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Abstract

Since they were introduced, AGM revision and Katsuno and Mendel-

zon's update have been considered esentially di�erent theory change

operations serving di�erent purposes. This work provides a new pre-

sentation of AGM revision based on the update semantic apparatus

establishing in such a way a bridge between the two seemingly incom-

parable frameworks.

We de�ne a new operation �� as a variant of the standard update

that we call an analytic revision. We prove the correspondence between

analytic revisions and (transitively relational) AGM revisions when a

given �xed theory is considered (Theorem 4.8). Furthermore, we can

characterize analytic revision functions for possibly in�nite languages

as those AGM revisions satisfying (K*1)-(K*8) plus two new postu-

lates (LU-9) and (LU-8) governing the revision of di�erent theories

(Theorem 5.3).

We believe these results bring new light to the issue of how revision

and update functions are related. They also provide a novel way to

achieve iterated theory revision.

1 Overview

Since they were introduced, the AGM notion of revision [1] and Katsuno and

Mendelzon's update [11] have been considered two fundamentally di�erent

ways of changing knowledge. The usual interpretation is as follows. Revi-

sion takes place when new information is regarded as correcting our theory

of a static object. According to revision, as little as possible of the original

theory should be changed in order to accommodate the new information. It

is in this sense that revision involves minimal change. Update, in contrast,
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takes place when our representation is modi�ed in response to changes into

an evolving object. When new information is confronted, each complete con-

sistent extension of our theory should be considered. From the perspective

of each of these extensions, the most similar complete theory accounting for

the new information should be chosen. The result of the update is what

the new theories have in common. It is in this sense that update involves

maximal similarity.

Because of these di�erences, many researchers have considered revision

and update as essentially di�erent operations serving di�erent purposes, and

hence incomparable. In this paper we establish a bridge between the two

kinds of change. We will provide a new presentation of AGM revision based

on the update semantic apparatus. Our strategy will be to semantically

de�ne a new operation as a variant of the update operation, that we will

dub analytic revision. The key idea behind it will be the de�nition of a

meaningful relation obtained from the pointwise relations of the update

operation.

In Section 2 we state basic logical conventions and �x notation. We

briey present AGM revision functions and we make a decisive observation

on the set of all AGM revision functions. Also in this section we present

the update functions, generalizing them for in�nite languages. Surprisingly

Katsuno and Mendelzon's original postulates (in [11]) turned out to be in-

complete for in�nite languages. In the next two sections we formally in-

troduce our analytic revision function and investigate its connections with

revision and update.

Section 5 is the main of this paper and Theorem 5.3 is the most im-

portant result, a representation theorem for analytic revision functions. It

provides a characterization of analytic functions as those AGM functions

satisfying (K*1)-(K*8) plus two new postulates, (K�9) and (K�8), govern-

ing the revision of di�erent theories, for possibly in�nite languages.

Finally in Section 6 we discuss the capabilities of the analytic revision

function to achieve iterated change, and a number of well known properties

of iterated change are examined.

This study builds on one of the author's initial work in [6] and [7]. In the

�rst our current analytic function was called a \lazy update" reecting that

it was semantically de�ned as a variant of the standard update operation.

Lazy updates were just de�ned for �nite languages and we proved they

satisfy all AGM revision postulates.

The independent work of Schlechta, Lehmann and Magidor's \Distance

Semantics for Belief Revision" [19] turned out to be related to ours. Their

revision function based on distances and our analytic revision function are

de�nitionally equivalent, modulo some considerations over the formal struc-

tures they are based on. Our work extends and continues theirs in several

respects. We consider an in�nite language while they don't and we obtain

characterization results for functions built over non symmetric distances |
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an explicit question left open in [19]. Also novel in our work is the de�nition

of AGM revision in the update semantic structure, which allows us to con-

nect these two seemingly incomparable forms of theory change.

2 Background

2.1 Basic notions and notational conventions

We will assume familiarity with the AGM theory and Katsuno and Mendel-

zon framework, as well as basic notions in logic. We consider a classical

propositional language L and denote with P the set of all its propositional

letters. If P is �nite we will call L a �nite propositional language. The sym-

bols ^;_;:;�;� will denote the usual truth functional connectives. Capital

letters A;B;C will be used to denote arbitrary formulae of L. We con-

sider Cn a Tarskian consequence operation, and following [1] we assume Cn

on L satis�es supra classicality, (if A can be derived from X by classical

truth functional logic, then A 2 Cn(X)), compactness (if A 2 Cn(X), then

A 2 Cn(Y ) for some �nite subset Y � X) and the rule of introduction of

disjunction into the premisses ( if C 2 Cn(X [ fAg) and C 2 Cn(X [ fBg)

then C 2 Cn(X [ fA _Bg). Under these assumptions the consequence op-

eration Cn also satis�es the deduction theorem (B 2 Cn(X [ fAg) if and

only if (A � B) 2 Cn(X)).

A theory is a subset of L closed under Cn. Capital letters K;K 0;H are

used for theories of L, and we denote by IK the set of all theories of L. While

L is the largest theory, Cn(;) is the smallest. A subset X of L is consistent

(modulo Cn) i� for no formula A do we have (A ^ :A) 2 Cn(X). A theory

is complete if it sanctions a truth value for each propositional letter.

We take W as the set of all maximal consistent subsets of L, that is,

the set of all complete consistent extensions of L. The valuation function

[ ] : L ! P(W ) is de�ned as usual, for any propositional letter p, w 2 [p]

i� p 2 w. Given A 2 L we denote by [A] the proposition for A, or the set

of A-worlds, the set of elements of W satisfying A. For the purposes of this

work we consider the terms maximal consistent subset of L, valuation on L

and possible world, interchangeable. This, of course, amounts to working

with models that are injective with respect to the interpretation function

(no two distinct worlds satisfy exactly the same formulae) and full (every

consistent set of formulae is satis�ed by some world). If K is a theory, [K]

denotes the set of possible worlds including K. Given U a set of possible

worlds, Th(U) returns the associated theory.

A preorder � over W is a reexive and transitive relation on W . A

preorder is total if for every v; w 2 W , either w � w or w � v. We take

w � v as w � v but not v � w. A relation � is well founded on W if every

non empty subset of W has a non empty subset of �-minimal elements.

We will say that a subset X of W is L-nameable whenever there exists
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a formula A in L such that X = [A]. When working with relations on W ,

we will refer to a property that Lewis [13] called the limit assumption. A

preorder relation R on W satis�es the limit assumption if and only if for

any satis�able formula A in L there exists a set of R-minimal A-words. This

requirement is in general weaker than the well foundedness condition. The

limit assumption just requires that L-nameable non empty subsets of W

have minimal elements, as opposed to requiring so for every subset of W .

