
CDMTCS
Research
Report
Series

Abstracts: Constructivity,
Complexity, and Fuzziness
(CCF ’99)

D.S. Bridges, C.S. Calude and
L.S. Dediu (Editors)

CDMTCS-110
July 1999

Centre for Discrete Mathematics and
Theoretical Computer Science



Constructivity, Complexity, and Fuzziness (CCF ’99)

University “Dunărea de Jos”
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Introduction

These are the abstracts of talks to be given at the Workshop CCF ’99 (Constructivity, Complex-
ity, and Fuzziness) to be held at the University “Dunărea de Jos”, Galaţi, Romania, on 26–28 August
1999. The workshop was organised by the University “Dunărea de Jos”, Galaţi, Romania, the Centre
for Discrete Mathematics and Theoretical Computer Science, University of Auckland, New Zealand
and the Department of Mathematics and Statistics, University of Canterbury, Christchurch, New
Zealand.

In most cases the abstract refers to a single lecture on an aspect of one of the three subjects
in the title of the workshop; but Bridges will give two lectures, introducing modern developments
in constructive mathematics. Invited speakers are D. S. Bridges, T. Buhăescu, C. .S. Calude,
H. Ishihara, P. Odifreddi and L. Staiger.

The Conference Committee for the workshop consisted of the following people: Douglas S.
Bridges, Canterbury, New Zealand; Cristian S. Calude, Auckland, New Zealand; Luminiţa Simona
Dediu, Canterbury, New Zealand, and Galaţi, România; Mihaela Baroni, Galaţi, România. The
Program Committee included the following people: Douglas S. Bridges; Toader Buhaescu, Galaţi,
România; Cristian S. Calude; Luminiţa Simona Dediu; Peter Schuster, München, Germany; Ludwig
Staiger, Halle, Germany; Doru Stefanescu, Bucharest, România; Petru Vâţă, Galaţi, România.

The actual organisation of the workshop was carried out by staff at the University of Galaţi, led
by Professor Toader Buhaescu. Luminiţa Simona Dediu did much of the spade–work in the final
weeks of preparation. We are most grateful to all those who put in so much effort to ensure that
the meeting was a success, both professionally and socially. Special thanks are due to the Dean of
the Faculty of Sciences of the University of Galaţi, Associate Professor Petru Vâţă.

For more details about the Workshop CCF ’99 see

http://www.informatik.uni-halle.de/ staiger/galati.html.

D.S. Bridges
C.S. Calude
L.S. Dediu
Christchurch, Auckland, Galaţi
July 1999



Abstracts

Semi–Qualitative Encoding of Manifestations at Faults in Conductive Flow Systems

Viorel Ariton
The University “Dunărea de Jos”, Galaţi,

Romania
E-mail: vio@cs.ugal.ro

The fault diagnosis problem of real systems involves approximate reasoning because of the im-
precise data and the incomplete knowledge of the human expert on the system faulty behavior.
Furthermore, the human diagnostician knowledge refers to qualitative relations between linguistic
variables on the observations made during the system running. The paper is a study on the fuzzy
encoding of manifestations at fault, as deviations of the power variables (i.e. pressure like and
flow-rate like variables) from the normal values, in conductive flow systems. The semi-qualitative
encoding concerns the possibility sub-domains of a power variable related to the target system nor-
mal and abnormal behavior. In the presented approach, at knowledge acquisition phase, the expert
must assert only the normal sub-domain, and only for the power variables directly related to the
process ends (goals). Meaningful sub-domains for other variables - about which the human expert
has few or no information on the propagated effects, may be deduced based on specific qualitative
relations between power variables in the systems that involve flow conduction. The conductive flow
system model is meant in terms of bond graphs, and the power variables are fuzzy variables that
enter specific balance equations, stated by the conduction laws and the power restrictions that apply
in the real system’s running. The paper presents a new fuzzy arithmetic approach, appropriate to
fuzzy addition of the intensive/extensive power variables, as negative correlated variables. With
the proposed method one may obtain fuzzy subsets for the summed variables, in the bond graph
junctions of the target conductive flow system, then obtain the fuzzy partition of the variables with
no prior knowledge on the secondary effects at fault.

