88868888

CDMTCS
Research
Report
Series

On a Theorem of Solovay

Cristian S. Calude and
Richard Coles
Department of Computer Science

University of Auckland
Auckland, New Zealand

CDMTCS-094
February 1999

Centre for Discrete Mathematics and
Theoretical Computer Science

On a Theorem of Solovay

Cristian S. Calude and Richard Coles
Department of Computer Science
University of Auckland
Private Bag 92019, Auckland
New Zealand
Emails: {cristian,coles}@cs.auckland.ac.nz

Abstract

We present a proof of the following result due to Solovay: There
exists a noncomputable AJ real z such that H(z,) < H(n) + O(1).

1 Introduction

Solovay [10] introduced the domination relation which plays an important
role in defining the so-called €2-like reals. The class of 2-like reals coin-
cides with the class of Chaitin reals (halting probabilities of universal
self-delimiting Turing machines, see for example [5, 6, 7, 2, 9]) (cf. [4]) and
the class of c.e. random reals (cf. Slaman [11]). Solovay proved that if z
and y are two c.e. reals and y dominates z, then H(z,) < H(y,) + O(1). In
Calude and Coles [3] we prove that the converse implication is false, namely
there are c.e. reals z and y such that H(z,) < H(y,) + O(1) and y does not
dominate z. We do this by constructing a noncomputable c.e. real x such
that H(z,) < H(n) + O(1). The proof is based upon techniques of Solovay
[10] where he proved the following theorem:

Theorem 1. There is a noncomputable A) real x such that
H(z,) < H(n)+ 0O(1).

In this report we present a write up of Solovay’s proof of Theorem 1.
The original handwritten proof can be found in Solovay [10]. In Section 2
we introduce our notation and basic concepts. Sections 3, 4 and 5 deal with
constructing the A) real mentioned above.

2 Preliminaries

Suppose a,b € {0, 1}*, the set of binary strings. The concatenation of a, b is
denoted by a™b. Let |a| denote the length of a. For j > 0, we write a(j) = k
iff the jth bit of a is k. We let < denote the quasi-lexicographical ordering
of finite binary strings. We write string(n) to denote the nth string with
respect to < . By min_ we denote the minimum operation taken according
to <.

We fix a computable bijective function (-,-) from N x N to N. We
write logn to denote log,n. For a function f : {0,1}* — N, we define
O(f) = {9 : {0,1}* = N | 3c € NVa € {0,1}"(g(a) < c- f(a))}. Sup-
pose hg, hy @ {0,1}* — N. We write O(1) for O(f) when f is the constant
function f(a) =1 for all a € {0,1}*. We write hg < hy + O(f) if there is a
function g € O(f) such that ho(a) < hi(a) + g(a) for all a € {0, 1}*.

We will look at real numbers in the interval [0, 1] through their binary
expansions, i.e., in terms of functions n — z, (from N into {0,1}). We
write (z,), for the sequence n +— x,. A real is computable if the function
n — x, is computable. A real z = (z,), is computable enumerable (c.e.) if
it is the limit of a computable, increasing, converging sequence of rationals.
Equivalently, o = 0.x4 is a c.e. real if A has a computable approximation
{A[s]}s>0 such that whenever i € A[s] and i ¢ A[s + 1], then there is some
j < i such that j ¢ A[s] and j € A[s + 1]; x4 is the characteristic function
of A.

Let ¢. be a standard list of all partial computable functions from N into N.
In case ¢.(z) halts (and produces y) we write @.(z) | (¢e(z)| = y); otherwise,
¢e(z)]. By ¢e(z)[t] we denote the time relativised version of ¢.(z), i.e.,
¢e()[t] = pe(z) in case @(z) halts in time ¢. The binary predicate ¢.(z)t] |
is primitive recursive. We will adopt the following convention: if ¢.(z)[t]],
then ¢.(z) < t.! By dom ¢, we denote the domain of the partial function ¢..

A self-delimiting computer is a partial computable function C' from
{0,1}* x {0,1}* with values in {0,1}* such that for every y € {0,1}* the
set {z | C(z,y) |} is prefix-free. Here C' stands for the interpreter, z for the
program, and y for the input data.

