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Abstract. We test the sensitivity of neutrino parameter constraints from combinations of
CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using
Bayesian model selection. Significantly, none of the tested combinations, including recent
high-precision local measurements of H0 and cluster abundances, indicate a signal for massive
neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed
number of degrees of freedom, neutrino parameter constraints do not change significantly if
the location of any features in the PPS are allowed to vary, although neutrino constraints
are more sensitive to PPS features if they are known a priori to exist at fixed intervals in
log k. Although there is no support for a non-standard neutrino sector from constraints on
both neutrino mass and relativistic energy density, we see surprisingly strong evidence for
features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and
recent high-precision local measurements of H0. Conversely combining Planck with matter
power spectrum and BAO measurements yields a much weaker constraint. Given that this
result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H0

measurements is likely an indication of unmodeled systematic bias that mimics PPS features,
rather than new physics in the PPS or neutrino sector.
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1 Introduction

Cosmological observations have emerged as a stringent constraint on the total mass of neutri-
nos. The total neutrino mass makes a subtle contribution to cosmic microwave background
(CMB) anisotropies and has a more substantial impact on the late time matter power spec-
trum measured via clustering observations. The CMB is sensitive to neutrino mass and
effective neutrino number via the alteration of matter-radiation equality leading up to the
decoupling of the CMB, and the alteration of the evolution of the neutrino anisotropic stress-
energy tensor. Extra relativistic energy density modifies the acoustic peak scale to the
photon-damping scale, making the CMB a sensitive measure of relativistic energy density
above the photon density, often parameterized as Neff ≡ (ρrad − ργ)/ρν , where ρrad, ργ ,
and ρν are the total energy density in relativistic species, photons, and active neutrinos,
respectively.

Cosmological large scale structure (LSS) is sensitive to the presence of massive neutrinos
and effective neutrino number Neff . Baryon acoustic oscillations (BAO) are affected by the
change of matter-radiation equality and commensurate change in expansion history. Mea-
surements of LSS clustering, such as the power spectrum of galaxies, are a sensitive probe of
neutrino properties as clustering is suppressed below the neutrino free streaming scale via a
combination of the relativistic behavior of neutrinos at early times and their free-streaming
suppression of late time growth. The sensitivity of galaxy clustering was highlighted some
time ago (e.g., [1]), and future probes can achieve very high precision (For a recent review,
see Ref. [2]).

When combined with LSS observables, the complementary role of the CMB removes
degeneracies with other cosmological parameters allowing high-precision determinations of
their values. For example, the scalar perturbation amplitude As, tilt ns and matter density
Ωm are each, to different degrees, degenerate with

∑
mν , but are determined to percent-level

precision from Planck’s 2015 CMB analysis [3]. In single-parameter extensions of ΛCDM in
which the sum of neutrino masses is a free parameter, the resulting constraints are an order
of magnitude tighter than current kinematic laboratory constraints:

∑
mν < 0.23 eV (95%)

from Planck 2015 (TT, lowP, lensing, BAO, JLA, H0) [3], versus
∑
mν . 6 eV from 3H β

decay plus oscillations [4]. The latest Planck data (TT, TE, EE, SimLow, lensing) [5] yields∑
mν < 0.14 eV(95%), but the HFI likelihood codes are not yet public. Here the sum of

neutrino masses is defined as the sum of the individual mass eigenstates Σmν ≡ m1+m2+m3
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and does not depend on their hierarchical ordering beyond the mass degeneracy scale where
m1 ≈ m2 ≈ m3.

In the past several years, there have been indications of tension between local probes
of cosmological structure and expansion and values obtained from analyses of CMB data.
The tension comes in two regards: first, the CMB-parameter inferred local Hubble expansion
rate at present, H0, is lower than precise local measures; and second, the amplitude of scalar
perturbations inferred from the CMB is higher than that from more local measures. The
combination of the CMB with these local probes are often referred to as tension data sets
and we adopt that here. These tension data sets include analyses of combinations of CMB
and H0 data with SPT SZ clusters by Hou et al. [6], and combinations of CMB data with
cosmic shear lensing data from CFHTLenS also indicated a nonzero neutrino mass [7], as well
as data from the Baryon Oscillation Spectroscopic Survey (BOSS) constant mass (CMASS)
luminous red galaxy sample [8]. With such combinations of data sets between local and high
redshift cosmology measures, there were a number of combinations that indicated degenerate
neutrino masses or extra relativistic energy density could relieve this tension [9–14]. Whether
the evidence for strong tension and new neutrino physics from the low redshift measures is
definitive has been called into question by several papers [3, 15, 16]. For example, weak
lensing systematics has been shown to alleviate tension in that data set [17]. Generally,
the low redshift data indicates a lower amplitude of fluctuations on relatively small scales,
parameterized as σ8, the rms over-density of fluctuations smoothed with a spherical window
function of 8h−1 Mpc. Although there exist several different cluster abundance samples that
indicate tension with the CMB [18–21], we employ, as a representative measure, constraints on
σ8 vs Ωm from Planck SZ Clusters, as described below [11, 19]. Additional tension is indicated
in recent high-precision measures of the local expansion rate H0, which has been proposed
to potentially indicate extra relativistic energy density (Neff > 3) [22]. Importantly, the
tension between low and high redshift perturbation amplitude is at least partially alleviated
in new polarization measures of reionization that reduce the inferred scalar amplitude [5].
In summary, a number of tension data sets have suggested non-standard relativistic energy
or non-trivial neutrino mass, but the results are inconclusive, nor are necessarily mutually
consistent. Such tension could very well indicate new physics and is why we include it in our
investigation.

Cosmological neutrino mass measurements are approaching the sensitivity needed to
detect the minimal value of

∑
mν ≈ 60 meV derived from the mass-splittings in the neu-

trino sector inferred from neutrino oscillations. However, reliably achieving this sensitivity
requires a careful analysis of the assumptions and model dependencies underlying cosmolog-
ical constraints. Several cosmological model dependencies are discussed in, e.g. Ref. [23]. In
particular, the effects of massive neutrinos on large scale structure can be degenerate with
deviations from smoothness in the primordial power spectrum (PPS). In particular, given
a fine-tuned PPS, CMB data can mimic a zero neutrino mass universe even if the neutrino
density is large [24]. It is therefore important to test the dependence of neutrino parameter
constraints on the assumed shape of the PPS. The consequences of a non-trivial PPS for
neutrino constraints were previously analyseds in Refs. [25–27]. Those analyses consider a
PPS in which features and/or discontinuities were located at specified wavenumbers. In this
paper, we consider more general scenarios in which the features locations are constrained
by the data, employing the Bayesian model selection methods of Ref [28, 29] to determine
whether the improved fit justified the increased complexity of the model.

Separately, we go beyond previous work by exploring tension between SZ cluster abun-
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dances and recent high-precision measures of H0 in the “local” universe. We combine the
2015 Planck results [3], large-volume galaxy survey LSS data from the clustering of Luminous
Red Galaxies from the Sloan Digital Sky Survey [30], and the WiggleZ Dark Energy Survey
[31]. We also use the most recent measures of the Baryon Acoustic Oscillation (BAO) scale
from the six-degree-Field Galaxy Survey (6dFGS) [32], from the SDSS Main Galaxy Sam-
ple (SDSS-MGS) [33], and from the Baryon Oscillation Spectroscopic Survey data release
11 (BOSS DR11), from both the LOWZ and CMASS samples [34], which provide robust
complementary constraints on the cosmological parameters, including neutrinos. In order to
claim strong evidence for new physics from the combined analysis of these tension data sets,
it is necessary that different probes of the same cosmological signals, e.g., expansion history
or growth rate, provide comparable statistical evidences for the same extensions to ΛCDM.
In contrast, if different models are favored with wildly variable confidences, then this provides
some evidence for unmodeled bias in the probes themselves. In light of this, here we aim to
test for the evidence of novel signals in the neutrino sector or the primordial spectrum.

