
CDMTCS
Research
Report
Series

Update Games and
Update Networks

Michael J. Dinneen
Bakhadyr Khoussainov
Department of Computer Science
University of Auckland

CDMTCS-105
June 1999

Centre for Discrete Mathematics and
Theoretical Computer Science

Update Games and Update Networks

Michael J. Dinneen and Bakhadyr Khoussainov

Department of Computer Science,
University of Auckland, Auckland, New Zealand

{mjd,bmk}@cs.auckland.ac.nz

Abstract

In this paper we model infinite processes with finite configurations as infinite
games over finite graphs. We investigate those games, called update games, in
which each configuration occurs an infinite number of times during a two-person
play. We also present an efficient polynomial-time algorithm (and partial charac-
terization) for deciding if a graph is an update network.

1 Introduction

Many real-world systems can be viewed as infinite duration processes with finite states.
Several examples can be found in computer operating systems, air traffic control sys-
tems, banking systems, and the on-going maintenance of communication networks. A
functioning system has to be robust (e.g., an operating system should not crash regard-
less of what the user does). A termination of any of these systems can be thought of as
a failure. Thus we need an infinite duration model to study properties of such systems.
In practice these systems have only a finite number of states (e.g., a banking system has
a finite number of customers, assets, etc.).

The operation of each system over time enters only a finite number of states and
produces an infinite sequence of states, called a run-time sequence. Since the number of
states is finite, some of the states, called persistent states, appear infinitely often in the
run-time sequence. The success of a run-time sequence is determined by whether or not
the collection of persistent states satisfies certain specifications. Thus, we can view the
run-time sequences as plays of a two-player game where one player, called the Survivor,
tries to ensure that persistent states satisfy some property and the other player, called
the Adversary, does not.

Our proposed model for an infinite duration system is based on a finite (directed)
graph. The vertices of the graph represent the states of the system and the edges (arcs)
correspond to the legal state changes, called moves (or transitions), of the system.

Definition 1. An infinite duration game G is a graphG = (V,E), setW of subsets of V ,
and two players (the Survivor and the Adversary). A member of W is called a winning
set. A configuration of a game is a pair of the form (v, Survivor) or (v,Adversary) for
v ∈ V .

1

The game rules allow configuration moves from (w,X) to (w′, X ′) such that (w,w′) ∈
E and X 6= X ′. Each play of an infinite duration game is a sequence of configurations
(v0, X0), (v1, X1), . . . , (vi, Xi), . . . such that the game rules are followed. We call a finite
prefix sequence of a play a history. We say that a vertex v is visited in the play if
configuration (v,X) occurs in the history. Note that either the Survivor or the Adversary
may begin the play. The Survivor wins a play if the persistent vertices of the play is a
winning set of W , otherwise the Adversary wins. A strategy for a player Xi of a game
is a function from play histories (v0, X0), . . . , (vi, Xi) to configurations (vi+1, Xi+1) such
that the move from (vi, Xi) to (vi+1, Xi+1) is a game rule.

A given strategy for a player X may either win or lose a game when starting at an
initial configuration (v0, X0), where v0 ∈ V and X0 is either player. A player’s winning
strategy for an initial configuration is one that wins no matter what the other player
does.

Example 2. In Figure 1 we present a game G = (G,W). As an example of a winning
strategy for the Survivor consider the initial configuration (4,Adversary). If the Ad-
versary moves to vertex 3 then the Survivor simply moves to vertex 1 and the game
repeats between those two vertices (which is a winning set). On the other hand, if the
Adversary moves to vertex 5, the Survivor moves to vertex 6 forcing the Adversary to
move to 4, which is then controlled by the Survivor. The Survivor attempts to force the
vertex set {4, 5, 6} into a persistent set by moving to vertex 5. If the Adversary tries
to move to 3 from 5 then the Survivor is allowed to change its mind and force {1, 3} as
the persistent set and win. Thus, the Adversary looses no matter what choice is made
at vertex 5.

2

3

4

5

6

W = {{1, 3}, {2, 3, 4, 5}, {4, 5, 6}}

V = {1, 2, 3, 4, 5, 6}

E = {(1, 3), (2, 3), (2, 4), (3, 1), (3, 2), (4, 3), (4, 5), (5, 3), (5, 6), (6, 4)}

G = (V,E)

1

Figure 1: Example of an infinite duration game.

