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ABSTRACT
The growing number of cores per chip implies an increas-
ing chip complexity, especially with respect to hardware-
implemented cache coherence protocols. An attractive alter-
native for future many-core systems is to waive the hardware-
based cache coherency and to introduce a software-oriented
approach instead: a so-called Cluster-on-Chip architecture.
The Single-chip Cloud Computer (SCC) is a recent research
processor of such architectures.

This paper presents an approach to deal with the missing
cache coherence protocol by using a software managed cache
coherence system, which is based on the well-established
concept of a shared virtual memory (SVM) management
system. Through SCC’s unique features like a new mem-
ory type, which is directly integrated on the processor die,
new and capable options exist to realize an SVM system.
The convincing performance results presented in this paper
show that nearly forgotten concepts will become attractive
again for future many-core systems.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; C.1.4 [Processor Architectures]: Parallel Archi-
tectures

Keywords
Shared Virtual Memory, Single-chip Cloud Computer, Non-
Coherent Memory-Coupled Cores, Many-Core Architectures
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Since the beginning of the multicore era, parallel pro-
cessing has become prevalent across-the-board. A further
growth of the number of cores per system implies an increas-
ing chip complexity on a traditional multicore system, espe-
cially with respect to hardware-implemented cache coher-
ence protocols. Furthermore, cache coherence protocols in-
crease the also hardware and performance overhead. There-
fore, a very attractive alternative for future many-core sys-
tems is to waive the hardware-based cache coherency and to
introduce a software-oriented approach instead: a so-called
(memory-coupled) Cluster-on-Chip architecture.

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [8] is a concept vehicle created by Intel Labs as a
platform for many-core software research, which consists of
48 P54C cores. This architecture is a very recent example
for such a Cluster-on-Chip architecture. The SCC can be
configured to run one operating system instance per core
by partitioning the shared main memory in a strict manner
into private memory sections. However, it is possible to ac-
cess the shared main memory in an unsplit and concurrent
manner, provided that the cache coherency is then ensured
by software. A common way to use such an architecture is
the utilization of the message-passing programming model.
Yet, this does not exploit the capabilities and potential of
such a system. In contrast to classical message-passing ar-
chitectures, the memory space and banks are shared, there
are hardware mechanisms for fast inter-processor synchroni-
sation and the network is fast and tightly coupled.

Many applications strongly benefit from using the shared
memory programming model. The shared virtual mem-
ory (SVM) approaches have been intensively investigated be-
fore, but never had sustained success due to performance is-
sues. However, on the newly emerged architecture of cluster-
on-chip, with its described advantages, SVMs might experi-
ence a renaissance.

The project MetalSVM –the realization of an SCC-related
shared virtual memory management system–aims to investi-
gate the potential of SVMs for non-coherent memory-coupled
multicore systems. It is implemented in terms of a bare-
metal hypervisor and located within a virtualization layer



between the SCC’s hardware and the actual operating sys-
tem. This new hypervisor will undertake the crucial task
of coherency management through the utilization of spe-
cial SCC-related features such as its on-die Message-Passing
Buffers (MPB). In order to offer maximum flexibility with
respect to resource allocation and to an efficiency-adjusted
degree of parallelism, a dynamic partitioning of the SCC’s
computing resources into several coherency domains will be
enabled.

This paper discusses the design of MetalSVM and its
SVM system. It focuses on the SVM system and its con-
sistency and affinity solutions. We discuss the design of our
mailbox system for the fast interprocessor synchronisation
and communication. Other components and technologies of
MetalSVM have been addressed in more detail in prelimi-
nary works [21, 14]. The first experimental evaluations of
MetalSVM demonstrate very good performance, and hold
promise for SVMs on non-coherent memory-coupled multi-
core systems.

The rest of the paper is structured as follows. In Section 2
we refer to our previous work on the SCC and summarize
related work regarding SVM systems. We present a detailed
description of the Single-chip Cloud Computer in Section 3.
The following Section 4 explains the design of MetalSVM
and our small self-developed operating system kernel that
builds the base of MetalSVM. The realization of an inter-
kernel communication layer and the prototype of our SVM
system are presented in Section 5 and Section 6. Section 7
explains the benchmarks used for evaluating our inter-kernel
communication layer and our SVM system and presents the
respective performance results. The final Section 8 summa-
rizes this paper and gives an outlook to our next research
goals.

