
CDMTCS

Research

Report

Series

Variable-length codes for

sources with equiprobable

symbols

Boris Assanovich

Ulrich G�uenther

CDMTCS-103

May 1999

Centre for Discrete Mathematics and

Theoretical Computer Science

Variable-length codes for sources with equiprobable symbols

Boris Assanovich, Ulrich G�uenther

bas@grsu.grodno.by, ulrich@ihug.co.nz

May 16, 1999

Keywords: Variable-length codes, equal probability letters, average code length, digital chan-
nels.

Abstract

Variable-length codes can provide compression for data communication. Such codes may be
used not only when the source statistics is known but also when we do not know the source
probability distribution, and a source with equal symbol probabilities (equiprobable symbols)
can or has to be assumed. This paper presents variable-length codes with code words that di�er
in length by at most one code symbol. Such codes suit the e�cient encoding of sources with
equiprobable symbols. We accommodate non-binary codes and present an iterative algorithm
for the construction of such codes. We also calculate the average codeword length for such
codes, which extends Krichevski's result for binary codes [5]. Finally, we propose a scheme that
allows the code to be communicated e�ciently from transmitter to receiver.

1 Introduction

Variable-length codes may be used for data compression in serial communication. In these cases,
the encoding is to an extent determined by the frequencies of occurrence of the source symbols. A
well-known example of this approach is the algorithm for the construction of Hu�man codes [4, 5].
If we have source symbols with equal probabilities, the resulting Hu�man code will have codewords
that di�er at most by one code symbol from each other. This means that we may use alternative
construction mechanisms for the code, such as the two algorithms presented in the next section.

2 Code Construction

The �rst construction algorithmwe present here is an iterative algorithm. It is similar to the recursive
\copy-k-times-and-append" algorithm called T-augmentation, which is used in the construction of
simple and/or generalized T-Codes [1, 2, 3]. The main di�erence between T-augmentation and
the algorithm presented here is that there is no \copy" operation and that the codeset appended
is always just the alphabet. As such, the algorithm presented below is merely iterative but not
recursive.

Let A be the alphabet that is to be used on the communication channel, consisting of N0 symbols.
Further let n be the number of source symbols that we wish to encode.

The initial code set S0 is chosen to be the alphabet A, i.e., S0 = A, where the subscript indicates
the level of code construction, starting at 0. Correspondingly, Si denotes the code set obtained after
i iterative construction steps.

We further denote by w0
i
a codeword from Si that is of minimum length (i.e., for which there are

no shorter codewords in Si), and by w00
i
a codeword from Si of maximum length. We will see that

for the code sets under consideration here, jw00
i
j = jw0

i
j + 1 or jw00

i
j = jw0

i
j if the code set is a block

code.

1

S0 S1 S2 S3 S4
0 0=
1 1 1=
2 2 2 1=

00 00 00 00=
01 01 01 01
02 02 02 02

10 10 10
11 11 11
12 12 12

20 20
21 21
22 22

000
001
002

Figure 1: Iterative construction of a variable-length code with codewords of length 2 and 3 from a
ternary alphabet

If we delete any word w0 from S0, add it as a pre�x to a copy of each of the N0 code symbols from
S0, then we get a pre�x-free code set S1 with N1 = (N0 � 1) +N0 codewords. We may iteratively
repeat this step using the following algorithm, starting from a set at level i:

1. choose a w0
i

2. Si+1 = w0
i
S0 [Sinw

0
i
, where w0

i
S0 = fxjx = w0

i
z; z 2 S0g

3. If the number of codewords in Si+1 is smaller than n, increment i and goto step 1, otherwise
continue.

4. if the number of codewords in Si+1 is larger than n, delete codewords of length jw00
i
j until the

code set contains exactly n codewords.

The number of codewords in Si, Ni may be recursively determined as

Ni = Ni�1 +N0 � 1; (1)

or directly as
Ni = N0(i+ 1)� i: (2)

Thus, the algorithm is capable of generating arbitrarily large code sets. We note that the code sets
thus constructed are complete, i.e., any su�ciently long stream of symbols from A has a decoding
over any Si.

Table 1 illustrates the construction of such a variable-length code based on a ternary channel
alphabet A = f0; 1; 2g.

The above algorithm may be \shortened" as follows1:

1. generate the complete block code of all codewords of length jw0
i
j = blogN0

nc.

2. apply the previous algorithm starting from this set.

In our example in Table 1, using the shortened algorithm is equivalent to �rst creating S3 directly
as a block code and then �nishing the algorithm as previously discussed.

While the computational complexity of the �rst algorithm may be higher, the second is more
expensive in terms of resources required.

