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Algebraic Constraints, Automata, and Regular Languages

Bakhadyr Khoussainov

Abstract

A class of decision problems is Boolean if it is closed under the
set–theoretic operations of union, intersection and complementation.
The paper introduces new Boolean classes of decision problems based
on algebraic constraints imposed on transitions of finite automata. We
discuss issues related to specifications of these classes from algebraic,
computational and proof–theoretic points of view.
Key Words: Automata, Algebra, Computably Enumerable Sets, Σ1–
Algebra, Π1–Algebra, Homomorphism, Congruence Relation, Isomor-
phism.

1 Introduction

Natural classes of decision problems usually possess closure properties
under certain well-known operations. For example, the class of Turing
decidable languages is closed under the operations of union, intersection,
complementation, concatenation, and the star operation. So is the class of
regular languages. Of course, not all known classes of decision problems
are closed under the listed operations above. However, arguably Boolean
classes, that is the classes closed under the operations of union, intersection
and complementation, can be considered as natural classes of problems.

Suppose that we are given a class of decision problems. In the theory
of formal languages, a traditional question that arises about the class is
whether the class can be specified in an appropriate terminology. For exam-
ple, the class of regular languages can be specified as the class of languages
accepted by finite automata. Similarly, the class of all pushdown automata
recognizable languages is specified as the context free grammars. There has
also been research in characterzing other known classes of decidable prob-
lems, e.g. classes of problems decidable in polynomial time, using some
formal systems of logic.

The primary goal of this paper is to introduce new Boolean classes of
decision problems and discuss the issues related to the problem of specifi-
cation of these classes. Each of these classes consists of regular langauges
and is defined in terms of certain algebraic constraints on automata that
recognize the languages.
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Our motivation in introducing new Boolean classes of regular languages
is twofold. The first motivation comes from a computational point of view.
A run of a computer system can be thought as a sequence of states. During
the run the system must satisfy certain constraints specified by the system
software or/and hardware. Some of these constraints are of algebraic na-
ture. For example, during the run, two consecutive executions of a program
instruction I can produce the same result obtained by an execution of one
program instruction J . This can algebraically be presented as an equation
II = J . Constraints that force two program instructions, say I and J , to be
executed in parallel, can also be presented as an algebraic equation IJ = JI.
More generally, an algebraic expression of the type I = J → T = S, can be
understood as an algebraic constraint with the following meaning. When-
ever the executions of program instructions I and J produce the same result
then the results of executions of T and S are the same. These considerations
suggest the idea of studying finite automata, or in general models of compu-
tations, whose transition tables satisfy certain algebraic constraints of the
types above. The second motivation to introduce new Boolean classes of
regular expressions comes from an algebraic point of view. It is well known
that any finite deterministic automaton can be considered as a finite unary
algebra. Similarly tree automata can be viewed as finite universal algebras
[2] [4]. Hence, the concepts of algebra, e.g. finitely presented algebra, free
algebra, equations, conditional equations, can be used in the study of regular
languages and their properties.

We assume that the reader is familiar with the basics of finite automata,
tree automata, regular languages [6], view of finite automata and tree au-
tomata as finite algebras [2], basics from the theory of universal algebras,
e.g. finitely presented algebra, free algebra, congruence relations [5]. In
addition, we use some notions from computability theory [11], e.g. c.e. set,
simple set, immune set; and computable algebra [9], e.g. Σ1–algebra, Π1–
algebra. Many of these notions will be defined as needed. A related paper
discussing complexity issues is [3].

2 Automata with Algebraic Constraints

In this section, using terminology from universal algebra, we recall defi-
nitions of finite automata and regular languages, and introduce automata
with algebraic constraints. So, fix a signature σ =< f1, . . . , fn, c1, . . . , cm >,
where c1, . . . , cm are constant, and f1, . . . , fn are function symbols. An al-
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gebra A of this signature is a system < A, f1, . . . , fn, c1, . . . , cm >, where
each fi is an operation on A and each cj is a constant that interpret the
appropriate symbols of the signature1. The algebra is finite if its domain
A is a finite set. The terms of σ are defined by induction: each variable x
and a constant cj are terms; if t1, . . . , tk are terms and f is a k–ary function
symbol then f(t1, . . . , tk) is a term. The set G of ground terms is the
set of terms without variables. Each ground term defines a finite labelled
tree: the leaves of the tree are labelled with the constants, other nodes are
labelled with the function symbols, and any node labelled with symbol f of
arity k has exactly k immediate successors.

