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Open Problems in the Theory of Constructive Algebraic
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Sergey Goncharov and Bakhadyr Khoussainov

Abstract. In this paper we concentrate on open problems in two directions
in the development of the theory of constructive algebraic systems. The first
direction deals with universal algebras whose positive open diagrams can be
computably enumerated. These algebras are called positive algebras. Here we
emphasize the interplay between universal algebra and computability theory.
We propose a systematic study of positive algebras as a new direction in the
development of the theory of constructive algebraic systems. The second di-
rection concerns the traditional topics in constructive model theory. First we
propose the study of constructive models of theories with few models such as
countably categorical theories, uncountably categorical theories, and Ehren-
feucht theories. Next, we propose the study of computable isomorphisms and
computable dimensions of such models. We also discuss issues related to the
computability-theoretic complexity of relations in constructive algebraic sys-

tems.

1. Introduction

The use of constructive objects (e.g. numbers, symbols) has played a signifi-
cant role in the development of mathematics. Greeks and Persians were fascinated
with what can be constructed and studied using symbols. For example, they wanted
to find explicit formulas for solutions of algebraic equations. This approach con-
tinued into the middle of the nineteenth century, when Kronecker used explicit
formulas and algorithms in the study of algebra and geometry. Newton and Leib-
niz solved geometric and physical problems by translating them into symbolic form.
In the 1930s the work of Church, Kleene and Turing formalized the notion of com-
putable functions, that is, the functions that can be computed algorithmically. In
the 1930s Church and Kleene applied the notion of a computable function to study
the effective content of the theory of ordinals. In the late 1930s the algebraist van
der Waerden considered and studied fields given explicitly, where “a field ∆ is given
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explicitly if its elements are uniquely represented by distinguishable symbols with
which addition, subtraction, multiplication and division can be performed by a fi-
nite number of operations”. By the end of the 1940s the definition of a computable
function and the Church-Turing thesis were widely accepted. In the 1950s Frölich
and Shepherdson introduced and studied recursive fields by formalizing the notion
of “fields given explicitly”. Later Rabin continued research on recursive fields and
provided examples of recursive fields that fail to have factorization algorithms. In
the 1960s Malcev began a systematic study of interactions between algebra, model
theory and computability theory. In the early 1970s fundamental work of Ershov
and Nerode led to a vast amount of research in the former Soviet Union and the
United States in the area. The area has now become known as the theory of con-
structive (effective, computable) algebraic systems. A goal of this theory is to study
the effective content of the techniques, concepts and theorems in the theory of alge-
braic systems, in particular in model theory and universal algebra. The area is also
devoted to the study of interactions between notions and concepts of computability
theory and the theory of algebraic systems.

In this paper we discuss some open problems in the theory of constructive al-
gebraic systems and suggest possible directions for further research in the area.
We emphasize two directions. The first direction of research is quite general and
proposes a systematic development of the theory of positive (or equivalently, com-
putably enumerable) algebras. Generally speaking these are universal algebras
whose positive atomic diagrams can be computably enumerated. For example,
recursively presented algebras (e.g. finitely presented groups, rings, etc.) have com-
putably enumerable (c.e.) positive diagrams. The Lindenbaum Boolean algebras of
computably enumerable theories (e.g. Peano arithmetic) also have c.e. positive dia-
grams. We suggest the systematic development of the area of positive algebras and
think that results and methods of computability theory can fruitfully be applied
here. The second direction is more specific and concentrates on traditional topics
in the theory of constructive algebraic systems. In particular, the paper is devoted
to the study of constructive models of countably categorical theories, uncountably
categorical theories, and Ehrenfeucht theories. In this direction we specify three ar-
eas of research and open problems. The first area is related to constructing models,
the second area is related to the study of computable isomorphisms of constructive
models, and finally the third area is related to the study of computability-theoretic
properties of relations in constructive algebraic systems.

The paper consists of five sections including the introduction, conclusion, and
references. In the next section we provide the basic notions about numbered al-
gebraic systems and models. The section introduces positive universal algebras,
contains some results about these algebras, and suggests a systematic development
of the theory of positive algebras. The next section, Section 3, considers the ques-
tions related to finding constructive presentations (also known as computable pre-
sentations or constructivizations) of models of countably categorical, uncountably
categorical, and Ehrenfeucht theories. Section 4 is devoted to the study of com-
putable isomorphisms of models. As in the previous section, an emphasis is given
to problems related to computable isomorphisms of models of countably categori-
cal, uncountably categorical, and Ehrenfeucht theories. The section also discusses
topics related to the dependency of computability-theoretic properties of relations
on constructive presentations. Finally, the last section is a conclusion.
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We assume that the reader knows some basic facts and concepts from model
theory, universal algebra, and computability theory. Some knowledge of the first
several chapters of the classic textbooks by Chang and Keisler on model theory [4],
Grätzer on universal algebra [15], Soare on computability theory [39], and Malcev
on general theory of algebraic systems [31] will suffice to follow the paper. We
will assume that all algebraic systems considered in this paper are countable unless
otherwise stated.

2. Numbered Algebraic Systems

The goal of this section is twofold. On the one hand, we give definitions
of constructive and positive algebraic systems, the central notions of this paper.
On the other hand, we propose a development of the theory of positive universal
algebras, a relatively new area in the field of constructive algebraic systems. This
section of the paper consists of five parts. The first part gives basic terminology
about numberings. The second and third parts define constructive algebraic systems
and positive universal algebras. The last two parts study some general properties
of positive algebras.

2.1. Basics of Numeration Theory. In the theory of constructive al-
gebraic systems the notion of numbering plays a central role. A numbering of a
set A is a map ν : ω → A from the set ω of natural numbers onto the set A. The
pair (A, ν) is then called a numbered set. For an element a ∈ A, if ν(n) = a
then n is called a ν-name of the element. The basic idea in the definition of
a numbering is to give constructive names to the elements of the set A, and thus,
in some sense, to coordinate or represent elements of the set A by constructive
means. Note that the same element a ∈ A can have several ν-names. A natural set
associated with the numbering ν is the equivalence relation Eν on the set ω that
identifies those numbers x, y that name the same element. Formally, we give the
following definition:

Definition 2.1. Let (A, ν) be a numbered set. The equivalence relation
induced by ν is the set Eν = {(x, y)|ν(x) = ν(y)}.

Given two numberings ν and µ of the set A, from a computational point of view,
one is naturally interested in how these two numbering are related to each other.
This leads one to the following natural notion of a reducibility between numberings
of the set A. A numbering ν is reducible to a numbering µ, written ν ≤ µ, if there
exists a computable function from ω into ω such that ν(n) = µ(f(n)) for all n ∈ ω.
Informally, this means that there exists an effective procedure that applied to any
ν-name of an element produces a µ-name of the same element. Two numberings ν
and µ are equivalent if ν ≤ µ and µ ≤ ν. Let N(A) be the set of all equivalence
classes of all numberings of A. The reducibility relation naturally induces a partial
order, also denoted by ≤, on N(A). Thus, we have a partially ordered set (N(A),≤)
which constitutes one of the main objects of study in the theory of numerations [5].
Note that this partially ordered set is an uppersemilattice, where the join operation
ν1 ⊕ ν2 is defined as follows. For all n ∈ ω if n = 2k then ν1 ⊕ ν2(n) = ν1(k); if
n = 2k+ 1 then ν1 ⊕ ν2(n) = ν2(k). An interesting note is that when A consists of
exactly two elements then the semilattice (N(A),≤) is isomorphic to the semilattice
of all many-one reducibility degrees.
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Depending on the set A, one considers certain types of numberings which can be
of some interest. For example, A can be a set of some c.e. sets (or computable func-
tions) in which case numberings known as computable numberings are of particular
interest. A numbering ν of A is called computable if the set {(n,m)|n ∈ ν(m)}
is a c.e. set. For example, the standard Kleene enumeration of all c.e. sets is a
computable numbering. Informally, if A has a computable numbering then one can
uniformly list all sets in A possibly with repetitions. This leads to considering the
set NC(A) of all equivalence classes of computable numberings and studying the
partially ordered set (NC(A),≤). Computable numberings have been extensively
studied, especially by the Novosibirsk school of logic. The paper by Badaev and
Goncharov in this volume discusses issues related to the theory of numberings. We
also refer the reader interested in the subject of the theory of numberings to the
book by Ershov[5].