Constructive Mathematics—A Modern Perspective

Douglas S. Bridges
University of Canterbury

Christchurch, New Zealand
E-mail: d.bridges@math.canterbury.ac.nz

Although the origins of modern constructive mathematics lie in the philosophical–polemical work
of L.E.J. Brouwer, most of the development of the subject has taken place in the past 42 years,
following the appearance of Errett Bishop’s monograph Foundations of Constructive Analysis, in
which, for the first time, it was clearly shown that a systematic development of twentieth–century
analysis could be carried through constructively. Since then, constructive methods have been applied
successfully across a wide range of mathematics, covering algebra, analysis, topology, and even
mathematical economics.

In these lectures I will present constructive mathematics, in a philosophy–independent fashion,
as a natural way of approaching questions of computability in mathematics by changing the logic,
rather than by working with a restrictive notion of algorithm. A tentative plan for the lectures is
the following.
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Lecture 1. Origins of constructivism in mathematics: Brouwer, Markov, recursive
mathematics, and Bishop. The multiplicity of interpretations of constructive proofs.
Intuitionistic logic and ZF set theory. Constructive axioms for the real line R. The
completeness of R and its peculiarly constructive applications. Lebesgue measure.

Lecture 2. The constructive theory of metric, normed, and Hilbert spaces. Recent
developments in constructive operator and operator algebra theory (adjoints, numerical
ranges, ultraweakly continuous linear functionals, ...).

It is unlikely that I will be able to cover all the topics mentioned above, but it should be possible
to cover sufficient to give mathematicians, from senior undergraduate level up, a feel for the style
and scope of an alternative approach to computable mathematics.

Uninorm Aggregation Operators and Implication Operators in the Intuitionistic
Fuzzy Sets Class

Toader T. Buhăescu
The University “Dunărea de Jos”, Galaţi

Romania
E-mail: tbuhaescu@math.ugal.ro

It is known from the fuzzy literature that the concept of implication operator is vital for the-
oretical development as well as for the practical applications. The present paper deals with the
implication opearators in the theory of intuitionistic fuzzy sets, that is, in the intuitionistic fuzzy
logic.

The collection of intuitionistic fuzzy sets in the universe E is denoted by IFS(E) and defined as
follows

IFS(E) = {A = 〈A+, A−〉 : A+, A− : E → [0, 1] and∀x ∈ E(A+(x) +A−(x) ≤ 1)}.

The set operations in IFS(E) induce an algebraical structure which is isomorphic to {L,∨,∧, c},
where

L = {a = 〈a+, a−〉 : a+, a− ∈ [0, 1] anda+ + a− ≤ 1)}

a ∨ b = 〈a+ ∨ b+, a− ∧ b−〉

a ∧ b = 〈a+ ∧ b+, a− ∨ b−〉
ca = 〈a+, a−〉

x ∨ y = max(x, y)

x ∧ y = min(x, y).

Yager and Ribalov ([4]) noticed that t–norms and t–conorms have the same properties, except
for the unit element (t–norms have 1, t–conorms have 0 as a unit element). They took a single
element e to be the unit for both operations.

An implication operator in the intuitionistic fuzzy logic is a mapping I : L× L→ L of the form
I(a, b) = 〈I+(a−, b+), I−(a+, b−)〉, with I+, I− : [0, 1]× [0, 1]→ [0, 1]. The mappings I+, I− play the
role of the implication operators in the fuzzy logic. We study the properties of the intuitionistic fuzzy
implication operators in general and in particular those regarding the axioms of Smets and Magrez.
Also we propose a generalized modus ponens, using an uninorm aggregator and some intuitionistic
fuzzy operators.
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Incompleteness and Constructivity

C.S. Calude
The University of Auckland

Auckland, New Zealand
E-mail: cristian@cs.auckland.ac.nz

A constructive analysis of the incompleteness phenomenon, based on classical results by Gödel,
Turing and Chaitin, and (very) recent refinements proposed by Solovay and Raatikainen, will be pre-
sented. In particular, a positive answer to the question “does incompleteness concern (constructive)
mathematics?” will be argued. Finally, a few open problems will be reviewed.

References

1. Calude, C.S., Chaitin, G. J. Randomness everywhere, Nature, July 1999, in press.

2. Calude, C.S., Hertling, P., Khoussainov, P.B., Wang, Y. Recursively enumerable reals and
Chaitin Ω numbers, Theoret. Comput. Sci., in press. Extended abstract in M. Morvan,
C. Meinel, D. Krob (eds.). STACS’98, Proceedings of the 15th Annual Symposium on Theo-
retical Aspects of Computer Science, Paris, 1998, Lectures Notes in Computer Science 1373,
Springer-Verlag, Berlin, 1998, 596-606.