Definition 1 A language is a subset of the set G of ground terms.

If one identifies the ground terms with trees then any language can be
thought as a set of trees. A basic notion of this paper is the following.

Definition 2 A finite automaton is a pair M = (A, F ) consisting of
finite algebra A and the set F ⊆ A. The elements of A are states, F is the
set of final states , and the constants c1, . . . , cm ∈ A are the initial states
of M . The associated with M algebra is then A.

Ifm = 1 and all functions are unary thenM can be thought as a standard
deterministic finite automaton over the alphabet {f1, . . . , fn}.

Let t be a ground term and M = (A, F ) be an automaton. The au-
tomaton M evaluates the term t in a natural way: it is simply the value of
the term t in the algebra A. Procedurally this can be thought as follows.
Think of t as a labelled tree. The leaves of t are values of the constants
of the signature in the associated algebra A. These are the initial states of
M . If a node of the tree is labelled with f and the values of the immediate
successors of the node are states s1, . . . sk then label the node with the state
f(s1, . . . , sk). Thus the automaton works from the leaves to the root of t,
and labels the nodes with states of M . The root is labelled with the state
which is the value of t in A.

Definition 3 The automaton M = (A, F ) accepts the ground term t if the
value of t in A is in F . Let L(M) be the set of all ground terms accepted by
M . The language L(M) is regular.

1We abuse notation and denote the function (constant) symbols and their interpreta-
tions with the same letters.
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Any regular language is a decidable langauge. It is known that the
class of all regular languages is a Boolean class. Below, using the concept of
algebraic constraint, we provide other examples of Boolean classes consisting
of regular languages.

An algebraic constraint is a conditional equation, that is the universal
closure of the formula of the type t1 = q1 & . . . & tn = qn → t = q,
where ti, qi, t and q are terms of the signature. Let C be a set of algebraic
constraints and let M = (A, F ) be an automaton.

Definition 4 The algebra A assocaited with M is a C–algebra if it satisfies
all the formulas from C. The automaton M = (A, F ) is a C–automaton
if the associated algebra A is a C–algebra. The language accepted by a C–
automaton is a C–language. Define RC to be the set of all C–languages.

Now our goal is to study the class RC of all C–languages for a fixed set C
of algebraic constraints. Note that there are no conditions on C, in particular
C can be infinite. By the definition above any language from RC is regular.
Also note that RC always contains G and ∅. The standard constructions of
automata for recognizing the union, intersection, and the complements of
regular languages (see for example [4]) produces the following result:

Theorem 1 The class RC of all C–languages is Boolean.2

Definition 5 An equational constraint is the universal closure of the
formula of the type t = q, where t and q are terms. Let E be a set of
equational constraints. An E–automaton is an automaton M = (A, F )
such that A satisfies E. The algebra A is an E–algebra. A language L is
an E–language if L is accepted by an E–automaton. Let RE be the class
of all E–languages.

The above theorem holds for E–languages as well:

Theorem 2 The class RE of all E–languages is Boolean.2

Algebraic constraints are generally not well–behaved as equational con-
straints. To demonstrate this we give the following notions and results about
minimal automata. LetM = (A, F ) be an automaton. A homomorphism
of M onto an automaton M1 = (A1, F1) is a mapping h from A onto A1

such that h preserves the basic operations and for all states s ∈ A, s ∈ F if
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and only if h(s) ∈ F1. Note that in this case M and M1 accept the same lan-
guage. Equational constraints are always preserved under homomorphisms
while algebraic constraints are not. We will use this in the following re-
sult. Recall that a minimal automaton for a regular language L is the
automaton with the fewest states that accepts L.

Theorem 3 Let L be an E–language. Then a minimal automaton for L is
unique and is an E–automaton.

Proof. It is a known fact that any regular language L has a minimal
automaton accepting it. Moreover, the automaton is unique up to isomor-
phism. Additionally, any automaton that accepts L can be homomorphically
mapped onto the minimal automaton [4]. So let M1 be the minimal automa-
ton for L. Since L is an E–language there exists an E–automaton M that
accepts L. Since M1 is minimal, the automaton M1 is a homomorphic im-
age of M . Thus, M1 is an E–automaton since equational constraints are
preserved under homomorphisms. The theorem is proved.

