

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Submitted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Collinson, S., & Sinnen, O. (2013). Flexible hierarchy ray tracing on FPGAs. In H.
Amano, Y. Ha, & Y. Yamaguchi (Eds.), Proceedings of the 2013 International
Conference on Field Programmable Technology (FPT) (pp. 330-333). New York, NY:
IEEE. doi:10.1109/FPT.2013.6718379

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

For more information, see General copyright, Publisher copyright,

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1109/FPT.2013.6718379
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html

Flexible Hierarchy Ray Tracing on FPGAs

Abstract—Rendering programs use ray tracing to artificially
create photo-realistic scenes that would normally be too danger-
ous, too costly or physically impossible to fabricate. Acceleration
of the rendering process can be achieved through spatial or
object hierarchy structures, which aim to restrict the number
of expensive ray-object intersection calculations along a ray path
by trading them for traversal of the structure. With extensive
inherent parallelism, ray tracing benefits from GPU acceleration
but may also benefit from the more flexible control flow and
memory architecture available with FPGAs. We present a flexible
FPGA based ray tracing platform capable of traversing varying
widths and types of acceleration hierarchies to evaluate their
efficiency. The platform consists of four main controllers for
communication, traversal, intersection and memory. The platform
interfaces with LuxRays, an open-source C++ renderer, over
PCIexpress to transfer data for computation to onboard memory.
The traversal controller uses a programmable number of priority
queues which are implemented efficiently on FPGAs using a
series of comparators and a shift register, allowing for single
cycle insert and extract operations. We implement a four priority
queue configuration of the platform at 250MHz that uses 26%
of the registers and 25% of the LUTs available on the targeted
device. The configuration showed promising results compared to
CPU and GPU renders.

I. INTRODUCTION

Digital rendering of special effects is now a routine re-
quirement for moviemakers, allowing them to create scenes
that would normally be too dangerous, too costly or physically
impossible to fabricate but still giving a realistic look and feel
to the film [1].

Digital rendering generates a digital image from a scene
model using a number of different techniques. The scene is
represented by a model (or collection of models) which is
a digital description of a 3-dimensional object - often stored
as a mesh of triangles or vectors. Along with the model, the
full representation of a scene also describes the viewpoint (or
camera location), lighting, texture and shading [2].

To create scenes for special effects, the model of the
environment and the objects within it, is created in a digi-
tal rendering program. LuxRender, a physically correct and
unbiased rendering engine, is one such program.

LuxRender implements ray tracing methods to create the
photo-realistic digitally rendered images required by movie
makers, but requires massive computational power, as a scene
has to be rendered frame-by-frame at very high resolutions.
Ray tracing can keep a several hundred server cluster occupied
for months rendering a full-length animated movie.

Ray tracing follows a path of light from the camera through
each pixel in the image plane and simulates the light interaction
with objects in the scene. It can simulate a wide variety of
optical effects, such as reflection and refraction, scattering and
chromatic aberration. A light ray - projected from camera
to the scene - is tested to see if it intersects with any of

the triangle meshes in the scene and from there whether it
will intersect with any of the scene’s light sources. Certain
illumination algorithms and reflective or translucent materials
may require further rays to be cast into the scene. Using ray
tracing, a shader calculates the total light contribution for each
pixel, which is used to determine the colour [2].

While it may seem counterintuitive to cast rays into a
scene rather than from a source (a process known as photon
mapping), it is far more efficient as the overwhelming majority
of light rays from a source do not reach the camera. Time is
therefore not wasted computing paths for rays that will never
reach the camera.