We end this section with a few related references. Previous work on two-player infi-
nite duration games on finite bipartite graphs is presented in the paper by McNaughton
[1] and extended by Nerode et al. [2]. Also several earlier papers that deal with finite
duration games on automata and graphs have appeared (e.g., see [3, 4]).

2

2 Update Games

We now model a natural communication network problem. Suppose we have data stored
on each node of a network and we want to continuously update all nodes with consistent
data. For instance, we are interested in addressing redundancy issues in distributed
databases. Often one requirement is to share key information between all nodes of the
distributed database. We can do this by having a data packet of current information
continuously go through all nodes of the network. This is essentially an infinite duration
game where the Survivor’s objective is to achieve a winning set equal to all the nodes
of the network. This game is formally defined as follows:

Definition 3. An update game is an infinite duration game G = (G,W) with the single-
ton winning set W = {V }. An update network is the underlying graph G of an update
game where the Survivor has a winning strategy for each initial configuration.

Sometimes we will talk about a graph G being an update game without mentioning
the winning set, since it is understood that W = {V }.

Example 4. The graph displayed below in Figure 2 is an update network. Notice that
the vertices of out-degree 2 and 3 leads only to odd-length cycles so that the Survivor
and the Adversary control the vertex every other round. The Survivor can use its
opportunities to visit all vertices of the graph.

Figure 2: A simple example of an update game which is an update network.

3 Bipartite Update Networks

We first study a special class of update games on bipartite graphs. Here we restrict
the domain of graphs to bipartite graphs where the vertices V of each graph can be
partitioned into two disjoint sets A and S such that all edges are directed from A to
S or from S to A. We also stipulate that each vertex has an out-going edge (i.e., this
ensures that every play is of infinite duration). By convention, we assume that the
Survivor moves from S and the Adversary moves from A. In essence the vertices are
owned by the two players of the game.

3

Definition 5. A bipartite update network is bipartite graph (V = A ∪ S,E) that can
be used as an update game in which the Survivor has a winning strategy to visit every
vertex of V infinitely often from every initial configuration. (That is, the Survivor can
force the persistent set of vertices to be V .)

Note that there are only |V | game configurations where each vertex v determines an
unique configuration depending on whether v is in S or A.

We can easily characterize those bipartite update networks with only one Survivor
vertex. These are the bipartite graphs where out-degree(s) = |A| for the single Survivor
vertex s. We now derive several properties for all bipartite update networks.

Lemma 6. If (V = A∪S,E) is a bipartite update network then for every vertex s ∈ S
there exists at least one a ∈ A such that (a, s) ∈ E and out-degree(a) = 1

Proof. The idea is to show that if there exists a vertex s that does not satisfy the
statement of the lemma then the Adversary can always avoid visiting s. Let As =
{a | (a, s) ∈ E} and assume out-degree(a) > 1 for all a ∈ As. The Adversary has
the following winning strategy. If the play history ends in configuration (a,Adversary)
then since out-degree(a) > 1 the Adversary moves to (s′, Survivor), where s′ 6= s and
(a, s′) ∈ E. This contradicts the assumption of lemma.

For the following results let (A ∪ S,E) be a bipartite update game B. For any
Survivor vertex s define

Forced(s) = {a | out-degree(a) = 1 and (a, s) ∈ E},

which denotes the set of Adversary vertices that are ‘forced’ to move to s.

Lemma 7. If B is a bipartite update network such that |S| > 1 then for every s ∈ S
there exists an s′ 6= s and an a ∈ Forced(s), such that (s′, a, s) is a directed path.

Proof. If B has more than one vertex in S then there must be a strategy for the Survivor
to create a play history to visit vertex s from some other vertex s′ ∈ S. To do this we
need a forced Adversary vertex a (of A) in the neighborhood of s′. There exists such a
vertex a by Lemma 6.

Definition 8. Given a bipartite graph (S ∪ A,E) a forced cycle is a (simple) cycle
(ak, sk, . . . , a2, s2, a1, s1) for ai ∈ Forced(si) and si ∈ S. Note that forced cycles have
even length.

We now present our penultimate ingredient that will be used to characterize bipartite
update networks.

Lemma 9. If B is a bipartite update network such that |S| > 1 then there exists a
forced cycle of length at least 4.