A natural relation defined by the the set C of algebraic constraints is the
following. Ground terms t and q are C–equivalent if the equality t = q can
be proved (in the first order logic) from C. We denote C–equivalent terms
t and q by t ∼C q. Thus,

∼C= {(p, q) | E proves p = q}.

The following lemma follows immediately.

Lemma 2.1 The relation ∼C is a computably enumerable relation with an
oracle for C. In particular, if C is a decidable set of algebraic constraints
then ∼C is a c.e. relation.2

For a set C of algebraic cosntraints any C–language possesses a natural
completeness property with respect to the relation ∼C . Formally, a lan-
guage L is C–complete if for all t, q ∈ G the condition t ∈ L and t ∼C q

implies that q ∈ L. Thus, any C–complete language is a union of some
∼C–equivalence classes. These considerations now imply the following.

Corollary 2.1 Any C–language is C–complete. 2

One can also study the global structure of RE–classes, that is, we study
the relationship between different classes RE. Consider the set

K = {RE | E is a set of equational constraints}.
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Thus, we have a partially ordered set K = (K,⊆). We state the next theorem
about this partially ordered set and leave its proof as an exercise:

Theorem 4 The partially ordered set K forms a complete lattice, where for
all RE1, RE2 ∈ K the meet RE1 ∧RE2 coincides with RE1

⋂
RE2 and equals

to RE1∪E2 , and the join RE1 ∨ RE2 is the minimal RE that contains both
RE1 and RE2. 2

3 Characterizations by Algebras

Let E be a set of equational constraints. The set G of all ground terms
can naturally be transformed into an algebra: for any functional symbol
f of arity k and ground terms t1, . . . , tk, set the value of f on (t1, . . . , tk)
be f(t1, . . . , tk). The algebra F thus obtained is the absolutely free al-
gebra with generators c1, . . . , cm. Recall that an equvalence relation
η on F is a congruence if for all a1, . . . , ak, b1, . . . , bk ∈ G and a ba-
sic k–ary operation f , the condition (a1, b1), . . . , (ak, bk) ∈ η implies that
(f(a1, . . . , ak), f(b1, . . . , bk)) ∈ η. The equivalence relation ∼E induced by
the equational constraints E (see Section 2) is a congruence relation of F .
Factorizing F by ∼E , we obtain the initial algebra FE defined by E. The
algebra FE possesses several natural properties: Any algebra that satisfies
E and whose generators are c1, . . . , cm is a homomorphic image of FE , and
this propery defines FE uniquely up to an isomorphism.

Definition 6 The algebra FE is called initial for the class RE.

¿From the mentioned properties of FE, we obviously obtain the follow-
ing.

Lemma 3.1 For any E–automaton M = (A, F ), the algebra A is a ho-
momorphic image of FE. Moreover, if FE1 is isomorphic to FE2 then
RE1 = RE2 . 2

This lemma suggests the idea to say that the class RE is characterized
by the isomorphism type of the initial algebra FE. This idea does not work
because there exist nonisomorphic FE1 and FE2 such that RE1 = RE2. We
refine the idea of characterizing the class RE by the isomorphism types of
algebras by introducing the following new notions. Let FH(A) be the set
of the isomorphism types of all finite homomorphic images A.
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Definition 7 Two algebras A and B are relative if FH(A) = FH(B).

Thus relative algebras can not be distingushed from each other by their
finite homomorphic images. Now we prove the following theorem.

Theorem 5 Two classes RE1 and RE2 coincide if and only if the initial
algebras FE1 and FE2 are relative.

Proof. Assume that the initial algebras FE1 and FE2 are relative. Take
any language L ∈ RE1 . There exists an E1–automaton M = (A, F ) that
accepts the language. Then A is a homomorphic image of FE1 . Hence
A must be a homomorphic image of FE2 as well. We conclude that L is
an E2–language. Assume now that RE1 = RE2. Suppose, without loss of
generality, that there exists a finite homomorphic image A of FE1 which
does not belong to the set FH(FE2). This implies that there exists an
equation t(x1, . . . , xk) = q(x1, . . . , xk) that is not satsified in A such that
the equation belongs to E2. Let a1, . . . , ak be elements in A that make this
equation false in A. There exist ground terms p1, . . . , pk such that ai equals
to the value of the term pi in A. Let F = {t(a1, . . . , an)}. Consider the
automaton (A, F ). This automaton accepts the ground term t(p1, . . . , pk),
but does not accept the term q(p1, . . . , pk). Since RE1 = RE2 it must be
the case that L ∈ RE2 since L is accepted by an E1–automaton. But then
L is E2–complete by Corollary 2.1. Therefore q(p1, . . . , pk) must belong to
L since the equality t(x1, . . . , xk) = q(x1, . . . , xk) belongs to E2. This is a
contradiction. The theorem is proved. 2

Definition 8 An algebra A is a character of the class RE if FH(A) con-
sists of all algebras associated with E–automata.

