*
L
e

THE UNIVERSITY OF

AUCKLAND

Mhare Winanga o Tamaki Makauray

NEW ZEALAND

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Vikas, S. T., Giacaman, N., & Sinnen, O. (2013). Using OpenMP under Android.
In A. P. Rendall, B. M. Chapman, & M. S. Muller (Eds.), OpenMP in the Era of
Low Power Devices and Accelerators: 9th International Workshop on OpenMP,
IWOMP 2013, Canberra, Australia, September 16-18, 2013, Proceedings Vol.
LNCS - 8122 (pp. 15-29). Berlin, Germany: Springer Verlag.
doi:10.1007/978-3-642-40698-0_2

Copyright

The final publication is available at Springer via
https://doi.org/10.1007/978-3-642-40698-0_2

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

For more information, see General copyright, Publisher copyright,
SHERPA/RoOMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1007/978-3-642-40698-0_2
https://doi.org/10.1007/978-3-642-40698-0_2
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
ftp://ftp.springernature.com/cs-proceeding/llncs/LNCS-Springer_Copyright_Form.pdf
http://www.sherpa.ac.uk/romeo/issn/0302-9743/

Using OpenMP under Android

Vikas!, Travis Scott?, Nasser Giacaman®, and Oliver Sinnen?

1
2
3

vik609@aucklanduni.ac.nz,
tsco0330Qaucklanduni.ac.nz,
n.giacaman@auckland.ac.nz,
4 o.sinnen@auckland.ac.nz
The University of Auckland, New Zealand.

Abstract. The majority of software authored for the mobile platforms
are GUI-based applications. With the advent of multi-core processors
for the mobile platforms, these interactive applications need to employ
sophisticated programming constructs for parallelism-concurrency, in or-
der to leverage the potential of these platforms. An OpenMP-like, easy
to use programming construct, can be an ideal way to add productivity.
However, such as environment needs to be adapted to object-oriented
needs and should be designed with an awareness of the interactive ap-
plications. Also, OpenMP does not provide a binding that target these
platforms. This paper present a compiler-runtime system for Android,
which presents OpenMP-like directives and GUI-aware enhancements.

Keywords: OpenMP, Android, GUI applications

1 Introduction

For several years now (since 2006), the number of cores available in mainstream
desktops started increasing; only half a decade later (in 2011), this trend started
emerging in the mobile space, including smartphones and tablets. All flagship
mobile devices are now multi-core, most of which are running Android. Much
like the dilemma that faced software developers when mainstream desktops went
multi-core [15], the same dilemma now faces mobile application developers; in
order to harness the computing power provided by these additional cores, mobile
“apps” must be parallelised since traditional sequential code is unable to utilise
the increased resources provided by multiple cores.

Java, the language used by Android [3], provides a suite of native constructs
for writing concurrent code, in the form of threads, thread pools, handlers,
runnables and so forth. However, successfully using these tools can be difficult,
and may not be immediately obvious to developers with a sequential program-
ming background. This is especially important as the appeal of application de-
velopment is being embraced by non-experienced programmers, whereas parallel
programming was traditionally the domain of experienced programmers target-
ing large scientific and engineering problems. But even for experienced users,
managing a large number of threading constructs can be time consuming and
leads to the introduction of additional bugs[9].

1.1 Motivation

Keeping the above in mind, it can be seen that the rapid advancement of multi-
core processors for mobile devices necessitate the GUI applications (existing
and new ones) to be parallel and concurrent. The mismatch between the pace
of hardware advancement and software development, can be bridged by using
the principles and methodologies of directive-based constructs. The directive-
based approach can decrease the general complexities of parallel-concurrent pro-
gramming. Furthermore, with the ever increasing importance of the mobile do-
main, and in the absence of any directive-based implementation or binding, an
OpenMP-like environment can be helpful to a great extent.