2 Method

In this section we begin by describing the cosmological models we analyze, along with the
“knot-spline” algorithm used to reconstruct the PPS. We also give our priors for the param-
eters in our models and discuss the use of Bayesian evidence and posterior probabilities in
model selection and parameter estimation.

The likelihood calculations and PPS reconstruction are performed using the publicly
available code Cosmo++ [35]. The CMB power spectra and matter power spectrum are
calculated using the CLASS package [36, 37]. The parameter space sampling and Bayesian
evidence calculation is implemented with the publicly available multimodal nested sampling
code MultiNest [38–40]. Finally, the resulting chains are analyzed and plotted using the
GetDist Python package.

2.1 Non-power-law primordial power spectrum

Our goal is to examine how constraints on neutrino parameters change when we relax the
assumption that the PPS has a simple power-law form. In particular, we want to test the
sensitivity of neutrino parameters to the shape of the PPS. Our approach to reconstructing
the PPS is a variation of the “knot-spline” method described in [28, 29, 41]. Similar methods
implementing a free-form primordial spectrum are given in Refs. [25, 27, 42–51].

The algorithm is summarized as follows:

1. Fix kmin = 10−6 Mpc−1 and kmax = 10.0 Mpc−1, but allow their amplitudes Amin and
Amax to vary.

2. Add n knots with uniform priors on log k, in the range log kmin < log ki < log kmax and
a uniform prior on Ai, in the range −2 < Ai < 4, where Ai ≡ log(1010∆2

ζ(ki)), where

∆2
ζ is the dimensionless PPS of curvature perturbations and i = 1, 2, ..., n. The knots

are ordered so that ki−1 ≤ ki, and the number of knots n is varied between 1 and 5.

3. Interpolate between the endpoints and the n ordered knots using a linear spline. The
interpolation is performed in logarithmic space for both k and ∆2

ζ .

We adopt uniform priors for the locations of knots in log k and their amplitudes. Knots
with arbitrary locations in k-space are able to capture both local, step-like feature, more

– 3 –



0.0 0.2 0.4 0.6 0.8 1.0 1.2∑
mν [eV]

0.65

0.70

0.75

0.80

0.85

0.90
σ

8
Planck15+SZ
Planck15
Planck15+LRG
Planck15+BAO
Planck15+H0

2.4 2.7 3.0 3.3 3.6 3.9
Neff

0.52

0.56

0.60

0.64

0.68

0.72

0.76

h

Figure 1. (Left) The two-dimensional posterior distribution showing the 68% and 95% CI allowed
regions in the σ8 −

∑
mν plane for 0 knots and

∑
mν free for various combinations of data. (Right)

The same but for Neff in the h−Neff plane.

gradual changes like a large-scale exponential suppression, or a spectrum with a sharp cutoff.
With no knots, the PPS is specified by two parameters, the amplitudes of the endpoints kmin

and kmax. In this case, the PPS is equivalent to the standard power-law PPS in ΛCDM,
providing for an easy comparison between the two models. Each additional knot yields two
degrees of freedom corresponding to the location of the knot ki and its amplitude Ai. In total,
2n + 2 free parameters specify the PPS model, where n is the number of knots. Allowing
the knot location to vary provides some basic protection against the look-elsewhere effect
or multiple comparisons problem, since the knot is free to move over the global range of k,
in contrast to reconstructions in which the knot locations are fixed. The broad ranges from
which kknot and Aknot are drawn allow for possible features at any measurable scale.

2.2 Model, priors, and Bayesian evidence

We choose uniform priors for all cosmological variables, including the usual parameters Ωbh
2,

Ωch
2, h, and τ , the sum of the neutrino masses

∑
mν and the effective number of relativistic

degrees of freedom Neff . As explained above, the knot-spline specification of the PPS has
two parameters associated with each knot, log10 kknot and log(1010∆2

knot), and two additional
parameters describing the amplitudes of the fixed endpoints. The ranges for these priors are
shown in Table 1.

To evaluate the statistical significance of a model M, we use the posterior probability
P (M|Data). For two models Mi and Mj with the same prior probability, the evidence
ratio or Bayes factor is given by

Zi(D)

Zj(D)
=
P (Data |Mi)

P (Data |Mj)
, (2.1)

where the Bayesian evidence or marginalized likelihood is

Zi(D) ≡ P (Data |Mi) =

∫
P (θ |Mi)L(Data | θ)dθ (2.2)

for the model parameters θ. Here, L(Data | θ) is the data-likelihood and P (θ |Mi) is the
parameter prior probability. When the prior probabilities for the models are equal (as is
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Figure 2. Two-dimensional posterior distributions in the σ8 −
∑
mν plane for 0 knots (solid line),

1 knot (dashed line), and 2 knots (dotted line) for various combinations of data sets. Models with
more than 2 knots do not differ significantly from the n = 2 case and are not displayed.

common convention) the Bayes’ factor directly measures the posterior model odds. We allow
for a wide range of values when specifying potential features in the PPS at fixed number
of degrees of freedom in our parameterization. In general, the integral in equation (2.2) is
numerically challenging but can be computed using multimodal nested sampling.

It is more convenient to use the logarithm of the Bayes factor:

∆ lnZ ≡ ln
Zi(D)

Zj(D)
. (2.3)

Evidence ratios can be interpreted qualitatively using the Jeffreys’ scale [52] or a more
conservative “cosmology scale” [53], summarized in Table 2. Bayesian model selection yields a
global estimate of how well a model fits the data by integrating over the entirety of parameter
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Figure 3. 68% and 95% CI constraints on Neff for models with Neff allowed to vary and PPS
reconstruction with knot location free. The data sets used are indicated in each panel (Planck15 is
implicitly included in each panel).

Parameter Prior Parameter Prior

Ωbh
2 [0.020, 0.025]

∑
mν [0.001, 3.0]

Ωch
2 [0.10, 0.14] Neff [2.0, 5.0]

h [0.55, 0.80] log10 kknot [−6, 1]

τ [0.04, 0.12] log(1010∆2
knot) [−2, 4]

Table 1. Ranges for uniform priors for cosmological parameters.

space and the Bayes factor penalizes those complex models with many free parameters that
yield a high value for the likelihood only within some small sub-region of the overall parameter
space. A model with more parameters must thus yield a significant improvement in likelihood
over a sufficiently large volume of parameter space in order to yield posterior odds that
support the more complex model.
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Figure 4. One-dimensional posterior distributions for
∑
mν and Neff . The colors of the contours

from darkest to lightest indicate increasing number of knots in the PPS from 0 to 2 knots. Higher
numbers of knots do not lead to significant changes. All cases shown are for models where the knot
location in k is a free parameter.

log (Posterior Odds) Jeffreys Scale Cosmology Scale

0.0 to 1.0 Not worth more than a bare mention

1.0 to 2.5 Substantial Weak

2.5 to 5.0 Strong Significant

> 5 Decisive Strong

Table 2. Rough guideline for Bayesian evidence interpretation with the Jeffreys scale [52] and the
more conservative “cosmology scale” from Ref. [53].
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0.0 0.3 0.6 0.9 1.2 1.5∑
mν

P

0.00 0.08 0.16 0.24 0.32 0.40∑
mν

P

Figure 5. One-dimensional posterior distributions for
∑
mν for (left) Planck15 only and (right)

Planck15+BAO for the case of fixed knots. The color of line from dark to light represents increasing
numbers of knots from 0 to 10 in intervals of 2.

