T2D. Therefore, intervening with polyphenolic compounds offers a novel approach to
suppressing risk or progression to T2D. This review gives an update on the emerging mechanisms
related to dietary polyphenol intake for the maintenance of glycaemic control and the prevention
of T2D.

Keywords: type 2 diabetes; insulin resistance; β-cell dysfunction; polyphenols; flavonoids; protein
misfolding disease (PMD); rutin; quercetin-O-rutinoside; antioxidant; islet amyloid polypeptide
(IAPP); amyloidogenesis

1. Introduction

Worldwide, the number of people diagnosed with diabetes mellitus (DM) has more than doubled
over the past three decades [1], with an estimated 285 million individuals in 2010 [2], of which 90%
had type 2 diabetes (T2D) [3]. The main pathophysiologic drivers of T2D are insulin resistance
(IR) and pancreatic β-cell dysfunction. IR occurs when the body becomes less sensitive or becomes
resistant to the action of insulin, manifesting as inadequate insulin-mediated suppression of hepatic
gluconeogenesis and inadequate glucose disposal from circulation [4]. Pancreatic β-cells, in turn, are
the insulin and amylin-secreting cells of the pancreas, which may alter in both structure and function
during a disease state. Each presents at distinct times during the course of disease progression, with IR
proposed to be the primary driver and β-cell dysfunction a later manifestation [5]. The etiology of these
factors is distinct. IR may result from a defect in insulin signalling, a defect in glucose transporters
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or lipotoxicity. Conversely, β-cell dysfunction is postulated to be caused by amyloid deposits in the
pancreatic islet’s cells, oxidative stress and increased fatty acids within the pancreas, or limited incretin
action [6]. Recent studies provide data to suggest that the accumulation of islet amyloid polypeptide
(IAPP) or amylin, which is co-secreted with insulin in the pancreatic β-cells, worsens pancreatic
function, fast-tracking progression to T2D [7]. Emerging evidence demonstrates that it is the gradual
accumulation of the IAPP fibrils, rather than the amyloid deposit itself, that is cytotoxic [8], resulting in
increased oxidative stress and membrane permeability [9,10]; both features critical to the pathogenesis
of T2D [11]. Accordingly, the role of polyphenol flavonoids is receiving particular interest, given that
they have been shown to interfere with the amyloid assembly pathway to inhibit the formation of
amylin aggregates, associated cytotoxicity and pancreatic β-cell apoptosis [12,13]. The favourable
molecular structure of flavonoids enables them to chemically bind to and prevent assembly of the IAPP
fibrils and is now emerging as a possible therapeutic strategy for preventing and delaying progression
to T2D [14]. IR most often precedes the onset of T2D and is compensated for by the increased secretion
of insulin from islet β-cells to maintain normal circulating glucose levels. This was established in early
studies by Reaven and colleagues [15–17] which demonstrated that approximately 25% of nondiabetic
individuals exhibit IR within the range of that observed in T2D patients. A deterioration into an
inability to regulate blood glucose, both when fasted and following a meal, occurs when either IR
increases or β-cell insulin secretory responses decrease, or both.

The alarming increase in the prevalence of T2D, once considered a health issue that plagued
Western industrialised nations, has led to significant concern in developing countries [18,19]. On the
basis of population growth rates, the aging generation and rates of urbanisation, it has been estimated
that two Asian countries—India and China—will shoulder the global T2D burden by the year 2030 [2].
Asian ethnicities appear to be more susceptible to T2D than their Caucasian counterparts, despite
commonly being of lower body weight and body mass index (BMI). This may be caused in part by
ectopic lipid infiltration into key metabolic organs such as the pancreas and liver [20], the underpinning
mechanism for which is as yet not determined but is purported to be due in part to a consequence
of lipid ‘overspill’ from peripheral or central adipose depots during weight gain. One of the key
factors attributed to the growth of the diabesity epidemic is a marked change in lifestyle and dietary
habits as a result of environmental changes and globalisation [21,22]. Evidence from epidemiological
studies indicate that 90% of cases of incident T2D can be attributed to being overweight or obese,
over-nutrition, lack of physical activity, smoking, and alcohol consumption [23–25]. Hence, ongoing
strategies for the management of T2D emphasise the importance of timely intervention through
modifiable risk factors, such as dietary and lifestyle changes [26], which are pertinent to not only
delaying progression but also preventing the risk of developing T2D [27]. Robust data from several
major diabetes prevention trials [26,28–31] unequivocally show that intensive lifestyle interventions,
aimed at weight loss and increased physical activity in high-risk individuals, can prevent or at least
delay the progression to overt T2D by 50% [32]. Consequently, considered as effective as intervening
with pharmacological agents [33], lifestyle changes are also increasingly promoted as cost-effective [34],
affording a maximal benefit with minimal harm [35] to at-risk individuals with poor metabolic health.

The aim of this review is to provide an update on the established mechanisms by which
polyphenol flavonoids are known to reduce the risk of T2D and to present a novel mechanism
for the inhibition of amylin misfolding and aggregation.

2. Polyphenol Flavonoids Are Essential Non-Nutrient Bioactive Molecules, Having Established
Mechanisms in Reducing the Risk of T2D

Several studies highlight the benefit of a diet characterised by not only greater quantities but also
a greater variety of fruit and vegetables as an important predictor of glucose tolerance and decreased
T2D risk [36–39]. While the precise mechanism by which fruit and vegetables exert their beneficial
effects are unknown, the ubiquitous polyphenolic phytochemicals contained within them have been
proposed to have favourable effects. Dietary polyphenols constitute approximately 500 compounds
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with diverse structure and distribution in foods [40]. As they occur widely in plant-derived foods and
beverages, it is estimated that the average intake of polyphenolic compounds in the US population is
~1 g/day [41], between ~0.5–2 g/day in European countries [42], and 0.8–1.1 g/day in the UK [43,44].
Common items in a diet enriched with these non-nutrient bioactive polyphenolic compounds include
broccoli, onion, cabbage, grapes, apples, cherries, pears, strawberries, oranges, legumes such as
soyabean, cocoa and chocolate [45].

Various epidemiological studies further support the beneficial effects of polyphenol-rich diets
in preventing and managing T2D [46]. It was reported in the Nurses’ Health Study (N = 1111)
(NHS I and II) that markers of flavonones (naringenin and hesperetin) and flavonols (quercetin and
isorhamnetin) were significantly associated with a 30–48% lower T2D risk during the follow-up
period (≤4.6 years (median)) [47]. Total flavonoid (HR: 0.90; 95% CI 0.77–1.04, p = 0.04) and flavonol
(HR: 0.81; 95% CI 0.69–0.95, p = 0.02) intakes were also shown to reduce the risk of T2D in the
European prospective investigation into cancer and Nutrition-InterAct (EPIC-InterACT) study [48].
Similarly, higher intakes of anthocyanins and anthocyanin-rich foods were shown to be associated
with a significantly lower risk of T2D (pooled HR for 3 cohorts: 0.85 95% CI 0.80–0.91, p < 0.001)
in the NHSI (N = 70,359 women), NHSII (N = 89,201 women) and Health Professionals Follow-Up
studies (N = 41,334 men) [49]. Whole fruit consumption, such as apples [49–51], pears [49] and
blueberries [49,51] which contain polyphenolic compounds are also reported to be inversely associated
with T2D. The beneficial effects of total flavonoid intake or any of the flavonoid subclasses are, however,
not observed in some studies [50,52]; this may be due to differences in intakes, variability in absorption
following dietary intake [53], the structure of the polyphenol itself and the nature of the food source [54].
Notably, these studies [50,52] utilised self-reported semi-quantitative food frequency questionnaires
(FFQs)—a tool commonly used to assess dietary intake—that are recognised to be limited in accuracy,
as polyphenol intakes may likely be over or under-estimated by this methodology [55].