1.2 Contributions

This paper acknowledges OpenMP’s expressive power and ease of use in the
domain of shared memory parallel programming. However, should we wish to
extend OpenMP’s coverage to encompass mobile application development, there
are concepts vital to the development of object-oriented GUI-based applications
that are absent in the OpenMP model. To address these shortcomings, this paper
makes the following contributions:

OpenMP-like environment for Android: The most dominant mobile plat-
forms (Android and iOS) use object-oriented languages for the development
of interactive applications. This paper presents OpenMP-like directives and
runtime support for Android.

Analysis and integration for Android: Android supports Java as an appli-
cation development language (and C/C++ through NDK), but it omits some
standard Java libraries used in standard GUI application development (such
as Swing and AWT). In this light, the paper presents an exploration of
the needs of Android and implementation details of the proposed compiler,
demonstrating a sample Android-based OpenMP compiler implementation.

First experience report and performance evaluation on Android: We eval-
uate the proposed system using a set of interactive GUI applications for
Android. We present our first experiences and the evaluation results.

2 Background

2.1 Distinct structure of GUI-based applications

In many ways, the execution flow in a GUI application is different from that of
a conventional batch-type application. Firstly, the interactive applications have
their execution flow determined by the various inputs from the user. Secondly,
the control flow is largely guided by the framework code of which the program
is built on; this distinguishing aspect is known as inversion of control [7], when
the flow of control is dictated by a framework rather than the application code.

The primary concept is that events are generated from within the framework
code in response to user actions. The programmer only needs to implement spe-
cific routines, known as event handlers, in the application code in response to
those events. The control returns back to the framework upon completion of the
respective event handler, namely to the event loop. In most GUI frameworks,
this is performed by a dedicated thread known as the GUI thread. In compari-
son, batch-type programs have the control flow determined by the programmer
(i.e. the application code) and deal with serial input-output (even though the
processing may be parallelised).

From the requirements perspective, in addition to the generic software re-
quirements, an important criteria for GUI applications is their responsiveness.
The application should always remain interactive and responsive to user actions.
From the execution semantics, programmers must ensure that the GUI thread
minimises its execution in the application code, therefore remaining largely in
the event loop to respond to other potential events. In addition to off-loading
the main computation away from the GUI thread, regular intermittent progress
updates frequently need to be communicated back to the user to be perceived
as having a positive user experience.

2.2 Mobile devices and GUI application development

The mobile environment differs from the desktop environment on both the hard-
ware and the software levels. From the hardware aspect, the mobile environment
is largely constrained in memory and processing power (the dominant ARM pro-
cessors focus on efficiency of power consumption). On the software side, the GUI
frameworks support high level languages (such as Java in Android, Objective-C
in i0S); however, not all the libraries or APIs are supported in a mobile ap-
plication. Some possible reasons might be that these frameworks cater to the
specific needs of the mobile devices and do not need to provide support for
general purpose libraries. Also, many libraries and tools have been part of the
desktop environment for legacy purposes. In many cases, they were designed and
developed for systems with larger memory and faster processing power, and thus
do not find a place on mobile platform. Nevertheless, mobile-based GUI applica-
tions do follow a similar architecture to desktop-based GUI applications, but the
general consideration for memory and processing efficiency is always present.

2.3 Distinctions in Android application development environment

There are some mentionable factors that make Android GUI application develop-
ment different from that of the desktop environment. First, Android’s execution
environment runs every application in a separate sandboxed process and only a
single application is displayed on the screen at a time (under the hood, Android
uses a Linux kernel and every application is treated as an individual user). This
restricts the applications to have shared access to the file system, the applica-
tion data, and more. The applications are executed in separate instances of the
virtual machine, thus each application has a separate instance to itself. This

enforces a design requirement over the applications. Moreover, Android’s virtual
machine, known as the Dalvik Virtual Machine (DVM), is not like a regular Java
Virtual Machine (JVM). It is a slimmed down virtual machine which is designed
to run on low memory. Importantly, DVM uses its own byte code and runs .dex
(Dalvik Executable File) instead of the .class files that the standard JVM runs.
In effect, the legacy Java libraries or Java code need a recompilation in order to
be used for the Android.

