
CDMTCS

Research

Report

Series

On a Theorem of Solovay

Cristian S. Calude and

Richard Coles

Department of Computer Science

University of Auckland

Auckland, New Zealand

CDMTCS-094
February 1999

Centre for Discrete Mathematics and
Theoretical Computer Science

On a Theorem of Solovay

Cristian S. Calude and Richard Coles

Department of Computer Science

University of Auckland

Private Bag 92019, Auckland

New Zealand

Emails: fcristian,colesg@cs.auckland.ac.nz

Abstract

We present a proof of the following result due to Solovay: There
exists a noncomputable �0

2 real x such that H(xn) 6 H(n) +O(1):

1 Introduction

Solovay [10] introduced the domination relation which plays an important
role in de�ning the so-called
{like reals. The class of
{like reals coin-
cides with the class of Chaitin
 reals (halting probabilities of universal
self-delimiting Turing machines, see for example [5, 6, 7, 2, 9]) (cf. [4]) and
the class of c.e. random reals (cf. Slaman [11]). Solovay proved that if x
and y are two c.e. reals and y dominates x, then H(xn) 6 H(yn) +O(1): In
Calude and Coles [3] we prove that the converse implication is false, namely
there are c.e. reals x and y such that H(xn) 6 H(yn) +O(1) and y does not
dominate x: We do this by constructing a noncomputable c.e. real x such
that H(xn) 6 H(n) + O(1): The proof is based upon techniques of Solovay
[10] where he proved the following theorem:

Theorem 1. There is a noncomputable �0
2 real x such that

H(xn) 6 H(n) +O(1):

In this report we present a write up of Solovay's proof of Theorem 1.
The original handwritten proof can be found in Solovay [10]. In Section 2
we introduce our notation and basic concepts. Sections 3, 4 and 5 deal with
constructing the �0

2 real mentioned above.

2 Preliminaries

Suppose a; b 2 f0; 1g�; the set of binary strings. The concatenation of a; b is
denoted by a_b. Let jaj denote the length of a: For j > 0; we write a(j) = k
i� the jth bit of a is k: We let � denote the quasi-lexicographical ordering
of �nite binary strings. We write string(n) to denote the nth string with
respect to � : By min� we denote the minimum operation taken according
to � :

We �x a computable bijective function h�; �i from N � N to N : We
write logn to denote log2 n: For a function f : f0; 1g� ! N; we de�ne
O(f) = fg : f0; 1g� ! N j 9c 2 N 8a 2 f0; 1g� (g(a) 6 c � f(a))g: Sup-
pose h0; h1 : f0; 1g� ! N : We write O(1) for O(f) when f is the constant
function f(a) = 1 for all a 2 f0; 1g�: We write h0 6 h1 + O(f) if there is a
function g 2 O(f) such that h0(a) 6 h1(a) + g(a) for all a 2 f0; 1g�:

We will look at real numbers in the interval [0; 1] through their binary
expansions, i.e., in terms of functions n 7! xn (from N into f0; 1g). We
write (xn)n for the sequence n 7! xn: A real is computable if the function
n 7! xn is computable. A real x = (xn)n is computable enumerable (c.e.) if
it is the limit of a computable, increasing, converging sequence of rationals.
Equivalently, � = 0:�A is a c.e. real if A has a computable approximation
fA[s]gs>0 such that whenever i 2 A[s] and i 62 A[s + 1]; then there is some
j < i such that j 62 A[s] and j 2 A[s + 1]; �A is the characteristic function
of A.

Let �e be a standard list of all partial computable functions from N into N .
In case �e(x) halts (and produces y) we write �e(x)

?y (�e(x)
?y= y); otherwise,

�e(x)
x?. By �e(x)[t] we denote the time relativised version of �e(x), i.e.,

�e(x)[t] = �e(x) in case �e(x) halts in time t. The binary predicate �e(x)[t]
?y

is primitive recursive. We will adopt the following convention: if �e(x)[t]
?y,

then �e(x) 6 t:1 By dom�e we denote the domain of the partial function �e.
A self-delimiting computer is a partial computable function C from

f0; 1g� � f0; 1g� with values in f0; 1g� such that for every y 2 f0; 1g� the
set fx j C(x; y)

?yg is pre�x-free. Here C stands for the interpreter, x for the
program, and y for the input data.