A large body of evidence links the antioxidant activity of polyphenols [47,49,56–60] as the
primary mechanism by which they lower T2D risk. This is in line with results from a recent
meta-analysis [61] which confirmed that the consumption of dietary flavonoids was associated with
both the maintenance of body weight and a decreased risk of T2D [59]. The beneficial effects of
polyphenols in T2D has also been recently reviewed to expand the effects to include improved
carbohydrate metabolism via the modulation of metabolic enzymes and nuclear receptors [62], the
alteration of gene expression and signalling pathways [63,64], a reduction in the absorption of simple
sugars via the inhibition of α-amylase and α-glucosidase, and also an improved uptake of glucose
by muscle and adipocytes [46,64]. Furthermore, polyphenol flavonoids also modulate the release of
glucose monomers from glycogen deposits by inhibiting glycogen phosphorylase (GP) to prevent
hyperglycaemic episodes [65]. Recently, polyphenol-rich olive leaf extracts (OLE) [66–70] have been
shown to improve lipid and glycaemic control in T2D, in line with a recent meta-analysis [71] of
36 controlled, randomised trials using polyphenol-extracts, supplements and foods, ranging from
28 mg to 1.5 g for 0.7–12 months, that showed that polyphenol intake lowered HbA1c levels by
2.29 ± 0.4 mmol/mol in T2D (N = 1426, baseline HbA1c = 58 mmol/mol).

3. Unravelling Novel Mechanisms by Which Polyphenol Flavonoids Further Ameliorate
T2D Risk

A novel and important target for the use of dietary polyphenol flavonoids in the prevention of
T2D is the misfolding of pancreatic amylin and the subsequent deposition of these aggregates in islet
β-cells. Indeed, it is their unique aromatic features and their highly conjugated system with multiple
hydroxyl groups that make them ideal candidates for targeting amyloid deposits and, additionally,
as effective electron and hydrogen atom donors [63] to neutralise free radicals and other reactive
oxygen species (ROS) [72]. All polyphenolic compounds share a common phenolic ring structure, with
one or more phenolic rings linked to more than one hydroxyl group [73], and are categorised into
three main sub-groups: phenolic acids, flavonoids and non-flavonoids. The flavonoids are the largest
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class of phenolic compounds and include sub-classes, 6 of which are highlighted according to their
nutritional relevance: flavonols, isoflavones, anthocyanidins, flavan-3-ols, flavones and flavanones [53].
Dietary quercetin is the most abundant flavonol and is found in onions, apples, tea, broccoli, and red
wine (Table 1) along with kaemferol, isorhamnetin, and myricetin, and is a potent antioxidant [74]
(Figure 1).
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Table 1. Dietary quercetin and rutin-content in common foods.

Food Source Quercetin (mg/100 g) Rutin (mg/100 g)

Apple (with skin) * 3.80 0.22
Broccoli (raw) 2.25 1.6

Buckwheat groats (raw) 3.47 23.0
Grape skin (red) 1.05 149.1
Raspberry (red) 1.10 11.0

Cocoa powder (unsweetened) 10.0 -
Onion (raw) 20.30 0.68

Spinach (raw) 3.97 -
Black tea (brewed) ** 2.19 1.62
Green tea (brewed) 2.49 1.46

Fruit tea (pomegranate) 0.00 632
Red wine *** 2.11 0.81

Data obtained from the United States Department of Agriculture and is determined by column or high-performance
liquid chromatography, capillary zone electrophoresis, or micellar electrokinetic capillary chromatography [75–80].
* Apples reported as Gala apples. ** Brewed Tea (mg/100 g (100 mL)): tea infusions equivalent to 1 g of dry tea.
Infusion values are standardised to 1% infusion (1 g tea leaves/100 mL boiling water) *** Red wine reported as
Syrah or Shiraz.

Quercetin commonly occurs conjugated with a sugar moiety at the 5, 7, 3′, 4′, or 5′ positions,
which is frequently a rutinoside conjugate (rutin) [81], such that the glycoside combines the flavonol
quercetin and the disaccharide rutinose. Rutin is thought to be the main glycosidic form of quercetin in
the diet [82] and is found abundantly in buckwheat [83,84] (Table 1). Additionally, quercetin has been
shown to have a greater antioxidant activity compared to polyphenolic acids without this structure,
due to 3-hydroxy groups and conjugated π bonds [73] (Figure 2); hence the purported beneficial
effects of quercetin and quercetin-O-rutinoside (rutin) in the improvement of glycaemic indices in
recent in vitro [85] and animal models [86–90] studies, as well as in preventing amylin misfolding and
aggregation [91–94].
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3.1. Pancreatic β-Cell Dysfunction Due to Amylin Misfolding and Aggregation

Accumulating evidence suggests that toxic aggregates of islet amyloid polypeptide (IAPP),
commonly known as amylin [95], may make a significant contribution to β-cell dysfunction
and T2D [8,96–98], it is classified as a protein misfolding disease (PMD). PMDs are a common
occurrence in conditions when at least one protein or peptide misfolds, aggregates, and accumulates
in tissues where damage occurs. This has also been implicated in the pathogenesis of several
neurodegenerative disorders, including Alzheimer’s (AD), Parkinson’s (PD) and Huntington disease
(HD) [99]. Evidence linking protein misfolding and aggregation with disease comes from post-mortem
histopathological studies, where a typical feature of each disease is the accumulation of protein deposits;
namely, amyloid β (Aβ) in AD, α-synuclein in PD, and poly-Q expanded Huntington in HD [99].
IAPP is a 4 kDa peptide hormone composed of 37-amino acids that is synthesised and co-secreted along
with insulin from pancreatic islet β-cells [100]. IAPP has important glucomodulatory effects, as it slows
gastric emptying to regulate glucose levels and inhibits the effect of insulin and arginine-stimulated
glucagon release by pancreatic α-cells [101]. Moreover, IAPP is involved in appetite regulation via the
gut-brain axis and functions as a growth factor in maintaining β-cell mass [102]. The IAPP monomer
is shown to have normal biological activity in healthy islet β-cells, wherein oligomers can form and
undergo degradation. It is unclear why this process is dysregulated in IR and T2D [103] to the extent
that innate physiochemical properties predispose it to aggregate and form fibrils [8], but growing
evidence supports this as a key causative driver of T2D. Notably, glucocorticoid (GC) may have a
role in pathology [104], much like that observed in AD to form amyloid β [105]. A GC-mediated
increase in β-cell IAPP to insulin secretion has been established following dexamethasone treatment
in animals [106–108] as well as humans [109]. A major determinant of GC action is the enzymes
that convert low active cortisone into active cortisol, especially 11β-hydroxysteroid degydrogenase
type 1 (HSD1), mainly expressed in liver and adipose tissue [110], a key mediator of IR [111–113] and
pancreatic β-cell dysfunction [114].

The association of IAPP accumulation with T2D was first described as ‘islet hyalinosis’ by Eugene
Opie [115] and reported to be a common occurrence in 90% of T2D individuals [116–118]. Notably, some
diabetic patients were reported not to present with islet amyloid [116,119], an important observation
which has more recently been explained by the identification of soluble oligomers and aggregates
of amylin, which are more cytotoxic than the mature fibrils. Conversely, some normoglycaemic
individuals may exhibit these features in line with AD and PD, where disease-free older individuals
may also develop protein aggregates [120,121]. Rodent studies show the formation of IAPP aggregates
precedes β-cell dysfunction and the clinical signs of disease [122–124], suggesting that hyperglycaemia
may not be a prerequisite for islet amyloid formation. This has more recently been verified by careful
phenotyping of human amylin (hA) transgenic mice, which showed that hA oligomers did not arise as
a result of T2D, but were causative of the dysglycaemia [8]. While evidence from clinical post-mortem
studies links IAPP aggregation with a loss of β-cell mass and frank T2D [118,125], it is unlikely
that large amyloid deposits are required for β-cell degeneration; instead, evidence points to small
soluble oligomers as the likely cytotoxic forms of hA. Studies showing misfolded fibrillogenic hA to
be cytotoxic and causative of pancreatic islet β-cell apoptosis have identified several cell-signalling
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pathways, including the activation of Fas-associated death receptor signalling [126] confirmed by Fas
blocking antibodies, which suppressed hA-evoked apoptosis.