Thus, for example the algebra FE and, by the theorem above, any algebra
FE′ that is relative to FE are characters of the class RE .

Lemma 3.2 Any algebra is a character for some class RE.

Proof. Let A be an algebra. Consider the set E(A) of all equations satisfied
by A. Then the algebra A is the initial algebra defined by E(A). Therefore
the algebra A is a character of the class RE(A). This proves the lemma. 2

Corollary 3.1 Any two relative algebras are characters of the same class
of regular languages. Particularly for any E, the initial algebra FE and any
algebra relative to FE are characters of the class RE. 2
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For a given set E of equational constraints, consider the set Ch(RE)
of all isomorphism types of algebras relative to FE. A natural question is
whether one can define an algebra from this set which, in certain sense, is a
canonical character for RE. One way to do this is the following. On Ch(RE)
introduce the relation ≤h: for all A,B ∈ Ch(RE), A ≤h B iff there exists a
homomorphism from B onto A. This relation is a partial order. The next
theorem shows that (Ch(RE),≤h) has a unique minimal element. So one
can say that the minimal element is a canonical character of the class RE .

Theorem 6 For any RE there exists a character CE of the class RE such
that every character of the class RE is homomorphically mapped onto CE.

Proof. Consider the absolutely free algebra F . Consider the class of all
algebras associated with E-automata. This class coincides with the class of
all finite homomorphic images of FE. Let A0,A1, . . . be a list of all such
finite algebras. Define the following equivalence relation ∼rE on the set GT
of ground terms: two terms t and q are ∼rE–equivalent, written t ∼rE q, if
in the algebra Ai the equality t = q holds for all i. One now checks that
∼rE is a congruence relation on F . Hence factorizing F by ∼rE , we obtain
the algebra which we denote by CE. We want to show that CE satsifies the
properties stated by the theorem. First we show that CE is relative to the
initial algebra FE . Let B be a finite algebra from FH(FE). We define a
mapping h from CE to B as follows. Take an a ∈ CE . There exists a ground
term t whose value in CE equals to a. Let b be the value of the ground
term t in the algebra B. Then, one can check that the mapping h(a) = b

is a homomorphism from CE onto B. Now we want to show that any finite
homomorphic image of CE is also a homomorphic image of FE. It suffices
to show that CE is a homomorphic image of FE. Since FE is the initial
algebra for E, it suffices to prove that any equality t = q between ground
terms that is true in FE is also true in CE. Let t = q be an equality between
ground terms that are true in FE. Then t = q holds in every finite algebra
Ai. Hence, by the definition of ∼rE, the terms t and q are ∼rE–equivalent.
Hence t = q is true in CE . Therefore CE is, in fact, a homomorphic image
of FE . Hence any finite homomorphic image of CE is also a homomorphic
image of FE. This shows that CE and FE are relative algebras.

In order to prove the second part of the theorem we need to show that
any algebra B relative to FE can be homomorphically mapped onto CE . Let
b be an element of B. Take a term t whose value in B is b. Map b onto the
value of the term t in CE. This mapping does not depend on the choice of
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t. Hence there exists a homomorphism from B onto CE. The theorem is
proved. 2

Definition 9 The canonical character of the class RE of decision prob-
lems is the algebra CE which is the minimal element of (Ch(RE),≤h).

The next section studies some computational properties of the canonical
characters for certain classes of RE . The section provides a necessary and
sufficient condition for the canonical character of RE to coincide with the
initial algebra FE.

4 On Canonical Characters of RE

All the characters of the class RE of decision problems that satisfy E are
among homomorphic images of the algebra FE. Thus, the partially ordered
set ({A|A ≤h FE},≤h) has the minimal element CE and the maximal ele-
ment FE . In this section we find conditions when FE coincides with CE ,
and study some computability–theoretic properties of the canonical charac-
ters. To do this, we need to introduce a couple of notions from universal
and computable algebra.