The inherent parallelism in ray tracing calculations has lead
to much research in the area and several hardware accelera-
tion techniques. Ray tracing using CUDA (Nvidia’s support
architecture for GPU programming) capable of > 7.7 × 106

primary rays per second has been implemented [3]. More
recently Nvidia developed the Optix ray tracing engine, a pro-
grammable system for GPUs and other parallel architectures.
Optix builds on the observation that most ray tracing algo-
rithms can be implemented using a small set of programmable
operations [4]. Woop et al. implemented a Ray Processing
Unit on a Xilinx Virtex-2 FPGA, which performed similarly
to a CPU [5]. Cameron presented a method for using FPGAs
to supplement ray-tracing computations on the Cray XD-1.
Preliminary simulations estimated the systems performance to
be 1.2×107 ray-object intersection tests per second [6]. Nery et
al. present a parallel ray-tracing architecture for application-
specific hardware based on a uniform spatial subdivision of
the scene and exploiting an embedded computation of ray-
triangle intersections [7]. The architecture was implemented
on both FPGA and General Purpose GPU systems. The FPGA
implementation achieved 1.6×105 ray-object intersection tests
per second while the GPU system achieved 4.0×106 ray-object
intersection tests per second.

This paper outlines the design and implementation of a
generic FPGA ray tracing acceleration platform. The imple-
mentation aims to explore the use of the massively parallel
and flexible capabilities of FPGAs as an alternative to the
traditional use of GPUs. Although GPUs have excellent raw
floating-point performance, they do not support flexible control
flow and have an inflexible memory hierarchy limiting their
efficiency for ray tracing. The FPGA design is aimed to be
highly flexible and enable investigation of several different ac-
celeration methods and configurations. A single configuration
is implemented and tested for initial performance results and
further optimizations are proposed.

The paper is laid out as follows. Ray-triangle intersection -
a key ray tracing calculation - and its implementation in soft-
ware are outlined. Acceleration hierarchies that quickly discard
whole groups of objects during intersection are detailed. The
platform, design and implementation of the FPGA acceleration

Mï1

V0

V1

V2

V2ïV0

V1ïV0

1

1

u

v

O

OïV0

translation

Mï1[OïV0]D

Fig. 1. Translation and change of base of the ray origin [8].

system are then detailed and followed by utilization and
performance evaluation.

II. RAY-TRIANGLE INTERSECTION

A key ray tracing operation is ray-triangle intersection
(RTI), which tests whether the back-projected ray intersects
a scene triangle and requires several repetitive vector calcula-
tions.

Möller and Trumbore’s algorithm [8] for RTI tests is com-
monly used in digital rendering programs, including LuxRen-
der. The algorithm defines a ray, R(t), by its point of origin,
O, and normalised direction vector, ~D, and a triangle by its
three vertices, V0, V1 and V2. O is the location of the camera
lens, ~D is the direction from the lens through a pixel in the
image and the triangle is part of an object’s triangle mesh.

To calculate the intersection point between the ray and
triangle, the triangle is translated so that V0 is at the origin
of the axes. Using the determinant of the combined direction
vector and edge vector matrices from Equations (2a) - (2b),
the triangle is then transformed into a unit triangle along the
y and z planes, with the ray aligned along the x plane. The
complete process is shown in Figure 1.

The result is a vector containing the distance, t, to the
intersection and the coordinates, u and v, of the intersection,
shown in Equation (1).

[
t
u
v

]
=

1

P · E1

Q · E2

P · T
Q · ~D

 (1)

where

E1 = V1 − V0 (2a)
E2 = V2 − V0 (2b)
T = O − V0 (2c)

P = ~D × E2 (2d)
Q = T × E1 (2e)

The coordinates of the intersection, u and v, are barycen-
tric, i.e. an intersection has occured only when Equa-
tions (3a) - (3c) are satisfied.

u ≥ 0 (3a)
v ≥ 0 (3b)

u+ v ≤ 1 (3c)

s1

s2s0

n0

n1

n2 n3 s1 s2

s0

n0n1 n2 n3

Fig. 2. A two-dimensional kD-tree and corresponding graph representation.

For a brute force calculation of a complex scene, checking
every ray for intersection with every triangle, RTI tests take up
to 95% of computation time [9]. The acceleration structures
described in the following section are implemented to quickly
discard whole groups of objects during the ray intersection
process.

