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Abstract

Dynamical systems which switch between several di�erent branches or modes of evo-
lution via a Markov process are simple mathematical models for irreversible systems. The
averaged evolution for such a dynamics can be obtained by a compression of the corre-
sponding reversible dynamics onto a coinvariant subspace in the sense of the Lax/Phillips
Scattering Scheme.

If the dynamics switches between some stable modes of evolution and some unstable
modes, still the averaged or expectation evolution might be stable. From the theory
of random evolutions the generator A of the averaged evolution is obtained, and a
de�nition of stability in average is suggested. With regard to this context the generator
A is investigated and conditions for stability in average are given for certain special
situations. Based on these results, a conjecture is made about su�cient and necessary
conditions for stability in average for some more general cases.

In order to �nd hints how to verify or how to modify the conjecture three qualitatively
di�erent solvable models are studied. Here the spectral properties of the generators of
all three models are studied, and the results are put in relation to the conjecture.
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Chapter 1

Introduction

In the paper \Quantum dynamics on a Markov background\ by B.S. Pavlov ([28])
a certain class of dynamical systems was constructed which has the property of being
irreversible. It was assumed that the generator of the evolution depends on time
via a continuous time n -state Markov process, it jumps between the self-adjoint
operators A1; : : : ; An , de�ned on a Hilbert space H .

From this random evolution U(t) , which is not a semi-group, the averaged evolution
Z(t) was taken (see e.g. Cheremshantsev[5] or Pinsky[30]). This evolution is a
semi-group, also called expectation semi-group, and it is generated by a dissipative
operator L . In fact it was shown that a self-adjoint dilation L̂ on a Hilbert space

Ĥ � H can be constructed, so that the unitary group eiL̂t has incoming and outgoing
subspaces D� and D+ in the sense of the Lax/Phillips scattering scheme, and such that
the averaged evolution Z(t) = eiLt is the compression PKU(t)jK onto the coinvariant
subspace K = Ĥ 	 (D+�D�) . This dilation plays the role of the underlying reversible
dynamics, so that it can be studied together with the irreversible compression of it onto
the corresponding coinvariant subspace.

In this text we are interested in the averaged stability of the class of dynamical systems
a�ected by a 2 -state Markov process with 'intensity' { , where the evolution 'jumps'
between a stable and an unstable mode. To be more speci�c, the generator A1 of the
stable branch of evolution shall be self-adjoint or dissipative, and the generator of the
unstable branch of evolution is assumed to have a one-dimensional accretive part, and
on its complementary subspace it is self-adjoint or dissipative. If the averaged evolution
for some choice of the parameter { of the Markov chain is a semi-group of uniformly
bounded operators then the system is called stable in average. We investigate the nec-
essary and/or su�cient conditions for stability in average. For a special case some answer
to this question is given, for more general cases a conjecture is made (cf. Conjecture 2.34)
which can be formulated to suit above situation as follows

Conjecture 1.1

Let � = (�1; �2) be the equilibrium distribution of the Markov chain. Then a su�cient

and necessary condition for possible stability in average is that the operator Â =
�21A1 + �22A2 generates a uniformly bounded semi-group, that means that there exists

a constant K > 0 such that
eiÂt � K for all t � 0 .

1



In order to �nd hints how to verify or how to modify this conjecture we shall investigate
the question of stability on three solvable models with the characteristics:

(i) both A1 and A2 are bounded operators;

(ii) both A1 and A2 are unbounded, A1 is self-adjoint, and A2 has a one-dimensional
accretive part and is self-adjoint on the complementary subspace;

(iii) both A1 and A2 are unbounded, A1 is dissipative, and A2 has a one-dimensional
accretive part, but is dissipative on the complement.

A model for the situation (i) is studied in Chapter 3, a point mass in a random
potential. The wave equation on the �nite string with random boundary conditions is
studied in Chapter 4 as an example of situation (ii). Then, in Chapter 5 we investigate
the wave equation on the semi-in�nite string divided by a point mass and with random
boundary conditions. The evolution which interests us here is the evolution on the �nite
part of the string separated by the point mass. Here we apply the Lax/Phillips scattering
scheme to obtain the dissipative operators.

Random evolution

Motivated by a connection found by Mark Kac (see \Some stochastic problems in
physics and mathematics", Magnolia Petroleum Co, Lectures in Pure and Applied Sci-
ence, no 2 (1956) ) between a simple random movement of a point mass and the telegraph
equation

1

c

@2

@t2
u = c

@2

@x2
u� 2a

c

@

@t
u;

R. Griego and R. Hersh introduced the notion of random evolution in 1969
(Griego/Hersh[9]). It is connected with the Cauchy problem�

1
i
d
dty(t) = A�(t)y(t)

y(0) = y0

where �(t) is some random process (e.g. Markov chain), and to each �(t) corresponds a
generator of a C0 -semi-group of operators, exactly what was constructed in Pavlov[28].
The original intention was not to actually study systems in which the mode of evolution
changes randomly in time, but to solve certain other Cauchy problems and �nd limit
theorems in connection with a general telegraph equation like

utt + 2aut = A2u:

An overview of the results and problems for the time up to 1974 concerning random
evolutions is given in a survey by R. Hersh ([13]). Only later were actual systems with
random evolution investigated. S.E. Cheremshantsev ([5]) studied the scattering problem
on the Schr�odinger equation

i
@

@t
 = ��x + q(x� y(t)) ;

where the potential q(x � y(t)) depends on time via a Brownian motion y(t) . The
averaged dynamics was constructed and the mean scattering operator was computed.
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In the last chapter of a book by M. Pinsky ([30]) the question of stability of random
evolutions is treated. However, this is done only for the case that some small stochastic
noise is superposed to an oscillation, not for the case that the mode of oscillation
changes drastically. A long list of references of work done in this �eld up to 1991 is
given in this book.

In Chapter 2 of this text are listed the de�nitions of Poisson processes and Markov
chains, and also the de�nitions of the random evolution and the expectation semi-group.
The generator of the semi-group is the operator considered in Pavlov[28]. Some proper-
ties of this operator are found as well as some conditions for stability in average.
The spectral properties of the generator for all three solvable models (i), (ii), and (iii)
with regard to the question of stability are studied in the Chapters 3, 4, and 5. Then we
relate any result to the Conjecture 2.34 in Chapter 6.

Appendix A contains some de�nitions and propositions from the Theory of Linear
Operators, Semi-groups of Operators, Perturbation Theory, Theory of Di�erential Op-
erators, Krein spaces, and Hardy spaces, which will be quoted in the text. Longer
calculations, graphs and some details on programmes run to produce these graphs are
collected as attachments to the Chapters 3 and 4 in the Appendices B and C respectively.

3



Chapter 2

Random evolution and Stability

in Average

The notion of random evolution and expectation semi-group was introduced by
R.Griego and R.Hersh ([9]) in 1969. It provides a tool to study the question of averaged
stability of dynamics on a Markov background given by a Cauchy problem.

In the �rst Section 2.1 are listed the de�nitions of Poisson processes and Markov
chains, together with some properties. These are used in Section 2.2 to give the de�nitions
of random evolution and expectation semi-group. Some properties are then quoted from
the respective literature and proofs given in detail.

A de�nition for stability in average is suggested in Section 2.3, we study the generator
of the expectation semi-group and �nd some conditions for averaged stability.

Then, in Section 2.4, some observations are made about the in�nitesimal generator
of the expectation semi-group for the special case of a continuous-time and symmetric
2 -state Markov chain.

2.1 Preliminaries about stochastic processes

The de�nitions in this section can be found in any standard book on stochastic pro-
cesses, for instance in Breiman[3], Grimmett/Stirzaker[11] or Taylor/Karlin[34].

2.1.1 The Poisson process

De�nition 2.1

Let X be a random variable with values in the positive reals R+ .
X is said to have exponential distribution with intensity { if Pr(X > t) = e�{t .

The density function such a random variable X is

Pr(X 2 dr) = {e�{rdr: (2.1)

An important property of the exponential distribution is the so called memory-less

property: If we think of X as the life-time of a certain unit and assume that the unit
has survived up to time t > 0 , then the random variable X�t of the remaining life-time
under the condition that it has survived up to time t is also exponentially distributed

4



with intensity { , since for s > 0

Pr(X � t > sjX > t) =
Pr(X � t > s)

Pr(X > t)
=
e�{(s+t)

e�{t
= e�{s:

De�nition 2.2

A family N = fN(t) : t � 0g of random variables with values in the state space S = N0

and with N(t) � N(t+ s) for all s; t � 0 is called a Poisson process with intensity
{ if the properties (P1)-(P3) hold:

(P1) for any set of times t0 = 0 < t1 < : : : < tn the increments N(t1) �
N(t0); : : : ; N(tn)�N(tn�1) are independent random variables,

(P2) for s; t > 0 the random variable N(t + s) � N(s) has Poisson distribution with
mean {t , i.e.

Pr(N(t+ s)�N(s) = k) =
({t)ke�{t

k!
; k 2 N0

(P3) N(0) = 0 .

2.1.2 The continuous-time n -state Markov chain

De�nition 2.3

A family � = f�(t) : t � 0g of random variables with values in a �nite state space
S = f1; : : : ; ng is called a continuous-time n -state Markov chain or process if it
satis�es the Markov property:
For all �nite sets of times 0 � t1 < : : : < tn < t and states k; j1; : : : ; jn 2 S it is

Pr
�
�(t) = k

���(t1) = j1 ^ : : : �(tn) = jn
�
= Pr

�
�(t) = k

���(tn) = jn
�
: (2.2)

The Markov property (2.2) is equivalent to the condition that for all k; j; l(u) 2 S
(0 � u � s)

Pr
�
�(s+ t) = k

���(s) = j ^ �(u) = l(u); 0 � u < s
�
=

Pr
�
�(s+ t) = k

���(s) = j
�
: (2.3)

Transition probabilities and the infinitesimal generator

De�nition 2.4

(1) If the transition probabilities Pr(�(s + t) = jj�(s) = k) are independent
of s � 0 then the Markov chain is said to have stationary or homogeneous

transition probabilities. In this case we de�ne

pjk(t) := Pr(�(t) = kj�(0) = j):

(2) The Markov chain is said to be regular if

lim
t!0

pjk(t) = �jk 8j; k 2 S:

5



(3) The probability distribution at time t of the Markov chain is the vector

p(t) :=
�
p1(t); : : : ; pn(t)

�
:=
�
Pr(�(t) = 1); : : : ;Pr(�(t) = n)

�
;

p(0) is called the initial distribution.

(4) The set of jump times (�n)n2N is de�ned by

�0 = 0 ; �n+1 = infft > �n : �(t) 6= �(�n)g ; n 2 N:

(5) The jump probabilities (Jjk)j;k2S are

Jjk := Pr(�(�1) = kj�(0) = j):

Certainly it is

nX
k=1;k 6=j

Jjk = 1 ; j 2 S: (2.4)

The set fpjk(t) : j; k 2 Sg of transition probabilities for a continuous-time, regular
n -state Markov chain also satis�es the conditions (see e.g. Breiman[3]):

(i)
nP
k=1

pjk(t) = 1 j 2 S

(iii) pjk(t+ s) =
nP
l=1

pjl(t)plk(s)

(Chapman-Kolmogorov forward equation)

De�nition 2.5
The transition matrix P (t) is de�ned as

P (t) =
�
pjk(t)

�n
j;k=1

=

0
B@

p11(t) � � � p1n(t)
...

. . .
...

pn1(t) � � � pnn(t)

1
CA :

The left-eigenvector � of P (t) to the eigenvalue 1 is called the equilibrium distribu-
tion, i.e. it is �P (t) = � .

With the help of the transition matrix P (t) the distribution p(t) at time t � 0 can
easily be calculated from the initial distribution p(0) . We have

pj(t) = Pr(�(t) = j)

=
nX
l=1

Pr(�(0) = l)Pr(�(t) = jj�(0) = l) =
nX
l=1

pl(0)plj(t)

and hence

p(t) = p(0)P (t):

It is easily veri�ed that the family fP (t) : t � 0g has in fact the properties (SG1)-
(SG3) of a one-parameter semi-group of operators listed in Appendix A.2.

6



De�nition 2.6
For the Markov chain with (stochastic) semi-group fP (t) : t � 0g de�ne the in�nitesi-
mal generator Q

Q := lim
t!0

P (t)� I
t

Then Q and P (t) satisfy

d

dt
P (t) = QP (t) = P (t)Q

For the row sums of Q we get

nX
k=1

qjk = lim
t!0

nX
k=1

pjk(t)� pjk(0)

t
= lim

t!0

1

t

 
nX
k=1

pjk(t) � 1

!
= 0: (2.5)

In Grimmett[11] it is shown that from the Markov property and homogeneity follows
that the sojourn times � are exponentially distributed with some intensity qj dependent
on the state j the chain is in. In fact one has for j 2 S with some qj > 0

Pr
�
� > t

���(0) = j
�
= e�qjt

and with the jump probabilities one gets

Pr
�
�(�) = k; � > t

���(0) = j
�
= Jjke

�qj t: (2.6)

It follows for j 6= k

qjk =
d

dt
pjk(t)

??
t=0

= qjJjk ;

and with (2.4) and (2.5)

�qjj =
nX

k=1;k 6=j

qjk = qj ;

that is

qj = �qj and Jjk = � qjk
qjj

for j = 1; : : : ; n (2.7)

De�nition 2.7
De�ne the random variable N(t) which counts the number of jumps up to (and including)
time t . And let Ns(t) be the number of jumps in the interval (s; t] .

The following proposition, also to be found in Griego/Hersh[10], gives an estimate of
the probabilities for m jumps of the chain up to time t .

Proposition 2.8

For m 2 N0 we have

9 c1; c2 > 0 : Pr(N(t) = m) � (c1t)
m

m!
e�c2t (2.8)

Proof: (by induction)
De�ne c1 := maxfqk; k = 1; : : : ; ng > 0 and c2 := minfqk; k = 1; : : : ; ng > 0 .

7



Let m = 0 , then

Pr(N(t) = 0) =
nX
k=1

Pr
�
N(t) = 0

���(0) = k
�
Pr(�(0) = k)

=
nX
k=1

e�qk tpk(0) � e�c2t:

Assume the assertion holds for m � 1 , then we get for m (with conditioning on the
time � of the �rst jump):

Pr(N(t) = m) =

Z t

0
Pr
�
N(t) = m

��� = r
�
Pr(� 2 dr)

=

Z t

0
Pr(Nr(t� r) = m� 1)

nX
k=1

Prk(� 2 dr)

�
Z t

0

[c1(t� r)]m�1

(m� 1)!
e�c2(t�r)

nX
k=1

qke
�qkrdr

� cm1
(m� 1)!

e�c2t
Z t

0
(t � r)m�1dr = (c1t)m

m!
e�c2t

2

Trajectories

When we follow a realisation of a continuous-time Markov chain we note the state
�(t) in which it is at each point of time t and the jump times (�j)j2N at which the
states change. The function �(t) is a right-continuous piecewise constant function with
values in S = f1; : : : ; ng . This gives rise to the

De�nition 2.9
(1) A (in�nite) collection of pairs

! = f(0; �0); (�1; �1); : : : ; (�m; �m); : : :g;
where �j are jump times and �j are the states in which the Markov chain � is
in the time interval [�j ; �j+1) is called a trajectory or sample path. Let !(t)
be the corresponding piecewise constant function. From the de�nition of N(t) we
get !(t) = �N(t) .

(2) With the shifted trajectory by time s > 0 we mean the trajectory

~!s = f(0; ~�0); (~�1; ~�1); : : : ; (~�m; ~�m); : : :g
where

~�j = �N(s)+j � s ; j � 1
~�j = �N(s)+j ; j � 0

(2.9)
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Figure 2.1: The shifted trajectory
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Figure 2.2: The reverse trajectory

(3) A �nite trajectory up to time s (of length s ) we denote with

![s] = f(0; �0); (�1; �1); : : : ; (�N(s); �N(s))g

(4) For a �nite trajectory we can consider the reverse trajectory

!̂[s] = f(0; �̂0); (�̂1; �̂1); : : : ; (�̂N(s); �̂N(s))g

with

�̂1 = s� �N(s) ; j = 1; : : : ; N(s)
�̂j = �N(s)�j ; j = 0; : : : ; N(s)

(2.10)

From above de�nitions and the Markov property follows

Lemma 2.10
(1) Let ! be a trajectory and t � 0 , then

Pr(!j![t]) = Pr(~!t) (2.11)

(2) Let P (t) be symmetric and s � 0 , then

Pr(![s]) = Pr(!̂[s])
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2.2 Random evolution

Let A1; : : : ; An be in�nitesimal generators of C0 -semi-groups T1; : : : ; Tn on the
Hilbert spaces H1 = (H; [:; :]1); : : : ; Hn = (H; [:; :]n) , and let M � 1 and � � 0 be such
that

kTj(t)kj �Me�t ; for j = 1; : : : ; n: (2.12)

The domains D(Aj) � H; j = 1; : : : ; n , need not be the same subspaces of the vector
space H , but the inner products are assumed to be at least mutually equivalent. We
de�ne the two sets of positive constants (jk)

n
j;k=1 and (�jk)

n
j;k=1 by

jkk:kk � k:kj � �jkk:kk ; j; k 2 S:
Further let � = f�(t) : t � 0g be a continuous-time Markov chain on the �nite state
space S = f1; : : : ; ng with in�nitesimal generator Q = (qjk)

n
j;k=1 and transition matrix

P (t) = eQt . The random evolution is connected with the Cauchy problem�
1
i
d
dty(t) = A�(t)y(t)

y(0) = y0
(2.13)

2.2.1 Forward and backward evolution

De�nition 2.11
For a given trajectory ! = f(0; �0); (�1; �1); : : : ; (�m; �m); : : :g the following operators
are de�ned:

(1) the backward random evolution (Griego/Hersh[9] and [10])

Mb(t;![t]) := T�0(�1)T�1(�2 � �1) � � �T�N(t)
(t� �N(t));

(2) and the forward random evolution (Keepler[18] and [20])

Mf (t;![t]) := T�N(t)
(t� �N(t)) � � �T�1(�2 � �1)T�0(�1):

Obviously, if the operators Tj ; j = 1; : : : ; n , commute, the backward and forward
random evolutions coincide.

Immediately from the de�nitions of the random evolutions and the reverse and shifted
trajectories as well as (2.12) follows

Lemma 2.12
(1) For a trajectory ! with N(t) = m and k 2 S it is

kMb(t;![t])kk � (max
j
j�kj j)m+1Mm+1e�t

kMf(t;![t])kk � (max
j
j�kj j)m+1Mm+1e�t

(2) Mb(t;![t]) =Mf (t; !̂[t])

10



(3) Mb(t;![t]) = T!(0)(�1)Mb(t � �1; ~!�1 [t� �1])

Mf (t;![t]) =Mf(t� �1; ~!�1 [t� �1])T!(0)(�1)

Proposition 2.13
If t 6= �k for k 2 N , then

(1) 1
i
d
dtMb(t;![t]) =Mb(t;![t])A�N(t)

(2) 1
i
d
dtMf (t;![t]) = A�N(t)

Mf (t;![t])

Proof:

(1) For j = 1; : : :n is Aj the generator of the semi-group Tj , thus

1

i

d

dt
Tj(t) = AjTj = TjAj

from Theorem A.23. N(t) is constant for t 6= �k; k 2 N , therefore

1

i

d

dt
Mb(t;![t]) = T�0(�1) � � �T�N(t)�1(�N(t) � �N(t)�1)

1

i

d

dt
T�N(t)

(t� �N(t))

= T�0(�1) � � �T�N(t)�1(�N(t) � �N(t)�1)T�N(t)
(t� �N(t))A�N(t)

= Mb(t;![t])A�N(t)
:

(2) and similarly

1

i

d

dt
Mf(t;![t]) =

1

i

d

dt
T�N(t)

(t� �N(t)) � � �T�1(�2 � �1)T�0(�1)
= A�N(t)

T�N(t)
(t� �N(t)) � � �T�1(�2 � �1)T�0(�1)

= A�N(t)
Mf(t;![t]):

2

Though Mb(t;![t]) and Mf (t;![t]) are not semi-groups, following 'almost semi-
group' properties hold (for part (1) see Griego/Hersh[10], for part (2) Keepler[20])

Proposition 2.14

For s; t � 0 we get

(1) Mb(0;![0]) = idH and Mb(s+ t;![s+ t]) =Mb(s;![s])Mb(t; ~!s[t])

(2) Mf (0;![0]) = idH and Mf (s+ t;![s+ t]) =Mf (t; ~!s[t])Mf(s;![s])

Proof:

� From the de�nitions immediately follow that Mb(0;![0]) = idH and
Mf (0;![0]) = idH .
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� Because of �N(s) � s < �N(s)+1 and the semi-group properties of Tj it is

T�N(s)
(�N(s)+1 � �N(s)) = T�N(s)

(s� �N(s))T�N(s)
(�N(s)+1 � s);

and then

Mb(s+ t;![s+ t]) =

= T�0(�1) � � �T�N(s)
(�N(s)+1 � �N(s)) � � �T�N(s+t)

(t� �N(s+t))

= T�0(�1) � � �T�N(s)
(s� �N(s)) �

�T�N(s)
(�N(s)+1 � s) � � �T�N(s+t)

(t� �N(s+t))

=Mb(s;![s])T�N(s)
(�N(s)+1 � s) � � �T�N(s+t)

(t� �N(s+t));

so that with the de�nition of the shifted trajectory, (2.9), we get

Mb(s+ t;![s+ t]) = Mb(s;![s])T~�0(~�0)T~�1(~�2 � ~�1) � � �T~�Ns(t)(t� ~�Ns(t))

= Mb(s;![s])Mb(t; ~!s[t]):

Analogous calculations yield the second equation in (2).

2

2.2.2 The expectation semi-group

De�nition 2.15
Let (H; h:; :i) = n

X
k=1

(H; [:; :]k) be the cartesian product of the Hilbert spaces (H; [:; :]k)

and let ~f = (f1; : : : ; fn)t 2 H with fk 2 H . On H are de�ned, component-wise at
some time t � 0 ,

(1) the backward expectation operators Eb(t) (Griego/Hersh[9] and [10])

(Eb(t) ~f)k = E
h
Mb(t;![t])f!(t) ; !(0) = k

i
; k = 1; : : : ; n;

(2) and the forward expectation operators Ef (t) (Keepler[18] and [20])

(Ef(t) ~f)k = E
h
Mf (t;![t])f!(0) ; !(t) = k

i
; k = 1; : : : ; n:

Remark 2.16
(1) In the paper Keepler[18] are given the de�nitions of the expectation operators in

terms of integrals and in a recursive manner, it is also shown that these de�nitions
coincide with the ones given above.

(2) With the notation E
�
Mb(t;![t])f!(t);!(0) = k

�
is meant that the sum in the

expectation value of Mb(t;![t])f!(t) shall be made over all trajectories ! with
initial state !(0) = k . The analogous is meant in the other case.
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(3) The de�nition of the forward expectation operators is more natural for our purposes
in the following sense:
Imagine one knows the initial vector y(0) and the initial distribution p(0) of the
Markov chain. Then with fj = pj(0)y(0); j = 1; : : : ; n , the vector

	̂[y; p](t) :=
nX
k=1

�Ef (t) ~f�k 2 H
is the expected value of the solution to (2.13) at time t .

The following two theorems are due to R.Griego and R.Hersh [10].

Theorem 2.17

The family fEb(t) : t � 0g of operators forms a C0 -semi-group of bounded operators,
i.e. it satis�es the conditions

(1) 9 L � 1; � � 0 :
Eb(t)H � L e�t

(2) Eb(0) = idH

(3) Eb(s+ t) = Eb(s)Eb(t) = Eb(t)Eb(s) for s; t � 0

(4) 8 ~f 2 H : lim
t!0

Eb(t) ~f � ~f

H
= 0

Proof:

(1) Set Mk :=M max
j
j�kj j , then we get with (2.8) and Lemma 2.12(1)

�Eb(t) ~f�kk � E
hMb(t;![t])f!(t)


k
;!(0) = k

i
� E

hMb(t;![t])

k

f!(t)k ;!(0) = k
i

=
1X
m=0

E
hMb(t;![t])


k

f!(t)k ;!(0) = k
���N(t) = m

i
Pr(N(t) = m)

�
1X
m=0

Mm+1
k e�t

 ~f
H

(c1t)
m

m!
e�c2 t

�Mke
(�+Mkc1�c2)t

 ~f
H
;

then with ~M := max
k
Mk

Eb(t) ~f2H =
nX
k=1

�Eb(t) ~f�k2k
� n ~M2e2(�+

~Mc1�c2)t
 ~f2

H
=: L2e2�t

 ~f2
H
; (2.14)

and hence

Eb(t)H � L e�t:
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(2) Let k 2 f1; : : : ; ng , then
�Eb(0) ~f�k = E

�
Mb(0;![0])f!(0);!(0) = k

�
= E

�
T!(0)f!(0);!(0) = k

�
= fk

) Eb(0) = idH:

(3) We have with the fact that E[X ] = E
h
E[X jY ]

i
, the Markov property (2.3) and

Proposition 2.14�
Eb(s+ t) ~f

�
k
= E

h
Mb(s + t;![s+ t])f!(s+t);!(0) = k

i
= E

h
E
�
Mb(s+ t;![s+ t])f!(s+t);!(0) = k

��!(u); 0 � u � s
�
;!(0) = k

i
= E

h
Mb(s;![s])E

�
Mb(t; ~!s[t])f~!s[t]; ~!s(0) = !(s)

�
;!(0) = k

i
= E

h
Mb(s;![s])(Eb ~f )!(s);!(0) = k

i
=
�
Eb(s)Eb(t) ~f

�
k

(4) Again we use (2.8) and Lemma 2.12(1)(Eb(t) ~f)k � fkk = E �Mb(t;![t])f!(t);!(0) = k
�� fkk

� E
�kMb(t;![t])f!(t) � fkkk;!(0) = k

�
=

1X
m=0

E
h
kMb(t;![t])f!(t) � fkkk;!(0) = k

��N(t) = m
i
Pr(N(t) = m)

� Tk(t)fk � fk

k
+

+
1X
m=1

E
h
kMb(t;![t])f!(t)kk kfkkk;!(0) = k

��N(t) = m
i(c1t)m

m!
e�c2t

� kTk(t)fk � fk

k
+ k ~fkH

1X
m=1

�
Mm+1
k e�t + 1

�(c1t)m
m!

e�c2t

=
Tk(t)fk � fkkk + k ~fkHe�c2t

�
Mke

�t(eMkc1t � 1) + (ec1t � 1)
�
:

Since Tk are C0 -semi-groups we have from above

lim
t!0

(Eb(t) ~f)k � fk

k

� lim
t!0

�
kTk(t)fk � fkkk +

+k ~fkHe�c2t
h
Mke

�t(eMkc1t � 1) + (ec1t � 1)
i�

= 0

2

Remark 2.18
Note that � + ~Mc1 � c2 � � in equation (2.14) since ~M � 1 and c1 � c2 .
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Theorem 2.19
The Cauchy problem8<

:
1
i
d
dt(

~f)j = Ajfj � i
nP
k=1

qjkfk ; j = 1; : : : ; n

~f(0) = ~f0

for a vector function ~f(t) = (f1(t); : : : ; fn(t))
t ; t � 0 , on H is solved by

~f(t) = Eb(t) ~f0
That is, the in�nitesimal generator Ab of the backward expectation semi-group Eb is

Ab :=

0
B@
A1 0

. . .

0 An

1
CA� i

0
B@

q11idH � � � q1nidH
...

. . .
...

qn1idH � � � qnnidH

1
CA =

= diag(A1; : : : ; An)� i Q� idH

Proof:
We show that Ab generates Eb .
Let � be the time of the �rst jump of the Markov chain, and the index j at Prj(X)
denote that the chain is in state j . We have for j 2 f1; : : : ; ng

(Eb(t) ~f)j = E
�
Mb(t;![t])f!(t);!(0) = j; � > t

�
+ E

�
Mb(t;![t])f!(t);!(0) = j; � � t

�
= Tj(t)fjPrj(� > t) +

Z t

0
E
h
Mb(t;![t])f!(t);!(0) = j

���� = r
i
Prj(� 2 dr):

Now with (2.1), (2.6), (2.7), and � := ~!rZ t

0
E
h
Mb(t;![t])f!(t);!(0) = j

���� = r
i
Prj(� 2 dr)

=

Z t

0
E
h
Tj(r)Mb(t� r; ~!r[t� r])f

~!r(t�r);!(0) = j
���� = r

i
Prj(� 2 dr)

=

Z t

0
Tj(r)

nX
k=1;k 6=j

E
h
Mb(t � r; �[t� r])f�(t�r);�(0) = k

i
Prj(!(r) = k)Prj(� 2 dr)

=

Z t

0
Tj(r)

nX
k=1;k 6=j

�Eb(t� r) ~f
�
k

�
qjke

�qjr
�
dr:

Then we have for the operator Ab with Theorem A.23(1)

(Ab ~f)j = lim
t!0

(Eb(t) ~f)j � fj
it

= lim
t!0

1

it

2
4Tj(t)fjPrj(� > t)� fj +

Z t

0
Tj(r)

nX
k=1;k 6=j

(Eb(t� r) ~f)kqjke�qjrdr
3
5

= lim
t!0

�
Prj(� > t)

Tj(t)fj � fj
it

+
Prj(� > t)� 1

it
fj+

+ (�i)
nX

k=1;k 6=j

qjk
1

t

Z t

0
Tj(r)(Eb(t� r) ~f)ke�qjrdr

3
5
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and thus

(Ab ~f)j = Ajfj � iqjjfj � i

nX
k=1;k 6=j

qjkTj(0)(Eb(0) ~f)k

= Ajfj � i

nX
k=1

qjkfk:

2

Remark 2.20
In the original papers Griego/Hersh[9] and [10] the result is stated that the generator
Ab of Eb(t) is Ab = diag(Ak)+Q� idH , with Q instead of (�i)Q . The reason for the
di�erence is that by their de�nition the semi-group generated by an operator A is eAt .