Definition 10 An algebra A is residually finite if for all a, b ∈ A, a 6= b

there is a homomorphism h of A onto a finite algebra such that h(a) 6= h(b).

The notion of residually finite algebra is a fundamental concepts of uni-
versal algebra and plays an important role classifying certain algebraic
structures[5]. Now we introduce standard notions from computable algebra.
Consider an algebra A of the signature σ. There is a congruence relation η

on F such that A is isomorphic to the algebra obtained by factorizing F by
η.

Definition 11 The algebra A is a Πn–algebra (Σn–algebra) if the rela-
tion η is a Πn–set (Σn–set). If A is both a Σ1–algebra and Π1–algebra then
A is a computable algebra.

Examples of Σ1–algebras are the initial algebras FE for computably
enumerable sets of constraints E. In the theory of computable algebras
there has been an extensive interest in Σ1–algebras while there has not been
an emphasis in the study of Π1–algebras because of the small number of
natural examples. It turns out that canonical characters are the source of
natural examples of Π1–algebras. Here is a simple result.
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Lemma 4.1 If the class of all finite homomorphic images of FE is com-
putably enumerable then the canonical character CE for the class RE is a
Π1–algebra.

Proof. By the assumption, there exists a sequence A0,A1, . . . of all
finite homomorphic images of FE such that the set {(x, y)|x ∈ Ai} is c.e..
Consider the the congruence ∼rE that defines the canonical algebra CE . By
the definition, t ∼rE q iff for ∀i(t = q in Ai). Hence, η is a Π1–relation.
Therefore, the algebra CE is a Π1–algebra. The lemma is proved. 2

Corollary 4.1 For any finite set E, the canonical character CE for the class
RE is a Π1–algebra.

Proof. The set E is finite. So, effectively list all finite algebras that
satisfy E. These algebras are homomorphic images of FE. Hence the hy-
pothesis of the lemma above holds true.2

The next theorem gives a criterium as when the partially ordered set
({A|A ≤h FE},≤h) has a unique element, that is when FE = CE .

Theorem 7 For a given class RE of decision problems, the initial algebra
FE is residually finite if and only if the algebras FE and CE coincide.

Proof. Consider the class RE . Assume that FE is a residually finite
algebra. We want to show that the minimal character CE for the class RE
is isomorphic to FE . From the proof of Theorem 6, we know that CE is a
homomorphic image of FE. Let h be the homomorphism. We want to show
that h is a one to one mapping. Indeed, let a, b be two distinct elements in
FE . Then, there exist ground terms t(p1, . . . , pk) and q(r1, . . . , qs) such that
the values of these terms in the algebra FE are a and b, respectively. Since
FE is a residually finite algebra there exists a finite homomorphic image Ai
of FE in which the images of a and b are also distinct. Therefore the ground
terms t(p1, . . . , pk) and q(r1, . . . , rs) are not ∼rE–equivalent, where ∼rE is the
congruence relation that defines the algebra CE . Hence the mapping h must
be a one to one mapping since h(a) 6= h(b) by the definition of ∼rE.

Assume now that FE and the minimal character CE coincide. For the
sake of construdiction, also assume that FE is not residually finite. Hence
there exist two distinct elements a and b in FE such that in any finite homo-
morphic image of FE the images of a and b are equal. Let t(p1, . . . , pk) and
q(r1, . . . , rs) be ground terms whose values in FE are a and b, respectively.

10



Then the images of these elements in any finite homomorphic image of FE
are equal. Therefore, by the definition of the equivalence relation ∼rE, the
ground terms t(p1, . . . , pk) and q(r1, . . . , rs) must be equal in the algebra A.
But this is not possible because A and FE coincide. Contradication. The
theorem is proved. 2

Corollary 4.2 For any finite set E, if the initial algebra FE is residually
finite then the minimal character CE of the class RE is a computable algebra.

Proof. The initial algebra FE and the canonical character CE are iso-
morphic. Since E is finite, FE is a Σ1–algebra. By Corollary 4.1 the canon-
ical character CE is a Π1–algebra. So, the algebra FE is both a Σ1–algebra
and Π1–algebra. Hence FE = CE , and CE is a computable algebra. 2

5 Finite Equational Constraints

In the previous two sections we introduce the notion of character as a tool to
specify a given class RE. This is an algebraic approach to the specification
problem of the class RE . One can study the specification problem from
computational and logical point of view as well. From computational point
of view it is quite natural to be interested in finiding a finite E′ such that
RE = RE′ . However, we have already noted there could be an E′ 6= E

such that E and E′ have different proof–theoretic power with RE = RE′ .
Therefore from logical (proof–theoretic) point of view point it is natural to
be interested in finding a finite E′ for which ∼E=∼E′. Of course, in this case
we have RE = RE′ . These observations lead us to the following definitions.