Proof. Take s1 ∈ S. From Lemma 7 there exists a path (s2, a1, s1) in B such that s2 6= s1

and a1 ∈ Forced(s1). Now for s2 we apply the lemma again to get a path (s3, a2, s2) in
B such that s3 6= s2 and a2 ∈ Forced(s2). If s3 = s1 we are done. Otherwise repeat
Lemma 7 for vertex s3. If s4 ∈ {s1, s2} we are done. Otherwise repeat the lemma for
s4. Eventually si ∈ {s1, s2, . . . , si−2} since B is finite.

4

Note if B does not have a forced cycle of length at least 4 then either |S| = 1 or B
is not a bipartite update network. That is, if |S| > 1 then the Adversary has a strategy
to not visit a vertex s2 of S whenever the play begins at some different vertex s1 of S.
We now present a method that helps us decide if a bipartite game is a bipartite update
network.

Lemma 10. If B = (S ∪A,E) is a bipartite update game with a forced cycle of length
at least 4 then we can construct a bipartite update game B′ = (S ′∪A′, E′) with |S ′| < |S|
such that B is a bipartite update network if and only if B′ is one.

Proof. We construct B′ as follows. Let C = (ak, sk, . . . , a2, s2, a1, s1) be a forced cycle
in B of length at least 4. For new vertices a and s let

S ′ = (S \ {s1, s2, . . . , sk}) ∪ {s} and A′ = (A \ {a1, a2, . . . , ak}) ∪ {a}.

Let

E′ = E(B \ {s1, a1, . . . , sk, ak}) ∪
{(s, a′) | a′ ∈ A′ and (si, a

′) ∈ E, for some i ≤ k} ∪
{(a′, s) | a′ ∈ A′ and (a′, si) ∈ E, for some i ≤ k} ∪
{(s′, a) | s′ ∈ S ′ and (s′, ai) ∈ E, for some i ≤ k} ∪ {(a, s), (s, a)}.

We now show that if B′ is an update network then B is also an update network. We
first define the natural mapping p from vertices of B onto vertices of B′ by

p(v) = v if v 6∈ C
p(v) = a if v ∈ C ∩ S
p(v) = s if v ∈ C ∩ A.

Then any play history of B is mapped, via the function p(v) = v′, onto a play history
of B′. Consider a play history v0, v1, . . . , vn of B that starts at vertex v0. Let f ′ be
a winning strategy for the Survivor when the game begins at vertex v′0. We use the
mapping p to construct the Survivor’s strategy f in game B by the following two cases.
Case v′n = s. The strategy is to extend the play (in B) by visiting all the vertices
of the cycle C at least once. If f ′(v′0, . . . , v

′
n) = a′ where a′ 6= a we find a si ∈ C

such that (si, a
′) ∈ E then extend the play again with a′ as the last move. Otherwise

f ′(v′0, . . . , v
′
n) = a and the play is extended by picking an ak ∈ C such that (vn, ak) ∈ E.

Case v′n 6= s. If f ′(v′0, . . . , v
′
n) = a′ 6= a then then f will also move to a′. Otherwise

a′ ∈ C and the play is extended by picking an ak ∈ C such that (vn, ak) ∈ E.
It is not hard to see that f is a winning strategy for the Survivor in game B whenever

f ′ is a winning strategy in B′.

We now show that if B is an update network then B′ is also an update network.
Take any vertex v′0 from B′. We show that there is a winning strategy for the Survivor
starting at v′0. Fix any vertex v0 such that p(v0) = v′0. We will keep a correspondence
between positions vi of a play on B with positions v′i of a play on B′. We now simulate
the winning strategy f on B starting at v0. The strategy for the initial play history
v′0 ∈ S

′ is f ′(v′0) = p(f(v0)) except for the case v′0 = s (or v′0 = a, which is a forced move

5

s1

s2

s3

s4

a1

a2

a3

a4

a5

B B′

s a

a5

a4

a3

s4

s3

Figure 3: Showing the bipartite update game reduction of Lemma 10.

to v′1 = s). In this exceptional case the Survivor’s initial strategy is to move directly
to any a′ 6= a and replace f with the strategy starting at a′. Now let v′0, v