2.2. Numbered Algebraic Systems. We fix a language L =<
fn0
0 , fn1

1 , . . . , Pm0
0 , Pm1

1 , . . . , c0, c1, . . . > for which the functions i→ ni and j → mj

are computable. Such languages are called computable languages. The symbols
fni

i and Pmj

j are operation and predicate symbols, respectively. If the language con-
tains no predicate symbols, then the algebraic systems of the language are called
universal algebras, or for short algebras. We denote algebraic systems by letters
A, B, etc. The domains are, respectively, denoted by A, B, etc. A numbered
algebraic system is a pair (A, ν), where ν is a numbering of the domain of A.

In order to motivate our next definitions we recall several notions from model
theory. Let A be an algebraic system. When one is interested in properties of
A from the predicate calculus point of view, e.g. the space of types of A, ele-
mentary embeddings of A, first order definable relations on A, then the full di-
agram of A, that is the set FD(A) = {φ(a1, . . . , an) | φ(x1, . . . , xn) is a for-
mula, A |= φ(a1, . . . , an), a1, . . . , an ∈ A}, gives the necessary information
about the properties. On the other hand, when one is interested in A from an
algebraic point of view, e.g. subsystems of A, embeddings of A, homomorphisms
of A, then it is natural to consider the atomic diagram of A, that is the set
AD(A) = {φ(a1, . . . , an) | φ(x1, . . . , xn) is an atomic formula or a negation of
an atomic formula, A |= φ(a1, . . . , an), a1, . . . , an ∈ A}.

As we introduce numberings of the algebraic systems, one can consider the full
and atomic diagrams of these systems under the numberings. Formally, let (A, ν)
be a numbered algebraic system. We expand the system by adding new constants
ai to the language L so that the value of each ai is the element ν(i) for all i ∈ ω. Let
L1 be the expanded language. The full diagram of A under the numbering
ν is FDν(A) = {φ(ν(i1), . . . , ν(in)) | A |= φ(ν(i1), . . . , ν(in)), and φ(x1, . . . , xn)
is a formula of L1, i1, . . . , in, n ∈ ω}. Similarly, the atomic diagram of A
under the numbering ν is ADν(A) = {φ(ν(i1), . . . , ν(in)) | φ(x1, . . . , xn) is an
atomic formula or the negation of an atomic formula of L1, i1, . . . , in ∈ ω, and
A |= φ(ν(i1), . . . , ν(in))}. Here is a central definition of this paper.

Definition 2.2. A pair (A, ν) is a strongly constructive algebraic sys-
tem if the set FDν(A) is a computable set. In this case, ν is called a strong
constructivization of A. Similarly, the system (A, ν) is constructive if the set
ADν(A) is a computable set. In this case, ν is called a constructivization, or
equivalently a constructive presentation of A.
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Clearly every strongly constructive algebraic system is a constructive one. The
converse does not always hold as (ω,+,×,≤) is an example of a constructive but
not strongly constructive system whose constructivization is the identity mapping.

We say that two constructive models (A, ν) and (A, µ) are computably iso-
morphic if there exists an automorphism α : A → A and a computable function
f : ω → ω such that α(ν(n)) = µ(f(n)) for all n. In this case the constructivizations
ν and µ are called autoequivalent constructivizations. In other words, autoequiv-
alent constructivizations are those that are equivalent up to an automorphism of
the system.

Lemma 2.3. Any constructive system (A, ν) is computably isomorphic to a con-
structive system (A, µ) such that µ is a one to one mapping.

Proof. Since ν is a constructivization, the equivalence relation Eν =
{(n,m)|ν(n) = ν(m)} is a computable set. Let k0 < k1 < k2 < . . . be an ef-
fective list of all minimal elements in the Eν-equivalence classes. For every n ∈ ω,
set µ(n) = ν(kn). Clearly, µ is a one to one constructivization that is equivalent to
ν. This proves the lemma.

In the literature there is an equivalent terminology for constructive models and
constructivizations that does not refer to numberings. These are computable alge-
braic systems and computable presentations. An algebraic system is called com-
putable if the domain of the system is ω and the atomic diagram is a computable
set. Clearly, every computable system is a constructive system whose construc-
tivization is the identity mapping from ω onto ω. An algebraic system is called
decidable if the domain of the system is ω and the full diagram is a computable
set. Clearly, every decidable system is a strongly constructive system. The lemma
above shows the opposite, that is, every constructive (strongly constructive) al-
gebraic system can be considered as a computable (decidable) algebraic system.
Indeed, assume that (A, ν) is a constructive algebraic system. Then by the lemma
above, we can assume that ν is a one to one mapping. The numbering ν naturally
induces an algebraic system with domain ω isomorphic to A. If (A, ν) is construc-
tive then the system induced is computable. If (A, ν) is strongly constructive then
the system induced is decidable.

2.3. Numbered Algebras. Fix a computable language L =< fn0
0 , fn1

1 , . . . >
with no predicate symbols. The algebraic systems of the language are now algebras.
The study of numberings of algebras is of particular interest from a computability
point of view because any algebra can be numbered in such a way that all the
basic operations of the algebra become computable under the numbering. In other
words, any algebra can, in some sense, be effectivized if it is numbered properly.
To formalize this we give the following definition.

Definition 2.4. A numbered algebra is a pair (A, ν) for which there exists
a computable sequence of computable functions ψn0

0 , ψn1
1 , . . . such that for all

i, t1, . . . , tni
∈ ω we have fni

i (ν(t1), . . . , ν(tni
)) = ν(ψni

i (t1, . . . , tni
)). In this case

ν is called a numbering of the algebra.

Thus, informally if ν is a numbering of an algebraA then all the basic operations
of A can be carried out effectively under ν.

Theorem 2.5. Any algebra possesses a numbering.
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Proof. Indeed, let A be an infinite algebra. Consider the absolutely free
algebra F of the language L whose set of generators is the domain A. Since A is a
countable set, we can assume that A = ω. Let ν : ω → F be a one to one numbering
of the algebra so that the set {(t, n) | n ∈ ω, t ∈ F, t = ν(n)} is computable. Then
clearly (F , ν) is a constructive algebra. Let h be a homomorphism from F onto A
such that h(i) = i for all i ∈ ω. We note that such a homomorphism exists because
F is absolutely free. Thus, the pair (A, µ), where µ is defined by µ(n) = h(ν(n)),
is a numbered algebra. This proves the theorem.

The theorem suggests that the complexity of a numbered algebra (A, ν) can be
identified with the complexity of the relation Eν . We give the following definition.

Definition 2.6. A numbered algebra (A, ν) is a Σn-algebra (Πn-algebra) if
the relation Eν is a Σn-set (Πn-set). If (A, ν) is both a Σn-algebra and a Πn-algebra
then we call it a ∆n-algebra.

Thus, ∆1-algebras are exactly the class of all constructive algebras. Of
course, there are natural examples of nonconstructive numbered algebras that
have been intensively studied in computability theory. For example, the lattice
E = ({Wi}i∈ω,

⋃
,
⋂

) of all computably enumerable sets is a Π2-algebra, where
i → Wi is a standard enumeration of all c.e. sets. Similarly, the algebra E?, ob-
tained from E by factoring it modulo finite sets is an example of a Σ3-algebra.

For any Σ1-algebra (A, ν) the positive diagram of this algebra, that is, the
set {φ(ν(t1), . . . , ν(tn)) | A |= φ(ν(t1), . . . , ν(tn)), φ(x1, . . . , xn) is an atomic
formula} is a c.e. set. Similarly, for a Π1-algebra (A, ν) the negative diagram
of the algebra, that is, the set {φ(ν(t1), . . . , ν(tn)) | A |= φ(ν(t1), . . . , ν(tn))
φ(x1, . . . , xn) is the negation of atomic formula} is a c.e. set. This observation
suggests the following definition.

Definition 2.7. Any Σ1-algebra is called a positive algebra. Any Π1-
algebra is called a negative algebra.

One of the general programs in the theory of constructive algebraic systems is
the study of numbered algebras, in particular the study of Σn-algebras and/or Πn-
algebras. This is an open area of research where many results of universal algebra
can be studied from a computability theory point of view. We pose this as an open
problem for research:

Problem 1. Develop the general theory of Σn-algebras.

The following two sections give some interesting examples of results about
positive algebras.

2.4. Positive Algebras. In this section we are interested in finding al-
gebraic conditions for positive algebras to possess constructivizations. Recall that
a congruence on an algebra A is an equivalence relation η on A such that, for
every basic n-ary operation f and all (x1, . . . , xn), (y1, . . . , yn) ∈ An, the condition
(x1, y1), . . . , (xn, yn) ∈ η implies that the pair (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ η.