III. ACCELERATION HIERARCHIES

Acceleration of the rendering process can be achieved
through spatial or object hierarchy structures. These structures
aim to restrict the number of intersection calculations along
a ray path by trading them for traversal of the structure.
Use of these structures requires implementing two algorithms:
construction and traversal of the data structure. This paper
focuses on traversal, however construction is co-essential as
a factor of traversal performance.

A. kD-Tree

A kD-tree is a binary space partitioning tree where every
internal node of the tree represents a split in one of k
dimensions. Each split creates two half-spaces for its given
dimension and objects that lie within each half-space belong
in the respective sub-tree.

A two-dimensional kD-tree and the corresponding graph
representation, presented by Foley et al. [10], is shown in
Figure 2. Internal nodes are labeled next to their split planes
and leaf nodes are labeled inside their volume.

The following sections outline typical kD-tree construction
and different traversal techniques with optimizations focused
towards hardware acceleration. An efficient kD-tree traversal
algorithm is important as it can represent 92% of total render-
ing time [11].

1) Construction: A kD-tree is commonly constructed re-
cursively in a top-down manner. A root node is created that
represents a bounding volume containing all of the objects in
a scene. Starting with the root node, and for each subsequent
node created, a decision is made to either split the node into
two internal nodes or to declare it a leaf node.

When splitting, the highest quality kD-tree can be con-
structed using greedy cost optimization based on a surface area
heuristic (SAH). The SAH estimates the cost of splitting the
current volume on a particular plane according to the proba-
bility of intersecting the children created. Greedy decisions
are made at each step to avoid this search becoming non-
polynomial [11].

1: function TRAVERSE(tree, ray)
2: (tmin, tmax) ← tree.root.intersect(ray)
3: search node(tree.root, ray, tmin, tmax)
4: function SEARCH NODE(node, ray, tmin, tmax)
5: if node.is leaf then
6: search leaf(node, ray, tmin, tmax)
7: else
8: search internal(node, ray, tmin, tmax)
9: function SEARCH INTERNAL(node, ray, tmin, tmax)

10: thit← node.intersect(ray)
11: (near, far) ← order(node.left, node.right)
12: if thit ≥ tmax ∨ thit < 0 then
13: search node(near, ray, tmin, tmax)
14: else if thit ≤ tmin then
15: search node(far, ray, tmin, tmax)
16: else
17: stack.push(far, thit, tmax)
18: search node(near, ray, tmin, thit)
19: function SEARCH LEAF(node, ray, tmin, tmax)
20: for all tri ∈ node do
21: thit← tri.intersect(ray)
22: if thit < tmax then
23: succeed(thit)
24: continue search(node, ray, tmin, tmax)
25: function CONTINUE SEARCH(node, ray, tmin, tmax)
26: if stack.empty() then
27: fail()
28: else
29: (node, tmin, tmax) ← stack.pop()
30: search node(node, ray, tmin, tmax)

Fig. 3. Recursive kD-tree traversal pseudo code.

2) Traversal: Pseudo code of a typical kD-tree traversal
algorithm for ray tracing is shown in Figure 3. Inputs to the
algorithm are the tree and a ray. Starting at the root, the ray
is walked down the tree so that intersection is tested with
triangles in front-to-back order. A stack (a priority ordered list
of nodes left to visit) is used to ensure each node is traversed
at most once and each necessary node exactly once. When
traversing a node the algorithm must determine whether any
child nodes can be skipped and what order to traverse the
children (i.e. which node is near and which is far). These
steps are shown on lines 13 and 14 of Figure 3, respectively.

Equations (4a) - (4b) show the calculations required to
determine ray-box intersection on the x axis for an axis-aligned
bounding-box (AABB) represented by bmin and bmax. The
process is repeated on the y and z axis and the largest tmin and
smallest tmax values are determined. If tmin is smaller than
tmax then intersection has occurred and tmin is the distance
to intersection. If a ray does not intersect with the AABB of
a child node, it does not traverse it.

tmin.x =
bmin.x−O.x

~D.x
(4a)

tmax.x =
bmax.x−O.x

~D.x
(4b)

There are three methods to classify near and far nodes.
The first uses the ray origin, the second uses ray direction

and the third uses the coordinates of the ray intersection with
the splitting plane. After classification, there are three possible
cases for further traversal: (i) visit only the near node, (ii) visit
only the far node and (iii) visit the near node followed by the
far node. The stack stores the far node when both need to be
visited.