On the framework side, Java is only supported as a language; libraries like
Swing, AWT and SWT are not supported [13]. Nevertheless, it provides extra
concurrency features, as will be discussed in section 3. Thus, even an experienced
Java programmer needs to become acquainted with alternative constructs and
the legacy programs cannot be directly ported.

Furthermore, owing to its recent development, Android has incorporated the
generic requirements of a GUI-based application into the framework. For ex-
ample, to counter the responsiveness related application freeze, Android throws
an Application Not Responding (ANR) [2] error when an application remains
unresponsive for more than a certain amount of time (around 5 seconds for Jelly
Bean). In effect, this enforces a rule on the GUI applications to avoid the time
consuming computations on the GUI thread and the applications should offload
them. Another example is that of the CalledFromWrongThreadException excep-
tion; like most of the GUI framework, the Android framework is single threaded
and the thread safety is maintained by throwing this exception if any non-GUI
thread tries to update the GUI. Therefore, the programmer always needs to use
specific constructs in concurrent programs for updating the GUI.

3 Related work

3.1 Android concurrency

Android supports the prominent concurrency libraries of Java using the java.util.concurrent
package, thus supporting the ExecutorService framework. The native threading

is also supported. Additionally, Android exposes AsyncTask and Handler [12]

for advanced concurrency. AsyncTask enables to perform asynchronous process-

ing on background worker threads and enables methods to update the results on

the GUI. Handler enables the posting and processing of the Runnables to the

thread’s message queue.

3.2 OpenMP for Android

There is no official OpenMP specification for Java, so OpenMP is not supported
on Android. The Android Native Development Kit (NDK) supports C/C++ [11],
but it does not support an OpenMP distribution. Although there are no Android
OpenMP implementations, there are however some respectable Java OpenMP
implementations, namely JOMP [6] and JaMP [8]. While these tools provide im-
portant contributions to OpenMP Java bindings, they do not specifically target

GUI applications as is the focus of Pyjama. More specifically, these solutions
were developed well before the time of Android application development, as is
the focus of this research.

4 Android Pyjama compiler-runtime

Pyjama [16] is a compiler-runtime system which supports OpenMP-like direc-
tives for an object-oriented environment, specifically for Java. Where required,
Pyjama adapts the principles and semantics of OpenMP to an object-oriented
domain and, in addition, provides the GUI-aware enhancements. The research
presented in this paper is based on the preliminary work done on Pyjama, and
now extending it to mobile application development.

4.1 Standard directive syntax

In the absence of any Android specification for OpenMP, we propose a format
that is close to the OpenMP specification. A program line beginning with //#omp
is treated as a directive by the proposed compiler and ignored as inline comments
by the other compilers. Generic syntax is as shown below:

//#omp directiveName[clause[[,]clause]..]

4.2 Conventional OpenMP directives and semantics

The conventional directives, as presented in [16], are supported in Android Py-
jama as well. The system also supports object-oriented semantics within the
scope of these conventional directives. For instance, for-each loop construct is a
way to traverse over a collection of objects in object-oriented programming and
parallelising a for-each loop is permissible using the parallel for construct.
Furthermore, the OpenMP synchronisation directives like barrier, critical,
atomic and ordered are supported with identical semantics as that of OpenMP

for C/C++.

4.3 GUI-aware extensions

To improve upon the usability of OpenMP for GUI applications, Pyjama on
Android introduces the following GUI-aware constructs:

— freeguithread directive

Specifies a structured block that is executed asynchronously from the GUI
thread, freeing the GUI thread to process events.

//#omp freeguithread

structured-block

— gui directive

Specifies a structured block that is executed by the GUI thread. An implicit
barrier is placed after the structured block unless an optional nowait clause is
used.