Definition 12 The pair (RE , E) has a a finite specification if there exists
a finite E′ for which ∼E=∼E′. The class RE has a finite specification E′

if RE = RE′ and E′ is finite.

If (RE , E) has a finite specification then clearly RE has a finite specifi-
cation. Below is a theorem that gives examples of classes that have finite
specifications. But we first prove the following lemma:

Lemma 5.1 Let A be a finite algebra, and E(A) be the set of all equations
satisfied by A. Then the pair (RE(A), E(A)) has a finite specification.

Proof. To prove the lemma we introduce the notion of hight h(t)
for ground terms t. The hight of any constant c is 0. If the hights
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h(t1), . . . , h(tm) have been defined, then h(f(t1, . . . , tm)) = max{h(ti) |
i = 1, . . . ,m} + 1. Since the algebra A is finite there exists a minimal s
such that every term of hight s equals, in the algebra A, to a term whose
hight is less than s. The number of terms of hight ≤ s is finite. Let
E′ = {t = q|h(t), h(q) ≤ s the algebra A satisfies t = q}. Note that E′ is
finite. Now FE′ is isomorphic to the algebra A. Therefore ∼E(A)=∼E′ .
The lemma is proved.

Theorem 8 For any finite set X of regular languages, the minimal class
R(X) ∈ K that contains X has a finite specification.

Proof. Let X = {L1, . . . , Lk}. Consider the minimal automaton
Mi = (Ai, Fi) that accepts Li, i = 1, . . . , k. Consider the congruence re-
lation ηX on F defined as follows: (t, q) ∈ ηX iff t = q in Ai for i = 1, . . . , k.
Let F(X) be the algebra obtained by factorizing F by ηX . The algebra
F(X) is the minimal algebra with respect to ≤h in the class of all algebras
A such that {A1, . . . ,Ak} ⊂ FH(A). Therefore R(X) coincides with the
class of all regular langauges that are accepted by automata whose associ-
ated algebras belong to FH(F(X)). Note that F(X) is isomorphic to the
Cartesian product A1 × . . . × Ak because (t, q) ∈ ηX if and only if t = q

holds in A1 × . . . ×Ak. Thus, from the lemma above we conclude that the
theorem is proved. 2

Lemma 5.2 If the pair (RE , E) has a finite specification E′ then the algebra
FE is a Σ1–algebra. Moreover, if FE is residually finite then FE is a
computable algebra.

Proof. The algebras FE and FE′ are isomorphic. Since E′ is finite,
the congruence relation ∼E′ is a c.e. relation. Hence the algebra FE is a
Σ1–algebra. If FE is residually finite then, by Corollary 4.2, the algebra FE
is computable. 2

Corollary 5.1 If (RE , E) has a finite specification and FE is not com-
putable then FE is not residually finite. 2

The results above lead us to the following question. If the initial algebra
FE is a computable and residually finite, does then the pair (RE , E) has a
finite specification? The theorem below answers the question.

Theorem 9 There exists an E such that FE is computable and residually
finite but the pair (RE , E) does not have a finite specification.
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Proof. Consider the signature is < f1, f2, c >, where f1, f2 are unary
function symbols. Define the congreuce relation η on F as follows: tηq iff
t = q or h(t) = h(q) = 2n for some n. The algebra A, obtained by factorizing
F by η, is computable. Moreover, A is residually finite. Consider E = E(A),
the set of all equations true in A. We claim that the pair (RE , E) does not
have a finite specification. To show this we analyse the equations true in
A. Let the universal closure of the equation t = q be true in A. Then
h(t) = h(q). Suppose t and q contain variables x and y, respectively. So we
write t(x) and q(y) instead of t and q. Then x = y, otherwise the equation
would not be true in A. We claim, if x = y then t = q. Otherwise, let n be
such that m = 2n > h(t). Then, since the universal closure of t(x) = q(x) is
true in A, the t(fm1 (c)) = q(fm1 (c)) is also true in A. By the definition of A,
this is not possible. Also, it is not the case that only one of the terms t, q
contains a variable. Now assume that for some finite E′ we have FE = FE′ .
Then, we can assume that no equation t = q in E′ contains a variable. Set
s = max{h(t)|t = q ∈ E′ or q = t ∈ E′}. Let r = 2s. Then the equality
f r1 (c) = f r2 (c) can not be derived from E′. This is a contradiction. The
theorem is proved. 2

Corollary 5.2 There exists a class RE such that the canonical character CE
is computable, residually finite but RE does not have a finite specification.

