

CDMTCS

Research
Report
Series

On a Theorem of Solovay

Cristian S. Calude and Richard Coles

Department of Computer Science
University of Auckland
Auckland, New Zealand

CDMTCS-094
February 1999

Centre for Discrete Mathematics and Theoretical Computer Science

On a Theorem of Solovay

Cristian S. Calude and Richard Coles
Department of Computer Science
University of Auckland
Private Bag 92019, Auckland
New Zealand
Emails: \{cristian, coles\}@cs.auckland.ac.nz

Abstract

We present a proof of the following result due to Solovay: There exists a noncomputable Δ_{2}^{0} real x such that $H\left(x_{n}\right) \leqslant H(n)+O(1)$.

1 Introduction

Solovay [10] introduced the domination relation which plays an important role in defining the so-called Ω-like reals. The class of Ω-like reals coincides with the class of Chaitin Ω reals (halting probabilities of universal self-delimiting Turing machines, see for example [5, 6, 7, 2, 9]) (cf. [4]) and the class of c.e. random reals (cf. Slaman [11]). Solovay proved that if x and y are two c.e. reals and y dominates x, then $H\left(x_{n}\right) \leqslant H\left(y_{n}\right)+O(1)$. In Calude and Coles [3] we prove that the converse implication is false, namely there are c.e. reals x and y such that $H\left(x_{n}\right) \leqslant H\left(y_{n}\right)+O(1)$ and y does not dominate x. We do this by constructing a noncomputable c.e. real x such that $H\left(x_{n}\right) \leqslant H(n)+O(1)$. The proof is based upon techniques of Solovay [10] where he proved the following theorem:

Theorem 1. There is a noncomputable Δ_{2}^{0} real x such that

$$
H\left(x_{n}\right) \leqslant H(n)+O(1)
$$

In this report we present a write up of Solovay's proof of Theorem 1. The original handwritten proof can be found in Solovay [10]. In Section 2 we introduce our notation and basic concepts. Sections 3,4 and 5 deal with constructing the Δ_{2}^{0} real mentioned above.

2 Preliminaries

Suppose $a, b \in\{0,1\}^{*}$, the set of binary strings. The concatenation of a, b is denoted by $a^{\sim} b$. Let $|a|$ denote the length of a. For $j \geqslant 0$, we write $a(j)=k$ iff the j th bit of a is k. We let \prec denote the quasi-lexicographical ordering of finite binary strings. We write string (n) to denote the nth string with respect to \prec. By $\min _{\prec}$ we denote the minimum operation taken according to \prec.

We fix a computable bijective function $\langle\cdot, \cdot\rangle$ from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}. We write $\log n$ to denote $\log _{2} n$. For a function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$, we define $O(f)=\left\{g:\{0,1\}^{*} \rightarrow \mathbb{N} \mid \exists c \in \mathbb{N} \forall a \in\{0,1\}^{*}(g(a) \leqslant c \cdot f(a))\right\}$. Suppose $h_{0}, h_{1}:\{0,1\}^{*} \rightarrow \mathbb{N}$. We write $O(1)$ for $O(f)$ when f is the constant function $f(a)=1$ for all $a \in\{0,1\}^{*}$. We write $h_{0} \leqslant h_{1}+O(f)$ if there is a function $g \in O(f)$ such that $h_{0}(a) \leqslant h_{1}(a)+g(a)$ for all $a \in\{0,1\}^{*}$.

We will look at real numbers in the interval $[0,1]$ through their binary expansions, i.e., in terms of functions $n \mapsto x_{n}$ (from \mathbb{N} into $\{0,1\}$). We write $\left(x_{n}\right)_{n}$ for the sequence $n \mapsto x_{n}$. A real is computable if the function $n \mapsto x_{n}$ is computable. A real $x=\left(x_{n}\right)_{n}$ is computable enumerable (c.e.) if it is the limit of a computable, increasing, converging sequence of rationals. Equivalently, $\alpha=0 . \chi_{A}$ is a c.e. real if A has a computable approximation $\{A[s]\}_{s \geqslant 0}$ such that whenever $i \in A[s]$ and $i \notin A[s+1]$, then there is some $j<i$ such that $j \notin A[s]$ and $j \in A[s+1] ; \chi_{A}$ is the characteristic function of A.

Let ϕ_{e} be a standard list of all partial computable functions from \mathbb{N} into \mathbb{N}. In case $\phi_{e}(x)$ halts (and produces y) we write $\phi_{e}(x) \downarrow\left(\phi_{e}(x) \downarrow=y\right)$; otherwise, $\phi_{e}(x) \uparrow$. By $\phi_{e}(x)[t]$ we denote the time relativised version of $\phi_{e}(x)$, i.e., $\phi_{e}(x)[t]=\phi_{e}(x)$ in case $\phi_{e}(x)$ halts in time t. The binary predicate $\phi_{e}(x)[t] \downarrow$ is primitive recursive. We will adopt the following convention: if $\phi_{e}(x)[t] \downarrow$, then $\phi_{e}(x) \leqslant t .{ }^{1}$ By dom ϕ_{e} we denote the domain of the partial function ϕ_{e}.