2. RELATED WORK
Since the IVY project [15], a lot of work has been done on

SVM systems. TreadMarks [12] is an important SVM sys-
tem, which also builds the basis of Intel’s Cluster OpenMP.
However, they are based on traditional message-passing ori-
ented networks or they used a RDMA (Remote Data Mem-
ory Access) engines, which allowing access to remote mem-
ory locations via the network without any involvement of the
receiver. However, the setup costs to program the RDMA
engine are high and increase the overhead of using a SVM
system.

The Scalable Coherent Interface (SCI) [7] belongs to the
memory-mapped networks and offers a transparent read-
/write access to remote memory. The SCI standard defines
also a cache coherency protocol, but the PCI-SCI adapter
cards do not support this feature. Several research projects
used SCI-based PC clusters, which possessed a similar char-
acteristic like the SCC. Both systems consist of several pro-
cessing units which are able to communicate transparently
over shared memory regions without the support of cache-
coherency.

Several projects realized an SVM system on top of an
SCI cluster. NOA [18] used SCI as fast message-passing in-
terconnect and did not exploit capabilities of transparent
remote read/write memory access. Paas et al. have de-
veloped in [20, 23] an SVM system for Windows and Unix
clusters, called SVMlib, which stores write notices and re-
lated changes in the global memory to realize a Lazy Release
Consistency [11] model.

Both approaches are implemented at user level, which de-
creases the usability. SCI-VM [24] enables the caches and
realizes the cache flushing by software. However, SCI-VM
used only a static memory mapping in which any memory
location within the global address space is accessible at all
time. In contrast to that, SciFS [2] combines SCI memory
mappings and techniques like migration and replication.

For a simple and transparent access of the shared mem-
ory, SVM systems can also be integrated into virtual ma-
chines, so that common operating systems and development
environments can easily be applied without changes. An ex-
ample for such a hypervisor-based SVM system is vNUMA
[3] that has been implemented on the Intel Itanium proces-
sor architecture. In [6] one founder of vNUMA proposed
to extend this concept for Many-Core Chips. For x86-based
compute clusters, the so-called vSMP architecture developed
by ScaleMP1 allows for cluster-wide cache-coherent mem-
ory sharing. This architecture implements a virtualization
layer underneath the OS that handles distributed memory
accesses via InfiniBand-based communication. These ap-
proaches are similar in some respects to our hypervisor ap-
proach because both implement the SVM system in an ad-
ditional virtualization layer between the hardware and the
operating system.

The main difference between these approaches is that vSMP
and vNUMA explicitly use message-passing between the clus-
ter nodes to transfer the content of the page frames, whereas
our SVM system can cope with direct access to these page
frames. In fact, we want to exploit the SVM system with
SCC’s distinguishing capabilities of transparent read/write
access to the global off-die shared memory. This feature will
help to overcome a drawback of other hypervisor-based ap-
proaches regarding fine granular operations. A recent evalu-
ation [22] of ScaleMP’s vSMP with synthetic kernel bench-
marks as well as with real-world applications has shown that
vSMP architecture can stand the test if its distinct NUMA
characteristic is taken into account. Also, we developed in
[1] optimized applications for vSMP and reached excellent
performance results. By using 104 cores on cluster of 13
nodes, our applications reach speedups up to 80. Neverthe-
less, the evaluation has also shown that fine granular opera-
tions like synchronization is the big drawback of such archi-
tectures. Our aim is to avoid this shortcoming by using the
distinguished capabilities of transparent remote read/write
memory on the SCC.

In [14], we present a first prototype of a SVM system for
the SCC. However, this design underachieves the potential
of the SCC’s on-die memory and based more on polling on
the off-die memory. Therefore, this approach runs against
the so-called memory wall and doesn’t scale very well for
certain applications. The basic concepts of the MetalSVM’s
inter-kernel and communication layer are sketched in [21].
In contrast to the current work, the communication layer
was not event triggered and consequently not asynchronous,
which is needed for our new design and improvements of the
SVM system.