The Invariance Theorem ([5, 7, 2, 10]) states the existence of a universal
computer U with the property that for every computer C' there is a constant
d (depending upon U and C) such that if C'(z,y) = 2, then U(2',y) = z, for
some program z’ with the length |2/| < |z| 4+ d. Note that U does not need
more than a primitive recursive extra time to simulate C' i.e., there is a primi-
tive recursive function h such that if C(z, y)[t] | = z, then U(2', y)[h(t)] | = 2.
In what follows we will fix a universal computer U. Let a* be the quasi-
lexicographical least p such that U(p, A\) = a.

!Sometimes we will be concerned with constructions occuring over w-many stages and
thus often append [t] to parameters to denote the value of the parameter at the end of
stage t.

Define the following program-size complexities ([6]):
H(a) = min{|p| | U(p,A) = a}, H(a,b) = H((a, b)),

H(a/b) = min{|p| | U(p,b*) = a}, H(a/b) = min{|p| | U(p,b) = a}.

Note that H(a/b*) = H(a/b).

In expressions relating to strings, such as U(p, \) = n, we are identifying
n with the binary string 1" of length n. We also write H(n) for H(1"). In
fact notice that |H(n) — H(string(n))| = O(1). For integers n, we write n*
for min_{p | U(p, \) = n}.

We continue by defining some useful functions. For all j,n,t € N, define

H(n)[t] = min{|p| | U(p, N[t] = n & |p| < t},
if such a p exists, H(n)[t] = 0, otherwise. Further let,
a(n)[t] = min{H(7)[t] | j = n}, a(n) = min{H(j) | j > n}.

It is seen that H(n)[t| and a(n)[t] are primitive recursive functions (rea-
son: for the computation we only need the set {p | U(p, N)[t],|p| < t}),
decreasing in t, and H(n) = lim; H(n)[t], a(n) = lim; a(n)]t].

Assume that D is an oracle and consider the relativised computation UP.
Then the relativised program-size complexities are defined in the obvious
way, for example,

HP () = min{|p||U(p, A) = a}.

If instead of a self-delimiting universal computer we work with a universal
partial computable function V', then the induced complexities will be denoted
by K(a), K (a/b), K(a/b). We now summarise the known results relating the
complexity of initial segments to the computability of a real. Let z = (z,),
be a binary sequence.

Theorem 2 (Loveland [8]). z is computable iff K(z,/n) = O(1).
Corollary 3. = is computable iff H(z,/n) = O(1).
Theorem 4 (Chaitin [6]). = is computable iff K(x,) < K(n) + O(1).
Theorem 5 (Chaitin [6]). If H(z,) < H(n) + O(1), then x € AS.
Proof. Start by noting that

H(zn) = H(n,z,) + O(1) = H(z,/n) + H(n) + O(1).
Now if x satisfies the hypothesis of the theorem, then we have

H(z,/n)+ H(n)+0(1) < H(n)+ O(1).

3

Therefore H(z,/n) = O(1), and so H(z,/n*) = O(1). 3
Relativising to the oracle D = {p | U(p, A) | }, we have H?(n*/n) = O(1),
since the mapping n — n* is Turing reducible to D. Consequently,

H”(z,/n) < HP (2, /n*) + H” (n*/n) = O(1),

therefore HP(z,/n) < O(1). So by the relativised version of Corollary 3 we
see that z is A). O

3 Solovay-Universal Functions

We start by introducing the notion of a Solovay-universal function.

Definition 6. A partial computable function f from {0,1}* into {0,1}* is
Solovay-universal if it satisfies the following three conditions:

(1) dom(f) = dom(U, \),
(2) a € dom(U) = |f(a)| = [U(a,A)],
(3) forallm,ne N, m <n = f(m*) < f(n*).

We will later prove that Solovay-universal functions do exist. The follow-
ing proposition reveals the motivation for the definition.

Proposition 7. Suppose f is a Solovay-universal function. Then the real
r, = f(n*) satisfies H(x,) < H(n) + O(1).

Proof. We have

H(z,) < H(zn/n)+ H(n)+ O(1)
= H(z,/n*) + H(n) + O(1).

Since f is a partial computable function, H(z,/n*) = O(1) and therefore
H(z,) < H(n) + O(1) as required. 0O

Hence, if we can construct a noncomputable real x = lim, z,, where
z, = f(n*) for some Solovay-universal f, then we have proved Theorem 1.

We now show the existence of a Solovay-universal functions. First we
need some definitions. Recall

H(n)[t] = min{|p[|U(p, M)[t] = n&[p| < t}.