A self-delimiting computer is a partial computable function C from $\{0,1\}^{*} \times\{0,1\}^{*}$ with values in $\{0,1\}^{*}$ such that for every $y \in\{0,1\}^{*}$ the set $\{x \mid C(x, y) \downarrow\}$ is prefix-free. Here C stands for the interpreter, x for the program, and y for the input data.

The Invariance Theorem ([5, 7, 2, 10]) states the existence of a universal computer U with the property that for every computer C there is a constant d (depending upon U and C) such that if $C(x, y)=z$, then $U\left(x^{\prime}, y\right)=z$, for some program x^{\prime} with the length $\left|x^{\prime}\right| \leqslant|x|+d$. Note that U does not need more than a primitive recursive extra time to simulate C, i.e., there is a primitive recursive function h such that if $C(x, y)[t] \downarrow=z$, then $U\left(x^{\prime}, y\right)[h(t)] \downarrow=z$. In what follows we will fix a universal computer U. Let a^{*} be the quasilexicographical least p such that $U(p, \lambda)=a$.

[^0]Define the following program-size complexities ([6]):

$$
\begin{gathered}
H(a)=\min \{|p| \mid U(p, \lambda)=a\}, H(a, b)=H(\langle a, b\rangle), \\
H(a / b)=\min \left\{|p| \mid U\left(p, b^{*}\right)=a\right\}, \tilde{H}(a / b)=\min \{|p| \mid U(p, b)=a\}
\end{gathered}
$$

Note that $\tilde{H}\left(a / b^{*}\right)=H(a / b)$.
In expressions relating to strings, such as $U(p, \lambda)=n$, we are identifying n with the binary string 1^{n} of length n. We also write $H(n)$ for $H\left(1^{n}\right)$. In fact notice that $|H(n)-H(\operatorname{string}(n))|=O(1)$. For integers n, we write n^{*} for $\min _{\prec}\{p \mid U(p, \lambda)=n\}$.

We continue by defining some useful functions. For all $j, n, t \in \mathbb{N}$, define

$$
H(n)[t]=\min \{|p||U(p, \lambda)[t]=n \&| p \mid \leqslant t\}
$$

if such a p exists, $H(n)[t]=0$, otherwise. Further let,

$$
\alpha(n)[t]=\min \{H(j)[t] \mid j \geqslant n\}, \alpha(n)=\min \{H(j) \mid j \geqslant n\} .
$$

It is seen that $H(n)[t]$ and $\alpha(n)[t]$ are primitive recursive functions (reason: for the computation we only need the set $\{p|U(p, \lambda)[t],|p| \leqslant t\}$), decreasing in t, and $H(n)=\lim _{t} H(n)[t], \alpha(n)=\lim _{t} \alpha(n)[t]$.

Assume that D is an oracle and consider the relativised computation U^{D}. Then the relativised program-size complexities are defined in the obvious way, for example,

$$
H^{D}(a)=\min \left\{|p| \mid U^{D}(p, \lambda)=a\right\}
$$

If instead of a self-delimiting universal computer we work with a universal partial computable function V, then the induced complexities will be denoted by $K(a), K(a / b), \tilde{K}(a / b)$. We now summarise the known results relating the complexity of initial segments to the computability of a real. Let $x=\left(x_{n}\right)_{n}$ be a binary sequence.
Theorem 2 (Loveland [8]). x is computable iff $\tilde{K}\left(x_{n} / n\right)=O(1)$.
Corollary 3. x is computable iff $\tilde{H}\left(x_{n} / n\right)=O(1)$.
Theorem 4 (Chaitin [6]). x is computable iff $K\left(x_{n}\right) \leqslant K(n)+O(1)$.
Theorem 5 (Chaitin [6]). If $H\left(x_{n}\right) \leqslant H(n)+O(1)$, then $x \in \Delta_{2}^{0}$.
Proof. Start by noting that

$$
H\left(x_{n}\right)=H\left(n, x_{n}\right)+O(1)=H\left(x_{n} / n\right)+H(n)+O(1) .
$$

Now if x satisfies the hypothesis of the theorem, then we have

$$
H\left(x_{n} / n\right)+H(n)+O(1) \leqslant H(n)+O(1)
$$

Therefore $H\left(x_{n} / n\right)=O(1)$, and so $\tilde{H}\left(x_{n} / n^{*}\right)=O(1)$.
Relativising to the oracle $D=\{p \mid U(p, \lambda) \downarrow\}$, we have $\tilde{H}^{D}\left(n^{*} / n\right)=O(1)$, since the mapping $n \mapsto n^{*}$ is Turing reducible to D. Consequently,

$$
\tilde{H}^{D}\left(x_{n} / n\right) \leqslant \tilde{H}^{D}\left(x_{n} / n^{*}\right)+\tilde{H}^{D}\left(n^{*} / n\right)=O(1)
$$

therefore $\tilde{H}^{D}\left(x_{n} / n\right) \leqslant O(1)$. So by the relativised version of Corollary 3 we see that x is Δ_{2}^{0}.