Traversal continues down a tree until a leaf node (contain-
ing triangles) is encountered. RTI tests are performed on all
triangles within the leaf and if the ray intersects any triangles,
the closest intersection is guaranteed to be the first intersection
along the ray and traversal terminates. If no intersection is
found, a node is popped from the stack and traversal contin-
ues. If the stack is empty then traversal terminates without
intersection.

The worst case performance of the algorithm for n leaf
nodes is O(n), where the ray may visit a number of nodes
linear to the size of the tree, shown in Figure 2. However, in
practice it is expected that the ray will find an intersection
within one of the first leaf nodes visited and performance is
typically O(log n)[12].

B. Bounding Volume Hierarchies

Bounding Volume Hierarchies (BVHs), instead of splitting
the scene space like kD-trees, recursively split the set of
scene primitives until the leaf size (number of triangles) meets
a given criteria. Each internal node stores a bounding box
surrounding all child nodes. The advantage of this technique is
that each primitive is stored in the hierarchy exactly once, but
traversal can become inefficient when volumes overlap each
other.

1) Construction: BVHs are constructed by recursively di-
viding the scene’s primitives into two subsets. To determine
the split position, the cheapest cost of traversal is determined
using the SAH, as is done in kD-tree construction. Once the
split is determined, an AABB is created around the subset
of primitives and assigned to the child node. This process
continues until the cost of splitting is higher than testing
intersection with all the primitives, or the number of primitives
is below a user defined criterion. Stich et al. [13] presented a
technique that uses spatial splits, similar to those in kD-tree
construction, to construct significantly more efficient BVHs
than previous techniques.

2) Traversal: A BVH is traversed similarly to a kD-tree.
Given a ray, a typical stack-based traversal algorithm starts
by intersecting the ray with the bounding boxes contained at
the root node. The pointers of the children with a non-empty
bounding box intersection are sorted and then pushed on to
the stack. The routine is repeated by popping the next element,
with the same criteria for completion as stack-based kD-tree
traversal.

3) n-ary Bounding Volume Hierarchy: Dammertz et al.
[14] presented n-ary Bounding Volume Hierarchy (nBVH)
for construction and traversal efficiency on SIMD processors.
SIMD width is exploited by increasing the arity of the accel-
eration structure, which also decreases the hierarchy memory
requirements. Their approach flattens the hierarchy and favours
larger leaves (more triangles per leaf) for more efficient stream-
ing intersection of primitives. As the typical SIMD width

0

1

2

3

4

0

1

collapse

Fig. 4. Collapsing a binary tree to a QBVH. Classical build methods are used
to create a binary tree, which is then collapsed by leaving out intermediate
levels [14].

CPU

MMU

RAM

Host Computer

Development Board

PCIe
FPGA RAM

Fig. 5. The FPGA acceleration platform, attached to the host computer by
PCIexpress.

of modern processors is four, their implementation is called
QBVH (Quad-BVH), however the concept is not limited to
this width.

A QBVH is formed by creating a classical binary BVH and
collapsing two levels into one, as shown in Figure 4. Every
second level of the tree is kept and the rest is merged, resulting
in four bounding volumes per node, approximately halving the
memory requirements. This method enables use of the same
construction principles used for binary trees to construct n-ary
trees. The resulting hierarchies build faster and smaller than
previous structures while also outperforming them in traversal.
Their QBVH implementation traverses 1.3 to 1.6 times faster
than an efficient kD-tree.

IV. HARDWARE ACCELERATION PLATFORM

The inherent parallelism in ray tracing makes it a promising
target for hardware acceleration through use of a coprocessor.
Production rendering acceleration systems use GPUs and of-
fload processor intensive computations to the large number of
floating-point pipelines that exist on these devices. Rendering
software transfers ray tracing data to the device and waits for
it to signal completion. The device takes the data, processes it
and writes the results to the CPU attached main memory.