Data No knots 1 knot 2 knots 3 knots 4 knots 5 knots

Planck15 0.63 0.66 0.71 0.64 0.71 0.67

Planck15+BAO 0.18 0.19 0.19 0.18 0.20 0.24

Planck15+WZ 0.44 0.40 0.40 0.39 0.43 0.37

Planck15+LRG 0.40 0.40 0.43 0.39 0.39 0.38

Planck15+H0 0.13 0.15 0.15 0.18 0.15 0.18

Planck15+WZ+BAO 0.18 0.18 0.18 0.17 0.17 0.17

Planck15+LRG+BAO 0.17 0.16 0.17 0.17 0.16 0.22

P15+LRG+BAO+H0 0.14 0.13 0.13 0.16 0.17 0.13

Planck15+SZ+H0 0.23 0.23 0.23 0.24 0.23 0.24

Planck15+SZ 0.60+0.22
−0.23 0.52+0.22

−0.24 0.52+0.22
−0.23 0.53+0.21

−0.23 0.49+0.20
−0.23 0.49+0.20

−0.22

Table 3. 95% CI upper limits on
∑
mν in eV for various combinations of data and numbers of

knots for the model cases where
∑
mν is allowed to vary in addition to the standard cosmological

parameters and knots with k and amplitude freedom in position. The 68% CI constraints are also
shown in the bottom row for the tension data set.

2.3 Data sets

We use measurements of the CMB, the matter power spectrum, BAO, SZ cluster counts, and
Hubble constant H0, which we describe in detail below. Likelihood modules for each of these
data sets have been written for use with Cosmo++.

Cosmic Microwave Background.— For all the runs performed in this analysis, we use
the CMB measurements from the Planck 2015 data release [54]. Although better constraints
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Data No knots 1 knot 2 knots 3 knots 4 knots 5 knots

Planck15 3.14+0.31
−0.31 3.20+0.29

−0.29 3.22+0.27
−0.30 3.19+0.27

−0.29 3.25+0.26
−0.28 3.22+0.26

−0.29

Planck15+BAO 3.14+0.24
−0.24 3.15+0.21

−0.21 3.15+0.21
−0.23 3.14+0.21

−0.23 3.14+0.20
−0.20 3.14+0.19

−0.21

Planck15+WZ 2.97+0.26
−0.27 2.93+0.23

−0.24 2.95+0.22
−0.25 2.91+0.22

−0.25 2.91+0.23
−0.27 2.90+0.22

−0.27

Planck15+LRG 3.07+0.26
−0.28 3.05+0.24

−0.25 3.05+0.23
−0.26 3.04+0.24

−0.26 3.04+0.25
−0.26 3.05+0.23

−0.27

Planck15+H0 3.44+0.19
−0.20 3.44+0.19

−0.19 3.44+0.19
−0.19 3.44+0.17

−0.19 3.43+0.19
−0.18 3.43+0.19

−0.18

Planck15+WZ+BAO 3.01+0.21
−0.20 3.02+0.19

−0.22 3.01+0.18
−0.19 3.00+0.19

−0.19 3.01+0.18
−0.18 3.01+0.19

−0.19

Planck15+LRG+BAO 3.14+0.23
−0.23 3.15+0.20

−0.21 3.13+0.20
−0.20 3.15+0.21

−0.22 3.13+0.20
−0.19 3.14+0.21

−0.22

P15+LRG+BAO+H0 3.36+0.19
−0.19 3.36+0.17

−0.17 3.36+0.17
−0.17 3.36+0.17

−0.17 3.36+0.16
−0.18 3.36+0.17

−0.16

Planck15+SZ 3.05+0.29
−0.29 3.33+0.33

−0.34 3.34+0.31
−0.31 3.33+0.31

−0.31 3.36+0.30
−0.30 3.39+0.29

−0.29

Planck15+SZ+H0 3.30+0.19
−0.18 3.39+0.19

−0.18 3.39+0.18
−0.18 3.38+0.19

−0.19 3.38+0.19
−0.18 3.39+0.19

−0.19

Table 4. 68% CI constraints on Neff for various combinations of data and numbers of knots for the
model cases where Neff is allowed to vary in addition to the standard cosmological parameters and
knots with k and amplitude freedom in position.

are provided by the latest intermediate results from Planck using low-` HFI polarization [5],
the data is not currently public. We use the interface provided by Cosmo++ to include
the Planck 2015 likelihood code and use the full Planck CMB temperature power spectrum
at multipoles 2 ≤ ` ≤ 2500 along with the Planck low-` polarization likelihood in the range
2 ≤ ` ≤ 29. This combination of data is generally referred to as Planck TT+lowP. In this
paper, we will refer to this combination of data as “Planck15.”

Matter Power Spectrum.— In addition to CMB data, we also include power spectra
measurements using two different data sets. The first data set comes from the SDSS Data
Release 7 [55]. We use the most recent measure of the power spectrum of the reconstructed
halo density field derived from a sample of 110, 576 LRGs in Reid et al. [30]. As in the
original analysis, we include modes up to an upper bound of kmax = 0.2hMpc−1, above which
uncertainties in nonlinear corrections to the matter power spectrum become significant. The
lower bound of kmin = 0.02hMpc−1 is a function of the survey volume. We have rewritten
the original Reid et al. likelihood code in C++ in order to interface with Cosmo++. As in
the original code, we include the effects on the linear power spectrum due to BAO damping,
non-linear structure formation, and halo bias. We model each of these corrections identically
to the original code, with the one difference being that we are using an updated version of
Halofit [56, 57]. The fiducial model files have also been updated to include the effects of
this new version of Halofit. We will use the shorthand “LRG” to refer to this set of data.

The second data set used for the matter power spectrum comes from the WiggleZ Dark
Energy Survey, which provides a measurement of the matter power spectrum at redshifts
z = 0.22, z = 0.41, z = 0.60, and z = 0.78 [31]. In our analysis, we include only modes
that satisfy 0.02hMpc−1 < k < 0.2hMpc−1, as is done for the LRG data. Again, we have
rewritten the WiggleZ likelihood code in C++ for use with Cosmo++ and compared the
sampling results to those obtained with MontePython [58] to verify its accuracy. In this
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paper, we will use “WZ” to refer to this data set.

Baryon Acoustic Oscillations.— We have included BAO data from the 6dFGS [32],
from SDSS-MGS [33], and from BOSS Data Release 11, from both the LOWZ and CMASS
samples [34]. We note that in cases where we use both LRG and BAO data, we omit the
SDSS-MGS BAO data set in order to avoid double counting of information. For cases which
do not include LRG, all four data sets are used when incorporating BAO measurements.
From here on, we will refer to this data set simply as “BAO.”

