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Abstract

We describe various computing techniques for tackling chessboard domination prob-
lems and apply these to the determination of domination and irredundance numbers
for queens’ and kings’ graphs. In particular we show that γ(Q15) = γ(Q16) = 9,
confirm that γ(Q17) = γ(Q18) = 9, show that γ(Q19) = 10, show that i(Q18) = 10,
improve the bound for i(Q19) to 10 ≤ i(Q19) ≤ 11, show that ir(Qn) = γ(Qn) for
1 ≤ n ≤ 13, show that IR(Q9) = Γ(Q9) = 13 and that IR(Q10) = Γ(Q10) = 15, show
that γ(Q4k+1) = 2k+1 for 16 ≤ k ≤ 21, improve the bound for i(Q22) to i(Q22) ≤ 12,
and show that IR(K8) = 17, IR(K9) = 25, IR(K10) = 27, and IR(K11) = 36.

1 Introduction

Combinatorial problems on chessboards have been studied by combinatorialists and puzzle-
solvers for over 250 years. Investigations centre on the placement of the various types of
chess pieces, viz. kings, queens, bishops, rooks, knights and pawns, on generalized n × n

chessboards. For excellent surveys of work and results in this area the reader is referred to
[10, 14].

Given a graph G = (V,E), a set of vertices D in V is a dominating set if every vertex in
V \D is adjacent to at least one vertex in D. The domination number of G, denoted γ(G), is
the minimum cardinality of a dominating set in G. A set of vertices S in V is independent if
no two vertices in S are adjacent. The vertex independence number of G, denoted β(G), is the
maximum cardinality of an independent set of vertices in G. The independent domination
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number of G, denoted i(G), is the minimum cardinality of an independent dominating set
in G. The upper domination number of G, denoted Γ(G), is the maximum cardinality of a
minimal dominating set of vertices in G. The closed neighbourhood of a set of vertices S,
denoted N(S), is the set of vertices, including S, that are adjacent to a vertex in S. A set
of vertices S in V is irredundant if, for every vertex u in S, the set N(u) \N(S \ {u}) �= ∅.
The irredundance number of G, denoted ir(G), is the minimum cardinality of a maximal
irredundant set of vertices in G. The upper irredundance number of G, denoted IR(G), is
the maximum cardinality of an irredundant set in G.

These 6 domination, independence and irredundance numbers are related as follows (see
[5]):

ir(G) ≤ γ(G) ≤ i(G) ≤ β(G) ≤ Γ(G) ≤ IR(G).

Associated with each of the 6 chess pieces one can define a class of graphs. For example
the queens’ graph Qn has a set of n

2 vertices corresponding to the squares of an n × n
chessboard with two vertices adjacent if and only if a queen placed on one square can attack
the other square in one move. Note that on a chessboard a queen attacks all squares on the
same row, column and diagonal. In a similar manner one can define the kings’ graph Kn,
and graphs for the other chess pieces. Due to the complexities of allowable pawn moves, the
grid graph Gn (in which two squares are adjacent if they are adjacent on the same row or
column) is normally studied in preference to the pawns’ graph.

Determination of the 6 numbers defined above for the 6 classes of graphs gives rise to
36 fundamental problems on chessboard domination. In work to date many of the numbers
have been completely determined for all values of n. For example all 6 values have been
determined for the rooks’ graph. In other cases, values have been determined, generally by
computer search, for only small values of n, with bounds established for other values. The
development of improved search techniques is important in enabling us to extend the set of
known domination, independence and irredundance numbers, thereby providing opportuni-
ties for further insight into the complete spectrum of these values.

In this paper we describe probabilistic and exhaustive search techniques for tackling
chessboard domination problems, and apply these to the determination of domination and
irredundance numbers for the queens’ and kings’ graphs. In particular we describe previous
work on these problems in Section 2. In Section 3 we describe the backtracking method
and various refinements that have allowed us to show that γ(Q15) = γ(Q16) = 9, to confirm
that γ(Q17) = γ(Q18) = 9, to show that γ(Q19) = 10, to show that i(Q18) = 10, and to
improve the bound for i(Q19) to 10 ≤ i(Q19) ≤ 11. In section 4 we describe the application
of reduction techniques chessboard problems, and use it to show that ir(Qn) = γ(Qn) for
1 ≤ n ≤ 13, to show that IR(K8) = 17, IR(K9) = 25, IR(K10) = 27, and IR(K11) = 36,
and to show that IR(Q9) = Γ(Q9) = 13 and that IR(Q10) = Γ(Q10) = 15. Section 5 applies
a local search method to generate dominating sets of size 2k + 1 in Q4k+1 and to thereby
confirm that γ(Q4k+1) = 2k + 1 for 1 ≤ k ≤ 15, and to extend the result to k ≤ 21. In
addition we establish that i(Q22) ≤ 12. Some concluding remarks are presented in Section 6.
Throughout the paper quoted running times are for algorithms implemented in the language
C on an AlphaServer 2100 Model 4/275 running at 275 Mhz under Digital UNIX V4.0D.

2



2 Background

2.1 Queens Domination Problems

The first eight values of γ(Qn) were given by Ball[1] in 1892. Since then there has been much
work on determining values for γ(Qn) for larger n. Many bounds have been discovered for
γ(Qn), the most well known being the lower bound due to Spencer (private communication
to Cockayne[7]) of γ(Qn) ≥

n−1
2
. Since then, Weakley [22] has obtained the improved bound

for n of the form 4k+1 of γ(Q4k+1) ≥ 2k+1 for all k. In fact it has been suggested but not
proven that γ(Q4k+1) = 2k + 1 for all k, and this has been verified for k ≤ 15. There have
also been many upper bounds developed for γ(Qn). Burger, Cockayne and Mynhardt [4]
have shown that γ(Qn) ≤

31
54
n+O(1). Obviously, any lower bound for γ(Qn) is also a lower

bound for i(Qn). However, upper bounds for γ(Qn) do not hold for i(Qn). The best known
upper bound of i(Qn) ≤

7
12
n+O(1) was discovered by Eisenstein, Grinstead, Hahne and Van

Stone [9]. Recently Weakley [23] has shown that if n ≡ 1 (mod 4) and D is a d-element
dominating set of Qn of a particular, commonly used kind, then γ(Qk) ≤

d+3
n+2

k+O(1). Also

if D is independent, then i(Qk) ≤
d+6
n+2

k +O(1).
A list of known values for γ(Qn) and i(Qn) for small n are given in Table 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
γ(Qn) 1 1 1 2 3 3 4 5 5 5 5 6 7 8 ≤ 9
i(Qn) 1 1 1 3 3 4 4 5 5 5 5 7 7 8 9

n 16 17 18 19 20 21 22 23 24 25
γ(Qn) ≤ 9 9 9 ≤ 10 ≤ 11 11 ≤ 12 ≤ 12 ≤ 13 13
i(Qn) 9 9 ≤ 10 ≤ 11 ≤ 11 11 ≤ 13 ≤ 13 ≤ 13 13

Table 1: Known values for γ(Qn) and i(Qn).