There is a simple connection between the backward and forward expectation semi-
groups, also treated in Keepler[18] and in particular in Keepler[19].

Proposition 2.21
Let Eb(t) be the backward expectation semi-group of the n -state Markov chain � with
generator Q , and let Ff (t) be the forward expectation semi-group of the n -state
Markov chain � with the transposed generator Qt . Then Eb(t) = Ff(t) . In par-
ticular we have

Q = Qt ) Eb(t) = Ef(t):
Proof:
Let Mb(t;![t]) be the backward random evolution for � and Mf (t;�[t]) the forward
random evolution of � . Further let E� [X ] be the expected value corresponding to the
chain � , analogous for E�[X ] . Then for k = 1; : : : ; n and ~f 2 H

(Eb(t) ~f)k = E�
�
Mb(t;![t])f!(t);!(0) = k

�
=

nX
j=1

E�
�
Mb(t;![t])fj;!(0) = k ^ !(t) = j

�
= E�

�
Mf (t; !̂[t])f!̂(0); !̂(t) = k

�
: (2.15)

Now, the probability of the reversed trajectory !̂ for � is the same as the probability of
the `forward' trajectory � = !̂ for � , since � is generated by Qt and Lemma 2.10(2).
Thus we get in (2.15)

(Eb(t) ~f)k = (Ff(t) ~f)k :
2

Corollary 2.22
The family fEf(t) : t � 0g forms a C0 -semi-groups of operators with in�nitesimal
generator

Af := diag(A1; : : : ; An)� i Qt � idH
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Remark 2.23
Regarding the operator Q� idH on H we make following observations:

(1) The operators idH represent the identity operator in H . Should H be of �nite
dimension, and the operators Aj be represented as some matrices with respect to
di�erent bases, then the operators idH are not represented as identity matrices but
rather as some change of basis matrices, according to their position in the matrix
operator Q� idH .

(2) In the case that the norms k:k1; : : : ; k:kn are di�erent the operator idH in the
j th row and k th column of Q� idH is the embedding

Ijk : (H; h:; :ik)! (H; h:; :ij) ; u 7! u;

and the operator norm of Ijk is not necessarily equal to 1 .

2.3 Stability in Average

Our concept of stability is motivated from the physical context where the (suitably
chosen) norm of a vector function u(t) may represent the physical energy of a certain
object, e.g. a particle or a string. We call an evolution given by a semi-group

�
T (t)

	
t�0

of bounded operators stable if for each u 2 H the norms kT (t)ukH are uniformly
bounded (or equi-bounded) over all times t � 0 . In general the matrix Q will not be
symmetric, but then the forward and backward expectation semi-groups are not equal.
Considering their de�nitions and Remark 2.16(3) it seems more natural to connect
stability in average with the forward evolution, thus we suggest the

De�nition 2.24

The dynamical system given as the solution of the Cauchy problem (2.13) is said to be
stable in average if the operators Ef (t) of the forward expectation semi-group are
uniformly bounded, i.e. if there exists a constant K > 0 , such that kEf(t)kH � K for
all t � 0 .

Remark 2.25
(1) It would be interesting to �nd an example of a system (with non-symmetric Q )

where the forward expectation semi-group is uniformly bounded, and the backward
is not, or vice versa.

(2) If the operator norms of the family
�Ef(t)	t�0 are uniformly bounded, then the

norms of the expected values 	[f; p](t) are uniformly bounded for every initial
vector f 2 H and initial distribution p , this corresponds to the described concept
of stability.

(3) Certainly, if the generator of the expectation semi-group is dissipative then the
system is stable in average (cf. Appendix A.2).
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Before we state some su�cient and necessary condition for strong dissipativity of the
operator Af , we list some properties of the matrix operator Q � idH .

Lemma 2.26
If all inner products are mutually equivalent then Q � idH is a bounded operator on
H .
Conversely, if Q generates an irreducible Markov process, and if Q � idH is bounded,
then all inner products are mutually equivalent.

Proof:
Let 1; : : : ; n and �1; : : : ;�n be positive constants, such that

�1j kfk2j � kfk21 � ��1j kfk2j
for all f 2 H and j = 1 : : : ; n , and let ~f = (f1; : : : ; fn)

t 2 H . Then we get

Q� idH ~f
2 =

nX
j=1

 nX
k=1

qjkfk
2
j
�

nX
j=1

� nX
k=1

jqjk jkfkkj
�2

�
nX
j=1

n
� nX
k=1

jqjk j2kfkk2j
�
� nmax

j;k
(jqjkj2)

nX
j=1

nX
k=1

jkfkk21

� n2max
j;k

(jqjkj2) max
j
(j)

nX
k=1

kfkk21

and also

k ~fk2 =
nX
k=1

kfkk2k �
nX
k=1

�kkfkk21 � min
k
(�k)

nX
k=1

kfkk21

Now we getQ� idH ~f
2

k ~fk2 � n2max
j;k

(jqjkj2)
max
j
(j)

min
k
(�k)

so that Q� idH is bounded.
For the converse we assume that the norms k:kj for j 2 J ( S = f1; : : : ; ng , and the
norms k:kk for k 2 K := SnJ are mutually equivalent respectively, whereas k:kj and
k:kk are not equivalent for j 2 J and k 2 K .
Since the Markov process is irreducible, there exist j0 2 J and k0 2 K such that
qj0k0 6= 0 . (cf. Grimmett/Stirzaker[11]), w.l.o.g. let j0 = 2; k0 = 1 .
Now, k:k1 and k:k2 are not equivalent, so that

8m > 0 9fm 2 H : kfmk22 > mkfmk21:
We set ~fm = (fm; 0; : : : ; 0)

t 2 H , then we have with k ~fmk2H = kfmk21
Q� idH ~fm

2
H

=
(q11fm; : : : ; qn1fm)t2H =

nX
j=1

jqj1j2kfmk2j

� jq21j2kfmk22 > mjq21j2k ~fmk2H
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Hence Q� idH is unbounded, contrary to the assumption.

2

Lemma 2.27
Let Q be a complex n� n -matrix.
If all inner products h:; :i1; : : : ; h:; :in are equal, then the adjoint of Q� idH in (H; [:; :])
is �Qt � idH .
Conversely, if Q generates an irreducible n -state Markov process and (Q � idH)

� =
( �Qt � idH) , then all inner products are equal.

Proof:
Let Q = (qjk)

n
j;k=1;

�Qt = (~qjk)
n
j;k=1 = (qkj)

n
j;k=1; U = (u1; : : : ; un)

t and V =

v1; : : : ; vn)
t 2 H .

Suppose h:; :i1 = � � � = h:; :in =: h:; :i , then we get

�
Q� idHU; V

�
=

nX
j=1

D nX
k=1

qjkuk; vj

E
=

nX
k=1

D
uk;

nX
j=1

qjkvj

E
=

�
U; �Qt � idHV

�
so that the adjoint of Q� idH is �Qt � idH .
For the converse, we have

�
Q� idH U; V

�
=

nX
j=1

nX
k=1

qjkhuk; vjij (2.16)

�
U; �Qt � idH V

�
=

nX
j=1

nX
k=1

huj ; ~qjkvkij (2.17)

Equations (2.16) and (2.17) are equal if and only if

nX
j=1

nX
k=1

qjkhuk; vjij =
nX
j=1

nX
k=1

qkjhuj ; vkij (2.18)

for all U; V 2 H . If we choose uk = f�lk and vj = g�mj with m; l = 1; : : : ; n and
f; g 2 H , then (2.18) yields

qmlhf; gim = qmlhf; gil 8f; g 2 H:
If qml 6= 0 , then we immediately get h:; :im = h:; :il . If qml = 0 we use a similar
argument as in Lemma 2.26, since the Markov process is assumed irreducible, and thus
we obtain that h:; :im = h:; :il for all m; l = 1; : : : ; n .

2

Corollary 2.28
If all inner products are equal, then Re(Q� idH) = (Re Q)� idH and Im(Q� idH) =
(Im Q)� idH .
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Before we state the next Lemma we note that each element (y; g) of the space C �H
can be identi�ed with the vector (y1g; : : : ; yng)

t 2 H .

Lemma 2.29
Assume all inner products are equal. If there exists a subspace Y � C n and m 2 R
such that hQx; xiCn � mkxk2

Cn
for all x ?Cn Y , then we have

[Q� idHU; U ] � m[U; U ] 8U ?H (Y �H)

Proof:
From the assumption we have that for all x ?Cn Y

hQx; xiCn =
nX

j;k=1

qjkxkxj � �2kxk2Cn (2.19)

A vector U = (u1; : : : ; un)
t 2 H is orthogonal to Y �H if and only if

8y 2 Y; g 2 H �
U; yg

�
=

nX
j=1

huj ; yjgiH = 0 ,
nX
j=1

ujyj = 0 8y 2 Y (2.20)

Let f�lgl2N be an orthonormal basis for H , so that for each j = 1; : : : ; n exist coe�-
cients f�ljgl2N with uj =

P
l2N�

l
j�l . Now we get

�
Q� idHU; U

�
H

=
nX
j=1


 nX
k=1

qjkuk; uj
�
H
=

nX
j=1

nX
k=1

qjk

X
l2N

�lk�l;
X
m2N

�mj �m
�
H

=
X
l2N

� nX
j=1

nX
k=1

qjk�
l
k�

l
j

�
(2.21)

We de�ne xl = (�l1; : : : ; �
l
n)
t for l 2 N , so that from (2.21) follows�

Q� idHU; U
�
H
=
X
l2N

hQxl; xliCn (2.22)

If U ?H Y �H then xl ?Cn Y for all l 2 N , since from (2.20) it follows with y 2 Y

0 =
nX
j=1

yjuj =
nX
j=1

yj
X
l2N

�lj�l =
X
l2N

� nX
j=1

yj�
l
j

�
�l

, 0 =
nX
j=1

yj�
l
j = hxl; yiCn 8l 2 N; y 2 Y

Finally, from (2.19) and (2.22) follows

�
Q� idH U; U

�
H
� �2

X
l2N

kxlk2Cn = �2
X
l2N

nX
j=1

j�lj j2 = �2

nX
j=1

kujk2H = �2kUk2H

2

Corollary 2.30
If all inner products are equal, and if 0 = �1 > �2 � : : : � �n are the eigenvalues of
the real and symmetric matrix Q , where �1 = 0 is simple with eigenvector �t , then
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Q� idH is bounded from above on the orthogonal complement of f�tg �H in H , i.e.
with R := H 	 �f�tg �H

�
Q� idH jR � �2idR

Now we are set to investigate conditions for the strong dissipativity of the operator
Af ({) :=

�
diag(A1; : : : ; An) � i{Qt � idH

�
for the special case that the operators

A1; : : : ; An are bounded and all inner products are equal. Inserting the variable { > 0
corresponds to 'accelerating' or 'decelerating' the Markov process generated by the
matrix Q .

Theorem 2.31
Let the generator A�(t) of the dynamical system (2.13) jump between the operators
A1; : : : ; An on the Hilbert space

�
H; h:; :i� via a Markov process which is generated by

the symmetric matrix Q and which has the equilibrium distribution � = (�1; : : : ; �n) .
Assume that A1; : : : ; An are bounded operators such that

Im(Aj) � �j idH (2.23)

for j = 1; : : : ; n; and largest possible values of �1; : : : ; �n 2 R.
Now, if for some � > 0

Im
� nX
j=1

�2jAj
� � �

� nX
j=1

�2j
�
idH (2.24)

then there exist 0 < � < � and { > 0 , such that

ImAf ({) � � idH:

Conversely, if ImAf ({) � �IH for some � > 0 and { 2 R, then Im
�Pn

j=1 �
2
jAj

� �
�
�Pn

j=1 �
2
j

�
idH .

Proof:
We de�ne �0 := minf�j : j = 1; : : : ; ng , ~A := diag(A1; : : : ; An) and � := kIm ~Ak =�Pn

j=1 kIm(Aj)k2
�1=2

. It follows from (2.23) that Im
�
diag(A1; : : : ; An)

� � �0idH , and
note that � is positive unless all operators Aj are selfadjoint, and this is the situation
treated in Pavlov[28].
Q is a stochastic matrix, so that zero is a simple eigenvalue of Qt with (right) eigenvector
� 2 Rn , all other eigenvalues are negative. The nullspace of M := �iQt � idH is

N :=
�
(�1f; : : : ; �nf)

t : f 2 H	 = f�tg �H:
Let R := H 	 N and m0 := min

�j� j : � is non-zero eigenvalue of Qt
	
, then with

Corollary 2.30 we get

Im(M jR) = �Re(Qt � idH jR) � m0 idR
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The adjoint of M is �M , since Q = Qt , so it follows MR ? N . Now, using above
estimations and inequalities, we get with V 2 R;W 2 N , U = V +W 2 H

Im
�
( ~A+ {M)U; U

�
=

= Im
�
( ~A+ {M)V; V

�
+ Im

�
~AW; V

�
+ Im

�
~AV;W

�
+ Im

�
~AW;W

�
= Im

�
( ~A+ {M)V; V

�
+ Im

�
( ~A� ~A�)V;W

�
+ Im

� nX
j=1

hAj�jf; �jfi
�

Thus we get with some " > 0

Im
�
( ~A+ {M)U; U

�
=

� ��0 + {m0

�kV k2 � 2
( ~A� ~A�)

kV kkWk+ Im
D nX
j=1

�2jAjf; f
E

� ��0 + {m0

�kV k2 � Im( ~A)
�"kV k2 + 1

"
kWk2

�
+ �

� nX
j=1

�2j

�
kfk2H

=
�
�0 + {m0 � "�

�kV k2 + ��� �

"

�kWk2 = (�)
We require that

(�) � �kUk2 = �
�kV k2 + kWk2�;

which is satis�ed if

{m0 + �0 � "� � � (2.25)

�� �

"
� �: (2.26)

Equation (2.26) is ful�lled for " = �
��� and any 0 < � < � , and then (2.25) is satis�ed

for

{ � 1

m0

�
�� �0 +

�2

� � �
�

(2.27)

For the converse, choose U = �tf 2 f�tg �H and observe that

Im
D nX
j=1

�2jAjf
E
H
= Im

�
( ~A+ {M)U; U

� � �kUk2H = �
� nX
j=1

�2j

�
kfk2H

This proves the theorem.

2

The system is stable in average also in the case when Af is only similar to a strongly
dissipative operator (see Proposition A.29, which is considered in the next theorem.

Theorem 2.32
In the situation of the theorem above let P0 and P1 be the orthogonal projections of
H onto N and R respectively.
Then the operator Af ({) is similar to a strongly dissipative operator for some { > 0
if the component P0 ~AP0 is similar to a dissipative operator B0 on N = f�tg �H , ie.
if there exists a bounded and invertible operator X : N ! N and � > 0 such that
B0 = XP0 ~AP0X

�1 and Im
�
B0

� � � idN .
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Proof:
First we note that the operator X : N ! N can be identi�ed with an operator on H ,
since a vector (�1f; : : : ; �nf)

t 2 N is mapped to a vector (�1g; : : : ; �ng)
t 2 N , thus

the essential part of X is the mapping from f 2 H to g 2 H . This operator we also
denote with X .
We transform the operator Af ({) on R�N to

Bf ({) :=
�

idR 0
0 X

��
P1( ~A+ {M)P1 P1 ~AP0

P0 ~AP1 P0 ~AP0

��
idR 0
0 X�1

�
;

and by similar calculations as in the proof of Theorem 2.31 we can �nd

{ � 1

m0

�
�� �0 +

�2

� � �

�

with 0 < � < � and � = 1
2k ~Ak

�kXk+ kX�1k� so that

Im(Bf ({)) � � idH:

2

Remark 2.33

We can extend the conclusions of Theorem 2.31 and 2.32 at least to the case where Q
is a real and normal matrix with one zero eigenvalue and which other eigenvalues have
strictly negative real part, since then ReQ ful�ls the conditions of Lemma 2.29 and it
is also MR ? N .

Theorems 2.31 and 2.32 deal with the situation of equal norms. However, in many
interesting situations, like the examples in Chapters 3, 4 and 5, the canonical choice
of the norms k:kj =

ph:; :ij on each copy of H results in merely equivalent norms,
and the Markov process generally is not symmetric. Additionally, it is su�cient for
stability in average that the generator Af of the expectation semi-group be similar to
a dissipative operator. Thus with view to Theorem 2.32 we pose the following conjecture.

Conjecture 2.34

Let A1; : : : ; An be bounded operators, satisfying (2.23), on some Hilbert spaces
(H; h:; :i1); : : :(H; h:; :in) with mutually equivalent inner products, and let Q be the gen-
erator of the Markov process with equilibrium distribution � = (�1; : : : ; �n) . Then the
following two statements are equivalent:

(i) There exists a positive { such that the dynamical system (2.13) a�ected by the
Markov process generated by {Q is stable in average.

(ii) The operator Â := �21A1 + � � �+ �2nAn generates a semi-group eiÂt of uniformly
bounded operators.
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2.4 The generator A of the expectation semi-group for a
2-state Markov chain

Here we consider the special case of a symmetric 2-state Markov chain � with gener-
ator

Q := {

��1
1

1

�1
�

where the sojourn times in the states are exponentially distributed with intensity { > 0 .
Let A1 and A2 be two in�nitesimal generators of C0 -semi-groups T1 and T2 on a
Hilbert space H with domains D(A1) and D(A2) . Since Q is symmetric, the forward
and backward expectation semi-groups are equal, i.e. Eb(t) = Ef (t) =: E(t) . The
generator of E(t) is

A({) =
�
A1 + i{ idH �i{ idH
�i{ idH A2 + i{ idH

�

We want to �nd conditions so that A is dissipative or similar to a dissipative operator,
so the spectrum of A is of special interest, especially its dependence on { .

Remark 2.35

(1) From Lemma 2.27 we know, that �iQ � idH is not symmetric, so A({) is not
symmetric either.

(2) If all norms are equivalent, it follows from Lemma 2.26 that the operator A({) can
be regarded as a bounded perturbation of the diagonal operator A(0) =

�
A1
0

0
A2

�
for all { > 0 .

(3) From the proof of Lemma 2.26 we get an estimate for the operator norm of �iQt�
idH

{ � k� iQt � idHkH � 2{

r
1
�1

2.4.1 The Frobenius-Schur factorisation of A

In order to study matrix operators we can express them as a Frobenius-Schur
factorisation, also called LDR factorisation in books on Numerical Analysis, eg.
Stoer/Bulirsch[32]. As one can check directly, we have for A({)� � idH with � 2 C

A({)� �idH =

�
idH 0

�i{R��i{1 idH

�
� (2.28)

�
�
A1 � (� � i{)idH 0

0 A2 � (�� i{)idH + {2R��i{1

��
idH �i{R��i{1

0 idH

�
or

A({)� �idH =

�
idH �i{R��i{2

0 idH

�
� (2.29)

�
�
A1 � (� � i{)idH + {2R��i{2 0

0 A2 � (�� i{)idH

��
idH 0

�i{R��i{2 idH

�
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where R��i{1 and R��i{2 are the resolvents to �� i{ of A1 and A2 respectively.

2.4.2 A for small intensity

For small values of the intensity { we can regard the generator A({) as a weak
perturbation of the diagonal operator A(0) . We assume here that A1 and A2 are self-
adjoint or anti-self-adjoint.

Let �0 be an eigenvalue of A(0) with eigenvector u0 . For small { we can expand
the eigenvalue �({) to the eigenvector u({) of A({) as power series

�({) = �0 + {�1 + � � �
u({) = u0 + {u1 + � � �

Then we get with B :=
�

idH
�idH

�idH
idH

�
A({)u({) = (A(0) + i{B)(u0 + {u1 + � � �)

= A(0)u0 + {(iBu0 + A(0)u1) + � � � ;
and �({)u({) = (�0 + {�1 + � � � )(u0 + {u1 + � � �)

= �0u0 + {(�1u0 + �0u1) + � � �
Comparing the coe�cients in above equations and dropping the higher order terms we
get

A(0)u0 = �0u0 ^ A(0)u1 + i{B idHu0 = �0u1 + �1u0 :

When we waive any condition on the norm of u1 we can choose u1 ? u0 and get

h(A(0)� �0)u1; u0i = �1hu0; u0i � i{hBu0; u0i:
If A1 and A2 are self-adjoint or anti-self-adjoint, we get h(A(0)� �0)u1; u0i = 0 and
then

�1 = i{
hBu0; u0i
hu0; u0i : (2.30)

Since the eigenvectors u0 of A(0) =
�
A1
0

0
A2

�
are of the form (v1; 0)t (or (0; v2)t ),

where v1 (or v2 ) is eigenvector of A1 (or A2 ), we have for instance

hBu0; u0i =
��

idH
�idH

�idH
idH

��
v1
0

�
;

�
v1
0

��
= hv1; v1i

and hu0; u0i = hv1; v1i .
From (2.30) follows that �1 = i{ , similar for the other case u0 = (0; v2)t .
This actually means, that as a linear approximation of the eigenvalues of A({) at
{ = 0 the imaginary parts increase with increasing value of { , that is, graphically, the
eigenvalues in the complex plane \go up".
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2.4.3 The adjoint operator of A

In a Hilbert space of finite dimension

As a �rst step assume that A1 and A2 are linear operators on a �nite dimensional
Hilbert space H = C n , i.e. n� n -matrices. Then the hermitian of A({) is

�At({) =
�

�At1 � i{ idH i{ idH
i{ idH �At2 � i{ idH

�
;

and we see immediately that A({) 6= �At({) for { > 0 , A({) is not hermitian.
To check whether A({) is normal, calculate

A({) �At({) =

�
A1

�At1 + i{( �At1 �A1) + {
2idH i{(A1 � �At2)� 2{2idH

i{(� �At1 + A2)� 2{2idH A2
�At2 + i{( �At2 �A2) + {

2idH

�

and

�At({)A({) =
�

�At1A1 + i{( �At1 �A2) + 2{2idH i{(� �At1 +A2)� 2{2idH
i{(A1 � �At2)� 2{2idH �At2A2 + i{( �At2 �A2) + 2{2idH

�

so that A({) is normal if and only if A1 = A2 and A1 is normal.

In a Hilbert space of infinite dimension

For the case of in�nite dimensional Hilbert spaces it has been noted that one might
have di�erent inner products [:; :]1 and [:; :]2 on the two copies H of the same space of

vectors. Then, with regard to (2.28) with � = 0 , the adjoint of, say,
�

idH
�i{R�i{1

0
idH

�
of

the form
�
idH
0

B
idH

�
is determined by the condition��

idH
�i{R�i{1

0

idH

��
U

V

�
;

�
W

Z

��
=

��
U

V

�
;

�
idH
0

B

idH

��
W

Z

��

or, equivalently [�i{R�i{1 U; Z]2 = [U;BZ]1 , and for the adjoint of
�
idH
0
�i{R�i{1

idH

�
of

the form
�
idH
C

0
idH

�
we require [�i{R�i{1 V;W ]1 = [U;CZ]2 .

2.4.4 The resolvent of A

From the Frobenius-Schur factorisation (2.28), at least formally, we get an expression
of the resolvent R� = (A� �idH)�1 in the form

R� =

�
idH i{R��i{1

0 idH

�
�

�
 
R��i{1 0

0
�
A2 � (�� i{)idH + {2R��i{1

��1
!�

idH 0

i{R��i{1 idH

�
:

If the operator to the right exists then R� exists and � is a regular point of
A . Conversely, if � 2 �(A) , then one of the operators R��i{1 or T�11 :=�
A2 � (�� i{)idH + {2R��i{1

��1
does not exist.
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From (2.29) we get the expression

R� =

�
idH 0

i{R��i{2 idH

�
�

�
 �

A1 � (�� i{)idH + {2R��i{2

��1
0

0 R��i{2

!�
idH i{R��i{2

0 idH

�
:

Now, if � 2 �(A) then one of the operators R��i{2 or T�12 :=�
A1 � (�� i{)idH + {2R��i{2

��1
does not exist.
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Chapter 3

A point mass in a random

potential

In this chapter we study the question of stability in average for a simple example - the
one-dimensional movement of a point mass in a potential which changes randomly. It is
assumed to jump between two di�erent potentials, one of which determines a stable, the
other one an unstable dynamics, in a sense to be de�ned in the beginning of Section 3.1.
The jumps shall be modelled by a symmetric continuous-time 2 -state Markov process
with exponentially distributed sojourn times with intensity { .

The example is simple in the way that the generator A of the expectation semi-group
is a 4� 4 -matrix, the four eigenvalues can be calculated explicitly and su�cient condi-
tions on the values of { and other characteristic parameters can be found analytically
to obtain averaged stability for the model.

The description of the two dynamics with remarks to stability is done in Section 3.1.
In Section 3.2 the eigenvalues of the operator A are calculated and conditions are sought
so that all these values have positive imaginary part to ful�l the conditions of Proposition
A.30 for uniform boundedness of the expectation semi-group.

We will see that stability in average is possible if and only if the `unstable' potential is
somehow 'weaker' than the 'stable' one, and we will obtain some more detailed su�cient
and necessary conditions.

In order to visualise the behaviour of the eigenvalues as functions of the intensity { ,
this dependence is illustrated graphically for di�erent choices of parameters and values
of { . This is described in Section 3.3.

3.1 Description of the model

Consider a point mass m sliding without friction along a line (with coordinates x )
in a potential V (x) = cx2; c 2 R . The movement of the point mass in time is then
described by the di�erential equation

m�x(t) = � d

dx
V (x(t)) = �2cx(t)
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With some initial conditions and ! =
q

2c
m 2 C we obtain the initial value problem� ��x(t) = !2x(t)

x(0) = f ; _x(0) = g:
(3.1)

the solution to this problem is

x(t) = f cos(!t) + g
sin(!t)

!
; ! 2 C :

On the two-dimensional space of Cauchy data

C =
��

x0
x1

�
: x0 = x(t) ; x1 = _x(t) ; x0; x1 2 C

�

with standard basis we de�ne as bilinear metric the energy form [:; :] by��
x0
x1

�
;

�
y0
y1

��
:=

1

2
(x0 x1)

�
!2

0

0

1

��
y0
y1

�

=
1

2

�
!2x0y0 + x1y1

�
This de�nition is motivated by the fact that the energy in a physical sense1 is conserved
in time, since from (3.1)

0 = �x+ !2x ^ ��x+ !2�x = 0

) 0 = _�x
�
�x+ !2x

�
+ _x

�
��x+ !2�x

�
, 0 =

1

2

d

dt

�j _xj2 + !2jxj2�
, 1

2

�j _xj2 + !2jxj2� = const (3.2)

On C the initial value problem (3.1) is transformed into the Cauchy problem8>><
>>:

1

i

d

dt

�
x0
x1

�
=

�
0 �i
i!2 0

��
x0
x1

�
�
x0
x1

�??
t=0

=

�
f

g

� (3.3)

De�ne A :=
�

0
i!2

�i
0

�
, the generator of the evolution semi-group connected with (3.3).

A is self-adjoint with respect to the energy form, since the following two terms are equal:�
A

�
x0
x1

�
;

�
y0
y1

��
=

1

2
(�ix1 i!2x0)

�
!2

0

0

1

��
y0
y1

�

=
1

2

��i!2x1y0 + i!2x0y1
�

and ��
x0
x1

�
; A

�
y0
y1

��
=

1

2
(x0 x1)

�
!2

0

0

1

��
conj(�iy1)
conj(i!2y0)

�
= i!2x0y1 � i!2x1y0

1One can interpret the term in equation (3.2) as the sum of kinetic and potential energy.
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Figure 3.1: The point mass in the stable potential.

Stability

As de�nition of stability for this system we will take the natural one coming from the
physical picture. We say that the evolution is stable if, for all times t , the position of
the point mass is limited by a �xed �nite interval and there exists a maximal velocity.
In other words, the evolution is stable if there exist constants M1;M2 > 0 such that
jx(t)j �M1 and j _x(t)j �M2 for all t � 0 (cf. Fig. 3.1).

Now let the potential V (x) jump between V1(x) and V2(x) , which determine a
stable and an unstable dynamics respectively. For brevity call V1 the stable and V2 the
unstable potential.