3.2. Mechanisms That Underpin the Formation of Islet Amyloid Aggregates

Amyloidogenesis occurs in three stages, whereby initially the protein misfolds (lag phase) and
is rearranged to form the β-sheet (growth phase), which matures to form stable fibrils (saturation
phase) or amyloid deposits [14]. Briefly, a model has been proposed for islet amyloid formation [97].
In a healthy state, IAPP is predominantly expressed by pancreatic β-cells as the 89-amino acid,
pre-pro-IAPP, which in the endoplasmic reticulum (ER) is cleaved to pro-IAPP and further processed in
the Golgi apparatus and secretory granules in a pH-dependent manner. It is noteworthy that cleavage
occurs via similar enzymes which process pro-insulin. Processed IAPP is stored with insulin in the
secretory granules in a molar ratio of 1-2:50. Insulin and pro-insulin have an inhibitory effect on IAPP
aggregation and, together with the low pH within the secretory granules, maintain IAPP in the soluble
state. The resultant IAPP is co-secreted along with insulin by the β-cells in response to glucose stimuli.

However, during IR and/or β-cell dysfunction, the expression of IAPP increases to that of insulin,
resulting in the misfolding of pro-IAPP in the ER and/or the decreased processing of pro-IAPP in the
secretory granule. The resultant misfolded and/or unprocessed pro-IAPP present in the secretory
granule is released along with insulin and, extracellularly, further undergoes structural changes to
initiate fibril formation. Additionally, misfolded pro-IAPP in the secretory granules may cause the
contents within the granules to be targeted to the lysosome to be degraded, as the lysosomal system
is responsible for the removal of excess or misfolded peptides, such as IAPP and insulin. Thus, it is
also possible that fibril formation could occur intracellularly as a result of the aggregation of pro-IAPP
in the lysosome, with the nascent fibrils released into the extracellular space [127]. Once these fibrils
are formed either within or outside the β-cells, they provide the ‘seed/nucleus’ required to facilitate
the second stage, or rapid amyloid fibril accumulation [128]. The process of further fibril formation is
stabilised by intermolecular hydrogen bonding [129] to form small β-sheet cytotoxic oligomers, which
eventually form the amyloid deposits. Alternatively, the protein self-assembly process involves π–π
interaction, in which the aromatic residues of IAPP interact with each other via π-stacking to form the
amyloid [130] (Figure 3).
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A recent study of transgenic mice demonstrated that the amount of IAPP produced, along with
the degree of oligomerization, differentially affects the amyloid fibril formation and its subsequent
cytotoxic effects [8]. This is in line with previous work [132,133] that reported the increased cytotoxicity
of oligomeric intermediates rather than the mature fibrils itself. While the exact mechanism of
toxicity remains unknown, it has been suggested that the oligomers disrupt the cellular membranes,
e.g., mitochondria [127], by forming pore-like structures [9], destabilising the intracellular ionic
environment to generate ROS [10] and trigger apoptosis [133–135]. IAPP exposure in rat insulinoma,
RINm5F, cells and human islet β-cells [136,137] has been shown to up-regulate pro-apoptotic
genes—c-fos, fosB, c-jun, and junB [138]—in a time and concentration-dependent manner, as well as to
increase the expression of apoptotic markers p53 and p21WAFI/CIPI [139].

3.3. Targeting Amylin Misfolding and Aggregation with Polyphenol Flavonoids—An Emerging Novel Therapy
for T2D

Amyloid deposits have been shown in vivo to be in a dynamic state of turnover and have the
potential to regress if fibril formation is inhibited [140]. Hence, preventing or arresting the formation
of amyloid-related β-cell failure at an early stage of T2D may preserve endogenous insulin secretion
and prevent or delay hyperglycaemia. Two suggested mechanisms involve the inhibition of (i) the
precursor pool of IAPP and (ii) the amyloid fibril. The former mechanism is postulated, given that IAPP
deficiency in Type 1 diabetics (T1D) does not seem to be associated with severe clinical abnormalities.
The evidence supports insulin secretion, and its subsequent effect on the rate of glucose disposal, to
be lower in transgenic mice that overproduce hA than that seen in normal mice [141]. Conversely,
the reverse is observed in IAPP knockout mice [142], suggesting that, in addition to exerting an
anti-amyloidogenic effect, inhibiting the production of IAPP may improve glycaemic control through
the inhibition of the potentially diabetogenic metabolic effects of the polypeptide. While demonstrated
in vitro, the use of antisense oligonucleotides [143] or the expression of antisense complementary
DNA [144] has been proposed for the direct inhibition of IAPP, to increase insulin mRNA and the
protein content of cells. Again, IAPP inhibition is also proposed via an indirect mechanism, whereby
a reduction in an individual’s insulin requirements will in turn reduce the production of IAPP and
therefore amyloidosis. This reduction may be initiated by administering insulin therapy early in the
course of T2D [145] or by the use of antidiabetic drugs, i.e., metformin.

A more attractive approach clinically is via the dissociation of amyloid fibrils during their
formation in order to disrupt the β-pleated sheets and to prevent amyloidosis [146], and has been
demonstrated using short synthetic peptides, containing the self-recognition motifs of the protein,
engineered to destabilise the abnormal conformation to correct protein misfolding [146]. This has
also been shown by binding IAPP monomers with ion ligands [147] to inhibit oligomerisation and
effectively reduce amyloid cytotoxicity [148], and is thought to be the mechanism by which tetracycline
exerts anti-diabetic activity [91]. A unique feature of tetracycline is that it contains an aromatic ring
that facilitates the interaction with lipophilic residues of monomers (π stacking) as polar groups that
can form hydrogen bonds with specific residues to strengthen the drug–protein interaction [149,150].
Likewise, polyphenols have been shown to act as small molecule inhibitors to prevent amyloid
formation via similar mechanisms. According to the “π stacking” theory, the aromatic rings of
polyphenols may competitively interact with aromatic residues in IAPP by sandwiching between
two aromatic residues to prevent π–π interaction and block the self-assembly process [92] (Figure 4).
Alternatively, the phenolic hydroxyl group of polyphenols may inhibit amyloid fibril formation by
binding to the hydrophobic residues in IAPP to modulate oligomerisation [151] (Figure 4). This is
similar to the mechanism by which quercetin and epigallocatechin gallate (EGCG) has also been shown
to inhibit 11β-HSD1, by binding to the active site by hydrogen bond interaction [152,153].

It is important to consider that the mechanism by which polyphenols inhibit amyloid formation
differs depending on which part of the assembly pathway it is involved in [154]. Accordingly,
polyphenols have been shown to interact with different forms; i.e., either the monomeric, oligomeric
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or fibrillar forms. Some polyphenols have been shown to exert their inhibitory effects on the oligomers,
while others inhibit the formation of fibrils and some others do both.Nutrients 2017, 9, 788 8 of 20 
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IAPP to inhibit the formation of cytotoxic oligomers (adapted from [131]).

Epigallocatechin gallate (EGCG), an important polyphenol found in green tea, has been shown
to redirect amyloid fibril formation from fibrillogenic forms to non fibrillogenic oligomers; i.e.,
“off-pathway” aggregates that are unable to form amyloid [155,156] and have been shown to protect rat
insulinoma, INS-1, cells from IAPP amyloid-induced cytotoxic effects [157]. EGCG binds to the native
monomers to prevent their conversion into stable, β-sheet-rich structures, which are a prerequisite for
nucleation-dependent amyloid fibril assembly, thus interfering with the early stages in the amyloid
formation pathway. EGCG preferentially binds to the unfolded IAPP, due to the favourable spatial
distribution of the poly-hydroxyl groups on the planar aromatic rings and its ability to form covalent
bonds [12,158].