The Invariance Theorem ([5, 7, 2, 10]) states the existence of a universal
computer U with the property that for every computer C there is a constant
d (depending upon U and C) such that if C(x; y) = z, then U(x0; y) = z, for
some program x0 with the length jx0j 6 jxj + d. Note that U does not need
more than a primitive recursive extra time to simulate C, i.e., there is a primi-
tive recursive function h such that if C(x; y)[t]

?y= z, then U(x0; y)[h(t)]
?y= z.

In what follows we will �x a universal computer U . Let a� be the quasi-
lexicographical least p such that U(p; �) = a:

1Sometimes we will be concerned with constructions occuring over !-many stages and
thus often append [t] to parameters to denote the value of the parameter at the end of
stage t:

2

De�ne the following program-size complexities ([6]):

H(a) = minfjpj j U(p; �) = ag; H(a; b) = H(ha; bi);

H(a=b) = minfjpj j U(p; b�) = ag; ~H(a=b) = minfjpj j U(p; b) = ag:

Note that ~H(a=b�) = H(a=b):
In expressions relating to strings, such as U(p; �) = n; we are identifying

n with the binary string 1n of length n: We also write H(n) for H(1n): In
fact notice that jH(n)� H(string(n))j = O(1): For integers n; we write n�

for min�fp j U(p; �) = ng:
We continue by de�ning some useful functions. For all j; n; t 2 N ; de�ne

H(n)[t] = minfjpj j U(p; �)[t] = n& jpj 6 tg;

if such a p exists, H(n)[t] = 0; otherwise. Further let,

�(n)[t] = minfH(j)[t] j j > ng; �(n) = minfH(j) j j > ng:

It is seen that H(n)[t] and �(n)[t] are primitive recursive functions (rea-
son: for the computation we only need the set fp j U(p; �)[t]; jpj 6 tg),
decreasing in t, and H(n) = limtH(n)[t]; �(n) = limt �(n)[t]:

Assume that D is an oracle and consider the relativised computation UD.
Then the relativised program-size complexities are de�ned in the obvious
way, for example,

HD(a) = minfjpjjUD(p; �) = ag:

If instead of a self-delimiting universal computer we work with a universal
partial computable function V , then the induced complexities will be denoted
by K(a); K(a=b); ~K(a=b). We now summarise the known results relating the
complexity of initial segments to the computability of a real. Let x = (xn)n
be a binary sequence.

Theorem 2 (Loveland [8]). x is computable i� ~K(xn=n) = O(1):

Corollary 3. x is computable i� ~H(xn=n) = O(1):

Theorem 4 (Chaitin [6]). x is computable i� K(xn) 6 K(n) +O(1):

Theorem 5 (Chaitin [6]). If H(xn) 6 H(n) +O(1), then x 2 �0
2:

Proof. Start by noting that

H(xn) = H(n; xn) +O(1) = H(xn=n) +H(n) +O(1):

Now if x satis�es the hypothesis of the theorem, then we have

H(xn=n) +H(n) +O(1) 6 H(n) +O(1):

3

Therefore H(xn=n) = O(1), and so ~H(xn=n
�) = O(1):

Relativising to the oracleD = fp j U(p; �)
?yg; we have ~HD(n�=n) = O(1);

since the mapping n 7! n� is Turing reducible to D: Consequently,

~HD(xn=n) 6 ~HD(xn=n
�) + ~HD(n�=n) = O(1);

therefore ~HD(xn=n) 6 O(1): So by the relativised version of Corollary 3 we
see that x is �0

2:

3 Solovay-Universal Functions

We start by introducing the notion of a Solovay-universal function.