3.1.1 The stable dynamics

Let V1(x) = c1x
2 ; c1 > 0 . Then !1 =

q
2c1
m is real, the energy form��

x0
x1

�
;

�
x0
x1

��
1

=
1

2

�
!21 jx0j2 + jx1j2

�
is positive and de�nes a norm k:k1 on the space of Cauchy data (C1; [:; :]1) . Since the
energy norm of a vector is constant (cf. (3.2)) the evolution semi-group T1(t) generated
by

A1 :=

�
0

i!21

�i
0

�

is unitary (A1 is self-adjoint). Thus for the displacement and velocity we have

jx(t)j2 � 1
!21
(!21 jx0j2 + jx1j2) =: 2

!21
E(0) 8t � 0

and j _x(t)j2 � (!21jx0j2 + jx1j2) = 2E(0) 8t � 0;

so that the evolution is stable, see Fig.3.1. This can also be seen from the fact that the
solutions of the initial value problem (3.1) for V = V1 are the trigonometric functions

x(t) = f cos(!1t) + g
sin(!1t)

!1
;

so that jx(t)j and j _x(t)j are bounded uniformly for all times t .

30



s

x

V2(x)

Figure 3.2: The point mass in the unstable potential.

3.1.2 The unstable dynamics

For V2(x) = �c2x2; c2 > 0 the situation is quite di�erent, here ! = i
q

2c2
m is complex.

To simplify notation de�ne !22 :=
2c2
m ) !2 = �!22 .

The energy form��
x0
x1

�
;

�
x0
x1

��
2

=
1

2

��!22 jx0j2 + jx1j2�
on the space C2 of Cauchy data is an inde�nite metric (cf. Appendix A.5) with one-
dimensional negative subspace.

The eigenvalues of the generator

A2 :=

�
0

�i!22
�i
0

�

(with respect to any norm) are i!2 and �i!2 with eigenvectors ( 1
i!2
; 1)t and (� 1

i!2
; 1)t ,

so that the eigenvalues of the evolution semi-group are e�!2t and e!2t . There exists an
exponentially increasing eigenvector, the point mass will approach to 1 (see Fig. 3.2) -
the dynamics is unstable. Again this can be easily seen from the solutions to (3.1) (with
! = i!2 )

x(t) = f cosh(!2t) + g
sinh(!2t)

!2

Here we have hyperbolic functions, both jx(t)j and j _x(t)j tend to 1 , unless of course�
f
g

�
is the eigenvector to the eigenvalue i!2 .

3.1.3 The expectation semi-group

Now assume the random process is 'turned on', the potential V (x) jumps between
the two values V1(x) and V2(x) via a two-state continuous time Markov chain with
in�nitesimal generator

Q := {

��1
1

1

�1
�
; { > 0:
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Then as described in Chapter 2 the generator A of the expectation semi-group E(t) =
eiAt acting on the space C1 � C2 is

A({) =
�
A1 0
0 A2

�
+ i{

�
idH �idH
�idH idH

�
;

and since the operators A1 and A2 are represented w.r.t same basis (cf. Remark
2.23(1)), we get

A({) =

0
BB@

i{ �i �i{ 0
i!21 i{ 0 �i{
�i{ 0 i{ �i
0 �i{ �i!22 i{

1
CCA :

3.2 Conditions for stability in average

Note that here in �nite dimensional space we need not worry about the norm we choose
for the de�nition of stability, since all are equivalent. The expected evolution is stable
if and only if all di�erent eigenvalues of the generator A have non-negative imaginary
part, regardless of what norm we have chosen (cf. Proposition A.30 ). Depending on the
parameters !21 and !22 we want to �nd values of { for which this is the case.

To emphasise the relation between the stable and unstable dynamics (and to simplify
calculations) we de�ne

r :=

����!21!22
���� = c1

c2

For r > 1 the 'stable' potential V1(x) is a steeper parabola than for the 'unstable' one,
and for 0 < r � 1 the converse is true. (see Fig. 3.3).

Using the programme 'Maple', we calculate the four eigenvalues of A({)

�1({) = i{ +
q
�+ !2

2

p
�; �2({) = i{ �

q
� + !2

2

p
�

�3({) = i{ +
q
�� !2

2

p
�; �4({) = i{ �

q
� � !2

2

p
�

(3.4)

with

� = �{2 � 1

2
!22(1� r) (3.5)

� = !22(1 + r)2 + 8{2(1� r) (3.6)

3.2.1 Stable potential 'weaker' than unstable potential

First let 0 < r � 1 . From (3.5) and (3.6) we see that in this case � � �{2 and
� > 0 . Then

� � 1

2
!2
p
� < �{2 ) Im

 r
� � 1

2
!2
p
�

!
> {:
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0 < r � 1 1 < r

x

x

V1

V (x)V (x)

Figure 3.3: Comparison of the two potentials.

Hence for the imaginary part of �4 we get

Im(�4) = { � Im

 r
� � 1

2
!2
p
�

!
< 0 8{ > 0;

the generator A({) has an eigenvalue in the LHP for all { , stability in average is not
possible.

Thus a necessary condition for stability in average is

!21 > !22 , c1 > c2 (N1)

3.2.2 Stable potential 'stronger' than unstable potential

Now let r > 1 . We divide the calculations into two parts: the cases � > 0 and
� < 0 . The case � = 0 would require more detailed calculations of the geometric
multiplicity of the eigenvalues, since then some eigenvalues are the same, but this shall
not be of special interest here.

(1) Consider �rst the case when � > 0 , so that
p
� 2 R+ . This holds for (see (3.6))

� > 0, { <

s
!22(1 + r)2

8(r � 1)
=: K2; (3.7)

and then we get

Im(�4({)) � 0 , �� 1

2
!2
p
� � �{2

, 1

2
!22(r � 1) � 1

2
!2

q
!22(1 + r)2 � 8{2(r � 1)

, {2 � !22r

2(r � 1)
;

that is

Im(�4({)) � 0, { �
s

!22r

2(r � 1)
=: K1: (3.8)
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Note that

K2
1 =

!22r

2(r� 1)
<
!22(1 + r)2

8(r� 1)
= K2

2

since

r

2
<

1

8

�
1 + 2r+ r2

� , 0 <
1

8
(1� r)2

is true, and that for � > 0 from Im(�4) � 0 immediately follows for all other
(di�erent) eigenvalues that Im(�l) � 0 ( l = 1; 2; 3) (cf. (3.4)). Thus we have
found a �rst su�cient condition for stability in average

r > 1 ^ K1 � { < K2 (S1)

and the more detailed necessary condition

r > 1 ^ { � K1 (N2)

The upper bound K2 is motivated only by the constraint � > 0 , so that, due to
continuity in { , one can expect stability in average at least for a slightly bigger
interval than [K1; K2) .

(2) For { > K2 it is � < 0 , and � � !2
2

p
� are complex numbers with imaginary

parts �!2
2

pj�j . We write these numbers in polar form and de�ne

� + i
!2
2

p
j�j =: �2ei�; (3.9)

and thus � � i!2
2

p
j�j = �2e�i�;

with the argument � 2 (0; �) and the absolute value �2 , where

�4 = �2 +
!22
4
j�j

) �4 = {4 + {2
�
!22(r � 1)

�� !42r (3.10)

Note that �4 > 0 because the roots of the polynomial in (3.10) are {2 = !22 and
{2 = �!22r , whereas K2

2 � !22 since (cf. (3.7))

1 + 2r+ r2 � 8(r� 1)

, (r � 3)2 � 0

and { > K2 by assumption. Then we have (note the notation about the roots of
complex numbers and see Fig. 3.4)

�
r
�+ i

!2
2

p
j�j = ��ei�2 (3.11)

�
r
�� i!2

2

p
j�j = ��e�i�2 (3.12)

And thus

Im(�1({)) = { + � sin(�2 ); Im(�2({)) = { � � sin(�2 )
Im(�3({)) = { + � sin(�2 ); Im(�4({)) = { � � sin(�2 )

(3.13)
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Figure 3.4: Illustration for equations (3.11) and (3.11).

Again we consider two cases:

(a) As a �rst step we observe that, since j sin(�2 )j � 1 , all imaginary parts are
certainly non-negative if � � { . That is with (3.10)

� � { , �4 � {4 , {4 + {2
�
!22(r � 1)

�� !42r � {4

, { �
s

!22r

(r� 1)
=: K3 (3.14)

As we already have the su�cient condition (S1) , K1 � { � K2 , (3.14) gives
a new condition only if K2 � K3 or with (3.7)

!22(1 + r)2

8(r� 1)
� !22r

(r � 1)

, r2 � 6r + 1 � 0

, 3� 2
p
2 � r � 3 + 2

p
2

With the constraint r > 1 we get that K2 � K3 if and only if 1 < r �
3 + 2

p
2 .

So far we have as su�cient conditions for stability

(1) 1 < r � 3 + 2
p
2 ^ K1 � { � K3

(2) 3 + 2
p
2 < r ^ K1 � { � K2

(b) The case � > { is more complicated to deal with.
The calculation of the argument � in (3.9) can be split into two parts: � � 0
and � < 0 . We have for � � 0 (cf. Fig. 3.4)

� = arctan

 
!2
pj�j
2�

!

= arctan

 
!2
p
8{2(r � 1)� !22(r+ 1)2

!22(r� 1)� 2{2

!
2 (0;

�

2
] (3.15)
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p
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�

Figure 3.5: The argument � for � > 0 .

and for � < 0 we get (cf. Fig. 3.5)

� =
�

2
+ arctan

 
2j�j

!2
pj�j

!

=
�

2
+ arctan

 
2{2 � !22(r � 1)

!2
p
8{2(r � 1)� !22(r+ 1)2

!
2 (

�

2
; �) (3.16)

It is (cf. (3.5))

� � 0, { �
r
!22
2
(r� 1) =: K4: (3.17)

For 1 < r � 3+2
p
2 this case is only necessary studying when K3 < K4 , i.e.

K3 < K4 , !22r

(r� 1)
<

1

2
!22(r� 1)

, r2 � 4r+ 1 > 0

, r > 2 +
p
3 _ r < 2�

p
3:

For 3 + 2
p
2 < r we require K2 < K4 , i.e.

K2 < K4 , !22(r + 1)2

8(r� 1)
<

1

2
!22(r � 1)

, 3r2 � 10r + 3 > 0

, r > 3 _ r <
2

3
:

With regard to (3.13) the requirement for stability is

{ � � sin ��2 � � 0 , �
{
sin
�
�
2

� � 1:

For { > max(K3; K4) we have �={ � 1 with lim{!1 �={ = 1 . However,
we have also from (3.16)

lim
{!1

�

2
=
�

2

thus lim{!1 sin(�=2) = 1 as well. In order to �nd further su�cient condi-
tions one will have to investigate the term �={ sin(�=2) in more detail; we
will not do this here.
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3.3 Summary and graphical illustration

So far the following cases have not been investigated:

(1) 1 < r � 2 +
p
3 : K3 < { ; � < 0

(2) 2 +
p
3 < r � 3 + 2

p
2 : K3 < { � K4 ; � � 0

K4 < { ; � < 0

(3) 3 + 2
p
2 < r : K2 < { � K4 ; � � 0

K4 < { ; � < 0

and there has been found as

� su�cient conditions:

(1) 1 < r � 3 + 2
p
2 ^ K1 � { � K3

(2) 3 + 2
p
2 < r ^ K1 � { � K2

� necessary condition:

r > 1 ^ K1 � {

with the constants

r =
!21
!22

; K1 =
q

!22r
2(r�1) ; K2 =

q
!22(1+r)

2

8(r�1) ; K3 =
q

!22r
(r�1) ; K4 =

q
!22(r�1)

2

For various values of the parameters !21 and !22 we used the mathematical software
'Matlab' to calculate the eigenvalues for a sequence of choices of { and illustrate the
results in graphs. A pseudo-code of the programme and some graphs for some values of
!21 and !22 can be found in Appendix B.

The numbers behind 'omega 2
1=' and 'omega

2
2=' (see Figures B.1-5) are the values of

the parameters !21 and !22 respectively which are valid for all graphs in that particular
�gure. The caption 'kappa=' at the y-axis show the values of { for the respective
graph.
For r > 1 are values of the constants K1; K2; K3 and K4 printed on top of the second
column. The eigenvalues with non-negative imaginary part are shown as ' � ', wheres as
an 'x' stands for an eigenvalue with negative imaginary part.

The values !2 = 1 and r = 0:8 were chosen to produce the graphs in Fig. B.1.
One could investigate further the reason that all eigenvalues for { > 1 apparently have
zero real part (similarly for { = 1:2 and { = 1:6 in Fig. B.2). In accordance with the
analytic results, there is always one eigenvalue with negative imaginary part, though
this value seems to increase with increasing { .

The graphs in Fig. B.2 and B.3 visualise that for smaller values of r larger values of
{ are needed in order to 'lift' the eigenvalue in the LHP up into the UHP.

The sequence of graphs in Fig. B.4 with values of { up to 95 suggests that the
averaged system is stable for large { , though it has not been shown analytically yet.

Note further that the picture of the four eigenvalues is symmetric to the imaginary
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axis, one pair almost on the real line and the other pair with imaginary part approxi-
mately 2{ .

The conclusion we can draw from investigating the question of stability in average on
the example in this chapter is summarised in

Hypothesis 3.1
(1) The necessary condition for stability in average for general systems with a 2 -state

Markov chains includes some condition on the relation between the parameters of
the stable and unstable system, here it is the ratio r of the slopes of the potentials
which needs to be larger than 1 .

(2) We can not expect the values of { su�cient for stability to be small. This is
important to know in order to apply methods of Perturbation Theory.

(3) Since limr!1+K1 = 1 in equation (3.8) it is even the case, that { needs to be
very large if the relation mentioned in (1) is almost 1.

An interpretation of the result w.r.t. the Conjecture 1.1 is given in Chapter 6.
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Chapter 4

The wave equation on the �nite

string with random boundary

conditions

Here the question of stability in average is studied for the wave equation

Tuxx = %(x)utt

on the �nite string ( x 2 [0; N ] ) with homogeneous tension T , continuous and positive
density function %(x) , and randomly changing boundary condition at x = 0 .

We assume Dirichlet condition1 ujN = 0 at x = N , and at x = 0 the Rubin
condition

ux � h(t)uj0 = 0 ; h(t) 2 R:
Let h(t) jump between the values h1 > 0 and h2 < � 1

N , corresponding to a stable and
unstable dynamics respectively, in a sense to be de�ned in the beginning of Section 4.1.
Again the jump process shall be realised via a 2-state continuous-time Markov chain
with exponentially distributed sojourn times with intensity { .

Since the main interest does not lie in the wave equation itself we simplify the calcu-
lations and study a 'solvable model' in which T = 1 and %(x) � �2 > 0 are constant.
However, many ideas employed and expressions obtained can easily be modi�ed to suit
the case of a general density function 0 <  � %(x) � � <1 bounded below and above
on [0; N ] .

In Section 4.1 the analysis of the two di�erent systems for h = h1 > 0 and
h = h2 < � 1

N is given. First some facts and de�nitions are listed which hold for the
general case. In the following subsections all the calculations of eigenvalues, eigenvectors,
etc. are done as well as necessary de�nitions are given - �rst for the solvable model in
general, then for both systems with h = h1 and h = h2 in particular.

Some of the relations between the domains, eigenvalues, etc., of the generators of
the two dynamics are elaborated in Section 4.2. These relations are the basis for the
further investigation of the properties of the generator A of the expectation semi-group
in Section 4.3, especially the spectral properties. Here we search for conditions on {

1One distinguishes between Dirichlet ( ujN = 0 ), Neumann ( u0jN = 0 ) and Rubin condition ( aujN +
bu
0jN = 0 ), see for example Strauss[33].
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Figure 4.1: The �nite string.

in dependence on the parameters h1; h2; T;N and � to obtain stability in average, i.e.
an uniformly bounded expectation semi-group w.r.t. a particular norm. This norm is
constructed in Section 4.1 by means of the canonical symmetry de�ned in the theory
of spaces with inde�nite metrics (see Appendix A.5), and it is shown that this norm is
suitable to measure stability.

This situation is not as simple to deal with as the one-dimensional movement of a
point mass described in the previous chapter. Here the operators involved act on a
Hilbert space of in�nite dimension, the generator A of the expectation semi-group is of
general type: unbounded in both directions and not symmetric. Additionally it is rather
di�cult to make use of the results of Perturbation Theory. The reason is the strong
condition for stability, i.e. that the spectrum be completely contained in the complex
UHP, together with the asymptotic behaviour of the spectrum of A .

A numerical approach is realised in Section 4.4 to approximate the spectrum of A .
As described in Mikhlin[23], the Galerkin method provides a procedure to approximate
the eigenvalues of a linear operator. Here we will use this method to visualise how
the spectrum of A looks like and how it changes in dependence on { and the other
parameters.

The results of the numerical approach suggest that stability is in fact possible.

4.1 Description of the model

The finite string

Consider a stretchable string of �nite length N with density %(x) �xed at the right
end and a ring (idealised, i.e. without mass) attached to the left end. This ring shall
slide along a rod in such a way that the slope of the string at x = 0 is proportional to
its displacement. Also let the string be under tension T , so that any displacement from
equilibrium results in an oscillation when released. Introduce a coordinate system (see
Fig. 4.1) and let u(x; t) be the displacement of the string at position x and time t .

40



Stability

Having in mind the model of the point mass in a potential, we shall mean that the
dynamics of the string is stable if, released from its initial position u(x; 0) with velocity
ut(x; 0) , the energy term

S(t) =

Z N

0
juxj2 + %(x)jutj2dx;

is uniformly bounded at all times, that is if there exists a constant M > 0 such
that jS(t)j � M for all t � 0 . Note that if

R N
0 juxj2dx is bounded then the length of

the string is bounded. This means that the displacement of the string is also bounded
since the string is �xed at x = N , so that the oscillation is restricted to a bounded
region.
The term S(t) can be interpreted as the sum of kinetic and potential energy of the string
(cf. Strauss[33]), in the following we will call it physical energy or simply energy of the
string.

Unlike in the previous example, here we need to choose the norms on the considered
spaces in such a way that stability in average follows from the fact that the expectation
semi-group is equi-bounded. This will be done and justi�ed in the Subsections 4.1.3 and
4.1.4 about the stable and unstable dynamics.

4.1.1 The case of a general density function

The Cauchy problem

The dynamics in time of the string (if we assume that any displacement is of small
order compared with the total length N of the string) is described by the wave equation
(cf. Strauss[33])

Tuxx = %(x)utt (4.1)

with initial conditions

u(x; 0) = f(x) ; ut(x; 0) = g(x); (4.2)

and some boundary conditions at x = 0 and x = N . Since the end at x = N shall be
�xed at all times we get as one condition ujN = u(N; t) = 0 for all t . For the second
condition at x = 0 the proportionality of slope and displacement translates to, with
h 2 R,

ux � hu
??
0
= 0 8t � 0: (4.3)

Introducing the Cauchy vector

U(t) =

�
u0
u1

�
:=

�
u(x; t)

ut(x; t)

�

the wave equation (4.1) with initial conditions (4.2) can be written as the Cauchy problem8>>><
>>>:

1

i

d

dt

�
u0
u1

�
= i

 
0 �1

� T
%(x)

d2

dx2
0

!�
u0
u1

�
�
u0
u1

�???
t=0

=

�
f

g

� (4.4)
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where the boundary conditions are now encoded in the domains D(L) of the di�erential
operator

L = � T

%(x)

d2

dx2

and in the domain D(A) of the in�nitesimal generator

A = i

�
0

L

�1
0

�

of the evolution semi-group connected with (4.4).

Remark 4.1

Note for the following that for densities 0 <  � %(x) � � < 1 bounded below
and above the spaces L2;%[0; N ] and L2;1=%[0; N ] are isomorphic to L2[0; N ] , the same
holds for the corresponding Sobolev spaces. Thus in the following we will not distinguish
between these spaces.

The domains of the operators

For the domain of L it is easily seen that

D(L) = �y 2 W 2
2 : y0 � hyj0 = 0 ; yjN = 0

	
:

The condition on the boundaries do make sense since y as well as y0 are continuous. (see
Theorem A.38(1)). We equip D(L) with the weighted L2 -inner product with weight
function %(x) , then L is a symmetric operator (see Appendix A.4). To obtain a suitable
inner product for the domain of A observe that from (4.1) follows

0 � Lu+ utt

, 0 = hLu; uti% + hutt; uti%
, 0 =

1

2

d

dt

�
hLu; ui% + hut; uti%

�
:

That is, in the notation of Cauchy vectors, the following expression is conserved by the
evolution

1

2

�
hLu0; u0i% + hu1; u1i%

�
=

1

2

�Z N

0
� d2

dx2
u0u0 + %(x)ju1j2dx

�

=
1

2

�
[�(u0)xu0]N0 +

Z N

0
j(u0)xj2 + %(x)ju1j2dx

�
;

i.e.
1

2

�
hLu0; u0i% + hu1; u1i%

�
=

1

2

�
hju0j2j0 +

Z N

0
j(u0)xj2 + %(x)ju1j2dx

�
: (4.5)

We use the right hand side of equation (4.5) to de�ne the energy form (which is not

necessarily positive) for Cauchy vectors U =
�
u0
u1

�
and V =

�
v0
v1

�
��
u0
u1

�
;

�
v0
v1

��
:=

1

2

�
hu0v0j0 +

Z N

0
(u0)x(v0)x + %(x)u1v1dx

�
; (4.6)
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and the space C0 of Cauchy data with �nite energy

C0 :=
��

u0
u1

�
: u0 2 W 1

2 ; u1 2 L2
�
:

For the domain of A we get

D(A) =
�
U =

�
u0
u1

�
2 C0 : u0 2 D(L) ; AU 2 C0

�
)

=

��
u0
u1

�
: u0 2 W 2

2 ; u1 2 W 1
2 ; (u0)x � hu0j0 = 0 ; u0jN = 0 ; u1jN = 0

�
:

The condition u1jN = 0 follows from the requirement that ujN � 0 since: 0 � utjN =
u1jN follows from ujN � 0 . We de�ne the space

C :=
��

u0
u1

�
: u0 2 W 1

2 ; u1 2 L2 ; u0jN = 0

�
;

then A maps D(A) onto C since�
0

iL

�i
0

��
u0
u1

�
=

��iu1
iLu0

�
2 C;

and w.r.t. the energy form the closure of D(A) is C (refer to Appendix C.1.1 for more
details).

Remark 4.2

In order to use the left-hand side of equation (4.5) for calculating the energy form of two
vectors U; V 2 C , it is only necessary that one vector be in D(A) . Since then, w.l.o.g.
let U =

�
u0
u1

�
2 D(A) , V =

�
v0
v1

�
2 C (note that v0jN = 0 )

[U; V ] =
1

2

�
hu0v0j0 +

Z N

0
(u0)x(v0)x + �2u1v1dx

�

=
1

2

�
hu0v0j0 + [(u0)xv0]

N
0 �

Z N

0
(u0)xxv0 + �2u1v1dx

�

=
1

2

�Z N

0
�2
�
� 1

�2
d2

dx2
u0

�
v0 + �2u1v1dx

�

=
1

2

�
hLu0; v0i�2 + hu1; v1i�2

�
:

A is symmetric with respect to the energy form, as for U; V 2 D(A) we have

[AU; V ] =
1

2

�
hL(�iu1); v0i% + hiLu0; v1i%

�
=

1

2

�
hu1; iLv0i% + hu0; L(�iv1)i%

�
= [U;AV ]
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The resolvent of A

Let � 2 C be in the resolvent set of A , and R� = (A� � idC)
�1 the resolvent of

A .
For

�
u0
u1

�
2 D(A) and

�
f
g

�
2 C we get

R�
�
f

g

�
=

�
u0
u1

�
,

���
iL

�i
��
��

u0
u1

�
=

�
f

g

�

,
�

u1 = if + i�u0
(L� �2)u0 = (�ig + �f)

(4.7)

So to �nd
�
u0
u1

�
we need to solve the boundary value problem8<

:
(L� �2)y = (�ig + �f)

yx � hyj0 = 0
yjN = 0

This is done with the help of the Green's function G�(x; �) (refer to Appendix A.4). We
get for u0 in (4.7)

u0 =

Z N

0
G�(x; �)%(�)

�� ig(�) + �f(�)
�
d�;

or with the corresponding integral operator K� of Hilbert-Schmidt type we have

u0 = K�(�ig + �f) ^ u1 = if + i�K�(�ig + �f):

Finally we obtain an expression for the resolvent R�

R�
�
f

g

�
= [A� � idC ]

�1
�
f

g

�
=

�
�K�

i+ i�2K�

�iK�

�K�

��
f

g

�
(4.8)

Self-adjointness

If L is positive the energy form [:; :] in (4.6) is positive, and A is even self-adjoint
since in that case for (A� i idC) and (A+ i idC) hold

(A� i idC)

�
u0
u1

�
=

�
f

g

�
,

� �iu0 � iu1 = f
iLu0 � iu1 = g

,
�

u1 = if � u0
(L+ 1)u0 = �ig � if

As for positive L the resolvent (L + 1)�1 exists and is de�ned on the whole of L2 ,
the resolvents (A � i idC)�1 exist on the whole of C , the symmetric operator A is
self-adjoint with Theorem A.4.

The Spectrum

The spectra of A and L are closely connected. E.g. let � be an eigenvalue of A ,
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then there exist U =
�
u0
u1

�
2 D(A) such that

A

�
u0
u1

�
= �

�
u0
u1

�
,

� �iu1 = �u0
iLu0 = �u1

,
�

u1 = i�u0
Lu0 = �2u0

i.e. �2 is an eigenvalue of L . Conversely, simple calculations show that if � is an
eigenvalue of L (positive or negative) with eigenfunction u� then

p
� and �p� are

eigenvalues of A with eigenvectors
�

1
i
p
�
u�

u�

�
and

�
� 1
i
p
�
u�

u�

�
respectively. Since L is

symmetric its eigenvalues are real, thus the eigenvalues of A are either real or purely
imaginary, and further, the spectrum of A is symmetric to the real and to the imaginary
axis. Also, the spectrum �(A) of A is discrete, due to the fact that the spectrum �(L)
of L is discrete. With Remark A.14 follows now, that the system of eigenvectors forms
a complete orthogonal set for C .

4.1.2 A solvable model

From now on we simplify the calculations and consider a 'solvable model' by setting
T = 1 and %(x) � �2 > 0 , we obtain the Cauchy problem8>>><

>>>:
1

i

d

dt

�
u0
u1

�
= i

 
0 �1

� 1
�2

d2

dx2
0

!�
u0
u1

�
�
u0
u1

�??
t=0

=

�
f
g

� (4.9)

Eigenvalues and eigenvectors

We saw that in order to �nd the eigenvalues �� of A , we need to �nd the (real)
eigenvalues �2 of the Sturm-Liouville problem

� 1

�2
d2

dx2
y = �2y (4.10)

y0 � hyj0 = 0
yjN = 0

�
(4.11)

Consider the three cases:

(1) �2 = 0
A general solution for the di�erential equation (4.10) is

y = �x + �;

the boundary conditions (4.11) give

� =
1

h
� ^ � = �N�:

Thus � = 0 is an eigenvalue of L (and then of A ) if and only if h = � 1
N . We

will not investigate this special case further.
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(2) �2 > 0 ; � > 0
A general solution to (4.10) is

u� = � cos(��x) + � sin(��x);

(4.11) gives

� = h
��� ^ � = �� cot(��N):

Thus �2 is an eigenvalue of L if and only if � > 0 solves

tan(��N) = ���
h
: (4.12)

Since tan(x) is periodic equation (4.12) has countable in�nitely many solutions
�s; s 2 N , for all h 2 R. The eigenvectors of A for the eigenvalues �s and
��s = ��s are

� 1
i�s
us
us

�
and

�� 1
i�s
us

us

�
;

with

us(x) = cos(�s�x) +
h

�s�
sin(�s�x) ; x 2 [0; N ]: (4.13)

For the energy forms of the eigenvectors we get��� 1
i�s
us

us

�
;

�� 1
i�s
us

us

��
=

1

2

�
1

�2s
hLus; usi% + hus; usi%

�
= hus; usi%; (4.14)

and the eigenvectors are orthogonal to each other, since for us 6= ut we have�� 1
i�s
us
us

�
;

� 1
i�s
us
us

��
=

1

2

�
1

�s�t
hLus; uti% + hus; uti%

�

=
1

2

�
�s
�t

+ 1

�
hus; uti% = 0

Note that the eigenfunctions of L are orthogonal in L2;% (cf. Appendix A.4).

(3) �2 = �l2 < 0 ; l > 0
A general solution to (4.10) is

u(x) = � cosh(l�x) + � sinh(l�x);

and (4.11) gives

� = h
l�� ^ � = �� coth(l�N):

Thus �l2 is an eigenvalue of L if and only if l > 0 solves

tanh(l�N) = � l�
h

(4.15)
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Figure 4.2: The negative eigenvalue of L .