2.2 Revision functions

Expansion and revision are the two AGM operations that deal with \ac-

commodating" a new formula into the current theory. While expansion is a

simple addition function + : IK�L! IK de�ned as K+A = Cn(K [fAg),

the AGM revision operation has a more subtle de�nition. The revision func-

tion � : IK � L! IK takes a theory K and a formula A to a revised theory

K �A, and the eight AGM postulates (K*1)-(K*8) constrain what a revision

function can be.

(K*1) K �A is a theory.

(K*2) A 2 K � A.

(K*3) K �A � K +A.

(K*4) If :A 62 K then K +A � K �A.

(K*5) K �A = Cn(?) only if Cn(:A) = Cn(;).

(K*6) If Cn(A) = Cn(B) then K �A = K � B.

(K*7) K � (A ^B) � (K � A) +B.

(K*8) If :B 62 K �A then (K � A) +B � K � (A ^B).

The �rst six are called the basic postulates for revision, and they charac-

terize partial meet revision functions. Postulates (K*7) and (K*8) are sup-

plementary and they give rise to transitively relational partial meet revision

functions, which will be our focus of attention. The names of partial meet

functions originated in the method for constructing the functions (see [2, 1]).

Taken together (K*7) and (K*8) are equivalent to the Ventilation property

reported in [1], which provides a factoring on the revision of a theory by a

disjunction.

(Ventilation) For all A and B, K�(A_B) = K�A, or K�(A_B) = K�B

or K � (A _B) = (K �A) \ (K � B).

A crucial remark about the AGM postulates is that they constrain the be-

haviour of the functions with respect to all kinds of input sentences but do

not deal with varying theories (see [18] and [4]). That is, the postulates

indicate nothing about the behaviour of the revision function when applied

to di�erent theories K 2 IK. In particular we observe that, in general, �

is not monotone, in the sense that if one theory is included in another, the

revision of the �rst is not necessarily included in the revision of the second:
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H � K does not imply H �A � K �A.

Observation 2.1 (follows from [1]) If � is a revision operation satisfying

postulates (K*1),(K*4) and (K*5), in a language admitting at least two

mutually independent formulae A;B (neither A 2 Cn(B) nor B 2 Cn(A)),

then monotony fails for �.

Proof. Let K = Cn(A;B), H1 = Cn(A);H2 = Cn(B). Assume monotony.

As Hi � K for i 2 f1; 2g, by monotony, H1 � :(A^B) � K � :(A^B) and

H2 � :(A ^B) � K � :(A ^B).

By independence, H1 = Cn(A) is consistent with :(A^B), so by (K*4)

H1 � :(A ^B) = Cn(H1 [ f:(A ^B)g) = Cn(A ^ :B).

Likewise, H2 � :(A^B) = Cn(H2 [ f:(A^B)g) = Cn(B ^:A). Hence,

both (A ^ :B) and (B ^ :A) are included in K � :(A ^ B). Therefore, by

(K*1) K � :(A ^ B) is inconsistent. By postulate (K*5), :(A ^ B) is then

inconsistent, contradicting the independence of A and B. qed

Although � : IK � L ! IK satisfying (K*1)-(K*8) is a function of two

arguments the point is that the postulates/partial meet construction tell us

very little about relations between K � A and H � A when K 6= H; the �

operation is in some sense degenerate in its �rst argument. To understand

what is involved we have to look at the class of all partial meet operations.

Roughly, if you take any two operations �1 and �2 in the class and de�ne

�3 as being like �1 on say K but being like �2 on say H 6= K, then �3 is

always in the class. David Makinson (personal communication, 1999) has

formalized this de�ning the property of being essentially right unary.

Let U; V;X be any sets and let F be a set of functions f : U � V ! X.

Let f1; f2 2 F . We say that a function g : U � V ! X is a left mix of

two of f1 and f2 i� for all u 2 U , either: (1) g(u; v) = f1(v); 8v 2 V ,

or (2) g(u; v) = f2(v); 8v 2 V . A set of functions F is right unary i�

for all f1; f2 2 F , every left mix of f1 and f2 is in F . In other words, i� F

is closed under left mixes. But we are interested in not just in left mixes of

two functions but of in�nitely many. We need the following

De�nition 2.2 Let U; V;X be any sets and let F be a set of functions

f : U � V ! X. A function g : U � V ! X is an (in�nitary) left mix

of F i� for all u 2 U there is a function fu in F such that for all v 2 V ,

g(u; v) = fu(u; v). F is essentially right unary (in the in�nitary sense) i�

every in�nitary left mix of F is in F , i.e. i� F is closed under in�nitary left

mixes.

The desisive observation is that the set of all AGM revision functions is

essentially right unary.

Observation 2.3 The set of functions � : IK � L ! IK satisfying (K*1)-

(K*8) is essentially right unary.
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We turn now to a semantic characterization of the AGM revision functions.

Among the alternative presentations of the AGM theory, Grove's [9] provides

a possible worlds semantics via his constructions based on systems of spheres.

A system of spheres SK for a theory K is a subset of P(W ) containing W ,

totally ordered under set inclusion, such that [K] is the�-minimal element of

SK . A system SK should validate the limit assumption: for every satis�able

formula A in the language there exists a �-minimal sphere in SK (notated

as cK(A)) with non-empty intersection with [A].

De�nition 2.4 (System of spheres, [9]) A system of spheres SK cen-

tered on theory K is a set of sets of possible worlds that veri�es:

(S1) If U; V 2 S then U � V or V � U . (totally ordered)

(S2) For every U 2 S, [K] � U . (minimum.)

(S3) W 2 S. (maximum)

(S4) For every A 2 L s.t. there is a sphere U in SK with [A] \ U 6= ;,

there is a �-minimal sphere V in S s.t. [A] \ V 6= ;. (limit assumption)

For any sentence A, if [A] has a non-empty intersection with some sphere

in SK then by (S4) there exists a minimal such sphere in SK , say cK(A).

But, if [A] has an empty intersection with all spheres, then it must be the

empty set (since (S3) assures W is in SK), in this case cK is put to be just

W . Given a system of spheres SK and a formula A, cK is de�ned as:

cK(A) =

�
W if [A] = ;

the � -minimal sphere S0 in SK s.t. S0 \ [A] 6= ; otherwise:

A system SK determines a revision function � for K in the sense that for

every formula A 2 L and every w 2 W , w 2 [K � A] i� w 2 [A] and

w 2 cK(A).

Observation 2.5 (Grove, [9]) The following are equivalent:

i) The revision operation satis�es (K*1)-(K*8).

ii) There exists a system of spheres SK such that for all formulae A 2 L,

K � A = Th(cK(A) \ [A]).

It is possible to recast a system of spheres centered in [K] as a total preorder

� overW , having the elements of [K] as minimal elements, and satisfying the

limit assumption (every L-nameable subset ofW must have some �-minimal

element). Without loss of generality then a system of spheres centered in [K]

can be seen as a function from W to any totally ordered set with smallest

element. This set can be taken to be IR+, be the set of positive real numbers

including 0, but not necessarily so. We de�ne dK : W ! IR+ that decorates

with real numbers the nested spheres of a Grove system.
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Observation 2.6 For every system of spheres SK there is a function dK
on IR+ such that

dK(v) < dK(w) i� (9S1; S2 2 S
K)(v 2 S1; w 2 S2 and S1 � S2), and

dK(v) = dK(w) i� (8Si 2 SK)(w 2 Si , v 2 Si).