2.2 Queens Lower Irredundance

Very little is known about the queens lower irredundance number ir(Qn). In fact no case
is known where ir(Qn) < γ(Qn) although Fricke et al[10] suspect that the value of γ(Qn)−
ir(Qn) can be arbitrarily large. Kearse [15] has produced the only published bound of

ir(Qn) ≥
4−
√

7
6

n. Values of ir(Qn) for small n (see [14]) are: ir(Q1) = ir(Q2) = ir(Q3) =
1, ir(Q4) = 2.

2.3 Queens Upper Irredundance and Domination

The queens upper domination number Γ(Qn) and upper irredundance number IR(Qn) have
had relatively little study until recently. Weakley [22] was one of the first to investigate Γ(Qn)
and to discover that Γ(Qn) > β(Qn) was possible. He also proved that Γ(Qn) ≥ 2n−5. This
bound was later improved by Burger, Cockayne and Mynhardt [4] to Γ(Qn) ≥

5
2
n − O(1).

Kearse ([15]) has further improved this bound to IR(Qn) ≥ 6n−O(n
2
3 ).
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The best upper bound of IR(Qn) ≤ �6n+6−8
√
n+
√
n+ 1 for n ≥ 6 is due to Burger,

Cockayne and Mynhardt [4], and is a slight improvement on the bound originally given by
Cockayne of IR(Qn) ≤ �6n+ 6− 8

√
n+ 3 for n ≥ 6. There is no known upper bound for

Γ(Qn) other than that of IR(Qn). A list of known values for Γ(Qn) and IR(Qn) is given in
Table 2.

n 1 2 3 4 5 6 7 8 9 10
Γ(Qn) 1 1 2 4 5 7 9 11
IR(Qn) 1 1 2 4 5 7 9 11

Table 2: The known upper irredundance and domination numbers for the queens’ graph.

2.4 The Kings’ Graph

In the kings’ graph two squares are adjacent if they lie on the same or adjacent columns
as well as the same or adjacent rows. Unlike the queens’ graph, many problems involving
the kings’ graph have been solved, in that optimal solutions to arbitrary sized boards can
be constructed. In particular, in 1954 Akiva and Isaak Yaglom [24] proved among other
results that γ(Kn) = i(Kn) = �

n−2
3
2, and that β(Kn) = �

n+1
2
2. However, little is known

about solutions to the other three problems. It is known than that ir(Kn) < γ(Kn) is
possible, and that β(Kn) < Γ(Kn) is possible. Another result of interest is that for n > 1 ,
(n−1)2

3
≤ IR(Kn) ≤

n2

3
(due to Fricke (unpublished)).

A list of known values of irredundance, domination and packing numbers for the kings’
graph is given in Table 3.

n 1 2 3 4 5 6 7 8 9 10
ir(Kn) 1 1 1 3 4 4 8 9 9
γ(Kn) 1 1 1 4 4 4 9 9 9 16
i(Kn) 1 1 1 4 4 4 9 9 9 16
β(Kn) 1 1 4 4 9 9 16 16 25 25
Γ(Kn) 1 1 4 4 9 9 16
IR(Kn) 1 1 4 4 9 9 16

Table 3: The known irredundance, domination and packing numbers for the kings’ graph.

2.5 Terminology

In referring to the positions on a chessboard we often identify the squares using x and y
coordinates which start from 0 and increase across and down the page respectively. In some
cases it is desirable to order the squares and to identify them with a single integer. In this
case, we begin with the top left square and proceed to order the squares column-wise. Refer
to Figure 1 for an example of these numberings on a 4× 4 board.
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(0,0)
1

(0,1)
2

(0,2)
3

(0,3)
4

(1,0)
5

(1,1)
6

(1,2)
7

(1,3)
8

(2,0)
9

(2,1)
10

(2,2)
11

(2,3)
12

(3,0)
13

(3,1)
14

(3,2)
15

(3,3)
16

Figure 1: The chessboard square numbering convention used in this paper.

There are two main ways of identifying diagonals in the literature. Diagonals that move
down and to the right are called down or positive diagonals, and similarly diagonals moving
up and to the right are up or negative diagonals.

3 Backtracking and refinements

3.1 The Basic Backtracking Algorithm

Backtracking is a well known exhaustive search method that involves systematically gen-
erating partial solutions, and trying to extend each to a full solution. If an extension is
not possible then the algorithm backtracks to consider the next partial solution in order.
The technique dates back for at least 100 years (see [16] for example) and has since been
successful in its application to a vast array of problems (see [2]).

In [12] Gibbons and Webb described the application of backtracking to the independent
queens domination problem, and were able to determine the values of i(Q14), i(Q15) and
i(Q16). This algorithm backtracks on the placement of queens on the chessboard and uses
the dihedral group of chessboard symmetries to reject partial solutions that have already
been considered earlier in the search. This algorithm can be adapted to solve the queens
domination problem.

3.2 Backtracking Based on Unattacked Squares

Rather than backtracking on queen placements, an improvement is to systematically identify
undominated squares and to try placing pieces in all positions that attack these squares. For
example in Figure 2 two queens have already been placed, and the placement of a third is
being considered. An undominated square has been located at X and squares adjacent to
X have been marked with an o. The third queen will now be tried systematically in all o
squares as well as the X square.

At each stage during the execution of the algorithm, we must decide on which of the many
undominated squares to focus the search. The naive method of taking the first such square
in order performs quite well. However, the breadth of the search tree is more constrained if
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Figure 2: The undominated square X has been selected, and the third queen will be tried
in each of the locations marked o, which are adjacent to X.

we take that square with the least number of options available to place the attacking piece.
There is a tradeoff involving the cost of finding this square. In practice it is best to the search
for the best square early on in the search, but to simply take the first uncovered square in
the latter part of the search. The performance of this method is better than that of the first
method, but not to the extent that any new results were able to be found. However, it forms
the basis for an improved method which is described now.

3.3 Backtracking Based on Intersecting Sets of Squares

Instead of backtracking based on the positions of the queens, this method backtracks based
on the set of queens attacking a given position. Consider first the case of placing the first
queen. We select the first uncovered square x and assign to this queen the list N(x) of
squares that attack this position. We now select the next uncovered square y and investigate
separately whether this is to be covered by the first queen or a second (as yet unused) queen.
We first investigate the case where the first queen is to cover y. In this case its associated
list of squares must be reduced to N(x) ∩ N(y). In the case that N(x) ∩ N(y) = ∅ we
cannot cover the first and second squares simultaneously using the first queen, and therefore
must use the second. Otherwise the first queen can cover both squares, and the procedure
is recursively called to investigate coverage of the next uncovered square. In the case that
|N(x)∩N(y)| = 1, the first queen is fixed and all squares in its neighbourhood are recorded
as being covered. Note that squares are not considered covered until they are attacked by a
fixed queen.

More generally, at each level of the backtracking search, the following steps must be taken.
First, the next uncovered square must be found. Then each unfixed queen is considered in
turn with its associated list of positions reduced so that it covers this new square as well
as previously assigned ones. If its list becomes empty, then we cease consideration of this
queen and move on to the next. Otherwise we recursively call the procedure to investigate
coverage of the next uncovered square. Again we record squares attacked by this queen if
it becomes fixed. After all pieces have been considered, we then try dominating the latest
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square with an as yet unused queen.
This is all demonstrated in more detail in the following algorithm description.