Let (¢;); be a computable increasing sequence of natural numbers. Define the
total computable function o as follows:

o(i) = max{j < i | H(j)[t] = H()It: + 1]}

Notice that the graph of o (i) is primitive recursive and that (i) < i.
Let (¢;); be a computable sequence of times such that i < ¢; < t;11 and a
c.e. set {p;} of programs such that U(p;, A)[t;] = i. For i € N define

A= {p | U@ Nt & U@, N)| < i}

Notice that for every ¢ € N, A; is computable, A; C A; ;. For every n € N,
n* € A1\ A; for some 3.

The following statement is immediate from the definitions of H(n)[t], o,
and Az

Proposition 8. If n* € A1 \ A; then n* € A; for all j > i+ 1, and
consequently H(n)[t] = |n*| and o(i') = n for alli' > i+ 1 and t > ;4.

Now suppose (z[i])ien is a computable sequence of binary strings such
that |z[é]| > 4, and

Vi(j < o(i) = z[i](j) = 2[i + 1](5))- ()

Recall that z[¢](j) is the jth bit of z[i]. The existence of such a sequence of
strings will be proven in Theorem 14.

We now define a partial function F as follows: If p € A;,q \ A, then let
F(p) be the initial segment of z[i + 1] of length |U(p,).

Proposition 9. F' is Solovay-universal.

Proof. Since {z[i]};cn is a computable sequence of binary strings and each A;
is computable, then F' is a partial computable function. If p € dom U, then
p € A;1 for some minimal ¢ and hence dom F' = dom U. By definition of F|
p € dom U implies that |F(p)| = |U(p, A)|. It remains to show that condition
(3) of Definition 6 is satisfied.

Suppose n* € A;41 \ A, Then H(n)[t] = |n*| and o(i) > n for
all i > 49 + 1 and for all ¢ > ¢;41 by Proposition 8. Then by (1),
z[k](j) = z[io + 1](j) for all & > iy + 1 and j < o(ip + 1). Thus for j < n,
lim; 2[i](j§) = z[ip + 1](j). Define z(j) = lim; 2[é](j). Now F(n*) is defined to
be the initial segment of z of length n and hence condition (3) of Definition
6 is satisfied. Therefore F' is a Solovay-universal. O

4 Two Useful Results

Before proving Theorem 1 we need two useful theorems, namely Theorems
10 and 11 below. Let B be a total increasing computable function which
is not primitive recursive, but has a primitive recursive graph. For example
take B to be Ackermann’s diagonal function. Then in fact, B dominates any
primitive recursive function, that is, for every primitive recursive function g,
B(n) > g(n), for almost all natural n; see [1].

Theorem 10. There is a computable sequence of times (t,),, such that
tn < tps1 for alln € N, and for all n > 0,

(1) there is a natural number s, such that B(t, 1) < s, < B(s,) = ty,

(2) for all programs p with |p| < B(t,_1), U(p,A)| implies that either
Up, Nlsal | or Ulp, M[B(sa)]T,

(8) the predicate t,, = j is primitive recursive, but the function n — t, is not
primaitive recursive.

Proof. Let to = 0 and assume that si,...,Sn_1,%1,...,t,_1 have been
defined. Let () be the set of all programs of length less than or
equal to B(t, 1). Let r1 = t, 1 and define the following three sets:
X, ={peQ | Up Nl [} Yi = @\ X1, 2 = {p € Vi | Ulp, NB(r)] |}

If Z, = 0, then we let s, = r and t, = B(s,). Other-
wise we have Z; # (), in which case set r, = B(ry) and define
X, =X1UZ,Y, =Q\ X5, Zo ={p€Ya | U(p,N)[B(r)] | }.

If Zo =0, then let s, = 75 and t, = B(s,). Otherwise continue this pro-
cess until reaching a step ¢ with Z; = () and hence let s,, = r; and t,, = B(s,).
Such an ¢ must be reached since X; C Xo C...C QDYDY D...,Qis
finite and Y; D Z;.

It follows that (1) and (2) are satisfied. Part (3) follows from properties
of Ackermann’s diagonal function B. O

We use the sequence of times (¢,), constructed above in the following
theorem, which plays a crucial role in the priority argument in Section 5.
In particular, the function o we work with is defined with respect to this
sequence of times.

Theorem 11. There is a computable sequence of times (t;)i>0, ti < tit1
and a c.e. set {p;}i=o of programs such that U(p;, \)[t;] = ¢, for which the
following condition holds true: if g : N — N s a total computable function,
then for infinitely many natural numbers i, g(o(i)) < i.