//#omp gui [nowait]

structured-block

freeguithread construct A prominent limitation of using OpenMP in a GUI
application is that OpenMP’s fork-join threading model effectively violates the
responsiveness of a GUI application. Consider the scenario where the code inside
an event handler encounters an OpenMP construct; the master thread (MT)
would be the GUI thread and would therefore take part in the processing of the
OpenMP region. But in a GUI application, this is a problem; the GUI thread
will remain busy processing (the parallel region), effectively blocking the GUIL.
The GUI-aware thread model addresses this responsiveness related issue; the
basic principle is that an application will not have the tendency to become
unresponsive, or block, if the GUI thread is free to process user inputs.

To achieve this responsiveness, we need to relieve the GUI thread from the
execution of a specified region; hence the freeguithread directive. The underly-
ing mechanism determines if the thread encountering freeguithread is the GUI
thread. If yes, a new thread is created, called the Substitute Thread (ST), which
executes this region on behalf of the GUI thread. As a result, the GUI thread is
free to return to the event loop and handle incoming events. The structured block
of the freeguithread directive is executed asynchronously to the GUI thread.
When the execution of the region is completed by the ST, the GUI thread is no-
tified and returns to execute the region following the freeguithread directive.
This approach keeps the OpenMP threading model with its fork-join structure
intact. Any parallel region that is then encountered by the ST is handled in
the usual manner, whereby the ST is the master thread of that region.

gui construct For GUI applications, there is a need to update the GUI with
intermittent results when the application code is still busy in the background
processing. This may be related to conveying the partial results of the back-
ground processing or it may be just a GUI update to convey the completion
of background processing, e.g. a progress-bar update, a message box update, or
rendering a part of a processed image. This way, the application need not wait
for the whole processing to complete before informing users (thus enabling a
more positive user experience). In GUT application development, this is achieved
by implementing a way to provide periodic updates to the GUI. Generally, it
involves careful synchronisation methods or shared global flags. A programmer
needs to introduce major code restructuring to spawn the computational work
to other thread(s) and then again to execute GUI code, commonly encapsu-
lated within Runnable instances and posted to the GUI thread. These methods
have their own limitations and complexities and make it difficult to involve any
OpenMP-like programming. It also opposes the the OpenMP philosophy of main-

taining the program’s original sequential structure when the OpenMP directives
are ignored.

For an elegant and easy solution of these issues, Pyjama introduces the new
gui directive. Using it, a program can execute part of the code on the GUI
thread from a background-processing region. This eliminates the need to main-
tain complexities of synchronisation. The addition of the freeguithread and
gui directives enable programmers to achieve responsive application develop-
ment by obeying the single-thread rule of most GUI toolkits.

Syntactically, freeguithread and parallel can be combined in one directive
statement. The further combination with the worksharing directives for and
sections is also possible.

4.4 Runtime

The runtime components provides execution environment and timing routines,
conforming to OpenMP 2.5 [10]. Additionally, the runtime provides a set of
utility methods for the benefit of a programmer.

5 Implementation

5.1 Construction of compiler

The parser for the compiler was created using Java Compiler Compiler (JavaCC).
JavaCC is an open source parser generator for Java and the Java 1.5 grammar is
provided as a part of the JavaCC distribution. It should be noted that JavaCC is
not a lexical analyser or parser by itself. It needs to be provided with regular ex-
pressions and grammar and it generates a lexical analyser and a parser. The Java
1.5 grammar file was used as the base and was augmented with extended Backus
Naur form (EBNF) -like ® grammar notations for the OpenMP-like directives,
to generate the lexical analyser and the parser.

5.2 Code generation

The elementary process involves lexical analysis and parsing of the input code to
generate an intermediate representation of the code (in this case, it is an AST);
the AST is then traversed, using the visitor design pattern [14], and the directive
specific nodes are translated to the respective parallel or concurrent version of
the code.