3. THE INTEL SINGLE-CHIP CLOUD
COMPUTER (SCC)

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [8] is a concept vehicle created by Intel Labs as a

1http://www.scalemp.com

http://www.scalemp.com


R

1
0

R

3
2

R

5
4

R

7
6

R

9
8

R

11
10

R

13
12

R

15
14

R

17
16

R

19
18

R

21
20

R

23
22

R

25
24

R

27
26

R

29
28

R

31
30

R

33
32

R

35
34

R

37
36

R

39
38

R

41
40

R

43
42

R

45
44

R

47
46

MC 1

MC 0

MC 3

MC 2

FPGA

Router

MIU MPB

Core 23

Core 22

L2$

L2$

Tile

Figure 1: Top Level Block Diagram of the SCC Architecture (based on [17])

platform for many-core software research, which consists of
48 P54C cores. The P54C belongs to the Pentium (I) fam-
ily and owns, in contrast to its predecessor P5, an on-chip
Advanced Programmable Interrupt Controller (APIC). Al-
though a more modern core like the Atom processor may
appear more applicable for performance reasons, the focus
of the SCC architecture is to analyze programming models
for the future many-core era. Therefore, a large number of
cores is in this case more important than the speed of each
individual core.

The 48 cores are arranged in a 6 × 4 on-die mesh of tiles
with two cores per tile, which is shown in Figure 1. The SCC
chip possesses four on-die memory controllers for addressing
the external main memory. The supported DRAM type is
DDR3-800. The frequencies of the cores and the routers of
the mesh are configurable. The routers support frequencies
of 800 MHz and 1.6 GHz, while the cores use a frequency be-
tween 100 and 800 MHz. The power consumption of the full
chip depends on the configuration (frequency and voltage of
the mesh and cores) and is between 25 and 125 W.

Each core has 16 kByte L1 and 256 kByte L2 cache. Ad-
ditionally, each core has 8 kByte of a fast on-die memory
that is also accessible to all other cores in a shared-memory
manner. These special memory regions are the so-called
Message-Passing Buffers (MPBs) of the SCC because they
are intended to improve the performance of message-passing
based programming models. A table showing the approxi-
mate latencies for L2, MPB and DDR3 read accesses can be
found in [9].

The SCC’s architecture does not provide any cache co-
herency between the cores, but offers a low-latency infras-
tructure in terms of these MPBs for explicit message-passing
between the cores. Thus, the processor resembles a Cluster-
on-Chip architecture with distributed but shared memory.

To avoid any cache coherency problems, the SCC divides
the off-die memory in private regions for each core and one
shared region for all cores. The owners of the private regions
have exclusive access to their memory areas. Because of the
exclusive usage of these regions, the cache is enabled here
per default.

Normally, these regions are used to start a Linux kernel
on each core. Therefore, the SCC is able to start 48 Linux

instances. These instances are able to use the shared region
to share data between the cores. Per default, the cache for
this shared region is disabled. The software developers have
the possibility to configure the region sizes and to change
the cache behaviors. However, they have to consider that
the SCC realizes no cache coherency between the cores. The
logical view of the hardware is summarized in Figure 2.

Intel Labs extended the P54C instruction set architecture
(ISA) by a new instruction CL1INVMB. This instruction in-
validates the L1 cache entries of pages which are marked in
the page tables as MPBT, a new memory type. Furthermore,
accesses to this new memory type bypass the L2 cache. By
default message-passing buffer entries are tagged with this
new type. Moreover, the flag that indicates MPBT can be
used in a more generic way. Generally speaking, informa-
tion about a special data type is tagged in hardware. How-
ever, this mapping is not fixed and can be adapted to use
the hardware support that facilitates a coherent view on the
MPB also for an SVM system.

Another extension of the SCC cores to the P54C archi-
tecture is the write combine buffer, which is also enabled
via MPBT flag in the page table. Its primary intention is to
accelerate the data transfer for message-passing between the
cores [8]. Therefore, the write combine buffer extends the
write through strategy from byte granularity to cache-line
granularity. If the buffer, which holds exactly one cache-line,
is full or a write operation touches another cache-line (miss),
the buffered data is transferred to the next stage in mem-
ory hierarchy. For our SVM system, the combine of write
through data is extremely useful to increase the bandwidth.

We limit our current experiments with an SVM system
prototype to support only the L1 cache (and not the L2
cache) for shared regions of memory. To control the write
strategy for cached data, each page table entry contains a bit
that the memory management of MetalSVM sets for shared
pages in order to enable a Write-Through strategy for these
pages.