3 Solovay-Universal Functions

We start by introducing the notion of a Solovay-universal function.
Definition 6. A partial computable function f from $\{0,1\}^{*}$ into $\{0,1\}^{*}$ is Solovay-universal if it satisfies the following three conditions:
(1) $\operatorname{dom}(f)=\operatorname{dom}(U, \lambda)$,
(2) $a \in \operatorname{dom}(U) \Longrightarrow|f(a)|=|U(a, \lambda)|$,
(3) for all $m, n \in \mathbb{N}, m<n \Longrightarrow f\left(m^{*}\right) \preccurlyeq f\left(n^{*}\right)$.

We will later prove that Solovay-universal functions do exist. The following proposition reveals the motivation for the definition.

Proposition 7. Suppose f is a Solovay-universal function. Then the real $x_{n}=f\left(n^{*}\right)$ satisfies $H\left(x_{n}\right) \leqslant H(n)+O(1)$.

Proof. We have

$$
\begin{aligned}
H\left(x_{n}\right) & \leqslant H\left(x_{n} / n\right)+H(n)+O(1) \\
& =\tilde{H}\left(x_{n} / n^{*}\right)+H(n)+O(1) .
\end{aligned}
$$

Since f is a partial computable function, $\tilde{H}\left(x_{n} / n^{*}\right)=O(1)$ and therefore $H\left(x_{n}\right) \leqslant H(n)+O(1)$ as required.

Hence, if we can construct a noncomputable real $x=\lim _{n} x_{n}$, where $x_{n}=f\left(n^{*}\right)$ for some Solovay-universal f, then we have proved Theorem 1.

We now show the existence of a Solovay-universal functions. First we need some definitions. Recall

$$
H(n)[t]=\min \{|p \| U(p, \lambda)[t]=n \&| p \mid \leqslant t\} .
$$

Let $\left(t_{i}\right)_{i}$ be a computable increasing sequence of natural numbers. Define the total computable function σ as follows:

$$
\sigma(i)=\max \left\{j \leqslant i \mid H(j)\left[t_{i}\right]=H(j)\left[t_{i}+1\right]\right\} .
$$

Notice that the graph of $\sigma(i)$ is primitive recursive and that $\sigma(i) \leqslant i$.
Let $\left(t_{i}\right)_{i}$ be a computable sequence of times such that $i<t_{i}<t_{i+1}$ and a c.e. set $\left\{p_{i}\right\}$ of programs such that $U\left(p_{i}, \lambda\right)\left[t_{i}\right]=i$. For $i \in \mathbb{N}$ define

$$
A_{i}=\left\{p\left|U(p, \lambda)\left[t_{i}\right] \downarrow \&\right| U(p, \lambda) \mid \leqslant i\right\} .
$$

Notice that for every $i \in \mathbb{N}, A_{i}$ is computable, $A_{i} \subset A_{i+1}$. For every $n \in \mathbb{N}$, $n^{*} \in A_{i+1} \backslash A_{i}$ for some i.

The following statement is immediate from the definitions of $H(n)[t], \sigma$, and A_{i}.

Proposition 8. If $n^{*} \in A_{i+1} \backslash A_{i}$ then $n^{*} \in A_{j}$ for all $j \geqslant i+1$, and consequently $H(n)[t]=\left|n^{*}\right|$ and $\sigma\left(i^{\prime}\right) \geqslant n$ for all $i^{\prime} \geqslant i+1$ and $t \geqslant t_{i+1}$.

Now suppose $(z[i])_{i \in \mathbb{N}}$ is a computable sequence of binary strings such that $|z[i]| \geqslant i$, and

$$
\forall i(j<\sigma(i) \Longrightarrow z[i](j)=z[i+1](j))
$$

Recall that $z[i](j)$ is the j th bit of $z[i]$. The existence of such a sequence of strings will be proven in Theorem 14.

We now define a partial function F as follows: If $p \in A_{i+1} \backslash A_{i}$, then let $F(p)$ be the initial segment of $z[i+1]$ of length $|U(p, \lambda)|$.