From the software engineering perspective, the implementation is modu-
larised by dividing the generation into two broad passes of normalisation and
translation. Normalisation operations help simplify the process of target code
generation. A wider range of directives are supported by actually implementing
only the basic directives and normalising other directives to those implemented
ones. The next pass is the translation pass, where an explicit parallel and con-
current version of the code is generated.

% JavaCC provides the notation for defining grammar in a manner similar to EBNF

Translation of conventional directives and clauses The semantics of multi-
threaded and GUI-aware translation adheres to the OpenMP’s threading model.
While introducing parallelism through the directives, the execution semantics
follows the fork-join threading model and identifies a distinct master thread,
like the OpenMP model.

Implementation wise, code outlining is the elementary approach employed
by the translation pass. As figure 1 illustrates, the structured block from the
onClick() method is outlined to form a new method (steps 1 and 2) and then
executed using the runtime native queue and the native task-pool (steps 3, 4
and 5). Reflection is used to retrieve and execute the respective user code, thus
implementing a fork and a barrier is placed after the region, thus implementing
the join.

Also, the compiler achieves data passing by creating a new class to hold the
variables from the encountering thread. Here, based on the data clauses used,
an object of this class is instantiated and values from the encountering thread
are assigned to it.

3)

[— enqueue(_ompMethod1) ‘
onClick(){ —_—12 Queue

//Homp ...
/*method body*/

1)

|
4)

W
EEBEZE multiple I
Threads

Android Input code

Transformed code .
Runtime

Fig. 1. The code outlining and queuing approach.

Translation of GUI directives Translation of GUI directives forms an inter-
esting part of this research. Semantically, the freeguithread region is treated
as a task and moved to a new method which is enqueued and executed in the
same way as a conventional directive. Like the semantics for the conventional
directive, the enqueuing serves as the fork. The exception being that the en-
countering thread is not assigned as the master. Also, no barrier is placed in
the original code, but a callback method is created using the code that appears
after the freeguithread region in the original code. This callback is processed
only after the execution of the task. This point serves as a continuation point
and effectively as the join.

Concerning the specifics of implementation, the Android framework does not
have an Event Dispatch Thread (EDT) and that is why the rudimentary im-

plementation uses the application’s looper instead. Every Android application
has a main thread living inside the process in which the application is running.
This thread contains a looper, which is called the main looper (instance of class
Looper). For an activity or a service with a GUI, the main looper handles the
GUI events. The main looper in Android is essentially analogous to the EDT in
Java. With that knowledge, the GUI-aware directive verifies if the encountering
thread is an event loop or not, using the method shown below:

private boolean isEventLoop() {
boolean bELoop = false;
if (Looper .myLooper () != null) {
bELoop = (Looper.myLooper() == Looper.getMainLooper())
}

return bELoop;

The gui directive translation searches for the main looper and posts the user
code (as a Runnable) to it, as illustrated in the following code:

pHandler handler = new Handler(Looper.getMainLooper());
handler.post(new Runnable(() {
public void run() {

DE

Here, Handler is another class that allows sending and processing the runnable
objects associated with a thread’s message queue. It binds to the threads message
queue that created it. Also, as shown in the code, Looper.myLooper () returns
the looper associated with the current thread, if it has one. If the returned one
is not the application’s main looper, then it is concluded that the current thread
is not the main thread of the application.

6 Evaluations

In this section we present the preliminary evaluations of the conventional and
GUI directives for Android. The overall strategy has been to evaluate the system
on diverse devices and using diverse applications (non-conventional application,
conventional mainstream applications and pure performance measuring applica-
tions).

6.1 Evolution strategy algorithm

The first application we present is an implementation of the EvoLisa algorithm
created by Roger Alsing [1]. It is an evolution strategy algorithm, and is a subset
of the broader class of evolutionary algorithms[5]. For this evaluation, we used a

Galaxy Nexus 7 tablet, running an ARM Cortex-A9 Nvidia Tegra 1.2 GHz quad
core processor with 1GB of RAM.