These functions provide a notion of distance from theories to worlds: If

dK(w) < dK(v) then w is closer than v or \more consistent" with the current

theory K. And this measure can be naturally extended over sets of worlds,

by requiring the value assigned to a set X to be the smallest value assigned

to the worlds in X. Special consideration is required if X is empty. Let

now SK be any system of spheres and dK any real function corresponding

to it as in Observation 2.6 above. We �rst extend dK to any subset of W as

follows. De�ne dK : P(W )! IR+ as:

dK(X) =

�
minfdK(w) : w 2 Xg ; if X 6= ;.

0 ; if X = ;.

In order to represent a system of spheres by a function dK we should impose

the limit assumption on dK : For every L-nameable X � W , dK(X) must

be de�ned. If X is not nameable by a single formula then fdK(w) : w 2 Xg

can be a set of in�nite descending values where the minimum is not de�ned.

In the obvious way the function dK induces a revision function � for a

theory K, such that K �A is the theory entailed by the set of A-worlds that

are closest to K according to the function dK . Then, if we take

K � A = Th(fw 2 [A] : dK(w) = dK([A])g)

the revision operation for K so obtained coincides with the original � op-

eration whose semantic model was SK . It is important to remark that dK
induces a revision function for a theory K, leaving unspeci�ed the function

for all the other theories of IK.

2.3 Update functions

Katsuno and Mendelzon assume a classical propositional language based

on a �nite set of propositional variables P . Their simplifying assumption

possesses a very convenient consequence: the set of all possible worlds W

becomes �nite. As a result every subset of W becomes nameable, every

theory is �nitely axiomatisable by a propositional formula and every total

preorder � on W is well founded. The update operator is de�ned as a

binary connective } in the propositional language, which does not have a

truth functional behaviour. B}A denotes the result of updating the theory

Cn(B) with the formula A.

We generalize the update function to theories, writing the } operator as

a binary function that takes a theory and a formula and returns a theory
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} : IK � L! IK. Notice that in a �nite propositional language this is just

a notational variant of Katsuno and Mendelzon's original setting. The nine

postulates governing the update operation are:

(U0) K}A is a theory.

(U1) A 2 K}A.

(U2) If A 2 K then K}A = K.

(U3) If K 6= L and A is satis�able then K}A 6= L.

(U4) If Cn(A) = Cn(B) then K}A = K}B.

(U5) K}(A ^B) � Cn(K}A [ fBg).

(U6) If B 2 K}A and A 2 K}B then K}A = K}B.

(U7) If K is a complete theory then K}(A _B) � Cn(K}A [K}B).

(U8) Cn(K \K 0)}A = Cn((K}A) \ (K 0
}A)).

(U9) IfK is complete and Cn((K}A)^B) 6= L then Cn((K}A)[fBg) �

K}(A ^B).

Postulate (U8) constranis the update of the intersection of two theories as

the intersections of the single updates. There is no analogue of this postulate

for revisions. We shall remark that postulate (U9) is optional in Katsuno

and Mendelzon's original setting, and gives rise to special updates that we

will be our focus of attention.

To semantically characterize the update operation, Katsuno and Mendel-

zon formalize a notion of closeness between possible worlds. Instead of asso-

ciating to a theoryK a unique ordering (as done in revision), they consider a

set of total preorders �w, one for each w 2W , such that v �w u if and only

if world v is at least as close to world w as u is. The ordering dictates that

the most plausible changes to w to accommodate A lead to those A-worlds

that are minimal in �w. They require that each �w satis�es the following

centering condition, which says that for every w, no world is as close to w

as w itself:

If v �w w then v = w.

The following characterization result holds for the update operation (for a

�nite language).

Observation 2.7 (Katsuno and Mendelzon, [11]) The following are equiv-

alent: i) The update operator } satis�es (U0)-(U9).

ii) There exists an assignment that maps each w 2 W to a total preorder

�w such that

K}A = Th(
[

w2[K]

fv 2 [A] : v is �w-minimal in[A]g)

But we are interested in characterization results for the in�nite case. The

characteristic pointwise semantics of the update function is immediately
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de�ned for in�nite languages. Only the notion of closeness between worlds

requires some adjustment. In addition to the centering condition, each �w

should satisfy the limit assumption: let A be any formula in L, then there

exists some non-empty set Y , Y � [A] such that each element in Y is a

�w-minimal element of [A]. Formally,

8w 2W;8A 2 L;9Y � [A]; Y 6= ; such that 8y 2 Y;8x 2 [A]; y �w x:

(Notice that the limit assumption is trivially satis�ed in �nite propositional

languages.)

De�nition 2.8 (Update function) Let L be a possibly in�nite proposi-

tional language. Let hW; f�w: w 2 Wgi be such that each �w is a total

preorder over W satisfying the centering condition and the limit assump-

tion. We de�ne � : IK � L! IK as

K�A = Th(
[

w2[K]

fv 2 [A] : v is �w -minimal in [A]g):

As we reported in [5, 7] postulates (U0)-(U9) do not characterize the update

operation in a language with an in�nite number of propositional letters.

Observation 2.9 If L is an in�nite propositional language, postulates (U0)-

(U9) do not fully characterize the � operation.

Proof. Given a propositional language L with an in�nite but countable

number of propositional letters we will exhibit a function Æ : IK � L !

IK satisfying (U0)-(U9) for which there is no model hW; f�w: w 2 Wgi,

satisfying that 8K 2 IK, 8A 2 L;K Æ A = K�A. We semantically de�ne Æ

as follows. Let us single out an (arbitrary) point v in W . For every K 2 IK

and for every A 2 L de�ne

[K Æ A] =

8>><
>>:

; if [A] = ;:

[K] if [K] � [A]:

([K] \ [A]) [ fvg if A 2 v and [K] \ [:A] 6= ; is �nite.

[A] if A 62 v or [K] \ [:A] is an in�nite set.

We �rst check that Æ satis�es postulates (U0)-(U9). By de�nition Æ trivially

satis�es postulates (U0), (U1), (U2), (U3) and (U4).

(U5). We have to show that K Æ (A ^ B) � Cn(K Æ A [ fBg) holds.

There are three cases.

(a) If [K] � [A] then K ÆA = K. If :B 2 K, then Cn(K ÆA[fBg) = L

and (U5) is veri�ed. If :B 62 K, then Cn(K Æ A [ fBg) = Cn(K [ fBg).

