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Abstract

Using the counterfactual effect, we demonstrate that with better than
50% chance we can determine whether an arbitrary universal Turing ma-
chine will halt on an arbitrarily given program. As an application we
indicate a probabilistic method for computing the busy beaver function—
a classical uncomputable function. These results suggest a possibility of
going beyond the Turing barrier.

1 Introduction

One fundamental result of theoretical computer science is Alan Turing’s proof
(in [19]) that it is undecidable to determine whether a computer program will
halt or not. This is formally known as the halting problem. We can restrict
our attention to Turing machines since they are equivalent in computational
power to any “conventional” computer [1, 4]. In this note we wish to illustrate
that some recently observed properties of quantum physics, more precisely, the
interaction-free measurements, can be appropriately used to solve the halting
problem in a limited sense. Specifically, we demonstrate that with better than
50% chance we can determine whether an arbitrary universal Turing machine M
will halt, where M ’s input tape contains an encoded program. As an application
we show how to compute, in a probabilistic way, the busy beaver function, a
well-known uncomputable function.

We are going to base our analysis on Elitzur and Vaidman interaction-free
measurements [12] and the Quantum Zeno (sometimes also called watched–dog)
effect discussed by Misra and Sudarshan [15]. With interaction-free measure-
ments we can detect a “live-bomb” or “a piece of film” without even sending a
photon to trigger the bomb or to expose the film (see for example Bennett [2]
or Penrose [16]).

To illustrate this let us suppose that we are given a bomb which is either live
or dead, and we want to determine, with some reasonable probability, this fact
without detonating it. This problem classically has no solution (see Penrose
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Figure 1: An interferometer.

[16]). However, there is a quantum mechanics solution! Consider a Mach-
Zehnder interferometer, as illustrated in Figure 1, which is composed of two
perfect mirrors and two 50-50 beam splitters. The upper and lower path lengths
are set to be equal. Two detectors A and B determine the output superposi-
tion state of a photon. Under these hypotheses there is complete destructive
interference to the lower exit port due to the fact that any incident light always
exists the opposite port. The probability is 1 for a photon to reach detector B;
see, for instance, Milburn [14] for a detailed explanation.

What happens when there is a bomb in one of the paths, e.g., as in Figure 2?
First attach a special trigger device to the bomb which is activated by a photon.
We then shoot a photon1 through a beam splitter, where one possible path goes
to the bomb and the other path goes to the deflecting mirror. In both cases
the photon is reflected to a final switch splitter. A photon hitting detector B
indicates that the photon was unaltered. A photon hitting detector A signals
that a change has occurred in its quantum state (e.g., a bomb explosion).

If the bomb does not go off under the input photon, then we know that the
photon took the upper path. At the second beam splitter the photon behaves
as a single photon approaching a single beam splitter: in such a situation the
photon takes a random choice between A and B.2 We have got a 25% chance
that the photon goes to B: this result contains no information since it would
have happened also in the absence of the bomb.3 There is a 25% chance that
the photon is detected in A, and this is the counterfactual miracle: we can see a
live bomb without any light reaching it.4 Rephrased: whenever A goes “click” it
signals the presence of an object in the interferometer. If we carefully send only

1Producing individual photons, one at a time, is not a problem; see for example [13].
2The non-explosion made two indistinguishable alternatives distinguishable!
3Note that this result of measurement does not disturb the bomb.
4The last situation never happens in the absence of the bomb.
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Figure 2: A counterfactual logic example: detecting live bombs.

one photon at a time, the detection of it in A means that it has not interacted
with the object in the interferometer (we assume that a bomb which does not
explode is non-transmitting). The price paid was to make B uncertain (compare
with the scheme without a bomb).

Suppose now that the probability of having a live bomb is p. If the photon
splits one half of the time towards the mirror and one half of the time towards
the bomb, an explosion will occur with probability p/2. A live bomb will be
detected in A and B with the same probability: p/2. A dead bomb will send
the input photon to B with probability 1. So, with probability 2−p

2 the photon
is detected in B (and, of course, the photon will end up in A with probability
p
2 ). The counterfactual effect happens with probability p/2. For the simplest
case p = 1

2 we have one chance in four to detect the photon in B, that is, we
can find out that the bomb is live without actually detonating it. Of course,
the result is only semi-reliable and semi-destructive! If p tends to 1, then A and
B will have 50% chances to be reached. If p tends to 0, then the counterfactual
miracle disappears.

The performances can be improved in a few of directions; for instance by
utilizing the quantum Zeno effect.

The wave-particle duality of quanta guarantees that the above scheme works.
When the interferometer is empty, the two possibilities to get to a detector are
indistinguishable: we get interference, and consequently, the photon behaves
like a wave. If one of the paths is blocked, then there is only one way to reach a
detector, so there is no interference, and consequently the photon behaves like
a particle: it can only show up at the bomb or at detector A or at detector B,
but never at more than one of these.

3



The bomb used to illustrate the counterfactual effect can be in fact replaced
by a device which is not required to signal to the outside world the reception
or non-reception of the photon in such a dramatic way. In fact the device may
not signal at all its reception or non-reception of the photon. A slightly wobbly
mirror can play the role of the device if it were pivotable under the impact of
the photon, so dispersing the motion as friction (cf. Penrose [16], p. 270). It is
the mere potentiality for the mirror to wobble that allows the photon to reach
detector B. This fact led to variants of the bomb model which are very useful
in computer science applications. One possible way is to replace the live/dead
bomb with two superposition states, on/off, of a computer. The simplest model
uses a Turing machine and has the photon’s state altered if and only if the
machine accepts its input. The counterfactual effect saves computer resources
by having the opportunity to turn off the computer after the photon has been
split (and hoping that the photon goes to the mirror route).