Intersecting Squares Algorithm

Data Structures

attackCounti: the number of queens attacking square i
positionsi: the set of positions assigned to queen i

k: the number of queens available to cover the board
N(X): the neighbourhood of square X

procedure DominationBacktrack(p, attackCount1..number of squares, positions1..number of pieces)
while attackCountp > 0 do
{Find the next undominated square}
p = p + 1
if p > number of squares then
{ Any combination of the elements of }
{ positions1..number of pieces is a solution }
return

for i = 1 to k do
if |positionsi| > 1 then
{ For each piece already dominating at least one square }
newPositions = positionsi ∩N(p)
if |newPositions| > 0 then

if |newPositions| = 1 then
for each x ∈ N(newPositions) do

attackCountx = attackCountx + 1
DominationBacktrack(p + 1, attackCount,

(positions1..i− 1, newpositions, positionsi+1..number of pieces))
if |newPositions| = 1 then

for each x ∈ N(newPositions) do
attackCountx = attackCountx − 1

i = 1
while |positionsi| > 0 do { Find the first unused piece }

i = i+ 1
if i ≤ number of pieces

newPositions = N(p)
if |newPositions| = 1 then

for each x ∈ N(newPositions) do
attackCountx = attackCountx + 1

DominationBacktrack(p + 1, attackCount,
positions1..i− 1, newpositions, positionsi+1..number of pieces)

if |newPositions| = 1 then
for each x ∈ N(newPositions) do
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attackCountx = attackCountx − 1
endProcedure

DominationBacktrack(1, (0, 0, ..., 0), ({}, {}, ..., {}))

Applying this algorithm yielded some already known solutions, but with significantly
longer times than those of either of the two previous algorithms when solving the queens
domination problem. However, applying the method only for the placement of the last piece
always gave a significant improvent in the execution time. We now discuss a number of
enhancements that can be applied to any of the three algorithms and finally a combined
method that produces significant speed improvements.

3.4 Enhancements

Two simple methods were developed for quickly deciding whether to extend from the current
partial solution. The first check is for a queen that covers no squares not covered by another
queen. If such a queen exists, and we are searching for only a solution with a minimal
number of queens, then this partial solution will obviously not lead to it, and the algorithm
can backtrack.

For example, in Figure 3 the fourth placed queen, Q4, has created a configuration where
the first queen(Q1) no longer attacks a unique square and is therefore redundant. The
algorithm can immediately consider the next placement of the fourth queen.

Q1

Q2

Q3

Q4

Figure 3: The placement of Q4 causes Q1 to no longer be necessary.

The next check is whether there are enough remaining queens to cover the remaining
uncovered squares. For an n × n chessboard a queen can attack at most 4n − 3 different
squares including the one it is placed on. A second queen can attack fewer new squares
than this as many of the squares attacked by it are already attacked by the first queen. By
using the backtracking methods already presented, we can build a table with the maximum
number of new squares that can be attacked for any given number of queens for a fixed size
board. If the number of remaining squares to be covered is greater than the maximum than
can be covered by the remaining number of queens, then we can backtrack.

Note that actually building up a list of the maximum number of squares that can be
dominated for any number of pieces up to the domination number would require as much
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work as solving the problem itself. Therefore in practice the number of squares dominated
by up to half this number is initially computed, with this information being used for placing
the second half of the pieces.

3.5 Combining the Methods

The best method was obtained by applying the enhancements of the previous section to
a combination of the three backtracking methods. In particular, optimal performance was
achieved by placing the first queen using the first algorithm, placing all but the last 2 or 3
queens using the second algorithm, and placing the remaining 2 or 3 queens using the final
method. The optimal number of queens to place using the last method increases with the
overall number of queens being placed.

3.6 Isomorph Rejection

Isomorph rejection cannot be easily applied to the unattacked squares method, so once the
algorithm switches to this method, isomorph rejection is no longer applied. However, a count
of the number of non- isomorphic solutions can still be found by rejecting complete solutions
found that are not the first in their isomorphism class.

3.7 Results Obtained

The results of the combined methods are listed in Table 4 (with previously unknown results
in bold). In particular we showed that γ(Q15) = γ(Q16) = 9 by finding no dominating sets
with 8 queens. Additionally, we confirmed the already known results of γ(Q17) = γ(Q18) = 9.

The algorithm can be easily modified to handle the case of the independent queens
domination problem by adding the restriction that a queen cannot be placed in a location
that attacks another queen. This restriction greatly speeds up the algorithm, and enabled us
to show that i(Q18) = 10. Also by finding no independent dominating set of 9 queens on a 19
by 19 board we improved previously known bound of 9 ≤ i(Q19) ≤ 11 to 10 ≤ i(Q19) ≤ 11.

This last result leads to one further result for the queens domination problem. Weakley
[22] has proved a theorem which includes the result that if R is a dominating set of (n−1)/2
squares of Qn, then R is independent. It follows from this that if i(Qn) >

n−1
2
then γ(Qn) >

n−1
2
. The result that i(Q19) > 9 implies that γ(Q19) > 9. Since it is already known that

γ(Q19) ≤ 10 it follows that γ(Q19) = 10.

4 Reductions

In this section we present a reduction method which is suitable for solving a variety of
constraint satisfaction problems. The method is particularly well suited to the kings up-
per irredundance problem. It is also applied to the queens upper and lower irredundance
problems to produce some new results.

Suppose we have a partial configuration and are considering all possible extensions to
see whether any of them form a complete solution. In addition suppose that for any such
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Queens Domination
Board size Number of Queens Number of Non- Time

Isomorphic Solutions
3 1 1 -
4 2 3 -
5 3 37 -
6 3 1 -
7 4 13 -
8 5 638 1.1 secs
9 5 21 0.4 secs
10 5 1 0.7 secs
11 5 1 1.2 secs
12 6 1 34 secs
13 7 41 18 mins
14 8 588 11 hours
15 8 0 21 hours
15 9 25872 230 hours
16 8 0 31 hours
17 8 0 30 hours
18 8 0 43 hours

Independent Queens Domination
Board size Number of Queens Number of Non- Time

Isomorphic Solutions
3 1 1 -
4 3 2 -
5 3 2 -
6 4 17 -
7 4 1 -
8 5 91 -
9 5 1 -
10 5 1 -
11 5 1 0.2 secs
12 7 105 34 secs
13 7 4 45 secs
14 8 55 9.4 mins
15 9 1314 110 mins
16 9 16 5 hours
17 9 2 11 hours
18 9 0 28 hours
18 10 28 120 hours
19 9 0 62 hours

Table 4: Running times for the enhanced backtracking algorithm solving the queens and
independent queens domination problems.

extension that forms a complete solution, one of the pieces in the partial solution can be
moved to another location and the solution preserved. Then there is no point in continuing
the search from this partial configuration if the other partial configuration found by moving
the piece has already been or will be searched.