The target acceleration platform of this paper is a
PCIexpress attached FPGA with onboard memory - the same
interface used by GPU accelerators - shown in Figure 5. The
FPGA platform will be integrated with LuxRays - a subsection
of the LuxRender suite dedicated to hardware acceleration.
LuxRays is an open-source C++ library that implements ray
tracing with both QBVH and kD-tree acceleration hierarchies
available. The FPGAs onboard memory is used to store
scene primitives and the acceleration hierarchy. An OpenCL

PCIe RAM

Intersection
Controller

Memory
Controller

Communication
Controller

Traversal
Controller

Fig. 6. Complete ray tracing acceleration platform.

implementation is available to provide a comparison to GPU
performance.

V. FPGA RAY TRACING PLATFORM

This section outlines the design goals and overview of the
FPGA ray tracing platform. The communication controller,
traversal controller, intersection controller and memory con-
troller that make up the platform are detailed.

A. Design Goals and Overview

The ray-tracing platform was carefully designed to be
agnostic to different acceleration hierarchies i.e. to traverse
both kD-tree and QBVHs without the need for reimplementa-
tion - the only difference between the two is their layout in
memory. The platform can also traverse programmable widths
of acceleration hierarchies - i.e. varying n for nBVH - to
evaluate their memory requirements and performance. Storing
the acceleration structure and primitives on the memory local
to the FPGA makes it available at lower latency and allows
the data to stream directly into the intersection pipelines. The
complete design, shown in Figure 6, consists of the four
components described in the following sections.

1) Communication Controller: The communication con-
troller (CC) is responsible for maintaining memory mapped
configuration registers, completing the transfer of nodes, prim-
itives and rays to the FPGA and the transfer of hits back
to the host computer. To initiate traversal, the host computer
application must write the memory location of the nodes and
primitives to the configuration registers and signal the CC
to start. The CC then transmits the appropriate read request
packets to the host computer MMU which replies with the
requested data. The CC forwards the node and primitive data
to the memory controller to be written to memory. Once
complete, the host computer writes the address of the rays
to be intersected and an address to write the results to the
configuration registers and signals the CC to start. The CC
then transmits the appropriate read request packets to the host
computer MMU which replies with the requested data. The
CC forwards the ray data to the traversal controller and waits
for it to return results. When results arrive the CC writes them
to the host computers memory. The step of reading rays and
writing results can be repeated several times for different sets
of rays in the same scene. Detail of the CC connections are
shown in Figure 7.

PCIe

Communication
Controller

nodes/
prims

hitsrays

Fig. 7. The communication controller and connections to PCIexpress, the
traversal controller and the memory controller.

Traversal
Controller

intersection
requests

hit/miss

hitsrays

Fig. 8. The traversal controller and connections to the communication
controller and the intersection controller.

2) Traversal Controller: The traversal controller (TC)
buffers rays received from the communication controller in
a FIFO and transfers them to block RAM when a traversal
unit is available. A traversal unit (TU) is a progammably
replicatable module that implements acceleration hierarchy
traversal as shown in Figure 3. When the TU receives a ray
from the TC it starts traversal from the root node of the
acceleration hierarchy. For each node, the TU makes a request
to the intersection controller to determine if the ray intersects
with any of the nodes’ children. The intersection controller
returns hit/miss results for each child node. The traversal unit
stores references to intersected children in a priority queue
with the closest intersection having highest priority. Traversal
continues down a tree until a leaf node (containing triangles)
is encountered. RTI tests for all triangles within the leaf
are requested from the intersection controller which responds
with a hit or miss flag and the distance to intersection if
intersection has occurred. If intersection occurs, the closest
intersection is guaranteed to be the first intersection along the
ray and traversal terminates, freeing the TU to process the next
available ray. If no intersection is found, a node is popped
from the queue and traversal continues. If the stack is empty
then traversal terminates without intersection. Detail of the TC
connections are shown in Figure 8.

Efficient implementation of the priority queue in the TU
is of great importance to its replicatability and is discussed in
more detail in the following section.