Proof. Take the sequence of times (¢;); constructed in Theorem 10. Suppose
for a contradiction that g(o(n)) > n for almost all n. We may assume that g
is increasing, and in fact that it dominates all primitive recursive functions.

Let G(n) = min{m | g(m + 1) > n}. Then our assumption on g im-
plies that G(n) < o(n) for almost all n. Note that G(n) < t, under this
assumption.

The intuition for obtaining the contradiction is as follows. The func-
tion o(7), roughly speaking, is the largest j such that the approximation
to H(j) does not change between time steps ¢; and ¢; 1. Therefore to show
G(n) > o(n) we would like to construct short programs (of length < B(¢,))
for j € [G(n), n] which halt by time ¢, ;. We will be able to do this if

(i) n has a short program that converges in approximately time ¢,,

(i) Ygny<jen 2 W0 is small,

because then we can use the Kraft-Chaitin Theorem to construct new codes
(programs) for all j € [G(n),n]|. The next two lemmata perform this task.

Lemma 12. There is a primitive recursive function h such that for almost

all k, there is a number ny such that a(G(ng))[ty,] = k, and a program py,
such that U(pn,, A)[h(tn,)] | = ni, and |ps,| = O(logk).

Proof. Fix k € N. If n is sufficiently large then a(G(n)) > k because g is
unbounded, and so a(G(n))[t,] = k. Let

ng = min{m | m > k and o(G(m))[tn] > k}.
For large n,
G(n) = min{m | m < o(n) and g(m + 1) > n},
so G is primitive recursive. Further, the predicate, a(n)[t] > k is also primi-
tive recursive as it can be expressed by the formula
(Vo <j<tlpl <tUPA[t] =7 = Ipl = k) or (n>1).

So the function k& — n; has a primitive recursive graph: U(p,\)[tm] = Jj
iff U(p,\)[s] = j, for some s < t,,. Let hy(k,s) be the primitive recursive
function evaluating the running time of the predicate n; = s.

Now consider the self-delimiting computer C(1°6%0, \) = n;. Use the
Invariance Theorem to show that for every natural k& there is a program, p,,
say, such that |p,, | = O(log k) such that U(py,, A) = ng. The time necessary
to compute p,, from k is the sum between the time to get n; from k (a
primitive recursive function in ny, hi(k,ng)) and the time to simulate C' on
U, which is primitive recursive in the running time of C, i.e., h(hy(k,ng)). O

Lemma 13. For sufficiently large k,
Z 9—H(j)[tny] < 9—k/2
G(ng)<j<ng

Proof. Again, let k be sufficiently large so that a(G(ng)) > k. Suppose for a

contradiction that
Z 9—H()tny] < 9—F/2
G(ng)<j<ng
The number Za(nk)gjgnk 2~ HU)lt] can be computed in a primitive recur-
sive way and is less than 1. Computing its most significant k/2 digits we get
a j € [G(ng),ng] and a program p; such that |p;| < k/24+0(1), U(p;, \) = 4,
and U(p;, A)[z] | for some z. Consequently, H(j) < k/2 + O(1), so

a(G(ng)) = min{H(j) [j = G(m)} < k/2+ O(1).

For sufficiently large k, this contradicts a(G(ny)) > k, hence the required
inequality has been demonstrated. O

We now continue with the proof of Theorem 11. Consider the following
self-delimiting computer:

1) input string(k)”y,

2) compute ny using the procedure in Lemma 12,

3) compute t,, and G(ng),

2

(
(
(
(4

)
)
)
) now use the Kraft-Chaitin Theorem® to construct a prefix-free set
E = {e; | j € [G(ng),ng]} such that |e;| < H(j)[tn,] — k/2, which is
possible by Lemma 13,

(5) output the code e, of y if y € [G(ny), ng).

The time of this procedure is hg(t,,) for some primitive recursive function
ho, and 80 tp, +1 > B(ty,) = ho(ty,). Hence for j € [G(ny), ni,

H (j)[tn,+1] < H(j)[tn] = k/2+ O(logk).

The O(logk) term is derived from the length of the program in Lemma
12 for computing n from k. Hence for sufficiently large k, o(ni) < G(ng),
contradicting our assumption that G(n) < o(n) for almost all n. O

5 The Priority Argument

Having established Theorem 11, we are now in a position to complete the
proof of Theorem 1.