Specifically, assume a partial solution (x1, x2, ..., .xk) to a problem with solution space
(X1, X2, ..., Xn) with k < n is being considered. If (x1,x2,...,xk, xk+1,..,xn) being a solution
implies that (y1, y2, ..., yk, xk+1, ..., xn) is also a solution, then (x1, x2, ..., .xk) need not be
extended if all extensions to (y1, y2, ..., yk) have been or will be searched. If such a condition
holds, we say that (x1, x2, ..., .xk) is reduces to (y1, y2, ..., yk). This is a particularly powerful
technique if a large proportion of partial solutions are reducible, as is the case with the kings
upper irredundance problem.
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4.1 Examples

We demonstrate the technique with a simple example for the kings upper irredundance
problem. This problem involves producing a configuration of as many kings as possible such
that every king has at least one private neighbour. A private neighbour is a square attacked
by a unique king, and can include the square the king is on itself.

K KX

X X
@@I

Figure 4: The king at position (1,1) could move to position (0,0).

Consider the example in Figure 4. Here a king is being considered for placement near
the top-left corner. Three other squares are marked with an X because if a king were placed
in any of these three squares then it would have no private neighbour. Because of these
restrictions, no matter how the solution is extended, the king already placed is guaranteed
to have a private neighbour in the top-left corner. Now observe that if there were a solution
involving a king in this position, then it could be moved to the top-left square and this
would still be a solution. That is, the partial solution with a king in position (1,1) reduces
to the partial solution with a king in position (0,0). In fact it is more likely that a solution
would be found if the king were position (0,0) since it would attack fewer additional squares
from that position, thereby leaving those squares to be private neighbours of other kings. A
consequence of this is that there is really no need to ever search for a maximal irredundant
configuration of kings with one in the original position, so before beginning such a search,
this square can be immediately ruled out from containing a king.

We can express this sequence of logical conclusions in the following way.

The board is initially:

If a king were at position (1,1)

then the following positions would be prohibited:

(0,0), (0,1), (1,0)

and the board becomes:

KX
X X

and the king at (1,1) could be moved to (0,0).
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So a king should not be at position (1,1)

and the board becomes:

X

This demonstrates that starting from a board about which no decisions have so far been
made we can conclude that there should be no piece in position (1,1). Note that whenever a
square is listed as being prohibited, it is done either because a king placed in it would have
no private neighbours, or because a king in that square would cause some already placed
king to have no private neighbours.

Consider the logic of another example.

The board is initially:

K

The following positions would be prohibited:

(0,0), (1,1)

and the board becomes:

K X

X

If position (1,0) were prohibited

then the board becomes:

K X

X X

and the king at (0,1) could be moved to (0,0).

So position (1,0) should contain a king

and the board becomes:

K
K
X

X

The following positions are prohibited because either of the already

placed kings would have no private neighbour:

(2,0), (2,1), (3,0), (3,1), (0,2), (0,3), (1,2), (1,3)

and the board becomes:

12



K
K
X

X

X

X

X

X

X

X

X

X

If a king were at position (4,1)

then the following position would be prohibited

(4,0)

And the board becomes:

K
K

K
X

X

X

X

X

X

X

X

X

X

X

and the king at (4,1) could be moved to (4,0)

So there can be no king at position (4,1).

By symmetry there can be no king at position (1,4)

and the board becomes:

K
K
X

X

X

X

X

X

X

X

X

X

X

X

Thus by placing a king at position (0,1), we can conclude that there must also be a king
at (1,0) and that 12 other squares cannot contain kings.

In a similar way, it can be shown that a starting configuration of

K
X

X

must be extended to

K

K
X

X

X

X

X

X

As a final example we can show, using similar logic, that there is no point in extending
the following partial solution:

X

X

X

¿From the above four examples we can conclude that in a search for a maximal irredun-
dant configuration of kings, we only need to consider the following three possibilities in the
top left corner:
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• There is a king in position (0,0)

• There is a pair of kings at positions (0,1) and (1,0)

• There is a pair of kings at positions (0,2) and (2,0)

Of course a similar situation arises in all four corners of the board if it is large enough,
and such information would greatly speed up any backtracking search for a solution to the
problem.

4.2 The Reduction Algorithm

The logic described by way of examples in the previous section can be applied systematically
during the search. The procedures applying the checks use the following data structures:

• The number of private neighbours of each piece denoted by privateNs1..number of pieces.

• The current usage of each square is recorded in the array squareUsage1..number of squares.
Each square can be unused (UN USED), occupied (USED) or prohibited (PROHIBITED).
At certain points during the algorithm, the variable oldSquareUsage is used. This is
a local variable to each procedure, and is used to backup the current usages for the
squares so that it can be restored at a later point.

• The current status of each square is recorded in the array squareStatus1..number of squares.
In addition to knowing the number of pieces attacking each square, it is useful to know
if this can possibly change deeper within the search. For example a square could be
unattacked (UN ATTACKED) or if all adjacent squares are prohibited then it is
guaranteed to be unattacked (G UN ATTACKED). Similarly a square can be a pri-
vate neighbour of some piece (P NEIGHBOUR) or a guaranteed private neighbour
(G P NEIGHBOUR). If the square is not any of these states, then it is attacked by
at least 2 pieces (ATTACKED).

Pieces are placed using the procedure PutP iece(pieceNum, p, ok) which places piece
pieceNum at position p only if it and all existing pieces still have at least one private neigh-
bour. The flag ok is set to true if the piece was placed. Procedure RemoveP iece(pieceNum)
removes the piece and restores the data structures.

We now consider the conditions that must hold for a piece to allowed to move from one
square to an other. Firstly, it must either still attack a guaranteed private neighbour from
the new position, or alternatively still attack all the original private neighbours. Secondly,
it cannot attack any additional squares that could be private neighbours of some other piece
either now or deeper in the search, unless the other piece is guaranteed to have a private
neighbour elsewhere. These additional squares can be identified as those for which the
status is UN ATTACKED, P NEIGHBOUR or G P NEIGHBOUR, and are referred
to as disallowed squares. We need to be sure that, if we have ruled out an extension based on
moving a piece to another location, then a later solution with the piece at this new location
will not be rejected because it could move back to the old position. This is ensured by
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checking that the number of disallowed squares which are attacked is smaller in the position
moved to. If this is true at some point within the search, then deeper within the search it
will not be possible to move a piece back because no squares ever change state from being
allowed to disallowed further down the backtracking tree.

The procedure DisallowedSquares(p) returns a list of squares adjacent to p that may not
be attacked. The procedure ComputeSquareStatus() computes the status of each square x
and stores the result in squareStatusx

The algorithm that analyses the current state of the board to determine if a move for any
piece is possible is given below. Note that it also checks for cases where a new piece could
be added to the board at no cost to the current partial configuration. Such cases arise when
there exists a prohibited square for which all adjacent squares are either attacked by at least
two pieces or are guaranteed to be unattacked so that it will not interfere with any existing
or future pieces. Also at least one of these squares should be guaranteed to be unattacked
so that the new piece has at least one private neighbour itself.