1bqc and dqe denote the largest/smallest integer that is smaller/larger than or equal to q

2

3 E�ciency of Variable-Length Coding for Sources with Equal

Symbol Probabilities

In practice, there are situations when the number n of source symbols is smaller than the number
Ni of codewords in Si, but larger than than the number Ni�1 of codewords in Si�1. So one or more
of the longer codewords in Si are not required in the encoding. It follows from Equation (1) that
there are at most N0 � 2 codewords in Si that are surplus to requirements.

Taking this into account, we may now calculate the average codeword length for a source with
n symbols with equal probabilities P (n) = 1

n
. The classical entropy of the source is given by

H(n) = log
N0

n and may not be an integer. On the other hand, at some levels of the algorithm, the
code set may well be a block code (e.g., the set S3 in Table 1).

If we choose such a level where jw00
i
j = jw0

i
j = blog

N0
nc, then we can create the required code set

Si+c at level i+ c by eliminating c words of length blogN0
nc from Si and adding b words with the

length dlogN0
ne.

Theorem 3.1 The average codeword length LN0
(n) of a code for a source with n symbols of equal

probability is given by

LN0
(n) = blogN0

nc+
1

n(N0 � 1)

n
N0(n�N

blog
N0

nc

0) + (N
dlog

N0
ne+1

0 � n)mod(N0 � 1)
o
: (3)

Proof: if we eliminate c codewords from nearest block code set of length blog
N0

nc, the remaining
number of words, a, with this length is given by

a = N
blog

N0
nc

0 � c: (4)

Each of the previously deleted codewords of length blog
N0

nc gives rise to N0 possible new codewords
of length blogN0

nc+1. Thus, each deletion and subsequent pre�xing can add up to N0�1 codewords

to the set. In total, we require n�N
blog

N0
nc

0 codewords more than in the block code. The number
of deletions c that we require is thus given by

c =

&
n�N

blog
N0

nc

0

N0 � 1

'
: (5)

As we require the �nal set to contain n words, we need to add

b = n� a (6)

codewords. That may be less than the N0c codewords we are now able to add. The number of
\surplus" codewords, N0c � b, may be calculated by \counting backwards" from the next longer
block code:

N0c� b = (N
blog

N0
nc+1

0 � n)mod(N0 � 1): (7)

Thus b is also given by

b = N0c� (N
blog

N0
nc+1

0 � n)mod(N0 � 1): (8)

Substituting Equation (4) for c, we obtain

b = N0(N
blog

N0
nc

0 � a)� (N
blog

N0
nc+1

0 � n)mod(N0 � 1) (9)

and then, substituting Equation (6) for a:

b = N0(N
blog

N0
nc

0 �N + b)� (N
blog

N0
nc+1

0 � n)mod(N0 � 1): (10)

3

Solving for b, we get:

b =
N0n�N

blog
N0

nc+1

0 + (N
blog

N0
nc+1

0 � n)mod(N0 � 1)

N0 � 1
; (11)

i.e., the number of codewords of length blog
N0

nc + 1. From Equation (6), this also gives us the
number of codewords of length blogN0

nc:

a =
�n+N

blog
N0

nc+1

0 � (N
blog

N0
nc+1

0 � n)mod(N0 � 1)

N0 � 1
: (12)

The average length of the codewords in our �nal set is given by:

LN0
(n) =

ablog
N0

nc+ b(blog
N0

nc+ 1)

n
: (13)

Substituting Equations (12) and (11) for a and b, we get

LN0
(n) = blogN0

nc+
1

n(N0 � 1)

n
N0(n�N

blog
N0

nc

0) + (N
dlog

N0
ne+1

0 � n)mod(N0 � 1)
o
: (14)

In the binary case, where N0 = 2, Equation (3) simpli�es to Krichevski's result [5]:

L2(n) = blog2 nc+
2

n
(n� 2blog2 nc): (15)

Note that the mod-term disappears as a binary code set constructed according to our rules is always
complete.

Example 3.2 Table 2 illustrates the construction of a code set with n = 16 codewords over a ternary
alphabet (A = f0; 1; 2g, N0 = 3).

Its average codeword length is given by Equation (3):

L3(16) = blog3 16c+
1

16(3� 1)

n
3(16� 3blog3 16c) + (3dlog3 16e+1 � 16)mod(3� 1)

o
� 2:69: (16)

We can verify this by simply counting the number of codewords of length 2 and 3 in S70 and calculating
the average codeword length as follows:

L3(16) =
no. of codewords of length 2 � 2 + no. of codewords of length 3 � 3

16

=
5� 2 + 11� 3

16
� 2:69: (17)

4 Coding the Code

One problem often encountered in the use of variable-length codes is that they may vary depending
on the source that is used.

In our case, such a variability could occur if the coding system has to support a number of
equiprobable sources with di�erent cardinality. If a lexicographical ordering of codeword assignments
can be agreed on, and we agree to choose the w0

i
in step 1 of our iterative algorithm in a quasi-

lexicograhical manner, all we need to communicate to the receiver is the cardinality of the source.
The coding/decoding tree and codeword assignments may easily be deduced from this. Alternatively,
we may communicate the lexicograpically last codeword used as it conveys the same information.