The graphs of the functions in equation (4.15) are sketched in Fig. 4.2.
Since

d

dl
tanh(l�N)

??
l=0

= �N

there does not exist a solution to (4.15) for h > � 1
N , then L is positive de�nite

and A is self-adjoint. But for h < � 1
N there exists exactly one solution � > 0 ,

L has one negative eigenvalue with eigenfunction

e�(x) = cosh(��x) +
h

��
sinh(��x) ; x 2 [0; N ]: (4.16)

and i� and �i� are eigenvalues of A with eigenvectors

�� 1
�e�
e�

�
and

� 1
�e�
e�

�

respectively. For their energy forms we have here (in accordance with Proposition
A.55)

��� 1
�e�
e�

�
;

�� 1
�e�
e�

��
=

1

2

�
1

�2
hLe�; e�i% + he�; e�i%

�
= 0;

whereas��� 1
�e�
e�

�
;

� 1
�e�
e�

��
=

1

2

�
� 1

�2
hLe�; e�i% + he�; e�i%

�
= he�; e�i% > 0:

However, the above eigenvectors are orthogonal to all of the eigenvectors for real
eigenvalues since he�; usi% = 0 and

��� 1
�e�
e�

�
;

�� 1
i�s
us

us

��
=

1

2

�
 � 1

�
(��2)e�;� 1

i�s
us
�
%
+


e�; us

�
%

�
= 0
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The Green's function of L

To calculate the Green's function needed for the resolvent we follow the steps of the
calculation of the resolvent (L � �)�1 in the general case done in Appendix A.4. The
functions l(x) and r(x) are now

l(x) = cos(��x) +
h

��
sin(��x) (4.17)

r(x) = cos(��x)� cot(��N) sin(��x) (4.18)

with Wronskian

W (l; r)jx=0 =
���� 1 1
h ��� cot(��N)

���� = �h � �� cot(��N) = �: (4.19)

Then the Green's function is

G�(x; �) =

(
1

h+�� cot(��N)
l(x)r(�) ; 0 � x � � � N

1
h+�� cot(��N)

l(�)r(x) ; 0 � � � x � N
(4.20)

4.1.3 The stable system

As it will be seen in the following, the dynamics determined by the Cauchy problem
(4.9) is stable when the value of h in the boundary condition at x = 0 in (4.3) is

positive.2 So let h = h1 > 0 , and de�ne the di�erential operator L1 = � 1
�2

d2

dx2 with
domain

D(L1) =
�
y 2 W 2

2 : y0 � h1yj0 = 0; yjN = 0
	
;

and the in�nitesimal generator A1 = i
�

0
L1

�1
0

�
with domain

D(A1) =

��
u0
u1

�
: u0 2 W 2

2 ; u1 2 W 1
2 ; (u0)x � h1u0j0 = 0; u0jN = 0; u1jN = 0

�
:

The energy form and stability

The energy form [:; :]1 (cf. (4.6))��
u0
u1

�
;

�
v0
v1

��
1

:=
1

2

�
h1u0v0 +

Z N

0
(u0)x(v0)x + �2u1v1dx

�
(4.21)

is positive and de�nes a norm k:k1 on the space

C1 :=
��

u0
u1

�
: u0 2 W 1

2 ; u1 2 L2 ; u0jN = 0

�

of Cauchy data with �nite energy norm. It follows immediately that the norm k:k1 is
suitable to measure stability. Whenever an evolution semi-group is uniformly bounded

2This actually is true for h1 > � 1
N
. However, we choose to treat only the case h1 > 0 , because

although that case is qualitatively similar to the case � 1
N
< h1 < 0 the calculations are quite di�erent,

and, besides, we can always decrease the distance of h1 > 0 to the 'critical' value � 1
N

by increasing
the value of N .
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Figure 4.3: Approximation of the eigenvalues of A1 .

w.r.t. the norm k:k1 then the physical energy

S(t) =

Z N

0
j(u0)xj2 + �2ju1j2dx �

��
u0
u1

�
;

�
u0
u1

��
1

of the string is certainly uniformly bounded for t � 0 since h1 > 0 , in fact eiA1t is
unitary, since A1 is self-adjoint. Thus h = h1 determines a stable dynamics.

The eigenvalues and eigenvectors of A1

All the calculations have been done before, so here we only give the necessary de�ni-
tions and certain estimations.

Observing the graphs of tan(��N) and ���
h1

in the variable ��N (see Fig. 4.3) we
get an approximation and the asymptotic behaviour of the positive solutions �s; s 2 N ,
of

tan(��N) = ���
h1
: (4.22)

We get for the eigenvalues �s and ��s = ��s
�s�N = 2s�1

2 � + "s ^ ��s�N = �2s�1
2 � � "s (4.23)

with

"s 2 (0; �2 ) ; s 2 N; ^ lim
s!1

"s = 0;

and

tan(�s�N) = tan(
�

2
+ "s) = � cot("s) = � 1

Nh1

�
2s� 1

2
� + "s

�
= ��s�

h1
:
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An estimation for "s is

0 < "s � tan("s) =
Nh1

2s�1
2 � + "s

� 2Nh1
(2s� 1)�

� Nh1
(s� 1)�

; (4.24)

and for j�sj

j�sj = 1

N�

�
2jsj � 1

2
� + "s

�( � jsj�
N�

� (2jsj�1)�
2N� � (s�1)�

N�

(4.25)

For the eigenvalues �s and ��s the eigenvectors of A1 are

Us :=

� 1
i�s
us
us

�
and U�s :=

� 1
i��sus
us

�
; s 2 N

resp. with us(x) := cos(�s�x) +
h1
�s�

sin(�s�x) .

The norms of the eigenvectors

For the energy norms of the eigenvectors U�s , s 2 Z� we get (for the calculations
refer to Appendix C.1.2)

kUsk21 = kU�sk21 =
�2N

2
+ h1

Nh1 + 1

2�2s
� �2N

2
(4.26)

Note that the norms of kU�sk21 are monotonically decreasing with increasing s > 0 .

The resolvent of A1

From (4.17) and (4.18) we get for � 2 C not an eigenvalue of A1

l1(x) = cos(��x) +
h1
��

sin(��x)

r(x) = cos(��x)� cot(��N) sin(��x):

Then we have from (4.19) and (4.20)

G�1 (x; �) =

(
1

h1+�� cot(��N)l1(x)r(�) ; 0 � x � � � N
1

h1+�� cot(��N)l1(�)r(x) ; 0 � � � x � N
; (4.27)

K�
1 : y(:) 7! �2

Z N

0
G�1 (:; �)y(�)d�;

and from (4.8) the resolvent of A1 de�ned on C1

R�1

�
f

g

�
= [A1 � � idC1 ]

�1
�
f

g

�
=

�
�K�

2

i+ i�2K�
2

�iK�
2

�K�
2

��
f

g

�
: (4.28)

4.1.4 The unstable system

The situation is quite di�erent when h = h2 < � 1
N . Then the di�erential operator

L2 = � 1
�2

d2

dx2
with domain

D(L2) =
�
y 2 W 2

2 : y0 � h2yj0 = 0 ; yjN = 0
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Figure 4.4: Approximation if the eigenvalues of A2 .

has got one negative eigenvalue ��2 (cf. Section 4.1.2.). The generator A2 = i
�

0
L2

�1
0

�
with domain

D(A2) =

��
u0
u1

�
: u0 2 W 2

2 ; u1 2 W 1
2 ; (u0)x � h2u0j0 = 0; u0jN = 0; u1jN = 0

�

of the evolution semi-group eiA2t corresponding to the Cauchy problem (4.9) has got the
two complex eigenvalues i� and �i� , so that eiA2t itself has got the eigenvalues e��t

and e�t . Thus there exists an exponentially increasing eigenvector, the physical energy
S(t) of this particular state will approach to in�nity in time - the system is unstable.

The eigenvalues and eigenvectors of A2

(1) The real eigenvalues �s > 0 and ��s = ��s ( s 2 N ) of A2 are given by the
positive solutions of

tan(��N) = ���
h2
: (4.29)

Again observing the graphs of the functions sketched in Fig. 4.4, and with

d

d�
tan(��N)

??
�=0

= �N > � �

h2
=

d

d�

�
���
h2

�??
�=0

we get as an approximation for ��s

�s�N = 2s+1
2 � � �s ^ ��s�N = �2s+1

2 � + �s (4.30)

with

�s 2 (0; �2 ); s 2 N; ^ lim
s!1

�s = 0;
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and also

tan(�s�N) = tan(
�

2
� �s) = cot(�s) = � 1

Nh2

�
2s+ 1

2
� � �s

�
= ��s�

h2
:

Hence we can estimate �s by

0 < �s � tan(�s) = � Nh2
2s+1
2 � � �s

� �Nh2
s�

; (4.31)

and j��sj

j��sj = 1

N�

�
2jsj+ 1

2
� � �jsj

�( � (2jsj+1)�
2N� � (jsj+1)�

N�

� jsj�
N�

(4.32)

The eigenvectors to �s and ��s are

Vs :=

� 1
i�s
vs
vs

�
and V�s :=

� 1
i��svs
vs

�

resp. with vs(x) = cos(�s�x) +
h2
�s�

cos(�s�x) .

(2) The complex eigenvalues i� and �i� of A2 are determined by the unique solution
of

tanh(��N) = ���
h2

; � > 0: (4.33)

As a rough estimation we have (cf. Fig. 4.2)

1 � tanh(��N) = ���
h2

) � � �h2
�

where the larger jh2j or smaller � are, the better is the estimation.

The eigenvectors for i� and �i� are resp.

	+ :=

�� 1
�e�
e�

�
and 	� :=

� 1
�e�
e�

�

with e�(x) = cosh(��x) + h
�� sinh(��x) .

The energy form

The energy form��
u0
u1

�
;

�
v0
v1

��
2

:=
1

2

�
h2u0v0 +

Z N

0
(u0)x(v0)x + �2u1v1dx

�
(4.34)

is an inde�nite metric: the vector
� 1

�
e�
0

�
has got the negative energy 'norm'

�� 1
�e�

0

�
;

� 1
�e�

0

��
2

=
1

2

1

�2
hL2e�; e�i�2 = �1

2
he�; e�i�2 < 0
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For some details on the theory of spaces with inde�nite metrics see Appendix A.5.

It is checked easily that the orthogonal complement (w.r.t. the energy form [:; :]2 ) of

the one-dimensional subspace � := span
� 1
�
e�
0

�
is

�[?] = C2[	]� =

��
u0
u1

�
: u0 ?L2;�2 e�

�
:

L2 is positive on �[?] , so that [:; :]2 is positive and de�nes a norm k:k2 . Hence
(C2; [:; :]2) is in fact a Pontrjagin space with an one-dimensional negative subspace � .
The [:; :]2 -orthogonal projection onto � is�

u0
u1

�
7! 1

ke�k2L2;�2

�hu0; e�i�2e�
0

�

so that for the canonical symmetry J we get

J :

�
u0
u1

�
7!
�
u0
u1

�
� 2

1

ke�k2L2;�2

�hu0; e�i�2e�
0

�
:

The positive inner product [:; :]J = [J:; :]2 de�nes a norm k:kJ on C2 , which we will use
from now on.

The norms of the eigenvectors

The k:kJ -norms of V�s , s 2Z� are (see Appendix C.1.2)

kVsk2J = kV�sk2J = kVsk22 =
�2N

2
+ h2

Nh2 + 1

2�2s
� �2N

2
: (4.35)

The above inequality is true, since

h2 < � 1
N ) h2(Nh2 + 1) > 0:

And for the norms of 	+ and 	� we get

k	�k2J =
�2N

2
� h2

Nh2 + 1

2�2
: (4.36)

As one expects, the norms are positive since 1
�2
� �2

h22
and then

k	�k2J > 0 , �2N

2
>
Nh22 + h2

2

1

�2

( �2N > (Nh22 + h2)
�2

h22
, h2 < 0 (true):

It also holds the estimation from above

k	�k2J �
�2N

2
� Nh22 + h2

2

�2

h22
= � �2

2h2
: (4.37)
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The resolvent of A2

From (4.17) and (4.18) follows for � 2 C not an eigenvalue of A2

l2(x) = cos(��x) +
h2
��

sin(��x)

r(x) = cos(��x)� cot(��N) sin(��x):

Then we have from (4.19) and (4.20)

G�2 (x; �) =

(
1

h2+�� cot(��N)
l2(x)r(�) ; 0 � x � � � N

1
h2+�� cot(��N)l2(�)r(x) ; 0 � � � x � N

(4.38)

K�
2 : y(:) 7! �2

Z N

0
G�2 (:; �)y(�)d�;

and from (4.8) the resolvent of A2 de�ned on C2

R�2

�
f

g

�
= [A2 � � idC2 ]

�1
�
f

g

�
=

�
�K�

2

i+ i�2K�
2

�iK�
2

�K�
2

��
f

g

�
: (4.39)

The decomposition of C2

Despite the fact that C2 is a Pontrjagin space, a more natural decomposition of C2
is into the two A2 -invariant subspaces

�� := span (	+;	�) and �+ := C2[	]�� = span fVs : s 2Z�g ;
where �+ and �� are orthogonal both w.r.t [:; :]2 and [:; :]J (this follows from (4.40)
below). De�ne P� the orthogonal projection onto �� and P+ := idC2 � P� . The P�
are orthogonal projections w.r.t. both forms [:; :]J and [:; :]2 . Also we have the property�

u0
u1

�
? �� , u0 ? e� ^ u1 ? e�:

Since J = I in �+ it is [:; :]2 = [:; :]J on �+ , whereas otherwise the following holds

[W;	+]J = [W;	�]2 ^ [W;	�]J = [W;	+]2 ; 8W 2 C2 (4.40)

And because Vt ? ��

[W;Vt]J = [W;Vt]2 ; 8W 2 C
Restricted onto �+ \ D(A2) the operator A2 is self-adjoint for the same reason as A1

is self-adjoint on D(A1) , and the set fVs : s 2Z�g is a complete and orthogonal set for
�+ . The restriction A2j�� is a two-dimensional operator which has the matrix form

A2j�� =

�
0

�i�2
�i
0

�
:

w.r.t. the more convenient basis B for ��

B :=

��
e�
0

�
;

�
0

e�

��
:
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A2j�� is anti-hermitian w.r.t. [:; :]J (see Appendix C.1.3), that is�
A2j��

��
=
�
A2j��

�t
= �A2j�� :

Remark 4.3
The e�ect of changing the inner product is that A2 looses its property of symmetricity
on a two-dimensional subspace.

Stability

Now we show that the norm k:kJ is suitable to investigate the question of stability.
If for a certain vector function U(t) the k:kJ -norm is uniformly bounded for all times
t � 0 then the physical energy S(t) of the string is bounded as well. To show this
assume

9M > 0 : kU(t)k2J �M 8t � 0:

Decompose the Cauchy vector U(t) for given t � 0 into two mutual orthogonal compo-
nents, that is

U(t) = U+(t) + U�(t) =

�
u0
u1

�
+

�
a(t)e�
b(t)e�

�
; a(t); b(t) 2 C ;

where U+(t) 2 �+ and U�(t) 2 �� , then certainly for all t � 0

kU+k2J = kU+k22 �M and kU�(t)k2J �M:

(1) First we verify that

9M1 > 0 : S+(t) =

Z N

0
j(u0)xj2 + �2ju1j2dx �M1 8t � 0:

We have

h2ju0j2j0 +
Z N

0
j(u0)xj2 + �2ju1j2dx � 2M 8t � 0; (4.41)

but, as h2 < 0 , it could happen that both terms above in (4.41) are unbounded
even though the inequality is ful�lled. However, this is not the case, as it is shown
in the following.

U+(t) can be expanded w.r.t. the set fVs : s 2Z�g such that

U+(t) =
X
s2Z�

�(t)Vs

with

kU+(t)k22 =
X
s2Z�

j�(t)j2kVsk22 < M <1:
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From �2N
2 � kVsk22 follows that

X
s2Z�

j�(t)j2 � 2M

�2N
:

Thus we get, since the sum
P

s2Z�
1

j�sj2
converges ( j�sj = o(1=jsj) ),

jh2jju0j2
??
x=0

= jh2j
�����
X
s2Z�

�s(t)
1

i�s

�����
2

� jh2j
X
s2Z�

j�s(t)j2
X
s2Z�

1

j�sj2

� 2M jh2j
�2N

X
s2Z�

1

j�sj2 =: M̂:

Hence

S+(t) =

Z N

0
j(u0)xj2 + �2ju1j2dx � 2M + jh2jju0j2j0 � 2M + M̂ =:M1

is uniformly bounded for all t � 0 .

(2) The same is true for the part in �� . We want to show that

9M2 > 0 : S�(t) =

Z N

0
ja(t)j2j(e�)xj2 + �2jb(t)j2je�j2dx �M2 8t � 0

It is

kU�(t)k2J =
1

2

�
�2ja(t)j2 + jb(t)j2� he�; e�i�2 �M 8t � 0;

so that especially

ja(t)j2 � 2M
�2
he�; e�i�2 ^ jb(t)j2 � 2Mhe�; e�i�2

and therefore

S�(t) � he�; e�i�2
Z N

0

2M

�2
j(e�)xj2 + �22M je�j2dx =:M2 8t � 0:

Hence we get the desired result that

S(t) =

Z N

0

���u0(t) + a(t)e�
�
x

��2 + �2
��u1(t) + b(t)e�

��2dx
� 2

Z N

0
j(u0)xj2 + ja(t)j2j(e�)xj2 + �2

�ju1j2 + jb(t)j2je�j2
�
dx

� 2
�
S+(t) + S�(t)

� � 2(M1 +M2) 8t � 0

is bounded uniformly.
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4.2 Some relations between the generators of the stable
and the unstable dynamics

4.2.1 The domains

The domains D(A1) and D(A2) are both dense (w.r.t. to the respective forms)
subsets of the same space

C := C1 = C2 =
��

u0
u1

�
: u0 2W 1

2 ; u1 2 L2 u0jN = 0

�
:

The intersection of D(A1) and D(A2) is the set

D0 := D(A1) \ D(A2)

=

��
u0
u1

�
: u0 2 W 2

2 ; u1 2 W 1
2 ; (u0)xj0 = u0j0 = 0; u0jN = 0; u1jN = 0

�
;

and restricted onto D0 the operators A1 and A2 are equal

A0 := A1jD0 = A2jD0

and certainly symmetric.
In Appendix C.1.4 are given the calculations to verify that

U 2 D0 ; V 2 D(A1) ) [A0U; V ]1 = [U;A1V ]1
and U 2 D0 ; V 2 D(A2) ) [A0U; V ]2 = [U;A2V ]2:

So, when we denote with A�0 the adjoint of A0 w.r.t. the positive metric [:; :]1 and with
A+
0 the adjoint w.r.t. the inde�nite metric [:; :]2 , it follows

A1 � A�0 ^ A2 � A+
0 :

The di�erence between A1 and A2 is, basically, that both operators are self-adjoint
extensions w.r.t. di�erent inner products. The closure of the domains under the respec-
tive forms is the same space C , considering the space C as a set of vectors without any
metric structure.

4.2.2 The energy forms

The energy forms [:; :]1 and [:; :]2 (also [:; :]J ) are de�ned on the same space C , so it is
possible to compare them. From (4.21) and (4.34) we immediately get for

�
u0
u1

�
;
�
v0
v1

�
2

C ��
u0
u1

�
;

�
v0
v1

��
1

=
1

2
(h1 � h2)u0j0 (v0j0) +

��
u0
u1

�
;

�
v0
v1

��
2

;

and that the forms coincide on the intersection D0 of the domains. Also does follow
[U; U ]1 � [U; U ]2 . With regard to Lemma 2.26 it would be of particular interest to
obtain equivalence, that is there exists gamma > 0 such that kUk1 � kUkJ . Since
the norms k:k1 and k:kJ are equivalent on the �nite-dimensional subspace �� , it is
only required to show above inequality for all U 2 �+ .

57



4.2.3 The eigenvalues and eigenvectors

From (4.23) and (4.30) we get that for s 2 N
j�s+1 � �sj = j��s�1 � ��sj = j"s + �sj;

and in fact with (4.24) and (4.31)

j�s+1 � �sj = j��s�1 � ��sj � 2Nh1
(2s� 1)�

� Nh2
s�

� N

s�
(h1 � h2): (4.42)

Thus the di�erences of the eigenvalues approach to zero for jsj ! 1 , the same holds
for the energy norms of the di�erences of the eigenvectors Us+1 � Vs and U�s�1 � V�s ,
that is

lim
s!1

kUs+1 � Vsk21 = 0;

lim
s!1

kU�s�1 � V�sk21 = 0;

lim
s!1

kUs+1 � Vsk22 = lim
s!1

�
h2�h1
�s+1�s

+ kUs+1 � Vsk21
�

= 0;

lim
s!1

kU�s�1 � V�sk21 = lim
s!1

�
h2�h1

��s�1��s + kU�s�1 � V�sk21
�

= 0:

(4.43)

For the calculations refer to Appendix C.1.5.

4.2.4 The eigenvector expansions

The sets of eigenvectors U := fUs : s 2 Z�g and V := fVs : s 2 Z�g [ f	+;	�g
both form complete orthogonal sets for the space C (w.r.t. di�erent inner products of
course). Therefore we can expand each eigenvector U 2 U w.r.t. V and vice versa each
W 2 V w.r.t. U , that is

Us =
X
t2Z�

ctsVt + b+s 	+ + b�s 	� ; s 2Z� (4.44)

Vt =
X
s2Z�

dstUs ; t 2Z�; (4.45)

	+ =
X
s2Z�

 s+Us; (4.46)

	� =
X
s2Z�

 s�Us; (4.47)

Clearly we have for the coe�cients

cts =
1

kVtk2J
[Us; Vt]J =

1

kVtk22
[Us; Vt]2; (4.48)

b+s =
1

k	+k2J
[Us;	+]J =

1

k	+k2J
[Us;	�]2; (4.49)

b�s =
1

k	+k2J
[Us;	�]J =

1

k	�k2J
[Us;	+]2; (4.50)
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and

dst =
1

kUsk21
[Vt; Us]1; (4.51)

 +
s =

1

kUsk21
[	+; Us]1; (4.52)

 �s =
1

kUsk21
[	�; Us]1: (4.53)

In order to calculate the coe�cients we need to know the products [Us; Vt]1=2
and [Us;	�]J , and for these we need to have some expressions for the products
hujsj; e�i% and hujsj; vjtji% , since then for s; t 2Z� we get

(a)

[	+; Us]2 =
1

2

�
1

i�s�

�
h��2e�; ujsji�2 + he�; ujsji�2

=
1

2

�
1 + i

�

�s

�
he�; ujsji�2 ; (4.54)

and

[	+; Us]2 =
h2 � h1
2i��s

+ [Us;	+]1

=
h2 � h1
2i��s

+
1

2

�
1� i

�s
�

�
he�; ujsji�2 : (4.55)

We subtract both equations and get

he�; ujsji�2 =
h1 � h2
�2s + �2

: (4.56)

(b) Similarly we have

[Vt; Us]2 =
1

2

�
1 +

�t
�s

�
hvjtj; ujsji�2 ; (4.57)

and

[Vt; Us]2 =
h2 � h1
2�s�t

+ [Us; Vt]1

=
h2 � h1
2�s�t

+
1

2

�
1 +

�s
�t

�
hvjtj; ujsji�2 : (4.58)

Again subtracting both equations we get

hvjtj; ujsji�2 =
h1 � h2

(�s � �t)(�s + �t)
: (4.59)
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Summarising (4.54)-(4.59) we get

[Us;	+]J =
1

2

�
1 + i

�

�s

�
he�; usi�2 =

h1 � h2
2�s(�s � i�)

(4.60)

[Us;	�]J =
1

2

�
1� i

�

�s

�
he�; usi�2 =

h1 � h2
2�s(�s + i�)

(4.61)

[	+; Us]1 = conj

�
1

2

�
1 + i

�s
�

�
he�; usi�2

�
= �i h1 � h2

2�(�s � i�)
(4.62)

[	�; Us]1 = conj

�
1

2

�
1� i�s

�

�
he�; usi�2

�
= i

h1 � h2
2�(�s + i�)

(4.63)

[Vt; Us]1 =

8<
:

1
2

�
1 + �s

�t

�
hus; vti�2 = h1�h2

2�t(�s��t)

h1�h2
2�s�t

+ 1
2

�
1 + �t

�s

�
hus; vti�2 = h1�h2

2�s�t
+ h1�h2

2�s(�s��t)

(4.64)

[Us; Vt]2 =

8<
:

1
2

�
1 + �t

�s

�
hus; vti�2 = h1�h2

2�s(�s��t)

h2�h1
2�s�t

+ 1
2

�
1 + �s

�t

�
hus; vti�2 = �h1�h2

2�s�t
+ h1�h2

2�t(�s��t)

(4.65)

Now we need only substitute (4.60)-(4.65) into (4.48)-(4.53) in order to obtain the ex-
pressions for the coe�cients. One will see that, for s; t 2 N

b+�s = b�s = conj(b��s) = conj(b+s )
 �s+ =  s� = conj( s+) = conj( �s� )

(4.66)

and

c�t�s = cts ; c�ts = ct�s
d�s�t = dst ; d�st = ds�t

(4.67)

Hence it su�ces to calculate b+s and  s+ only for positive s , cts and dst only for
s > 0 ^ t > 0 as well as for s > 0 ^ t < 0 . We also make the following observations:
For s > 0 we have with the Cauchy-Schwarz inequality ( [:; :]2 is positive on �+ )

jcss+1 � 1j =
��� [Us+1�Vs;Vs]2kVsk22

��� �
q

1
�2N

kUs+1 � Vsk2;
jds+1s � 1j =

��� [Vs�Us+1;Us+1]1kUs+1k21

��� �
q

1
�2N

kUs+1 � Vsk1:
Thus with (4.43)

lim
s!1

css+1 = 1 = lim
s!1

c�s�s�1

and lim
s!1

ds+1s = 1 = lim
s!1

d�s�1�s :
(4.68)

But for all l 2Zn f1g we have

lim
s!�1

css�l = 0 and lim
s!�1

ds�ls = 0: (4.69)

Remark 4.4
(1) It is not surprising that lim

jtj!1
cts = 0 and lim

jsj!1
dst = 0 , which follow from
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the Riemann lemma for Fourier coe�cients. The signi�cance of the other limits
obtained in (4.68) and (4.69) is that the spaces span

�
Us : jsj � l+1

	
are almost

orthogonal to the spaces span
�
Vs : jsj � l � 1

	
for large l 2 N . For large s > 0

the eigenvalues �s+1 and �s are also almost the same, respectively for large s < 0
the eigenvalues �s�1 and �s . Thus one can say that the operators A1 and A2

basically di�er only on the complements of the spaces span
�
Us : jsj � l + 1

	
u

span
�
Vs : jsj � l

	
for large l . This complement is of �nite dimension.

(2) Above property is important for the motivation to apply the Galerkin method in
Section 4.4 to approximate the spectrum.

(3) The calculations of the coe�cients of the eigenvector expansions do not take into
account the special values of the tension T and the density function %(x) of the
solvable model, thus they are valid also for the general case.

4.2.5 The di�erence of the resolvents

Both resolvents R�1 and R�2 (if they exist for that � ) are de�ned on the same space
C , so it is possible to consider the di�erence R�2 �R�1 . We have with (4.28) and (4.39)

R�2 �R�1 =

�
�

i�2
�i
�

�
(K�

2 �K�
1 );

and for the di�erence of the Green's functions (see (4.27) and (4.38)) we get for 0 � x �
� � N with Lemma A.43

G�2 (x; �)� G�1 (x; �) =
l2(x)r(�)

W (l2; r)
� l1(x)r(�)

W (l1; r)

= r(�)
l2(x)

�
l1(x)r0(x)� l01(x)r(x)

�� l1(x)�l2(x)r0(x)� l02(x)r(x)
�

W (l2; r)W (l1; r)

=
W (l1; l2)

W (l2; r)W (l1; r)
r(x)r(�):

The same holds for 0 � � � x � N , so that K�
2 �K�

1 is the symmetric one-dimensional
operator

K̂ := K�
2 �K�

1 : y(:) 7! 