3. Chaitin, G.J. The Limits of Mathematics (Springer-Verlag, Singapore, 1998).

4. Chaitin, G.J. The Unknowable (Springer-Verlag, Singapore, 1999).

5. Delahaye, J.-P. Complexité, information et hasard (Hermes, Paris, 1994).

6. Raatikainen, P. On interpreting Chaitin’s incompleteness theorem, J. Philosophical Logic 27,
569-586 (1998).

7. Slaman, T.A. Randomness and recursive enumerability,

http://math.berkeley.edu/ slaman/papers/random.pdf.
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8. Solovay, R.M. A version of Omega for which ZFC can not predict a single bit, CDMTCS
Research Report 104 (19 May 1999);

http://www.cs.auckland.ac.nz/staff-cgi-bin/mjd/secondcgi.pl.

Generalizing Fuzziness–An Algebraic Challenge

Rodica Ceterchi
The University of Bucarest

Romania
E-mail: rc@funinf.math.unibuc.ro

The algebraic counterpart of fuzzy set theory is the concept of Many-Valued algebra (MV alge-
bra), which plays, with respect to many-valued logic. the same role as boolean algebra plays with
respect to classical two-valued logic.

Recently, a non-commutative generalization of MV algebras was proposed by G. Georgescu and
A. Iorgulescu, under the name of pseudo–MV algebras. An equivalent concept, that of pseudo-
Wajsberg algebra was introduced and studied by the author.

The purpose of our paper is to present this concept, together with other, even weaker general-
izations. All these concepts present a challenge as to their interpretation in terms of “fuzziness”.

Compromise and Fuzzy Object in Schedule’s Problem

Liliana Cucu
The University “Dunărea de Jos”, Galaţi

Romania
E-mail: lcucu@math.ugal.ro

Chromatic number of a graph gives solution for the problem of conflicts when the conflicts
are seen as edges and the adjacent vertex as contradictory elements. When there are too many
constraints, we are no longer looking for the optimal solution, but for an admissible one. This leads
us to considering the notion of compromise. To model the compromise we use values from 0 to 1
according to the intensity of conflicts. We add a program in Borland Delphi to illustrate the theory.
We conclude with an application in problem of schedule that permits to compromise.

References

1. Corneliu Croitoru, Tehnici de baza in optimizarea combinatorie, Editura Universitatii Al. I.
Cuza, (1992).

2. Alain Hertz, La coloration des sommets de’un graph et son application a la confection
d’horaires, Lausanna,(1989).

3. Leon Livovschi and Horia Georgescu, Sinteza si analiza algoritmilor, Editura Stiintifica si
eniclopedica, Bucuresti, (1986).

4. Elefterie Olaru, Introducere in teoria grafurilor, Editura Universitatii Al. I. Cuza, Iasi, (1975).
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Embedding a Linear Subset of B(H) in the Dual of its Predual

Luminiţa Dediu
The University of Canterbury, Christchurch

New Zealand
and

The University “Dunărea de Jos”, Galaţi
Romania E-mail: lde15@student.canterbury.ac.nz; ldediu@math.ugal.ro

In this paper we continue the study of spaces of operators on a Hilbert space within constructive
mathematics, as part of a programme for the systematic constructive development of the theory of
operator algebras (see [5], [6]). The embedding of a linear set of bounded operators on a separable
Hilbert space as a dense subset of the dual of its predual is explored constructively.

References
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95(1), 11–25, 1981.

4. Douglas Bridges, “A constructive look at the real number line”, Kluwer Academic Publishers,
29–92, 1994.

5. Douglas Bridges and Luminiţa Dediu, “Weak–operator continuity and the existence of ad-
joints”, Math. Logic Quarterly, 45(2), 203–209, 1999.

6. Douglas Bridges and Luminiţa Dediu, “Constructing Extensions of Ultraweakly Continuous
Linear Functionals”, preprint.

7. D.S. Bridges and N.F. Dudley Ward, “Constructing ultraweakly continuous functionals on
B(H) ”, Proc. Amer. Math. Soc. 126(11), 3347–3353, 1998.

8. Douglas Bridges and Fred Richman, Varieties of Constructive Mathematics, London Math.
Soc. Lecture Notes 97, Cambridge University Press, 1987.

9. Luminiţa Dediu and Douglas Bridges, “Constructive notes on uniform and locally convex
spaces”, to appear in: Fundamentals of Computation Theory, (G. Ciobanu, GH. Păun eds.),
12th International Symposium FCT’99, Iasi, Romania, xii+568p., LNCS 1684, Springer-
Verlag, 1999.