Obviously, a drawback of this solution is a significantly
smaller amount of cache in use for shared regions. But when
waiving the use of Level 2 cache for shared memory regions,
a major advantage arising is the possibility to tag SVM re-
lated data. Thus, a selective invalidate of cached data via
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CL1INVMB becomes possible. The flush of cached data is en-
abled by just flushing the write combine buffer due to the
fact that the current SVM system uses the Write-Through
strategy. The P54C architecture features an external Level
2 cache without the possibility to flush it with hardware sup-
port. A flush routine could be realized by software but it
turned out to be costly.

4. STRUCTURE OF METALSVM
The concept of MetalSVM is to run a common Linux ver-

sion without SVM-related patches on the SCC in a multicore
manner. For a better understanding, the structured diagram
of Figure 3 illustrates the design approach of MetalSVM.

A major advantage of our approach, as introduced in [21,
14], is the absent binding of MetalSVM to a certain ver-
sion of Linux, because integrating would for example mean
patching the kernel. The lightweight hypervisor is based
upon the idea of a small virtualization layer based on a
monolithic-kernel developed from scratch by the authors.
A well-established interface to run Linux as para-virtualized
guest which is part of the standard Linux kernel is used to
realize our hypervisor. Consequently, no modifications to
the Linux kernel are needed.

The aim of common processor virtualization is to provide
multiple virtual machines for separated OS instances.

Application

Para-virtualized Standard Linux

Hypervisor

Kernel Kernel

Core 0 Core n

communication

layer

SCC Hardware

M
et
al
S
V
M

Figure 3: Concept and Design of MetalSVM [14]

We want to use processor virtualization that provides one
logical but parallel and cache coherent virtual machine for a
single OS instance, that is to say Linux, on the SCC. Hence,

the main goal of this project is to develop a bare-metal hy-
pervisor, that implements the required SVM system (and
thus the memory coherency by applying appropriate consis-
tency models) within this hardware virtualization layer in
such a way that an operating system can run almost trans-
parently across the entire SCC system. Currently, the a
prototype of the hypervisor exists and we are able to boot
Linux on one core.

In this paper, we present the integration of an SVM sys-
tem in our self-developed kernel, which will build the base of
the hypervisor and is needed to boot Linux on several core.

5. THE INTER-KERNEL
COMMUNICATION LAYER

The realization of the hypervisor requires a fast inter-
core communication layer, which will be used to manage
resources between the kernels. Intel provides a customized
programming library for the SCC, called RCCE [16, 17],
that offers baremetal support and could be an attractive
library for MetalSVM. RCCE allows for using the message-
passing as well as the shared-memory programming model.
However, RCCE supports only uncacheable memory regions
as shared-memory. The message-passing part, that is in
turn based on simpler one-sided communication mechanisms
(RCCE_put/RCCE_get), offers two-sided point-to-point com-
munication functions (RCCE_send / RCCE_recv) as well as a
set of collective communication operations (RCCE_barrier,
RCCE_bcast, . . . ). In doing so, and this is important, all
of these functions utilize the SCC’s MPBs for the message
transfers.

However, the semantics of RCCE’s send and receive func-
tions (as well as the semantics of the collective operations)
is blocking and synchronous. On the receiver side, the term
blocking implies that the respective receive call does not re-
turn until the complete message has been transferred to the
receive buffer. An important requirement to MetalSVM ’s
communication layer is the support of asynchronous message-
passing because it is not predictable when a kernel needs
an exclusive access to a resource that is owned or managed
by another kernel instance. Our non-blocking extensions
to RCCE, called iRCCE [4, 5], does not solve this problem
because it requires that sender and receiver are working co-
evally in a non-blocking but synchronizing manner on the
communication progress. Hence, iRCCE still realizes a syn-
chronous communication model, which is not suitable for
MetalSVM.

Therefore, an asynchronous mailbox system has become
part of MetalSVM’s communication layer, partly outlined in
[14], that extends iRCCE [4] to enable an event driven and
fast asynchronous communication path between the SCC
cores. A logical view of this mailbox system is shown in
Figure 4. For each communication path between two cores a
mailbox of one cache-line size is reserved at each local MPB.
Thus, the mailbox system takes 48 ∗ 32 Bytes = 1.5 kByte
of MPB space per core assuming a maximum number of
48 cores. RCCE provides a memory allocation scheme to
manage the remaining MPB space of 6.5 kByte per core. If
the the buffer of a specific core is full (for example buffer 1
in Figure 4) then the core is (busy) waiting until the receiver
has consumed the mail. The access to a mailbox is restricted
for the receiver, which is only allowed to read data and toggle
a send flag that the mailbox contains. A sender with the
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Figure 4: Logical view of the Mailbox System

intention to pass a signal is allowed, in addition to toggle
the send flag, to write data to the mailbox. Whenever a
receiver toggles the send flag a signal has been processed
and when a sender toggles the send flag a new signal has
been placed. As a result of this communication method, the
generation of a Single Reader Single Writer problem leads
to a simplified synchronization scheme that is enabled by
the restriction of accesses to the mailboxes.