Procedure Move()
{ Returns true if any piece could move or be created }
{ at no cost to the current partial configuration. }

ComputeSquareStatus()
for all squares x do {Check if a new piece could be created at x }

if squareUsagex = PROHIBITED and |DisallowedSquares(x)| = 0 then
for all y ∈ N(x) do

if squareStatusy = G UN ATTACKED then
return true { A new piece could be created at x }

for all p such that positionp �= NULL do { Check if piece p can be moved }
pos = positionp
PN = {x : x ∈ N(pos), |attackListx| = 1
{ PN = the set of private neighbours of piece p }

GPN = {x : x ∈ N(pos), squareStatusx = G P NEIGHBOUR}
{ GPN = the set of guaranteed private neighbours of piece p }

RemoveP iece(p) { Temporarily remove the piece }
ComputeSquareStatus()
oldList = DisallowedSquares(pos)
for all x ∈ N(N(pos)) { For all possible moves for piece p }
{ N(N(pos)) is used because it contains the set of possible squares }
{ still attacking neighbours of p. }
newList = DisallowedSquares(x)
if newList ⊂ oldList then
{ No new squares that are not allowed are attacked and at least }
{ one of these is no longer attacked }
if (PN \N(x)) = ∅ or |GPN ∩N(x)| > 0 then
{ Either all private neighbours or at least one guaranteed }
{ private neighbour is still attacked }
PutP iece(p, pos, ok) { Put the piece back in its original place }
return true { Piece p could move from pos to x }
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PutP iece(p, pos, ok) { Put the piece back in its original place }
return false

endProcedure

In order to be able to make the logical deductions presented earlier, a form of forward
checking is required. A simple case involves checking to see if piece k can be placed in each
possible position, and if not prohibiting that square. This task is carried out by the procedure
BasicForwardCheck(k). The following function ForwardCheck(k, startSquare) returns true if
there is no point in extending the current partial solution. Otherwise it returns false and
prohibits any square that would result in a move being possible if it contained a piece.
Additionally, if it detects that a piece must be placed in a certain square then it calls the
recursive backtrack procedure to search the remaining solution space and then returns true.

Procedure ForwardCheck(k, startSquare)
BasicForwardCheck(k)
if Move() then

return true
ok = true
while ok do { As long as something has changed, keep repeating }

ok = false
for all squares x do

if squareUsagex = UN USED then
oldSquareUsage = squareUsage
canMove = false
if PutP iece(k, x) then { Check if a piece could be at x }

BasicForwardCheck(k + 1)
if Move() then

canMove = true
RemoveP iece(k)
squareUsage = oldSquareUsage

if canMove = true then
squareUsagex = PROHIBITED { There must not be a piece at x }
ok = true

else
squareUsagex = PROHIBITED
{ Check if this square could be prohibited }
if Move() then { There must be a piece in square x }

PutP iece(k, x)
Backtrack(k + 1, startSquare)
RemoveP iece(k)
return true { This case has been fully searched now }

squareUsagex = UN USED
return false

endProcedure
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Finally the fundamental backtracking algorithm is:

Procedure Backtrack(k, startSquare)
if k > number of pieces then

position1..number of pieces is a solution
return

oldSquareUsage = squareUsage
abort = ForwardCheck(k, startSquare)
i = startSquare
while i ≤ number of squares and abort = false do

if PutPiece(k, i) then
Backtrack(k + 1, i+ 1)
RemoveP iece(k)
squareUsagei = PROHIBITED
abort = ForwardCheck(k, startSquare)
i = i+ 1

squareUsage = oldSquareUsage
endProcedure

squareUsage1..number of squares = UN USED
attackList1..number of squares = ∅
position1..number of pieces = NULL
Backtrack(0, 0)

4.3 Isomorph Rejection

As with the algorithm for the queens domination, isomorph rejection is easily incorporated
into this algorithm. It is not included in the given algorithm descriptions to keep them as
simple as possible, but the same method used before is employed. That is, at any stage
where a square x is prohibited, if the current board configuration maps to itself under some
transformation T , then the square that x maps to under T is also prohibited.

4.4 Results

The described algorithm obtained the following new results for the kings upper irredundance
problem: IR(K8) = 17, IR(K9) = 25, IR(K10) = 27, and IR(K11) = 36. Maximal irredundant
configurations of the given sizes were already known to exist, but this program determined
that no larger cases exist. Some performance figures for the algorithm are given in Table 5.

4.5 Queens Lower Irredundance

This problem involves finding a minimal placement of queens on a chessboard so that every
queen is irredundant, and so that no more irredundant queens can be added to the board
while maintaining the property that all queens are irredundant. Currently there is no known
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Board size Number of Kings Solution Found Time
6 9 Yes 0.2 secs
6 10 No 0.3 secs
7 16 Yes 1.6 secs
7 17 No 2.1 secs
8 17 Yes 60 secs
8 18 No 59 secs
9 25 Yes 25 mins
9 26 No 9 mins
10 27 Yes 8.4 hours
10 28 No 9.2 hours
11 37 No 140 hours

Table 5: Running times for backtracking algorithm solving the kings upper irredundance
problem.

case for which ir(Qn) < γ(Qn), and to date only the first four values for ir(Qn) have been
published. To find if there does exist a configuration in which ir(Qn) < γ(Qn) we must
search an n× n board for maximal irredundant sets of sizes between 1 and γ(Qn)− 1.

The algorithm was run with a number of queens ranging from 1 up to 1 less than the
domination number for boards up to size 13×13. In all cases no solution was found, thereby
indicating that ir(Qn) = γ(Qn) for 1 ≤ n ≤ 13. The running times are given in Table 6.

Board size Number of Queens Solution Found Time
5 2 No -
6 2 No -
7 3 No -
8 4 No 1 sec
9 4 No 3 secs
10 4 No 9 secs
11 4 No 21 secs
12 5 No 22 mins
13 6 No 26 hours

Table 6: Running times for backtracking algorithm solving the queens lower irredundance
problem.

4.6 Queens Upper Irredundance

The reduction techniques developed for the kings’ graph were also applied to the queens’
graph. However the algorithm is far less suited to the queens graph with the results being
not nearly as good. In fact the reduction part of the backtracking algorithm was found to
slow down the algorithm, with the best results being found with the reduction part removed.
The algorithm does run fast enough to find the previously unknown values of IR(Q9) = 13
and IR(Q10) = 15. These are in fact equal to Weakley’s lower bound of Γ(Qn) ≥ 2n − 5.
Since IR(Qn) ≥ Γ(Qn) this additionally implies that Γ(Q9) = 13 and Γ(Q10) = 15. The
running times for these and a number of other cases are given in Table 7.
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Board size Number of Queens Solution Found Time
6 7 Yes 0.4 secs
6 8 No 0.2 secs
7 9 Yes 7.3 secs
7 10 No 2.9 secs
8 11 Yes 1 sec
8 12 No 84 secs
9 13 Yes 2 hours
9 14 No 1 hour
10 15 Yes 40 hours
10 16 No 46 hours

Table 7: Running times for backtracking algorithm solving the queens upper irredundance
problem.

5 Probabilistic Methods

Probabilistic methods have the advantage of being able to generate chessboard configurations
of much greater sizes than can be generated by exhaustive search. On the other hand they
cannot establish nonexistence of a configuration with the required properties, or to enumerate
all such configurations. In this section we describe the use of a simple local search technique
which was used to establish the new result that i(Q22) ≤ 12 by finding an independent
dominating configuration of 12 queens on a 22 by 22 board. Previously it has been proven
that γ(Q4k+1) = 2k + 1 for all k ≤ 15 by exhibiting dominating sets of this size. This is
extended here to prove that the result holds for k ≤ 21.