Similarly, resveratrol, a main constituent of grape seeds, has been shown to bind to both
monomeric and fibrillar forms and to selectively remodel soluble oligomers and fibrillary intermediates
to form less toxic oligomers of IAPP [13] in pancreatic β-cell line INS-1E [159,160]. The mechanism of
inhibition, however, differs from that of EGCG. Simulation studies have demonstrated that resveratrol
interferes with and blocks IAPP β-sheet side chain stacking [161], especially stacking of the aromatic
rings, preventing the overall aggregation of the polypeptide. Additionally, oleuropeinaglycone (OLE),
works in a similar manner to EGCG and resveratrol. OLE, the main phenolic component of olive
oil, has been shown to interfere with the hIAPP fibrils to prevent the formation of toxic oligomers in
RIN-5 F rat insulinoma cells [162]. The compound delays the conformational transition of hIAPP and
redirects it to form off-pathway aggregates that are nontoxic. OLE also modulates the cytotoxic effects
of the fibrils by preventing them from permeabilising the plasma membrane.

Curcumin, the main constituent of the rhizome C. longa, has been extensively investigated in
in vitro and in vivo studies and has been shown to inhibit the formation of fibrils of IAPP in a
concentration-dependent manner [13,163,164]. While curcumin has the ability to inhibit amyloid
formation, it is unlikely that it can be used to prevent amyloidogenesis at ther in approximately
apeutic concentrations in T2D. This is likely as curcumin is protective in INS cells against exogenous
IAPP cytotoxicity within a narrow concentration range (10–25 µM); however, it is cytotoxic when
concentration was increased above 25 µM [163]. A similar effect was shown using models of
endogenous overexpression of hIAPP (INS cells and h-IAPP transgenic rat islets).
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Rosamarinic acid, a phenolic derivative of caffeic acid found in many Lamiaceae herbs, has the
ability to inhibit amyloid formation and destabilise preformed IAPP amyloid [164] by specifically
binding to the polypeptide to inhibit its polymerisation. Additionally, polyphenolic molecules such
as ferulic acid [165], a hydroxycinnamic acid; baicalein [165], a flavonoid found in the Chinese
herb Scutellariabaicalensis; salvionolic acid B [166], a phenolic acid found in the Chinese herb
Salvia miltiorrhiza; and silibinin [167], an active flavonoid constituent of silymarin, have been shown to
inhibit the formation of an hIAPP amyloid β-sheet, preventing the aggregation of hIAPP fibrils and
suppressing toxic oligomers of hIAPP monomers to reduce islet amyloid in vitro.

Again, recent work using myricetin [168,169] has found similar inhibitory effects on IAPP
amyloid formation. Kao and colleagues [170] used the extracts of 13 fruits in vitro to analyse
their ability to prevent the aggregation of amyloidogenic IAPP and found that flavonols from
raspberries and blueberries were the strongest inhibitors of aggregation. Of the flavonols, quercetin
and quercetin-3-O-rutinoside (rutin) have been shown to be potent inhibitors of IAPP aggregation and
share structural similarities to tetracylines [91]. It is the aromatic rings of these bioactive molecules
that have been proposed to competitively interact with residues of IAPP to prevent π–π interaction in
order to inhibit the self-assembly process [92]. Alternatively, it has been suggested that the hydroxyl
moieties of these flavonols inhibit fibril formation by creating hydrogen bonds in the amyloidogenic
protein to modulate IAPP oligomerisation. The polycyclic nature of both quercitin and rutin interact
with the amyloidogenic region in hA to suppress β-sheet formation and, therefore, have been shown to
promote the formation of α-helix by hA, either by allowing its spontaneous formation or by promoting
its formation from random coil [93].

It is important to consider that the absorption of dietary quercetin and rutin is largely
determined by the chemical structure [81] and food matrix [171], which could limit digestion and
metabolism [53], likely resulting in a lower bioavailability when compared to vitamin antioxidants [172].
Additionally, intestinal permeability [173] or co-administration with ascorbic acid [174] present
in foods may influence the kinetics of absorption. Partial absorption occurs in the stomach and
small intestine, the latter via hydrolysis by two different routes through the action of endogenous
β-glucosidases—lactase phloridzin hydrolase (LPH) and cytosolic-β-glucosidase (CBG)—to generate
more lipophilic, and thereby absorbable, aglycones [175]. While LPH is expressed at the brush
border of enterocytes to selectively absorb quercetin glucoside [176], CBG hydrolyses conjugated
glycosides that have been previously transported within enterocytes via the active sodium-dependent
glucose transporter (SGLT1) [176–178]. Rutin, on the other hand, is not absorbed in the small
intestine [179] and requires metabolism by colonic microflora [180]. Accordingly, in a comparative
study, it was reported that quercetin glycosides are mostly absorbed in the stomach and small
intestine, reaching peak serum concentration (Cmax) in approximately 1.5 h, while absorption of
rutin, which is dependent on the release of aglycones by the large bowel microbiota, reaches
Cmax later, in approximately 5.5 h [81]. These segmental differences in absorption are in line with
reports by Hollman et al. [181–183], who showed that maximal absorption occurs at 0.5–0.7 h and
6–9 h following the ingestion of quercetin-4′-glucoside and rutin, respectively; hence the relatively
low bioavailability of rutin (20%) compared to that of the glucoside moiety. Glycoside moiety is
therefore a major determinant of the absorption of flavonoids to define biological activity and, in
part, explains the varied responses from dietary intakes [184]. It is noteworthy that, prior to reaching
portal circulation, these flavonoids can undergo phase II metabolism by methylation, sulfation and
glucuronidation [56]. It is therefore pertinent to consider the levels of dietary intake to maintain
physiological concentrations for novel mechanisms to be operational, which are difficult to achieve
in plasma and extracellular fluids, with flavonoid concentrations reported in the micromolar range
in these biological compartments [53]. Accordingly, intracellular levels have been estimated to reach
picomolar or nanomolar concentrations [185]. Several approaches, including ingestion along with
dietary fat [186,187], to promote the rafficking of quercetin and rutin across the gastrointestinal mucosa
to increase bioaccumulation have been advocated [173,188]. Ergo, supplementation with 500 mg rutin
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once daily for six weeks, a concentration equivalent to that used to ameliorate IAPP amyloid in human
amylin transgenic (hAtg) mice [93], has been shown to increase circulating rutin or quercetin levels by
at least 2.5 fold [189].

In vivo studies support the use of quercetin [94] and rutin [93] as antioxidants that additionally
modulate IAPP aggregation, the latter using transgenic mice engineered to develop features of T2D
in humans. This is in line with other studies that have shown that rutin interacts with soluble
hA oligomers to prevent the formation of cytotoxic aggregates and to protect against Fas-mediated
destruction of islet cells [8,91]. hAtg mice with β-cell specific IAPP expression [8] replicate the T2D
phenotype of islet changes to develop diabetes [190], with rutin treatment shown to prolong the onset of
diabetes and ameliorate the severity of diabetic syndrome in treated mice [93]. Hence, studies utilising
human amylin transgenic (hAtg) models provide reliable critical mechanistic information [91,126,137]
contributing toward our understanding of IAPP oligomerisation, its related cytotoxicity and resultant
islet cell apoptosis. However, the beneficial effects of quercetin and rutin have not been evident in
other studies [158]. Notably, it has been suggested that the rutinoside group, following ingestion
of rutin, may be cleaved during intestinal transit to release quercetin and its glycosides, which
could act as the bioactive compounds rather than rutin itself. However, this was disproved in a
pharmacokinetic study that did not find free circulating quercetin in blood following dosage with
rutin and quercetin-4-O-glucoside [191], possibly due to the degradation of rutin by colonic microflora
into phenolic catabolites: 3,4-dihydroxyphenylacetic acid, 3-methoxy-4-hydroxyphenylacetic acid
and 3-hydroxyphenylacetic acid [192]. Again, the simultaneous detection of quercetin and rutin in
plasma as well as lymph, following intra-duodenal administration in rats, seems to indicate that rutin
may possibly be absorbed intact from intestinal cells [193]. This finding was in line with previous
publications conducted in animal models [194,195]. While validation from human studies is certainly
required, plasma quercetin has often been measured as a marker of rutin absorption to facilitate the
ease of analyses [189]. While both the relative and absolute bioavailability of quercetin has been
assessed, studies examining the former have most commonly been used in human studies.