Proposition 9. F is Solovay-universal.
Proof. Since $\{z[i]\}_{i \in \mathbb{N}}$ is a computable sequence of binary strings and each A_{i} is computable, then F is a partial computable function. If $p \in \operatorname{dom} U$, then $p \in A_{i+1}$ for some minimal i and hence $\operatorname{dom} F=\operatorname{dom} U$. By definition of F, $p \in \operatorname{dom} U$ implies that $|F(p)|=|U(p, \lambda)|$. It remains to show that condition (3) of Definition 6 is satisfied.

Suppose $n^{*} \in A_{i_{0}+1} \backslash A_{i_{0}}$. Then $H(n)[t]=\left|n^{*}\right|$ and $\sigma(i) \geqslant n$ for all $i \geqslant i_{0}+1$ and for all $t \geqslant t_{i_{0}+1}$ by Proposition 8. Then by (\dagger), $z[k](j)=z\left[i_{0}+1\right](j)$ for all $k \geqslant i_{0}+1$ and $j \leqslant \sigma\left(i_{0}+1\right)$. Thus for $j<n$, $\lim _{i} z[i](j)=z\left[i_{0}+1\right](j)$. Define $z(j)=\lim _{i} z[i](j)$. Now $F\left(n^{*}\right)$ is defined to be the initial segment of z of length n and hence condition (3) of Definition 6 is satisfied. Therefore F is a Solovay-universal.

4 Two Useful Results

Before proving Theorem 1 we need two useful theorems, namely Theorems 10 and 11 below. Let B be a total increasing computable function which is not primitive recursive, but has a primitive recursive graph. For example take B to be Ackermann's diagonal function. Then in fact, B dominates any primitive recursive function, that is, for every primitive recursive function g, $B(n)>g(n)$, for almost all natural n; see [1].

Theorem 10. There is a computable sequence of times $\left(t_{n}\right)_{n}$, such that $t_{n}<t_{n+1}$ for all $n \in \mathbb{N}$, and for all $n>0$,
(1) there is a natural number s_{n} such that $B\left(t_{n-1}\right) \leqslant s_{n}<B\left(s_{n}\right)=t_{n}$,
(2) for all programs p with $|p| \leqslant B\left(t_{n-1}\right), U(p, \lambda) \downarrow$ implies that either $U(p, \lambda)\left[s_{n}\right] \downarrow$ or $U(p, \lambda)\left[B\left(s_{n}\right)\right] \uparrow$,
(3) the predicate $t_{n}=j$ is primitive recursive, but the function $n \mapsto t_{n}$ is not primitive recursive.

Proof. Let $t_{0}=0$ and assume that $s_{1}, \ldots, s_{n-1}, t_{1}, \ldots, t_{n-1}$ have been defined. Let Q be the set of all programs of length less than or equal to $B\left(t_{n-1}\right)$. Let $r_{1}=t_{n-1}$ and define the following three sets: $X_{1}=\left\{p \in Q \mid U(p, \lambda)\left[r_{1}\right] \downarrow\right\}, Y_{1}=Q \backslash X_{1}, Z_{1}=\left\{p \in Y_{1} \mid U(p, \lambda)\left[B\left(r_{1}\right)\right] \downarrow\right\}$.

If $Z_{1}=\emptyset$, then we let $s_{n}=r_{1}$ and $t_{n}=B\left(s_{n}\right)$. Otherwise we have $Z_{1} \neq \emptyset$, in which case set $r_{2}=B\left(r_{1}\right)$ and define $X_{2}=X_{1} \cup Z_{1}, Y_{2}=Q \backslash X_{2}, Z_{2}=\left\{p \in Y_{2} \mid U(p, \lambda)\left[B\left(r_{2}\right)\right] \downarrow\right\}$.

If $Z_{2}=\emptyset$, then let $s_{n}=r_{2}$ and $t_{n}=B\left(s_{n}\right)$. Otherwise continue this process until reaching a step i with $Z_{i}=\emptyset$ and hence let $s_{n}=r_{i}$ and $t_{n}=B\left(s_{n}\right)$. Such an i must be reached since $X_{1} \subset X_{2} \subset \ldots \subseteq Q \supseteq Y_{1} \supset Y_{2} \supset \ldots, Q$ is finite and $Y_{i} \supset Z_{i}$.

It follows that (1) and (2) are satisfied. Part (3) follows from properties of Ackermann's diagonal function B.

We use the sequence of times $\left(t_{n}\right)_{n}$ constructed above in the following theorem, which plays a crucial role in the priority argument in Section 5. In particular, the function σ we work with is defined with respect to this sequence of times.