5.1 Local search

Local search techniques operate within a set Σ of feasible solutions. Associated with each
i ∈ Σ is a cost c(i), and the task is to find an optimal solution with overall minimum cost.
In the problems of this section an optimal solution has cost 0. For each i ∈ Σ we define a
set Ti of transformations each of which can be used to change i into a closely related feasible
solution j. The set of solutions that can be reached from i by applying a transformation
from Ti is called the neighbourhood D(i) of i.

The simplest local search is simply a random walk, starting with an arbitary starting
feasible solution and successively moving to a neighbouring feasible solution. The chosen
neigbouring solution is selected from a small set of neighbours, and is the one with the lowest
cost. The walk finishes successfully when an optimal solution is found, or unsuccessfully when
an upper limit of transformations is reached.

The algorithm is as follows:

Procedure RandomSearch(x, searchSize, stopThreshold)
{ x a random starting configuration. }
{ searchSize is the number of neighbours generated from the current solution. }

repeat stopThreshold times
bestCost =∞
repeat searchSize times

y = transform(x) { Generate a random element in D(x) }
if Cost(y) = 0 then
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return y { y is a solution }
if Cost(y) < bestCost then

bestCost = Cost(y)
bestSolution = y

x = bestSolution

endProcedure

This algorithm was adapted to the queens domination problem using the following Trans-
form procedure:

Procedure Transform(x)
{ Returns a random transformation from x to a new configuration. }
{ x is a set of ordered pairs (i, j) which indicates that queen i is placed in square j }

Select a random pair (i, j) ∈ x
y = x \ {(i, j)}
Select a random undominated square a from y

Select a random square b ∈ D(a)
return y ∪ {(i, b)}

endProcedure

Despite its simplicity, this method, using searchSize = 20, quickly found solutions of
size γ(Qn) for all n ≤ 18. We noted that the majority of solutions found in this way had
queens only on even-even squares (i.e. squares (i, j) where i, j ≡ 0 (mod 2)). Modifying
the previous algorithm to search only for solutions with queens on even-even squares we were
able to find optimal solutions for boards from sizes 12 to 25, including Johannes Waldmann’s
dominating configuration ([20]) of 12 queens on a 23× 23 board (see Figure 5). The average
running times of this algorithm over a number of trials are given in Table 8.

Queens Domination
Board size Number of Queens Search Size Average Time
12 6 10 0.01 secs
13 7 10 0.07 secs
14 8 11 0.05 secs
15 9 11 0.03 secs
16 9 12 0.16 secs
17 9 13 1.1 secs
18 9 14 9.4 secs
19 10 17 12 secs
20 11 19 2.7 secs
21 11 20 35 secs
22 12 20 22 secs
23 12 20 28 mins
24 13 20 99 secs
25 13 20 27 mins

Table 8: Running times for the probabilistic algorithm solving the queens domination prob-
lem.

A similar transformation was used for the queens independent domination problem, but
since most solutions to this problem do not have queens on only even-even squares, this
restriction was dropped. This algorithm generated the new result of an independent dom-
inating configuration of 12 queens on a 22 × 22 board (see Figure 5). The algorithm was
tested on boards up to 22 by 22, and the results of this are given in Table 9.
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Figure 5: A dominating configuration of 12 queens on a 23 by 23 board and an independent
dominating configuration of 12 queens on a 22 by 22 board.

Queens Independent Domination
Board size Number of Queens Search Size Average Time
12 7 11 0.3 secs
13 7 12 11 secs
14 8 14 5 secs
15 9 17 2 secs
16 9 22 17 secs
17 9 22 56 mins
18 10 22 27 mins
19 11 22 101 secs
20 11 22 16 mins
21 11 22 7 hours
22 12 22 4 hours

Table 9: Running times for the probabilistic algorithm solving the independent queens dom-
ination problem.
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5.2 Domination in Q4k+1

Weakley [22] has shown that γ(Q4k+1) ≥ 2k + 1 for all integers k, and has conjectured that
γ(Q4k+1) = 2k + 1 for all integers k. This conjecture has been confirmed for all k ≤ 15 by
generating dominating sets of size 2k + 1 (see Weakley [22] for k ≤ 6 and k = 8, Burger,
Cockayne and Mynhardt [3] for k = 9, 12, 13, 15, Gibbons and Webb [12] k = 7, 10, 11, 14.

In this section we adapt the above local search algorithm to find independent dominating
sets of size 2k + 1 for k ≤ 21.

The method used in [12] to generate dominating sets of size 2k+1 was that of simulated
annealing. In this paper it was noted that many dominating sets contain queens only on
even-even squares. For example see the dominating set for k = 3 in Figure 6. In order
to check whether such a configuration is dominating, it is necessary to only check that the
odd-odd squares are attacked since all others are attacked by a queen in either the same
row or column. This leads to a compressed representation of the board where even rows and
columns are represented as lines and odd-odd squares form the squares in the compressed
representation. Queens are now placed on the intersections of the lines, with one queen per
line. Figure 7 shows the compressed board of Figure 6. In this representation all squares
must be dominated diagonally by some queen.
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Q

Q

Q

Q

12

11
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8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 6: A 13 x 13 board (k=3) dominated by 7 queens. Odd-odd squares are shaded.

An initial configuration for the simulated annealing algorithm was generated by randomly
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Figure 7: A compressed representation of Figure 6.

placing the 2k+1 queens with one per row and column of the compressed board. The cost of a
configuration of queens was the number of undominated squares. The transformation method
was to choose two random queens at positions (x1,y1) and (x2,y2) and move them to positions
(x1,y2) and (x2,y1). This preserves the one queen per row and column constraint, and allows
for the new configuration to possibly dominate different squares along the diagonals.

By observing the dominating configurations found on boards of size 4k + 1 interesting
patterns emerge. When looking at the compressed board representation for large boards, it
was noted that apart from the edges and the centre of the board, only every second diagonal
was occupied in most cases. In fact the board could be dominated if only every second
diagonal were occupied as illustrated in Figure 8(a) for the case of k = 4. The board could
also be dominated by omitting some number of corner diagonals and including more centre
diagonals. In general this is denoted as an X/Y set of diagonals, where X (resp. Y ) down
(resp. up) diagonals have been removed from each of the two appropriate corners and X
(resp. Y ) pairs of up (resp. down) diagonals added to the centre. Figure 8 gives examples
of 0/0, 0/1, 1/1, and 1/2 sets of diagonals for k = 4.

These diagonals can be specified formally by first numbering the diagonals. Let the
squares be numbered from 0 to 2k− 1 across and down the board. Then the down diagonal
passing through square (x, y) is numbered 2k + x − y and the up diagonal is numbered
x+ y + 1.