4. Learnings from the Evidence and Concluding Remarks

T2D prevalence and its associated micro and macro-vascular risks continue to rise as a result of
over-nutrition and lifestyle changes [196]. Accordingly, safer, natural and well-tolerated compounds,
such as polyphenols that are widely available from dietary sources, with established antidiabetic
effects, are emerging as novel therapeutic targets for delaying the progression and for preventing
T2D in ‘at-risk’ individuals [63]. In addition to being anti-oxidant and anti-inflammatory agents [197],
polyphenols exhibit anti-hyperglycaemic effects, as they improve carbohydrate metabolism, β-cell
function and insulin resistance. This includes its novel role in arresting IAPP fibril formation and
inhibiting the deleterious cytotoxic effects of IAPP amyloid.

Loss of functional β-cell mass is central to the pathophysiology of T2D [6]. IAPP misfolding and
aggregation has recently emerged as a critical entity in islet cell pathology and T2D progression, with
unequivocal data suggesting that the inhibition of the cytotoxic IAPP oligomers is key to improving
pathology [97]. Whether these aggregates are a consequence of the tissue damage during disease
progression or involved in disease pathogenesis remains to be determined. It is likely the latter, given
that PMD is an established mechanism in the pathogenesis linked to the various neurodegenerative
diseases [99]. On consideration, IAPP misfolding may play an important role in the transition from the
prediabetic state to that of T2D and warrants further investigation.

Using polyphenol flavonoids to target amyloid deposits appears to be a rational, promising and
novel therapeutic approach, given that the favourable phenolic ring structure and hydroxyl moieties
allows them to function as potent inhibitors of IAPP oligomerisation. The benefits of using flavonoid
polyphenols is that they occur naturally, have antioxidant properties, are stable in biological fluids,
have the ability to cross the blood brain barrier and do not elicit an immune response. In addition, they
have also been shown to inhibit 11β-HSD1 [152,153,198] and lower cortisol secretion. Dysregulated
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cortisol secretion has been associated with the risk of T2D [199] and increased complications [200,201],
especially greater diurnal secretion [202].

It is noteworthy that, although anti-oxidative properties of polyphenol flavonoids have been
associated with the reduced risk of T2D, further research to elucidate the mechanism are required.
ROS activity in in vitro studies has been observed at concentrations that are significantly higher than
the physiological levels found in vivo [189]. Hence, while in vitro studies show positive effects, short
term intervention studies are required to address and further elucidate the effects of these compounds
in individuals diagnosed with prediabetes and T2D to address these proposed mechanisms of action.
Discretion on the type and class of polyphenol, along with dosage, will be an important determinant
of the outcomes, given the differences in bioavailability following dietary intake. Of the polyphenol
flavonoids, the flavonol quercetin [90], the most abundantly present in the studied diet, and its
rutinoside conjugate, rutin [93,203], may likely be most relevant to ameliorating the T2D risk, given
that they are potent antioxidants [188], attenuate fasting and postprandial hyperglycaemia [204,205],
and been shown to strongly inhibit IAPP-induced cytotoxicity.

Acknowledgments: IRS holds a postdoctoral fellowship funded by the High-Value Nutrition National Science
Challenge and the Ministry for Business, Innovation and Employment (MBIE #3710040). SDP holds the Fonterra
Chair in Human Nutrition at the University of Auckland, and receives funding from NZ Health Research Council,
High-Value Nutrition National Science Challenge and the Ministry for Business, Innovation and Employment,
Riddet centre of research excellence (CoRE).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Danaei, G.; Finucane, M.M.; Lu, Y.; Singh, G.M.; Cowan, M.J.; Paciorek, C.J.; Lin, J.K.; Farzadfar, F.;
Khang, Y.-H.; Stevens, G.A.; et al. National, regional, and global trends in fasting plasma glucose and
diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological
studies with 370 country-years and 2·7 million participants. Lancet 2011, 378, 31–40. [CrossRef]

2. Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030.
Diabetes Res. Clin. Pract. 2010, 87, 4–14. [CrossRef] [PubMed]

3. Ginter, E.; Simko, V. Global prevalence and future of diabetes mellitus. In Diabetes: An Old Disease, a New
Insigh; Ahmad, S.I., Ed.; Springer: New York, NY, USA, 2013; pp. 35–41.

4. Sequeira, I.R.; Poppitt, S.D. HbA1c as a marker of prediabetes: A reliable screening tool or not?
Insights Nutr. Metab. 2017, 1, 11–20.

5. Reaven, G.M. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [CrossRef] [PubMed]
6. Saisho, Y. B-cell dysfunction: Its critical role in prevention and management of type 2 diabetes.

World J. Diabetes 2015, 6, 109–124. [CrossRef] [PubMed]
7. Jaikaran, E.T.A.S.; Clark, A. Islet amyloid and type 2 diabetes: From molecular misfolding to islet

pathophysiology. Biochim. Biophys. Acta 2001, 1537, 179–203. [CrossRef]
8. Zhang, S.; Liu, H.; Chuang, C.L.; Li, X.; Au, M.; Zhang, L.; Phillips, A.R.; Scott, D.W.; Cooper, G.J.

The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization
of human amylin in the pancreatic islet β cells. FASEB J. 2014, 28, 5083–5096. [CrossRef] [PubMed]

9. Engel, M.F.; Khemtémourian, L.; Kleijer, C.C.; Meeldijk, H.J.; Jacobs, J.; Verkleij, A.J.; de Kruijff, B.; Killian, J.A.;
Höppener, J.W. Membrane damage by human islet amyloid polypeptide through fibril growth at the
membrane. Proc. Natl. Acad. Sci. USA 2008, 105, 6033–6038. [CrossRef] [PubMed]

10. Schubert, D.; Behl, C.; Lesley, R.; Brack, A.; Dargusch, R.; Sagara, Y.; Kimura, H. Amyloid peptides are toxic
via a common oxidative mechanism. Proc. Natl. Acad. Sci. USA 1995, 92, 1989–1993. [CrossRef] [PubMed]

11. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820.
[CrossRef] [PubMed]

12. Cao, P.; Raleigh, D.P. Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers
by flavanols. Biochemistry 2012, 51, 2670–2683. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(11)60679-X
http://dx.doi.org/10.1016/j.diabres.2009.10.007
http://www.ncbi.nlm.nih.gov/pubmed/19896746
http://dx.doi.org/10.2337/diab.37.12.1595
http://www.ncbi.nlm.nih.gov/pubmed/3056758
http://dx.doi.org/10.4239/wjd.v6.i1.109
http://www.ncbi.nlm.nih.gov/pubmed/25685282
http://dx.doi.org/10.1016/S0925-4439(01)00078-3
http://dx.doi.org/10.1096/fj.14-251744
http://www.ncbi.nlm.nih.gov/pubmed/25138158
http://dx.doi.org/10.1073/pnas.0708354105
http://www.ncbi.nlm.nih.gov/pubmed/18408164
http://dx.doi.org/10.1073/pnas.92.6.1989
http://www.ncbi.nlm.nih.gov/pubmed/7892213
http://dx.doi.org/10.1038/414813a
http://www.ncbi.nlm.nih.gov/pubmed/11742414
http://dx.doi.org/10.1021/bi2015162
http://www.ncbi.nlm.nih.gov/pubmed/22409724