Z N

0
%(�)r(�)y(�)d� r(:)

with


 :=
W (l1; l2)

W (l2; r)W (l1; r)
:

The action of R̂� := R�2 �R�1 is expressed by

R̂�
�
f

g

�
= 


�
�

i�2
�i
�

��hf; ri%
hg; ri%

�
r

) R̂�
�
f

g

�
= 
h�f � ig; ri%

�
r

i�r

�
; (4.70)

which is also a one-dimensional operator mapping onto the subspace

�� := span

�
r

i�r

�
:
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Since

R̂�
�
r

i�r

�
= 
h2�r; ri%

�
r

i�r

�

an estimate of the norm of R̂� is

kR̂�kop � 2j�
j krk2L2;% :
The constants in (4.70) for the solvable model are


 =
h1 � h2

[h1 + �� cot(��N)][h2+ �� cot(��N)]

and r(x) = cos(��x)� cot(��N) sin(��x):

4.3 The generator A of the expectation semi-group

Now we consider the Cauchy problem (4.9) for which the value of h in the boundary
condition (4.11) at x = 0 jumps between the two values h1 > 0 and h2 < � 1

N . Let the
jump process be realised by a symmetric, 2-state, continuous-time Markov process with
exponentially distributed (intensity { ) sojourn times (cf. Chapter 2) and generator

Q := {

��1
1

1

�1
�

; { > 0:

Then on the space (C; [:; :]1)� (C; [:; :]J) the in�nitesimal generator A({) of the expec-
tation semi-group is

A({) =
�
A1 0
0 A2

�
+ i{

�
idC �idC
�idC idC

�

Alternatively we can make use of the decomposition of C2 = �+��� (cf. Section 4.1.4.)
and consider the expectation semi-group on the space

(C; [:; :]1)� [(�+; [:; :]2)� (��; [:; :]J)] :

De�ne the imbeddings

P̂+ : �+ ,! C and P̂� : �� ,! C ;
the identities id+ on �+ and id� on �� , and recall that P+ and P� are the [:; :]J -
orthogonal projections of C onto �+ and �� respectively. Then A({) is

A({) =
0
@ A1 + i{ idC �i{P̂+ �i{P̂�

�i{P+ A2j�+ + i{ id+ 0
�i{P� 0 A2j�� + i{ id�

1
A

The question to be pursued here is, again, what su�cient and/or necessary conditions
there are so that for some values of { stability in average is obtained. And if so,
we want to know, what these values are. Thus we need to show that under certain
conditions the generator A({) is dissipative or similar to a dissipative operator (cf.
Theorem A.26 and Proposition A.29), or its spectrum is contained in the open UHP.

With regard to Hypothesis 3.1 we make the
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Hypothesis 4.5
A necessary condition on the possible choice of values for { to obtain stability in average
includes a relation between the two terms

��h1 + 1
N

�� and ��h2 + 1
N

�� .
Possibly the requirement is

h1 + 1=N

h2 + 1=N
> 1

Further, we make the following assumption, which will be the basis for most of the
approaches to determine the spectrum of A . It is connected with the possibility to
approximate the spectrum.

Assumption 4.6
For the operator A the expression

� =
k(A� � idC)uk

kuk
with � 2 C and u 2 H � H is a good indication of the distance between � and the
spectrum �(A) . In particular, if � is small, then the distance dist(�; �(A)) is small
as well.

A is not self-adjoint (cf. Remark 2.35(1)), so Corollary A.15 is not applicable. How-
ever, Corollary A.18 gives the relation between � and the distance to the numerical
range. Also does the term � occur in the de�nition of the approximate spectrum (see
Lemma A.6). On these grounds stands the assumption.

4.3.1 Asymptotic behaviour of the spectrum of A

It is possible to describe the asymptotic behaviour of the approximate eigenvalues of
A({) for large absolute values. Recall that U�(s+1) ( s 2 N ) are the eigenvectors of

A1 for the eigenvalues ��(s+1) with ��(s+1) u �2s+1
2 � for large s , and V�s are the

eigenvectors of A2 for the eigenvalues ��s u �2s+1
2 � . In Section 4.2 it is shown that

lim
s!1

j��(s+1) � ��sj = 0; (4.71)

and also that (with the calculations given in Appendix C.1.5)

lim
s!1

kU�(s+1) � V�skj = 0 ; j = 1; 2 (4.72)

The complex numbers �s+1; �s+1 + 2i{; ��s�1 and ��s�1 + 2i{ are approximate
eigenvalues with approximate eigenvectors

�1(s) =
�
Us+1
Vs

�
; �2(s) =

�
Us+1
�Vs

�
; �3(s) =

�
U�s�1
V�s

�
; and �4(s) =

�
U�s�1
�V�s

�
:

as we will see in the following. The norms of above vectors satisfy

k�j(s)k2 = kUs+1k21 + kVsk22 � �2N j = 1; 2; 3; 4;

and it is

A�1(s)� �s+1�1(s) =

�
i{(Us+1 � Vs)

�i{(Us+1 � Vs) + (�s � �s+1)Vs

�
:
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Figure 4.5: An asymptotic set for the spectrum �(A) .

Therefore

kA�1(s)� �s+1�1(s)k2
k�1(s)k2 �

� 1

�2N

�
{2kUs+1 � Vsk21 +

�
{kUs+1 � Vsk22 + j�s � �s+1jkVsk2

�2�

� 1

�2N

h
{2kUs+1 � Vsk21 + 2{2kUs+1 � Vsk22 + 2j�s � �s+1j2kVsk22

i
:

With (4.71) and (4.72) we get

lim
s!1

kA�1(s)� �s+1�1(s)k
k�1(s)k = 0;

and the same limits for the expression with the vectors �2(s);�3(s) and �4(s) .

Above results show that one can expect that the set

� =

�
z : Re(z) = � 1

�N

2s+ 1

2
� ^

�
Im(z) = 0 _ Im(z) = 2i{

��
(4.73)

is an asymptotic set for the approximate spectrum of A({) for large absolute values,
illustrated in Fig. 4.5, accumulation points are �1 and +1 .

Of essential importance for the question of stability is whether the imaginary parts of the
eigenvalues near the real axis are positive. We know from the Section 2.4.2 that initially,
for small { , the imaginary parts of all eigenvalues near the real values ��s and ��s
are positive. However, nothing is known about the eigenvalues with small absolute value
and for large { .

4.3.2 Perturbation Theory and Stability in Average

It is not shown yet, that Qt � idH is bounded. However, if it is bounded, the norm
is bounded from below by kQt � idHk � { , see Remark 2.35(3). From the result of the
study of the simple example in Chapter 3 we expect that one has to choose { larger
than some constant, say { � c , in order to have stability. In any case we have then
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kQt � idHk � c .

The theorems of Perturbation Theory like Proposition A.32 and Theorem A.36 esti-
mate the distance between the spectra of the perturbed operator and of the unperturbed
operator. The spectrum of A(0) is real with two complex eigenvalues. Knowing that
the spectrum is slightly perturbed from �(A(0)) , Proposition A.32 does not help to
answer the question of stability. For that one has to show that the new eigenvalues, or
non-regular points, are not only inside a small disc around the eigenvalues of A(0) , but
inside the upper half disc, in the UHP. That the eigenvalues for small values of { actually
do 'move up' (cf. Section 2.4.2) is again not of much help - we expect { � c > 0 bounded
away from zero. More detailed calculation on the series expansions are needed, maybe
with the help of the Feynman diagrammes, (see R.D.Mattuk: \A Guide to Feynman
Diagrams in the Many-Body Problem", McGraw-Hill Publishing Company Ltd, 1967).

Theorem A.36 is not applicable either. Here is given only an upper bound for the
norms of the operators of the expectation semi-group, for bounded Qt � idH . Since
the exponential rate in the estimation of the norm keiA(0)tk � Ke�t of the expectation
semi-group generated by A(0) is already � > 0 from the accretive part of A2 , we need
to �nd a way to decrease it to zero, rather than estimate the increase.

Much stronger results of Perturbation Theory than the standard ones are required to
�nd conditions for stability.

4.3.3 The resolvent of the generator A

Recall from the calculation of the resolvent of A in Section
2.4.4, that if � is in the spectrum of A then one of the op-

erators R��i{1 , R��i{2 , T�11 :=
�
A2 � (�� i{) idC + {2R��i{1

��1
, or

T�12 :=
�
A1 � (�� i{) idC + {2R��i{2

��1
does not exist.

� Assume, R��i{1 does not exist. Then � � i{ is an eigenvalue of A1 . Since all
eigenvalues �s of A1 are real it follows that � = �s + i{ has imaginary part
{ > 0 , i.e. lies in UHP, as required for stability.

� Assume, R��i{2 does not exist, thus � � i{ is an eigenvalue of A2 . That means
now that either � = �s + i{ in the UHP or � = �i� + i{ . If we choose { > � ,
then all eigenvalues lie in the UHP.

� Now assume that the spectrum of T1 includes the number zero. T1 can be regarded
as a perturbation of T 0

1 = A2 � (�� i{) idC + {2R��i{2 by {2R̂��i{ since

A2 � (�� i{) idC + {
2R��i{1 = A2 � (�� i{) idC + {

2R��i{2 � {2R̂��i{:

And if the norm of the operator {2R̂��i{ = {2
�
R��i{2 �R��i{1

�
is small the dis-

tance of the spectrum of T1 to the one of T 0
1 is small.

The eigenvalues �s; s 2Z� of T0 satisfy the equation

0 = �s � (�s � i{) + {2 1

�s � (�s � i{)

, 0 = [�+ (�s + i{)]2 + {2

, 0 = �2 � 2(�s + i{)�+ (�s + i{)2 + {2 (4.74)
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The discriminant of above quadratic equation is

4(�s + i{)2 � 4(�2s + 2i{�s) = �4{2;

so that the solutions of (4.74) are

�
(1)
s = �s + 2i{ and �

(2)
s = �s

with non-negative imaginary parts.

� The analogous calculations hold for the case that T�12 does not exist. However, now
we get, additional to the zeroes �s and �s+2i{ , the zeroes �i� and �i�+ 2i{ .

Remark 4.7

(1) The assumption we made above is that the norm of {2R̂��i{ is small.

(2) Even if one can show that the assumption is correct, one still has to show that the

perturbed eigenvalues of T1 (or T2 ) near the real values �
(2)
s are in the UHP.

(3) Observe that above calculations give the same approximation of the spectrum as
obtained from the investigation of the asymptotic behaviour.

4.4 Numerical approximation of the spectrum of A

4.4.1 Preliminaries about the Galerkin method

As described in Mikhlin[23] the Bubnov-Galerkin method is a procedure to approxi-
mate eigenvalues of an operator A . It is a generalisation of the Ritz method, and it is
applicable to operators A in Hilbert space which are not semi-bounded.

In order to solve the eigenvalue problem

A� = �� ; � 2 C
we choose a complete (not necessarily orthogonal) sequence of vectors ('k)

1
k=1 and set

for K 2 N

�K :=
KX
k=1

ak'k:

To determine the coe�cients ak we require that A�K���K is orthogonal to the vectors
'1; : : : ; 'K , that is

hA�K � ��K ; 'ji = 0 8j = 1; : : : ; K (Gal)

,
1X
k=1

akhA'k � �'k; 'ji = 0 8j = 1; : : : ; K (4.75)

We get a system of K linear homogeneous equations in the variables a1; : : : ; aK . The
values for � for which there exists a non-trivial vector (a1; : : : ; aK) can serve as ap-
proximations for the eigenvalues of A . These values are determined by setting the
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determinant of the system (4.75) to zero, i.e.�������
hA'1 � �'1; '1i � � � hA'K � �'K ; '1i

...
. . .

...
hA'1 � �'1; 'Ki � � � hA'K � �'K ; 'Ki

������� = 0:

The result is a polynomial of degree K , so that we obtain K solutions �
(1)
K ; : : : ; �

(K)
K

and corresponding eigenvectors �
(1)
1 ; : : : ;�

(K)
K . In order to verify, that the numbers �

(j)
K

actually approximate the eigenvalues of A one can apply Lemma A.6. If we can show
that

(i) the value of

�
(j)
K :=

kA�(j)
K � �

(j)
K �

(j)
K k

k�(j)
K k

(4.76)

approaches to zero, and that

(ii) the sequence of sets (�K)K2N =
�f�(j)K ; j = 1; : : : ; Kg�

K2N
contains convergent

sequences (�k)k2N with �k 2 �k ,

then the sets �K approximate (at least �nite parts of) the approximate spectrum.

4.4.2 The Galerkin method applied to the generator A

For the generator

A =

�
A1 + i{ idC �i{ idC
�i{ idC A2 + i{ idC

�

of the expectation semi-group there exists a canonical way of choosing the in�nite com-
plete set f'kgk2N . We make use of the fact that the eigenvectors of A1 and A2 are
known and form orthogonal complete sets and de�ne

f'k : k 2 Ng =
�
Us
0
; s 2Z�

�
[
�
0

Vs
; s 2Z�

�
[
�

0

	+
;
0

	�

�
:

Then we set as the vectors �(K)

�K =
K+1X

s=�K�1; s6=0

EsUs
0
+

KX
t=�K; t6=0

F t
0

Vt
+G+ 0

	+
+ G�

0

	�
: (4.77)

Remark 4.8
We observed in Remark 4.4 that the two invariant spaces spanfUs; jsj � K + 2g and
spanfVs; jsj � K+1g w.r.t. the evolutions eiA1t and eiA2t respectively are 'almost' the
same for large K . The mixing of the two evolutions, which is the e�ect of the Markov
chain, basically a�ects only the �nite dimensional complements spanfUs; jsj � K + 1g
and spanfVs; jsj � Kg [ f	+;	�g . The procedure described in this section is an
attempt to make use of this observation, the choice of the vector �K is thus motivated.
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For the �K the condition (Gal) transforms intoD
A�K � ��K ;

�
Us
0

�E
= 0 ; s = �K � 1; : : :K + 1; s 6= 0D

A�K � ��K ;
�

0
Vt

�E
= 0 ; t = �K; : : :K; t 6= 0D

A�K � ��K ;
�

0
	+

�E
= 0D

A�K � ��K ;
�

0
	+

�E
= 0

(4.78)

The two components of A�K are

(A�K)1 =
K+1P

s=�K�1; s6=0
(�s + i{ � �)EsUs+

�i{
KP

t=�K; t 6=0
F tVt � i{G+	+ � i{G�	�;

(A�K)2 = �i{
K+1P

s=�K�1; s6=0
EsUs +

KP
t=�K; t6=0

(�t + i{ � �)F tVt+
+(i�+ i{ � �)G+	+ + (�i�+ i{ � �)G�	�:

From (4.78) follows the system of equations

(I) For s = �K � 1; : : : ; K + 1 , s 6= 0 and t = �K; : : : ; K , t 6= 0 respectively

0 =
h
(�s + i{ � �)EsUs � i{

KX
t=�K; t6=0

F tVt � i{G+	+ � i{	� ; Us

i
1
;

0 =
h
� i{

K+1X
s=�K�1; s6=0

EsUs + (�t + i{ � �)F tVt ; Vt

i
2
;

(II) and

0 =
h
� i{

K+1X
s=�K�1; s6=0

EsUs + (i�+ i{ � �)G+	+ ; 	+

i
J
;

0 =
h
� i{

K+1X
s=�K�1; s6=0

EsUs + (�i� + i{ � �)G�	� ; 	�

i
J
:

After dividing by the norms and substituting the eigenvalue expansions from Section
4.2.4. we get

(I) For s = �K � 1; : : : ; K + 1 , s 6= 0 and t = �K; : : : ; K , t 6= 0 respectively

0 = �i{ s+G+ � i{ s�G� + (�s + i{ � �)Es � i{
KX

t=�K; t6=0

dstF
t;

0 = �i{
K+1X

s=�K�1; s 6=0

ctsE
s + (�t + i{ � �)F t:
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(II) and

0 = (i�+ i{ � �)G+ � i{
K+1X

s=�K�1; s6=0

b+s E
s;

0 = (�i�+ i{ � �)G� � i{
K+1X

s=�K�1; s6=0

b�s E
s;

Hence the condition on � to be an approximative eigenvalue of A is that it be an
eigenvalue of a quadratic complex matrix � of size 4K + 4

� :=

0
@ �1 �2 0

�3 �4 �5
0 �6 �7

1
A

with some matrices �1; : : : ;�7 , listed in detail in Appendix C.2.1. � acts on the vector�
G+; G�; E�K�1; : : : ; E�1; E1; : : : ; EK+1; F�K ; : : : ; F�1; : : : ; F�1; F 1; : : : ; FK

�t
The calculations of an estimate of �

(j)
K (see (4.76)) is given in Appendix C.2.2. The

result is the uniform, but very rough, estimate

�2
K � 3{2�

�
28f(K)

�2N

�
�2

8
� g(K)

�
+
8�2

jh2j
�
�2

8
� g(K + 1)

��
+

+
2{2�

�2N

��
�2

6
� f(K)

��
8g(K + 1) + 2f(K + 1)

�
+

2

(2K + 1)2�2
+

2

(2K � 1)2

�
with

� = (h1 � h2)2N4�4=�4 ; f(K) =
KP
t=1

1
t2
; and g(K) =

KP
t=1

1
(2t�1)2 :

The limit for K ! 1 of �K is indeed zero. So for larger values of K one should get
a good approximation at least of the approximate spectrum.

The mathematical software 'Matlab' provides a simple to use and still quite powerful
function (called 'eig') for the numerical calculation of eigenvalues of a quadratic matrix
with complex entries. Additionally it is possible to illustrate the resulting sets of values
in graphs. However, it is rather slow, so that it is appropriate to use the programming
language 'C' to calculate the entries of the large matrix � . A pseudo code for the
implementation, which is done in three steps, can be found in Appendix C.2.3.

4.4.3 Results of the numerical approximation

Some graphs produced by the programme can be found in the Appendix C.2.4. We
plot the eigenvalues in di�erent shapes in order see more clearly in the graph, where
the respective eigenvalue lies. If we assume that the error of approximation is �K then
inside a disc of radius �K around each calculated value lies an actual eigenvalue or

spectral point of A({) . If the imaginary part of an �
(j)
K is greater than �K this actual

eigenvalue lies in the UHP. This value will be printed as ' � '. If �K > Im(�
(j)
K ) > 0

then there is a chance that the actual eigenvalue lies in the LHP, the value will be
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# N � h1 h2 K �K

1 1 1 1 �1:1 50 0:321151
2 1 1 1 �1:1 200 0:160991
3 1 0:5 1 �1:1 50 0:129016
4 1 0:5 1 �1:1 200 0:064766
5 1 2 1 �1:1 50 0:998734
6 2 0:5 0:01 �5:6 50 0:919088
7 1 0:5 0:01 �11:1 50 0:623757
8 1 1 0:01 �11:1 50 1:287513
9 1 0:5 5 �7 50 0:677997

Table 4.1: �K for di�erent sets of parameters, and for { = 1 .

printed with a ' � '. A value with 0 < Im(�
(j)
K ) < ��K represents the chance, that

the actual eigenvalue lies in the UHP, it will be printed with '*', whereas a value with

��K < Im(�
(j)
K ) stands for an actual eigenvalue certainly in the LHP. These values

will be printed as 'x'.

The criteria for the choice of the parameters to run the programme are

(a) h1 > 0 and h2 < �1=N
(b) The value of �K should be small.

(c) We want to verify that the hypothesis made in Section 4.3 is plausible. For that
we need to choose the parameters such that

(i) h1+1=N
h2+1=N

> 1 ; or (ii) h1+1=N
h2+1=N

< 1

In Table 4.1 are shown a few examples of values of �K for di�erent choices of parameters
N; �; h1; h2 and K when { = 1 . Comparing the data in lines #1 and #2, also lines
#3 and #4, we see that increasing the value of K by factor 4 will decrease the value of
�K only by factor 2. At the same moment, the amount of time needed to calculate the
approximate values in increased by an enormous amount. Since the resulting pictures
for K = 200 do not look much di�erent to the ones for which K = 50 , compare Fig.
C.2 and C.3, we chose K = 50 to produce the graphs in Fig. C.3-C.6. The data in lines
#1-#5 also show that �K is smaller for smaller values of � , so the latter was set to
� = 0:5 or � = 1 for the realisations of the programme. The sets of data in both lines
#6 and #7 were chosen to yield the ratio r := h1+1=N

h2+1=N
= 0:1 , with di�erent values of

h1 > 0 and h2 < �1=N . As the value of �K is smaller for the data in line #7, this
data was chosen to produce the graphs in Fig. C.5 and C.6. For � = 1 , line #8, �K is
quite large again. For the parameters listed in line #9 the ratio is r = 1 . At the same
time the value of � , the imaginary part of the complex eigenvalue of A2 is quite large.

For { = 0 the spectra of A(0) for the di�erent sets of parameters look exactly like
the picture in the graph on the top of Fig. C.2, so for all other realisations { = 0:05 was
chosen as the �rst value of { . One can see clearly that initially all eigenvalues go up, as
it was shown by the series expansion of the eigenvalues of A({) in Section 2.4.2. Note
that the larger eigenvalues react faster (see especially Fig. C.3). We also observe that
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the approximation of the spectrum obtained by the numerical approach looks similar to
the ones obtained by the other approaches described in Sections 4.3.1 and 4.3.3.

The eigenvalue in the LHP, illustrated by the character 'x', does disappear very quickly
for r = 20 , which is the value of the mentioned ratio in Fig. C.3 and C.4 - stability in
average is possible! These graphs also show that the choice of � does have an e�ect on
that - for � = 1 in Fig. C.4 the eigenvalue in the LHP is lifted up for { < 0:55 , for
� = 0:5 (cf. Fig. C.3) a larger value of { is needed. This is probably due to the fact
that then the value of � is large. All graphs in Fig. C.4-C.6 have in common that the
eigenvalue in the LHP is lifted up for values of { approximately equal to � .

4.5 Summary

In Section 4.1 we described the solvable model of the wave equation on the �nite
string with the two di�erent values h = h1 > 0 and h = h2 < � 1

N in the boundary
condition ux � huj0 = 0 at x = 0 . We de�ned what we meant by stability and showed
that the positive energy form for the generator A1 of the stable evolution is suitable
to measure that. The energy form for the generator A2 of the unstable dynamics is
inde�nite, but we could show that the positive inner product constructed by means of
the canonical symmetry (cf. Appendix A.5) is also suitable for our purposes. However,
the former self-adjoint operator A2 now has a two-dimensional anti-hermitian part, it is
not symmetric any more.
It was found in Section 4.2 that A1 and A2 are self-adjoint extensions of the same
operator A0 w.r.t. di�erent inner products, and their resolvents di�er only by a one-
dimensional operator R̂� . We also observed that the operators A1 and A2 are approx-
imately the same on a space of �nite codimension. The consequence is that the mixing,
the Markov chain results in, a�ects mainly the �nite dimensional space spanned by the
eigenvectors for eigenvalues with small absolute value. This observation motivated the
numerical approximation by the Galerkin method.

The application of some results of Perturbation Theory did not prove successful. This
was due to the fact that the values of { su�cient for stability certainly are not small,
and that the norm of the operator Qt � idH , if it exists, is not small either. Also are
all eigenvalues of the unperturbed operator A(0) on the real axis. The theorems of
Perturbation Theory give small discs around these values, in which the eigenvalues of
the perturbed operator lie, however, they do not state, whether the eigenvalues lie in the
upper half disc, which is required for stability.

Under the Assumption 4.6 made in Section 4.3 about the approximation of the spec-
trum of the non-symmetric operator A we found by three di�erent approaches (see
Sections 4.3.1, 4.3.3 and 4.4) the same asymptotic behaviour of the spectrum near 1 ,
illustrated in Figure 4.6. The approach using the resolvent also assumed that the norm
of {2R̂��i{ is small.

The results of the numerical approximation, described in Section 4.4, suggest that it
is in fact possible to choose { such that stability in average is obtained. The Hypothesis
4.5, however, is not really supported by the outcome so far. For both r = 20 and r = 0:1
it was the case that the eigenvalue in the LHP was lifted up, and in all cases it was for
{ u � . This was also the case for the example in Chapter 3, where {2 needed to be
greater or equal to K2

1 =
r
r�1!

2
2 - larger for larger imaginary part !2 of the eigenvalue

in the LHP. However, the values of �K are very large for larger { , so that the graphs
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Figure 4.6: An asymptotic set for the spectrum �(A) .

in Fig. C.5 and C.6 when r = 0:1 and r = 1 , are not very reliable. Here one should
really make the calculations for larger values of K .

One could continue the investigation and for example

(i) consider the resolvent of A , maybe apply Galerkin method to the operators T1
and T2 noted in Section 4.3.3,

(ii) check whether A is normal,

(iii) make further use of the Frobenius-Schur factorisation,

(iv) check the equivalence of the norms k:k1 and k:kJ ,
(v) or consider the operator A2 on the Krein space (C; [:; :]2) and make use of the

results of the Theory of Operators on Krein spaces.
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Chapter 5

The wave equation on the

semi-in�nite string divided by a

point mass and with random

boundary conditions

The wave equation on the �nite string with boundary condition ujN = 0 stud-
ied in the previous chapter can be interpreted in another way as well: Imagine a
semi-in�nite string with a point mass M attached at x = N . But this mass is held
tight so that it can not oscillate1. Thus any displacement of the string to the left
of the mass ( 0 � x � N ) does not cause any oscillation of the string to the right
of the mass (N < x <1 ) when it is released. Here we can ignore that part of the string.

In this chapter we study the model when the mass M can oscillate, it is not held (see
Fig. 5.1). We are still interested solely in the evolution of the �nite string inside the
interval [0; N ] , but now any wave that approaches to the mass M from the left will
have a part transmitted to the right. The energy of that transmitted part is lost to the
outside. We make use of the mathematical tools of the Lax/Phillips Scattering Theory
(see Lax/Phillips[22]) to study this model, even though we do not deal with an actual

1We could also say that the point mass has in�nite mass.

�
�
�
�

0

%(x) � 1

u(x; t)

M

N x

�(x)

Figure 5.1: The semi-in�nite string divided by a point mass.
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scattering situation. To do this, we consider the wave equation on the semi-in�nite string
with some density function %(x) . The part of the string for N < x <1 is not of actual
interest, we set here %(x) � 1 . The point mass M at x = N is expressed by the
Dirac-delta-function, so that we have for the density function

%(x) = �(x)�[0;N)+M�(x�N) + �(N;1):

For the solvable model we will set the tension T � 1 and the density �(x) = �2 constant.
The boundary condition at x = 0 shall again be

ux � h(t)uj0 = 0

where h(t) jumps between two values h1 > 0 and h2 < 0 via a symmetric 2-state
Markov chain with in�nitesimal generator Q . Since h2 determines an unstable dynam-
ics, we pursue the question whether there exist su�cient and/or necessary conditions for
the choice of the intensity { of the Markov chain, so that the system is stable in average.

In the Section 5.1 are listed the results from the Lax/Phillips Scattering Theory which
we use in the description of the solvable model in Section 5.2. However, in Section 5.3
we describe a di�erent approach to the question of stability, not by means of random
evolutions, but by directly considering the energy terms.

5.1 The Lax/Phillips scattering scheme applied to the
wave equation on the semi-in�nite string

Consider the wave equation on the positive half axis R+
0�

%(x)utt = uxx
ux � huj0 = 0

(5.1)

where the positive, bounded and continuous density function %(x) is equal to 1 for

x > N , N 2 R+ . De�ne the di�erential operator L = � 1
%(x)

d2

dx2
, and the operator

A = i

�
0

L

�1
0

�
;

acting on the domain D(A) as a subspace of the space of Cauchy data

C =
��

u0
u1

�
2
�
W 2

1

L2

�
: (u0)x � hu0j0 = 0

�
with energy form��

u0
u1

�
;

�
v0
v1

��
=

1

2

�
hu0v0 +

Z 1

0
(u0)x(v0)x + %(x)u1v1dx

�
just like for the case of a �nite string in Chapter 4. We assume in this section that
L is positive. Then A is self-adjoint and generates a one-parameter group of unitary
operator eiAt corresponding to the Cauchy problem�

1
i
d
dtU = A U

Ujt=0 = (f; g)t
(5.2)
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A basic notion employed in the Lax/Phillips Scattering Theory is the one of the incoming
and outgoing subspaces, see Lax/Phillips[22].

De�nition 5.1
Let T be a one-parameter group of unitary operators on a Hilbert space C .
If there exist two closed subspaces D� and D+ of C with the properties

(i) T (t)D� � D� 8t < 0, T (t)D+ � D+ 8t > 0
(ii)

T
t<0

T (t)D� = f0g, T
t>0

T (t)D+ = f0g

(iii) clos

� S
t2R

T (t)D�
�
= C, clos

� S
t2R

T (t)D+

�
= C

then D� and D+ are called incoming and outgoing subspaces respectively.

The solutions of (5.1) for x > N have the form of d'Alembert waves (see Strauss[33])

u(x; t) = �1(x� t) + �2(x+ t)

with some smooth functions �1 and �2 . �1(x � t) is the wave moving to the right
('out') with d

dt�1(x� t) = � d
dx�1(x� t) , and �2(x+ t) is the wave moving to the left

('in') with d
dt�2(x+ t) = + d

dx�2(x + t) . Thus possible choices for D+ and D� in our
case are (see Pavlov[27])

DN+ =
n�

u
�ux

�
: u 2 W 1

2 ; supp(u) � [N;1); ujN = 0
o
;

DN� =
n�

u
ux

�
: u 2 W 1

2 ; supp(u) � [N;1); ujN = 0
o
:

Additional to above properties (i), (ii) and (iii), these two spaces are also orthogonal in
the energy form since (note that %(x) � 1 for x > N )��

u

�ux

�
;

�
v

vx

��
=

1

2

�Z 1

N
uxvx + (�ux)vxdx

�
= 0

The orthogonal complement of DN+ � DN� in C is the coinvariant subspace

K =

��
v0
v1

�
2 C : v0 � const ^ v1 � 0 on [N;1)

�
;

because for
�
u0
u1

�
2 K it is��

v0
v1

�
;

�
u

�ux

��
=

Z 1

N
(v0)xuxdx = 0:

De�ne PK the orthogonal projection onto K . The Cauchy data in K has all the energy
inside the interval [0; N ] , the evolution of these data is exactly what we are interested
in. The following theorem about the evolution on K can be found in Lax/Phillips[22]

Theorem 5.2
Let D� and D+ be orthogonal incoming and outgoing subspaces for a group of unitary
operators T on a Hilbert space C , and K = C 	 (D+ �D�) . Then the operators

Z(t) = PKT (t)jK ; t � 0

form a C0 -semi-group of contracting operators on K with
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(i) lim
t!1

Z(t)f = 0 8f 2 K

(ii) Z(t)D+ = 0 Z(t)D� = 0

In Pavlov[25] and Pavlov[27] are given some important facts for the study of the
semi-group Z , especially for the case of the wave equation (5.1):

De�nition 5.3
For Im(k) > 0 let '(x; k) be the function which satis�es

� d2

dx2
'(x; k) = k2%(x)'(x; k);

the boundary condition '0 � h'j0 = 0 and which is equal to eik(x�N) for x > N , also
called Joost solutions. If there exist a coe�cient S(k) such that

'(x; k) + S(k)'(x;�k) 2 L2[0;1)

then call S(k) the reection coe�cient.