2 Main Results

In order to tackle the halting problem we have to take into account the running
time of our experiment. If the photon has to wait around for the result of a com-
putation, then its ‘parallel counterpart’ will also be delayed on the mirror path.
In what follows we are interested in the possibility that a computation halts,
and if true, in a “sign” of it, not the completion of the (halting) computation.

Consider a universal Turing machine U running some programs P . Our
machine U has an output classical one-bit register i (see Figure 3) which is
initially zero. The value of i will toggle between 0 and 1, depending on whether
the computation of U on P is progressing towards the halting state. For a given
input program P define the halting function:

HU (P ) =

{
0, U loops on input P,
1, U halts on input P.

We are ready to state our first result: There exists a computer and physical
environment which computes probabilistically the halting function HU .

Here is the argument. Consider the device consisting of the universal Turing
machine U , a program P to be executed on U , and the output register i; see
Figure 3. Assume that P halts with probability p and consider the experiment
illustrated in Figure 4. The photon going through the lower path starts the
computation on U and is connected to the output register i; any modification
in i affects the trajectory state of the photon. An input photon splits one half
of the time towards the mirror and one half of the time towards the universal
Turing machine; in the last case it will start the computation U(P ). If U(P )
never halts and the initial value for i was 0, then running P on U will have
no effect on i. If U(P ) eventually halts, then running P on U will determine
a finite computation at the end of which i = 1; however, in this situation we
know nothing about the duration of the computation! To avoid this we just
wait a predetermined infinitesimal amount of time, not for the completion of
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Figure 3: An universal Turing machine with a halting register.

the computation. If the computation stops within this interval we know for
sure that U(P ) stops and i changes its value to 1; if the computation has not
stopped in the given time, then we use the counterfactual effect: U(P ) stops
with probability p

2 .
Initially U is in state off and i = 0. The aim is to compute the halting prob-

ability of U(P ). If U does not halt on P , then we end up in B with probability
1 − p

2 . The fact that U halts on P can be detected on A with probability p
2 .

The quantum experiment is configured so that the final quantum state of the
photon is based only on the potential value of register i. The mere potential
starting of an eventually ending computation will be detectable by detector A.
We do not have to wait until the computation actually ends ! The “cause”, i.e.,
the actual end of the computation does not have to be reached to produce the
“effect”, that is the hesitation detected by A.

We may ask ourselves the question: is this a realistic assumption? The
computation of the halting probability of a universal self-delimiting computer
(first done by Chaitin [9] [10]; see also Calude [5]) shows that the longer P
becomes, the smaller its halting probability becomes; p tends to 0 as the length
of P goes to infinity. So, only a tiny finite number of all programs may halt
with a high probability.5 Running the experiment repeatedly leads to the correct

detection with probability about p
2 + p2

4 + · · · (p2 )n + · · · = p
2−p . For p = 1

2 we

get about 1
3 ; for p approaching 1 we obtain 1

2 . More importantly, for p ≥ 2
3 the

asymptotic efficiency of the iterated procedure will be greater than 1
2 .

Of course, if p is pretty small, then we can run the same experiment using
the hypothesis is that P eventually halts: i = 1. In this case the chance of
computing the non-halting probability is now better: 1−p

2 .
Now that we have shown that the undecidable halting problem can be re-

5Davis [7] shows that if we tolerate one failure in a thousand of elementary instructions,
and the probability of success in one such elementary instruction is 1− 1

m
, then we should not

carry on more than m/1000 instructions. As the number of instructions executed by current
computers is enormous, the chance of failure is far from infinitesimal in terms of lifetime
probabilities.
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Figure 4: The schematics for (almost?) solving the halting problem.

alized with probability greater than 1
2 , we can easily apply the result to show

that noncomputable functions can be computed in this physical environment.
Consider the busy beaver problem as proposed by Rado in 1962 [18]. The busy
beaver function B(n) denotes the maximum number of 1’s any n-state Turing
machine over the two-symbol alphabet Σ = {0, 1} may output on an initially
blank (0-filled) tape.6

Our second result is: There exists a computer and physical environment
which computes the busy beaver function B(n) with probability greater than 1

2 .
Here is the argument. Assume that the halting problem can be computed

with high probability p1 >
1
2 . Let Tn denote the set of Turing machines with

n states and alphabet Σ = {0, 1}. To compute B(n) we simply decide whether
each n-state Turing machine T in Tn halts with amplified confidence

p2 > p
1
|Tn|

1 .

This is obtained by using one or more of the performance techniques mentioned
earlier. We then simulate on a conventional universal Turing machine each
of those ‘halting’ T and note the largest output as the value of B(n). This

procedure is guaranteed to halt with probability greater than p
|Tn|
2 > 1

2 and
will correctly compute the busy beaver function with probability greater than
p2 �

1
2 .

3 Conclusions

The computational procedures described in this paper are probabilistic (one
can argue that all mathematical proofs or computer programs are ultimately

6The only known values are B(1) = 1, B(2) = 4, B(3) = 6, B(4) = 13, and B(5) ≥ 1915.
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probabilistic, see Davis [7], De Millo, Lipton, Perlis [8]), but go beyond the
capability of any classical computation: even the best probabilistic algorithms
are not able to achieve this computational power (by a classical result [11],
probabilistic algorithms are equivalent to Turing machines).
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