Theorem 2.8. A positive algebra (A, ν) is constructive if and only if there is
a c.e. set S ⊂ ω2 such that ν(x) 6= ν(y) for all (x, y) ∈ S, and for any nonzero
congruence relation η we have (ν(x), ν(y)) ∈ η for some (x, y) ∈ S.
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Proof. We first show that there exists an effective procedure that given an
index of a c.e. set X ⊂ ω2 produces an index of a c.e. set Y ⊂ ω2 such that
the relation ν(Y ) = {(ν(x), ν(y))|(x, y) ∈ Y } is the smallest congruence relation
containing ν(X). To prove this, note that any congruence relation η that contains
ν(X) must satisfy the following three conditions: 1) {(a, a)|a ∈ A} ⊂ η; 2) ν(X) ⊂
η; 3) For every basic operation f of arity n and (x1, . . . , xn), (y1, . . . , yn) ∈ An the
condition (x1, y1), . . . , (xn, yn) ∈ η implies that (f(x1, . . . , xn), f(y1, . . . , yn) ∈ η.
Thus, we can computably enumerate the set Y required in the lemma by satisfying
the following three properties that correspond to the conditions 1), 2) and 3) above:
1) Eν ⊂ Y ; 2) X ⊂ Y ; 3) For every basic operation f of arity n, for all s, t ∈ ω,
(x1, . . . , xn), (y1, . . . , yn) ∈ ωn the conditions (x1, y1), . . . , (xn, yn) ∈ Y , ν(t) =
f(ν(x1), . . . , ν(xn)), and ν(s) = f(ν(y1), . . . , ν(yn)) imply that (s, t) ∈ Y .

Now in order to prove the theorem, we need to show that the equivalence
relation Eν is computable. Take x, y ∈ ω. Consider the set Y such that ν(Y ) is
the minimal congruence relation that contains the pair (ν(x), ν(y)). Note that if
ν(y) = ν(x) then Y = Eν . Otherwise, there exists a pair (n,m) ∈ S such that
(n,m) ∈ Y . Thus, using the properties of S and that S, Y , and Eν are c.e. sets, we
can decide if ν(x) = ν(y). Hence ν is a constructivization. The theorem is proved.

A corollary of this theorem is the following fact that gives an example of how
algebraic properties may influence effective properties of numberings. An algebra
is quasisimple if it has only a finite number of congruence relations.

Corollary 2.9. Any positive and quasisimple algebra (A, ν) is constructive.

Proof. Let η0, . . . , ηk be all nonzero congruences of A. For each i ≤ k
take (xi, yi) such that ν(xi) 6= ν(yi) and (ν(xi), ν(yi)) ∈ ηi. The the set S =
{(x1, y1), . . . , (xk, yk)} satisfies the assumptions of Theorem 2.8.

We recall, before we state the next corollary, that the index of an equivalence
relation is the number of its equivalence classes.

Corollary 2.10. If (A, ν) is a positive finitely generated algebra with nonzero
congruences of finite index only and the language of A is finite then (A, ν) is con-
structive.

Proof. Let c1, . . . , cn be generators of A. Consider the ground terms of
the language expanded by constants c1, . . . , cn, that is the terms that contain no
variables. We inductively define the height of terms as follows. The height of each
constant is 0. Let t = f(t1, . . . , tn) be a term. Let m be the maximum among
all the height of t1, . . . , tn. Then the height of t is m + 1. Note that for any
given m we can effectively compute the number of terms of height m. For any
finite algebra B whose generators are c1, . . . , cn there exists a number m with the
following property. For any term t of height m+ 1 there exists a term t′ such that
the equality t = t′ holds in B and the height of t′ does not exceed m. Now for the
positive algebra (A, ν) we define the set S as follows. A pair (x, y) belongs to S if
and only if the minimum congruence relation that contains the pair (ν(x), ν(y)) is
of finite index. The set S is c.e. and satisfies the assumptions of the theorem above.

The next corollary is a result of McKinzey [32]. We need some preliminary
notions. An algebra A is residually finite in a class K of algebras if, for any
two distinct elements a, b of the algebra, there exists a homomorphism h of the
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algebra onto a finite algebra from K such that h(a) 6= h(b). If K is the class of
all finite algebras then A is called residually finite. A conditional equation
is a universally quantified formula of the type t1 = q1& . . .&tn = qn → t = q,
where t, q, t1, q1, . . . , tn, qn are terms of the signature expanded by finitely many
constants c0, . . . , cn. Let C be a set of conditional equations. Then there exists the
free algebra, denoted FC , that satisfies the following properties: 1) FC is finitely
generated with generators c0, c1, . . . , cn. 2) FC satisfies C. 3) Any algebra with
properties 1) and 2) is a homomorphic image of FC . 4) The set {t1 = t2|A satisfies
the equality t1 = t2 and t1, t2 contain no variables } is c.e. in C. The first three
properties define FC up to isomorphism. If C is finite then the algebra FC is called
a finitely presented algebra.

Let ν be a one to one numbering of all ground terms of the language
L

⋃{c0, . . . , cn} such that the set {t = ν(n)|n ∈ ω, t is a ground term } is com-
putable. The numbering ν induces a natural numbering νs of the algebra FC (see
Theorem 2.5). Then if C is a c.e. set then the numbered algebra (FC , νs) is a
positive algebra.

Corollary 2.11. If FC is finitely presented and residually finite in the class
of all algebras satisfying C then (A, νs) is a constructive algebra.

Proof. We can assume that C is finite. Let A0,A1, . . . be an effective sequence
of all finite algebras that satisfy C. Note that there exists a natural homomor-
phism hi from FC onto Ai. Moreover the set {(i, x, y)|hi(νs(x)) = hi(νs(y))} is
computable. Consider the set S ⊂ ω2 such that (x, y) ∈ S if and only if there exists
an algebra Ai such that the images of νs(x) and νs(y) are distinct in Ai under the
natural homomorphism hi. The set S satisfies the assumptions of Theorem 2.8.

2.5. Positive Algebras with Countably Many Congruences. In this
section we provide some interesting computability-theoretic and algebraic proper-
ties of positive algebras with a countable number of congruences. Positive quasi-
simple algebras and algebras with congruences of finite index only are examples of
algebras with countably many congruences. In this section we always assume that
the language L is finite. All the results in this section were first obtained by N.
Kasymov [22] [23]. All the algebras considered in this section are infinite.

For a positive algebra (A, ν), the characteristic transversal tr(ν) of ν is
the set {x|∀y(y < x → ν(x) 6= ν(y))}. For x, y ∈ ω, let ην(x, y) be the smallest
congruence containing the pair (ν(x), ν(y)). Note, Eν ⊂ ν−1(ην(x, y)) and an index
of ν−1(ην(x, y)) can be obtained effectively given x and y.

Theorem 2.12. For any positive algebra (A, ν) with congruences of finite index
only the set tr(ν) is either computable or hyperimmune.

Proof. Assume that tr(ν) is not hyperimmune. We need to show that tr(ν)
is computable. It suffices to show that the equivalence relation Eν is a computable
set. Since tr(ν) is not hyperimmune there must exist a strong array S0, S1, . . . of
finite disjoint sets such that Si

⋂
tr(ν) 6= ∅ for all i. Hence for every Sm there

exists a z ∈ Sm such that for all t < z we have (t, z) 6∈ Eν . Consider ην(x, y). If
ν(x) 6= ν(y) then ην(x, y) is of finite index. Hence there must exist an Sm such
that for every z ∈ Sm there exists a t < z for which (ν(z), ν(t)) ∈ ην(x, y). Also,
if ν(x) = ν(y) then Eν = ην(x, y). These two are mutually exclusive cases which
can be effectively checked given x and y. Hence Eν is computable. The theorem is
proved.



OPEN PROBLEMS IN THE THEORY OF CONSTRUCTIVE ALGEBRAIC SYSTEMS 9

The theorem above implies the next result. The result shows that the assump-
tion that (A, ν) is a positive algebra, with congruences of finite index only, has not
only computability-theoretic implications but also purely algebraic implications for
the algebra A.

Theorem 2.13. If (A, ν) is a positive but not constructive algebra with con-
gruences of finite index only, then the algebra A is locally finite, residually finite
and the language of A contains at least one binary function symbol.

Proof. Recall that an algebra is locally finite if every finitely generated sub-
algebra of the algebra is finite. Assume that (A, ν) is not locally finite. Hence there
exist finitely many elements a1, . . . , an ∈ A such that the subalgebra B generated
by the elements is infinite. Note that ν−1(B) is a c.e. set. Since B is infinite and
finitely generated there exists a computable sequence B0 ⊂ B1 ⊂ . . . of subsets of ω
such that B =

⋃
iBi, the function i→ |Bi| is computable, and ν(Bi+1)\ν(Bi) 6= ∅.

Hence the function i→ max(Bi) majorizes the characteristic transversal tr(ν). But
by the previous theorem tr(ν) is hyperimmune since, by assumption, (A, ν) is not
a constructive algebra. This is a contradiction. Hence A is locally finite.