Nutrients 2017, 9, 788 12 of 21

13. Nedumpully-Govindan, P.; Kakinen, A.; Pilkington, E.H.; Davis, T.P.; Ke, P.C.; Ding, F. Stabilizing
off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci. Rep. 2016,
6, 19463. [CrossRef] [PubMed]

14. Sgarbossa, A. Natural biomolecules and protein aggregation: Emerging strategies against amyloidogenesis.
Int. J. Mol. Sci. 2012, 13, 17121–17137. [CrossRef] [PubMed]

15. Hollenbeck, C.; Reaven, G.M. Variations in insulin-stimulated glucose uptake in healthy individuals with
normal glucose tolerance. J. Clin. Endocrinol. Metab. 1987, 64, 1169–1173. [CrossRef] [PubMed]

16. Reaven, G.M.; Brand, R.J.; Chen, Y.D.; Mathur, A.K.; Goldfine, I. Insulin resistance and insulin secretion
are determinants of oral glucose tolerance in normal individuals. Diabetes 1993, 42, 1324–1332. [CrossRef]
[PubMed]

17. Reaven, G.; Hollenbeck, C.; Chen, Y.D. Relationship between glucose tolerance, insulin secretion, and insulin
action in non-obese individuals with varying degrees of glucose tolerance. Diabetologia 1989, 32, 52–55.
[CrossRef] [PubMed]

18. Collboration, N.R.F. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis
of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396.

19. Ramachandran, A.; Wan Ma, R.C.; Snehalatha, C. Diabetes in Asia. Lancet 2010, 375, 408–418. [CrossRef]
20. Sattar, N.; Gill, J.M. Type 2 diabetes as a disease of ectopic fat? BMC Med. 2014, 12, 123. [CrossRef] [PubMed]
21. Astrup, A.; Finer, N. Redefining type 2 diabetes: ‘Diabesity’or ‘obesity dependent diabetes mellitus’?

Obes. Rev. 2000, 1, 57–59. [CrossRef] [PubMed]
22. Popkin, B.M. Will China’s nutrition transition overwhelm its health care system and slow economic growth?

Health Aff. 2008, 27, 1064–1076. [CrossRef] [PubMed]
23. Mozaffarian, D.; Kamineni, A.; Carnethon, M.; Djoussé, L.; Mukamal, K.J.; Siscovick, D. Lifestyle risk factors

and new-onset diabetes mellitus in older adults: The cardiovascular health study. Arch. Intern. Med. 2009,
169, 798–807. [CrossRef] [PubMed]

24. Dunkley, A.J.; Bodicoat, D.H.; Greaves, C.J.; Russell, C.; Yates, T.; Davies, M.J.; Khunti, K. Diabetes prevention
in the real world: Effectiveness of pragmatic lifestyle interventions for the prevention of type 2 diabetes
and of the impact of adherence to guideline recommendations. Diabetes Care 2014, 37, 922–933. [CrossRef]
[PubMed]

25. Kim, S.; Popkin, B.M. Commentary: Understanding the epidemiology of overweight and obesity—A real
global public health concern. Int. J. Epidemiol. 2006, 35, 60–67. [CrossRef] [PubMed]

26. Lindström, J.; Peltonen, M.; Eriksson, J.G.; Ilanne-Parikka, P.; Aunola, S.; Keinänen-Kiukaanniemi, S.;
Uusitupa, M.; Tuomilehto, J.; Finnish Diabetes Prevention Study (DPS). Improved lifestyle and decreased
diabetes risk over 13 years: Long-term follow-up of the randomised Finnish Diabetes Prevention Study
(DPS). Diabetologia 2013, 56, 284–293. [CrossRef] [PubMed]

27. Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary
components and nutritional strategies. Lancet 2014, 383, 1999–2007. [CrossRef]

28. Li, G.; Zhang, P.; Wang, J.; Gregg, E.W.; Yang, W.; Gong, Q.; Li, H.; Li, H.; Jiang, Y.; An, Y.; et al. The long-term
effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: A 20-year
follow-up study. Lancet 2008, 371, 1783–1789. [CrossRef]

29. Diabetes Prevention Program Research Group; Knowler, W.C.; Fowler, S.E.; Hamman, R.F.; Christophi, C.A.;
Hoffman, H.J.; Brenneman, A.T.; Brown-Firday, J.O.; Goldberg, R.; Venditti, E.; et al. 10-year follow-up of
diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 2009, 374,
1677–1686. [PubMed]

30. Ramachandran, A.; Snehalatha, C.; Mary, S.; Mukesh, B.; Bhaskar, A.D.; Vijay, V. The Indian Diabetes
Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian
Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006, 49, 289–297. [CrossRef]
[PubMed]

31. Lindström, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemiö, K.; Hämäläinen, H.;
Härkönen, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; et al. Sustained reduction in the incidence of type
2 diabetes by lifestyle intervention: Follow-up of the Finnish diabetes prevention study. Lancet 2006, 368,
1673–1679. [CrossRef]

32. Liu, A.Y.; Silvestre, M.P.; Poppitt, S.D. Prevention of type 2 diabetes through lifestyle modification: Is there a
role for higher-protein diets? Adv. Nutr. 2015, 6, 665–673. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/srep19463
http://www.ncbi.nlm.nih.gov/pubmed/26763863
http://dx.doi.org/10.3390/ijms131217121
http://www.ncbi.nlm.nih.gov/pubmed/23242152
http://dx.doi.org/10.1210/jcem-64-6-1169
http://www.ncbi.nlm.nih.gov/pubmed/3553221
http://dx.doi.org/10.2337/diab.42.9.1324
http://www.ncbi.nlm.nih.gov/pubmed/8349044
http://dx.doi.org/10.1007/BF00265404
http://www.ncbi.nlm.nih.gov/pubmed/2651188
http://dx.doi.org/10.1016/S0140-6736(09)60937-5
http://dx.doi.org/10.1186/s12916-014-0123-4
http://www.ncbi.nlm.nih.gov/pubmed/25159817
http://dx.doi.org/10.1046/j.1467-789x.2000.00013.x
http://www.ncbi.nlm.nih.gov/pubmed/12119987
http://dx.doi.org/10.1377/hlthaff.27.4.1064
http://www.ncbi.nlm.nih.gov/pubmed/18607042
http://dx.doi.org/10.1001/archinternmed.2009.21
http://www.ncbi.nlm.nih.gov/pubmed/19398692
http://dx.doi.org/10.2337/dc13-2195
http://www.ncbi.nlm.nih.gov/pubmed/24652723
http://dx.doi.org/10.1093/ije/dyi255
http://www.ncbi.nlm.nih.gov/pubmed/16339598
http://dx.doi.org/10.1007/s00125-012-2752-5
http://www.ncbi.nlm.nih.gov/pubmed/23093136
http://dx.doi.org/10.1016/S0140-6736(14)60613-9
http://dx.doi.org/10.1016/S0140-6736(08)60766-7
http://www.ncbi.nlm.nih.gov/pubmed/19878986
http://dx.doi.org/10.1007/s00125-005-0097-z
http://www.ncbi.nlm.nih.gov/pubmed/16391903
http://dx.doi.org/10.1016/S0140-6736(06)69701-8
http://dx.doi.org/10.3945/an.115.008821
http://www.ncbi.nlm.nih.gov/pubmed/26567192


Nutrients 2017, 9, 788 13 of 21

33. Gillies, C.L.; Abrams, K.R.; Lambert, P.C.; Cooper, N.J.; Sutton, A.J.; Hsu, R.T.; Khunti, K. Pharmacological
and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance:
Systematic review and meta-analysis. Br. Med. J. 2007, 334, 299. [CrossRef] [PubMed]

34. Palmer, A.J.; Tucker, D.M.D. Cost and clinical implications of diabetes prevention in an Australian setting:
A long-term modeling analysis. Prim. Care Diabetes 2012, 6, 109–121. [CrossRef] [PubMed]

35. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle
intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403.