Strategy In order to accurately gauge the suitability of the system as a devel-
opment tool, and also more accurately reflect a real design scenario, an algorithm
was chosen which was not already parallelised. Without prior knowledge of the
algorithm model it was ensured that selection bias would not result in an al-
gorithm being selected which was naturally suited to a fork-join model. The
challenge of parallelising the algorithm also provided the opportunity to explore
how the environment can be used to parallelise non trivial algorithms. In ad-
dition to being unknown, the algorithm was also required to be long running
and computationally expensive, such that it would be completely impossible to
implement purely on the GUI thread. It also needed to provide updates to the
user interface and have some level of user interactivity, so that it cannot simply
be passed to a background thread to execute in isolation from the rest of the
application. In fact, below is the code snippet of this app using Android Pyjama:

performImageGeneration(){
initialise starting working set of polygons

//#omp freeguithread

{
while(continueToGenerate) {
// fetch portion of polygons for current thread
// attempt 100 random mutations and select best one
{
//recombine polygons and create new parent
// create display image
//#omp gui
{
// update GUI
}
}
}
}
}
This code snippet promotes the harmony of using standard OpenMP for per-
formance and synchronisation (in), in combination with the GUI-aware

constructs of Pyjama (in blue) to adhere to GUI concurrency rules in promoting
a responsive Android GUI application. Furthermore, this code demonstrates the
elegance of using a directive-based solution (such as OpenMP) to a new class of

user interactive applications, not just the batch-type scientific and engineering
applications traditionally tackled by OpenMP.

Execution Time vs Fitness Value Execution Time vs Fitness Value

1.00E+008 1.00E+008

9.00E+007 9.00E+007
8.00E+007 — Sequential - 1
Sequential — 2
7.00E+007 Sequential - 3
=2 Threads - 1
6.00E+007 e 2 ThreA0S - 2
2 Threads - 3
5.00E+007 4 Threads - 1
=4 Threads - 2
4.00E+007 4 Threads - 3

8.00E+007
w4 Threads - 1
7.00E+007 w4 Threads — 2
4 Threads - 3
6.00E+007 — Pyjama (4
Threads) - 1
5.00E+007 Pyjama (4
Threads) — 2
4.00E+007 = Pyjama (4
Threads) - 3

Fitness Value (Lower is Better)
Fitness Value (Lower is Better)

3.00E+007 3.00E+007

2.00E+007

2.00E+007
100 200 300 400 S00 600 700 BOO 900

100 200 300 400 500 600 700 800 900

Execution Time (s) Execution Time (s)

Fig. 2. Execution time vs fitness Values. Left:Pyjama vs native treads.
Right:Improvement in fitness value with increase in number of threads

Evaluations The algorithm was run repeatedly using different numbers of
threads on three versions of the application: sequential, multi-threaded using
ExecutorService and Android Pyjama directives. Tests were all performed on
a single boot, with tests interleaved (i.e. single thread test performed, multi-
threaded test with 2 threads performed, multi-threaded test with 4 threads per-
formed). To perform the test an image was left to generate for 900 seconds, with
the execution time and fitness level of the generated image recorded after each
evolution cycle.

Results of the testing are shown in figure 2, displaying three runs of each of
the manual threading (using ExecutorService) and Android Pyjama when each
use four threads. It can be observed that the scalability and performance gain
achieved is similar in both versions; the directive-base parallel-concurrent ver-
sion (i.e. Pyjama) performs similar to the manually programmed multi-threaded
version (lower fitness value is better). Due to the randomness aspect of the al-
gorithm, there is sometimes a large degree of variation between runs. Figure 2
helps confirm though, that having increased parallelism does in fact speed up
the progress of the algorithm on the mobile device, as increasing from 1 to 2 to
4 threads.