Now we prove that A is residually finite. Let ν(x) and ν(y) be counterexamples
to the fact that A is residually finite. Hence for all n,m ∈ ω if ν(n) 6= ν(m) then,
since every congruence is of finite index, we have (ν(x), ν(y)) ∈ ην(n,m). We
conclude that the equality ν(n) = ν(m) can be checked effectively which implies
that (A, ν) is a constructive algebra. This contradicts with the assumption.

Now we show that the language of A contains at least one binary operation
symbol. Assume that all basic operations of A are unary. Take an element b ∈ A.
Consider the subalgebra B generated by b. The subalgebra B is finite. Consider the
equivalence relation {(a, a) | a ∈ A}⋃

B2. The equivalence relation is a congruence
relation on A because all the basic operations are unary. However the index of the
congruence relation is not finite. This is a contradiction with the assumption. The
theorem is proved.

By Corollary 2.10 every positive finitely generated algebra with congruences of
finite index only is a constructive algebra. On the other hand, Kassimov provided
examples of positive algebras without constructivizations every congruence of which
is of finite index [22].

The last example of results about positive algebras is the next theorem that
has an implication on the cardinality of the congruence lattice of a given algebra.
It gives a sufficient condition for a positive algebra not to have countably many
congruence relations. We need one notion. We say that a numbered algebra (A, ν)
is effectively infinite if there exists an infinite c.e. set X such that ν(x) 6= ν(y)
for all distinct x, y ∈ X.

Theorem 2.14. Every positive finitely generated noneffectively infinite algebra
(A, ν) has a continuum number of congruence relations.

Proof. Let a0, . . . , an be the generators of the algebra A. Consider the ground
terms of the language of A expanded by the constants a0, . . . , an. Each ground term
t naturally defines an element of A which we also denote by t. Let t1, q1, . . . , ts, qs
be a set of ground terms such that in the algebra A the set of inequalities I = {ti 6=
qi | i = 1, . . . , s} holds.
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Claim 1. There exist ground terms p, q and s, t such that ην(p, q) and ην(s, t)
are each of infinite index, not comparable, and inequalities in I are true in any
quotient algebra with respect to these congruence relations.

Proof. Let F be the set of all pairs of ground terms (t1, t2) such that ην(t1, t2)
is of finite index. Let V be the set of all pairs (t1, t2) of ground terms such that the
quotient algebra with respect to ην(t1, t2) does not satisfy I. Now note that F and
V are computably enumerable sets. Hence if for all (t1, t2) either (t1, t2) ∈ Eν or
(t1, t2) ∈ F or (t1, t2) ∈ V then ν would be a constructivization. Therefore, there
exists a pair p, q such that p 6= q, ην(p, q) has an infinite index, and the quotient
algebra with respect to ην(p, q) satisfies I. We now need to show that there exists
a pair s, t that satisfies the claim. Assume that such s and t do not exist. Then for
all ground terms s, t for which (s, t) 6∈ ην(p, q) either ην(s, t) is of finite index or the
quotient algebra with respect to ην(s, t) does not satisfy I or (p, q) ∈ ην(s, t). Using
this fact, we now show that the algebra (A, ν) is effectively infinite. We construct
a c.e. infinite sequence r0, r1, . . . of ground terms as follows.

Stage 0. Let r0 be any ground term.
Stage n+1. Assume that the sequence r0, . . . , rn has been constructed and

ri 6= rj holds true in the quotient A with respect to ην(p, q) for all i 6= j. Note that
there exists an r such that r 6= ri holds in the quotient A with respect to ην(p, q).
Find an r such that for all i ≤ n either ην(r, ri) is of finite index or the quotient
algebra with respect to ην(r, ri) does not satisfy I or (p, q) ∈ ην(r, ri). Note that
such an r exists and can be found effectively. Let rn+1 be the first such r found.

Thus, we have contradicted with the assumption that (A, ν) is not effectively
infinite. Hence the claimed pairs (p, q), (s, t) exist. The claim is proved.

Now it is easy to embed the set of paths through the binary tree into the lattice
of congruences of A. We send the root of the tree into η∅ = {(a, a) | a ∈ A}. We
set I∅ = ∅. Assume that the congruence relation ηi0...in

and the finite set Ii0...in

have been defined, where i0, . . . , in ∈ {0, 1}. Consider the algebra B obtained by
factoring A with respect to ηi0...in

. The algebra is positive and is not effectively
infinite by the induction hypothesis. By the claim there exists (p, q), (s, t) such that
ην(p, q) and ην(s, t) are each of infinite index, not comparable, and inequalities in
Ii0...in

hold in any quotient algebra with respect to these congruence relations. Map
i0 . . . in0 into η′ν(p, q), i0 . . . in1 onto η′ν(s, t), where η′ν(r1, r2) denotes the smallest
congruence of B that contains r1 and r2. Set Ii0...in0 = Ii0...in

⋃{s 6= t} and
Ii0...in1 = Ii0...in

⋃{p 6= q}. Clearly each path corresponds to a congruence relation
and the correspondence is one to one. The theorem is proved.

Corollary 2.15. Every finitely generated infinite positive algebra with count-
ably many congruence relations is effectively infinite.

We end this section by proposing the following research program.

Problem 2. Develop the theory of positive algebras.

3. Constructive Models of Theories

In contrast to the previous section, this section and the next are devoted to
specific open problems related to constructive models of theories and computable
isomorphisms. Many of the problems have been open and known for many years
and, perhaps, new ideas, constructions, and concepts will be needed to solve these



OPEN PROBLEMS IN THE THEORY OF CONSTRUCTIVE ALGEBRAIC SYSTEMS 11

problems. This section consists of three parts. The first part is devoted to con-
structive models of countably categorical theories. The second part discusses the
issues related to constructivizations of models of uncountably categorical theories.
The last part will deal with constructive models of Ehrenfeucht theories.

3.1. Constructive Countably Categorical Models. Before we discuss the
issues related to constructive models of countably categorical theories, we recall
some basic general facts about constructive models of theories. By a theory we
always mean a set of sentences closed under deduction. So, let T be a consistent
theory. The Completeness Theorem states that T has a model. A proof of this
result can be based on a Henkin type construction. If, in addition, T is a decidable
theory then the construction can be carried out effectively. Hence the full diagram
of the model constructed is decidable. Thus, we have the following fundamental
theorem, known as The Effective Completeness Theorem:

Theorem 3.1. If T is decidable and consistent theory then T has a strongly
constructive model.

The Effective Completeness Theorem suggests several fundamental questions
about models of theories: Which models of T have strong constructivizations? If
T has a prime model then does the prime model have a strong constructiviza-
tion? If T has a saturated model then does the saturated model have a strong
constructivization? When does a given homogeneous model of T have a strong
constructivization? How many strongly constructive models can T have? There
has been extensive research in the study of these question. Basically all these ques-
tions have been answered. The following theorem proved in [14] and [18] and other
places characterizes the theories with strongly constructive prime models:

Theorem 3.2. A decidable complete theory has a strongly constructive prime
model if and only if there exists an algorithm that, for any formula consistent with
T , produces a principal type of the theory that contains the formula.

The following theorem proved in [14] and [34] characterizes all the theories
whose saturated models have strong constructivizations.

Theorem 3.3. A decidable complete theory T has a strongly constructive sat-
urated model if and only if the set of all types of T has a computable numbering.

For a survey of results related to strongly constructive models of theories we
refer the reader to papers in [6], especially the paper by Harizanov. Now we con-
centrate our attention on constructivizations of countably categorical models,
that is the models of countably categorical theories. Recall the following definition.

Definition 3.4. A theory T is countably categorical if T has exactly one
countable model up to isomorphism.

¿From a model theory point of view, countably categorical theories and their
models have been very well-studied and understood. Clearly, if T is countably
categorical then we have the following result that follows from The Effective Com-
pleteness Theorem:

Theorem 3.5. A countably categorical theory T is decidable if and only if all
models of T have strong constructivizations if and only if T has a strongly construc-
tive model.
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Thus, the question of the existence of strongly constructive models for count-
ably categorical categorical theories is answered via their decidability.

The Ryll-Nardzewski Theorem characterizes countably categorical theories in
terms of types. The theorem states that a theory T is countably categorical if and
only if for every n the number of n-types of T is finite. This theorem leads us to
define the type function of the theory T , denoted by typeT , that associates with
each n ≥ 1 the number of n-types of the theory. Note that if T is decidable then
typeT is a ∆0

2-function. A natural question arises as to what can be said about the
computability-theoretic complexity of the type function typeT when T is decidable.
The following theorem, proved independently by Herrmann, Schmerl and Venning,
answers the question.