SZ Cluster Counts.— In addition, we include information from the detection of 189
clusters by Planck via the Sunyaev-Zeldovich effect [19]. Cosmological constraints were
deduced in the σ8 − Ωm plane, which was found to be σ8(ΩM/0.27)0.3 = 0.764 ± 0.025 for
the case where the hydrostatic bias 1 − b was allowed to vary in the range [0.7, 1.0]. The
inclusion of this data will be referred to as “SZ.”

Hubble Constant.— Finally, we include recent high-precision measures of the local Hub-
ble expansion from the Hubble Space Telescope observations of Cepheid variables. This
data was used to measure the local value of the Hubble Constant to 2.4%, as H0 = 73.02±
1.79 km s−1 Mpc−1 [22]. This measurement will be referred to as “H0.” There are previous
assessments of the local Hubble expansion that prefer lower values of H0 [59]. We choose
the Reiss et al. [22] determination because it addresses much of the issues raised in Efs-
tathiou [59], and is the highest precision measurement of H0 thus far. This result is also of
interest since it indicates tension at low redshift, potentially from the same or different new
physics leading to the tension in the cluster samples. We include the measure of H0 to test
what it indicates for ΛCDM in combination with Planck and cluster data.

3 Results and Discussion

Neutrino masses and Neff with movable-knot PPS.— In Table 3, we report the 95%
credible interval (CI) upper limits on the sum of the neutrino masses for zero to five knots for
various combinations of data sets. The limits for the case with zero knots are consistent with
previous work examining cosmological neutrino mass limits [60]. The last row of Table 3
shows the 68% CI constraints on

∑
mν when SZ is included along with Planck15. This

shows a preference for non-zero
∑
mν , indicating some tension with the other data sets in

this analysis. For each of these cases,
∑
mν is allowed to vary in addition to the other

standard cosmological parameters, along with the knot locations and amplitudes. When the
knot location is allowed to vary freely, the constraints on

∑
mν show no dependence on the

number of knots in our Monte Carlo analysis. Therefore, for reconstructions of this form,
constraints on

∑
mν appear to be robust to changes in the shape of the PPS.

Furthermore, our most stringent limit achieved using the combination of data sets
Planck15+LRG+BAO+H0 of

∑
mν . 0.13 eV with one interior knot is comparable to the

constraint obtained with the ΛCDM spectrum (matching the same analysis in Ref. [61]).
This is beginning to approach the minimum allowed value for the inverted neutrino mass hi-
erarchy of

∑
mν ∼ 0.1 eV and suggests that future precision measurements could distinguish

between the two possibilities for the neutrino mass hierarchy. Joint constraints on σ8, h,
Neff , and

∑
mν shown in Fig. 1, illustrate how neutrino constraints become tighter with the

inclusion of additional data sets and which data most significantly impact the constraints.
We find that inclusion of the BAO data provides the most significant improvement in the
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Figure 6. Shown (top) are the PPS estimated using Planck15 data for the case where the knot
locations are fixed and only the amplitudes are varied, along with

∑
mν to vary. The black line shows

the best fit PPS, and the red and blue regions correspond to the 68% and 95% CI regions. We see
similar reconstructed power spectra when BAO is included (not shown). For comparison, we show
(bottom) the same PPS with between 0 to 5 knots, so the corresponding panels in the top and bottom
figure have the same number of free parameters.

limit on the sum of neutrino masses due to the complementarity of BAO in constraining Ωm,
which is highly degenerate with

∑
mν . The change in the posterior distributions for varying

numbers of knots and combinations of data sets are shown in Fig. 2, demonstrating again the
fact that allowing for additional freedom in the PPS does not significantly impact neutrino
parameter constraints. Knots beyond two are not shown as they do not change the posterior
distribution in a noticeable manner.
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Figure 7. Shown are the 95% CI upper limits on
∑
mν for fixed knot locations when only Planck15

data is included and when Planck15+BAO are included.

Table 4 shows the derived constraints on Neff for zero to five knots for various combi-
nations of data sets. In these cases, Neff is allowed to vary along with the other standard
cosmological parameters, along with the PPS knot locations and amplitudes. As with

∑
mν ,

constraints on Neff also appear to be robust to a relaxation of the assumption that the PPS
adheres to a power-law shape. In all cases in which H0 is included, the best fit value for
Neff is observed to shift up, such that the standard value of 3.046 lies just outside the 95%
allowed region for the majority of cases. Limits on Neff are shown in Fig. 3. The dependence
of the one-dimensional posterior distributions for

∑
mν and Neff are shown in Fig. 4. As

mentioned, very little change is present when going from 0 to 2 knots. Beyond 2 knots, there
is no discernible change, and so only cases up to 2 knots are shown.

Comparing fixed and movable-knot PPS.— To test how differences in methods for
reconstructing the PPS affect derived neutrino parameter constraints, we perform several
runs in which we fix the position of the knots in a similar manner to the method used in
Ref. [27]. Fig. 5 shows how the posterior distribution of

∑
mν changes in the case where the

position of knots are fixed and only the amplitudes are allowed to vary. For these cases, we
follow a similar procedure to that described above for our “knot-spline” reconstruction, with
the exception that the position of the knots are fixed in k-space. We perform runs with 0, 2,
4, 6, 8, and 10 knots, with locations indicated by the vertical dotted lines in Fig. 6.

For the case where only Planck15 is included, the posterior distribution of
∑
mν varies

considerably. This contrasts with our reconstruction in which the knot location is allowed
to vary, indicating that the neutrino parameter constraints are sensitive to the prior on the
allowed shape of the PPS. However, when information from LSS is included, in this case in
the form of BAO data, the degree of change is significantly less. This is not surprising given
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the fact that LSS is expected to be a much more sensitive probe of neutrino mass than CMB
measurements alone. The 95% upper limits on

∑
mν are shown in Fig. 7, illustrating this

difference. The PPS for our fixed-location knots are shown in Fig. 6. These figures indicate
more of a preference for features in the PPS relative to the reconstruction method in which
the knot locations are allowed to vary freely.

In Fig. 9, we show the reconstructed PPS for cosmological models with different number
of knots for Planck15 combined with various combinations of LRG, BAO, SZ, and H0 data
sets. We find no significant features in the PPS using Planck15 with any combination of LRG,
WZ, and BAO data. There is some apparent evidence for features when using the tension
data sets SZ and H0 which will be discussed in more detail later in this paper. The black
lines represent the most likely power spectra. These all tend to recover the standard power-
law form for the PPS at small scales k >∼ 10−3 Mpc−1. At larger scales k . 10−3 Mpc−1,
the best fit power spectra for models with non-zero numbers of knots tend to indicate a
suppression of power at large scales due to the well-known low C` at low ` in the CMB (see,
e.g. Ref. [28]). Note that when allowing the knot positions to freely vary, they accumulate
in the cosmic variance dominated region, so that functions with a fixed amount of variability
will prefer to fit large scale features preferably than small scale ones. Since we do not have a
priori knowledge of the position of features in the PPS, we allow the knot location to vary.
Furthermore, relaxing the position of the features protects against the look-elsewhere effect
or multiple comparisons problem, since the knot is free to move over the global range of k.

The confidence ranges for the power spectra in Figs. 6, 8 and 9 are calculated as follows.
For each k value we construct a sample of all P (k) values from our sample of power spectra,
and from that sample we calculate the confidence intervals. The confidence intervals are
constructed around the median of the sample, so that e.g. the 68% confidence interval leaves
out 16% of the points of the sample on each side. This is the reason why the best fit lines
sometimes lie outside the 68% confidence range.