36. Feskens, E.J.; Virtanen, S.M.; Räsänen, L.; Tuomilehto, J.; Stengård, J.; Pekkanen, J.; Nissinen, A.; Kromhout, D.
Dietary factors determining diabetes and impaired glucose tolerance: A 20-year follow-up of the Finnish
and Dutch cohorts of the seven countries study. Diabetes Care 1995, 18, 1104–1112. [CrossRef] [PubMed]

37. Villegas, R.; Shu, X.O.; Gao, Y.-T.; Yang, G.; Elasy, T.; Li, H.; Zheng, W. Vegetable but not fruit consumption
reduces the risk of type 2 diabetes in Chinese women. J. Nutr. 2008, 138, 574–580. [PubMed]

38. Cooper, A.J.; Sharp, S.J.; Lentjes, M.A.H.; Luben, R.N.; Khaw, K.-T.; Wareham, N.J.; Forouhi, N.G.
A prospective study of the association between quantity and variety of fruit and vegetable intake and
incident type 2 diabetes. Diabetes Care 2012, 35, 1293–1300. [CrossRef] [PubMed]

39. Mursu, J.; Virtanen, J.K.; Tuomainen, T.-P.; Nurmi, T.; Voutilainen, S. Intake of fruit, berries, and vegetables
and risk of type 2 diabetes in Finnish men: The Kuopio ischaemic heart disease risk factor study. Am. J.
Clin. Nutr. 2014, 99, 328–333. [CrossRef] [PubMed]

40. Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Systematic analysis of the content of 502 polyphenols in
452 foods and beverages: An application of the phenol-explorer database. J. Agric. Food Chem. 2010, 58,
4959–4969. [CrossRef] [PubMed]

41. Chun, O.K.; Chung, S.J.; Song, W.O. Estimated dietary flavonoid intake and major food sources of US adults.
J. Nutr. 2007, 137, 1244–1252. [PubMed]

42. Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.;
Fagherazzi, G.; Boutron-Ruault, M.C.; et al. Dietary polyphenol intake in Europe: The European prospective
investigation into cancer and nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [CrossRef] [PubMed]

43. Lindsay, D.G. The nutritional enhancement of plant foods in Europe ‘NEODIET’. Trends Food Sci. Technol.
2000, 11, 145–151. [CrossRef]

44. Clifford, M. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004,
70, 1103–1114. [CrossRef] [PubMed]

45. Magrone, T.; Perez de Heredia, F.; Jirillo, E.; Morabito, G.; Marcos, A.; Serafini, M. Functional foods and
nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can. J. Physiol. Pharmacol. 2013,
91, 387–396. [CrossRef] [PubMed]

46. Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K.
Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [CrossRef]
[PubMed]

47. Sun, Q.; Wedick, N.M.; Tworoger, S.S.; Pan, A.; Townsend, M.K.; Cassidy, A.; Franke, A.A.; Rimm, E.B.;
Hu, F.B.; van Dam, R.M. Urinary excretion of select dietary polyphenol metabolites is associated with a lower
risk of type 2 diabetes in proximate but not remote follow-up in a prospective investigation in 2 cohorts of
US women. J. Nutr. 2015, 145, 1280–1288. [CrossRef] [PubMed]

48. Zamora-Ros, R.; Forouhi, N.G.; Sharp, S.J.; González, C.A.; Buijsse, B.; Guevara, M.; van der Schouw, Y.T.;
Amiano, P.; Boeing, H.; Bredsdorff, L.; et al. The association between dietary flavonoid and lignan intakes
and incident type 2 diabetes in European populations: The EPIC-interact study. Diabetes Care 2013, 36,
3961–3970. [CrossRef] [PubMed]

49. Wedick, N.M.; Pan, A.; Cassidy, A.; Rimm, E.B.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F.B.; Sun, Q.; van
Dam, R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr.
2012, 95, 925–933. [CrossRef] [PubMed]

50. Song, Y.; Manson, J.E.; Buring, J.E.; Sesso, H.D.; Liu, S. Associations of dietary flavonoids with risk of type 2
diabetes, and, markers of insulin resistance and systemic inflammation in women: A prospective study and
cross-sectional analysis. J. Am. Coll. Nutr. 2005, 24, 376–384. [CrossRef] [PubMed]

51. Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.;
Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [PubMed]

http://dx.doi.org/10.1136/bmj.39063.689375.55
http://www.ncbi.nlm.nih.gov/pubmed/17237299
http://dx.doi.org/10.1016/j.pcd.2011.10.006
http://www.ncbi.nlm.nih.gov/pubmed/22153888
http://dx.doi.org/10.2337/diacare.18.8.1104
http://www.ncbi.nlm.nih.gov/pubmed/7587845
http://www.ncbi.nlm.nih.gov/pubmed/18287369
http://dx.doi.org/10.2337/dc11-2388
http://www.ncbi.nlm.nih.gov/pubmed/22474042
http://dx.doi.org/10.3945/ajcn.113.069641
http://www.ncbi.nlm.nih.gov/pubmed/24257723
http://dx.doi.org/10.1021/jf100128b
http://www.ncbi.nlm.nih.gov/pubmed/20302342
http://www.ncbi.nlm.nih.gov/pubmed/17449588
http://dx.doi.org/10.1007/s00394-015-0950-x
http://www.ncbi.nlm.nih.gov/pubmed/26081647
http://dx.doi.org/10.1016/S0924-2244(00)00048-0
http://dx.doi.org/10.1055/s-2004-835835
http://www.ncbi.nlm.nih.gov/pubmed/15643541
http://dx.doi.org/10.1139/cjpp-2012-0307
http://www.ncbi.nlm.nih.gov/pubmed/23745830
http://dx.doi.org/10.3390/ijms11041365
http://www.ncbi.nlm.nih.gov/pubmed/20480025
http://dx.doi.org/10.3945/jn.114.208736
http://www.ncbi.nlm.nih.gov/pubmed/25904735
http://dx.doi.org/10.2337/dc13-0877
http://www.ncbi.nlm.nih.gov/pubmed/24130345
http://dx.doi.org/10.3945/ajcn.111.028894
http://www.ncbi.nlm.nih.gov/pubmed/22357723
http://dx.doi.org/10.1080/07315724.2005.10719488
http://www.ncbi.nlm.nih.gov/pubmed/16192263
http://www.ncbi.nlm.nih.gov/pubmed/12198000


Nutrients 2017, 9, 788 14 of 21

52. Nettleton, J.A.; Harnack, L.J.; Scrafford, C.G.; Mink, P.J.; Barraj, L.M.; Jacobs, D.R. Dietary flavonoids and
flavonoid-rich foods are not associated with risk of type 2 diabetes in postmenopausal women. J. Nutr. 2006,
136, 3039–3045. [PubMed]

53. Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S.
[PubMed]

54. Spencer, J.P.; El Mohsen, M.M.A.; Minihane, A.-M.; Mathers, J.C. Biomarkers of the intake of dietary
polyphenols: Strengths, limitations and application in nutrition research. Br. J. Nutr. 2008, 99, 12–22.
[CrossRef] [PubMed]

55. Takechi, R.; Alfonso, H.; Harrison, A.; Hiramatsu, N.; Ishisaka, A.; Tanaka, A.; Tan, L.B.; Lee, A.H. Assessing
self-reported green tea and coffee consumption by food frequency questionnaire and food record and their
association with polyphenol biomarkers in Japanese women. Asia Pac. J. Clin. Nutr. 2017. [CrossRef]

56. Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary
(poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against
chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [CrossRef] [PubMed]

57. Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C.G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.;
Del Rio, D.; Crozier, A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related
compounds: An update. Arch. Toxicol. 2014, 88, 1803–1853. [CrossRef] [PubMed]

58. Zanotti, I.; Dall’Asta, M.; Mena, P.; Mele, L.; Bruni, R.; Ray, S.; Del Rio, D. Atheroprotective effects of (poly)
phenols: A focus on cell cholesterol metabolism. Food Funct. 2015, 6, 13–31. [CrossRef] [PubMed]

59. Hughes, L.A.; Arts, I.C.; Ambergen, T.; Brants, H.A.; Dagnelie, P.C.; Goldbohm, R.A.; van den Brandt, P.A.;
Weijenberg, M.P. Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase
in BMI over time in women: A longitudinal analysis from the Netherlands cohort study. Am. J. Clin. Nutr.
2008, 88, 1341–1352. [PubMed]

60. Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of
diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [CrossRef] [PubMed]

61. Liu, Y.-J.; Zhan, J.; Liu, X.-L.; Wang, Y.; Ji, J.; He, Q.-Q. Dietary flavonoids intake and risk of type 2 diabetes:
A meta-analysis of prospective cohort studies. Clin. Nutr. 2014, 33, 59–63. [CrossRef] [PubMed]

62. Anhê, F.F.; Desjardins, Y.; Pilon, G.; Dudonné, S.; Genovese, M.I.; Lajolo, F.M.; Marette, A. Polyphenols and
type 2 diabetes: A prospective review. PharmaNutrition 2013, 1, 105–114. [CrossRef]

63. Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of
diabetes: A review. J. Diabetes Metab. Disord. 2013, 12, 43. [CrossRef] [PubMed]

64. Xiao, J.; Hogger, P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives.
Curr. Med. Chem. 2015, 22, 23–38. [CrossRef] [PubMed]

65. George, A.S.; Ben, A.C.; Efthimios, K.; Anastassia, L.K.; Demetra, S.M.C.; Vassiliki, T.S.; Atsushi, K.;
Joseph, M.H.; Demetres, D.L. Phytogenic polyphenols as glycogen phosphorylase inhibitors: The potential
of triterpenes and flavonoids for glycaemic control in type 2 diabetes. Curr. Med. Chem. 2017, 24, 384–403.

66. Abunab, H.; Dator, W.L.; Hawamdeh, S. Effect of olive leaf extract on glucose levels in diabetes-induced rats:
A systematic review and meta-analysis. J. Diabetes 2016. [CrossRef] [PubMed]

67. De Bock, M.; Derraik, J.G.; Brennan, C.M.; Biggs, J.B.; Morgan, P.E.; Hodgkinson, S.C.; Hofman, P.L.;
Cutfield, W.S. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight
men: A randomized, placebo-controlled, crossover trial. PLoS ONE 2013, 8, e57622. [CrossRef] [PubMed]

68. Wainstein, J.; Ganz, T.; Boaz, M.; Bar Dayan, Y.; Dolev, E.; Kerem, Z.; Madar, Z. Olive leaf extract as a
hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food 2012, 15, 605–610. [CrossRef]
[PubMed]

69. Boaz, M.; Leibovitz, E.; Dayan, Y.B.; Wainstein, J. Functional foods in the treatment of type 2 diabetes: Olive
leaf extract, turmeric and fenugreek, a qualitative review. Funct. Foods Health Dis. 2011, 1, 472–481.

70. Cumaoglu, A.; Rackova, L.; Stefek, M.; Kartal, M.; Maechler, P.; Karasu, Ç. Effects of olive leaf polyphenols
against H2O2 toxicity in insulin secreting β-cells. Acta Biochim. Pol. 2011, 58, 45–50. [PubMed]

71. Palma-Duran, S.A.; Vlassopoulos, A.; Lean, M.; Govan, L.; Combet, E. Nutritional intervention and impact
of polyphenol on glycohemoglobin (HbA1c) in non-diabetic and type 2 diabetic subjects: Systematic review
and meta-analysis. Crit. Rev. Food Sci. Nutr. 2017, 57, 975–986. [CrossRef] [PubMed]

72. Stevenson, D.E.; Hurst, R.D. Polyphenolic phytochemicals—Just antioxidants or much more? Cell. Mol.
Life Sci. 2007, 64, 2900–2916. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/17116717
http://www.ncbi.nlm.nih.gov/pubmed/10917926
http://dx.doi.org/10.1017/S0007114507798938
http://www.ncbi.nlm.nih.gov/pubmed/17666146
http://dx.doi.org/10.6133/apjcn.052017.06
http://dx.doi.org/10.1089/ars.2012.4581
http://www.ncbi.nlm.nih.gov/pubmed/22794138
http://dx.doi.org/10.1007/s00204-014-1330-7
http://www.ncbi.nlm.nih.gov/pubmed/25182418
http://dx.doi.org/10.1039/C4FO00670D
http://www.ncbi.nlm.nih.gov/pubmed/25367393
http://www.ncbi.nlm.nih.gov/pubmed/18996871
http://dx.doi.org/10.1080/1040869059096
http://www.ncbi.nlm.nih.gov/pubmed/16047496
http://dx.doi.org/10.1016/j.clnu.2013.03.011
http://www.ncbi.nlm.nih.gov/pubmed/23591151
http://dx.doi.org/10.1016/j.phanu.2013.07.004
http://dx.doi.org/10.1186/2251-6581-12-43
http://www.ncbi.nlm.nih.gov/pubmed/23938049
http://dx.doi.org/10.2174/0929867321666140706130807
http://www.ncbi.nlm.nih.gov/pubmed/25005188
http://dx.doi.org/10.1111/1753-0407.12508
http://www.ncbi.nlm.nih.gov/pubmed/27860303
http://dx.doi.org/10.1371/journal.pone.0057622
http://www.ncbi.nlm.nih.gov/pubmed/23516412
http://dx.doi.org/10.1089/jmf.2011.0243
http://www.ncbi.nlm.nih.gov/pubmed/22512698
http://www.ncbi.nlm.nih.gov/pubmed/21383995
http://dx.doi.org/10.1080/10408398.2014.973932
http://www.ncbi.nlm.nih.gov/pubmed/25746842
http://dx.doi.org/10.1007/s00018-007-7237-1
http://www.ncbi.nlm.nih.gov/pubmed/17726576


Nutrients 2017, 9, 788 15 of 21

73. Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [CrossRef]
[PubMed]

74. Hollman, P.C.H.; van Trijp, J.M.P.; Buysman, M.N.C.P.; van der Gaag, M.S.; Mengelers, M.J.B.; de Vries, J.H.M.;
Katan, M.B. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man.
FEBS Lett. 1997, 418, 152–156. [CrossRef]

75. Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. Usda Database for the Flavonoid Content of Selected Foods, Release 3.1;
US Department of Agriculture: Beltsville, MD, USA, 2014.

76. Kreft, I.; Fabjan, N.; Yasumoto, K. Rutin content in buckwheat (fagopyrum esculentum moench) food
materials and products. Food Chem. 2006, 98, 508–512. [CrossRef]

77. Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in
red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal. 2008, 21, 589–598.
[CrossRef]

78. Sun, T.; Powers, J.R.; Tang, J. Evaluation of the antioxidant activity of asparagus, broccoli and their juices.
Food Chem. 2007, 105, 101–106. [CrossRef]

79. Bajpai, M.; Mishra, A.; Prakash, D. Antioxidant and free radical scavenging activities of some leafy vegetables.
Int. J. Food Sci. Nutr. 2005, 56, 473–481. [CrossRef] [PubMed]
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