Proof. Consider E defined in the theorem above. Assume that for some
finite E′, RE = RE′ . Then it must be the case that ∼E′⊂∼E. Hence for
all (t, q) ∈ E′, the hight of t equals to the hight of q. Since E′ is finite
there exist two terms t, q such that (t, q) 6∈ E′ but (t, q) ∈ E. Then there
exists a homomorphic finite image of FE′ in which t and q are also distinct.
Hence FE′ is not relative to FE . Therefore RE 6= RE′ by Theorem 5. The
corollary is proved. 2

Theorem 9 and the corollary above show that it is not always possible
to find a finite specification for a class RE even when the initial algebra
FE is computable and residually finite. This suggests the idea to refine the
notion of finite specification. We do this by considering expansions of the
original signature. An expansion of the signature σ is obtained by adding
finitely many new function symbols. If A is an algebra of σ then by taking
interpretations of the new function symbols in A, we obtain an expansion
of A. Then A is called a σ–reduct of the expansion.

13



Let σ1 be an expansion of the signature σ. Let E, E1 be sets of algebraic
constraints of the signatures σ, σ1 respectively. We say RE1 is a refinement
of RE if RE1 is infinite and the σ–reduct of any E1–algebra is an E–algebra.

Definition 13 We say that RE is expansionary specified if there exists
a refinement RE1 such that RE1 has a finite specification.

¿From this definition the following proposition follows easily.

Proposition 1 If RE is expansionary specified then there exists a Σ1–
algebra which is initial for some refinement of RE. 2

In the next section we show that the converse of this proposition does not
hold true.

6 A Counterexample

In this section we fix the signature σ =< f1, f2, c >, where f1, f2 are unary
function symbols. We need some notions from computability theory. An
infinite subset of the set G of ground terms is immune if it contains no
infinite c.e. subsets. A c.e. set X ⊂ G with immune complement X̄ is called
simple. A set X ⊆ G is a weak subalgebra if f1(x), f2(x) ∈ X for all
x ∈ X. If c ∈ X for a weak subalgebra X then X = G.

Lemma 6.1 There exists a simple weak subalgebra of F .

Proof. Let W0,W1, . . . be a standard enumeration of all c.e. subsets
of G. We construct X by stages. At stage s we define a set Xs, then put
X =

⋃
S Xs. Constructing X, we need to satisfy the requirement ri stating

that Wi
⋂
X̄ 6= ∅ for all i such that Wi is infinite and Wi 6⊂ X. For any

Y ⊂ G, let Cl(Y ) be the set of all terms containing subterms of Y . Say that
ri attracts attention at s if Wi,s

⋂
Xs = ∅ and Wi,s 6= ∅. We set X0 = ∅.

Stage s. Assume that Xs−1 has been constructed. Find the minimal
ri, i ≤ s, that requires attention. Take the first term t ∈ Wi,s such that
h(t) > i+ 1, and set Xs+1 = Cl(Xs

⋃
{t}). Go to the next stage. If no i ≤ s

requires attention then go to the next stage.
The set X is c.e.. Note that for each i there is a term t 6∈ X of length

i + 1. Hence X̄ is infinite. If X is not simple, then take the minimal i for
which Wi ⊂ X̄ and Wi is infinite. Consider the stage t, after which no rj ,
j < i, requires attention. Then there is a stage s > t at which ri requires
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attention. Hence Wi,s
⋂
Xs 6= ∅, and therefore Wi

⋂
X 6= ∅. So X is simple.

By the construction X is a weak subalgebra. The lemma is proved.2

Theorem 10 There exists a class RE with no expansionary specifications
such that ∼E is a computably enumerable set.

Proof. Consider the free algebra F of the signature σ =< f1, f2, c >.
Consider the set X constructed in the lemma above. Define a c.e. congru-
ence relation η: (t, q) ∈ η iff t = q or t, q ∈ X. Now let A be the Σ1–algebra
obtained by factorizing F by η. Set E = E(A), where E(A) is the set of all
equations true in A. We show that RE is the required class.