Since A 2 K, Cn(K [ fBg) = Cn(K [ fAg [ fBg) = Cn(K [ fA ^ Bg) =

K Æ (A ^B). Thus, (U5) holds.
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(b) Assume [K] \ [:A] 6= ; is a �nite set. If [K] \ [:A _ :B] is an

in�nite set or A ^ B 62 v then K Æ (A ^ B) = Cn(A ^ B) and (U5) holds.

Suppose [K] \ [:A _ :B] is �nite and A ^ B 2 v. So [K Æ (A ^ B)] =

([K] \ [A ^ B]) [ fvg, while [K Æ A] = ([K] \ [A]) [ fvg. Since B 2 v,

[K Æ A] \ [B] = ((([K] \ [A]) [ fvg) \ [B]) = ([K] \ [A] \ [B]) [ (fvg \ [B])

= ([K] \ [A] \ [B]) [ fvg= [K Æ (A ^B)], thus (U5) is veri�ed.

(c) If [K] \ [:A] is an in�nite set then [K] \ [:A _ :B] is also in�nite.

By de�nition [K Æ (A^B)] = [A^B] = Cn([A][ [B]) = Cn(K ÆA[ fBg).

(U6). Suppose B 2 K Æ A and A 2 K Æ B.

(a) If [K] � [A] then K Æ A = K. Since B 2 K Æ A, then B 2 K, so

K ÆB = K = K Æ A.

(b) Assume [K] \ [:A] 6= ; is a �nite set. If A 2 v then [K Æ A] =

([K] \ [A]) [ fvg. Since B 2 K Æ A, then ([K] \ [A]) [ fvg � [B], and in

particular, B 2 v. Furthermore [K]\ [:B] 6= ; is �nite. Then, by de�nition,

[K Æ B] = ([K] \ [B]) [ fvg. Since, in addition, A 2 K Æ B, we obtain that

([K] \ [B]) [ fvg � [A]. Therefore, [K] \ [A] = [K] \ [B] and hence under

the conditions in (b), K Æ A = K Æ B. Now suppose A 62 v. Then [K Æ A]

= [A]. Since B 2 K Æ A, [A] � [B]. As A 2 K Æ B, [K Æ B] � [A]. Hence

[K Æ B] 6= ([K] \ [B]) [ fvg, because we assumed A 62 v. Hence, it must be

that [K ÆB] = [B], so [B] � [A]. Therefore, [A] = [B] and K ÆA = K ÆB.

(c) Assume [K] \ [:A] is an in�nite set. Then, [K Æ A] = [A]. Since

B 2 K Æ A, then [A] � [B]. There are two possibilities for K Æ B. If

[K Æ B] = [B] then, using that A 2 K Æ B, we obtain [B] � [A] and

[KÆA] = [KÆB]. If [KÆB] = ([K]\[B])[fvg then B 2 v and [K]\[:B] is a

�nite set. Because A 2 KÆB, ([K]\[B])[fvg � [A], and [K]\[B] � [K]\[A].

Then, [K] \ [:A] � [K] \ [:B]; but this is impossible because we assumed

[K] \ [:A] to be an in�nite set and [K] \ [:B] to be �nite.

(U7). We want to prove that ifK is a complete theory thenKÆ(A_B) �

Cn(K Æ A [ K Æ B). Assume K is complete. If A 2 K, K Æ A = K and

K Æ (A _ B) = K. Thus, (U7) holds. If :A 2 K, and B 2 K, then

K Æ (A_B) = K ÆB = K, so (U7) holds. If :A 2 K, and :B 2 K, if A 2 v

or B 2 v, then K Æ (A_B) = v, and either K ÆB = v or K ÆA = v, so (U7)

holds. If :A 2 v and :B 2 v, then we obtain that K Æ (A_B) = Cn(A_B),

K ÆB = Cn(B) and K ÆA = Cn(A). Hence, (U7) is veri�ed.

(U8). We show that (K1 \ K2) Æ A = (K1 Æ A) \ (K2 Æ A). Let K =

K1 \K2.

(a) Assume A 2 K. Then K1 Æ A = K1, K2 Æ A = K2 and K Æ A = K.

Therefore (U8) is validated.

(b) Assume [K]\ [:A] is a �nite non-empty set and A 2 v. Then, [K ÆA]

= ([K]\ [A])[fvg. If each [Ki]\ [:A], for i = 1; 2, is a �nite set then [KiÆA]

= ([Ki]\ [A])[fvg, i = 1; 2. So [K ÆA] = ([K1]\ [A])[ ([K2]\ [A])[fvg =
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[K1 ÆA][ [K2 ÆA]. Otherwise, suppose [K1]\ [:A] is an in�nite set, and say

A 2 K2. Then it also holds that [K1ÆA][[K2ÆA] = (([K1]\[A])[fvg)[[K2]

= (([K1] \ [A]) [ fvg) [ ([K2] \ [A]) = ([K1] \ [A]) [ fvg [ ([K2] \ [A]) =

(([K1] [ [K2]) \ [A]) [ fvg = ([K] \ [A]) [ fvg = [K Æ A].

(c) Assume [K] \ [:A] is an in�nite set or :A 2 v. If :A 2 v then

K ÆA = K1 ÆA = K2 ÆA = Cn(A), therefore, (U8) holds. Otherwise, either

[K1] \ [:A] or [K2] \ [:A] or both are in�nite sets. Clearly [K Æ A] = [A]

and, say, [K1] = [A]. So [K ÆA] = [K1 Æ A], therefore, independently of the

value of [K2 Æ A], we obtain that [K ÆA] = [K1 Æ A] [ [K2 Æ A].

(U9). Assume that K is complete and [K ÆA]\ [B] 6= ;. We prove that

[K Æ (A ^B)] � [K ÆA] \ [B].

(a) If A 2 K, KÆA = K, by the hypotheses, B 2 K. SoKÆ(A^B) = K.

Thus, (U9) is veri�ed.

(b) If A 62 K, then since K is complete :A 2 K. If A 2 v, K Æ A =

v. By the hypothesis that [K Æ A] \ [B] 6= ; we conclude B 2 v. Thus,

[K Æ (A ^B)] � [K ÆA] \ [B]. In fact, [K Æ (A ^B)] = [K ÆA] \ [B] = fvg.

If A 62 v, [K Æ A] = [A] and [K Æ (A ^ B)] = [A ^ B]. Thus, [K Æ A] \ [B]=

[K Æ (A ^B)], hence (U9) is veri�ed.

Now suppose for contradiction that there is a model M = hW; f�w: w 2

Wgi, where each �w is a total preorder onW satisfying the limit assumption

and the centering condition, such that 8K 2 IK, 8A 2 L;K Æ A = K�A.

Thus, for every theory K such that [K] is a �nite set, and for every formula

A, if :A 2 K and A 2 v, where v is the distinguished point appearing in

the de�nition of Æ above, K ÆA = K�A = v must hold. This translates into

the following condition on the model M .