De�nition 6. A partial computable function f from f0; 1g� into f0; 1g� is
Solovay-universal if it satis�es the following three conditions:

(1) dom(f) = dom(U; �);

(2) a 2 dom(U) =) jf(a)j = jU(a; �)j;

(3) for all m;n 2 N ; m < n =) f(m�) 4 f(n�):

We will later prove that Solovay-universal functions do exist. The follow-
ing proposition reveals the motivation for the de�nition.

Proposition 7. Suppose f is a Solovay-universal function. Then the real
xn = f(n�) satis�es H(xn) 6 H(n) +O(1):

Proof. We have

H(xn) 6 H(xn=n) +H(n) +O(1)

= ~H(xn=n
�) +H(n) +O(1):

Since f is a partial computable function, ~H(xn=n
�) = O(1) and therefore

H(xn) 6 H(n) +O(1) as required.

Hence, if we can construct a noncomputable real x = limn xn, where
xn = f(n�) for some Solovay-universal f; then we have proved Theorem 1.

We now show the existence of a Solovay-universal functions. First we
need some de�nitions. Recall

H(n)[t] = minfjpjjU(p; �)[t] = n& jpj 6 tg:

Let (ti)i be a computable increasing sequence of natural numbers. De�ne the
total computable function � as follows:

�(i) = maxfj 6 i j H(j)[ti] = H(j)[ti + 1]g:

4

Notice that the graph of �(i) is primitive recursive and that �(i) 6 i:
Let (ti)i be a computable sequence of times such that i < ti < ti+1 and a

c.e. set fpig of programs such that U(pi; �)[ti] = i: For i 2 N de�ne

Ai = fp j U(p; �)[ti]
?y& jU(p; �)j 6 ig:

Notice that for every i 2 N ; Ai is computable, Ai � Ai+1. For every n 2 N ;
n� 2 Ai+1 n Ai for some i:

The following statement is immediate from the de�nitions of H(n)[t]; �;
and Ai:

Proposition 8. If n� 2 Ai+1 n Ai then n� 2 Aj for all j > i + 1; and
consequently H(n)[t] = jn�j and �(i0) > n for all i0 > i+ 1 and t > ti+1:

Now suppose (z[i])i2N is a computable sequence of binary strings such
that jz[i]j > i; and

8i(j < �(i) =) z[i](j) = z[i + 1](j)): (y)

Recall that z[i](j) is the jth bit of z[i]. The existence of such a sequence of
strings will be proven in Theorem 14.

We now de�ne a partial function F as follows: If p 2 Ai+1 n Ai; then let
F (p) be the initial segment of z[i + 1] of length jU(p; �)j:

Proposition 9. F is Solovay-universal.

Proof. Since fz[i]gi2N is a computable sequence of binary strings and each Ai

is computable, then F is a partial computable function. If p 2 domU; then
p 2 Ai+1 for some minimal i and hence domF = domU: By de�nition of F;
p 2 domU implies that jF (p)j = jU(p; �)j: It remains to show that condition
(3) of De�nition 6 is satis�ed.

Suppose n� 2 Ai0+1 n Ai0 : Then H(n)[t] = jn�j and �(i) > n for
all i > i0 + 1 and for all t > ti0+1 by Proposition 8. Then by (y);
z[k](j) = z[i0 + 1](j) for all k > i0 + 1 and j 6 �(i0 + 1): Thus for j < n;
limi z[i](j) = z[i0 + 1](j): De�ne z(j) = limi z[i](j): Now F (n�) is de�ned to
be the initial segment of z of length n and hence condition (3) of De�nition
6 is satis�ed. Therefore F is a Solovay-universal.

4 Two Useful Results

Before proving Theorem 1 we need two useful theorems, namely Theorems
10 and 11 below. Let B be a total increasing computable function which
is not primitive recursive, but has a primitive recursive graph. For example
take B to be Ackermann's diagonal function. Then in fact, B dominates any
primitive recursive function, that is, for every primitive recursive function g,
B(n) > g(n), for almost all natural n; see [1].