3) Intersection Controller: The intersection controller (IC)
buffers intersection requests from the traversal units and passes
them onto the memory controller when requested. As multiple
intersection requests can be received in a single cycle, the IC
uses fixed-priority scheduling to determine which to receive
and acknowledge. The traversal unit must wait and hold its’
request signal high until it is acknowledged by the IC.

In response to an intersection request, the memory con-
troller streams the objects for the request to the IC. The IC im-

Memory
Controller

nodes/
prims

memory
requests

RAM

nodes/
prims

Fig. 9. The memory controller and connections to RAM, the communication
controller and the traversal controller.

Intersection
Controller

intersection
requests

hit/miss

nodes/
prims

memory
requests

Fig. 10. The intersection controller and connections to the traversal controller
and the memory controller.

plements deep ray-box and ray-triangle intersection pipelines
into which the responses from the memory controller are fed.
Detail of the IC connections is shown in Figure 10.

4) Memory Controller: The memory controller (MC) takes
nodes and primitives from the CC and writes them to consec-
utive addresses in local memory. The use of SSE in LuxRays
means the acceleration hierarchy and primitives are stored
in memory as a structure-of-arrays. The MC swizzles the
incoming data into an array-of-structures before it is written
to memory.

Intersection requests are taken from the IC and translated
into the appropriate local memory read requests. When the
requested data is returned from local memory it is streamed
to the appropriate IC intersection pipeline. Detail of the MC
connections is shown in Figure 9.

VI. FPGA RAY TRACING IMPLEMENTATION

All object references are encoded using 32 bit unsigned
integers. The most significant bit is used to differentiate
between nodes and primitives, with 1 representing a primitive.
For a node, the remaining 31 bits represent the node id. The
address and length of the node memory requests are shown in
Equations (5a) - (5b). The root node has the id 0 and is the
first node placed on the priority queue in a traversal unit when
traversal starts for a ray.

ADDR = NODE[31 : 1]×NODE WIDTH (5a)
LEN = NODE WIDTH (5b)

For primitives, bits 31 to 28 represent the number of
primitives in the leaf and the remaining 27 bits represent the
starting location of the first primitive. The address and length
of the primitive memory requests are shown in Equations (6a) -
(6b).

ADDR = PRIM [27 : 1]× PRIM WIDTH (6a)
LEN = (PRIM [31 : 28] + 1)× PRIM WIDTH (6b)

TABLE I. PLATFORM PERFORMANCE FOR 16,384 RAYS IN 1000
RAYS/S

Scene triangles
500 2000 10000 20000

Device
CPU 264.3 65.5 14.4 7.3

GPU∗ 65.5 15.2 3.0 1.5

FPGA 68.8 47.2 21.2 21.1

Priority queues are efficiently implemented in hardware
by a series of comparators and a shift register [15]. Each
element is stored in a register and is compared in parallel to
the input data. The data is stored in the first register of lower
priority and all registers of lower priority are shifted across,
effectively sorting the data in a single cycle. Data is extracted
by outputting the highest priority register and shifting all other
registers along. This creates a highly efficient priority queue
capable of inserting and extracting data in a single cycle.

The platform used is a Xilinx Virtex-5 PCIexpress De-
velopment Board in an Intel Q6600 host running Windows.
The board contains a Xilinx Virtex-5 LX330T FPGA with
192 DSP48E slices, 331776 logic cells and 11664 Kbits of
block RAM. Connected to the FPGA is a 200-pin 2GB DDR2
SO-DIMM. The FPGA connects to the host through an 8-lane
PCIexpress 1.0 bus capable of 16Gb/s end-to-end bandwidth.

The four platform components are written in a mixture of
VHDL and Verilog hardware description languages. The CC is
implemented from the Xilinx Endpoint Block Plus PCIexpress
core [16] and a modified Bus Master DMA reference design.
The MC interfaces with the DDR2 using a Xilinx MIG
controller [17]. FIFOs and block RAMs are generated using
the Xilinx Core Generator where required.