At every interrupt (e.g. timer interrupt, software inter-
rupt triggered by a system call), the kernel checks all receiv-
ing buffers for incoming messages. This approach functions
very well. However, the costs2 for checking mails increases
with the number of cores. The second disadvantage of this
approach is the dependency on the local interrupts. The
time slice between two interrupts could be very large, which
decrease the performance of the mailbox system.

Since sccKit 1.4.0 the system FPGA holds a Global In-
terrupt Controller (GIC) [10], which offers among others the
possibility to trigger an Inter-Processor Interrupt (IPI). In
addition to the former method to generate an IPI the possi-
bility arises to indirectly generate an IPI using the GIC. By
using the GIC, this IPI can be used to obtain the informa-
tion by which core it has been raised.

By sending a mail from one core to another core, MetalSVM
is able to send an IPI afterwards. If such an interrupt ar-
rives, the interrupt handler checks only the receive buffers of
that core which triggered the remote interrupt. This avoids
unneeded checks and reduces the time between incoming and
processing of mails.

6. AN SVM SYSTEM FOR NON-COHERENT
MEMORY-COUPLED CORES

There exist several memory consistency models for SVM
systems. The differences between these memory models is
the point of time when the modifications to the memory of
one core will be recognized by the other cores. Currently,
we support two memory models in our SVM system: Lazy
Release Consistency, which is original presented by Kehler
et al. in [11], and a stronger memory model, which we call
Strong Memory Consistency Model.

2Currently, the mailbox system requires 100 processor cycles
to check one receive buffer.
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Figure 5: Concept and design of the SVM subsystem

6.1 Strong Memory Model
The motivation for the realization of the Strong Mem-

ory Consistency Model is that many legacy codes implicitly
assume a stronger memory model than Lazy Release Consis-
tency can provide. Our SVM system provides the function
svm_alloc to allocate an amount of bytes in a cached shared-
memory region. At each point in time only one owner of a
page exists, which is allowed to read from or write to it. This
ownership is registered as an element of a dedicated owner
vector, which is located in the off-die memory (cf. Figure 5).
As one can see, each core possesses its private page tables.

Whenever a page is accessed without permission, a kernel
enters the page fault handler and sends a request to the cur-
rent owner via the mailbox system. Regarding the Strong
Consistency Model, no parallel access to shared pages is al-
lowed and the ownership has to be exchanged. First, the
current owner of the page clears its access permission. Sec-
ond, it flushes3 and invalidates via CL1INVMB the cache en-
tries and third sets the new owner id to the ownership vector
as an acknowledgment. As a result, the core that requested
access is registered as the new owner. Finally, a mail is sent
back to the requesting core to signalize that the core is able
to continue the calculation. In contrast to our first approach
[14], the requesting core does not need to poll on the owner-
ship vector for changes of the ownership, which unloads the
memory bus and avoids the memory wall.

Obviously, the performance of the mailbox system has a
direct impact on the performance of the SVM system. Fig-
ure 5 exemplarily illustrates the situation example where an
SVM related page fault occurs at Core A involving Core B.
Following steps have to be performed, which are tagged as
star symbols in Figure 5.

1. A page fault occurs at Core A

3In this scenario this is just the flushing of the write com-
bining buffer.



2. Core A looks the ownership up in the owner vector and
sends a mail to the owner (Core B)

3. Core B flushes its cache and changes the page table
entry

4. Core B changes the ownership

5. By sending a mail back to Core A, Core B signalizes
the changing of the ownership.

After this procedure Core A is the new owner and hereby
has full access permissions.

6.2 Lazy Release Consistency
The Lazy Release Consistency Model assumes that every

access to shared data is protected by a lock. To get correct
results, it is sufficient that the changes within a critical sec-
tion will be seen by all cores just after releasing the lock.
This memory consistency model is much weaker than tra-
ditional cache coherence protocols like MESI, which invali-
dates directly shared data on all cores if one core modifies
this data.