5

Theorem 10. There is a computable sequence of times (tn)n, such that
tn < tn+1 for all n 2 N ; and for all n > 0;

(1) there is a natural number sn such that B(tn�1) 6 sn < B(sn) = tn;

(2) for all programs p with jpj 6 B(tn�1); U(p; �)
?y implies that either

U(p; �)[sn]
?y or U(p; �)[B(sn)]

x?,

(3) the predicate tn = j is primitive recursive, but the function n 7! tn is not
primitive recursive.

Proof. Let t0 = 0 and assume that s1; : : : ; sn�1; t1; : : : ; tn�1 have been
de�ned. Let Q be the set of all programs of length less than or
equal to B(tn�1): Let r1 = tn�1 and de�ne the following three sets:
X1 = fp 2 Q j U(p; �)[r1]

?yg; Y1 = Q nX1; Z1 = fp 2 Y1 j U(p; �)[B(r1)]
?yg:

If Z1 = ;; then we let sn = r1 and tn = B(sn): Other-
wise we have Z1 6= ;; in which case set r2 = B(r1) and de�ne
X2 = X1 [Z1; Y2 = Q nX2; Z2 = fp 2 Y2 j U(p; �)[B(r2)]

?yg:
If Z2 = ;; then let sn = r2 and tn = B(sn): Otherwise continue this pro-

cess until reaching a step i with Zi = ; and hence let sn = ri and tn = B(sn):
Such an i must be reached since X1 � X2 � : : : � Q � Y1 � Y2 � : : : ; Q is
�nite and Yi � Zi:

It follows that (1) and (2) are satis�ed. Part (3) follows from properties
of Ackermann's diagonal function B:

We use the sequence of times (tn)n constructed above in the following
theorem, which plays a crucial role in the priority argument in Section 5.
In particular, the function � we work with is de�ned with respect to this
sequence of times.

Theorem 11. There is a computable sequence of times (ti)i>0, ti < ti+1

and a c.e. set fpigi>0 of programs such that U(pi; �)[ti] = i, for which the
following condition holds true: if g : N ! N is a total computable function,
then for in�nitely many natural numbers i; g(�(i)) < i:

Proof. Take the sequence of times (ti)i constructed in Theorem 10. Suppose
for a contradiction that g(�(n)) > n for almost all n: We may assume that g
is increasing, and in fact that it dominates all primitive recursive functions.

Let G(n) = minfm j g(m + 1) > ng: Then our assumption on g im-
plies that G(n) 6 �(n) for almost all n: Note that G(n) 6 tn under this
assumption.

The intuition for obtaining the contradiction is as follows. The func-
tion �(i); roughly speaking, is the largest j such that the approximation
to H(j) does not change between time steps ti and ti+1: Therefore to show
G(n) > �(n) we would like to construct short programs (of length 6 B(tn))
for j 2 [G(n); n] which halt by time tn+1: We will be able to do this if

(i) n has a short program that converges in approximately time tn;

6

(ii)
P

G(n)6j6n 2
�H(j)[tn] is small,

because then we can use the Kraft-Chaitin Theorem to construct new codes
(programs) for all j 2 [G(n); n]: The next two lemmata perform this task.

Lemma 12. There is a primitive recursive function h such that for almost
all k; there is a number nk such that �(G(nk))[tnk] > k; and a program pnk
such that U(pnk ; �)[h(tnk)]

?y= nk; and jpnk j = O(log k):

Proof. Fix k 2 N : If n is su�ciently large then �(G(n)) > k because g is
unbounded, and so �(G(n))[tn] > k: Let

nk = minfm j m > k and �(G(m))[tm] > kg:

For large n,

G(n) = minfm j m 6 �(n) and g(m+ 1) > ng;

so G is primitive recursive. Further, the predicate, �(n)[t] > k is also primi-
tive recursive as it can be expressed by the formula

(8n 6 j 6 t; jpj 6 t(U(p; �)[t] = j =) jpj > k)) or (n > t):

So the function k 7! nk has a primitive recursive graph: U(p; �)[tm] = j
i� U(p; �)[s] = j, for some s 6 tm. Let h1(k; s) be the primitive recursive
function evaluating the running time of the predicate nk = s.