Theorem 3.6. [38] For any c.e. degree x there exists a decidable countably
categorical theory T such that the type function typeT is of degree x.

These two theorems basically answer the questions related to the existence of
strongly constructive models for countably categorical decidable theories. However,
the theorems and their proofs do not give a clear picture about the existence of con-
structive models of countably categorical theories when one omits the assumption
of decidability. We pose the following problem:

Problem 3. Characterize the countably categorical theories that have con-
structive models.

We note that there has been some research on this problem. Lerman and
Schmerl in [29] give some sufficient conditions for countably categorical arithmetic
theories to have a constructive model. More precisely, they have shown that if
T is a countably categorical arithmetical theory such that the set of all sentences
beginning with an existential quantifier and having n+1 alternations of quantifiers
is Σ0

n+1 for each n, then T has a constructive model. However, this result cannot
be considered as a solution to the problem. We do not even know of any example
that satisfies the conditions of this results for sufficiently large n. Hence one of the
ways to approach the problem above is to actually build such theories:

Conjecture 1. For every n ≥ 1, there exists a countably categorical theory
of Turing degree 0(n) that has a constructive model.

It is not hard to see that if a theory T has a constructive model then T is
computable in 0(ω), the degree of the ω-jump of a computable set. In fact, this
bound is sharp as there exist theories (the theory of (ω,+,×,≤) for example)
with computable models which are Turing equivalent to 0(ω). We now end this
section with a formulation of the next conjecture that states that a nonarithmetical
countably categorical theory with constructive models exists.

Conjecture 2. There exists a countably categorical theory of Turing degree
0(ω) that has a constructive model.

3.2. Constructive Uncountably Categorical Models. Another class of
theories well-studied in model theory is the class of uncountably categorical theories.
In this section we deal with models of uncountably categorical theories. Throughout
this section, we assume that the theories considered are not countably categorical.
We recall the definition.



OPEN PROBLEMS IN THE THEORY OF CONSTRUCTIVE ALGEBRAIC SYSTEMS 13

Definition 3.7. A theory T is uncountably categorical if any two models
of T of cardinality ω1 are isomorphic. Models of uncountably categorical theories
are called uncountably categorical models.

Typical examples of uncountably categorical theories are the following: the
theory of algebraically closed fields of fixed characteristic, the theory of vector
spaces over a fixed countable field, the theory of the structure (ω, S), where S is
the successor function on ω. Roughly speaking, all the countable models of each
of these theories can be listed in an ω + 1 chain: the first element of the chain is
the prime model, the last element of the chain is the saturated model; moreover,
for any two models of the theory one can be elementarily embedded into the other.
It turns out these are one of the basic structural properties of the class of models
of an uncountably categorical theory. More precisely, in [3] Baldwin and Laclan
showed that all models of any uncountably categorical theory T can be listed into
the following chain, denoted by chain(T ), of elementary embeddings:

A0 � A1 � A2 � . . .Aω,

where A0 is the prime model of T , Aω is the saturated model of T , and each Ai+1 is
a minimal proper elementary extension of Ai. As we are interested in constructive
models of T the following definition is central.

Definition 3.8. Let T be an uncountably categorical theory. The spectrum
of constructive models of T , denoted by SCM(T ), is the set

{i | the model Ai of T has a constructivization}.
Thus a natural open problem about constructive models of uncountably cate-

gorical theories is the following:

Problem 4. Characterize all the subsets X of ω
⋃{ω} for which there exist

uncountably categorical theories T such that SCM(T ) = X.

An initial step in the study of this problem is to assume that the theory T
is decidable. Clearly, in general, the decidability of a theory T (independently of
whether or not T is uncountably categorical) does not imply that all the models
of T have strong constructivizations. However, one of the important results in the
study of (strongly) constructive models of a given theory T is the following result
of Harrington [18] and Khisamiev [27]:

Theorem 3.9. Let T be an uncountably categorical theory. Then T is decidable
if and only if T has a decidable model if and only if all models of T have decidable
presentations.

The proof of this theorem consists of two steps. The first step uses a purely
model theoretic fact that states that every model A of an uncountably categorical
theory T can be considered as the prime model of a uncountably categorical theory
T ′ with a strongly minimal formula. Moreover, if T is decidable then so is T ′.
The second step of the proof shows that for any decidable uncountably categorical
theory there exists an algorithm that, given a formula consistent with the theory,
produces a principal type that contains the formula. Then Theorem 3.2 is applied
to show that the model A has a strong constructivization.

Again, we have a situation similar to the one for countably categorical theo-
ries. The theorem above basically answers the question related to the existence of
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strongly constructive models for uncountably categorical decidable theories. How-
ever, neither the theorem nor the proof of the theorem gives a clear picture for
building constructive models of uncountably categorical theories when one omits
the assumption of decidability. We pose the following problem:

Problem 5. Characterize uncountably categorical theories that have construc-
tive models.

The situation for uncountably categorical theories is also complicated by the
following fact. In general, the existence of a constructive model for an uncountably
categorical theory T does not imply that all models of T have constructivizations.
Indeed, in [7] Goncharov showed that there exists an uncountably categorical the-
ory T for which SCM(T ) = {0}, that is, the only model of T which has a con-
structivization is the prime model of T . Kudaibergenov extended this result by
showing that for every n ≥ 0 there exists an uncountably categorical T such that
SCM(T ) = {0, 1 . . . , n} [28]. This theory T basically codes a noncomputable,
computably enumerable set X in such a way that from the open diagram of the
model An+1 in chain(T ) one can decode the set X. More complicated codings are
needed to prove the following theorem:

Theorem 3.10. [26] There exist uncountably categorical theories T1 and T2

such that SCM(T1) = ω, and SCM(T2) = ω
⋃{ω} \ {0}.

The constructions of the theory T1 is based on a coding of a Σ2-set, while the
construction of the theory T2 is based on a coding of a Π2-set. This theorem to-
gether with the theorem by Khissamiev and Harrington are the only known results
so far about the spectra of constructive models of uncountably categorical theories.
We also note that the theories T1 and T2 of the theorem above have infinite lan-
guages. Recently Herwig, Lempp and Ziegler [19] have constructed an uncountably
categorical theory T of a finite language such that SCM(T ) = {0}.

It is interesting to note that all the known uncountably categorical theories
that have constructive models are computable in 0′′. Khoussainov, Lempp, and
Solomon have recently constructed examples (the paper is in preparation) of un-
countably categorical theories that compute 0(n), n > 2, and all of whose models
have constructivizations. In connection with this result Lempp has asked the fol-
lowing question:

Question 6. If an uncountably categorical theory has a constructive model
then must the theory be arithmetical?

We note that the theorem of Harrington and Khissamiev can be relativized to
show that if T is uncountably categorical and arithmetical then all models of T have
arithmetical numberings. Hence a positive answer to the question of Lempp implies
that all models of an uncountably categorical theory with constructive models have
arithmetical numberings. However, we state the following hypotheses which, if
correct, would negatively answer the question of Lempp:

Conjecture 3. There exists a nonarithmetical uncountably categorical the-
ory with a constructive model.

One of the ways to approach this conjecture is, for example, to answer to the
following question:



OPEN PROBLEMS IN THE THEORY OF CONSTRUCTIVE ALGEBRAIC SYSTEMS 15

Question 7. Does there exist an uncountably categorical theory T whose
models are A0 � A1 � . . . � Aω such that A0 has a constructivization, and
each A(i+1), i ∈ ω, has a constructivization computable in 0(i+1) but does not have
constructivizations computable in 0(i)?

As we have already stated, there are examples of uncountably categorical the-
ories T with models which have no constructivizations but with SCM(T ) 6= ∅. On
the other hand, we also know that in some cases all models of T have construc-
tivizations. We single out such theories in the following definition.

Definition 3.11. A theory T has constructively complete if all countable
models of T have constructivizations.

Decidable countably categorical and decidable uncountably categorical theories
are examples of theories which are constructively complete. There are also examples
of undecidable constructively complete theories. In general, constructively complete
theories do not need to be complete. For example, the theory of all dense linearly
ordered sets is constructively complete. We end this section by posing the following
question:

Question 8. When is an uncountably categorical theory T constructively com-
plete?

3.3. Constructive Models of Ehrenfeucht Theories. Another class of
theories that has been well studied and has attracted considerable attention is the
class of Ehrenfeucht theories. Here is an exact definition.

Definition 3.12. A theory is an Ehrenfeucht theory if it has finitely many
models.