Our SVM system is based on the Write-Through cache
strategy, which can be enabled per page frame by a spe-
cial flag in the page table. In our context, we need to flush
the write combining buffer only, to be sure that the modi-
fications are written down to the memory. For the realiza-
tion of the Lazy Release Consistency Model we extend our
synchronization primitives. By entering the critical section,
the cache entries are invalidated via CL1INVMB for all page
frames, which are managed by the SVM system. Likewise,
by leaving the critical section, the SVM system flushes the
write combining buffer. In contrast to the original defini-
tion of Lazy Release Consistency Model, our system writes
down also all modifications to the memory which are not
concerned by the critical section. Yet the advantage is that
our approach generates nearly no overhead.

6.3 Affinity-on-First-Touch
Our first steps to realize an SVM system [14] used special-

ized memory allocation functions, which gave the developers
the possibility to define explicitly the mapping between the
data and the four memory controllers. Now, we use the
well-known Affinity-On-First-Touch mechanism to map the
data. Like on traditional SMP systems, our memory allo-
cation function reserves only a region in the virtual address
space. Thus, no physical page frames are initially mapped
behind the virtual address space. Only when the first ac-
cess to a page occurs, a page fault is triggered and the re-
lated page fault handler will afterwards map a physical page
frame at the specific virtual address. On NUMA systems,
this mechanism is used to bind data to specific memory con-
trollers. In this context, the page fault handler allocates the
page frame nearest to the current node. Hence, software
developers are able to use this feature to develop NUMA-
aware applications. In order to get optimal performance
results, they have to guarantee that the initialization rou-
tine uses the same access pattern like the later computation
algorithms.

In our SVM system, the page tables are located in the pri-
vate memory and, consequently, each core possesses its own
version of the page tables. Therefore, the first access trig-
gers a page fault on all cores but only the first to access core

has to allocate the page frame. To realize Affinity-On-First-
Touch, we use the SCC’s on-die memory partly as scratch
pad. Each shared page has a 16 bit representation in the
scratch pad. With this representation, the SVM system is
able to build the physical address from the virtual address.
On each core, the page fault handler looks into this scratch
pad whether already another core has allocated a page frame
and thus pushed the representation into the scratch pad. If
not, the current core allocates a page frame near to the core,
maps it into the address space and finally pushes the repre-
sentation to the scratch pad. To avoid races, the accesses to
the scratch pad are protected by a lock, which is realized by
the SCC-specific Test-And-Set-Registers.

The small amount of on-die memory limits the shared-
memory of our SVM system to 256 MByte. To increase the
memory size, we can relocate the scratch pad into the off-
die memory. However, this increases the number of memory
accesses, which in turn decreases the performance of our
system.

Software developers are able to use the same optimization
strategies, which are used for NUMA-aware applications. In
the same way, the SVM system allocates page frames near
to the core, which has initialized the data.

6.4 Read-Only Memory Regions
Applications often use many memory regions without a

single write access. After the initialization, these regions
could be defined as read-only memory regions by using sys-
tem calls like mprotect. One advantage of this technique
is that an undesired write access to these regions triggers
a page fault. This reduces the time of debugging, because
software developers detect wrong accesses by their first oc-
currence and not by a wrong final result.

In context of our SVM system, an absence of modifications
on shared data enables also the safe use of the L2 caches for
these regions. Therefore, we define a collective system call
which protects a memory region against any write access.
The system call clears the read/write bit in the page ta-
ble, which protects a page frame from write accesses. Fur-
thermore, the system call clears the MPBT bit in the page
tables. In contrast to writeable pages, the L2 cache becomes
enabled for these read-only regions.

7. PERFORMANCE EVALUATION
All benchmark results in this section are measured with

our test platform, which has been configured with a core
frequency of 533 MHz, a memory, and a mesh frequency of
800 MHz. If we compare our MetalSVM results with the
SCC Linux distribution by Intel, we use the default kernel4

of sccKit 1.4.1. All MetalSVM benchmarks were com-
piled with the gcc 3.4.5, whereas on the Linux system the
icc 8.1 was used. As optimization level -O2 -march=i586

for the gcc and -O3 -mcpu=pentium was used for the icc

compiler. Both compilers belong to the Intel SCC software
distribution.