Theorem 11. There is a computable sequence of times $\left(t_{i}\right)_{i \geqslant 0}, t_{i}<t_{i+1}$ and a c.e. set $\left\{p_{i}\right\}_{i \geqslant 0}$ of programs such that $U\left(p_{i}, \lambda\right)\left[t_{i}\right]=i$, for which the following condition holds true: if $g: \mathbb{N} \rightarrow \mathbb{N}$ is a total computable function, then for infinitely many natural numbers $i, g(\sigma(i))<i$.

Proof. Take the sequence of times $\left(t_{i}\right)_{i}$ constructed in Theorem 10. Suppose for a contradiction that $g(\sigma(n)) \geqslant n$ for almost all n. We may assume that g is increasing, and in fact that it dominates all primitive recursive functions.

Let $G(n)=\min \{m \mid g(m+1) \geqslant n\}$. Then our assumption on g implies that $G(n) \leqslant \sigma(n)$ for almost all n. Note that $G(n) \leqslant t_{n}$ under this assumption.

The intuition for obtaining the contradiction is as follows. The function $\sigma(i)$, roughly speaking, is the largest j such that the approximation to $H(j)$ does not change between time steps t_{i} and t_{i+1}. Therefore to show $G(n)>\sigma(n)$ we would like to construct short programs (of length $\leqslant B\left(t_{n}\right)$) for $j \in[G(n), n]$ which halt by time t_{n+1}. We will be able to do this if
(i) n has a short program that converges in approximately time t_{n},
(ii) $\sum_{G(n) \leqslant j \leqslant n} 2^{-H(j)\left[t_{n}\right]}$ is small,
because then we can use the Kraft-Chaitin Theorem to construct new codes (programs) for all $j \in[G(n), n]$. The next two lemmata perform this task.
Lemma 12. There is a primitive recursive function h such that for almost all k, there is a number n_{k} such that $\alpha\left(G\left(n_{k}\right)\right)\left[t_{n_{k}}\right] \geqslant k$, and a program $p_{n_{k}}$ such that $U\left(p_{n_{k}}, \lambda\right)\left[h\left(t_{n_{k}}\right)\right] \downarrow=n_{k}$, and $\left|p_{n_{k}}\right|=O(\log k)$.

Proof. Fix $k \in \mathbb{N}$. If n is sufficiently large then $\alpha(G(n)) \geqslant k$ because g is unbounded, and so $\alpha(G(n))\left[t_{n}\right] \geqslant k$. Let

$$
n_{k}=\min \left\{m \mid m>k \text { and } \alpha(G(m))\left[t_{m}\right] \geqslant k\right\} .
$$

For large n,

$$
G(n)=\min \{m \mid m \leqslant \sigma(n) \text { and } g(m+1) \geqslant n\}
$$

so G is primitive recursive. Further, the predicate, $\alpha(n)[t] \geqslant k$ is also primitive recursive as it can be expressed by the formula

$$
(\forall n \leqslant j \leqslant t,|p| \leqslant t(U(p, \lambda)[t]=j \Longrightarrow|p| \geqslant k)) \text { or }(n>t) .
$$

So the function $k \mapsto n_{k}$ has a primitive recursive graph: $U(p, \lambda)\left[t_{m}\right]=j$ iff $U(p, \lambda)[s]=j$, for some $s \leqslant t_{m}$. Let $h_{1}(k, s)$ be the primitive recursive function evaluating the running time of the predicate $n_{k}=s$.

Now consider the self-delimiting computer $C\left(1^{\log k} 0, \lambda\right)=n_{k}$. Use the Invariance Theorem to show that for every natural k there is a program, $p_{n_{k}}$ say, such that $\left|p_{n_{k}}\right|=O(\log k)$ such that $U\left(p_{n_{k}}, \lambda\right)=n_{k}$. The time necessary to compute $p_{n_{k}}$ from k is the sum between the time to get n_{k} from k (a primitive recursive function in $\left.n_{k}, h_{1}\left(k, n_{k}\right)\right)$ and the time to simulate C on U, which is primitive recursive in the running time of C, i.e., $h\left(h_{1}\left(k, n_{k}\right)\right)$.

Lemma 13. For sufficiently large k,

$$
\sum_{G\left(n_{k}\right) \leqslant j \leqslant n_{k}} 2^{-H(j)\left[t_{n_{k}}\right]} \leqslant 2^{-k / 2} .
$$

Proof. Again, let k be sufficiently large so that $\alpha\left(G\left(n_{k}\right)\right) \geqslant k$. Suppose for a contradiction that

$$
\sum_{G\left(n_{k}\right) \leqslant j \leqslant n_{k}} 2^{-H(j)\left[t_{n_{k}}\right]}>2^{-k / 2} .
$$