Now consider the self-delimiting computer C(1log k0; �) = nk. Use the
Invariance Theorem to show that for every natural k there is a program, pnk
say, such that jpnk j = O(log k) such that U(pnk ; �) = nk. The time necessary
to compute pnk from k is the sum between the time to get nk from k (a
primitive recursive function in nk, h1(k; nk)) and the time to simulate C on
U , which is primitive recursive in the running time of C, i.e., h(h1(k; nk)).

Lemma 13. For su�ciently large k;
X

G(nk)6j6nk

2�H(j)[tnk] 6 2�k=2:

Proof. Again, let k be su�ciently large so that �(G(nk)) > k: Suppose for a
contradiction that X

G(nk)6j6nk

2�H(j)[tnk] > 2�k=2:

The number
P

G(nk)6j6nk
2�H(j)[tnk] can be computed in a primitive recur-

sive way and is less than 1. Computing its most signi�cant k=2 digits we get
a j 2 [G(nk); nk] and a program pj such that jpjj 6 k=2+O(1); U(pj; �) = j;
and U(pj ; �)[z]

?y for some z: Consequently, H(j) 6 k=2 +O(1); so

�(G(nk)) = minfH(j) j j > G(nk)g 6 k=2 +O(1):

For su�ciently large k; this contradicts �(G(nk)) > k; hence the required
inequality has been demonstrated.

7

We now continue with the proof of Theorem 11. Consider the following
self-delimiting computer:

(1) input string(k)_y;

(2) compute nk using the procedure in Lemma 12,

(3) compute tnk and G(nk);

(4) now use the Kraft-Chaitin Theorem2 to construct a pre�x-free set
E = fej j j 2 [G(nk); nk]g such that jejj 6 H(j)[tnk] � k=2, which is
possible by Lemma 13,

(5) output the code ey of y if y 2 [G(nk); nk]:

The time of this procedure is h0(tnk) for some primitive recursive function
h0; and so tnk+1 > B(tnk) > h0(tnk): Hence for j 2 [G(nk); nk];

H(j)[tnk+1] 6 H(j)[tnk]� k=2 +O(log k):

The O(log k) term is derived from the length of the program in Lemma
12 for computing nk from k: Hence for su�ciently large k; �(nk) 6 G(nk);
contradicting our assumption that G(n) < �(n) for almost all n:

5 The Priority Argument

Having established Theorem 11, we are now in a position to complete the
proof of Theorem 1.

Theorem 14. There is a noncomputable real x satisfying

H(xn) 6 H(n) +O(1):

Proof. We construct a computable sequence of binary strings (z[i])i2N such
that z = limi z[i] exists. Furthermore we construct (z[i])i2N to satisfy

8s(j < �(s+ 1) =) z[s](j) = z[s + 1](j)): (y)

Then as in Section 3 we de�ne F (p) to be the initial segment of z[i + 1] of
length jU(p; �)j if p 2 Ai+1 n Ai: Hence F is Solovay-universal.

Consequently, de�ning x = limn xn; where xn = F (n�) provides the nec-
essary x satisfying, for all n 2 N ;

H(xn) 6 H(n) +O(1):

2Given a recursive list of \requirements"hni; sii (i � 0; si 2 ��; ni > 0) such thatP
i
2�ni � 1, we can e�ectively construct a self-delimiting computer C and a recursive

one-to-one enumeration x0; x1; x2; : : : of words xi of length ni such that C(xi; �) = si for
all i and C(x; �) = 1 if x 62 fxi j i > 0g; see [2].