Ray-triangle intersection (Equations (1) - (3c)) and ray-box
intersection (Equations (4a) - (4b)) modules were implemented
in VHDL using Xilinx floating-point cores. They have pipeline
lengths of 84 and 40 respectively and both operate at 250MHz.
This makes a full pipeline of RTI calculations on the FPGA
30 times faster than in software [18].

VII. PLATFORM PERFORMANCE

In this section we evaluate the potential viability of our
platform. The three implementations being tested are a CPU,
GPU and our FPGA platform. The CPU is an Intel Q6600
at 2.4 GHz. The GPU is a Nvidia Quadro FX 570. The
FPGA platform was implemented with 4 traversal units - each
containing a priority queue capable of storing 32 nodes. The
target frequency was 250MHz and 26% of the registers and
25% of the LUTs available on the device were used.

Four test scenes were randomly generated containing dif-
fering numbers of primitives. Increasing the number of scene
primitives increases the height of the acceleration hierarchy
and increases the minimum size of the priority queue required
to traverse it. Each implementation traced 16,384 and 65,536
randomly placed and orientated rays and the time taken was
measured. The rates obtained by each implementation are
shown in Table I and Table II.

∗The GPU is included in these results for completeness. However it is not
indicative of typical GPU performance as the GPU used is low end. Typical
GPU performance exceeds 106 rays/s [3].

TABLE II. PLATFORM PERFORMANCE FOR 65,536 RAYS IN 1000
RAYS/S

Scene triangles
500 2000 10000 20000

Device
CPU 233.3 64.5 14.5 7.4

GPU∗ 62.6 15.2 − −
FPGA 67.3 49.3 21.3 21.1

VIII. DISCUSSION

The results in Table I and Table II show that all imple-
mentations decrease in performance as scene density increases.
This is due to larger scenes having taller acceleration hierar-
chies, requiring more steps to traverse to leaves, more leaves to
traverse and larger priority queues to store intermediary nodes.

The CPU shows the best performance for scenes with lower
density, however it has the sharpest performance drop off
as density increases. This is likely due to the cache of the
acceleration hierarchy being less effective as it increases in
size. While the low end GPU is not indicative of typical GPU
performance, it showed the same tendencies as the CPU.

The FPGA shows more stable performance with perfor-
mance decreasing least as density increases and better perfor-
mance than the CPU for the most dense scene. The stability
is likely due to the performance of the FPGA single-cycle
priority queue compared to the naive queue used in both the
CPU and GPU implementations. With promising results from
the FPGA platform, it can now be used to investigate the best
design.

Memory performance can be optimised by swapping the
current dual-rank module for a single-rank module. When the
module is dual-rank the MIG controller operates at a maximum
frequency of 150MHz, meaning a maximum bandwidth of
19.2Gb/s. A single-rank module can operate at a maximum
of 250MHz for our target device, giving 40% extra bandwidth
but at the cost of smaller module capacity. The increase in
bandwidth would decrease the time taken to perform each
intersection request and increase the number of rays per second
processed.

Further optimisation may be achieved by increasing the
number of traversal units. With only four traversal units,
the intersection requests generated use 20% of the available
memory bandwidth. When scaling the number of traversal
units, either this memory bottleneck is going to be reached
or the device logic will be exhausted. The memory bottleneck
can be alleviated by implementing a direct mapped cache of
the acceleration hierarchy, while a more logic efficient priority
queue implementation will allow more traversal units on the
device. The configuration tested uses 15% of the device block
RAM, leaving enough room for a reasonably large cache.

The current priority queue implementation requires each
storage element to have a separate comparator unit, resulting
in heavy usage of the available logic elements on the device.
If the renderer deals with scene data of unknown sizes or sizes
with high variance, very large priority queues are required to
process the data. A scenario could arise where much of the
synthesized priority queue is rarely used whilst still occupying
a large proportion of logic elements.