Vaught proved that no complete theory has exactly two models. On the other
hand, for each n ≥ 3 there exists a theory with exactly n models. For example,
the theory of the model (Q,≤, c0, c1, . . . ), where (Q,≤) is the natural ordering of
rationals and c0 < c1 < c2 < . . . , has exactly three models. This example can be
generalized to give theories with exactly n ≥ 4 models. Inspired by Theorem 3.9
Nerode posed the following question: If an Ehrenfeucht theory T is decidable then
do all models of T have strong constructivizations? It turns out that models of
decidable Ehrenfeucht theories are not as well behaved as decidable uncountably
or decidable countably categorical theories. For instance, the following theorem is
true.

Theorem 3.13. [34] [36] For each n ≥ 3 there exists a decidable Ehrenfeucht
theory T0 that admits elimination of quantifiers, has exactly n models and exactly
one model with a strong constructivization.

In relation to this theorem we make the following comments. First of all we
note that the prime model of any decidable Ehrenfeucht theory must have a strong
constructivization. This follows from an effective version of the Omitting Types
Theorem for decidable theories [33] which is not discussed in this paper. Hence the
strongly constructive model of the theory T0 in the theorem above is a prime model.
Secondly, the reason that not all models of T0 have strong constructivizations is that
T0 has a noncomputable type. Based on this Morley asked the following question
that has become known as Morley’s problem:
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Question 9. If all types of an Ehrenfeucht theory T are computable then do
all models of T have strong constructivizations?

This is an open problem which has been attempted by many with no success.
Ash and Millar obtained several interesting results in the study of this question. One
of the results is the following. We say that an Ehrenfeucht theory T is persistently
Ehrenfeucht if any complete extension of T with finitely many new constants is
also an Ehrenfeucht theory. Here is the theorem:

Theorem 3.14. [2] If T is persistently Ehrenfeucht all of whose types are arith-
metical then all models of T have arithmetic presentations.

In relation to this theorem and Morley’s problem, it is interesting to note that
the following question, asked by Goncharov and Millar, is still open:

Question 10. If T is an arithmetic Ehrenfeucht theory whose types are arith-
metical, do then all models of T have arithmetic presentations?

We now briefly discuss the problem of existence of constructive models of Ehren-
feucht theories. As for categorical theories, there has not been much research about
finding constructive models for (undecidable) Ehrenfeucht theories. We note that
the results in finding constructive models for undecidable Ehrenfeucht theories can
be quite different from those about decidable Ehrenfeucht theories. We give an
example. If all types of an Ehrenfeucht theory T are computable then T must
have at least three strongly constructive models (a proof of this can, for example,
be found in [25]). Therefore for any decidable Ehrenfeucht theory T with exactly
three models, the saturated model of T has a strong constructivization if and only
if all models of T have strong constructivizations. We also recall that the prime
model of every decidable Ehrenfeucht theory has a strong constructivization. In
contrast to this, in [26] the following theorem is proved:

Theorem 3.15. There exists an Ehrenfeucht theory with exactly three models
of which only the saturated one has a constructivization.

We conclude this section with the following research proposal.

Problem 11. Work towards characterizing strongly constructive or/and con-
structive models of Ehrenfeucht theories.

4. Computable Isomorphisms

There has been extensive research on computable isomorphisms of constructive
algebraic systems. Many researchers have worked on problems and research direc-
tions discussed in this section. These are still in the center of research interest and
play a significant role in the creation of new ideas, theorems and concepts. This
section consists of four parts. The first part introduces the basic concepts about
computable isomorphisms between constructive algebraic systems. In the second,
we discuss computable isomorphisms of countably categorical models. The third
part is devoted to computable isomorphisms of uncountably categorical models. In
the final part we deal with the problem of the dependency of computability-theoretic
properties of relations on constructivizations.
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4.1. Basic Notions. A fundamental concept in the theory of constructive
models is the notion of a computable isomorphism. Informally, the notion of a com-
putable isomorphism allows one to compare constructivizations of a given model,
and to tell whether or not two constructivizations have the same computability-
theoretic properties. We recall the definition.

Definition 4.1. Two constructive algebraic systems (A, ν) and (A, µ) are
computably isomorphic if there exists an automorphism α of A and a com-
putable function f such that αν(n) = µ(f(n)) for all n ∈ ω. In this case we also
say that ν and µ are autoequivalent.

One of the fundamental properties of computably isomorphic structures is that
they cannot be distinguished in terms of computability-theoretic properties of de-
finable relations. This means that for any relation R invariant under the automor-
phisms of A, the Turing degrees of R under the constructivizations ν and µ are
equivalent, that is, ν−1(R) and µ−1(R) have the same Turing degree. In addition, if
ν and µ are one to one, then ν−1(R) and µ−1(R) are computably isomorphic. One
of the important concepts introduced in the study of computable isomorphisms is
Goncharov’s notion of dimension. Here is the definition.

Definition 4.2. The computable dimension of an algebraic system A, de-
noted dim(A), is the maximal number of its nonautoequivalent constructivizations.

Informally, the computable dimension tells us as how many effective realizations
the algebraic system A possesses. In computability-theoretic terms the computable
dimension of a given algebraic system can be thought of as the number of its
computable isomorphism types. Thus, if the dimension of A is 1 then A has exactly
one effective realization. We single out the algebraic systems of dimension 1, and
give the following definition first introduced by Malcev.

Definition 4.3. An algebraic system A is autostable if dim(A) = 1. The
system A is strongly autostable if all its strong constructivizations are autoe-
quivalent.

An important notion introduced by Goncharov in the study of computable
isomorphisms is the notion of an effectively infinite algebraic system. We say that
a sequence (A0, ν0), (A1, ν1), . . . of constructive models is effective if the set
{(i, φ)|φ ∈ ADνi

(Ai)} is computably enumerable. Informally, an effective sequence
of constructive models is one which can be constructed in a uniform manner.

Definition 4.4. An algebraic system A is effectively infinite if there exists
an algorithm that applied to any index of an effective sequence of constructive
systems (A, ν0), (A, ν1), . . . produces a constructive algebraic system (A, ν) such
that (A, ν) is not computably isomorphic to (A, νi) for i ∈ ω.

Thus, if an algebraic system A is effectively infinite then it has infinite com-
putable dimension. One of the first important results in the study of autostable
models is the following result of Nurtazin [35] that basically characterizes strongly
autostable algebraic systems:

Theorem 4.5. A strongly constructive algebraic system (A, ν) is strongly au-
tostable if and only if there exists a finite number a0, . . . , an ∈ A of elements such
that the following properties hold:
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1. The set of all complete formulas of the theory T of the algebraic system
(A, a0, . . . , an) is computable.

2. The system (A, a0, . . . , an) is the prime model of its own theory T .
Moreover, if (A, ν) is not strongly autostable then there exists an algorithm that
applied to any index of an effective sequence of strongly constructive systems
(A, ν0), (A, ν1), . . . produces a strongly constructive algebraic system (A, ν) such
that (A, ν) is not computably isomorphic to (A, νi) for any i ∈ ω.

Thus, by this theorem, the computable dimension of any non-strongly au-
tostable strongly constructive algebraic system is infinite.

4.2. Isomorphisms of Countably Categorical Models. Let A be an
algebraic system. Natural questions that arise about the computable isomorphisms
of A are the following. Is A autostable? If A is autostable then why is it so? If A
is not autostable then why is it not? What is the dimension of A? Can A have
infinite dimension? Can A have finite dimension?, etc.

These and related questions have been extensively studied with respect to
known classes of algebraic systems such as linearly ordered sets, Boolean algebras,
Abelian groups, rings, groups, partially ordered sets, fields, vector spaces, etc. One
of the first results obtained in the study of these questions is the following theorem
proved independently by Goncharov and Remmel.

Theorem 4.6. A linearly ordered set is autostable if and only if the set of
adjacent pairs of the linearly ordered set is finite. Similarly, a Boolean algebra is
autostable if and only if the set of all atoms of the algebra is finite. Moreover,
nonautostable linearly ordered sets and Boolean algebras are effectively infinite.

An immediate corollary of this theorem is the following result which has not
been explicitly stated in the literature.

Corollary 4.7. A linearly ordered set is autostable if and only if the linearly
ordered set is countably categorical. Similarly, a Boolean algebra is autostable if
and only if the algebra is countably categorical.

This corollary suggests the study of computable dimensions of those alge-
braic systems whose theories and/or algebraic, model-theoretic properties are well-
understood. Thus, one can study the computable dimensions of countably categor-
ical models.

Using the result of Nurtazin mentioned at the end of the previous section,
the following theorem characterizes all strongly autostable countably categorical
models.

Theorem 4.8. A strongly constructive model (A, ν) of a countably categorical
theory T is strongly autostable if and only if the type function typeT of the theory
T is computable.