Lemma 5.4

For Im(k) > 0 exists a unique reection coe�cient S(k) . It is a bounded analytic
function in the UHP with jS(k)j < 1 . The limiting values

S(x) = lim
"!0+

S(x+ i") ; x 2 R

are almost everywhere unitary, i.e. S(x)S(x) = 1 on R, S(k) is an inner function.

For the de�nition and some properties of inner functions refer to Appendix A.6. The
characteristic function �B(�) of a dissipative operator B is de�ned as (see Pavlov[26])

�B(�) = (id� CC�)�1=2(id � �C�)�1(�id� C)(id� C�C)�1=2

where the contraction C = (B � iid)(B + iid)�1 is the Caley transform of B . For the
spectrum of B holds the important result, to be found in the book \Harmonic Analysis
of Operators on Hilbert Space" by B�ela Sz.-Nagy and Ciprian Foia�s, see also Pavlov[25].

Theorem 5.5
The semi-group Z(t) = PKT (t)jK is a semi-group of contractions. The characteristic
function of its dissipative generator B is the reection coe�cient S(k) . The spectrum
of B is the set of roots of S(k) in the UHP.

Spectral representation

From Lax/Phillips[22] we have the translation representation theorem

Theorem 5.6

Let T be a one-parameter group of unitary operators on a Hilbert space C with incoming
and outgoing subspaces D� and D+ . Then there exists a unitary map T : C ! L2(R)
such that
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(1) The action of T on C corresponds to the translation to the right by the variable
t 2 R in L2 .

(2) D� is mapped onto L2(R�) .

For the case of the wave equation it is shown in a paper by Ivanov and Pavlov [16]
that this representation is given by the spectral representation T (cf. Pavlov[27])

T : U =

�
u0
u1

�
7! 1p

2�
lim
R!1

Z R

0
(iku0 + u1)'(x; k)%(x)dx =: ~U(k)

with inverse mapping

T �1 : ~U(k) 7! U(x) = 1p
2�

lim
R!1

Z R

�R

�
1=(ik)

1

�
'(x; k) ~U(k)dk

The mapping T maps C isometrically onto L2(R) , DN� onto the Hardy space H2
� in

the LHP (cf. Appendix A.6) and DN+ onto S(k)H2
+ , with S(k) the reection coe�cient.

Take for instance
�

u
�ux

�
2 DN+ , then with De�nition 5.3

T
�

u

�ux

�
=

1p
2�

lim
R!1

Z R

N

(iku� ux)
�
e�ik(x�N) + S(k)eik(x�N)

�
dx

=
1p
2�

lim
R!1

h��ue�ik(x�N) + uS(k)eik(x�N)
�R
N
+

+

Z R

N
ux

�
e�ik(x�N) � S(k)eik(x�N)

�
dx+

�
Z R

N
ux

�
e�ik(x�N) + S(k)eik(x�N)

�
dx

�

= � 2p
2�
S(k)

Z 1

N
uxe

ik(x�N)dx =: ~U(k)

With the Paley-Wiener Theorem A.62 followsZ 1

N
uxe

ik(x�N)dx 2 H2
+

and thus ~U(k) 2 S(k)H2
+ , similarly for DN� .

The action of eiAt on C is mapped onto the multiplication operator (eikt�) on L2(R) ,
that is

T eiAtU = eikt ~U(k)
Consequently, the generator B of the contraction semi-group Z(t) on K is mapped
onto the operator PK(k � :)jK , where PK is the projection onto K = H2

+ 	 S(k)H2
+ .

5.2 Description of the problem - a solvable model

Consider the solvable model for the wave equation�
%(x)utt = uxx
ux � huj0 = 0

(5.3)
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now with

%(x) = �2�[0;N) +M�(x�N) + �[N;1);

that is, a constant density function on the intervals [0; N) and (N;1) and a point mass
of mass M at x = N .

5.2.1 The point mass and the di�erential operator L

Let L be a di�erential operator such that the equation %(x)utt = uxx can be written
in the form utt +Lu = 0 , but because of the Dirac delta function in %(x) it is now not

possible to express the di�erential operator L as � 1
%(x)

d2

dx2
. However, it is possible to

work with L as an operator, as described in the following.

The Dirac delta function can be included as a second condition on the functions of
the domain of L . The solutions to (5.3) are continuous together with the �rst derivative
in x (unless maybe at x = N ) and the derivatives in t . Hence we have for " > 0Z N+"

N�"
%(x)uttdx =

Z N+"

N�"
uxxdx

,
Z N

N�"
�2uttdx+

Z N+"

N
uttdx+Mutt(N) = ux(N + ")� ux(N � ")

Let "! 0 , then

Mutt = ux(N+)� ux(N�):
Thus the derivative at x = N has a jump discontinuity, and if in addition uxx is
continuous on [N;N + ") for some " > 0 it follows

Muxx(N+) = ux(N+)� ux(N�): (5.4)

The domain D(L) then certainly includes the setn
y 2 W 2

2 : y0 � hyj0 = 0; y00jN+ exists, and My00jN+ = y0jN+ � y0jN�
o
;

and here L acts as � 1
%̂(x)

d2

dx2
with %̂(x) = �2�[0;N) + �[N;1) .

The Dirac delta function �(x � N) is often expressed by a sequence of functions
(called approximate identity) �n(x�N) with the properties (see e.g. Ho�man[15])

(i) lim
n!1

�n(0) =1 ,

(ii) lim
n!1

sup
jxj>"

(�n(x)) = 0 8" > 0 ,

(iii)
R1
�1 �n(x)dx = 1 8n 2 N .

For such a sequence the density functions

%n(x) = �2�[0;N) +M�n(x�N) + �[N;1)

are bounded, and the operators

Ln = � 1

%n(x)

d2

dx2
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are well-de�ned and self-adjoint on their domains D(Ln) with inner products h:; :i%n .
The quadratic forms are

hLny; yi%n = �
Z 1

0
y00ydx:

Now consider the operator L as the result of the limit of the quadratic forms hLny; yi%n
for n!1 and equip D(L) with the inner product h:; :i% , then again

hLy; yi% = �
Z 1

0
y00ydx:

The spectral properties of L on L2;% are the same as the Laplace operator � d2

dx2
on

L2 , L is self-adjoint.

5.2.2 The reection coe�cient and the negative eigenvalue of the dif-
ferential operator L

The reflection coefficient

The functions eik(x�N) and e�ik(x�N) solve the di�erential equation � d2

dx2
y =

k2%(x)y for x > N for k 2 C . With view to the theory described in Section 5.1
the reection coe�cient S(k) is of importance. It is determined in such a way that the
functions '(x; k) (continuous and di�erentiable) with

'(x; k) = eik(x�N) + S(k)e�ik(x�N) ; x > N

solve the boundary value problem on [0;1)� � d2

dx2
y = k2%(x)y

y0 � hyj0 = 0
(5.5)

Divide the axis [0;1) into two parts and require

'(x; k) =

�
'�(x; k) 0 � x < N

eik(x�N) + S(k)e�ik(x�N) N < x

to satisfy the three properties

(i) '�(x; k) solves (5.5) on [0; N) , i.e.

� � d2

dx2'�(x; k) = k2�2'�(x; k)
'�(0; k)

0 � h'�(0; k) = 0
(5.6)

(ii) '(x; k) is continuous on [0;1) , i.e.

'�(N; k) = 1 + S(k) (5.7)

(iii) '0(x; k) has jump discontinuity at x = N (cf. (5.4)), i.e.

M'00(N+; k) = '0(N+; k)� '0�(N�; k)
, �k2M(1 + S(k)) = ik(1� S(k))� '0�(N�; k): (5.8)
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From (5.6) we get

'�(x; k) = eik�x + 0e�ik�x ; ; 0 2 C ;
with

(ik� � ik� 0)� h( +  0) = 0 , 0 =
k�+ ih

k�� ih
:

We de�ne

# :=
k�+ ih

k�� ih
and get

'�(x; k) = 
�
eik�x + #e�ik�x

�
;  2 C : (5.9)

Equations (5.7) and (5.8) yield the system


�
eik�N + #e�ik�N

�
= 1 + S(k)

^ �ik
�
eik�N � #e�ik�N

�
= S(k)(�ik + k2M) + ik + k2M;

or, in matrix form,�
eik�N + #e�ik�N �1

ik�
�
eik�N � #e�ik�N � ik � k2M

��
(k)

S(k)

�
=

�
1

ik + k2M

�
:

We apply Cramer's rule and get

(k) =
(ik � k2M) + (ik+ k2M)

(ik � k2M)
�
eik�N + #e�ik�N

�
+ ik�

�
eik�N � #e�ik�N

� ;
and

S(k) =
(ik + k2M)

�
eik�N + #e�ik�N

�� ik��eik�N � #e�ik�N �
(ik � k2M)

�
eik�N + #e�ik�N

�
+ ik�

�
eik�N � #e�ik�N � :

Simplifying we get for the reection coe�cient

S(k) =
eik�N (1 + �+ ikM)(k�� ih) + e�ik�N (1� �+ ikM)(k�+ ih)

eik�N (1� �� ikM)(k�� ih) + e�ik�N (1 + �� ikM)(k�+ ih)
: (5.10)

Then we have for k 2 R
S(k) =

1

S(k)

so that jS(k)j = 1 for all k 2 R as expected from Section 5.1, and we have S(0) = �1 .
The zeroes of S(k) are determined as the solutions of the transcendental equation

0 = eik�N (1 + �+ ikM)(k�� ih) + e�ik�N (1� �+ ikM)(k�+ ih)

, e2ik�N =
(�� 1� ikM)(k�+ ih)

(�+ 1 + ikM)(k�� ih) (5.11)

Set k = �+ i� , � 2 R; � � 0 , then (5.11) is

e�2��Ne2i��N =

�
(�� 1 + �M)� i�M

��
(��) + i(��+ h)

��
(�+ 1� �M) + i�M

��
(��) + i(��� h)

� =: f(�; �) (5.12)
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Figure 5.2: The zeroes of S(k) .

Assertion 5.7
The imaginary parts of the roots ks of S(k) = 0 tend to zero for jksj ! 1 .

Proof:
Note �rst that since S(k) is analytic its zeroes accumulate at most at in�nity.

Assume 9 " > 0 : 8 �" > 0 9 z 2 C :
h
jRe(z)j > �" ^ S(z) = 0 ^ Im(z) > "

i
.

Fix � > 0 , then we get for the modulus of f(�; �) in (5.12)

jf(�; �)j2 =
�
(�� 1 + �M)2 + �2M2

��
(��)2 + (��+ h)2

��
(�+ 1� �M)2 + �2M2

��
(��)2 + (��� h)2

� ;
and

lim
j�j!1

jf(�; �)j = 1:

But for the left hand side of (5.12) we have���e�2��Ne2i��N ��� = e�2��N < 1 8 � 2 R;

and since for any root ks it is necessary that e�2��N =
���f�Re(ks); Im(ks)

���� , the as-

sumption is wrong. Hence

8" > 0 : 9�" > 0 : 8z 2 C :

�
jRe(z)j > �" ^ Im(z) > ") S(z) 6= 0

�
:

2

Also, inserting �k into the equation 5.10 yields S(�k) = S(k) , i.e. S(k) is symmetric
to the imaginary axis. Fig. 5.2 illustrates how the zeroes of S(k) lie in the UHP.

The negative eigenvalue

Depending on the value of h in the boundary condition, the di�erential operator L has
or has not one negative eigenvalue ��2; � > 0 . The six conditions on the corresponding
eigenfunction  (x; �) are

(i)  (x; �) 2 L2;%

81



(ii)  (x; �) solves � d2

dx2
 (x; �) = ��2 (x; �) for x > N

(iii)  (x; �) solves � d2

dx2
 (x; �) = ��2�2 (x; �) for 0 � x < N

(iv)  (x; �) ful�ls the boundary condition  0(0; �)� h (0; �) = 0

(v)  (x; �) is continuous.

(vi)  0(x; �) has jump discontinuity at x = N , i.e.

M 00(N+; �) =  0(N+; �)�  0(N�; �)

Conditions (i) and (ii) yield

 (x; �) = c1e
��(x�N) ; x > N: (5.13)

Conditions (iii) and (iv) give

 (x; �) = c2e
��x + c3e

���x ; 0 � x < N (5.14)

with

c2(��� h)� c3(��+ h) = 0: (5.15)

Finally, from conditions (v) and (vi) follows

c1 = c2e
��N + c3e

���N

�2Mc1 = ��c1 � ��
�
c2e

��N � c3e
���N

�
:

(5.16)

We consider three cases and recall that � > 0 .

(1) ��� h = 0 , only possible for h > 0 :
Then c3 = 0 from (5.15) and (5.16) is

�
1 �e��N

�M + 1 �e��N

��
c1
c2

�
=

�
0
0

�

with non-trivial solutions if and only if

0 = �e��N + e��N (�M + 1)

, 0 = �+ �M + 1:

The system is not solvable since �;M; � > 0 .

(2) ��+ h = 0 , only possible for h < 0 :
From (5.15) we get that c2 = 0 , and (5.16) is

�
1 �e���N

�M + 1 ��e���N
��

c1
c3

�
=

�
0
0

�

with non-trivial solutions if and only if

0 = e���N (��+ �M + 1)

, � =
�� 1

M
:
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Together with the assumption �� + h = 0 follows that ��2 = � (��1)2

M2 is an
eigenvalue of L if and only if � > 1 and

�� 1

M
= �h

�
, h = �

1� �

M
< 0:

Eigenfunction then is

 (x; �) =

�
e��N e���x ; 0 � x < N

e���(x�N) ; x � N

(3) (��� h)(��+ h) 6= 0 :
Then we get in (5.15)

c3 =
��� h
��+ h

c2 =: #�c2

and from (5.16)

c1 = c2
�
e��N + #�e

���N
�

(�M + 1)c1 = ��c2
�
e��N � #�e���N

�
or �

1 ��e��N + #�e
���N

�
(�M + 1) �

�
e��N � #�e

���N
� �� c1

c2

�
=

�
0
0

�

with existing non-trivial solutions c1 and c2 if and only if

0 = �
�
e��N � #�e

���N
�
+ (�M + 1)

�
e��N + #�e

���N
�

, e2��N =
(�� 1� �M)(��� h)

(�+ 1 + �M)(��+ h)
=: f(�) (5.17)

Here we can consider the following two cases.

(a) For h > 0 there exist no solution to (5.17), since then for � > 0 and � > 0
either

(i) f(�) < 0 < e2��N ,

(ii) or for (�� 1� �M) < 0 ^ (��� h) < 0 it is

f(�) =
(��+ 1 + �M)(���+ h)

(�+ 1 + �M)(��+ h)
< 1 < e2��N ;

(iii) or for (�� 1� �M) > 0 ^ (��� h) > 0 it is also

f(�) =
(�� 1� �M)(��� h)

(�+ 1 + �M)(��+ h)
< 1 < e2��N :

(b) Exactly one solution exists, however, for h < 0 . The function f(�) has

(� ) simple poles at � = �h=� > 0 and � = (�1� �)=M < 0

( � ) simple zeroes at � = h=� < 0 and � = (�� 1)=M

(  ) at in�nity the limit limj�j!1 f(�) = �1
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Figure 5.3: Sketches of the graphs of f(�) and g(�) = e2��N .

( � ) at the origin the value f(0) = (1� �)=(1+ �) < 1

In Figure 5.3 are shown sketches of the graphs of the function f(�) and
g(�) = e2��N for � > 0 and

(i) 0 < � � 1 ,

(ii) 1 < � and �h� > (�� 1)=M ,

(iii) 1 < � and �h� < (�� 1)=M .

The case �h� = (�� 1)=M has been dealt with in part (2) above.

From above and from the sketches of the graphs we see that there exists exactly one
negative eigenvalue ��20 of L if and only if h < 0 . The value �0 is near �h2=� .

5.2.3 The stable system

Let h = h1 > 0 , there are no negative eigenvalues of the di�erential operator L1 , the
evolution eiA1t generated by the operator A1 on C is unitary w.r.t. the energy norm
k:k1 , i.e. stable (cf. Chapter 4). Apply the Lax/Phillips scattering scheme (cf. Section
5.1) to obtain the dissipative generator B1 of the evolution

Z1(t) = PKe
iA1tjK

on the space K = C 	 (DN+ � DN� ) . The reection coe�cient is, modi�ed from (5.10),

S1(k) =
eik�N (1 + �+ ikM) + #1e

�ik�N (1� �+ ikM)

eik�N (1� �� ikM) + #1e�ik�N (1 + �� ikM)
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with

#1 =
k�+ ih1
k�� ih1

The set of zeroes f�s : s 2 Ng of S1(k) in the UHP is the set of eigenvalues of B1 ,
illustrated in Fig. 5.2. The spectral representation T1 w.r.t. the k:k1 -norm (cf. Section
5.1) maps the space K to K1 = H2

+ 	 S1H
2
+ .

5.2.4 The unstable system

For h = h2 < 0 there exist two complex eigenvalues i� and �i� of the generator
A2 of the evolution corresponding to the Cauchy problem (5.2). De�ne the eigenvectors

	+ =
�
� 1
�
 (x;�)

 (x;�)

�
and 	� =

� 1
�
 (x;�)

 (x;�)

�
respectively. We decompose C into the two

invariant spaces �� = span(	+;	�) and �+ = C 	�� with the corresponding projec-
tions P� and P+ and change the norm to [:; :]J with help of the canonical symmetry
(cf. Section 4.1.4).

The incoming and outgoing subspaces are still the same as for h = h1 , i.e. DN� and
DN+ - the boundary condition does not e�ect these spaces. Our interest lies again in the
dynamics on K = C 	 (DN+ � DN� ) . Though the complements are now taken w.r.t. the
energy form [:; :]2 , the coinvariant spaces for both operators A1 and A2 are still the
same, since the forms [:; :]1 and [:; :]2 coincide on all functions with support away from
the origin (cf. Section 4.2.2).

Modified Scattering Theory

In Lax/Phillips[22] is described a modi�ed scattering theory to deal with the case that
the generator of the evolution does have complex eigenvalues. For each of the incoming
and outgoing subspaces D� and D+ are de�ned two new subspaces

D0+ = P+D+ ; D00+ = D+ \�+

D0� = P+D� ; D00� = D� \�+

and some scattering matrices are constructed in connection with these.

The eigenvectors 	+;	� do not lie in D+ = DN+ or in D� = DN� , but the 'tails'
with support in (N;1) do. Here it is  (x; �) = e��(x�N) so that

 (x; �) =
d

dx

�
� 1

�
 (x; �)

�
:

It follows that the 'tails'

�(N;1)	+ 2 D� and �(N;1)	� 2 D+; (5.18)

are the projections of 	+ and 	� onto D� and D+ respectively. The other parts
�[0;N)	+ and �[0;N)	� lie in K and are eigenvectors of the evolution ) = PKe

iA2tjK
with the eigenvalues i� and �i� . W.r.t. to the decomposition of C the evolution is
now decomposed into Z2(t) = Z(t)j�+ and eiB3t where B3 is the square matrix

B3 = i

�
0

��2
�1
0

�
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acting on

� : span

�
�[0;N)

�
 (x; �)

0

�
; �[0;N)

�
0

 (x; �)

��
� K:

In order to obtain the generator of Z2(t) , apply the Lax/Phillips scattering scheme
to the unitary evolution on �+ , generated by the self-adjoint operator Â2 := A2j�+ ,
with incoming and outgoing subspaces D0� and D0+ , which are orthogonal to �� . The
result is a dissipative generator B2 of the evolution Z2(t) with the reection coe�cient

S2(k) =
eik�N (1 + �+ ikM) + #2e

�ik�N (1� �+ ikM)

eik�N (1� �� ikM) + #2e�ik�N (1 + �� ikM)

as characteristic function, where

#2 =
k�+ ih2
k�� ih2

:

We also have the spectral representation T2 , mapping P+K onto K2 = H2
+ 	 S2H

2
+ .

For the zeroes of S2(k) the same picture Fig 5.2 applies.

5.2.5 The expectation semi-group

Consider now the situation when the value of h jumps between h1 > 0 and h2 <

0 via a symmetric 2 -state Markov chain with generator Q = {
�
�1
1

1
�1

�
. Let P̂+

and P̂� be now the imbeddings of P+K and � into K respectively, and let id+
and id� be the identities on P+K and � respectively. As it was done in Section
4.3, we express the generator A({) of the expectation semi-group E(t) on the space
(K; [:; :]1)� (P+K; [:; :]2)� (�; [:; :]J) as

A({) =
0
@ B1 + i{ idK �i{P̂+ �i{P̂�

�i{P+ B2 + i{ id+ 0
�i{P� 0 B3 + i{ id�

1
A

Since the characteristic functions of B1 and B2 are known it is desirable to obtain a
spectral representation of A({) and its domain in order to study its spectral properties.
However, for this the space � needs to be represented in the Hardy spaces.

The question how to do that has not been answered yet. The map T1 maps the
vectors �[0;N)	+ and �[0;N)	� onto some functions f+(k) and f�(k) in H2

+	S1H2
+ ,

maybe one could 'add' these functions to K2 . But what should one do then in the more
general case of an n -state Markov chain? And how should one encode the eigenvalues
�i� into  �(k) ?

In the next Section another approach is described.

5.3 The energy approach to stability

It was seen in the previous Section that the evolution on the interval [0; N ] is con-
tracting in the stable mode h = h1 > 0 - the energy dissipates to the outside.

The unstable mode of evolution for h = h2 < 0 is characterised by the fact that
there exists the eigenvalue e�t of E(t) , the energy in the corresponding one-dimensional
subspace Y� = span(�[0;N ]	�) increases. However, the evolution on the complement
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Y+ := �+ � span(�[0;N ]	+) is contracting, the energy also dissipates.

When the Markov chain is activated and the dynamics jumps between the stable and
the unstable mode, the system is stable in average precisely if the expected amount of
energy dissipating to the outside exceeds the expected amount the energy increases by
inside the interval.

Above observation suggests an approach to the question of stability in average in terms
of the energy, di�erent from the one based on the random evolution and the expectation
semi-group.

Assume the evolution starts in the unstable mode with initial condition

U = U+
0 (0) + �0�[0;N ]	�

where U+
0 2 Y+ . The energy contained in Y� is

j�0j k�[0;N ]	�k
since Y� ? Y+ . After some time t1 the system jumps into the stable mode, the evolution
semi-group is now generated by B1 and starts with initial condition

U1 = U+
0 (t1) + e�t1�0�[0;N ]	�:

The eigenvectors �s , s 2 N , for the eigenvalues ks of B1 form a basis for K , w.r.t.
which there exist unique coe�cients (�1(s))s2N , such that

U1 =
X
s2N

�1(s)�s:

The energy contained in Y� is distributed among the eigenvectors of B1 . When the
system jumps back into the unstable mode after some time t2 energy will have dissipated,
and the vector

U2 =
X
s2N

eikst2�1(s)�s

is now expressed in the form

U2 = U+
2 + �1�[0;N ]	�:

Above process is repeated.

One can expect that for certain pairs of times t1 and t2 one gets j�1j � j�0j . In
order to establish above inequality one will need to determine how exactly the energies
of the invariant spaces of the respective evolution semi-groups are distributed between
each other. It seems plausible that a necessary condition for stability in average is that
the expected value satis�es

E[j�1j] � j�0j:
To obtain above inequality the relations between the complex eigenvalue �i� of A2 ,
the imaginary parts of the eigenvalues ks of B1 , and the intensity { of the Markov
process will need to ful�l certain conditions.

We saw in the last section, that the imaginary parts of the ks tend to zero for large
real parts. This means that mainly the energy dissipates which is contained in the
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Figure 5.4: Illustration to Hypothesis 5.8.

subspace spanned by the eigenvectors for eigenvalues with small real part. Additionally,
based on the observation made on the model in Chapter 4, we can make the conjecture
that the energy on Y� is mainly distributed onto exactly these eigenvectors, and vice
versa. Say, we restrict our attention on the subspace

Gn := span
jRe(ks)j<g

�
�s
	
= span

�
�1; : : : ;�n

	
for some g > 0 . Then the rate of dissipation of the energy is given by the imaginary
parts of k1; : : : ; kn , and it can be estimated for instance by minfIm(ks) : s = 1; : : : ; ng .
It is plausible that this rate should be large compared with � , in order to obtain stability.
This leads to the

Hypothesis 5.8
A necessary condition that stability in average is possible for the model investigated in
this chapter is that the ratio of � to either (i) min

�
Im(ks) : jRe(ks)j < g

	
or (ii)P

jRe(ks)j<g

Im(ks) is small for some g > 0 .

This condition can be interpreted geometrically, illustrated in Fig. 5.4, as follows:
Interpolate the eigenvalues of B1 and denote the area bounded by the resulting curve,
the real axis and the lines Re(z) = �g by �g . Then the necessary condition mentioned
in Hypothesis 5.8 reads �g � � .
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Chapter 6

Summary and further

developments

In Chapter 1 we formulated the Conjecture 2.34 in the way that a su�cient and
necessary condition for possible stability in average is that the operator Â = �21A1 +
�22A2 generates a uniformly bounded semi-group, where A1 and A2 generate the two
branches of the evolution of the system, and (�1; �2) is the equilibrium distribution of
the Markov process.

The conclusion from Chapter 3

In the solvable model studied in Chapter 3 the operator �21A1 + �22A2 is

Â =
1

2

�
0

i!21

�i
0

�
+
1

2

�
0

�i!22
�i
0

�
=

�
0

i
2(!

2
1 � !22)

�i
0

�

with eigenvalues �1 =
q

1
2(!

2
1 � !22) and �2 = �

q
1
2(!

2
1 � !22) , so that the conditions

of Proposition A.30 for uniform boundedness is ful�lled if and only if !21 > !22 ( Â is of
Jordan form for !21 = !22 ). And by direct calculations we saw that stability in average is
possible if and only if !21 > !22 . Thus Conjecture 1.1 is supported by this simple example,
and there is reason to believe that Conjecture 2.34 holds for all bounded operators. This
will need further investigation.

The conclusion from Chapter 4

Although Hypothesis 4.5 made in Chapter 4 might not be correct, the study of the
solvable model suggests that stability in average is possible.

Here it is not possible to check the conditions of Conjecture 2.34. The sum �21A1 +
�22A2 is only de�ned on the common part D0 = D(A1) \ D(A2) of the domains of the
operators and here it does not make any sense, since on D0 the operators coincide. Two
modi�cations are by hand:

(1) One could make use of the fact, that A1 and A2 are di�erent self-adjoint extensions
of the same operator A0 de�ned on D0 . One would need to investigate how the
semi-group eiA0t , if A0 is a generator, relates to eiA1t and eiA2t , and how the
choice of the norm plays a role. Certainly the question of equivalence of the norms
is important.
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(2) The resolvents R�1 and R�2 of A1 and A2 are bounded operators, so it is possible
to form the sum �21R

�
1 + �22R

�
2 , also are their spectra closely connected with the

spectra of A1 and A2 respectively. Maybe the condition in Conjecture 1.1 can be
modi�ed to an expression in terms of the resolvents.

Notable is the observation made in Section 4.3.2 (see also Section 4.5) that the standard
results of Perturbation Theory might not be applicable to show stability in average.

The conclusion from Chapter 5

The dissipative operators B1 and B2 � B3 again can not be added. If we assume
they could we can apply the Trotter formula (Theorem A.31) to the exponential term in
Conjecture 1.1 and get ei��21B1+�

2
2(B2�B3)

�
t
 =

 lim
n!1

�
ei�

2
1B1t=nei�

2
2(B2�B3)t=n

�n 
� lim

n!1

 ei�21B1t=n
n  ei�22(B2�B3)t=n

n:
The term to the left is certainly less or equal to 1 ifei�21B1t

ei�22(B2�B3)t
 � 1 8t � 0: (6.1)

The operators ei�
2
1B1t form a semi-group of contraction throughout the space K ,

whereas ei�
2
2(B2�B3)t are contracting only on K	Y� (cf. Section 5.3). Thus on K	Y�

the inequality (6.1) is certainly ful�lled, and we need only check it on Y� , that isei�21B1t�[0;N ]	�

1
� e��

2
2�t
�[0;N ]	�


1

8t � 0:

This inequality has a similar geometrical meaning to the condition stated in Hypothe-
sis 5.8. One should compute the relation of the eigenvector �[0;N ]	� to the eigenvectors
�s of B1 and require that the energy of �[0;N ]	� dissipates stronger under the action

of ei�
2
1B1t than it is increased by under the action of ei�

2
2B3t .