The number $\sum_{G\left(n_{k}\right) \leqslant j \leqslant n_{k}} 2^{-H(j)\left[t_{n_{k}}\right]}$ can be computed in a primitive recursive way and is less than 1 . Computing its most significant $k / 2$ digits we get a $j \in\left[G\left(n_{k}\right), n_{k}\right]$ and a program p_{j} such that $\left|p_{j}\right| \leqslant k / 2+O(1), U\left(p_{j}, \lambda\right)=j$, and $U\left(p_{j}, \lambda\right)[z] \downarrow$ for some z. Consequently, $H(j) \leqslant k / 2+O(1)$, so

$$
\alpha\left(G\left(n_{k}\right)\right)=\min \left\{H(j) \mid j \geqslant G\left(n_{k}\right)\right\} \leqslant k / 2+O(1) .
$$

For sufficiently large k, this contradicts $\alpha\left(G\left(n_{k}\right)\right) \geqslant k$, hence the required inequality has been demonstrated.

We now continue with the proof of Theorem 11. Consider the following self-delimiting computer:
(1) input $\operatorname{string}(k) \subset y$,
(2) compute n_{k} using the procedure in Lemma 12,
(3) compute $t_{n_{k}}$ and $G\left(n_{k}\right)$,
(4) now use the Kraft-Chaitin Theorem ${ }^{2}$ to construct a prefix-free set $E=\left\{e_{j} \mid j \in\left[G\left(n_{k}\right), n_{k}\right]\right\}$ such that $\left|e_{j}\right| \leqslant H(j)\left[t_{n_{k}}\right]-k / 2$, which is possible by Lemma 13,
(5) output the code e_{y} of y if $y \in\left[G\left(n_{k}\right), n_{k}\right]$.

The time of this procedure is $h_{0}\left(t_{n_{k}}\right)$ for some primitive recursive function h_{0}, and so $t_{n_{k}+1}>B\left(t_{n_{k}}\right) \geqslant h_{0}\left(t_{n_{k}}\right)$. Hence for $j \in\left[G\left(n_{k}\right), n_{k}\right]$,

$$
H(j)\left[t_{n_{k}+1}\right] \leqslant H(j)\left[t_{n_{k}}\right]-k / 2+O(\log k) .
$$

The $O(\log k)$ term is derived from the length of the program in Lemma 12 for computing n_{k} from k. Hence for sufficiently large $k, \sigma\left(n_{k}\right) \leqslant G\left(n_{k}\right)$, contradicting our assumption that $G(n)<\sigma(n)$ for almost all n.

5 The Priority Argument

Having established Theorem 11, we are now in a position to complete the proof of Theorem 1.

Theorem 14. There is a noncomputable real x satisfying

$$
H\left(x_{n}\right) \leqslant H(n)+O(1)
$$

Proof. We construct a computable sequence of binary strings $(z[i])_{i \in \mathbb{N}}$ such that $z=\lim _{i} z[i]$ exists. Furthermore we construct $(z[i])_{i \in \mathbb{N}}$ to satisfy

$$
\forall s(j<\sigma(s+1) \Longrightarrow z[s](j)=z[s+1](j))
$$

Then as in Section 3 we define $F(p)$ to be the initial segment of $z[i+1]$ of length $|U(p, \lambda)|$ if $p \in A_{i+1} \backslash A_{i}$. Hence F is Solovay-universal.

Consequently, defining $x=\lim _{n} x_{n}$, where $x_{n}=F\left(n^{*}\right)$ provides the necessary x satisfying, for all $n \in \mathbb{N}$,

$$
H\left(x_{n}\right) \leqslant H(n)+O(1) .
$$

[^1]Notice that $x=z$.
We construct z to meet the following requirements for all $e \in \mathbb{N}$:
$\mathrm{R}_{e}: \exists m\left(\phi_{e}(m) \neq z(m)\right)$.
The classical diagonalisation strategy for this requirement is to choose some m at stage s with $z(m)[s]=0$ and wait for $\phi_{e}(m) \downarrow[t]=0$. When this occurs we set $z(m)=1$. If $\phi_{e}(m) \uparrow$ or $\phi_{e}(m) \downarrow \neq 0$ then $z(m)=0 \neq \phi_{e}(m)$. If $\phi_{e}(m) \downarrow=0$ at some stage t then of course $\phi_{e}(m)=0 \neq 1=z(m)$.

We modify this strategy so that we construct z to meet (\dagger). We first address the issue of meeting (\dagger) for one R_{e} requirement.

To satisfy (\dagger) we must ensure $z(j)[s]=z(j)[s+1]$ for all $j<\sigma(s+1)$. In Proposition 8 we saw that if $n^{*} \in A_{i+1} \backslash A_{i}$ then $n^{*} \in A_{j}$ for all $j \geqslant t_{i+1}$ and consequently $H(n)[t]=\left|n^{*}\right|$ and $\sigma\left(i^{\prime}\right) \geqslant n$ for all $i^{\prime} \geqslant i+1$ and $t \geqslant t_{i+1}$. This means that when $n^{*} \in A_{i+1} \backslash A_{i}$, then we may no longer change our approximation to z on the initial segment of length n. That is $z(j)[s]=z(j)$ for all $j<n$ and $s \geqslant i+1$. However, H is not computable and so we cannot know when an element in A_{i} is n^{*} for some n.