7.1 The Inter-Kernel Communication Layer
In this section we present a performance evaluation of our

mailbox system, which acts as a backbone for our SVM sys-
tem. Thereby, the mailbox system has a huge impact on the
overall performance. With the common Ping-Pong bench-
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Figure 6: Average latency according to the distance

mark, we determined the impact on the distance between
participants within the mesh. As a result, Figure 6 shows
the latency according to the distance. The resulting val-
ues have to be understood as half round-trip times, hence
the elapsed time for sending a mail and handling on the
receiver’s side.

It can be pointed out that the average latency increases
linear according to the distance with a very low gradient.
The implementation without IPI support ( ) has to check
all receive buffers on every interrupt as well as in the idle
loop. Here, the benchmark activates only two cores. There-
fore, only one receive buffer per core has to be checked for
incoming messages and the number of checks is identical for
both implementations. The result is a significantly lower
latency, compared to the event triggered approach. The av-
erage latency of the approach with IPI support ( ) is
increased by the disruption of incoming interrupts. How-
ever, the gap is very low and shows the excellent interrupt
handling of our self-developed kernel.

Figure 7 shows the average latency between the core by
increasing the number of activated cores. Curve repre-
sents the implementation without IPI support. In this case,
only the cores 0 and 30 with a distance of 5 hops are in-
volved in the Ping-Pong benchmark and all other cores are
in an idle loop. By a rising number of cores, the average
latency increases because more buffers have to be checked
for incoming messages.

A similar implementation with IPI support ( ) has
a nearly constant average latency. Thus, the receiver can
use the IPI to determine which buffer has to be checked.
Curve represents the implementation with IPI support,
whereas the remaining activated cores permanently interact
among themselves by sending mails.The average latency is
on a similar level for up to 48 cores, compared to the bench-
mark without background noise ( ). This result shows
the excellent behavior of our mailbox system.

7.2 The SVM System
First, we use a synthetic low-level benchmark for the eval-

uation of core performance characteristics of the SVM sys-
tem. Second, a real world example – shared memory version
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Figure 7: Average latency between core 0 and 30

of a two-dimensional Laplace application – has been applied
to the SVM system. This includes a comparison of the per-
formance to a message passing variant, which is based on
iRCCE [4].

7.2.1 Synthetic Benchmarks
We used a synthetic benchmark to compare in detail the

Lazy Release Consistency and the Strong Memory Model
of our SVM system. The further described benchmark has
been executed on core 0 and 30 and the results are listed in
Table 1.

As a first step, for the allocation of 4 MByte of memory
the synthetic benchmark calls a collective function. Thus,
the allocated memory is managed by our SVM system. The
underlying method reserves only virtual address space, phys-
ical memory will be allocated and mapped at first touch.

Therefore, regardless of what memory model is used, the
time to reserve the memory region, shown in the first row of
Table 1, is constant and very low.

Strong Lazy Release

allocation of 4 MByte 741.0µs 741.0µs
physical allocation

of a page frame 112.301µs 112.296µs
mapping of

a page frame 10.198µs 2.418µs
retrieve the access

permission of a page frame 8.990µs —

Table 1: Average Overhead by using the SVM sys-
tem

As a second step, core 0 initializes the first four bytes of
every page and thereby consequently allocates the physical
memory. The average time to allocate a page frame is shown
in the second row of Table 1. Here, values are independent
from the used memory model because both models are based
on the same memory allocation strategy.

Next, core 30 writes to the first four bytes of every page.
The pages are already allocated by core 0. Within the page
fault handler, the SVM system subsequently looks up and



restores the value passed by core 0 via the scratch pad mem-
ory. Now, the calculation can be continued regarding the
Lazy Release Model.

In contrast to this memory type, the Strong Memory Model
has to retrieve the access permissions from the page owner.
Therefore, the average time to map an already allocated
page, shown in the third row of Table 1, is clearly lower for
the Lazy Release Model compared to the Strong Memory
Model.

Finally, core 0 resets the first four bytes of every page.
The pages are already allocated and mapped at all cores.
However by using the Strong Memory Model, the core 0 has
to retrieve the access permissions. The last row of Table 1
reveals that the overhead of our approach which amounts
9µs is extremely low and indicates an excellent behavior.