The concept of a short-stack with spilling described in
[11] demonstrates the benefits of a short, fast stack spilling
over into a longer, slower stack. This concept is applied to
priority queues, with a faster small priority queue performing
the majority of the executions whilst a larger priority queue is
used to catch the spillover data. This implementation allows the
speed of the short queue to be utilized whilst a secondary large
queue would allow larger data sets to be processed with lower
resource consumption. We are currently investigating efficient
priority queue optimisations to improve their scalability while
maintaining their size.

The bandwidth available to the board from the PCIexpress
bus is capable of delivering 5.5 × 107 rays/s to the FPGA
platform. If the FPGA were able to meet the processing
demand of the incoming rays it would represent performance
comparable to current GPU implementations. With FPGAs
consuming considerably less power than GPUs and power
consumption becoming a considerable problem for datacenters,
the FPGA platform could offer a potential cost saving by
consuming less power per ray processed.

IX. CONCLUSION

We have presented a flexible platform for ray-tracing on
FPGAs. The platform can trace varying widths and heights
of acceleration hierarchy. The platform takes advantages of
an efficient FPGA priority queue implementation, allowing
single-cycle operations. We have integrated the platform with
LuxRays and compared performance with a CPU and GPU.
While the CPU was faster for smaller test scenes, the FPGA
performed more consistently over all scenes and was faster
for larger scenes. Promising optimizations are yet to be inves-
tigated on the FPGA platform which should lead to increased
performance.

REFERENCES

[1] A. Apodaca, L. Gritz, and R. Barzel, Advanced RenderMan: creating
CGI for motion pictures. Morgan Kaufmann, 2000.

[2] D. Cortes and S. Raghavachary, The RenderMan Shading Language
Guide. Thomson Course Technology, 2007.

[3] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan, “Interactive
k-d tree GPU raytracing,” Proc 2007 Symp on Interactive 3D graphics
and games, p. 167, 2007.

[4] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Lue-
bke, D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich,
“OptiX: a general purpose ray tracing engine,” in ACM SIGGRAPH
2010 papers. New York, USA: ACM, 2010, pp. 66:1–66:13.

[5] S. Woop, J. Schmittler, and P. Slusallek, “RPU: a programmable ray
processing unit for realtime ray tracing,” ACM Trans Graphics, vol. 24,
no. 3, pp. 434–444, 2005.

[6] C. Cameron, “Using FPGAs to supplement ray-tracing computations on
the Cray XD-1,” in DoD High Performance Computing Modernization
Program Users Group Conference, 2007, june 2007, pp. 359 –363.

[7] A. Nery, N. Nedjah, F. Franca, and L. Jozwiak, “A parallel ray tracing
architecture suitable for application-specific hardware and GPGPU
implementations,” in 14th Euromicro Conf Digital System Design, 31
2011-sept. 2 2011, pp. 511 –518.

[8] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle
intersection,” Journal of Graphics, GPU, and Game Tools, vol. 2, no. 1,
pp. 21–28, 1997.

[9] T. Whitted, “An improved illumination model for shaded display,”
Commun. ACM, vol. 23, no. 6, pp. 343–349, Jun. 1980.

[10] T. Foley and J. Sugerman, “Kd-tree acceleration structures for a gpu
raytracer,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, ser. HWWS ’05. New York, NY,
USA: ACM, 2005, pp. 15–22.

[11] J. Novák, “Global illumination methods on gpu with cuda,” Master’s
thesis, Czech Technical University, June 2009.

[12] V. Havran, “Heuristic ray shooting algorithms,” Ph.D. Thesis, De-
partment of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague, November 2000.

[13] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding
volume hierarchies,” in Proceedings of the Conference on High Perfor-
mance Graphics 2009, ser. HPG ’09. New York, NY, USA: ACM,
2009, pp. 7–13.

[14] H. Dammertz, J. Hanika, and A. Keller, “Shallow bounding volume
hierarchies for fast simd ray tracing of incoherent rays,” Computer
Graphics Forum, vol. 27, no. 4, pp. 1225–1233, 2008.

[15]
[16] Xilinx, “LogiCORE IP Endpoint Block Plus v1.15 for PCI Express.”
[17] ——, “Memory Interface Generator.”
[18]