8x 2 [:A];8y 2 [A]; v 6= y; v �x y:

Now let K be a theory such that [K] is an in�nite set and let A 2 L be such

that A 2 v and :A 2 K. Then by de�nition of Æ, [K Æ A] = [A]. However,

[K�A] =
S
x2[K]fy 2 [A] : y is �x-minimal in [A]g = fvg. Because the

language is in�nite fvg 6= [A]. qed

Since (U0)-(U9) are insuÆcient to characterize the update operation in an

in�nite language, we propose the following postulate as a strengthening

of Katsuno and Mendelzon's postulate (U8) to achieve the representation

result.

(IU8) If K =
T
Hi then K}A =

T
(Hi}A).

(IU8) states that the update of an intersection is the intersection of the

updates. Obviously (IU8) implies (U8). We now prove that postulates (U0)-

(U9) plus (IU8) completely characterize the update operation when in�nite
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languages are allowed. We shall remark that Peppas and Williams in [15]

have also reformulated the update operation as a function over theories of

�rst order logic and they also proposed the same postulate (IU8). Implicitly,

their article claims that Katsuno and Mendelzon's original postulates would

be complete for general propositional languages, but not for �rst order. n

our completeness proof we use the following lemma stating the Ventilation

condition of [1] for the updates of consistent complete theories.

Lemma 2.10 (Ventilation condition) Let } be an update function sat-

isfying postulates (U0)- (U9). If K is consistent and complete then for

all A;B 2 L, K}A _ B = K}A or K}A _ B = K}A or K}A _ B =

K}A \K}B.

Proof. Assume K}A_B is di�erent from K}A and is also di�erent from

K}B. We want to prove that K}A_B = K}A\K}B. We will show the

double inclusion.

(�). This inclusion follows directly from (U5), which requires that

K}A � Cn(K}A _ B [ fAg) and K}B � Cn(K}A _ B [ fBg). Then

K}A\K}B � Cn(K}A_B[fAg)\Cn(K}A_B[fBg). By the rule of

introduction of disjunction into the premises, K}A \K}B � Cn(K}A _

B [ fA _Bg) = K}A _B, using (U0) and (U1).

(�). Suppose Cn(K}A _B [ fAg) 6= L and Cn(K}A _B [ fBg) 6= L.

By (U9) Cn(K}A _B [ fAg) � K}A and Cn(K}A _B [ fBg) � K}B.

Since K}A _ B � Cn(K}A _ B [ fAg) \ Cn(K}A _ B [ fBg), we have

that K}A _B � K}A \K}B.

Now suppose Cn(K}A _ B [ fBg) = L and Cn(K}A _ B [ fAg) 6= L

(the other is similar). Thus, :B 2 K}A _ B and by (U1) A 2 K}A _ B.

By (U6) If A 2 K}A _ B and A _ B 2 K}A then K}A _ B = K}A,

contradicting our initial assumption.

Finally, suppose Cn(K}A_B[fAg) = L and Cn(K}A_B[fBg) = L.

By (U1) A _ B 2 K}A _ B. By Cn(K}A _ B [ fAg) = L, we have that

:A 2 K}A _ B, thus B 2 K}A _ B. But Cn(K}A _ B [ fBg) = L,

so K}A _ B = L. Since K is consistent, by (U3) A _ B is unsatis�able.

Therefore A;B are both unsatis�able formulae, and by (U1) L = K}A_B =

K}A = K}B, again contradicting our initial assumptions. qed

Theorem 2.11 Let L be a possibly in�nite propositional language, and let

Cn be a classical consequence relation that is compact and satis�es the rule

of introduction of disjunctions into the premisses. An operator } satis�es

postulates (U0)-(U7), (IU8), (U9) if and only if there exists a model M =

hW; f�w: w 2 Wgi, where each �w is a total preorder over W centered in

w that satis�es the limit assumption and for any K 2 IK, A 2 L, K}A =

K�A.
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Proof. [(]. We have to show that the operator � satis�es postulates

(U0)-(U7), (IU8) and (U9).

(U0) and (U1). Granted since, by De�nition 2.8, [K�A] � [A].

(U2). Follows as a consequence of the centering condition.

(U3). Follows by the de�nition of min on nonempty sets.

(U4). Obvious from the semantic de�nition of the update operation.

(U5). We have to show that [K�A]\[B] � [K�(A^B)]. If [K�A]\[B] =

;, the inclusion trivially holds. Assume [K�A] \ [B] 6= ;. Let u be any in

[K�A] \ [B]. Then u 2
S
w2[K]fv 2 [A] : v is �w-minimal in [A]g \ [B] =S

w2[K]fv 2 [A] \ [B] : v is �w-minimal in [A]g. Let w0 2 [K] be such that

u is �w0
-minimal in [A]. That is 8v 2 [A], u �w0

v. A fortiori, u 2 [A]\ [B].

Thus, there is no v 2 [A]\ [B] such that v �w0
u, so u is indeed �w-minimal

in [A] \ [B].

(U6). Assume B 2 K�A and A 2 K�B. We want to show [K�A] =

[K�B]. [K�A] =
S
w2[K]fv 2 [A] : v is �w-minimal in [A]g. By the hy-

pothesis that B 2 K�A, [K�A] � [B]. [K�A] =
S
w2[K]fv 2 [A] \ [B] :

v is �w -minimal in [A] \ [B]g. Similarly, [K�B] =
S
w2[K]fv 2 [B] :

v is �w-minimal in [B]g, and by the hypothesis that A 2 K�B, [K�B] �

[A]. [K�B] =
S
w2[K]fv 2 [A] \ [B] : v is �w -minimal in [A] \ [B]g.

Therefore, [K�A] = [K�B], as required.

(U7). We have to prove that when [K] is a singleton [K�A] \ [K�B] �

[K�(A_B)]. Assume [K] = fug. Then, [K�A] = fv 2 [A] : v is �u-minimal

in [A]g, while [K�B] = fv 2 [B] : v is �u-minimal in [B]g. Furthermore

[K�(A _ B)] = fv 2 [A _ B] : v is �u-minimal in [A _ B]g = fv 2 [A] [

[B] : v is �u-minimal in [A] [ [B]g = fv 2 [A] [ [B] : v is �u-minimal

in [A] or v is �u-minimal in [B]g. And �nally, [K�A] \ [K�B] = fv 2

[A] \ [B] : v is �u -minimal in [A] and v is �u -minimal in [B]g. Thus,

[K�A] \ [K�B] � [K�(A _B)].

(IU8). Assume [K] =
S
i2I [Ki] to show [K�A] =

S
i2I [Ki�A]. By

de�nition, [K�A] =
S
w2

S
i2I

[Ki]
fv 2 [A] : v is �w-minimal in [A]g =S

i2I(
S
w2[Ki]

fv 2 [A] : v is �w -minimal in [A]g) =
S
i2I [Ki�A].

(U9). Assume [K] = fug and ([K�A]) \ [B] 6= ;. We have to show

[K�(A ^ B)] � [K�A] \ [B]. Suppose there is some y 2 [K�A ^ B] but

y 62 [K�A] \ [B]. Then [K�A] � [:B], contradicting [K�A] \ [B] 6= ;.