Theorem 14. There is a noncomputable real x satisfying
H(z,) < H(n)+ O(1).

Proof. We construct a computable sequence of binary strings (z[¢]);en such
that z = lim; 2[i] exists. Furthermore we construct (z[i]);en to satisfy

Vs(j <o(s+1) = 2[s](4) = 2[s +1](4))- ()

Then as in Section 3 we define F'(p) to be the initial segment of z[i 4+ 1] of
length |U(p, A)| if p € A;j11 \ Ai. Hence F' is Solovay-universal.

Consequently, defining z = lim,, z,,, where z,, = F(n*) provides the nec-
essary x satisfying, for all n € N|

H(z,) < H(n) + O(1).

2Given a recursive list of “requirements”(n;, s;) (i > 0,s; € ¥*,n; > 0) such that
;27" < 1, we can effectively construct a self-delimiting computer C' and a recursive
one-to-one enumeration zg, 1, 2, ... of words z; of length n; such that C(z;,\) = s; for
all i and C(z,)\) = oo if z & {z; | i > 0}; see [2].

8

Notice that x = z.
We construct z to meet the following requirements for all e € N :

Re - 3m (¢e(m) # 2(m)).

The classical diagonalisation strategy for this requirement is to choose
some m at stage s with z(m)[s] = 0 and wait for ¢.(m) | [{] = 0. When this
occurs we set z(m) = 1. If ¢.(m) T or ¢e(m) | # 0 then z(m) = 0 # @e(m). If
¢e(m)| = 0 at some stage ¢ then of course ¢.(m) =0 # 1= z(m).

We modify this strategy so that we construct z to meet (f). We first
address the issue of meeting (}) for one R, requirement.

To satisfy (1) we must ensure z(j)[s] = z(j)[s + 1] for all j < o(s + 1).
In Proposition 8 we saw that if n* € A;11 \ A; then n* € A; for all j > ¢,
and consequently H(n)[t] = |[n*| and o(i') > nforallé' > i+ 1 and t > t;,;.
This means that when n* € A;,; \ A;, then we may no longer change our
approximation to z on the initial segment of length n. That is z(j)[s] = 2(j)
for all j < n and s > i+ 1. However, H is not computable and so we cannot
know when an element in A; is n* for some n.

Now suppose we assign o(m) to be a witness for R.. We do not know if
de(o(m)) converges, and if so, at which stage it converges. If ¢.(o(m)) =0
and converges at stage t and yet n* € A, for some s < t, then we cannot
define z(o(m))[t] = 1 to diagonalise against ¢.(o(m)) without compromising
condition (f). The solution is to have witnesses that can be used before
condition () prevents it. The existence of such witnesses is provided by
Theorem 11. If ¢, is a total computable function then let g : N — N be the
total computable function such that g(¢) is the number of steps it takes for
de(1) to converge. Then Theorem 11 tells us that there are infinitely many
o(i) such that ¢.(o(7)) converges in less than i steps.

Thus at stage s+ 1 of the construction if R, is currently not satisfied and
¢e(o(s+1))| =0 then we define z(c(s+1)) = 1 and z[s + 1)(j) = 2[s](j) for
all j < o(s+ 1), thus satisfying (t). If ¢, is total then Theorem 11 provides
many such o(s + 1) as discussed above.

We now consider how to meet () in the presence of more than one re-
quirement. The problem is that o is not a 1-1 function. That is o(s;) may
equal o(sy) for s; # s,. Therefore higher priority requirements are allowed to
change the value of z(o(i))[s + 1] even if it has been defined to be something
different by a lower priority requirement. The priority ordering ensures that
for every j, z[s + 1](j) # 2[s](j) for only finitely many s. Hence z will be AJ.

For example, suppose R; is of higher priority than Ry. At stage sq + 1
suppose ¢z (o (so+1))[so+1] | = 0 and we defined z[sg+1](o(so+1)) = 1. Then
at some later stage, s; say, ¢1(o(s1 + 1)) =1 where o(s; + 1) = o(sp + 1).
Then R; wants to define z[s; + 1](o(s1 + 1)) = 0. This can be done and still
meet (1), but results in a AJ real z being constructed. R; must be allowed to
take o(s; +1) as a witness otherwise we run the risk of more and more lower
priority requirements from depriving R; of ever having a usable witness.

The Construction.