An X/Y dominating set of diagonals then consists of

• Down Diagonals

(2 + 2X), (2 + 2X) + 2, ..., (4k − 2− 2X)− 2, (4k − 2− 2X)

(2k + 1− 2Y ), (2k + 1− 2Y ) + 2, ..., (2k − 1 + 2Y )− 2, (2k − 1 + 2Y )

• Up Diagonals

(2 + 2Y ), (2 + 2Y ) + 2, ..., (4k − 2− 2Y )− 2, (4k − 2− 2Y )

(2k + 1− 2X), (2k + 1− 2X) + 2, ..., (2k − 1 + 2X)− 2, (2k − 1 + 2X)
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These cases all use mostly even numbered diagonals and are referred to as an even
diagonal set. It is also possible to dominate the board with an odd diagonal set, which
consists mostly odd numbered diagonals. These are

• Down Diagonals

(1 + 2X), (1 + 2X) + 2, ..., (4k − 1− 2X)− 2, (4k − 1− 2X)

(2k + 2− 2Y ), (2k + 2− 2Y ) + 2, ..., (2k − 2 + 2Y )− 2, (2k − 2 + 2Y )

• Up Diagonals

(1 + 2Y ), (1 + 2Y ) + 2, ..., (4k − 1− 2Y )− 2, (4k − 1− 2Y )

(2k + 2− 2X), (2k + 2− 2X) + 2, ..., (2k − 2 + 2X)− 2, (2k − 2 + 2X)

In order for the board to be dominated, there must still be one queen on each vertical
and horizontal line and at least one queen occupying each of the specified diagonals. If even
cases are restricted to X and Y being less than k, and odd cases are restricted to X and
Y being less than k + 1 and not equal to 0, then there are a total of 2k − 1 − 2X + 2Y
down diagonals and 2k − 1 − 2Y + 2X up diagonals. There are at most 2k + 1 queens, so
at most 2k + 1 diagonals of each type can be occupied, which leads to the constraint that
|X − Y | ≤ 1. Furthermore, the total number of diagonals required overall is 4k− 2 which is
4 less than the maximum that could be attacked by 2k + 1 queens, so in any solution there
will be 4 spare diagonals. These could take the form of multiple queens attacking the same
diagonal, or redundant diagonals being attacked. Also note that an even X/Y configuration
is the same as an odd (k− Y )/(k−X) configuration, hence only cases where either X or Y
≤ k

2
need be considered.
Solutions to the problem can then be found through a local search for configurations

containing a queen in each row and diagonal such that one of these diagonal configurations
is dominated. A prescribed set of diagonals is initially chosen, and the transformation of
Gibbons and Webb’s simulated annealing algorithm is used. The cost of a configuration
is much more easily computed as the number of specified diagonals that are not occupied,
rather than the number of undominated squares.

Both even-diagonal and odd-diagonal sets for a range of X/Y values were tested for all
values of k up to 23. For all cases with k ≤ 20 at least one even solution, and with k ≤ 21
at least one odd solution was found.

The types of solutions found are given in Table 11 in the Appendix. Sample solutions
for even cases can be found in Table 12 and odd cases in Table 13, where the nth element
in a solution is the row in which the queen in the nth column is placed. An image of the
compressed board for a solution with k = 20 can be seen in Figure 9.
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(a) A 0/0 set of dominating diagonals.
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(b) A 1/0 set of dominating diagonals.
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(c) A 1/1 set of dominating diagonals.
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(d) A 2/1 set of dominating diagonals.
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Figure 8: These compressed representations of 17×17 boards (k = 4) are dominated by four
different sets of numbered diagonals.
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Figure 9: An even 3/4 dominating set for k=20. This corresponds to a set of 41 queens
dominating an 81 x 81 board, proving that γ(Q81) = 41. Note the pair of queens on down
diagonals 22 and 30, and also coverage of the redundant down diagonals 51 and 57.
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5.3 Further Observations

For all even cases up to k=20 and odd cases up to k=21, an X/(X+1) solution was always
found. Furthermore, X increased by 1 for approximately every 4 values of k once k became
large enough. Continuing with this pattern, it would be expected that for k=21 to 24, even
4/5 solutions would exist, and for k=22 to 25, odd 5/6 solutions would exist. The algorithm
was run extensively on these and other cases with running times totalling several weeks, but
no further results emerged for odd cases higher than k=21 or even cases higher than k=20.
This could be due to the general increased running time the algorithm requires with moving
to higher X/(X+1) solutions.

It is also seen that for even X/(X+1) configurations, all but 2X+2 queens lie on even/even
or odd/odd squares. Furthermore, 2X of these must lie within the central rectangle that
occupies the intersection central odd diagonals. Similarly, for odd X/(X+1) configurations,
all but 2X + 1 queens lie on even/odd or odd/even squares, and 2X − 1 of these must lie in
the central even diagonal intersection region. This information could be made use of in the
form of a more restricted search space, but attempts to do so have so far been unsuccessful.

6 Concluding Remarks

We have presented a number of computational search techniques that have been applied
to various chessboard domination problems. These have been successful in generating new
dominating configurations on n × n chessboards, for small values of n. For example, new
optimal dominating and independent dominating sets of queens have been found to produce
an updated set of known values for γ(Qn) and i(Qn) in Table 10.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
γ(Qn) 1 1 1 2 3 3 4 5 5 5 5 6 7 8 9
i(Qn) 1 1 1 3 3 4 4 5 5 5 5 7 7 8 9

n 16 17 18 19 20 21 22 23 24 25
γ(Qn) 9 9 9 10 ≤ 11 11 ≤ 12 ≤ 12 ≤ 13 13
i(Qn) 9 9 10 ≤ 11 ≤ 11 11 ≤ 12 ≤ 13 ≤ 13 13

Table 10: Known values for γ(Qn) and i(Qn). Bold values are new results from this paper.

We believe that methods such as the reduction technique could be successfully applied
to other chessboard and combinatorial problems.

We have shown that ir(Qn) = γ(Qn) for n ≤ 13. Although it is possible for some n that
ir(Qn) < γ(Qn) no such case has yet been found. By examining the difference between the
theoretical lower bound of γ(Qn) ≥

n−1
2
and the actual value of γ(Qn) it is found that for

known values this is maximal at n = 15, where the difference is 2. This indicates that Q15

could be a likely candidate for a situation where ir(Qn) < γ(Qn) is true. Improvements to
the algorithm used in this paper may allow a search for such a case.

The probabilistic algorithm developed here to establish that γ(Q4k+1) = 2k + 1 for
16 ≤ k ≤ 21 was very successful. However the transformation method used was rather
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simplistic and if improved upon further solutions may be found. There are also additional
patterns of solutions that were not taken advantage of during the search.

In conclusion we believe that computational techniques such as the ones described can
help shed light on many of the remaining open chessboard problems listed in [10] and [14].