From the GUI aspect, intermittent GUI updates (i.e. results from the mu-
tations) is an important part of this application. The code snippet showed how
this was effectively handled by the GUI directive, embedded within a standard
OpenMP single construct to ensure only one update request is made per cy-
cle. In effect, the Android Pyjama implementation exhibited identical respon-
siveness to the manually threaded implementation using standard Android con-
structs; however, the Android Pyjama implementation clearly has the advantage
of highly resembling the sequential version with minimal recoding. Irrespective

of the ongoing background processing, the GUI remained responsive to the user
actions. Figure 3, presents a small gallery of screenshots from the application.

Fig. 3. Responsiveness while reconstruction of images in the EvoLisa Application

6.2 Pattern rendering application

We developed another GUI application which creates psychedelic renderings on
the screen. We used the Samsung GT-19300 (Samsung Galaxy S-IIT) smartphone,
which has a 1.4 GHz quad-core ARM Cortex-A9 CPU and 1 GB of RAM.

Strategy We designed the Android application in a way that it can serve as a
representation of the major types of applications that are published for mobile
devices. Firstly, it creates a standard GUI for information screens and the help-
screen using standard components of the Android toolkit, such as layouts and
widgets. Secondly, the rendering screen of the application draws directly to the
canvas, and controls all the drawings to it directly. In this way, it represents
typical gaming and graphical applications, which are more compute intensive
and richer in rendering.

The directives add incremental concurrency, performance and responsiveness
to the application. Each screen (activity) uses the GUI-aware directive (gui), to
render the screen components (layouts and widgets). The parallel for direc-
tive, along with GUI-aware directives (freeguithread/gui) are used to migrate
the computations to the thread pool and to keep the screen responsive to gestures
and touch inputs. For evaluations, we used two versions of the same applications.
The first one using the directives and the second one using standard Android
constructs, and compared the behaviours. This reflects on the completeness of
the system on Android.

Evaluations Considering the application responsiveness and behaviour, the two
versions of the applications performed identically. The GUI display and pattern
rendering on the screen is seen to be the same. Looking at the responsiveness,

as figure 4 quantifies, the gesture and touch inputs were correctly registered.
In summary, it is seen the application development for mobile devices is also
benefited in the same way as application development for desktop environment.

Fig. 4. Snapshots showing response to user’s gestures. A “circle” gesture adds more
colours to the fractal generation.

6.3 Responsiveness evaluation with Monkey tool

The Monkey tool[4], distributed with Android SDK, generates random events
(such as touch, motion, key events, clicks and more) which can be fired at the
application. In figure 2, we observed that an increase in the number of threads
improves the performance; we used the Monkey tool to test the responsiveness
in the face of this improved performance. We evaluated different versions of
the application by averaging over 20 runs and in each run we fired 5000 UI
events at the applications. We measured the number of events that get dropped
while the GUI thread is busy processing. We also measured the response time.
The lesser the response time, the more responsive the application, and lesser
are the chances of an application-freeze. We compared the Android Pyjama
version of the application with that of another version developed using the native
threads. The non-concurrent (single thread) version remains unresponsive to the
events while processing the computationally intensive load and so could not be
evaluated (Android throws an exception if workload is processed on the GUI
thread). The results are shown in figure 5.

The results provide a fairly quantifiable measurement of the responsiveness
in the Android Pyjama version. An overall responsiveness is achieved with both
the Android concurrency and Pyjama, with comparable results. Here, it should
be noted that Pyjama utilises a native task pool and therefore avoids the thread
creation and destruction overheads. Also, as the number of threads increases and
the application achieves more computation, the GUI thread gets smaller time
slice to process the Ul events. But this results in very small loss of responsiveness
when compared to the performance gain that the application achieves.