′
1, . . . , v

′
n be

any play history of B′ that occurs after the initial play as dictated above. We define a
strategy for f ′ when v′n is in S ′ by studying two cases.
Case v′n = s. Consider the previous vertex v′i = a′ 6= a of the play history that is in A′

and v′i+1 = s. Thus in the game on B, the Adversary from a′ elects to move to some si
in C. Since respect to the actual game played on B′ the Adversary has less power, we
can pick, without loss of generality, that it moved to si where i is the smallest allowable
index. The strategy f ′ now simulates what f would do from si. Two cases: (1) if f
moves to a vertex aj on C then f ′ moves to a, or (2) if f moves to a vertex a′ not on C
then also f ′ moves to a′. In the first instance the strategy f ′ forces a play that toggles
between a and s in B′ until case (2) holds. (And this must happen since f is an update
strategy.)
Case v′n 6= s. Here the strategy is simply f ′(v′0, . . . , v

′
n) = p(f(v0, . . . , vn)). That is, the

play follows the strategy f on the simulated game history of B.
The strategy f ′ for the Survivor is an update strategy since p is a mapping from B

onto B′ (i.e., if all vertices of B are infinitely repeated via f then all vertices of B′ are
infinitely repeated via f ′).

With respect to the above proof, Figure 3 shows how a forced cycle of B is reduced
to a smaller forced cycle (of length 2) in B′.

Theorem 11. There exists an algorithm that decides whether a bipartite update game
B is a bipartite update network in time O(n ·m), where n and m are the order and size
of the underlying graph.

Proof. We show that finding a cycle that is guaranteed to exist by Lemma 9 takes time
at most O(m) and that producing B′ from B in Lemma 10 takes time at most O(n+m).
Since we need to recursively do this at most n times the overall running time is shown
to be O(n ·m).

6

The algorithm terminates whenever a forced cycle of length at least four is not
found. It decides whether the current bipartite graph is a update network by simply
checking that S = {s} and out-degree(s) = |A|. That is, the singleton Survivor vertex
is connected to all Adversary vertices.

Let us analyze the running time for finding a forced cycle C. Recall the algorithm
begins at any vertex s1 and finds an in-neighbor a1 (of s1) of out-degree 1 with (s2, a1) ∈
E where s2 6= s1. This takes time proportional to the number of edges incident to s1

to find such a vertex a1. Repeating with s2 we find an a2 in time proportional to the
number of edges into s2, etc. We keep a boolean array to indicate which si are in the
partially constructed forced path (i.e., the look-up time will be constant time to detect
a forced cycle of length at least 4). The total number of steps to find the cycle is at
most a constant factor time the number of edges in the graph.

Finally, we can observe that building B′ from B and C of Lemma 10 runs in linear
time by the definition of S′, A′ and E′. Note that if the data structure for graphs is
taken to be adjacency lists then E′ is constructed by copying the lists of E and replacing
one or more vertices si’s or aj ’s with one s or a, respectively.

The above result indicates the structure of bipartite update networks. These are ba-
sically connected forced cycles, with possibly other legal moves for some of the Survivor
and the Adversary vertices. Figure 4 shows a constructed example of one such bipartite
update network. The Survivor’s strategy is to systematically repeat the forced cycles
and ‘detour’ to cover the remaining non-forced Adversary vertices on a periodic basis.

Figure 4: Illustrating the structure of bipartite update networks with Survivor vertices
(black) and Adversary vertices (white).

4 Recognizing Update Networks

We now want to present an algorithm to decide whether a given update game is also
an update network. Our idea is to take an update game G and implicitly transform it
into a bipartite game BG. (Note BG will not be a bipartite update game, as described

7

in Section 3.) We then show how to decide if G is an update network by checking if
the Survivor has a winning strategy for every initial configuration of BG. Recall that
in a bipartite game the Adversary and the Survivor only move from one of the vertex
partitions of the graph.

We define the game BG = (B,W) from an update game G = (G, {V (G)}) as follows:

V (B) = {(vS | v ∈ V (G)} ∪ {vA | v ∈ V (G)}
E(B) = {(vS, uA) | (v, u) ∈ E(G)} ∪ {(vA, uS) | (v, u) ∈ E(G)}

W = {Y | ∀v ∈ V (G), ∃w ∈ Y (w = vS or w = vA)}

Note that the graph B is only twice the size of G but the explicit storage for the
winning sets W is exponential in the size of G’s winning sets {V (G)}. Figure 5 shows a
small example of the construction of B from G.