A Appendix

k Solution Types Found Average Time
1 Even 0/1 ; Odd 0/1 -
2 Even 0/1 ; Odd 0/1 -
3 Even 0/0, 0/1, 1/2 ; Odd 1/1, 1/2 -
4 Even 0/0, 0/1, 1/2 ; Odd 0/1, 1/1 -
5 Even 0/1, 1/1, 1/2 ; Odd 1/1, 1/2 -
6 Even 0/1, 1/1 ; Odd 1/1, 1/2, 2/3 -
7 Even 1/2 ; Odd 1/2 0.3 secs
8 Even 1/2 ; Odd 1/2 2 secs
9 Even 1/2 ; Odd 1/2 4 secs
10 Even 1/2 3 secs

Odd 2/3 13 secs
11 Even 1/2 9 secs

Even 2/3 35 secs
Odd 2/3 35 secs

12 Even 2/3 150 secs
Odd 2/3 12 secs

13 Even 2/3 60 secs
Odd 2/3 80 secs
Odd 3/3 110 secs

14 Even 2/3 60 secs
Odd 3/4 240 secs

15 Even 2/3 5 mins
Odd 3/3 20 mins
Odd 3/4 24 mins

16 Even 2/3 3 hours
Odd 3/4 10 mins

17 Even 3/4 3 hours
Odd 3/4 1 hour

18 Even 3/4 7 hours
Odd 4/5 28 hours

19 Even 3/4 1 hour
Odd 4/5 6 hours

20 Even 3/4 4 hours
Odd 4/5 50 hours

21 Odd 4/5 30 hours

Table 11: Solution types found for γ(Q4k+1) = 2k + 1.
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k Solution Type Sample Solution
1 Even 0/1 (0,2,1)
2 Even 0/1 (1,3,0,2,4)
3 Even 0/1 (2,5,1,4,0,3,6)
4 Even 0/1 (1,7,2,5,8,4,0,3,6)
5 Even 0/1 (8,7,2,4,3,9,0,5,10,1,6)
6 Even 0/1 (10,5,2,11,3,6,12,9,0,7,4,1,8)
7 Even 1/2 (6,3,10,1,14,9,2,8,5,12,0,11,4,7,13)
8 Even 1/2 (12,7,3,11,2,1,16,10,8,6,0,15,14,5,13,9,4)
9 Even 1/2 (8,15,12,6,3,1,18,11,2,10,7,17,0,13,16,5,14,9,4)
10 Even 1/2 (10,15,8,3,20,17,7,5,0,12,9,19,16,1,4,11,18,14,2,13,6)
11 Even 1/2 (16,19,6,3,18,13,7,17,2,12,22,1,11,10,0,21,14,9,20,15,8,5,4)
12 Even 2/3 (18,11,6,19,0,5,8,4,20,12,24,16,13,21,9,1,22,15,2,7,10,3,14,

17,23)
13 Even 2/3 (12,7,22,4,18,15,6,25,2,5,26,14,17,10,13,1,24,21,0,11,8,23,

20,3,19,9,16)
14 Even 2/3 (8,19,12,17,26,21,3,5,28,9,0,14,4,18,15,27,11,23,20,13,2,25,

6,1,10,24,22,7,16)
15 Even 2/3 (12,15,20,7,26,29,2,27,11,19,4,8,17,14,30,3,24,16,13,1,6,21,

28,25,0,23,10,5,18,9,22)
16 Even 2/3 (8,21,24,27,20,15,32,7,4,23,0,16,6,31,17,1,13,18,30,14,19,

25,28,3,12,9,2,29,26,11,22,5,10)
17 Even 3/4 (2,23,28,15,8,5,14,31,6,25,11,29,4,33,21,18,13,27,32,12,19,

16,0,3,30,7,10,1,22,34,26,17,20,9,24)
18 Even 3/4 (7,21,28,25,14,9,20,35,2,11,34,29,0,12,17,1,32,22,19,16,13,

3,30,18,36,31,6,23,26,5,8,15,4,33,24,27,10)
19 Even 3/4 (26,13,32,10,14,5,24,15,28,37,2,9,36,3,30,20,38,16,19,33,

23,18,6,1,17,7,21,29,0,35,34,11,8,27,4,31,22,25,12)
20 Even 3/4 (28,9,22,13,8,29,32,39,14,5,40,33,30,7,4,20,15,24,21,11,36,

16,23,37,2,18,38,27,12,3,6,1,0,35,31,17,34,25,10,19,26)

Table 12: Even solutions found for γ(Q4k+1) = 2k + 1.

k Solution Type Sample Solution
1 Odd 0/1 (1,0,2)
2 Odd 0/1 (3,0,2,4,1)
3 Odd 1/2 (2,0,5,3,1,6,4)
4 Odd 0/1 (7,6,3,0,4,8,5,2,1)
5 Odd 1/2 (7,3,1,6,9,0,4,8,5,2,10)
6 Odd 1/2 (9,0,3,10,6,2,11,5,8,12,1,4,7)
7 Odd 1/2 (7,12,3,8,4,14,1,9,6,0,13,10,5,2,11)
8 Odd 1/2 (9,4,13,16,3,12,7,5,8,2,15,0,14,10,1,6,11)
9 Odd 1/2 (15,4,7,16,13,6,17,0,10,9,8,18,1,12,5,2,11,14,3)
10 Odd 2/3 (0,10,13,16,5,20,1,14,12,6,8,2,17,9,3,18,15,19,11,4,7)
11 Odd 2/3 (11,5,17,20,13,2,6,14,1,22,12,9,3,0,10,18,21,16,19,8,15,4,7)
12 Odd 2/3 (7,14,11,22,5,9,23,4,19,24,12,16,1,13,10,6,3,0,21,18,15,2,20,

8,17)
13 Odd 2/3 (7,20,11,8,5,26,23,18,10,24,14,4,25,13,3,2,12,15,21,0,17,6,1,

22,19,16,9)
14 Odd 3/4 (19,8,13,5,21,18,1,28,23,2,14,17,9,0,3,11,16,26,12,22,25,6,20,

24,15,4,7,10,27)
15 Odd 3/4 (3,22,25,12,9,24,19,4,1,13,27,26,18,15,5,2,10,17,14,30,21,0,

29,8,23,20,7,16,11,6,28)
16 Odd 3/4 (13,18,25,8,19,24,31,28,1,4,11,7,16,2,20,17,14,0,29,26,5,15,

21,32,27,12,23,6,3,10,30,22,9)
17 Odd 3/4 (9,24,13,10,31,7,27,22,33,2,11,16,18,30,3,34,20,15,1,32,14,

17,25,0,21,12,5,8,28,4,29,26,23,6,19)
18 Odd 4/5 (7,12,19,30,27,10,31,1,11,2,25,6,18,34,22,17,35,21,5,15,33,4,

20,32,16,24,3,0,29,14,9,28,13,8,23,26,36)
19 Odd 4/5 (27,12,21,28,6,10,35,4,11,16,33,0,5,19,22,32,29,38,3,23,18,

13,37,17,20,34,9,26,1,8,31,2,7,24,15,30,36,14,25)
20 Odd 4/5 (27,16,13,3,29,36,7,30,37,12,1,28,17,34,9,23,18,2,22,25,39,4,

14,19,33,6,20,40,35,26,5,0,21,32,11,8,15,24,31,10,38)
21 Odd 4/5 (13,28,19,26,37,12,9,18,3,34,41,17,11,42,35,4,31,25,20,38,24,

15,7,23,16,2,22,6,33,10,39,0,5,30,1,36,29,8,21,14,27,32,40)

Table 13: Odd solutions found for γ(Q4k+1) = 2k + 1.
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