http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Convergence of Lyapounov Functions Along Trajectories of Nonexpansive Semigroups: Generic Convergence and Stability

Renu Choudhary

A thesis submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy in Mathematics,
The University of Auckland, 2005.
Abstract

The main aim of this thesis is to study the convergence of Lyapounov functions along the trajectories of nonexpansive semigroups in a Hilbert space.

The outline of the thesis is as follows. In Chapter 3, it is shown that a regularly Lyapounov function for a semigroup of contractions on a Hilbert space converges to its minimum along the trajectories of the semigroup. In Chapter 4, we show that while a convex Lyapounov function for a semigroup of contractions on a Hilbert space may not converge to its minimum along the trajectories of the semigroup, it converges generically along the trajectories of the semigroups generated by a class of bounded perturbations of the semigroup generator. In Chapter 5, we show that the regularly Lyapounov function nearly converges to its minimum along the trajectories of the semigroups generated by small bounded perturbations of the semigroup generator. Besides that we study a problem of interest in its own right, about the direction of movement of the element of minimal norm in a moving convex set, in Section 4.9. We show that if C is a nonempty closed convex subset of a real Hilbert space H, e is a non-zero arbitrary vector in H, and for each $t \in \mathbb{R}$, $z(t)$ is the closest point in $C + te$ to the origin, then the angle $z(t)$ makes with e is a decreasing function of t while $z(t) \neq 0$.
Acknowledgment

I wish to express my indebtedness to my supervisor, Associate Professor Bruce Calvert, for his valuable guidance and constructive criticism. I offer my sincere thanks for many insightful suggestions and remarks that he made during the preparation of this thesis.

My thanks are due to Professor Simeon Reich for suggesting this problem to my supervisor, who then passed it on to me.

Finally, I express my gratitude to my husband, Aseem Choudhary, for his endless support, encouragement and understanding.
Contents

Abstract iii

Acknowledgment v

1 INTRODUCTION 1

2 PRELIMINARIES AND NOTATION 9

2.1 Semigroups and Monotone Operators 9

2.2 Lyapounov function 17

2.3 Porosity 18

2.4 Generic property 19

3 CONVERGENCE THEOREM 21

3.1 Non convergence of a Lyapounov function 22

3.2 Regularly Lyapounov functions and convergence 25
CONTENTS

3.3 Application ... 31

4 GENERIC CONVERGENCE 33

4.1 Equivalent conditions 34
4.2 Assumptions .. 40
4.3 A perturbation result 46
4.4 Construction of \mathcal{A}^1 and \mathcal{F}^1 48
4.5 Metric on \mathcal{A}^1 50
4.6 Generic convergence theorem 55
4.7 Discussion ... 62
4.8 Not so generic convergence 65
4.9 Without assumption A(4.5) 69

5 STABILITY THEOREMS 87

5.1 A geometrical result 87
5.2 Assumptions ... 88
5.3 Almost a regularly Lyapounov function 89
5.4 Stability theorems 98

6 OPEN PROBLEMS 103