Proof. Assume that the type function typeT is a computable function. Let
(A, µ) be a strongly constructive model. We want to show that ν and µ are au-
toequivalent. We claim that for any m-tuple b1, . . . , bm ∈ A with µ(n1) = b1, . . . ,
µ(nm) = bm we can effectively find a complete formula of the type determined by
(b1, . . . , bm). Indeed, to do this we compute typeT (m) and then find consistent
with T formulas

φ1(x1, . . . , xm), . . . , φt(m)(x1, . . . , xm)
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with exactly m number of variables such that

φi(x1, . . . , xm) → φj(x1, . . . , xm) 6∈ T
for all 1 ≤ i 6= j ≤ t(m) = typeT (m). These formulas can be found effectively
because typeT and T are computable. Now, using a back and forth, it is not hard
to see that one can construct a computable isomorphism between (A, ν) and (A, µ).

Now we assume that A is strongly autostable. We need to show that the
type function typeT is computable. Since A is strongly autostable, by the theorem
of Nurtazin there exists a finite sequence a0, . . . , an of elements of A such that
(A, a0, . . . , an) is the prime model of the theory T ′ of (A, a0, . . . , an) and the set of
complete formulas of T ′ is computable. We claim that the set of complete formulas
of T is also a computable set. Indeed, take a formula φ(x̄) of the language of T
which is consistent with T . Find a complete formula ψ(x̄, a0, . . . , an) of T ′ such
that T ′ ` ψ(x̄, a0, . . . , an) → φ(x̄). Then φ(x̄) is a complete formula of T if and
only if

(φ(x̄) ↔ ∃y1 . . .∃ynψ(x̄, y1, . . . , yn)) ∈ T.
This shows that the set of complete formulas of T is a computable set. Now
typeT (n) = m if and only if there exist exactly m formulas φ1, . . . , φm with exactly
n variables such that all of these formulas are complete formulas of T and

∀x1 . . .∀xn(φ1

∨
. . .

∨
φm) ∈ T.

This shows that the type function typeT of T is computable. The theorem is proved.

The following is a corollary of the theorem.

Corollary 4.9. Let A be a model of a countably categorical theory T that
admits effective elimination of quantifiers. Then the following are equivalent:

1. The dimension of A is 1.
2. There exists a finite sequence a0, . . . , an of elements of A such that

(A, a0, . . . , an) is the prime model of the theory T ′ of (A, a0, . . . , an) and
the set of atoms of T ′ is computable.

3. The type function tT is computable.

Proof. Since T admits effective elimination of quantifiers any constructiviza-
tion of A is also a strong constructivization. The corollary is proved.

We note that there exists a strongly autostable countably categorical but not
autostable model. Indeed, consider the structure (A,E), where E is an equivalence
relation on A such that every E-equivalence class has either one or two elements.
Clearly the system is countably categorical. Moreover, it is strongly autostable.
However, it is not hard to prove that if E contains E has infinitely many equiv-
alence classes of each size one and two then A is not autostable. One can guess
that the noncomputability of the type function typeT for a countably categorical
theory may imply that the model of T has dimension greater than 1. However, the
following result (which is in preparation) recently proved by Khoussainov, Lempp
and Solomon gives a counterexample.

Theorem 4.10. There exists a countably categorical theory T with a noncom-
putable type function such that the model of T is autostable.
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Note that if T is countably categorical and has a constructive model then the
type function of T is computable in 0(ω). Hence the results above lead us to the
following open question:

Question 12. Does there exist a countably categorical theory T such that the
type function of T computes 0(ω) and T has a constructive autostable model?

The results that construct nonautostable algebraic systems of finite dimension
do not control model-theoretic properties of the structures constructed. For exam-
ple, all structures constructed by Goncharov (see [9] and [10]), Cholak, Goncharov,
Khoussainov, Shore (see [8]), and Khoussainov and Shore (see [24]) have theories
without prime models. Moreover all the known countably categorical models have
dimensions equal to either 1 or ω. Hence the following question arises naturally.

Question 13. If a countably categorical model is not autostable then is the
model effectively infinite?

A positive answer to this question would show that countably categorical and
nonautostable models do not have finite dimensions. Hence one may approach
the question above by trying to give a counterexample. We pose this as the next
question:

Question 14. Does there exist, for a given n > 1, a countably categorical
model of dimension n?

We finish this section with a comment followed by an open question. Using
the theorem of Nurtazin and Theorem 4.8 we see that if a countably categorical
decidable theory T has a noncomputable type function then the model of T has
infinite dimension. One can ask whether this result can be generalized assuming
that T is computable in 0(n) but the type function typeT is not computable in 0(n).
We pose this as the following question:

Question 15. Assume that a countably categorical theory T has a construc-
tive model. If T is computable in 0n and the type function typeT is not computable
in 0n, then can we conclude that the model of T is not autostable?

4.3. Isomorphisms of Uncountably Categorical Models. Now we
turn to the study of computable dimensions of uncountably categorical models.
To provide some intuition, we present some examples of uncountably categorical
models and their dimensions.

Let us consider the algebraic system (ω, S). The theory T of this system is
uncountably categorical. The isomorphism type of a model A of T is determined
by the number of its components. The saturated model of T has infinitely many
components. All nonsaturated models of T are autostable. One can prove that the
saturated model of T is not autostable, and is, in fact, effectively infinite.

Consider a second example. Let V be a vector space over a given infinite
computable field F . Then the theory T of V (in the language that consists of
+ for vector addition and unary operations f , f ∈ F , for multiplication by f) is
uncountably categorical. It is a well known fact that the isomorphism type of a
model A of T is characterized by the dimension of A. The saturated model of
T is the one of infinite dimension. Similarly to the example above, every finite
dimensional vector space over F is autostable; the saturated model of T is not
autostable, and is, in fact, effectively infinite.
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Along the lines of the examples above, one can prove the following theorem
about the models of the theory T of algebraically closed fields of a fixed character-
istic which is uncountably categorical.

Theorem 4.11. Let T be the theory of algebraically closed fields of a fixed char-
acteristic. Then a model A of T is autostable if and only if it has finite transcen-
dence degree over its prime field.

Note that all the theories in these examples are decidable and admit elimina-
tion of quantifiers. Hence one might expect that the nonsaturated models of such
theories are autostable. Here we give a counterexample.

Proposition 4.12. There exists a decidable uncountably categorical theory T
that admits elimination of quantifiers such that the prime mode of T is not au-
tostable.

Proof. To prove the proposition we provide an uncountably categorical theory
T with prime model A such that the set of complete formulas of the theory of the
model (A, a1, . . . , an) is not computable for all a1, . . . , an ∈ A. By the theorem
of Nurtazin this will give the desired result. The theory T is basically the one
constructed in [25] (page 204). The language of T consists of infinitely many
unary predicates Ri. Each Ri contains exactly two elements. Distinct Ri and
Rj are pairwise disjoint except for designated triples < i, j, k > such that Rk

consists of one element from each Ri and Rj . Moreover, for all designated distinct
triples < i, j, k > and < i′, j′, k′ > we have (Ri

⋃
Rj

⋃
Rk)

⋂
(Ri′

⋃
Rj′

⋃
Rk′) =

∅. So the theory is essentially determined by the list of designated triples and is
uncountably categorical. If the list of designated triples is computable then the
theory is decidable. Now consider the formula Ri(x). This formula is a complete
formula if and only if i is not a part of any designated triple. Assume that < i, j, k >
is a designated triple. Then each of the formulas Ri(x)&Rk(x) and Ri(x)&¬Rk(x)
is a complete formula. The list of designated triples is effectively enumerated in
increasing order (and so is computable) by waiting to diagonalize each computable
partial function φi at the formula R2i. If φi(R2i(x)) converges at stage s we choose
j, k so that < 2i, 2j + 1, 2k + 1 > is bigger than all pairs already and declare
the triple < 2i, 2j + 1, 2k + 1 > to be designated. Hence no computable partial
function φ can decide the set of complete formulas of one variable of the theory
constructed. Now one notes that for the prime model A of the theory constructed
and all a1, . . . , an ∈ A, the set of complete formulas of the theory of the model
(A, a1, . . . , an) is not computable. The proposition is proved.

Thus, the following question and conjecture arise naturally:

Question 16. Let T be a decidable uncountably categorical theory which has
a strongly autostable prime model. Is every nonsaturated model of T strongly
autostable?

Conjecture 4. The saturated model of any decidable uncountably categorical
theory is effectively infinite.