But since �21B1 + �22(B2 � B3) is not de�ned, one will need to investigate how the
resolvents, or in this particular case the reection coe�cients, can be put in relation to
the evolution semi-groups.
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Appendix A

Theory of Linear Operators and

Inner Product Spaces

A.1 Linear operators on Hilbert space

Let H be a Hilbert space with the (positive) inner product h:; :i and the generated
norm k:k . For A and B linear operators with domains D(A) and D(B) we mean
with A � B that D(A) � D(B) and BjD(A) = A .

The de�nitions listed in this section are standard and can be found in any book on
linear operators on Hilbert spaces, for example Akhiezer/Glazman [1], Birman/Solomjak
[2], Dowson [8], Hislop/Sigal [14], or Riesz/Sz.-Nagy [31].

De�nition A.1

(1) An operator A on H is said to be bounded, if there exists a constant 0 < M <1
such that kAxk � Mkxk for all x 2 D(A) . In this case, the in�mum of all such
constants is called the operator norm kAkop of A .

(2) The operator A is said to be closed if following property holds:
Let (xn)n2N be a sequence in D(A) for which there exist x; y 2 H such
that lim

n!1
xn = x and lim

n!1
Axn = y , then it follows that x 2 D(A) and Ax = y .

(3) If A maps any bounded set into a compact set, then A is called compact or
completely continuous.

Clearly we have for an operator A

A compact ) A bounded ) A closed

De�nition A.2
Let A be an operator with dense domain D(A) .

(1) Set D� =
�
y 2 H

�� 8x 2 D(A) : 9z 2 H : hAx; yi = hx; zi	 and de�ne the
adjoint A� by A�y := z with domain D(A�) = D� .

(2) If for all x; y 2 D(A) we have hAx; yi = hx;Ayi , then A is said to be symmetric,
and it is A � A� .
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(3) If A = A� , call A self-adjoint.

The proof of following lemma and theorem can be found for instance in
Birman/Solomjak[2].

Lemma A.3

A self-adjoint operator is closed.

Theorem A.4
A symmetric operator A is self-adjoint if and only if the ranges of A� i id and A+ i id
are the whole space H .

De�nition A.5
(1) � 2 C is called a regular point of A if the resolvent R� = (A� � id)�1 exists

as a bounded operator de�ned on H . The set of all regular points, the resolvent
set, is denoted by %(A) , its complement �(A) = C n%(A) is called the spectrum.

(2) The spectrum is divided into three disjoint parts (cf. Dowson[8]),

(i) the point spectrum or discrete spectrum
�d(A) =

�
� 2 C ��A� � id is not one-to-one

	
,

(ii) the continuous spectrum
�c(A) =

�
� 2 C ��A�� id is one-to-one, but clos

�
(A�� id)D(A)� = H ^

(A� � id)D(A) 6= H
	
,

(iii) and the residual spectrum
�r(A) =

�
� 2 C ��A� � id is one-to-one, but clos

�
(A� � id)D(A)� 6= H

	
(3) The approximate spectrum is de�ned as

�a(A) =
�
� 2 C ��9(xn) 2 D(A) : k(A� � id)xnk ! 0

	
With the triangle inequality follows

Lemma A.6
If there exists a convergent sequence (�n)n2N 2 C with limit � and a sequence
(xn)n2N� D(A) such that

lim
n!1

k(A� �n id)xnk
kxnk = 0;

then � is in the approximative spectrum.

In Dowson[8] can be found

Theorem A.7

(1) �d(A) � �a(A)

(2) �a(A) is a closed subset of the spectrum �(A) .
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See Kato[17] for more details about

Proposition A.8
The resolvent R� is an analytic, operator-valued function on %(A) with Taylor expansion
at � 2 %(A)

R� =
1X
n=0

(�� �)nRn+1� 8� : j�� �j < kR�k�1

Corollary A.9
For � 2 %(A) it is

kR�k � 1

dist(�; �(A))
:

The spectrum of a compact operator is characterised by the Riesz-Schauder theorem
(see Hislop/Sigal[14])

Theorem A.10 (Riesz-Schauder)

The spectrum of a compact operator is discrete, the eigenvalues have �nite multiplicity
and accumulate at most at zero.

Corollary A.11

If the resolvent of an operator A is compact for some � 2 %(A) , then the spectrum of
A is discrete.

To proof the corollary observe that for � 2 %(A) we have

� 2 %(A), 1

�� � 2 %(R�):

The spectrum of a symmetric operator A is real, and simple calculations yield

Lemma A.12
For a symmetric operator A the norm of the resolvent R� with � 2 C nR is estimated
by

kR�k � 1

jIm(�)j : (A.1)

Important is

Theorem A.13 (Spectral Theorem)

If A is a self-adjoint operator then there exists a unique spectral family E� with

A =

Z 1

�1
�dE� (A.2)

For the proof of the theorem and the de�nition of the spectral family see for example
Riesz/Sz.-Nagy[31], here the following remark is important.
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Remark A.14
If A is self-adjoint has a discrete spectrum with eigenvalues �s and normalised eigen-
vectors vs then the Spectral Theorem states that

8x 2 D(A) : Ax =
X
s

�sEsx;

where Es = h:; vsivs are the projections onto the subspaces spanned by the eigenvectors,
and it says in particular that the eigenvectors form a complete set, in fact also orthogonal,
for the Hilbert space H .

Corollary A.15

Let A be self-adjoint.

(1) If � 2 %(A) , then we have

kR�k = 1

dist(�; �(A))

(2) If � 2 C and there exists x 2 D(A) such that

k(A� � id)xk
kxk < ";

then dist(�; �(A))< "

For non-symmetric operators the distance to the numerical range can give an estimate
of the norm of the resolvent (see Hislop[14]).

De�nition A.16

The numerical range �(A) of an operator A is the set

�(A) :=
�hAx; xi �� x 2 D(A); kxk = 1

	
=

�hAx; xi
kxk2

���� x 2 D(A)
�

Certainly it is �d(A) � �(A) .

Proposition A.17

Let A be a closed operator and the range of A � � id be dense in H for all � 2
C n clos[�(A)] . Then
(1) �(A) � �(A)

(2) kR�k �
h
dist

�
�; clos[�(A)]

�i�1

Corollary A.18
If there exist � 2 C and u 2 H such that k(A � � id)uk �
"kuk then dist

�
�; clos[�(A)]

� � " .
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A.2 One-parameter semi-groups of operators

The de�nitions and theorems listed in this section can be found in Pazy[29], and also
Davies[6]. Let (H; h:; :i) be a Hilbert space.

De�nition A.19

(1) A family T = fT (t) : t � 0g of bounded operators on a Hilbert space H (or
Banach space) is called a one-parameter semi-group of operators if

(SG1) T (0) = idH

(SG2) T (s+ t) = T (s)T (t) = T (t)T (s) 8s; t � 0

(2) A semi-group T is called strongly continuous or a C0 -semi-group if

(SG3) lim
t!0

kT (t)x� xk = 0 8x 2 H

(3) If the operators T (t) for t � 0 are invertible, one can de�ne T (�t) := [T (t)]�1

and one obtains a one-parameter group of operators.

Theorem A.20

Let T be a C0 -semi-group, then

(1) there exist constants M � 1 and � � 0 , such that kT (t)k �Me�t for all t � 0 ,

(2) for all x 2 H the function t 7! T (t)x is a continuous function from R+
0 to H .

De�nition A.21
The in�nitesimal generator A of a C0 -semi-group T is the operator

A : x 7! Ax = lim
t!0

T (t)x� x
it

with domain

D(A) =
�
x 2 H : lim

t!0

T (t)x� x
it

exists

�
:

We write T (t) = eiAt .

Theorem A.22

A linear operator A is a generator of a C0 -semi-group T with kT (t)k � Me�t if and
only if

(i) A is closed and D(A) is dense in H .

(ii) If Im(�) < �� , then � 2 %(A) and for all n 2 N we have for the resolvent

kRn�k �
M

jIm(�) + �jn
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Theorem A.23
Let T be a C0 -semi-group and A its generator, then

(1) For x 2 H we have

lim
h!0

1

h

Z t+h

t
T (s)xds = T (t)x

(2) For x 2 D(A) it is T (t)x 2 D(A) and

1

i

d

dt
T (t)x = AT (t)x = T (t)Ax

(3) For the point spectra of T and A holds

ei�d(A)t � �d(T (t)) � ei�d(A)t [ f0g

Remark A.24
From above property (2) in Theorem A.23 follows that the vector T (t)x solves the
Cauchy problem�

1
i
d
dty(t) = A y(t)
y(0) = x

t � 0

Important for the question of stability are the semi-groups of contractions and unitary
operators.

De�nition A.25
(1) A dissipative operator A is one for which ImhAx; xi � 0 for all x 2 D(A) it is

called accretive, if ImhAx; xi < 0 for all x 2 D(A) .
(2) A C0 -semi-group T is called a semi-group of contractions if kT (t)k � 1 for all

t � 0 .

(3) A C0 -semi-group T with kT (t)k = 1 for all t � 0 is called a semi-group of
unitary operators.

(4) A C0 -semi-group T is called uniformly bounded if there exists a constant
M � 1 such that kT (t)k �M for all t � 0 .

Theorem A.26 (Lumer-Phillips)

Let A be a linear operator with dense domain D(A) on H , then A is the generator
of a C0 -semi-group of contractions if and only if

(i) A is dissipative, and

(ii) 9 � < 0 : range(i� id � A) = H

And for unitary semi-groups we have (see Davies[6])
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Theorem A.27
The generators of semi-groups of unitary operators are precisely the self-adjoint opera-
tors .

Concerning uniformly bounded (or equi-bounded) semi-groups we �nd

Theorem A.28

A closed and densely de�ned operator A generates a uniformly bounded C0 -semi-group
T , satisfying kT (t)k �M (M � 1; t � 0 ) , if and only if R+ � %(A) and

kRni�k �
M

�n
for � > 0; n 2 N

Proposition A.29

Let A and B be two generators of C0 -semi-groups of operators T and S resp.
on a Hilbert (or Banach) space H , where B is dissipative. If A is similar to B ,
that is if there exists a bounded and invertible operator X : H ! H with Au =
X B X�1 u 8u 2 D(A) , then T is a uniformly bounded semi-group.

Proof:
Let v 2 D(A) , then with Remark A.24

u(t) = T (t)v , 1

i

d

dt
u(t) = Au(t) ^ u(0) = v

Now we de�ne w(t) = XS(t)X�1v 2 D(A) and get

X�1w(t) = S(t)(X�1v) , 1

i

d

dt
(X�1w(t)) = B(X�1w(t)) ^X�1w(0) = X�1v

, 1

i

d

dt
w(t) = XBX�1w(t) ^ w(0) = v

, 1

i

d

dt
w(t) = Aw(t)^ w(0) = v

From the uniqueness of the solution of the Cauchy problem follows w(t) = v(t) . Since
v 2 D(A) was arbitrary, we get

eiAt = XeiBtX�1:

Now it follows for all t � 0

keiAtk � kXk keiBtk kX�1k � kXk kX�1k
thus the operators T (t) = eiAt are uniformly bounded.

2

Proposition A.30
Let A be the generator of a C0 -semi-group T on a �nite dimensional Hilbert space H .
Then T is uniformly bounded if and only if the following two conditions are satis�ed:

(i) All eigenvalues of A , for which the algebraic and geometric multiplicity are equal,
have non-negative imaginary part.
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(ii) All eigenvalues of A , for which the algebraic multiplicity is larger than the geo-
metric multiplicity, have positive imaginary part.

See Davies[6] for

Theorem A.31 (Trotter formula)

Let A;B be generators of C0 -semi-groups on a Hilbert space, such that Z = A + B
exists and generates a semi-group. Then

eiZt = lim
n!1

�
eiA

t
n eiB

t
n

�n

A.3 Perturbation Theory

Proposition A.32

Let A be a self-adjoint and V a bounded operator on a Hilbert space. For the spectra
of A and B = A+ V holds

dist
�
�(B); �(A)

�� kV k:

Proof:
For � 2 %(A) \ %(B) follows from B = A + V

(B � � id)�1 � (A� � id)�1 = (A� � id)�1V (A� � id)�1;

and then

(B � � id)�1 = [id + (A� � id)�1V ]�1(A� � id)�1: (A.3)

From (A.3) we see that the resolvent of B exists whenever

k(A� � id)�1k kV k < 1 , 1
k(A�� id)�1k > kV k

With Corollary A.9 follows

dist(�; �(A))> kV k ) � 2 %(A+ V )

2

In Kato[17] one can �nd the de�nition and theorem below.

De�nition A.33
Let A and V be two operators on a Hilbert space with D(A) � D(V ) .
V is called relatively bounded w.r.t. A , if

9a; b > 0 : 8x 2 D(A) : kV xk � akxk+ bkAxk (A.4)

Theorem A.34

Let A be a closed operator on H and V relatively bounded w.r.t. A with constants
a and b as in (A.4). If there is � 2 %(A) such that

ak(A� � id)�1k+ bkA(A� � id)�1k < 1 (A.5)
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then B = A+ V is closed and � 2 %(B) with(B � � id)�1
 � (A� � id)�1

�1� ak(A� � id)�1k � bkA(A� � id)�1k��1
Additionally, if A has compact resolvent so has B .

Corollary A.35

If a self-adjoint operator A has compact resolvent, i.e. discrete spectrum, then any
perturbation B = A+ V by a bounded operator V has discrete spectrum as well.

Proof:
If V is bounded then it is relatively bounded w.r.t. A with constants a = kV k and
b = 0 . Choose � with Im(�) > a > 0 , then we get from (A.1)

k(A� � id)�1k < 1

Im(�)
<

1

a

so that (A.5) is ful�lled and above theorem applies, since A self-adjoint implies that it
is closed. Thus B has compact resolvent, and its spectrum is discrete (cf. Corollary
A.11).

2

The proof of the next theorem is given in Pazy[29].

Theorem A.36
Let A be the in�nitesimal generator of a C0 -semi-group T on a Hilbert space H with

kT (t)k � Me�t . If V is a bounded linear operator on H then A + V generates a
C0 -semi-group S on H with

kS(t)k �Me(�+MkV k)t:

For further results of Perturbation Theory see for example the book by T. Kato ([17]).

A.4 A di�erential operator on L2[0; N ]

Let L2(X) be the space of all square-summable complex-valued functions on an
interval X with the inner product h:; :i

hy; zi =
Z
X
yzdx

Denote by L2;%(X) the space with the weighted inner product

hy; zi% =
Z
X
%yzdx

with the real, continuous and positive weight function %(x) .

From Ziemer[36] we have the following de�nition and theorem.
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De�nition A.37
The Sobolev spaces W l

2(R) for l 2 N0 are de�ned as

W l
2(R) =

�
u 2 L2(R)

��80 � p � l : Dpu =
dp

dxp
u exists ^ Dpu 2 L2(R)

	
:

The Sobolev space W l
2(R) is a Banach space with the norm

kukW l
2
=

0
@Z

R

lX
p=0

jDpuj2dx
1
A

1
2

:

Theorem A.38

(1) C10 (R) is dense in W l
2(R) w.r.t. the W l

2 -norm, that is closW l
2
(C10 (R)) = W l

2

(2) And also clos
W l�1

2
(W l

2) = W l�1
2

For example in Naimark[24] one can �nd the

De�nition A.39

(1) A linear di�erential expression of order n = 2 is an expression of the form

l(y) = p0(x)y
00(x) + p1y

0(x) + p2(x)y(x)

with functions p2(x); p1(x) and p0(x) .

(2) A set of boundary conditions is a collection of linear forms fUjg in the variables
y(0); y0(0); y(N); y0(N) , e.g.

U1(y) = �1y(0) + �2y
0(0) + �3y(N) + �4y

0(N)
U2(y) = �1y(0) + �2y

0(0) + �3y(N) + �4y
0(N)

together with the conditions Uj(y) = 0 . At least one of the �j 's and at least one
of the �j 's should be non-zero.

(3) A di�erential operator L is a pair (l;D(L)) , where l is a di�erential expression
and D(L) , the domain of L , is the set of all functions l can be applied to and
which satisfy certain boundary conditions Uj(y) = 0 .

In Tikhonov[35] can be found following the de�nition and theorem.

De�nition A.40

The Green's function for a Sturm-Liouville operator L on L2[0; N ] with di�er-
ential expression

l(y) =
d

dx

�
p(x)

d

dx
y(x)

�
+ q(x)y(x)

is a function G(x; �) with the properties

(i) For 0 < x < � and � < x < N it is l
�
G(:; �)

�
= 0 .
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(ii) G(:; �) satis�es the boundary conditions in x .

(iii) G(:; �) is continuous on [0; N ] .

(iv) The �rst derivative exists with one jump discontinuity at x = � , and

d

dx
G(x; �)

????
x=�+0

� d

dx
G(x; �)

????
x=��0

=
1

p(x)

Theorem A.41
Assume the homogeneous boundary-value problem L(y) = 0; y 2 D(L) , possesses only
the trivial solution, then the solution of the inhomogeneous boundary-value problem
L(y) = f is expressed by

y(x) =

Z N

0
G(x; �)f(�)d� = hG(x; :); fi

De�nition A.42
The Wronskian of two functions y; z 2 C1(R) is the determinant

�(x) :=

���� y(x) z(x)
y0(x) z0(x)

���� ;
also denoted by W (y; z)jx .

With regard to the problems described in Chapters 4 and 5 we consider here only the
special di�erential operator L with di�erential expression

l(y) = � 1

%(x)

d2

dx2
(A.6)

on the domain D(L) de�ned by the so called Sturm-Liouville boundary conditions�
�1y(0) + �2y

0(0) = 0
�1y(N) + �y0(N) = 0

(A.7)

Immediately from

d

dx
W (y; z) =

d

dx
(yz0 � y0z) = yz00 � y00z

= y[��%z]� [��%y]z = 0

follows

Lemma A.43

The Wronskian of two solutions y and z of

l(y) = � 1

%(x)

d2

dx2
y � �y = 0 ; � 2 C

is constant.
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Remark A.44
The di�erential expression l = � 1

%(x)
d2

dx2
on the space L2;%(X) has analogous properties

to the much simpler expression l0 = � d2

dx2 on L2(X) with corresponding di�erential op-
erator L0 , which is of the form of a Sturm-Liouville operator. Many equations connected
with l can easily be modi�ed to equations with l0 like

l(y) = f , l0(y) = %f

The formulae for l0 on L2(X) hold for l on L2;%(X) . This is of particular use if 1=%(x)
is not di�erentiable or has singularities.

The di�erential operator L is symmetric on the space L2;%[0; N ] , since for y; z 2
D(L) we have (integrating by parts)Z N

0
%l(y)zdx =

��y0z�N
0
+

Z N

0
y0z0dx

=
��y0z + yz0

�N
0
+

Z N

0
%yl(z)dx (A.8)

So, in particular, its eigenfunctions are orthogonal to each other, in fact they form a
complete set, since also

Proposition A.45

L is self-adjoint on L2;%[0; N ]

Proof:
We need to show that D(L�) � D(L) , as from (A.8) follows that the di�erential expres-
sion for L� is also l (cf. Naimark[24]). So let y 2 D(L) , we want to �nd all z 2 C2

such that

hL(y); zi% = hy; l(z)i%:
From (A.8) we get the condition��y0z + yz0

�N
0
= 0

W.l.o.g. assume that in (A.7) �2 6= 0 and �2 6= 0 ., then

0 =
��y0z + yz0

�N
0

, 0 =

�
�1
�2
z + z0

�
y(N)�

�
�1
�2
z + z0

�
y(0)

This must hold for all y 2 D(L) , it follows

hL(y); zi% = hy; l(z)i% ,
�
�1
�2
z + z0

�
= 0 ^

�
�1
�2
z + z0

�
, z 2 D(L)

2

The resolvent (L� �)�1

We follow the procedure described for instance in Tikhonov[35] to construct the
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Green's function of the operator L0 � �% , � 2 C , on [0; N ] , this will yield the re-
solvent (L� �)�1 .

1. Let '(x) and #(x) be solutions to

� d2

dx2
y � �%y = 0 (A.9)

which satisfy the boundary condition at x = 0 and at x = N respectively.

2. The Green's function is given as

G(x; �) =
1

W ('; #)

�
'(x)#(�) 0 � x � �
'(�)#(x) � � x � N

(A.10)

3. The solution y of the boundary value problem

8<
:

� d2

dx2
y � �%y = f

�1y(0) + �2y
0(0) = 0

�1y(N) + �2y
0(N) = 0

is then given by the integral expression

y(x) =

Z N

0
G(x; �)f(�)d�:

4. To obtain the resolvent (L� �)�1 of L , we observe that

�1

%

d2

dx2
y � �y = f

, � d2

dx2
y � �%y = %f

Thus (L� �)�1 is the integral operator

(L� �)�1 = K� : f(:) 7!
Z N

0
G(:; �)%(�)f(�)d� (A.11)

Remark A.46
For bounded %(x) we haveZ N

0

Z N

0
jG(x; �)j2%(x)%(�)dxd� <1;

so that K� is of Hilbert-Schmidt type, thus compact (cf. Hislop/Sigal [14]), L has
discrete spectrum (Riesz-Schauder Theorem A.10).
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A.5 Linear spaces with an inde�nite metric

The de�nitions and propositions listed in this section can be found in the book by
I.S. Iohvidov, M.G. Krein and H. Langer[21].

Krein Space

De�nition A.47
Let K be a linear space.

(1) A bilinear metric or inner product on K is a mapping K � K ! C with the
properties

(i) [x; y] = [y; x]

(ii) [�x+ �y; z] = �[x; z] + �[y; z]

for �; � 2 C and x; y; z 2 K .

(2) An inner product is called an inde�nite metric, if there exist x; y 2 K such
that [x; x] > 0 and [y; y] < 0 .

(3) A sub-manifold L � K is called

positive, if 8x 2 L : [x; x] > 0,
neutral, if 8x 2 L : [x; x] = 0,
negative, if 8x 2 L : [x; x] < 0.

Proposition A.48
For an inde�nite metric there exist neutral elements.

Proof:
Let x; y 2 K with [x; x] > 0 and [y; y] < 0 .
The mapping

T : � 7! �
�x+ (1� �)y; �x+ (1� �)y

�
is continuous with T (0) > 0 and T (1) < 0 . Thus there is 0 � �0 � 1 such that
T (�0) = 0 and �0x+ (1� �0)y is a neutral element.

2

The notion of orthogonality exists also for spaces with an inde�nite metric.

De�nition A.49

(1) x; y 2 K are said to be orthogonal, written x[?]y , if [x; y] = 0 .

(2) The orthogonal complement of a sub-manifold M � K is

M [?] = fx 2 K : x[?]Mg
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(3) K0 = K \K[?] is called the isotrope part of K . If K0 = f0g , then K is called
non-degenerate.

The direct sum L[�]M of two sub-manifolds as well as the orthogonal projections
are de�ned just like for Hilbert spaces with positive inner products.

De�nition A.50

(1) A space (K; [:; :]) with inde�nite metric is called a Krein space, if there exists
subspaces K+ and K� such that

(i) K = K+[�]K�
(ii) (K+; [:; :]) and (K�;�[:; :]) are Hilbert spaces

(2) For a Krein space let P+ and P� be the orthogonal projections onto K+ and K�
respectively.

(3) If min
�
dim(K+); dim(K�)

�
= k <1 , then K is called a Pontrjagin space.

Remark A.51
For x an element of a Krein space exist unique elements x+ 2 K+ and x� 2 K� such
that x = x+ + x� . Then with the inner product

hx; yi := [x+; y+]� [x�; y�] (A.12)

the space (K; h:; :i) is a Hilbert space. If two vectors x and y are orthogonal w.r.t.
h:; :i we write x ? y as usual.

De�nition A.52

The canonical symmetry is the mapping J := P+ � P� .

For the inner products h:; :i and [:; :] we have with (A.12)

hx; yi = [P+x; y]� [P�x; y] = [Jx; y]

and also [x; y] = hJx; yi .

Adjoint operators on Krein spaces

De�nition A.53
(1) For a linear operator A on a Krein space K set

D+ := fy 2 Kj8x 2 D(A) : 9z 2 K : [Ax; y] = [x; z]g

and de�ne the adjoint operator A+ of A by A+y = z with domain D+ .

(2) An operator A is called self-adjoint if A = A+ .
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Theorem A.54
The spectrum of a self-adjoint operator A on a Pontrjagin space �k , k 2 N , is sym-
metric w.r.t. the real axis; every non-real number is either an eigenvalue or a regular
point of A , in the UHP exist at most k eigenvalues.

And for the eigenvectors we have

Proposition A.55

Let A = A+ .

(1) The eigenvectors u and v to eigenvalues � and � with � 6= � are [:; :] -
orthogonal.

(2) The eigenvectors to complex eigenvalues have zero [:; :] -norm.

A.6 Hardy spaces

The de�nitions and facts listed in this Section are from Helson[12] and Ho�man[15].
Let L2(d�) be the space L2 on the unit circle [��; �] with measure 1

2�d� .

De�nition A.56
(1) The Hardy space H2

+ is the space of all complex-valued functions which are
analytic inside the unit circle jzj = 1 and for which the limit

kfk2H2
+
:= lim

r!1�
kfrk22 = lim

r!1�

1

2�

Z �

��

��f(rei�)��2d�
exists; this limit de�nes a norm on the Hilbert space H2

+ .

(2) The Hardy space H2
� is the space of all complex-valued functions which are

analytic outside the unit circle jzj = 1 and for which the limit

kfkH2
�
:= lim

r!1+
kfrk22 = lim

r!1+

1

2�

Z �

��

��f(rei�)��2d�
exists; again, (H2

�; k:kH2�
) is a Hilbert space.

For almost every � 2 [��; �] the radial limits
~f(�) = lim

r!1�
f(rei�) f 2 H2

+

~f(�) = lim
r!1+

f(rei�) f 2 H2
�

exist and de�ne L2 functions on the circle, and in fact

k ~fk2 = kfkH2
�

The Hardy spaces H2
+ and H2

� are often associated with the boundary functions in
L2 of the circle rather than the analytic functions inside and outside the unit circle (see
e.g. Helson[12]).

106



De�nition A.57
(1) The shift operator � on L2(d�) is de�ned by

(�f)(ei�) = ei�f(ei�)

(2) A subspace M � L2(d�) is said to be simply invariant if �M �M .

(3) An analytic function q inside the unit circle with jq(z)j < 1 , jzj < 1 , and
jq(ei�)j = 1 almost everywhere on the unit circle is called an inner function.

A relation between inner functions and simply invariant spaces is given in the following
theorem (Helson[12])

Theorem A.58
The simply invariant subspaces of L2(d�) are precisely the subspaces of the form qH2

+ ,
where q is an inner function determined uniquely up to a constant of modulus 1 .

De�nition A.59

A Blaschke product is an in�nite product of the form

B(z) = zk
1Y
j=1

�
aj � z

1� ajz

aj
jaj j

�pj

where k 2 N0 , pj 2 N , and the zeros aj of B(z) satisfy

0 < jaj j < 1 ^
1P
j=1

(1� jaj jpj) <1

The inner functions are then characterised by

Theorem A.60

An inner function q is uniquely expressible in the form q(z) = B(z)S(z) , where B(z)
is a Blaschke product and S(z) is an inner function without zeroes and positive (thus
real) at the origin, also called a singular function.

For the proof of above factorisation theorem and the following de�nition and theorem
see Ho�man[15].

De�nition A.61

The Hardy space H2
+ (H2

� ) in the UHP (LHP) is the space of all complex-valued
functions analytic in the UHP (LHP) for which the L2 -normsZ 1

�1
jf(x+ iy)j2dx

are bounded for y > 0 ( y < 0 ).