0

1 2

3

1A

2A

3A

0A0S

1S

2S

3S

Figure 5: Mapping an update game (graph G) to a bipartite game (graph B).

The vertices of B will correspond to a vertex/player combination of the game G. We
have the following equivalence.

Lemma 12. The game G is an update network if and only if the Survivor has a winning
strategy for every initial configuration of BG.

Proof. First assume G is an update network. For any initial configuration (v,X) of the
game G the Survivor has a winning strategy f . The Survivor can use this strategy f
for the initial configuration vX in the game BG. Since f forces all vertices of G to be
visited infinitely often, at least one of the vA or vS is visited infinitely often in B (for
all v ∈ G).

Now assume that the Survivor has a winning strategy f ′ for BG starting at vertex
vX . Every persistent set of vertices Y that occur when the Survivor uses f ′ is in W .
The Survivor can simulate f ′ (on BG) for the game G with initial configuration (v,X)
and win the game.

We now define for any subset of vertices V ′ of a bipartite game G the closure
Forced∗(V ′). This is the set of vertices (containing V ′) that the Survivor has a strategy
to force the Adversary to visit at least one vertex of V ′. We have the following algorithm
to compute Forced∗(V ′).

8

algorithm FindForced(V ′ ⊆ V (G)) for bipartite graph G = (S ∪ A,E)
1 Queue NewVerts = V ′

Set F = V ′

2 while Vertex v in NewVerts.head() do
NewVerts.remove(v)

3 if v ∈ A then
Set F ′ = inNeighbors(v)
NewVerts.append(F ′)
F = F ∪ F ′

endif
4 if v ∈ S then

Set F ′ = ∅
5 for Vertex u in inNeighbors(v) do

if outNeighbors(u) ⊆ F then F ′ = F ′ ∪ {u}
endfor
NewVerts.append(F ′)
F = F ∪ F ′

endif
endwhile
return F
end

We prove the correctness of this algorithm below.

Lemma 13. Algorithm FindForced computes Forced∗(V ′) for a bipartite graph G =
(S ∪A,E).

Proof. We show that for every vertex v, v is in Forced∗(V ′) if and only if v is returned
in F by the algorithm FindForced. To do this we assign a number, called rank, to each
vertex of the graph. The rank indicates the number of forced moves needed to reach V ′

from a vertex. The rank function is recursively defined as follows:

rank(v) =


0 if v ∈ V ′

minu∈outNeighbors(v) rank(u) + 1 if v ∈ S and v 6∈ V ′

maxu∈outNeighbors(v) rank(u) + 1 if v ∈ A and v 6∈ V ′

∞ otherwise

We now show that v ∈ Forced∗(V ′) if and only if rank(v) <∞. Suppose rank(v) =
n < ∞. If n = 0 then v ∈ V ′. Otherwise consider two cases. If v ∈ S then v is in the
closure since at least one neighbor u of v has smaller rank (i.e., the Survivor can move
to u and rank(v) ≤ rank(u) + 1). If v ∈ A then v is in the closure since all neighbors
of v have rank less n (i.e., the any move of the Adversary moves to a vertex to u of
rank less than n). Now suppose rank(v) = ∞ and again consider two cases. If v ∈ S
then all neighbors of v have rank equal to ∞ (i.e., the Survivor can not reach V ′ from
v). If v ∈ A then there is at least one neighbor u of v with rank equal to ∞ (i.e., the
Adversary can move to u that is not in the closure.)

9

One can see that the algorithm FindForced adds a vertex v to F if and only if it has
finite rank. The algorithm implicitly labels a vertex v of S ∪ A by the iteration count
of the while loop at line 2 when v is added to F (the vertices V ′ are labeled with count
0). Hence if a vertex is labeled then it has finite rank. Statement 3 of the algorithm
corresponds to the case v ∈ S and v 6∈ V ′ of the definition of rank while Statements 4–5
correspond to the case v ∈ A and v 6∈ V ′. This means that if v has finite rank then it
will be labeled by the algorithm.

Lemma 14. For bipartite games, there exists an algorithm that runs in time O(m),
where m is the size of the graph, that computes Forced∗(V ′).

Proof. We show how to modify the algorithm FindForced to run in O(m) time. The
algorithm as listed needs to process each vertex in the queue NewVerts at most once
and for each of these vertices access its in-neighbors. So excluding the loop at line
5 the algorithm runs in O(m) steps. The process time, as listed, to check whether
outNeighbors(u) ⊆ F takes at most O(n) time. Hence, FindForced runs in time O(n·m).