Table 5 shows the ∆ ln(Z) values for the free and fixed-knot location PPS reconstructions
described above with

∑
mν free. In most cases, particularly for DOF ≥ 4, Bayesian evidence

strongly prefers the reconstruction in which the knot location is free over models with knots
fixed at the positions shown in Fig. 6. This indicates that a simple power-law fit over the
approximate range 10−3 Mpc−1 < k < 1 Mpc−1 provides a significantly better fit than the
hint of features seen in the PPS for fixed knot positions.

We should note that the big change in Bayesian evidences for the fixed knots case
depends on the prior. The change would not be so dramatic if we had chosen a smaller prior
range for log(1010∆2

knot). Although we use the same prior for the moveable knots case, we
do not see such large changes in the evidence because the knots are able to move to parts
of the parameter region where there is high cosmic variance or noise, unless there are actual
features to fit. For the fixed knots case, however, there is only freedom to fit features at a
priori fixed locations, and if there are none then we see a significant drop in evidence.

Model comparison.— The change in Bayesian evidence relative to the six-parameter
ΛCDM model is shown in Table 6 for the data sets Planck15+LRG+BAO(+H0). Impor-
tantly, there is no significant preference for any model that includes

∑
mν , Neff , or knots

over a simple ΛCDM model. The six-parameter ΛCDM model is also preferred with Planck15
data alone.

However, with the inclusion of the recent measurement of H0, there is a significant pref-
erence for the combination of additional parameters Neff and knots. The cases with 2, 4, and
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Planck15 Planck15+BAO

DOF ∆ ln(Z) Free ∆ ln(Z) Fixed DOF ∆ ln(Z) Free ∆ ln(Z) Fixed

2 1.26 1.15 2 1.25 1.24

4 1.15 −5.79 4 1.2 −6.52

6 1.48 −13.03 6 1.42 −13.5

8 0.81 −20.33 8 1.07 −18.74

10 0.47 −21.59 10 1.21 −22.47

Table 5. Comparison of ∆ ln(Z) values relative to the 0 knot case (ΛCDM) for free-form PPS models
with knot position in log10 k either free or fixed. For all cases,

∑
mν is also free. The number of

knots for each case is such that the number of additional degrees of freedom is equal in each row.
For example, two additional degrees of freedom in the PPS corresponds to one knot in the free case
(location and amplitude) and two knots in the fixed case (amplitude of each knot).

Planck15+LRG+BAO Planck15+LRG+BAO+H0

Model ∆ ln(Z) Model ∆ ln(Z)

ΛCDM — ΛCDM —

+1 knot 0.99 +1 knot 1.60

+2 knots 1.07 +2 knots 1.15

+3 knots 0.75 +3 knots 1.40

+4 knots 0.61 +4 knots 1.31

+5 knots 0.59 +5 knots 0.78

— — +Neff+1 knot 1.13

+Neff+2 knots 0.10 +Neff+2 knots 1.43

— — +Neff+3 knots 0.74

— — +Neff+4 knots 1.25

— — +Neff+5 knots 0.89

Table 6. ∆ ln(Z) values relative to the six parameter ΛCDM model for various cosmological models
for the combination of data sets Planck15+LRG+BAO and when H0 is added. Only models for which
∆ ln(Z) is positive relative to ΛCDM are shown.

5 knots all satisfy ∆ ln(Z) > 2.5, which can be interpreted as “strong” or “significant” odds
against ΛCDM. The Bayes factor for all models with positive ∆ ln(Z) for the Planck15+H0

likelihood are shown in Table 7.
Similarly, when the SZ data set is included with Planck15, there is a significant prefer-

ence for the combination of a nonzero number of knots along with a nonzero value for the
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sum of the neutrino masses (see Table 3 for Planck15+SZ). When H0 is also included, we see
evidence for knots and Neff . This comes largely from Neff enhancing the diffusion damping
of the CMB anisotropies, which is recovered by a larger H0 in order to preserve the position
of the acoustic peaks (see, e.g. [? ]). Table 8 shows the Bayes factor for both of these cases,
Planck15+SZ and Planck15+SZ+H0. There is a significant preference for cosmological mod-
els with zero to five knots, with ∆ ln(Z) > 2.5 for several model cases that contain additional
non-standard cosmological parameters. For the combination of data sets Planck15+SZ+H0,
a cosmological model with 3 knots is heavily favored with ∆ ln(Z) > 5. If we can assume
that the tension data set SZ is an accurate measurement, as well as the measurement of H0,
then these results represent strong evidence that the PPS contains non-trivial features, not
captured by a power-law representation. In particular, for this case, we see a preference for
a very sharp cutoff at high k, as shown in Fig. 8. The cutoff in power at high k provides
the smaller amplitude in power indicated by the SZ measurements. More conservatively, this
is an indication that there are systematic effects within the data that mimic PPS features,
which warrant further investigation. Importantly, smaller scale measures of the PPS such as
the Lyman-α forest would add more information and likely disfavor strong departures from
a power-law PPS (e.g. [62]), but including the inferred matter power spectrum from the
Lyman-α forest is beyond the scope of the current work.

4 Conclusion

Using data from a broad set of the most recent cosmological observations, including CMB,
BAO, power spectrum, cluster counts, and Hubble constant measurements, we have examined
the dependence on the assumed form of the PPS in measures of neutrino parameters

∑
mν

and Neff . To do this, we applied the “knot-spline” method for reconstructing the PPS,
following [28, 29, 41], and allowing the knot positions to vary in location as well as amplitude.
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Figure 8. Shown (left) is the PPS for Planck15+SZ+H0 with 3 knots, which corresponds to our
model with the highest evidence. For comparison, we also show (right) the three knot case with only
Planck15 data included. The black solid lines show the best-fit PPS, the red lines are PPS in the 68%
CI, and the light blue lines are the PPS that fall in the 95% CI (note that it is possible for the PPS
belonging to the sample with the maximum likelihood value to lie outside the red or blue regions).
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Planck15 Planck15+H0

Model ∆ ln(Z) Model ∆ ln(Z)

ΛCDM — ΛCDM —

— — +Neff 0.49

+1 knot 1.00 +1 knot 1.56

+2 knots 1.18 +2 knots 2.02

+3 knots 1.68 +3 knots 1.72

+4 knots 0.91 +4 knots 2.05

+5 knots 0.60 +5 knots 1.92

+Neff+1 knot 0.40 +Neff+1 knot 2.27

+Neff+2 knots 0.45 +Neff+2 knots 2.64

+Neff+3 knots 0.13 +Neff+3 knots 2.43

+Neff+4 knots 0.50 +Neff+4 knots 3.08

— — +Neff+5 knots 2.69

Table 7. ∆ ln(Z) values relative to ΛCDM for various cosmological models for Planck15 and when
H0 is added. Only models for which ∆ ln(Z) is positive relative to ΛCDM are shown.

We found that for this method of reconstruction, measures of Neff and
∑
mν do not appear

to depend strongly on assumptions about the PPS. However, when the knot location is fixed,
with CMB data alone, we observe a strong dependency between

∑
mν and the prior on

the PPS. While including information from LSS mitigates much of this dependency, this
work underscores the importance of quantifying the dependence of parameter constraints on
model assumptions and demonstrates the sensitivity of neutrino parameter constraints on
PPS priors and choice of data sets.