[)]. Let } be a change function satisfying (U0)-(U7), (IU8) and (U9). We

will construct a model M = hW; f�w: w 2 Wgi such that for every theory

K 2 IK and formula A 2 L, K}A = K�A.

We start by de�ning the model M . The domain W will be the set of all

complete consistent theories in the language L. Assume f�w: w 2 Wg is

the set of relations de�ned by:

13



(i.) v �w u i� there exists A 2 v\u such that v 2 [w}A] or there exists no

satis�able A such that u 2 [w}A].

We will show that M is an update model by demonstrating that each

�w is a total preorder satisfying the centering condition and the limit as-

sumption.

(a) �w is totally connected. Suppose u 6�w v and v 6�w u. Then for some

consistent A;B 2 L, v 2 [w}A] and u 2 [w}B]. Then, by Lemma 2.10 we

have that w}A_B = w}A or w}A_B = w}B or w}A_B = w}A\w}B.

Thus one of v or u is in [w}A_B] contradicting the fact that neither v �w u

nor u �w v. (Notice that total connectedness implies reexivity).

(b) �w is transitive. Suppose u �w v and v �w z. If there is no satis�able

A such that z 2 [w}A] then also u �w z and we are done. Otherwise, v �w z

because there exists C 2 u \ v such that u 2 [w}C], but then also there

exists B 2 v \ z such that v 2 [w}B]. Now :C 62 K}B, so by Lemma 2.10

:C 62 [w}B _ C]. This means that w}((B _ C) ^ C) =w}(B _ C) [ fCg

= K}C. Namely [w}C] = [w}B _ C] \ [C]. Then [K}C] � [K}(B _ C)]

and u 2 [K}(B _C)]. But B _ C 2 z \ u, so u �w z.

(c) �w is centered. Suppose v 6= w and v �w w. Trivially, from the

postulates, w 2 [w}>], hence by de�nition (i.) v �w w implies there is

some A 2 v \ w such that v 2 [w}A]. But this contradicts postulate (U2)

which requires [w}A] = fwg.

(d) That �w satis�es the limit assumption follows directly from postulate

(U3), which implies that for every satis�able A, and for every w 2W , [w}A]

must be non empty. Then there must be some v 2 [A] that is minimal in

�w such that v 2 [w}A].

It remains to show that the update function determined by M is }. In

the limiting case when K is the inconsistent theory or A is unsatis�able,

K}A and K�A agree. We will now prove, for K and A satis�able, that

u 2 [K}A] i� u 2 [K�A] by analyzing the di�erent cases.

Suppose [K] = fwg:

[K}A] � [K�A]. Let v 2 [K}A]. By postulate (U1), [K}A] � [A],

so v 2 [A]. By (i.), for every u 2 [A], v �w u. Hence, v 2 fy 2 [A] :

y is �w-minimal in [A]g= [K�A].

[K�A] � [K}A]. Let v 2 [K�A]. By de�nition of �, v 2 fy 2 [A] :

y is �w-minimal in [A]g. So for all u 2 [A], v �w u; thus, by (i.), v 2 [w}A].

The general case, [K] > 1.

[K}A] � [K�A]. Let v 2 [K}A]. By postulate (IU8), if [K] =
S
i2I [Ki]

then [K}A] =
S
i2I [Ki}A].

In particular, [K] =
S
i2I [Ti] for complete theories Ti. Thus, v 2S

i2I [Ti}A]. Hence, v must be in, say, some [Tj}A], j 2 I. Then, by

the previous case, v 2 [Tj�A]. Therefore, v 2
S
w2[K]fy 2 [A] : y is �w

-minimal in [A]g= [K�A].
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[K�A] � [K}A]. Let v 2 [K�A]. Then, v 2
S
w2[K]fy 2 [A] :

y is �w-minimal in [A]g. In particular, there exists some w 2 [K] such

that v 2 fy 2 [A] : y is �w -minimal in [A]g. By the previous case,

v 2 [w}A]. But [K] =
S
i2I [Ti] for complete theories Ti, such that w = Tj,

for some j 2 I. By postulate (IU8) we obtain that when [K] =
S
i2I [Ki],

[K}A] = [Tj}A] [ (
S
i2I;i6=j[Ti}A]). Hence v 2 [K}A]. qed

Katsuno and Mendelzon's characterization results based on partial orders as

opposed to partial pre-orders also lift to the in�nite case, replacing postulate

(U8) with postulate (IU8).

3 Analytic revision functions

Our aim is to de�ne the AGM revision function in the pointwise seman-

tic framework of update. Consider a theory as a set of possible scenarios.

Katsuno and Mendelzon's operation can be calculated by means of a case

analysis over the set of complete scenarios compatible with the original the-

ory. First, for each case �nd out its closest outcome that accommodates

the new information; then take as the overall result what is common to

all outcomes. Even though for each case the closest outcome entailing the

new information is selected, some outcomes could be relatively implausible.

Could we have a measure to determine when one outcome is more plausible

than another? We suggest that one outcome is more plausible than another

when it is at a closer distance from the theory under change. We will �rst

formalize a notion of distance and then de�ne a new operation that picks

as a result of the change just the outcomes that are minimally distant. We

will call this operation an analytic revision.

A distance is a binary function f : X � X ! Y , such that X is a

set and Y is a totally ordered set with minimal element, satisfying that

f(x; y) = min(Y ) i� x = y (centering) and f(x; y) = f(y; x) (symmetry).

But there are weaker notions. Ultrametric distances satisfy the centering

and the triangular inequality and pseudo distances just satisfy the centering

condition. Since we seek the connection between revision and update, we

are interested in a notion of distance that corresponds to the preorders of

update models. Thus, we shall be concerned with pseudo distances only,

and making some language abuse we will refer to them just as distances.

It is possible to recast an update model M = hW; f�w: w 2 Wgi into

a model based on functions having as range any totally ordered set with

smallest element. We will consider the set IR+ of real numbers greater or

equal to 0, but any other totally ordered set with smallest element would do.

It is clear how each total preorder in the update model induces a function

dw such that all the information encoded in �w is placed in dw :W ! IR.

v �w u i� dw(v) � dw(u).
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The centering condition establishes a restriction on the possible values of

the functions.

(centering) dw(w) = 0 and for every v 2W such that v 6= w, dw(v) > 0.

For each indexical total preorder �w the limit assumption requires that for

each L-nameable set [A] there exists some �w-minimal elements of [A].

(limit assumption) For each x 2 W , for each [A] � W , there are y 2 [A]

such that 8y0 2 [A], dx(y) � dx(y
0).