8

Notice that x = z:
We construct z to meet the following requirements for all e 2 N :

Re : 9m (�e(m) 6= z(m)):

The classical diagonalisation strategy for this requirement is to choose
some m at stage s with z(m)[s] = 0 and wait for �e(m)

?y[t] = 0: When this
occurs we set z(m) = 1: If �e(m)

x? or �e(m)
?y 6= 0 then z(m) = 0 6= �e(m): If

�e(m)
?y= 0 at some stage t then of course �e(m) = 0 6= 1 = z(m):

We modify this strategy so that we construct z to meet (y): We �rst
address the issue of meeting (y) for one Re requirement.

To satisfy (y) we must ensure z(j)[s] = z(j)[s + 1] for all j < �(s + 1):
In Proposition 8 we saw that if n� 2 Ai+1 n Ai then n� 2 Aj for all j > ti+1

and consequently H(n)[t] = jn�j and �(i0) > n for all i0 > i+ 1 and t > ti+1:
This means that when n� 2 Ai+1 n Ai; then we may no longer change our
approximation to z on the initial segment of length n: That is z(j)[s] = z(j)
for all j < n and s > i+ 1: However, H is not computable and so we cannot
know when an element in Ai is n

� for some n:
Now suppose we assign �(m) to be a witness for Re: We do not know if

�e(�(m)) converges, and if so, at which stage it converges. If �e(�(m)) = 0
and converges at stage t and yet n� 2 As for some s < t; then we cannot
de�ne z(�(m))[t] = 1 to diagonalise against �e(�(m)) without compromising
condition (y): The solution is to have witnesses that can be used before
condition (y) prevents it. The existence of such witnesses is provided by
Theorem 11. If �e is a total computable function then let g : N 7! N be the
total computable function such that g(i) is the number of steps it takes for
�e(i) to converge. Then Theorem 11 tells us that there are in�nitely many
�(i) such that �e(�(i)) converges in less than i steps.

Thus at stage s+1 of the construction if Re is currently not satis�ed and
�e(�(s+1))

?y= 0 then we de�ne z(�(s+1)) = 1 and z[s+1](j) = z[s](j) for
all j < �(s + 1); thus satisfying (y): If �e is total then Theorem 11 provides
many such �(s+ 1) as discussed above.

We now consider how to meet (y) in the presence of more than one re-
quirement. The problem is that � is not a 1-1 function. That is �(s1) may
equal �(s2) for s1 6= s2: Therefore higher priority requirements are allowed to
change the value of z(�(i))[s+1] even if it has been de�ned to be something
di�erent by a lower priority requirement. The priority ordering ensures that
for every j; z[s+1](j) 6= z[s](j) for only �nitely many s: Hence z will be �0

2:
For example, suppose R1 is of higher priority than R2: At stage s0 + 1

suppose �2(�(s0+1))[s0+1]
?y= 0 and we de�ned z[s0+1](�(s0+1)) = 1: Then

at some later stage, s1 say, �1(�(s1 + 1))
?y= 1 where �(s1 + 1) = �(s0 + 1):

Then R1 wants to de�ne z[s1 + 1](�(s1 + 1)) = 0: This can be done and still
meet (y); but results in a �0

2 real z being constructed. R1 must be allowed to
take �(s1+1) as a witness otherwise we run the risk of more and more lower
priority requirements from depriving R1 of ever having a usable witness.

The Construction.

9

Stage 0 : z[0] = �; the empty string.
Stage s+ 1 :

We say that Re requires attention at stage s+ 1 if

(i) e < s+ 1;

(ii) �e(�(s+ 1)) converges in at most s+ 1 steps,

(iii) �(s+ 1) is not a witness for any Re0 for e
0 < e;

(iv) Re has no witness at stage s + 1 and �(s + 1) was not previously a
witness of e:

We de�ne z[s + 1] to be a string of length s+ 1 as follows.