It holds the important Paley-Wiener theorem
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Theorem A.62 (Paley-Wiener)

A complex-valued function f analytic in the UHP is in H2
+ if and only if f is of the

form

f(z) =
1p
2�

Z 1

0
f̂(t)eiztdt

with Im(z) > 0 and some function f̂ 2 L2[0;1) .
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Appendix B

Attachments to Chapter 3

The graphs listed below are produced with help of the mathematical software 'Matlab',
here we give a pseudo-code of the programme.

input r; !2;{0 , number of steps n , step-size �{
for k = 1; : : : ; n

construct 
 = A({0 + (k � 1)�{)
find eigenvalues of 

plot eigenvalues (' � ' for non-negative imaginary part,

' � ' for negative imaginary part)

end loop
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Figure B.1: !21 = 0:8 and !22 = 1 , { = 0; : : : ; 9
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Figure B.2: !21 = 1:2 and !22 = 1 , { = 0; : : : ; 3:6
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Figure B.3: !21 = 6 and !22 = 1 , { = 0; : : : ; 1:8
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Figure B.4: !21 = 6 and !22 = 1 , { = 5; : : : ; 95
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Appendix C

Attachments to Chapter 4

C.1 General calculations

C.1.1 The closure of the domain of A

The domain of A is (cf. Section 4.1)

D(A) =
��

u0
u1

�
: u0 2W 2

2 ; u1 2 W 1
2 ; (u0)x � hu0j0 = 0; u0jN = 0; u1jN = 0

�
;

the range is

C :=
��

u0
u1

�
: u0 2 W 1

2 ; u1 2 L2; u0jN = 0

�
;

and the energy form [:; :] on C is de�ned by��
u0
u1

�
;

�
u0
u1

��
=

1

2

�
hju0j2j0 +

Z N

0
j(u0)xj2 + %(x)ju1j2dx

�

Claim
The closure of D(A) w.r.t. the energy form is C .
Sketch of the proof:
The L2 -closure of the second component of D(A) , fz 2 W 1

2 : zjN = 0g is L2 . So
we need to show that the closure of X = fz 2 W 2

2 : z0 � hzj0 = 0 ; zjN = 0g w.r.t. the
norm

kzk2 = 1

2
hjzj2j0 +

Z N

0
jz0j2dx

is the space Y = fy 2 W 1
2 : yjN = 0g . Note that the norm k:k is not the actual W 1

2

norm (see Appendix A.4). Now let y 2 Y and " > 0 .
Since W 2

2 is dense in W 1
2 w.r.t. the W 1

2 -norm k:kW 1
2
(cf. Theorem A.38), we can �nd

for � > 0 a function z1 2 W 1
2 [�;N ] such that z1jN = 0 andZ N

�

jy0 � z01j2dx � ky � z1k2W 1
2
<
"

2
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N

z0 = y0

�

Figure C.1: The graphs of y and z for h < 0 .

De�ne z2 2 X with z2(0) = y(0) and z2j[�;N ] = z1 , then have

kz2 � yk2 �
Z �

0
jz02 � y0j2dx+

"

2

Because z1 2 X have z02j0 = hz2(0) = hy(0) .

With a construction similar to the one with which one shows that the set ff 2 L2 :
f(0) = 0g is dense in L2 we can �nd a function with f 2 W 1

2 de�ned on the interval
[0; �] and with f(0) = hz2(0) such thatZ �

0
jf � y0j2dx < "

2
;

and so that the function

z(x) =

8<
:

y(0) x = 0R x
0 f(t)dt 0 � x � �
z1(x) � � x � N

is in W 2
2 , Fig. C.1 illustrates this construction. Then actually z 2 X and kz�yk2 < " ,

which is the required result.

C.1.2 The energy norms of the eigenvectors Us; Vs and 	�

(I) For the k:k1 -norms of the eigenvectors Us of A1 we have from (4.14)

kUsk21 = kU�sk21 = hus; usi�2 =

= �2
Z N

0
cos2(�s�x) +

2h1
�s�

sin(�s�x) cos(�s�x) +
h21
�2s�

2
sin2(�s�x)dx

= �2
�
N

2
+

1

4�s�
sin(2�s�N) +

h1
�2s�

2
sin2(�s�N)

+
h21
�2s�

2

�
N

2
� 1

4�s�
sin(2�s�N)

��
:
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With (cf. equation (4.29))

sin(2�s�N) =
2 tan(�s�N)

1 + tan2(�s�N)
=
�2�s�h1
h21 + �2s�

2

and

h1
�s�

sin2(�s�N) = �1

2
sin(2�s�N) =

�s�h1
h21 + �2s�

2

we get

kU�sk21 = �2
�
N(�2s�

2 + h21)

2�2s�
2

+
h1

2(�2s�
2 + h21)

�
1 +

h21
�2s�

2

��

and thus

kUsk21 = kU�sk21 =
�2N

2
+ h1

Nh1 + 1

2�2s
� �2N

2
:

(II) Similar calculations yield for the eigenvectors Vs of A2

kVsk22 = kV�sk22 =
�2N

2
+ h2

Nh2 + 1

2�2s
� �2N

2
:

(III) And for the k:kJ -norms of 	+ and 	� we get

k	+k2J = k	�k2J = [J	+;	+]2

=
1

2

�
1

�2
h�L2e�; e�i�2 + he�; e�i�2

�
= he�; e�i�2

= �2
Z N

0
cosh2(��x) +

2h2
��

sinh(��x) cosh(��x) +
h22
�2�2

sinh2(��x)dx

= �2
��

sinh(2��N)

4��
+
N

2

�
+
h2 sinh

2(��N)

�2�2
+

+
h22
�2�2

�
sinh(2��N)

4��
� N

2

��

With (cf. equation (4.33))

sinh2(��N) =
tanh2(��N)

1� tanh2(��N)
=

�2�2

h22 � �2�2

and

sinh(2��N)

4��
= �cosh2(��N)

2h2
=

�h2
2(h22 � �2�2)

we get

k	�k2J = �2
�
N

2

�
1� h22

�2�2

�
� h2
2�2�2

�
=
�2N

2
� h2

Nh2 + 1

2�2
:
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C.1.3 The restriction of A2 onto ��

Choose

B :=

��e�
0

�
;
� 0

e�

��

as the basis for �� , then the restriction of A2 onto the space �� is represented by the
matrix

A2j�� = i

�
0

��2
�1
0

�
For a; b 2 C de�ne�

a

b

�
:=

�
ae�
be�

�
:

A2j�� is anti-hermitian w.r.t. [:; :]J , since for a; b; c; d 2 C we have��
a

b

�
;

�
c

d

��
J

=

���a
b

�
;

�
c

d

��
2

=
1

2

�h�aLe�; ce�i�2 + hbe�; de�i�2�
=

1

2

�
�2ac+ bd

� ke�k2L2 ;
and then�

A2j��
�
a

b

�
;

�
c

d

��
J

=

�� �ib
��2a

�
;

�
c

d

��
J

=
1

2

�
�2 � ibc� i�2ad

� ke�k2L2
=

1

2

�
b(i�2c) + �2a(id)

�
ke�k2L2

=

��
a

b

�
;�
�
id

i�2c

��
J

= �
��
a

b

�
; A2j��

�
c

d

��
J

Thus �
A2j��

��
=
�
A2j��

�t
= �A2j��

C.1.4 The adjoint operators of A0

Here we will verify that

U 2 D0 ; V 2 D(A1)) [A0U; V ]1 = [U;A1V ]1

and U 2 D0 ; V 2 D(A2)) [A0U; V ]2 = [U;A2V ]2

or, in other words,

A1 � A�0 ^ A2 � A+
0 :
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We have

D0 =

��
u0
u1

�
: u0 2 W 2

2 ; u1 2 W 1
2 ; (u0)xj0 = u0j0 = 0; u0jN = 0; u1jN = 0

�

D(A1) =

��
v0
v1

�
: v0 2 W 2

2 ; v1 2 W 1
2 ; (v0)x � h1v0j0 = 0; u0jN = 0; v1jN = 0

�
:

and we let U =
�
u0
u1

� 2 D0 , V =
�
v0
v1

� 2 D(A1) . Then we get for the value of [A0U; V ]1

2[A0U; V ]1 = 2

��
0

iL

�i
0

��
u0
u1

�
;

�
v0
v1

��
1

= h1(�iu1)v0j0 +
Z N

0
(�iu1)x(v0)x + �2(iL1u0)v1dx

= h1(�iu1)v0j0 +
�
h1(iu1)v0j0

Z N

0
�2u1(iL1v0)dx

�
+

Z N

0
(u0)x(�iv1)xdx:

Since u0jN = 0 we have

2[A0U; V ]1 = h1u0(�iv1)j0 +
Z N

0
(u0)x(�iv1)x + �2u1(iL1v0)dx

= 2[U;A1V ]1

Thus we have the required result

U 2 D0; V 2 D(A1) ) [A0U; V ]1 = [U;A1V ]1

i.e. A0 � A�1 in (C; [:; :]1) . Similar calculations yield A0 � A+
2 in (C; [:; :]2) .

C.1.5 Estimation of kUs+1 � Vsk2j ; j = 1; 2

Here we will verify that

lim
s!1

kUs+1 � Vsk2j = 0 ; j = 1; 2

The similar will then be true for s < 0 , i.e.

lim
s!�1

kUs�1 � Vsk2j = 0 ; j = 1; 2

Let s > 0 . For the [:; :]1 -norm of the di�erence of the eigenvectors

Us+1 =

� 1
i�s+1

us+1
us+1

�
with us+1(x) = cos(�s+1�x) +

h1
�s+1�

sin(�s+1�x)

of A1 and

Vs =

� 1
i�s
vs
vs

�
with vs(x) = cos(�s�x) +

h2
�s�

sin(�s�x)

of A2 we have (cf. (4.6))

kUs+1 � Vsk21 =
h1
2

���� 1

�s+1
� 1

�s

����2 +
+
1

2

Z N

0

����u0(x)�s+1
� v0s(x)

�s

����2 + �2 ju(x)� vs(x)j2 dx (C.1)
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For the �rst term in (C.1) we have���� 1

�s+1
� 1

�s

���� = j�s+1 � �sj
j�s+1�sj (C.2)

We will give further estimations later. In order to estimate the second termZ N

0

����u0s+1(x)�s+1
� v0s(x)

�s

����
2

dx

in (C.1) we need to calculate����u0s+1(x)�s+1
� v0s(x)

�s

���� =

������ � sin(�s+1�x) +
h1
�s+1

cos(�s+1�x)
�
+

��� � sin(�s�x) +
h2
�s

cos(�s�x)
�����

� 2�

����cos
�
�s + �s+1

2
�x

�
sin

�
�s � �s+1

2
�x

�����+ h1
�s+1

+
jh2j
�s

� �2N j�s � �s+1j+ h1 � h2
�s

(C.3)

Inequality (C.2) is true since �s+1 > �s , j sin(�)j � j�j and 0 � x � N .

In order to estimate the third termZ N

0
�2 jus+1(x)� vs(x)j2 dx

in (C.1) we observe that

�jus+1(x)� vs(x)j = �

����cos(�s+1�x) + h1 sin(�s+1�x)

�s+1�
� cos(�s�x)� h2 sin(�s�x)

�s�

����
� �

����2 sin
�
�s+1 + �s

2
�x

�
sin

�
�s+1 � �s

2
�x

����� + h1
�s+1

+
jh2j
�s

� �2N j�s+1 � �sj+ h1 � h2
�s

(C.4)

For j�s+1 � �sj have with (4.24) and (4.31)

j�s+1 � �sj = j"s+1 + �sj � (h1 � h2)N

s�
(C.5)

and recall (4.25) and (4.32)

j�s+1j � s�
N� ^ j�sj � s�

N� (C.6)

Substitute (C.2) - (C.6) in (C.1)

kUs+1 � Vsk21 �
h1
2

j�s+1 � �sj2
j�s+1�sj2 +N

�
�2N j�s+1 � �sj+ h1 � h2

j�sj
�2

� h1
2

(h1 � h2)2N2

s2�2
N4�4

s4�4
+N

�
�2N

(h1 � h2)N
s�

+
(h1 � h2)N�

s�

�2

� h1(h1 � h2)
2N6�4

2s6�6
+
(h1 � h2)2
s2�2

N3�2(N�+ 1)2 (C.7)
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For the [:; :]2 -norm have clearly

kUs+1 � Vsk22 �
h2(h1 � h2)2N6�4

2s6�6
+
(h1 � h2)2
s2�2

N3�2(N�+ 1)2

So that we get the desired result

lim
s!1

kUs+1 � Vsk2j = 0 ; j = 1; 2;

in fact it is kUs+1 � Vsk2j = o(s�1) ; j = 1; 2:

C.2 The Galerkin method

C.2.1 The system matrix �

The approximative eigenvalues �
(j)
K are the eigenvalues of the (4K + 4)� (4K + 4) -

matrix �

� =

0
@ �1 �2 0

�3 �4 �5
0 �6 �7

1
A

With the matrices �1; : : : ;�7 as follows

�1 =

�
i�+ i{ 0

0 �i� + i{

�

�2 = �i{
�
b+�K�1 � � � b+�1 b+1 � � � b+K+1

b��K�1 � � � b��1 b�1 � � � b�K+1

�

�3 = �i{
�
 �K�1+ � � �  �1+  1

+ � � �  K+1
+

 �K�1� � � �  �1�  1
� � � �  K+1

�

�t

�4 = diag(��K�1 + i{; : : : ; ��1 + i{; �1 + i{; : : : ; �K+1 + i{)

�7 = diag(��K + i{; : : : ; ��1 + i{; �1 + i{; : : : ; �K + i{)

�5 = �i{

0
BBBBBBBB@

d�K�1�K � � � d�K�1�1 d�K�11 � � � d�K�1K
...

. . .
...

...
. . .

...
d�1�K � � � d�1�1 d�11 � � � d�1K
d1�K � � � d1�1 d11 � � � d1K
...

. . .
...

...
. . .

...

dK+1
�K � � � dK+1

�1 dK+1
1 � � � dK+1

K

1
CCCCCCCCA

�6 = �i{

0
BBBBBBBB@

c�K�K�1 � � � c�K�1 c�K1 � � � c�KK+1
...

. . .
...

...
. . .

...
c�1�K�1 � � � c�1�1 c�11 � � � c�1K+1
c1�K�1 � � � c1�1 c11 � � � c1K+1

...
. . .

...
...

. . .
...

cK�K�1 � � � cK�1 cK1 � � � cKK+1

1
CCCCCCCCA
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C.2.2 Estimation of �K

The Galerkin method described and implemented in Section 4.4 produces approximate

eigenvalues �
(j)
K ; j = 1; : : :4K + 4 for given choice of K . We will estimate the value

�K :=
kA�K � �K�Kk

k�Kk (C.8)

with an uniform estimate, so that there is no need for the index j .

Recall from Section 4.4.2. that

�K =

0
BBB@

K+1P
s=�K�1; s6=0

EsUs

KP
t=�K; t 6=0

F tVt + G+	+ +G�	�

1
CCCA

and the components of A�K are

(A�K)1 =
K+1X

s=�K�1; s 6=0

(�s + i{ � �)EsUs � i{
KX

t=�K; t6=0

F tVt � i{G+	+ � i{G�	�

(A�K)2 = �i{
K+1X

s=�K�1; s6=0

EsUs +
KX

t=�K; t6=0

(�t + i{ � �)F tVt +

+(i�+ i{ � �)G+	+ + (�i�+ i{ � �)G�	�

Due to orthogonality we have

kA�K � �K�Kk2 =

=
X
s2Z�

����
�
A�K � �K�K ;

�
Us
0

������2 + X
t2Z�

����
�
A�K � �K�K ;

�
0

Vt

������2 +
+

����
�
A�K � �K�K ;

�
0

	+

������2 +
����
�
A�K � �K�K ;

�
0

	�

������2 ;

and with condition (4.78) we get

kA�K � �K�Kk2 =

=
X

jsj�K+2

����
�
A�K � �K�K ;

�
Us
0

������2 + X
jtj�K+1

����
�
A�K � �K�K ;

�
0

Vt

������2

We make use of the orthogonality and Cauchy-Schwarz inequality to get (let in all sums
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s 6= 0 and t 6= 0 )

kA�K � �K�Kk2 =
= {2

X
jsj�K+2

��� X
jtj�K

F t[Vt; Us]1
�
+ G+[	+; Us]1 + G�[	�; Us]1

��2 +
+ {2

X
jtj�K+1

�� X
jsj�K+1

Es[Us; Vt]2
��2

� {2
X

jsj�K+2

�� X
jtj�K

jF tj2
X
jtj�K

j[Vt; Us]1j2
� 1
2 + jG+j j[	+; Us]1j+ jG�j j[	�; Us]1j

�2
+

+ {2
X

jtj�K+1

� X
jsj�K+1

jEsj2
X

jsj�K+1

j[Us; Vt]2j2
�

Since ja+ b+cj2 � 3(jaj2+ jbj2+ jcj2); a; b; c 2 C and with (4.48)-(4.53) in Section 4.2.4.

kA�K � �K�Kk2 �
� 3{2

X
jsj�K+2

� X
jtj�K

jF tj2
X
jtj�K

jdst j2kUsk41 + jG+j2j s+j2kUsk41 + jG�jj s�j2kUsk41
�
+

+ {2
X

jtj�K+1

� X
jsj�K+1

jEsj2
X

jsj�K+1

jctsj2kVtk24
�

Observe that

k�Kk2 =
X

jsj�K+1

jEsj2kUsk21 +
X
jtj�K

jF tj2kVtk22 + jG+j2k	+k2J + jG�j2k	�k2J

)

8>>><
>>>:

P
jsj�K+1;s 6=0

jEsj2 � 1
kUsk21

k�Kk2 � 2
�2N

k�Kk2P
jtj�K;t 6=0

jF tj2 � 1
kVtk22

k�Kk2 � 2
�2N

k�Kk2

jG�j2 � 1
k	�k2J

k�Kk2
(C.9)

Then

kA�K � �K�Kk2 �

� 3{2k�Kk2
X

jsj�K+2

� 2

�2N

X
jtj�K

jdst j2kUsk41 +
j +j2kUsk41
k	+k2J

+
j �j2kUsk41
k	�k2J

�
+

+ {2k�Kk2
X

jtj�K+1

� X
jsj�K+1

2

�2N
jctsj2kVtk42

�
(C.10)

(I) Estimation of j�s � �tj

For j�s � �tj we get with (4.23) and (4.30)

(1) For s > 0 ^ t < 0 have

j�s � �tj = �jsj + �jtj =
1

�N
[(jsj+ jtj)� + "s � �t] � (jsj+ jtj � 1)�

�N

For the following let s; t > 0 .
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(2) s � t + 2 , then

j�s � �tj = 1

�N
[(s� t� 1)� + "s + �t] � (s� t � 1)�

�N

(3) t = s = K + 1 , then

j�K+1 � �K+1j = �K+1 � �K+1 =
� � "K+1 � �K+1

�N

for K + 1 large enough have certainly

�

�N
� � � "K+1 � �K+1

�N
= �K+1

�

�N

with 0 < �K+1 < 1 and �K � �K+1 for all K 2 N .
In order to estimate

�K+1
�

�N
� ~�

�

�N

and then obtain

� � "K+1 � �K+1

�N
� ~�

�

�N
;

we require that "K+1 + �K+1 � �(1 � ~�) . Because of (4.24) and (4.31) this is
ful�lled when

N

(K + 1)�
(h1 � h2) � �(1� ~�) , K + 1 � N(h1 � h2)

�2(1� ~�)

, ~� � 1� N(h1 � h2)

(K + 1)�2
(C.11)

(4) t = s+ 1 = K + 1 , then

j�s � �tj = j�K+1 � �K j = 1

�N
[2� � "K � �K+1] � �

�N

(5) t � s+ 2 , then

j�s � �tj = 1

�N
[(t� s+ 1)� � "s � �t] � (t� s)�

�N

(II) Estimation of the coe�cients

We substitute above expressions, (4.60)-(4.65) and

j�sj � (2jsj � 1)�

2�N
^ j�tj � jsj�

�N

from (4.25), (4.32) into (4.48), (4.51), (4.52) and (4.53) to get for dst and cts with

� := (h1�h2)2N4�4

�4
(divided into �ve cases)
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(1) Let s > 0^ t < 0 , so that with s+ jtj � 1 � jtj , s+ jtj � 1 � s and 2s� 1 � s it
follows

jdst j2kUsk41 =

�
h1 � h2
2�s�t

+
h1 � h2

2�s(�s � �t)

�2

� 4�
1

(2s� 1)2t2
(C.12)

jctsj2kVtk42 =

�
h1 � h2
2�s�t

+
h1 � h2

2�t(�s � �t)

�2

� 1

4
�
1

t2

�
4

(2s� 1)2
+

4

(2s� 1)2
+

1

s2

�
(C.13)

(2) Let s � t+ 2 and s � K + 2 , then with s � t � 1 � K + 1� t , then

jdst j2kUsk41 � (h1 � h2)2

4

�
2N2�2

�2(2s� 1)jtj +
2N2�2

�2(2s� 1)(s� t� 1)

�

� �
1

(2s� 1)2

�
1

t2
+

1

(K + 1� t)t
+

1

(K + 1� t)2

�
(C.14)

(3) Let t = s = K + 1 , then

jcK+1
K+1j2kVK+1k42 =

(h1 � h2)2
4j�K+1j2j�K+1 � �K+1j2 �

�

(2K + 1)2
1

�2K+1

(C.15)

(4) Let t = s+ 1 = K + 1 , then

jcK+1
K j2kVK+1k42 � �

(2K � 1)2
(C.16)

(5) Let t � s+ 2 , s � K � 1 , then with t � s � K � s and 2s� 1 � s , then

jctsj2kVtk42 � 1

4
�

�
4

(2s� 1)2t2
+

4

t2(2s� 1)(t� s) +
1

t2(t� s)2

�

� 1

4
�
1

t2

�
4

(2s� 1)2
+

4

(2s� 1)(K � s)
+

1

(K � s)2
�

(C.17)

And for  s+ and  s� we have

j s+j2kUsk41 =

���� h1 � h2
2�(�s + i�)

����2 � (h1 � h2)
2�2N2

�2�2(2jsj � 1)2

j s�j2kUsk41 =

���� h1 � h2
2�(�s � i�)

����2 � (h1 � h2)2�2N2

�2�2(2jsj � 1)2

Also it is with �2�2 � h22 and (4.37)

k	�k2J
�2

�2N2
=

�2

2N
� Nh22 + h2

2�2N2
� jh2j

2�2N2
:
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Then we get

1

k	�k2J
j s�j2kUsk41 �

2(h1 � h2)2�4N4

jh2j�2
1

(2jsj � 1)2
=

2��2

jh2j(2jsj � 1)2
(C.18)

(III) Further estimations

For the three terms in inequality (C.10) we get then with (4.66) and (4.67)

(1)

X
jsj�K+2

X
jtj�K

jdst j2kUsk41 = 2
1X

s=K+1

�1X
t=�K

jdst j2kUsk41 + 2
1X

s=K+1

KX
t=1

jdst j2kUsk41

� 14�
1X

s=K+1

1

(2s� 1)2

KX
t=1

1

t2
(C.19)

(2)

X
jsj�K+2

j s+j2kUsk41
k	+k2J

+
j s�j2kUsk41
k	�k2J

� 8��2

jh2j
1X

s=K+2

1

(2s� 1)2
(C.20)

(3)

X
jtj�K+1

X
jsj�K+1
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= 2
�1X

t=�K�1

K+1X
s=1

jctsj2kVtk42 + 2
1X
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K�1X
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jctsj2kVtk42 +

+2jcK+1
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� �
1X

t=K+1

1

t2

"
K+1X
s=1

�
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Then substituting (C.19)-(C.21) into (C.10) yields

�2
K =

kA�K � ��Kk2
k�Kk2

� 3{2

"
28�

�2N

1X
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(2s� 1)2

KX
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+
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!
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In practice, we will choose K and then calculate the maximal possible value �m for
� from (C.11) and set, say, � = 0:9�m . With the de�nition of � , the de�nitions

f(l) :=
lP
t=1

1
t2 and g(l) :=

lP
t=1

1
(2t�1)2 , the limits

P
t2N

1
t2 =

�2

6 and
P
t2N

1
(2t�1)2 =

�2

8

we then get

�2
K � 3{2�

�
28f(K)

�2N

�
�2

8
� g(K)

�
+
8�2

jh2j
�
�2

8
� g(K + 1)

��
+ (C.22)

+
2{2�

�2N

��
�2

6
� f(K)

��
8g(K + 1) + 2f(K + 1)

�
+

2

(2K + 1)2�2
+

2

(2K � 1)2

�

where � = (h1 � h2)2N4�4=�4 . From above we see that

lim
K!1

�K = 0

with the right hand side of inequality (C.22) as upper estimate for �K , but note that
this estimate is rather rough, also because of the estimations in (C.9).

C.2.3 The programme codes

The Galerkin method described in Section 4.4.2 is implemented in three steps:

(I) Construction of the system matrix � - implemented in 'C'

input N; �; h1; h2; K ;

calculate eigenvalues �s; �s; s 2Z�; and � ,

using Newton's method;

calculate the energy norms of the eigenvectors

Us; Vs; s 2Z�, and 	� ;

calculate the real and imaginary parts of the coefficients b+s ;  
s
+

for s = 1; : : : ; K + 1 ;
calculate the coefficients cts and dst for s = �K � 1; : : : ; K + 1 and

t = 1; : : : ; K ;

calculate 1={�K ;

open files to store the data;

write the parameters N; �; h1; h2; K and 1={�K ,

the eigenvalues �;��; (�s)s; (�t)t ,
and the matrices Re[1=(i{)�2] , Im[1=(i{)�2]
Re[1=(i{)�3] , Im[1=(i{)�3] , 1=(i{)�5
and 1=(i{)�6 into the files;

close files;

end

The eigenvalues are calculated from the equations (4.22), (4.29), and (4.33) us-
ing Newton's method described in books on Numerical Analysis, for example in
Stoer/Bulirsch[32].

(II) Calculation of the eigenvalues (�
(j)
K )j of � - in 'Matlab'

input run, fromstep, tostep, stepsize, start;
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call function 'importdata.m';

open the files created in step (I);

read the parameters N; �; h1; h2; K; 1={�K ;

read the eigenvalues �;��; (�s); (�s) ;

read the matrices 1=(i{)�j; j = 1; 2; 3; 5; 6;

'paste' the matrices to 
 =

0
@ I 1=(i{)�2 0

1=(i{)�3 I 1=(i{)�5
0 1=(i{)�6 I

1
A ;

for k = 1; : : : ; tostep� fromstep+1 ;
set { = {0 + (k � 1)stepsize ;

set � = i{
+ diag(Values) ;
calculate condition number of � ;

calculate eigenvalues �
(j)
K of � ;

open files to store the result;

write the parameters N; �; h1; h2; K;{;�K and condition number;

write the pairs
h
Re(�

(j)
K ); Im(�

(j)
K )
i
;

close files;

end loop;

end

The condition number of a matrix gives some information how accurate the
numerical calculation is. It should not be too large. For more details see
Stoer/Bulirsch[32].

(III) Illustration of the results in graphs - in 'Matlab'

input run, from, to;

for k = from, : : : , to-1;

call function 'readdata.m';

open files created in step (II);

read the files;

close files;

divide the eigenvalues into four groups:

G1 = fIm(�) > �Kg 'certain UHP'

G2 = f0 � Im(�) � �Kg 'uncertain UHP'

G3 = f0 � Im(�) < ��Kg 'uncertain LHP'

G4 = f��K � Im(�)g 'certain LHP

plot G1 as ' � '; plot G2 as ' � ';
plot G3 as '*'; plot G4 as 'x';

caption graphs with 'kappa', 'delta' and 'condition'

and insert respective values;

end loop;

end

127



C.2.4 Some graphs
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Figure C.2: N = 1; � = 0:5; h1 = 1; h2 = �1:1; K = 200;{ = 0; 0:5; 1; 1:5
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Figure C.3: N = 1; � = 0:5; h1 = 1; h2 = �1:1; K = 50;{ = 0:05; 0:45; 0:85; 1:25
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Figure C.4: N = 1; � = 1; h1 = 1; h2 = �1:1; K = 50;{ = 0:05; 0:3; 0:55; 0:8
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Figure C.5: N = 1; � = 0:5; h1 = 0:01; h2 = �11:1; K = 50;{ = 0:05; 8:05; 16:05; 24:05
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Figure C.6: N = 1; � = 0:5; h1 = 5; h2 = �7; K = 50;{ = 0:05; 5:05; 10:05; 15:05
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Abbreviations and Notations

w.l.o.g. without limitation of generality
w.r.t. with respect to
UHP upper half plane, i.e. fz 2 C : Im(z) � 0g
LHP lower half plane, i.e. fz 2 C : Im(z) < 0g
i complex number i

The attempt has been made to avoid the character i as an index.
z = conj(z) the complex conjugate of z 2 C
+
p
z; z 2 C the root of z with the argument in the interval [0; �)

Pr(x) the probability of an event X
Pr(X jY ) the probability of X under condition Y

E[X ] the expected value of a random variable X
E[X jY ] the conditional expected value
Qt; pt the transpose of a matrix Q or vector p
�(A) the spectrum of an operator A
%(A) the resolvent set of an operator A
closk:k(X) the closure of a set X w.r.t. the topology generated by the norm k:k
Xc the set-theoretical complement of a set X
dist(x; y) the distance between two elements x and y
dist(x;X) the distance of an element x to a set X
(xn)n2N� X a sequence of elements xn in the set X
r! N+ r approaches to 1 from above
f(N+) the right limit limr!N+ f(r)
supp(f) the support of a function f
�[0;N ] the characteristic function of the interval [0; N ]
Ck(R) the space of continuous functions on R with

continuous derivatives up to order k
Ck0 (R) the space of continuous functions on R with continuous

and compactly supported derivatives up to order k
�(x�N) the Dirac delta function, shifted to x = N

�jk the Kronecker symbol
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