If we omit the assumption of decidability for an uncountably categorical theory,
then the situation becomes more complex. There has not been any research done on
computable isomorphisms and dimensions of constructive models of uncountably
categorical theories. For example, we do not know the spectra of dimensions of
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uncountably categorical models. Recall that all the models of an uncountably
categorical theory T can be listed in a ω + 1 chain of models:

chain(T ) : A0 � A1 � A2 � . . . � Aω.

We formulate the following problem.

Problem 17. Consider the model Ai of an uncountably categorical theory T
in the chain(T ). Give necessary and sufficient conditions for Ai to be autostable.

In the study of this problem it would be interesting to see if one can control the
dimension of uncountably categorical models. In particular, we ask the following
question:

Question 18. Does there exist an uncountably categorical nonautostable
model of finite dimension?

Our comment about this question is as follows. As we noted in the previous sec-
tion, Goncharov constructed nonautostable algebraic systems of finite computable
dimension. In [9] [10] [12] [24] [8] [20] nonautostable algebraic systems of finite
computable dimension have also been constructed to answer some open problems
in the theory of constructive models. None of these algebraic systems are prime
models of their own theories. In other words, the type structure of the theories of
these algebraic systems is quite complicated. Therefore it is natural to ask whether
it is possible to construct algebraic systems of finite computable dimension greater
than 1 whose theories belong to a class of well-understood theories, e.g. uncount-
ably categorical theories. We do not know the answer to this question. We state,
however, that Hirschfeldt and Khoussainov in [21] noted that the construction in
[24] can be modified to build a noncomputably categorical prime model of finite
computable computable dimension:

Theorem 4.13. For every natural number n > 1 there exists an algebraic sys-
tem A of computable dimension n such that A is the prime model of its own theory.

We now make some comments about saturated models using terminology from
dimension theory developed for uncountably categorical theories. Roughly speak-
ing, the saturated model for a given uncountably categorical theory T is the most
complicated one because the model has infinite dimension while all other models
have finite dimension. Moreover, all models of T are elementarily embedded into
the saturated model. In this sense one may suggest that the saturated model can
also be complex from the computability-theoretic point of view. One way to show
this would be to prove that the computable dimension of the saturated model is al-
ways infinite. All the known examples of uncountably categorical saturated models
have, in fact, infinite computable dimension. Hence we naturally ask the following
question:

Question 19. Does there exist an uncountably categorical theory whose sat-
urated model is autostable?

4.4. The Degree Spectra of Relations. Another central topic in the
theory of constructive algebraic systems concerns the dependence of computability-
theoretic properties of relations on constructivizations. The topic is closely related
to autostability because of the following simple fact. Assume that R is an invari-
ant relation on A (that is R is closed under automorphisms of A) such that for



OPEN PROBLEMS IN THE THEORY OF CONSTRUCTIVE ALGEBRAIC SYSTEMS 23

two constructivizations ν and µ of A the sets ν−1(R) and µ−1(R) have different
degrees. Then A is not autostable. Consider for example the linearly ordered set
(ω,≤) whose constructivization is the identity mapping. In this constructivization
the successor function is computable. On the other hand, (ω,≤) has a construc-
tivization under which the successor function is not computable. In [1] Ash and
Nerode singled out those relations whose computability is invariant with respect to
all constructivization. Here is a definition.

Definition 4.14. A relation R on a model A is intrinsically computable
(intrinsically c. e.) if for all constructivizations ν of A the set ν−1(R) is com-
putable (c.e.).

Thus, for example in (ω,≤) the successor function is not intrinsically com-
putable. On the other hand, any computable, invariant relation in any autostable
algebraic system is intrinsically computable. Thus, for autostable algebraic systems
computability or computable enumerability of the invariant relations is independent
on constructivizations.

One of the programs in the theory of constructive algebraic systems is to study
the intrinsically computable (c.e.) relations. It turns out that for a large class of
algebraic systems which have certain decidability properties one can characterize
intrinsically c.e. relations. We define the following notion given by Ash and Nerode
in [1].

Definition 4.15. An n-ary relation R on a model A is formally c.e. if R is
equivalent to a disjunction

∨
i φi(x1, . . . , xn, ā) of a computable sequence of exis-

tential formulas φi with free variables x1, . . . , xn, where ā is a finite sequence of
elements from A.

If R is formally c.e. then R is intrinsically c.e. To state the next theorem
proved by Ash and Nerode we need to introduce the following notion. We say that
(A, ν) is 1-decidable if the set of all existential formulas true in the expansion
(A, ν(0), ν(1), . . . ) is computable. Here is the theorem:

Theorem 4.16. [1] Let (A, ν) be a 1-decidable algebraic system. Then for any
R, the relation R is intrinsically c.e. if and only if R is formally c.e.

Two natural problems are suggested by this theorem. One is to investigate c.e.
intrinsic relations in constructive algebraic systems which are not 1-decidable. The
other problem suggests to study those relations R which are not intrinsically c.e. In
particular, one can be interested in computability-theoretic complexity of R under
different constructivizations. An approach to these problems is suggested by the
following definition.

Definition 4.17. For a relation R on an algebraic systemA, the degree spec-
trum of R, DgSp(R), is the set of all Turing degrees of ν−1(R) under all construc-
tivizations ν of A.

There are a number of results that give conditions under which DgSp(R) co-
incides with a given set of Turing degrees, e.g. the set of all c.e. degrees or of
all degrees. Here we concentrate on the issue of finding conditions under which
DgSp(R) is finite. This search is basically motivated by our interest in whether we
are able to control computable dimensions and the degree spectra of relations in
building constructivizations of algebraic systems. Recasting the theorem of Gon-
charov in [9], Harizanov in [16] provided an example of a relation R in a system
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of computable dimension 2 such that DgSp(R) = {0, c}, where c is noncomputable
and ∆0

2. Later, the authors showed that there exists a relation R in a system
of computable dimension 2 such that DgSp(R) = {0, c}, where c is the degree
of a c.e. set [12]. This result was independently generalized by Khoussainov and
Shore in [24]. In particular, Khoussainov and Shore proved that for any finite
partially ordered set P there exists an intrinsically c.e. relation R in a system of
computable dimension |P | such that DgSp(R) is isomorphic to P , where the order-
ing of DgSp(R) is given by Turing reducibility. However, the following question has
remained opened: Which finite sets {a1, . . . , an} of computably enumerable degrees
coincide with DgSp(R), where R is a relation in an algebraic system of computable
dimension n? Recently Khoussainov and Shore, and independently Hirschfeldt by
different methods in [20], have been able to provide the following answer to this
question.

Theorem 4.18. For any finite set {a1, . . . , an} of computably enumerable de-
grees there exists an algebraic system B of computable dimension n and an intrin-
sically c.e. relation R in it such that DgSp(R) = {a1, . . . , an}.

In light of these results the following question remains open:

Question 20. Let {a1, . . . , an} be a finite set of Turing degrees of Σn-sets.
Does there exists a relation R in an algebraic system of computable dimension n
such that DgSp(R) = {a1, . . . , an}?

A weaker version of this question not asking to control the dimension of the
system is the following.

Question 21. For a given finite collection {a1, . . . , an} of Turing degrees of
Σn-sets, does there exist a relation R in an algebraic system such that DgSp(R) =
{a1, . . . , an}?

We end this section with the following question related to computable dimen-
sion and the two questions asked above. It is known that all constructed nonau-
tostable models of finite algorithmic dimensions are ∆0

3-autostable. Hence the fol-
lowing question, posed by Khoussainov and Shore, arises:

Question 22. Is it true that for any n ≥ 3 there exists a non ∆0
n-autostable

but ∆0
n+1-autostable model of dimension 2?

5. Conclusion

In this paper we concentrated on open problems in two directions in the
development of the theory of constructive algebraic systems. The first direction
deals with positive algebras. In our discussion of positive algebras an emphasis
was on showing the interplay between universal algebra and computability the-
ory. We think that systematic development of the theory of positive algebras can
bring fruitful results and deeper understanding of interactions between fundamen-
tal concepts of universal algebra and computability theory. Hence we proposed a
systematic study of positive algebras as a new direction in the development of con-
structive algebraic systems. The second direction concerns the traditional topics
in constructive model theory. First we proposed the study of constructive models
of theories with few models such as countably categorical theories, uncountably
categorical theories, and Ehrenfeucht theories. Next, we proposed the study of
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computable isomorphisms and computable dimensions of such models. We also
discussed issues related to the computability-theoretic complexity of relations in
constructive algebraic systems. We stress that we have not discussed many other
equally important topics and open problems in other parts of this area. For a com-
prehensive survey of results and directions in this area we refer the reader to the
papers in the Handbook of Recursive Mathematics [6].

At the end of this paper we would like to thank the referee for a careful reading
of the paper and a numerous number of suggestions on the improvement of the
text.
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