Dropped events Response time

W Mative
threads

M Pyjama

W Mative
threads

2threads B Pyjama

2 Threads

3threads 3 Threads

dthreads 4 Threads

50 70 80 110 130 0 10 20 30 40

No. of dropped Ul events in a total of 5000 Avyg. response time (s) for 5000 Ul events

Fig. 5. Results of the responsiveness test with the Monkey tool

6.4 Mandelbrot application

In order to measure the gross performance gain, by minimising the effects of
GUI-based processing, we implemented an Android Mandelbrot application. Two
versions of the application were created for this evaluation; a serial version which
does not use any concurrency or parallelism constructs (although a background
thread is necessary to be launched for time consuming computations, otherwise
the Android operating system throws an exception) and the second one uses
the directives for parallelism (the parallel construct and the parallel for
construct). It was observed that Android Pyjama scaled well on the Galaxy
S III; for 4 cores, a speedup of 2.7x was observed in comparison to the serial
version.

6.5 Productivity evaluation

Even though in its preliminary stages, the proposed system exhibits good reasons
for bringing a directives-based approach to the Android platform. By replacing
native threading constructs with compiler directives, we were able to remove
much of the fragmentation introduced into the code by these constructs (a 75%
reduction was achieved in the EvoLisa demonstration application), resulting in
more sequential, readable code. For the GUI applications, the aim is to provide
a fluid experience for the user, and achieving this aim is often hindered by a
large number of small tasks which introduce slight delays. The proposed system
makes it simple for developers to offload these tasks to background threads, and
provides the necessary tools to manage the complex interactions between these
background threads and the GUI thread, thus removing the burden of manually
managing this process.

7 Conclusion

With the mobile domain being so relevant today, we presented a compiler-
runtime system to support directives based parallelism for Android promoting

the OpenMP philosophy. The evaluations demonstrated positive results using
a set of Android applications that focused on the GUI aspect of these appli-
cations; here, traditional parallelism in the form of speedup is only one aspect
of performance, the other vital measure of performance being that of ensuring
a user-perceived positive experience. Code snippets for the used directives also
helped illustrate the contribution such a tool can provide for the productivity of
mobile application developers.

References

N

10.

11.

12.

13.

14.

15.

16.

Roger Alsing. Genetic Programming: Evolution of Mona Lisa, December 2008.
Google Inc. Android. Keep your app responsive, April 2013.

Android, Google Inc. http://developer.android.com/ guide/basics/what-is-
android.html.

Android, Google Inc. http://developer.android.com/tools/help/monkey.html.
Jason Brownlee. Evolution Strategies.

J. M. Bull and M. E. Kambites. JOMP—an OpenMP-like interface for Java. In
JAVA ’00: Proceedings of the ACM 2000 conference on Java Grande, pages 44-53,
New York, NY, USA, 2000. ACM.

Mohamed Fayad and Douglas C. Schmidt. Object-oriented application framework.
Communications of the ACM, 40(10):32 — 38, 1997.

Michael Klemm, Matthias Bezold, Ronald Veldema, and Michael Philippsen.
JaMP: an implementation of OpenMP for a Java DSM. Concurrency & Com-
putation: Practice & Experience, 19(18):2333 — 2352, 2007.

. Edward A Lee. The Problem With Threads. IEEE Computer, 39(5):33-42, May

2006.

OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 2.5, 2005.

Sylvain Ratabouil. Android NDK: discover the native side of Android and inject
the power of C/C++ is your applications: begineer’s guide. Birmingham, U.K. :
Packt Pub, 2012.

Komatineni Satya, MacLean Dave, and Eric Franchomme. Pro Android 4. New
York: Apress, 2012.

Komatineni Satya, MacLean Dave, and Hashimi Y. Sayed. Pro Android 8. New
York: Apress, 2011.

Markus Schordan. The language of the visitor design pattern. Journal of Universal
Computer Science, 12(7):849-867, jul 2006.

Herb Sutter. A fundamental turn toward concurrency in software. Dr. Dobb’s
Journal, 30(3), February 2005.

Vikas, N. Giacaman, and O. Sinnen. Pyjama:OpenMP-like implementation for
Java, with GUI extensions. In International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM) held in conjunction with 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’13), 2013.