The update of K by A is de�ned as:

K}A = Th(
[

w2[K]

fv 2 [A] : dw(v) = dw([A])g):

Since functions dw obey the centering condition, the distance from a point

to itself is 0 and the distance from a point to every other point is greater

than 0. We will require no further properties on d for the moment. Notice

in particular that this conception of distance is not symmetric since d(w; v)

may di�er from d(v; w). Boutilier (personal communication) has provided

a good rational for it: \The lack of symmetry seems certainly appropriate

when the ordering mirrors exogenous change; for instance, it is quite easy

to break an egg while it is hopeless to put it back together." Just for

convenience we give the following

De�nition 3.1 (Distance between two points) Let an update model

M = hW; fdw : w 2 Wgi be given. We de�ne the distance function

d : W � W ! IR+ between pairs of worlds v; w as the value of w in dv:

d(v; w) = dv(w).

We shall extend the above de�nition to distance between sets, as the result

of a double minimization. The de�nition of d : P(W )�P(W )! IR+ covers

the limiting case of the empty proposition in a way that will be convenient.

De�nition 3.2 (Distance from a set to a set) Let d be a distance func-

tion obtained from an update model hW; fdw : w 2 Wgi. Let X, Y be

subsets of W . Let f : W ! IR+ be any positive (greater than 0) function.

We de�ne.

d(X;Y ) =

8<
:

minx2X miny2Y fd(x; y)g ; if X;Y 6= ;:

miny2Y ff(y)g ; if X = ;; Y 6= ;:

0 ; if Y = ;:
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From now on we assume the extended distance function and, abusing no-

tation, we will write singleton sets without braces, i.e. we will write d(u; v)

instead of d(fug; fvg). As before, notice the lack of symmetry: in general

d(X;Y ) is di�erent from d(Y;X). Furthermore we will directly consider

models M = hW;di instead of the indexical models as we can straightfor-

wardly move from one to the other. We are ready now to give the formal

semantic de�nition of analytic revision.

De�nition 3.3 (Analytic revision) Let M = hW;di and X;Y � W ,

then the analytic revision � : P(W )�P(W )! P(W ) is de�ned as

X � Y = fy 2 Y : d(X; y) = d(X;Y )g:

The syntactic counterpart taking as arguments a theory and a formula,

�� : IK � L! IK is simply

K��A = Th([K] � [A]):

4 Connections

4.1 Analytic revision and update

The crucial semantic di�erence between analytic revision and update is that

analytic operation relies on two minimizations while the update just one.

As a direct consequence an analytic revision ignores some of the possible

outcomes that an update would consider. Then the theory resulting from

an analytic revision is at least as informed as that of an update.

Observation 4.1 If K is consistent, K}A � K��A.

Proof. We want to show that X � Y is included in X}Y . Suppose

y 2 X � Y . Then minx2Xfd(x; y)g = minx2X;y02Y fd(x; y
0)g. Fix a value

x0 of x 2 X such that d(x0; y) = minx2Xfd(x; y)g. Then d(x0; y) =

minx2X;y02Y fd(x; y
0
g. Hence d(x0; y) = miny02Y fd(x0; y

0
g. Hence y 2

X}Y . qed

The reason for this observation being relative to the consistency of K is

that the update function of the inconsistent theory results in the inconsistent

theory. In contrast, analytic revision overcomes inconsistency. The following

result asserts that when the theory is also complete the two operations

coincide.

Observation 4.2 If K is consistent and complete then K��A = K}A.
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Proof. The proof is quite trivial. Let K be consistent and complete, so its

proposition is a singleton [K] = fug.

Then, [K}A] =
S
i2[K]fw 2 [A] : di(w) = di([A])g = fw 2 [A] : du(w) =

du([A])g = fw 2 [A] : d([K]; w) = d([K]; [A])g = [K] � [A]. qed

We establish precisely the connection between analytic revision and update,

generalizing the two results above.

Observation 4.3 Let K be a consistent theory and hW;di a structure for

the update operation }. Then for every formula A there exists a consistent

theory K 0
� K such that K��A = K 0

}A. In particular, K 0 may be chosen

as Th(fw 2 [K] : d(w; [A]) = d([K]; [A])g). (Notice that K 0 depends on A.)

Proof. By Observation 4.1 we know that taking K 0 = K provides us with

a theory that is too weak to satisfy the observation. Let's study this in

detail.

If A is a satis�able formula, [A] 6= ;, so [K}A] is not empty.

By de�nition [K}A] =
S
w2[K]fv 2 [A] : dw(v) = dw([A])g =

S
w2[K]fv 2

[A] : d(w; v) = d(w; [A])g =S
ffv 2 [A] : d(w; v) = d(w; [A])g : w 2 [K] and d(w; [A]) = d([K]; [A])g

[ S
ffv 2 [A] : d(w; v) = d(w; [A])g : w 2 [K] and d(w; [A]) > d([K]; [A])g.

Thus, [K 0] should be chosen as [K 0] = fw 2 [K] : d(w; [A]) = d([K]; [A])g

in which case K 0
}A = K��A. qed

The next lemma states that when a formula is consistent with the theory,

the analytic revision operation is just the addition of the formula to the

theory.

Lemma 4.4 If A is consistent with K, then K��A = Cn(K [ fAg).

Proof. Assume A is consistent with K. Then [K] \ [A] 6= ;. By the

centering condition d([K]; [A]) = 0 and for any v 62 [K]; d([K]; v) > 0.

Then by De�nition 3.3, [K] � [A] = fw 2 [A] : d([K]; w) = 0g. Thus,

[K] � [A] = [K] \ [A]. qed

In spite of the technical connection it is not surprising to �nd that the

analytic revision is not an update operator.

Observation 4.5 �� satis�es (U0)-(U7) and (U9), fails (IU8) and fails monotony.

Proof. Let's see �rst that �� satis�es (U1)-(U7) and (U9).

(U0) and (U1) are granted since by De�nition 3.3, [K] � [A] � [A].

(U2) follows as a direct consequence of Lemma 4.4.

(U3) is a consequence of the limit assumption of d.
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(U4) is obvious from the semantic de�nition of analytic revision.

(U5)1 We have to show that ([K] � [A]) \ [B] � [K] � [A ^ B]. If ([K] �

[A]) \ [B] = ;, the inclusion trivially holds.

Assume ([K] � [A]) \ [B] 6= ;. By De�nition 3.3, ([K] � [A]) \ [B] =

fw 2 [A] : d([K]; w) = d([K]; [A])g \ [B] = fw 2 [A] \ [B] : d([K]; w) =

d([K]; [A])g. Also, [K]� [(A^B)] = fw 2 [A]\ [B] : d([K]; w) = d([K]; [A]\

[B])g.

Suppose for contradiction that (1) u 2 ([K] � [A]) \ [B], and (2) u 62

[K] � [(A ^ B)]. From (1) we obtain (3) u 2 [A] \ [B], while (2) can be

rewritten as (2') u 62 fw 2 [A] \ [B] : d([K]; w) = d([K]; [A] \ [B])g.

Then by (2') and (3) we obtain (4) d([K]; u) > d([K]; [A] \ [B]). By

(1) we have that d([K]; u) = d([K]; [A]), and (3) assures that u 2 [A] \ [B].