Stage 0 : z[0] = A, the empty string.
Stage s+ 1:
We say that R, requires attention at stage s + 1 if

(i
(i

(iii

e(0(s+ 1)) converges in at most s + 1 steps,

)

) &

) o(s+ 1) is not a witness for any R for e’ <'e,

(iv) Re has no witness at stage s + 1 and o(s + 1) was not previously a
witness of e.

We define z[s + 1] to be a string of length s + 1 as follows.

e Ifno R, requires attention at stage s+1 then let z[s+1] be the extension
of z[s] such that z[s + 1](s) =

e Otherwise let ey be the least e such that R, requires attention at stage
s + 1. We say R, receives attention at stage s + 1.

Define z[s + 1](o(s + 1)) # ¢e,(c(s + 1)), and make o(s + 1) a wit-
ness for Re,. Define z[s + 1](n) = z[s|(n) for all n < o(s + 1). Define
z[s + 1](n) = 0 for all n such that o(n) <n < s+ 1.

Cancel all witnesses assigned to R for ' > e.

The Verification.

It is clear that (z[i])i>, is a computable sequence and that
z[i](k) = z[i + 1](k) if & < o(¢ + 1), thus satisfying (). We now define
F as in Section 3, that is if y € A;;; \ A;, then F(y) is the initial segment
of z[i + 1] of length |U(y, \)|. We let z,, = F(n*) and z = lim, z,,. It follows
that F' is Solovay-universal and so z satisfies H(z,) < H(n) + O(1).

It remains to show that z is a noncomputable real.

Proposition 15. For alle € N, R, has at most a finite number of witnesses.

Proof. An easy induction on e shows that R, only requires attention finitely
often. 0

Proposition 16. If ¢, is total then R, has a final witness.

Proof. Suppose R, does not get a final witness and all R for ¢ < e have
a final witness by stage so and never require attention after stage syg. Then
it is clear that clause (i) holds for all s > sy. Furthermore we may choose
$1 = so so that (ii7) holds for R, for all s > s; since lim; o(s) = co. Let g(n)
be the number of steps it takes for ¢.(n) to converge. Then clause (i) holds
infinitely often since by Theorem 11 there are infinitely many ¢ such that
g(o (7)) < i. Thus clause (iv) must fail, otherwise R, would receive attention
at some stage sy > s1. But then the witness that R, has that contradicts (iv)
is permanent. U

10

Proposition 17. Ifm is the final witness of R, then x(m) = z(m) # ¢.(m).

Proof. By construction, if m is the final witness for R, then z(m) # ¢.(m).

This completes the proof of Theorem 14.

References

1]

2]

3]

[5]

(6]

9]

[10]

[11]

C. Calude. Theories of Computational Complexity, North-Holland, Am-
sterdam, 1988.

C. Calude. Information and Randomness. An Algorithmic Perspective,
Springer-Verlag, Berlin, 1994.

C. S. Calude, R. J. Coles. Program-size complexity of initial segments
and domination relation reducibility, in J. Karhumaki, H. A. Maurer, G.
Paun, G. Rozenberg (eds.). Jewels Are Forever, Springer-Verlag, Berlin,
1999. (in press)

C. S. Calude, P. Hertling, B. Khoussainov, Y. Wang. Recursively enu-
merable reals and Chaitin 2 numbers, in M. Morvan, C. Meinel, D. Krob
(eds.). Proceedings of STACS’98, Paris,1998, Springer-Verlag, Berlin,
1998, 596-606.

G. J. Chaitin. Algorithmic information theory, IBM J. Res. Develop.
21(1977), 350-359, 496.

G. J. Chaitin. Information-theoretic characterizations of recursive infi-
nite strings, Theoretical Computer Science, 2 (1976), 45—48.

G. J. Chaitin. The Limits of Mathematics, Springer-Verlag, Singapore,
1997.

D. W. Loveland. A variant of the Kolmogorov concept of complexity,
Information and Control, 15 (1969), 510-526.

G. Rozenberg, A. Salomaa. Cornerstones of Undecidability, Prentice
Hall, Englewood Cliffs, 1994.

R. M. Solovay. Draft of a paper (or series of papers) on Chaitin’s work

. done for the most part during the period of Sept. to Dec. 197/, un-
published manuscript, IBM Thomas J. Watson Research Center, York-
town Heights, New York, May 1975, 215 pp.

T. A. Slaman. Random Implies Q2-Like, manuscript, 14 December 1998,
2 pp.

11