For combinations of data which include Planck15, BAO, LRG, and WZ, we see no
evidence for features in the PPS or a non-zero number of knots. In addition, there is no
preference for significant non-zero neutrino mass or a value for Neff outside of the standard
value expected in ΛCDM. Significantly, when we include recent high-precision measurements
of the low-redshift Hubble constant, we find no significant evidence for extra relativistic
energy density Neff . However, we do see relatively significant evidence for a non-zero number
of knots in concert with a value for Neff that diverges from the standard value. When
including the tension data from SZ cluster counts, we see weak evidence for non-zero neutrino
mass and more significant evidence for knots or knots with Neff and

∑
mν . However, when

both H0 and SZ measurements are included, the preference for
∑
mν vanishes, and only

models which allow for both Neff and knots to vary are favored, with a model containing only
3 knots in addition to the standard ΛCDM cosmological parameters being preferred the most
strongly over ΛCDM. The radical difference in the Bayesian evidences obtained for extensions
to the 6-parameter ΛCDM model with combinations of these data most conservatively points
to some unmodeled systematic effect, rather than a coherent body of evidence in favor of
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Planck15+SZ Planck15+SZ+H0

Model ∆ ln(Z) Model ∆ ln(Z)

ΛCDM — ΛCDM —

+
∑
mν 1.41 — —

+1 knot 2.65 +1 knot 3.09

+2 knots 2.78 +2 knots 3.48

+3 knots 3.06 +3 knots 5.03

+4 knots 4.37 +4 knots 4.74

+5 knots 4.33 +5 knots 2.94

+
∑
mν+1 knot 3.75 — —

+
∑
mν+2 knots 3.49 — —

+
∑
mν+3 knots 3.33 +

∑
mν+3 knots 1.60

+
∑
mν+4 knots 4.39 — —

+
∑
mν+5 knots 4.49 +

∑
mν+5 knots 1.50

+Neff+1 knot 2.05 +Neff+1 knot 3.46

+Neff+2 knots 2.28 +Neff+2 knots 3.36

+Neff+3 knots 2.00 +Neff+3 knots 3.09

+Neff+4 knots 1.76 +Neff+4 knots 3.21

+Neff+5 knots 3.69 +Neff+5 knots 3.25

+Neff+
∑
mν+1 knot 2.49 +Neff+

∑
mν+1 knot 1.77

+Neff+
∑
mν+2 knots 2.60 +Neff+

∑
mν+2 knots 2.17

+Neff+
∑
mν+3 knots 2.46 +Neff+

∑
mν+3 knots 3.59

+Neff+
∑
mν+4 knots 2.81 +Neff+

∑
mν+4 knots 3.41

+Neff+
∑
mν+5 knots 3.71 +Neff+

∑
mν+5 knots 3.39

Table 8. ∆ ln(Z) values relative to 6-parameter ΛCDM for various cosmological models for the
combination of data sets Planck15+SZ and when H0 is added. Only models for which ∆ ln(Z) > 1.0
relative to ΛCDM are shown. Significantly, there is no preference for neither extra relativistic degrees
of freedom in Neff nor non-zero

∑
mν .

non-standard cosmology. The tension data could also indicate non-standard background
expansion histories [? ].

As a combination of low, medium and high-redshift probes are complementarily com-
bined to constrain expansion history, cosmological matter, dark energy, neutrino densities,
and the primordial power spectrum, robust methods of indications of new model features
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and measures of new physics should be employed. Our work finds that relaxing a priori
assumptions of the scales of features in the primordial power spectrum does not significantly
alleviate constraints on neutrino mass and relativistic energy density. Significantly, we find
the tension in cosmological data from representative cluster data sets do not significantly in-
dicate a non-zero measure of massive neutrinos. Also, we find the tension from Planck 2015
CMB and recent high-precision H0 measures give no preference for a non-standard Neff . As
cosmology enters an increasingly high-precision era with multiple epoch and physical scale
probes, robust statistical methods and model tests will continue to be needed in order to
make claims for the discovery of new physics.

Acknowledgments

We thank Asantha Cooray, Elena Giusarma, and Manoj Kaplinghat for useful discussions.
We acknowledge the use of the New Zealand eScience Infrastructure (NeSI) high-performance
computing facilities, which are funded jointly by NeSI’s collaborator institutions and through
the Ministry of Business, Innovation & Employment’s Research Infrastructure programme
[http://www.nesi.org.nz]. NC and KNA are partially supported by NSF CAREER Grant
No. PHY-1159224 and NSF Grant No. PHY-1316792. LCP is supported by the DOE DE-
SC0011114 grant. KNA acknowledges hospitality and support by the Mainz Institute for
Theoretical Physics (MITP) program on “Exploring the Energy Ladder of the Universe”
where a portion of this work was completed.

– 18 –

http://www.nesi.org.nz


10
-1
1

10
-1
0

10
-9

∆
2
ζ(k)

Pl
an
ck
15

Pl
an
ck
15

+
BA

O
Pl
an
ck
15

+
LR
G

Pl
an
ck
15

+
SZ

Pl
an
ck
15

+
H 0

10
-1
1

10
-1
0

10
-9

∆
2
ζ(k)

10
-1
1

10
-1
0

10
-9

∆
2
ζ(k)

10
-1
1

10
-1
0

10
-9

∆
2
ζ(k)

10
-1
1

10
-1
0

10
-9

∆
2
ζ(k)

10
-4

10
-3

10
-2

10
-1

10
0

k
(M

p
c−

1
)

10
-1
1

10
-1
0

10
-9

∆
2
ζ(k)

10
-4

10
-3

10
-2

10
-1

10
0

k
(M

p
c−

1
)

10
-4

10
-3

10
-2

10
-1

10
0

k
(M

p
c−

1
)

10
-4

10
-3

10
-2

10
-1

10
0

k
(M

p
c−

1
)

10
-4

10
-3

10
-2

10
-1

10
0

k
(M

p
c−

1
)

F
ig

u
re

9
.

T
h

e
re

co
n

st
ru

ct
ed

p
ri

m
or

d
ia

l
p

ow
er

sp
ec

tr
u

m
(P

P
S

)
w

it
h

o
u

t
va

ry
in

g
n

eu
tr

in
o

p
a
ra

m
et

er
s.

T
h

e
co

lu
m

n
s

co
rr

es
p

o
n

d
to

d
iff

er
en

t
d

a
ta

se
ts

u
se

d
,

sh
ow

n
at

th
e

to
p

of
ea

ch
co

lu
m

n
.

T
h

e
n
u

m
b

er
o
f

k
n

o
ts

in
cr

ea
se

s
fr

o
m

0
to

5
fr

o
m

to
p

to
b

o
tt

o
m

.
T

h
e

b
la

ck
so

li
d

li
n

es
sh

ow
th

e
b

es
t-

fi
t

P
P

S
,

th
e

re
d

li
n

es
ar

e
P

P
S

in
th

e
68

%
C

I,
an

d
th

e
li

g
h
t

b
lu

e
li

n
es

a
re

th
e

P
P

S
th

a
t

fa
ll

in
th

e
9
5
%

C
I.

– 19 –



References

[1] W. Hu, D. J. Eisenstein, and M. Tegmark, Weighing neutrinos with galaxy surveys, Phys. Rev.
Lett. 80 (1998) 5255–5258, [astro-ph/9712057].

[2] K. N. Abazajian and M. Kaplinghat, Neutrino Physics from the Cosmic Microwave
Background and Large Scale Structure, Ann. Rev. Nucl. and Part. Phys. (2016). in press.