10. Ker-i Ko, Complexity Theory of Real Functions, Birkhaüser, Boston, 1991.

11. R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras (Vol. I),
Academic Press, New York, 1983.

12. A.S. Troelstra and D. van Dalen, Constructivity in Mathematics: An Introduction (two vol-
umes), North Holland, Amsterdam, 1988.
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A Characterization of the Free-Extendible Prefix Free Sets and its Use in Extending
the Kraft-Chaitin Theorem

Cristian Grozea
The University of Bucarest

Romania
E-mail: chrisg@phobos.cs.unibuc.ro

First, the dual set of a finite prefix free set is defined. Using this, a theorem is then proved, that
describes the equivalent conditions for a finite prefix free set to be indefinitely extendible. Finally,
there is a discussion on the influence of the alphabet size over the indefinite extensibility property.

References

1. C. Calude. Information and Randomness. An Algorithmic Perspective, Springer-Verlag, New
York, 1994.

2. C. Calude and C. Grozea. Kraft-Chaitin inequality revisited, J. UCS 2 (1996), 306-310.

3. I. Măndoiu. Optimum extensions of prefix codes, Information Processing Letters 66 (1998),
35-40.

4. I. Măndoiu. Kraft-Chaitin’s theorem for free-extensible codes, Studii şi Cercetări Matematice
44 (1992), 497-501.

Feasibly Constructive Analysis

Hajime Ishihara
School of Information Science

Japan Advanced Institute of Science and Technology
Tatsunokuchi, Japan

E-mail: ishihara@jaist.ac.jp

In the constructive theory of real numbers developed, for example in [4, Chapter 5], we assume
that a universe U of sequences of natural numbers satisfies certain closure conditions; a very weak
axiom of choice QF-AC00 expressing the fact that U is closed under recursive in is assumed in [4,
Chapter 5].

On the other hand, various classes of functions on (sequences of) natural numbers have been
defined as function algebras [1]; a function algebra is the smallest class of functions containing
certain initial functions and closed under certain operations (especially composition and recursion
scheme). For example, A. Cobham [2] characterized the polynomial time computable functions as
the smallest class closed under bounded recursion on notation; see [3] for other characterizations of
the polytime functions.

We give some elementary results and problems on the constructive theory of real numbers and
analysis with a universe U which is closed under a recursion scheme characterizing the polytime
functions.
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Computable p–adic Numbers

George Kapoulas
Economics Department

University of Crete
Greece

E-mail: gkapou@math.ntua.gr

In the present the notion of a computable p–adic number is introduced. The definition is analogous
to the definition of the computable real number. We consider the topological completions of the
field of the rational numbers w.r.t the p–adic metric and impose consructivity restrictions on the
notion of Cauchy sequence in order to obtain the computable, primitive recursive and polynomially
time computable p–adic numbers. We study the properties of the field of the computable p–adic
numbers and abstract the properties of the natural numbers that represent the computable p–adic
numbers and obtain characterizations of such sets of natural numbers representing the computable
p–adic numbers.
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The Recursive Universe

Piergiorgio Odifreddi
Turin University

Turin, Italy
E-mail: piergior@di.unito.it

The universe of recursive sets is a microworld of the universe of all sets. In this talk I will give
an overview of subrecursive classes, from very small time and space bounds to very fast-growing
functions. The study of recursive sets is worth pursuing not only for its own sake, due to the
importance of such sets, but also because it shows the interconnections of a number of different
branches of logic, from complexity theory to proof theory.

A few words will be spent on the problem of classifying the recursive sets completely, and argu-
ments will be given to show that a complete and natural classification is impossible to obtain.
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2D Orthogonal Grid Generation with Elliptic Partial Differential Equations

Florin Popescu
The University “Dunărea de Jos”, Galaţi

Romania
E-mail: fipopes@math.ugal.ro

A numerical method and a MATLAB code for two-dimesional orthogonal grid generation is
presented. The code generates body fitted coordinates by solving a pair of elliptic partial differential
equations for the coordinates x and y, subject to boundary conditions which the user dictates by
specifying the geometry and number of nodes. The solution method is succesive over-relaxation
(SOR). An investigation of the effects of P and Q terms on interior grid points distribution is
performed.
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Ideals Versus Coideals in Constructive Mathematics