Now suppose we assign $\sigma(m)$ to be a witness for R_{e}. We do not know if $\phi_{e}(\sigma(m))$ converges, and if so, at which stage it converges. If $\phi_{e}(\sigma(m))=0$ and converges at stage t and yet $n^{*} \in A_{s}$ for some $s<t$, then we cannot define $z(\sigma(m))[t]=1$ to diagonalise against $\phi_{e}(\sigma(m))$ without compromising condition (\dagger). The solution is to have witnesses that can be used before condition (\dagger) prevents it. The existence of such witnesses is provided by Theorem 11. If ϕ_{e} is a total computable function then let $g: \mathbb{N} \mapsto \mathbb{N}$ be the total computable function such that $g(i)$ is the number of steps it takes for $\phi_{e}(i)$ to converge. Then Theorem 11 tells us that there are infinitely many $\sigma(i)$ such that $\phi_{e}(\sigma(i))$ converges in less than i steps.

Thus at stage $s+1$ of the construction if R_{e} is currently not satisfied and $\phi_{e}(\sigma(s+1)) \downarrow=0$ then we define $z(\sigma(s+1))=1$ and $z[s+1](j)=z[s](j)$ for all $j<\sigma(s+1)$, thus satisfying (\dagger). If ϕ_{e} is total then Theorem 11 provides many such $\sigma(s+1)$ as discussed above.

We now consider how to meet (\dagger) in the presence of more than one requirement. The problem is that σ is not a 1-1 function. That is $\sigma\left(s_{1}\right)$ may equal $\sigma\left(s_{2}\right)$ for $s_{1} \neq s_{2}$. Therefore higher priority requirements are allowed to change the value of $z(\sigma(i))[s+1]$ even if it has been defined to be something different by a lower priority requirement. The priority ordering ensures that for every $j, z[s+1](j) \neq z[s](j)$ for only finitely many s. Hence z will be Δ_{2}^{0}.

For example, suppose R_{1} is of higher priority than R_{2}. At stage $s_{0}+1$ suppose $\phi_{2}\left(\sigma\left(s_{0}+1\right)\right)\left[s_{0}+1\right] \downarrow=0$ and we defined $z\left[s_{0}+1\right]\left(\sigma\left(s_{0}+1\right)\right)=1$. Then at some later stage, s_{1} say, $\phi_{1}\left(\sigma\left(s_{1}+1\right)\right) \downarrow=1$ where $\sigma\left(s_{1}+1\right)=\sigma\left(s_{0}+1\right)$. Then R_{1} wants to define $z\left[s_{1}+1\right]\left(\sigma\left(s_{1}+1\right)\right)=0$. This can be done and still meet (\dagger), but results in a Δ_{2}^{0} real z being constructed. R_{1} must be allowed to take $\sigma\left(s_{1}+1\right)$ as a witness otherwise we run the risk of more and more lower priority requirements from depriving R_{1} of ever having a usable witness.

The Construction.

Stage $\mathbf{0}: z[0]=\lambda$, the empty string.
Stage $\mathbf{s}+1$:
We say that R_{e} requires attention at stage $s+1$ if
(i) $e<s+1$,
(ii) $\phi_{e}(\sigma(s+1))$ converges in at most $s+1$ steps,
(iii) $\sigma(s+1)$ is not a witness for any $\mathrm{R}_{e^{\prime}}$ for $e^{\prime}<e$,
(iv) R_{e} has no witness at stage $s+1$ and $\sigma(s+1)$ was not previously a witness of e.

We define $z[s+1]$ to be a string of length $s+1$ as follows.

- If no R_{e} requires attention at stage $s+1$ then let $z[s+1]$ be the extension of $z[s]$ such that $z[s+1](s)=0$.
- Otherwise let e_{0} be the least e such that R_{e} requires attention at stage $s+1$. We say $\mathrm{R}_{e_{0}}$ receives attention at stage $s+1$.
Define $z[s+1](\sigma(s+1)) \neq \phi_{e_{0}}(\sigma(s+1))$, and make $\sigma(s+1)$ a witness for $\mathrm{R}_{e_{0}}$. Define $z[s+1](n)=z[s](n)$ for all $n<\sigma(s+1)$. Define $z[s+1](n)=0$ for all n such that $\sigma(n)<n<s+1$.
Cancel all witnesses assigned to $\mathrm{R}_{e^{\prime}}$ for $e^{\prime}>e$.