[3] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters,
arXiv:1502.01589.

[4] Particle Data Group Collaboration, K. A. Olive et al., Review of Particle Physics, Chin.
Phys. C38 (2014) 090001.

[5] Planck Collaboration, N. Aghanim et al., Planck 2016 intermediate results. XLVI. Reduction
of large-scale systematic effects in HFI polarization maps and estimation of the reionization
optical depth, arXiv:1605.02985.

[6] Z. Hou et al., Constraints on Cosmology from the Cosmic Microwave Background Power
Spectrum of the 2500 deg2 SPT-SZ Survey, Astrophys. J. 782 (2014) 74, [arXiv:1212.6267].

[7] R. A. Battye and A. Moss, Evidence for Massive Neutrinos from Cosmic Microwave
Background and Lensing Observations, Phys. Rev. Lett. 112 (2014), no. 5 051303,
[arXiv:1308.5870].

[8] BOSS Collaboration, F. Beutler et al., The clustering of galaxies in the SDSS-III Baryon
Oscillation Spectroscopic Survey: Signs of neutrino mass in current cosmological datasets,
Mon. Not. Roy. Astron. Soc. 444 (2014) 3501, [arXiv:1403.4599].

[9] M. Wyman, D. H. Rudd, R. A. Vanderveld, and W. Hu, Neutrinos Help Reconcile Planck
Measurements with the Local Universe, Phys. Rev. Lett. 112 (2014), no. 5 051302,
[arXiv:1307.7715].

[10] L. Verde, P. Protopapas, and R. Jimenez, Planck and the local Universe: Quantifying the
tension, Phys. Dark Univ. 2 (2013) 166–175, [arXiv:1306.6766].

[11] R. A. Battye, T. Charnock, and A. Moss, Tension between the power spectrum of density
perturbations measured on large and small scales, Phys. Rev. D91 (2015), no. 10 103508,
[arXiv:1409.2769].

[12] E. Giusarma, E. Di Valentino, M. Lattanzi, A. Melchiorri, and O. Mena, Relic Neutrinos,
thermal axions and cosmology in early 2014, Phys. Rev. D90 (2014), no. 4 043507,
[arXiv:1403.4852].

[13] M. Roncarelli, C. Carbone, and L. Moscardini, The effect of massive neutrinos on the
SunyaevZel’dovich and X-ray observables of galaxy clusters, Mon. Not. Roy. Astron. Soc. 447
(2015), no. 2 1761–1773, [arXiv:1409.4285].

[14] M. Raveri, Are cosmological data sets consistent with each other within the Λ cold dark matter
model?, Phys. Rev. D93 (2016), no. 4 043522, [arXiv:1510.00688].

[15] L. Verde, S. M. Feeney, D. J. Mortlock, and H. V. Peiris, (Lack of) Cosmological evidence for
dark radiation after Planck, JCAP 1309 (2013) 013, [arXiv:1307.2904].

[16] B. Leistedt, H. V. Peiris, and L. Verde, No new cosmological concordance with massive sterile
neutrinos, Phys. Rev. Lett. 113 (2014) 041301, [arXiv:1404.5950].

[17] N. MacCrann, J. Zuntz, S. Bridle, B. Jain, and M. R. Becker, Cosmic Discordance: Are Planck
CMB and CFHTLenS weak lensing measurements out of tune?, Mon. Not. Roy. Astron. Soc.
451 (2015), no. 3 2877–2888, [arXiv:1408.4742].

[18] SPT Collaboration, A. Saro et al., Constraints on the CMB temperature evolution using
multiband measurements of the SunyaevZel’dovich effect with the South Pole Telescope, Mon.

– 20 –

http://arxiv.org/abs/astro-ph/9712057
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1605.02985
http://arxiv.org/abs/1212.6267
http://arxiv.org/abs/1308.5870
http://arxiv.org/abs/1403.4599
http://arxiv.org/abs/1307.7715
http://arxiv.org/abs/1306.6766
http://arxiv.org/abs/1409.2769
http://arxiv.org/abs/1403.4852
http://arxiv.org/abs/1409.4285
http://arxiv.org/abs/1510.00688
http://arxiv.org/abs/1307.2904
http://arxiv.org/abs/1404.5950
http://arxiv.org/abs/1408.4742


Not. Roy. Astron. Soc. 440 (2014), no. 3 2610–2615, [arXiv:1312.2462].

[19] Planck Collaboration, P. A. R. Ade et al., Planck 2013 results. XX. Cosmology from
SunyaevZeldovich cluster counts, Astron. Astrophys. 571 (2014) A20, [arXiv:1303.5080].

[20] A. Vikhlinin et al., Chandra Cluster Cosmology Project III: Cosmological Parameter
Constraints, Astrophys. J. 692 (2009) 1060–1074, [arXiv:0812.2720].

[21] DSDD Collaboration, E. Rozo et al., Cosmological Constraints from the SDSS maxBCG
Cluster Catalog, Astrophys. J. 708 (2010) 645–660, [arXiv:0902.3702].

[22] A. G. Riess et al., A 2.4% Determination of the Local Value of the Hubble Constant,
arXiv:1604.01424.

[23] K. N. Abazajian et al., Cosmological and Astrophysical Neutrino Mass Measurements,
Astropart. Phys. 35 (2011) 177–184, [arXiv:1103.5083].

[24] W. H. Kinney, How to fool cosmic microwave background parameter estimation, Phys. Rev.
D63 (2001) 043001, [astro-ph/0005410].

[25] R. de Putter, E. V. Linder, and A. Mishra, Inflationary Freedom and Cosmological Neutrino
Constraints, Phys. Rev. D89 (2014), no. 10 103502, [arXiv:1401.7022].

[26] S. Gariazzo, C. Giunti, and M. Laveder, Light Sterile Neutrinos and Inflationary Freedom,
JCAP 1504 (2015), no. 04 023, [arXiv:1412.7405].

[27] E. Di Valentino, S. Gariazzo, M. Gerbino, E. Giusarma, and O. Mena, Dark Radiation and
Inflationary Freedom after Planck 2015, Phys. Rev. D93 (2016), no. 8 083523,
[arXiv:1601.07557].

[28] G. Aslanyan, L. C. Price, K. N. Abazajian, and R. Easther, The Knotted Sky I: Planck
constraints on the primordial power spectrum, JCAP 1408 (2014) 052, [arXiv:1403.5849].

[29] K. N. Abazajian, G. Aslanyan, R. Easther, and L. C. Price, The Knotted Sky II: Does BICEP2
require a nontrivial primordial power spectrum?, JCAP 1408 (2014) 053, [arXiv:1403.5922].

[30] B. A. Reid et al., Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey
DR7 Luminous Red Galaxies, Mon. Not. Roy. Astron. Soc. 404 (2010) 60–85,
[arXiv:0907.1659].

[31] D. Parkinson et al., The WiggleZ Dark Energy Survey: Final data release and cosmological
results, Phys. Rev. D86 (2012) 103518, [arXiv:1210.2130].

[32] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker,
W. Saunders, and F. Watson, The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the
Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017–3032,
[arXiv:1106.3366].

[33] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, The
clustering of the SDSS DR7 main Galaxy sample I. A 4 per cent distance measure at z = 0.15,
Mon. Not. Roy. Astron. Soc. 449 (2015), no. 1 835–847, [arXiv:1409.3242].