We now explain how to reduce the running time of the loop at line 5 of algorithm
FindForced to constant time. Instead of checking the set membership outNeighbors(u) ⊆
F we do the following. We keep an array of integers Deg that indicates for each vertex
how many neighbors are not currently in F . The entry for vertex x is initially defined
as the out-degree of x. Whenever a vertex y is added to F we decrement the entry for
each in-neighbor z of y by one. We can now replace the condition outNeighbors(u) ⊆ F
by testing whether Deg[u] = 0, which can be done in constant time.

Recall Lemma 12 states that a game G is an update network if and only if the
Survivor has a winning strategy for every initial configuration of BG. The next Theorem
also characterizes update networks (not necessarily bipartite games) by using the closure
operator.

Theorem 15. A game G = (G, {V (G)}) is an update network if and only if, for all
v ∈ V (G), Forced∗({vS, vA}) = V (B) in the corresponding bipartite game BG = (B,W).

Proof. Suppose for an update network exists over graph G such that Forced∗({vS, vA}) 6=
V (B) for some v ∈ V (G). Take any vertex x of B that does not belong to this closure.
Using the proof of Lemma 13 we see that the Survivor can not force the play to visit vS
or vA from vertex x ∈ V (B). Thus the Adversary wins game BG beginning from x. By
Lemma 12 the graph G can not be an update network.

We now prove the other implication of the theorem. It suffices to show that the Sur-
vivor can win the game BG from any starting vertex. We use the fact that Forced∗({vS, vA})
= V (B), for all v ∈ V (G), to build a winning strategy for the Survivor in BG. Order
the vertices of G as v1, v2, . . . , vn. Let x be a starting vertex of B. The Survivor can use
algorithm FindForced to visit either v1

S or v1
A. Next the Survivor can force the play to

visit to either v2
S or v2

A, then either v3
S or v3

A, etc. The Survivor then repeats the forced
plays between the pairs (viS or viA) and (vi+1 mod n

S or vi+1 mod n
A) which yields a winning

set of W .

Using the previous lemma and theorem we can efficiently recognize update networks.

10

Theorem 16. There exists an algorithm that decides whether a update game G is an
update network in time O(n ·m), where n and m are the order and size of the underlying
graph.

Proof. We can construct the bipartite graph B from the game BG, which corresponds
to G = (G, {V (G)}), in linear time. We then invoke Lemma 14 for each pair of vertices
{vA, vS} for v ∈ V (G). By using Theorem 15, we accept input if Forced∗({vS, vA})
= V (B), for all v ∈ V (G). The total running time is n = |V (G)| multiplied by the
time needed to compute the closure (of two vertices vA and vS) in B. This product is
O(n ·m).

5 Conclusion

In this paper we have presented a game-theoretic model of infinite duration processes.
A particular emphasis is given to a class of networks whose objective is to continuously
update all the nodes with consistent data. We have shown that it is algorithmically
feasible to recognize update networks. That is, we have provided an algorithm which
solves the update game problem in O(n ·m) time. Moreover, our algorithm for the case
of bipartite update games can be used to give a characterization of bipartite update
networks.

There are many open questions that still need to be investigated in this area. For
example, one can try to characterize those update games for which the update network
problem is decidable in linear time. One can also study the question of finding feasible
algorithms for games whose winning conditions are more complex than the one for
update games. For the latter case, we want to efficiently extract winning strategies (if
they exist for the Survivor) for each set of vertices in the winning set of a game.

The games considered in this paper occur over finite graphs. These games can be
generalized to games over different finite models (such as hypergraphs). We would like
to know which of these generalized game problems are tractable.

References

[1] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and
Applied Logic 65 (1993), 149–184.

[2] A. Nerode, J. Remmel and A. Yakhnis. McNaughton games and extracting
strategies for concurrent programs. Annals of Pure and Applied Logic 78 (1996),
no. 1-3, 203–242.

[3] R.J. Büchi and L.H Landweber. Solving sequential conditions by finite-state
strategies. Trans. Amer. Math. Soc. 138 (1969), 295–311.

[4] T.J. Schäfer. Complexity of some two-person perfect-information games. J. Com-
puter & System Sciences 16 (1978), 185–225.

11