The Verification.

It is clear that $(z[i])_{i \geqslant 0}$ is a computable sequence and that $z[i](k)=z[i+1](k)$ if $k<\sigma(i+1)$, thus satisfying (\dagger). We now define F as in Section 3, that is if $y \in A_{i+1} \backslash A_{i}$, then $F(y)$ is the initial segment of $z[i+1]$ of length $|U(y, \lambda)|$. We let $x_{n}=F\left(n^{*}\right)$ and $x=\lim _{n} x_{n}$. It follows that F is Solovay-universal and so x satisfies $H\left(x_{n}\right) \leqslant H(n)+O(1)$.

It remains to show that x is a noncomputable real.
Proposition 15. For all $e \in \mathbb{N}, \mathrm{R}_{e}$ has at most a finite number of witnesses.
Proof. An easy induction on e shows that R_{e} only requires attention finitely often.

Proposition 16. If ϕ_{e} is total then R_{e} has a final witness.
Proof. Suppose R_{e} does not get a final witness and all $\mathrm{R}_{e^{\prime}}$ for $e^{\prime}<e$ have a final witness by stage s_{0} and never require attention after stage s_{0}. Then it is clear that clause (i) holds for all $s \geqslant s_{0}$. Furthermore we may choose $s_{1} \geqslant s_{0}$ so that (iii) holds for R_{e} for all $s \geqslant s_{1}$ since $\lim _{s} \sigma(s)=\infty$. Let $g(n)$ be the number of steps it takes for $\phi_{e}(n)$ to converge. Then clause (ii) holds infinitely often since by Theorem 11 there are infinitely many i such that $g(\sigma(i))<i$. Thus clause (iv) must fail, otherwise R_{e} would receive attention at some stage $s_{2} \geqslant s_{1}$. But then the witness that R_{e} has that contradicts (iv) is permanent.

Proposition 17. If m is the final witness of R_{e}, then $x(m)=z(m) \neq \phi_{e}(m)$.
Proof. By construction, if m is the final witness for R_{e} then $x(m) \neq \phi_{e}(m)$.

This completes the proof of Theorem 14.

References

[1] C. Calude. Theories of Computational Complexity, North-Holland, Amsterdam, 1988.
[2] C. Calude. Information and Randomness. An Algorithmic Perspective, Springer-Verlag, Berlin, 1994.
[3] C. S. Calude, R. J. Coles. Program-size complexity of initial segments and domination relation reducibility, in J. Karhumäki, H. A. Maurer, G. Păun, G. Rozenberg (eds.). Jewels Are Forever, Springer-Verlag, Berlin, 1999. (in press)
[4] C. S. Calude, P. Hertling, B. Khoussainov, Y. Wang. Recursively enumerable reals and Chaitin Ω numbers, in M. Morvan, C. Meinel, D. Krob (eds.). Proceedings of STACS'98, Paris,1998, Springer-Verlag, Berlin, 1998, 596-606.
[5] G. J. Chaitin. Algorithmic information theory, IBM J. Res. Develop. 21(1977), 350-359, 496.
[6] G. J. Chaitin. Information-theoretic characterizations of recursive infinite strings, Theoretical Computer Science, 2 (1976), 45-48.
[7] G. J. Chaitin. The Limits of Mathematics, Springer-Verlag, Singapore, 1997.
[8] D. W. Loveland. A variant of the Kolmogorov concept of complexity, Information and Control, 15 (1969), 510-526.
[9] G. Rozenberg, A. Salomaa. Cornerstones of Undecidability, Prentice Hall, Englewood Cliffs, 1994.
[10] R. M. Solovay. Draft of a paper (or series of papers) on Chaitin's work ... done for the most part during the period of Sept. to Dec. 1974, unpublished manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, May 1975, 215 pp.
[11] T. A. Slaman. Random Implies Ω-Like, manuscript, 14 December 1998, 2 pp .

[^0]: ${ }^{1}$ Sometimes we will be concerned with constructions occuring over ω-many stages and thus often append $[t]$ to parameters to denote the value of the parameter at the end of stage t.

[^1]: ${ }^{2}$ Given a recursive list of "requirements" $\left\langle n_{i}, s_{i}\right\rangle\left(i \geq 0, s_{i} \in \Sigma^{*}, n_{i} \geqslant 0\right)$ such that $\sum_{i} 2^{-n_{i}} \leq 1$, we can effectively construct a self-delimiting computer C and a recursive one-to-one enumeration $x_{0}, x_{1}, x_{2}, \ldots$ of words x_{i} of length n_{i} such that $C\left(x_{i}, \lambda\right)=s_{i}$ for all i and $C(x, \lambda)=\infty$ if $x \notin\left\{x_{i} \mid i \geqslant 0\right\}$; see [2].