4

S0 S1 S2 S3 S4 S5 S6 S7 S70

0 0=
1 1 1=
2 2 2 2=

00 00 00 00=
01 01 01 01 01=
02 02 02 02 02 02=

10 10 10 10 10 10=
11 11 11 11 11 11 11
12 12 12 12 12 12 12

20 20 20 20 20 20
21 21 21 21 21 21
22 22 22 22 22 22

000 000 000 000 000
001 001 001 001 001
002 002 002 002 002

010 010 010 010
011 011 011 011
012 012 012 012

020 020 020
021 021 021
022 022 022

100 100
101 101
102 102=

Figure 2: Construction of a code set with 16 codewords of from a ternary alphabet. Note that the
intermediate set S3 is the next smaller block code and the one codeword has to be removed from S7
to yield the �nal set S70

5

If the cardinality (or the length of the last codeword) are �a priori unknown to both transmitter
and receiver, we can't just transmit the last codeword as the receiver will not know how long it is
going to be, and whether (in a continuous data stream) it is receiving the codeword or subsequent
data. Hence, we require an e�cient scheme that permits the transmission of this information.

The scheme proposed here is a \mixed scheme". It �rst transmits the encoded length of the
shorter of the two codeword lengths. This determines the length of the longer codewords (except in
the case of block codes). Let us �rst consider codes where jw00

i
j = jw0

i
j+ 1.

For such codes, we might thus just send the last codeword \as is". This leaves the problem of
unanimously transmitting the length of the shorter codewords. For a binary channel alphabet, this
could be done by transmitting 1jw

0

i
j�10, i.e., jw0

i
j�1 ones followed by a zero, where jw0

i
j is the length

of the shorter codewords.
Unfortunately, this is ine�cient for non-binary channel alphabets. For these, we may opt for the

following method: without loss of generality, presume that the symbols of the channel alphabet are
denoted by the numbers 0 : : :N0 � 1. Then we may communicate jw0

i
j as follows:

1. start the length count L at zero: L = 0.

2. if jw0
i
j � L � N0 , transmit the symbol N0 and increment L by N0 and repeat this step. Else

transmit jw0
i
j � L.

The receiver now adds all numbers received until the �rst number smaller than N0 is received. This
yields jw0

i
j. We can then send the last codeword \as is".

This approach is not suitable for block codes, though: if our code is a block code, we have
jw00

i
j = jw0

i
j and thus the last codeword would be one symbol shorter than we expect. However, this

is merely a result of transmitting the last codeword used. If we instead transmit the last codeword
from a set whose cardinality is increased by one, we circumvent the problem | its length always
equals jw0

i
j + 1. Thus, for block codes, we send the codeword 0jw

0

i
jN0. In this, we exploit the fact

that our code construction algorithm can never yield a code set that has only one code word of
length jw0

i
j+ 1.

Example 4.1 Consider the ternary code S70 in the last column of Table 2. For this code, jw0
i
j = 2

and jw00
i
j = 3. Lexicographically, the last codeword used is 102. If we were to extend our code further,

the \next" codeword would be 110. We �rst encode jw0
i
j as 20. This is followed by 110 such that the

transmission starts as 20110 : : :

5 Conclusions

This report explained the construction and e�ciency evaluation of variable-length codes with two
distinct codeword lengths over arbitrary alphabets. These codes may be used for e�cient encod-
ing of sources with equiprobable symbols. Possible application areas are conceivable in discrete
telecommuncation systems where a particular alphabet cardinality is favoured by the communica-
tion technology used. The report shows that the construction of the codes, the evalutation of their
e�ciency, and their communication to a receiver are easy.

References

[1] M. R. Titchener: Generalized T-Codes: an Extended Construction Algorithm for Self-Synchro-

nizing Variable-Length Codes, IEE Proceedings { Computers and Digital Techniques, 143(3),
June 1996, pp. 122-128.

[2] U. Guenther, P. Hertling, R. Nicolescu, and M. R. Titchener: Representing Variable-Length

Codes in Fixed-Length T-Depletion Format in Encoders and Decoders, Journal of Universal
Computer Science, 3(11), November 1997, pp. 1207{1225.

6

[3] U. Guenther: Data Compression and Serial Communication with Generalized T-Codes, Journal
of Universal Computer Science, V. 2, N 11, 1996, pp. 769-795.

[4] D. Hu�man: A Method for the Construction of MinimumRedundancy Codes, Proc. Inst. Radio
Eng. 40, September 1952, pp. 1098{1101.

[5] R. Krichevski: Compression and search of information. Radio and Communication, Moscow,
1989, p. 168.

[6] V. Maevski, F. Blocski, A. Novak et al.: Digital systems of transmission, Communication,
Moscow, 1978, pp. 77{78.

7