Let f be a basic n–ary operation of an algebra B. A transition of
B is any of the mappings f(a1, . . . , an−1, x), . . ., f(x, a1, . . . , an−1), where
a1, . . . , an−1 ∈ B are fixed. Let Tr(B) be the algebra whose basic operations
are all transitions of B. Then a relation α is a congruence relation of B if
and only if α is a congruence of T (B).

Let A′ = (A′, f1, . . . , fn) be a Σ1-expansion of the initial algebra of some
refinmenet of RE.

Let X ′ be the image of X in A′. Note that X ′ is infinite and is a simple
set. We want to show that A′ is is residually finite. Let F0, F1, . . . be an
effective list of the transitions all the transitions of the expanded algebra A′.
Consider the transition algebra of Tr(A′). As noted above, it suffices to
prove that Tr(A′) is residually finite.

Let t1, t2 6∈ X ′ be two distinct ground terms in A′. We will show that
there exists a finite set S ⊂ X̄ ′ such that t1, t2 ∈ S and the relation eq(S) =
{(x, y)|x, y ∈ G\S}

⋃
{(x, y)|x = y} induces a congruence relation of Tr(A′).

If a such S exists, then the mapping h : t → {s|(t, s) ∈ eq(S)} will be
a homomorphism from A′ onto a finite algebra in which h(t1) 6= h(t2). In
order to prove that there exists a set S with the above three properties we
need to make several notes. Take a term x ∈ X ′, a transition Fi, and a finite
S′ ⊂ X̄ ′. If Fi(x) 6∈ S′ then {t|Fi(t) ∈ S′} ⊂ X̄ ′. This set is computable and
hence since X̄ is immune. If Fi(u) ∈ S′ then Fi(q) = Fi(x) for all q ∈ X ′, and
again {t|Fi(t) 6= Fi(u)in A′} ⊂ X̄ ′. This set is computable and hence finite.
Also note the following fact. The equivalence relation eq(S) = {(x, y)|x, y ∈
G \ S}

⋃
{(x, y)|x = y} is a congruence for the transition Fi if and only if

for all ground terms t′ 6∈ S, we have Fi(x) ∈ S ←→ Fi(t
′) = Fi(x), and

Fi(x) 6∈ S ←→ Fi(t) 6∈ S. Now we give a stagewise construction of S. At
stage 0 we put S0 = {t1, t2}. Clearly S0 ⊂ X̄ ′.

Stage j+1. Suppose that Sj has been constructed and Sj ⊂ X̄. Con-
sider the transitions F0, . . . , Fj+1. For each i ≤ j + 1, consider Fi(x).
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If Fi(x) 6∈ Sj, then set Sj+1,i = Sj
⋃
{t|Fi(t) ∈ Sj}. Otherwise, set

Sj+1,i = Sj
⋃
{t|Fi(t) 6= Fi(x) in A′}. Define Sj+1 = Sj+1,0

⋃
. . .
⋃
Sj+1,j+1.

By the remarks given before the construction, the set S =
⋃
j Sj is a

finite subset of X̄. There exists a stage j0 such that S = Sj0. The terms
t1 and t2 belong to S. We have to show that eq(S) induces a congruence
relation for every transition Fi. It suffices to prove that if s does not belong
to S, then (Fi(x), Fi(s)) ∈ eq(S). Consider any stage j ≥ j0. Suppose
that Fi(x) 6∈ Sj . Then Fi(s) 6∈ Sj, otherwise s ∈ Sj and hence Sj0 6= Sj.
Similarly, if Fj(x) ∈ Sj, then Fj(s) = Fj(x), otherwise s ∈ Sj and hence
Sj0 6= Sj. Thus, the homomorphism h defined by h : t→ {s|(t, s) ∈ eq(S)}
maps A onto a finite algebra in which h(t1) 6= h(t2). Thus, A′ is residually
finite.

To finish the proof, assume that RE has an expansionary specification.
Then there exists a refinement of RE that has a finite specification. Let
RE′ be a such refinement so that E′ is finite. Let A′ be the initial algebra
FE′ . Then A′ is residually finite and hence is computable by Corollary 4.2.
Therefore the set X is computable. This is a contradiction.

The theorem is proved.
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