7.2.2 The Two-Dimensional Laplace Problem
Here, a classical synchronous iteration program example

is analyzed for the demonstration of our SVM system. For
instance, the heat distribution of a square metal sheet with
known temperatures at its edges represents the well known
two-dimensional Laplace problem. Figure 8 illustrates the
further described method.

ui−1,j

ui+1,j

ui,j−1

ui,j+1

N

N

Figure 8: Heat Distribution Problem

The resulting partial differential equation can be solved
with the common Jacobi Over Relaxation (JOR) algorithm
standing for a simple parallel program example using a shared
memory approach. The Jacobi iterations can be described
by the following formula:

uk+1
i,j =

1

4
· [uk

i−1,j + uk
i+1,j + uk

i,j−1 + uk
i,j+1]

An analysis of the capabilities offered by the MetalSVM
layer is reached by executing kernel threads in the MetalSVM
kernel. Therefore, the collective memory allocation function
is used with Level 1 cache enabled. Allocated memory is
used as follows: The simulation data of 1024 × 512 double

values are stored in two arrays namely old and new. Af-
ter each iteration the values from new are moved to old by
exchanging the references. A barrier follows to ensure that
iterations are processed synchronously. A static distribu-
tion to n cores of the squared problem size is used. Each
core iterates over N/n lines. The shared memory applica-
tion assumes a synchronous behavior after each iteration
which creates the requirements for an SVM system to pro-

1 2 4 8 16 32 48
0

100

200

300

400

Number of Cores

T
im

e
[s

]

message passing via iRCCE

lazy release
strong

Figure 9: Runtimes of the Laplace Benchmark

vide correct data. Enabled caches have to be flushed and
invalidated implicitly, regarding the Strong Memory Model,
or explicitly, regarding the Lazy Release Consistency. The
current version of MetalSVM supports both as described in
Section 6.

Figure 9 shows benchmark results of the previously de-
scribed application for an increasing number of cores on the
SCC platform. Curve depicts terms of a message pass-
ing laplace variant based on iRCCE [4] under Linux, which
uses a non-blocking behavior to exchange rows after each
iteration. The Curves and represent the perfor-
mance measurements of the Strong and the Lazy Release
Consistency model of our SVM system. Both curves are
nearly identical.

In this example, the benchmark iterates 5000 times. In
the case of the Strong Memory Model, each iteration triggers
two page faults. Consequently, the overhead is about 5000×
2 × 9µs = 90ms, whereas 9µs is the estimated time to
retrieve access on a page frame (see Table 1). In fact, this
overhead is negligible, compared to the total runtime of the
synthetic application.

The P54C cores of the SCC are not able to update the
cache entries on a write miss. This implies that write ac-
cesses to the matrix uk+1 is like write accesses to uncachable
memory region. Per default the write combining buffers are
not used by enabling the MBPT flag. Therefore, the iRCCE
version could not benefit from this feature and is slower up
to a number of 32 cores compared to the SVM versions,
which enable the write combining buffers. The reason for
the super linear speed up of the message passing variant of
the parallel application in the interval 32 to 48 cores is the
use of the Level 2 cache. For more than 32 cores the required
rows from matrix uk fit into the L2 cache. The P54C cores
update cache entries on read miss only. Unlike the iRCCE
version, the SVM systems sacrifices the use of the L2 cache
for these regions for the use of the write combining buffer.
Therefore, the shared memory variant can not profit from
these L2 caching effects.

The chosen application benchmark proves the excellent
behavior of our SVM system, which thereby builds an ideal
base for our MetalSVM project.



8. CONCLUSIONS AND OUTLOOK
This paper has revisited the technique of SVMs for the

emerging architecture of cluster-on-chip. The distinguish-
ing feature of such systems, like the here considered SCC,
are the many cores coupled through non-coherent shared
memory. By using the special features of the investigated
SCC processor, the known concept of SVMs can become
very attractive. Our SVM system MetalSVM is based on
a hypervisor-based approach, formed by bare-metal kernels
running on the cores. In terms of the SVM, we have pre-
sented the initial design and implementation of Lazy Release
and the Strong Memory Model, which has been integrated
into MetalSVM. The basic approach is based on a mailbox
system with a low-latency inter-kernel communication layer.
The benchmark results of the communication layer and the
SVM system prototype are promising. In fact, the overhead
of the Strong Release Consistency compared to the Lazy
Release Consistency Model is tolerable.

In the future, we will investigate other, weaker memory
models, to achieve the best performance for our bare-metal
hypervisor. We plan to use our experience [13] from the de-
sign of kernel extensions for NUMA systems to reach a more
dynamic memory distribution strategy like Affinity-on-Next-
Touch, which has been firstly proposed by Noordergraaf and
van der Pas in [19].
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