[34] BOSS Collaboration, L. Anderson et al., The clustering of galaxies in the SDSS-III Baryon
Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11
Galaxy samples, Mon. Not. Roy. Astron. Soc. 441 (2014), no. 1 24–62, [arXiv:1312.4877].

[35] G. Aslanyan, Cosmo++: An Object-Oriented C++ Library for Cosmology, Comput. Phys.
Commun. 185 (2014) 3215–3227, [arXiv:1312.4961].

[36] J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview,
arXiv:1104.2932.

[37] D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System
(CLASS) II: Approximation schemes, JCAP 1107 (2011) 034, [arXiv:1104.2933].

– 21 –

http://arxiv.org/abs/1312.2462
http://arxiv.org/abs/1303.5080
http://arxiv.org/abs/0812.2720
http://arxiv.org/abs/0902.3702
http://arxiv.org/abs/1604.01424
http://arxiv.org/abs/1103.5083
http://arxiv.org/abs/astro-ph/0005410
http://arxiv.org/abs/1401.7022
http://arxiv.org/abs/1412.7405
http://arxiv.org/abs/1601.07557
http://arxiv.org/abs/1403.5849
http://arxiv.org/abs/1403.5922
http://arxiv.org/abs/0907.1659
http://arxiv.org/abs/1210.2130
http://arxiv.org/abs/1106.3366
http://arxiv.org/abs/1409.3242
http://arxiv.org/abs/1312.4877
http://arxiv.org/abs/1312.4961
http://arxiv.org/abs/1104.2932
http://arxiv.org/abs/1104.2933


[38] F. Feroz and M. P. Hobson, Multimodal nested sampling: an efficient and robust alternative to
MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449,
[arXiv:0704.3704].

[39] F. Feroz, M. P. Hobson, and M. Bridges, MultiNest: an efficient and robust Bayesian inference
tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601–1614,
[arXiv:0809.3437].

[40] F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt, Importance Nested Sampling and the
MultiNest Algorithm, arXiv:1306.2144.

[41] J. A. Vazquez, M. Bridges, M. P. Hobson, and A. N. Lasenby, Model selection applied to
reconstruction of the Primordial Power Spectrum, JCAP 1206 (2012) 006, [arXiv:1203.1252].

[42] C. Sealfon, L. Verde, and R. Jimenez, Smoothing spline primordial power spectrum
reconstruction, Phys. Rev. D72 (2005) 103520, [astro-ph/0506707].

[43] M. Bridges, A. N. Lasenby, and M. P. Hobson, A bayesian analysis of the primordial power
spectrum, Mon. Not. Roy. Astron. Soc. 369 (2006) 1123–1130, [astro-ph/0511573].

[44] M. Bridges, A. N. Lasenby, and M. P. Hobson, WMAP 3-year primordial power spectrum, Mon.
Not. Roy. Astron. Soc. 381 (2007) 68–74, [astro-ph/0607404].

[45] L. Verde and H. V. Peiris, On Minimally-Parametric Primordial Power Spectrum
Reconstruction and the Evidence for a Red Tilt, JCAP 0807 (2008) 009, [arXiv:0802.1219].

[46] M. Bridges, F. Feroz, M. P. Hobson, and A. N. Lasenby, Bayesian optimal reconstruction of the
primordial power spectrum, Mon. Not. Roy. Astron. Soc. 400 (2009) 1075–1084,
[arXiv:0812.3541].

[47] H. V. Peiris and L. Verde, The Shape of the Primordial Power Spectrum: A Last Stand Before
Planck, Phys. Rev. D81 (2010) 021302, [arXiv:0912.0268].

[48] S. Bird, H. V. Peiris, M. Viel, and L. Verde, Minimally Parametric Power Spectrum
Reconstruction from the Lyman-alpha Forest, Mon. Not. Roy. Astron. Soc. 413 (2011)
1717–1728, [arXiv:1010.1519].

[49] J. A. Vazquez, A. N. Lasenby, M. Bridges, and M. P. Hobson, A Bayesian study of the
primordial power spectrum from a novel closed universe model, Mon. Not. Roy. Astron. Soc.
422 (2012) 1948–1956, [arXiv:1103.4619].

[50] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XX. Constraints on inflation,
arXiv:1502.02114.

[51] A. Ravenni, L. Verde, and A. J. Cuesta, Red, Straight, no bends: primordial power spectrum
reconstruction from CMB and large-scale structure, arXiv:1605.06637.

[52] H. Jeffreys, Theory of Probability. Oxford University Press, 1961.

[53] M. P. Hobson, A. H. Jaffe, A. R. Liddle, P. Mukherjee, and D. Parkinson, Bayesian methods in
cosmology. Cambridge University Press, 2010.

[54] Planck Collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and
scientific results, arXiv:1502.01582.

[55] SDSS Collaboration, K. N. Abazajian et al., The Seventh Data Release of the Sloan Digital
Sky Survey, Astrophys. J. Suppl. 182 (2009) 543–558, [arXiv:0812.0649].

[56] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and M. Oguri, Revising the Halofit Model for
the Nonlinear Matter Power Spectrum, Astrophys. J. 761 (2012) 152, [arXiv:1208.2701].

[57] S. Bird, M. Viel, and M. G. Haehnelt, Massive Neutrinos and the Non-linear Matter Power
Spectrum, Mon. Not. Roy. Astron. Soc. 420 (2012) 2551–2561, [arXiv:1109.4416].

[58] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, Conservative Constraints on Early

– 22 –

http://arxiv.org/abs/0704.3704
http://arxiv.org/abs/0809.3437
http://arxiv.org/abs/1306.2144
http://arxiv.org/abs/1203.1252
http://arxiv.org/abs/astro-ph/0506707
http://arxiv.org/abs/astro-ph/0511573
http://arxiv.org/abs/astro-ph/0607404
http://arxiv.org/abs/0802.1219
http://arxiv.org/abs/0812.3541
http://arxiv.org/abs/0912.0268
http://arxiv.org/abs/1010.1519
http://arxiv.org/abs/1103.4619
http://arxiv.org/abs/1502.02114
http://arxiv.org/abs/1605.06637
http://arxiv.org/abs/1502.01582
http://arxiv.org/abs/0812.0649
http://arxiv.org/abs/1208.2701
http://arxiv.org/abs/1109.4416


Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP
1302 (2013) 001, [arXiv:1210.7183].

[59] G. Efstathiou, H0 Revisited, Mon. Not. Roy. Astron. Soc. 440 (2014), no. 2 1138–1152,
[arXiv:1311.3461].

[60] A. J. Cuesta, V. Niro, and L. Verde, Neutrino mass limits: robust information from the power
spectrum of galaxy surveys, arXiv:1511.05983.

[61] E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho, and K. Freese, On the improvement of
cosmological neutrino mass bounds, arXiv:1605.04320.

[62] N. Palanque-Delabrouille et al., Constraint on neutrino masses from SDSS-III/BOSS Lyα
forest and other cosmological probes, JCAP 1502 (2015), no. 02 045, [arXiv:1410.7244].

– 23 –

http://arxiv.org/abs/1210.7183
http://arxiv.org/abs/1311.3461
http://arxiv.org/abs/1511.05983
http://arxiv.org/abs/1605.04320
http://arxiv.org/abs/1410.7244

	1 Introduction
	2 Method
	2.1 Non-power-law primordial power spectrum
	2.2 Model, priors, and Bayesian evidence
	2.3 Data sets

	3 Results and Discussion
	4 Conclusion