Peter M. Schuster
Mathematisches Institut der Universität München

München, Germany
E-mail: pschust@rz.mathematik.uni-muenchen.de

Based on the various concepts of a complement that appear in constructive mathematics, we
undertake an investigation of the interplay between ideals and coideals in a commutative ring with
inequality. Whereas ideals appear naturally and can easily be presented by means of generators,
coideals seem to constitute the more appropriate concept from some constructive points of view.
Our work is intended to clarify the given situation, also with respect to the current practice of
computational algebra. Particular attention is paid to chain conditions, to minimality and maxi-
mality properties, to the various constructive notions of prime (co)ideals, and to the relationship of
(co)ideals with the corresponding quotient rings.
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Complexity and Dimension

Ludwig Staiger
Martin-Luther-Universität Halle-Wittenberg

Institut für Informatik
Kurt-Mothes-Str.1

D–06120 Halle, Germany
E-mail: staiger@cantor.informatik.uni-halle.de

The concept of Kolmogorov or program size complexity measures the information content of a
(finite) string as the size of the shortest program that computes the string, that is, the complexity
of a string is the amount of information necessary to print the string.

For infinite strings the growth of the Kolmogorov complexity of the finite prefixes measures
the amount of information which must provided in order to specify a particular symbol of this
string. This shows that Kolmogorov complexity, as a theory, is a counterpart to the statistical
information theory. Average information is known as entropy. Consequently, one expects that there
are relationships between the theory of Kolmogorov complexity, which could be called Algorithmic
information theory and classical information theory.

Starting from a well-known connection between the Kolmogorov complexity of finite words and
a combinatorial kind of entropy, also known as Shannon capacity, we look for closer relationships
between Algorithmic information theory and its classical counterpart. As a matter of fact, when
looking for combinatorial rather than for probabilistic counterparts of entropy, it turns out that
these can be found in geometric measure theory or, as it is now better known as a popular branch
of mathematics related to computer science, Fractal geometry.

The talk presents some evidence for a close relationship between Kolmogorov complexity and
information-like –or rather, entropy-like– measures investigated in Fractal geometry. We consider,
as mentioned above, for infinite strings, the amount of information which must provided in order to
specify a particular symbol of this sequence. This quantity can be measured using (the first order
approximation of) the Kolmogorov complexity of infinite strings.

On the other hand, a set of infinite strings (ω-words) can be measured using entropy-like size-
measures, so-called dimensions known from geometric measure theory or from the theory of dy-
namical systems. We consider here Minkowski (or box-counting) dimensions and the Hausdorff
dimension.

It turns out that for computable sets of strings the mentioned dimension provide upper and lower
bounds to the Kolmogorov complexity of maximally complex strings in the respective sets.

As computable sets of infinite strings we consider the following ones:
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1. ω-languages of the first levels of the Arithmetical hierarchy

2. ω-languages defined by finite automata, so-called regular ω-languages

3. ω-languages defined as infinite products of recursive or recursively enumerable languages, so-
called ω-power languages

4. ω-languages having certain combinatorial growth properties
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Inequalities on Divisors of Integer Polynomials

Doru Ştefănescu
The University of Bucharest

Romania
E-mail: stef@zbl.imar.ro
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We obtain new inequalities on divisors of integer polynomials. Our results improve an inequal-
ity on Bombieri’s l2–weighted norm. We also obtain limits for the smallest divisor of an integer
polynomial. In particular such bounds are very useful for algorithms of factorization of integer
polynomials.

For obtaining refined inequalities we look not only to extremal coefficients in a general inequality
on Bombieri’s norm, as done by B. Beauzamy, but also to an arbitrary coefficient of a divisor. This
idea was successfully used by V. Gonçalves to improve the inequality of E. Landau between the
measure and the quadratic norm.

Our results improve the following evaluations of B. Beauzamy and M. Mignotte and Ph. Glesser,
respectively:

H(Q) ≤
33/4 · 3n/2

2(πn)1/2
[P ]2 , (1)

b(P ) ≤

(
max

1≤d≤n/2

{(
d

bd/2c

)(
(n− d)

b(n− d)/2c

)})1/2

M(P )1/2 , (2)

where [P ]2 =
√∑n

j=0 |aj |
2/
(
d
j

)
is Bombieri’s weighted l2–norm, H(P ) = max

{
|a0|, |a1|, . . . , |an|

}
is the height, M(P ) = exp

{∫ 1

0
log
∣∣P (e2iπt

∣∣dt} and
∫ 1

0
log
∣∣P (e2iπt

∣∣dt are measures, and b(P ) =

mini
{

H(Qi) ; Qi is a divisor of P
}
.
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