� If no Re requires attention at stage s+1 then let z[s+1] be the extension
of z[s] such that z[s + 1](s) = 0:

� Otherwise let e0 be the least e such that Re requires attention at stage
s+ 1: We say Re0 receives attention at stage s+ 1:

De�ne z[s + 1](�(s + 1)) 6= �e0(�(s + 1)); and make �(s + 1) a wit-
ness for Re0: De�ne z[s + 1](n) = z[s](n) for all n < �(s + 1): De�ne
z[s + 1](n) = 0 for all n such that �(n) < n < s+ 1:

Cancel all witnesses assigned to Re0 for e
0 > e:

The Veri�cation.
It is clear that (z[i])i>0

is a computable sequence and that
z[i](k) = z[i + 1](k) if k < �(i + 1); thus satisfying (y): We now de�ne
F as in Section 3, that is if y 2 Ai+1 n Ai; then F (y) is the initial segment
of z[i + 1] of length jU(y; �)j: We let xn = F (n�) and x = limn xn: It follows
that F is Solovay-universal and so x satis�es H(xn) 6 H(n) +O(1):

It remains to show that x is a noncomputable real.

Proposition 15. For all e 2 N ; Re has at most a �nite number of witnesses.

Proof. An easy induction on e shows that Re only requires attention �nitely
often.

Proposition 16. If �e is total then Re has a �nal witness.

Proof. Suppose Re does not get a �nal witness and all Re0 for e
0 < e have

a �nal witness by stage s0 and never require attention after stage s0: Then
it is clear that clause (i) holds for all s > s0: Furthermore we may choose
s1 > s0 so that (iii) holds for Re for all s > s1 since lims �(s) =1: Let g(n)
be the number of steps it takes for �e(n) to converge. Then clause (ii) holds
in�nitely often since by Theorem 11 there are in�nitely many i such that
g(�(i)) < i: Thus clause (iv) must fail, otherwise Re would receive attention
at some stage s2 > s1: But then the witness that Re has that contradicts (iv)
is permanent.

10

Proposition 17. Ifm is the �nal witness of Re; then x(m) = z(m) 6= �e(m):

Proof. By construction, if m is the �nal witness for Re then x(m) 6= �e(m):

This completes the proof of Theorem 14.

References

[1] C. Calude. Theories of Computational Complexity, North-Holland, Am-
sterdam, 1988.

[2] C. Calude. Information and Randomness. An Algorithmic Perspective,
Springer-Verlag, Berlin, 1994.

[3] C. S. Calude, R. J. Coles. Program-size complexity of initial segments
and domination relation reducibility, in J. Karhum�aki, H. A. Maurer, G.
P�aun, G. Rozenberg (eds.). Jewels Are Forever, Springer-Verlag, Berlin,
1999. (in press)

[4] C. S. Calude, P. Hertling, B. Khoussainov, Y. Wang. Recursively enu-
merable reals and Chaitin
 numbers, in M. Morvan, C. Meinel, D. Krob
(eds.). Proceedings of STACS'98, Paris,1998, Springer-Verlag, Berlin,
1998, 596-606.

[5] G. J. Chaitin. Algorithmic information theory, IBM J. Res. Develop.
21(1977), 350-359, 496.

[6] G. J. Chaitin. Information-theoretic characterizations of recursive in�-
nite strings, Theoretical Computer Science, 2 (1976), 45{48.

[7] G. J. Chaitin. The Limits of Mathematics, Springer-Verlag, Singapore,
1997.

[8] D. W. Loveland. A variant of the Kolmogorov concept of complexity,
Information and Control, 15 (1969), 510{526.

[9] G. Rozenberg, A. Salomaa. Cornerstones of Undecidability, Prentice
Hall, Englewood Cli�s, 1994.

[10] R. M. Solovay. Draft of a paper (or series of papers) on Chaitin's work
: : : done for the most part during the period of Sept. to Dec. 1974, un-
published manuscript, IBM Thomas J. Watson Research Center, York-
town Heights, New York, May 1975, 215 pp.

[11] T. A. Slaman. Random Implies
-Like, manuscript, 14 December 1998,
2 pp.

11