Hence we obtain d([K]; u) = d([K]; [A] \ [B]), contradicting (4).

(U6) Assume B 2 K��A and A 2 K��B.

Since d([K]; [A]) = minx2[K]miny2[A]fd(x; y)g, there exists v 2 [K]�[A] such

that d([K]; v) = d([K]; [A]). Similarly, there exists w 2 [K] � [B] such that

d([K]; w) = d([K]; [B]).

Since [K] � [A] � [B], then d([K]; [A]) = d([K]; v) � d([K]; [B]). Also

since [K] � [B] � [A] d([K]; [B]) = d([K]; w) � d([K]; [A]). We obtain

d([K]; [A]) � d([K]; [B]) � d([K]; [A]), thus, d([K]; [A]) = d([K]; [B]). We

conclude, [K] � [A] = [K] � [B], as required.

(U7) Assume [K] = fug, then distance from [K] is exactly distance from

u and d(u; [A _ B]) = d(u; [A] [ [B]) = minfd(u; [A]); d(u; [B])g. Without

loss of generality assume d(u; [A]) � d(u; [B]). Then [K]� [A_B] = [K]� [A];

hence, ([K] � [A]) \ ([K] � [B]) � [K] � [A _B].

(U9)2 We have to show that if [K] is a singleton and ([K]�[A])\[B] is not

empty then ([K]�[A^B]) � ([K]�[A])\[B]. Assume (1) ([K]�[A])\[B] 6= ;.

Then there is some x 2 [A] \ [B] such that d([K]; [A]) = d([K]; x).

Suppose (2) [K] � [A ^ B] 6� ([K] � [A]) \ [B]. Then there is some

u 2 [K] � [A ^ B)]) but u 62 ([K] � [A]) \ [B]. By (1) and (2) we obtain

(3) d([K]; [A ^B]) = d([K]; u) > d([K]; [A]). By De�nition 3.3 and (3), for

every w 2 [A], if d([K]; w) = ([K]; [A]) then w 2 [A] [ [:B], contradicting

(1). Notice for later use that for this proof we have not made use of the

hypothesis that [K] is a singleton.

To prove that �� fails postulate (IU8) suÆces to to provide witnesses to

(X [ Y ) � Z 6= (X � Z) [ (Y � Z). Let X;Y;Z � W non-empty, such that

X \ Z = ; and Y \ Z 6= ;. Hence (X [ Y ) \ Z = Y \ Z 6= ;.

By Lemma 4.4,Y �Z = Y \Z and (X [ Y ) �Z = (X [ Y )\Z = Y \Z.

Therefore, (X[Y )�Z = Y �Z. From postulate (U3) proved above, X�Z 6= ;.

Since X � Z may not be included in Y � Z, (U8) may not be satis�ed.

For instance let X = fxg � [A ^ :B], Y = fyg � [A ^ B ^ C], Z = [B],

1Notice that this postulate corresponds to the AGM revision postulate (K*7).
2Notice that this postulate is a particular case of the AGM revision postulate (K*8).
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and let v 2 [B ^ :C]. Let dx; dy satisfy the centering condition such that,

dx(v) = 1. Then, v 2 X �Z and Y �Z = fyg. Thus, (X [Y ) �Z is di�erent

from (X � Z) [ (Y � Z).

That �� fails monotony can be proved using the same strategy of Obser-

vation 2.1. qed

The analytic revision operation relies only on those possible worlds that

regard the change as minimally distant from the theory under change. Then,

if possible, the analytic revision will understand new information as having

caused no change at all, a mere con�rmation of what already was a possibility

in our picture of the world. This behaviour has been stated as Lemma 4.4

and is shared with AGM revision. In the next section we will show that

AGM revisions and analytic revisions are indeed connected.

4.2 Analytic revision and AGM revision

First we will note that the analytic revision function �� satis�es the AGM

postulates (K*1)-(K*8).

Theorem 4.6 �� is a revision operator satisfying (K*1)-(K*8).

Proof. Most postulates follow directly from De�nition 3.3 or from Lemma 4.4.

(K*7) and (K*8) have been proved as postulates (U5) and (U9) respectively,

in Observation 4.5. qed

The key idea behind an analytic revision is to de�ne a meaningful distance

relation between sets in terms of the functions dw (which in turn were ob-

tained from the ternary relations �w). For example, a candidate distance

from a theory K could have been any arbitrary dv. But it is evident that the

change operation this approach would induce does not satisfy the complete

set of AGM revision postulates.

Observation 4.7 Assume L a language with at least two propositional

letters, K an incomplete theory of L, v 2 [K] a single element of W and dv
an real function for v satisfying the centering condition. Let Æ be a change

operation for K de�ned as K Æ A = Th(fy 2 A : dv(y) = dv([A])g). Then Æ

satis�es (K*1),(K*2),(K*5)-(K*8) but in general fails (K*3)(K*4).

Proof. (K*1),(K*2),(K*5)-(K*8) have identical proofs as those in Theo-

rem 4.6.

(K*3). Since we assume K is not complete then there is a formula A

such that A;:A 62 K. Then, either v 2 [A] or v 2 [:A]. Without loss of

generality, suppose v 2 [:A]. Then, there is some x 2 [K] \ [A]. We show

a counterexample to (K*3) such that x 62 [K Æ A]. Since L has at least two

propositional letters, there is some u 2 [A], u 6= x. Let dv(u) < dv(x). Then,
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x 62 [K Æ A] = fy 2 [A] : dv(y) = dv([A])g, as x is not a minimal element in

dv satisfying A.

If we add to the the previous counterexample that u 62 [K] and dv(u) =

dv([A]), then postulate (K*4) also fails as u 2 [K Æ A] but u 62 [K] \ [A].

qed

Distance from theory K becomes the standard ordering used in the semantic

presentations of AGM revision (a world w is as close as v from theory K if

and only if the distance from [K] to w is not greater than the distance from

[K] to v).

Theorem 4.6 showed that every analytic revision function is an AGM

revision function. However, what is most interesting is that a transitively

relational AGM revision function for a theory K is an analytic revision for

such theory K. Only after this result we can speak of a true connection

between AGM revision and the semantic structure of update.

Theorem 4.8 (Makinson, personal communication) Every revision func-

tion � for K satisfying the extended set of AGM postulates (K*1)-(K*8) is

an analytic revision function for K.

Proof. Let � be an AGM revision function for K satisfying (K*1)-(K*8).

By Grove's result, there is a system of spheres SK for K that represents

�. By Observation 2.6 SK induces a real function dK on W into the reals

greater or equal 0, satisfying (centering) and (limit assumption).

The proof of the theorem just consists in showing that any real function

d : W ! IR+ satisfying (centering) and (limit assumption) can be extended

to a distance function, obtaining the semantic structure of analytic revision.

We de�ne d :W �W ! IR+ as follows.

i. 8w; v 2 [K]; w 6= v, d(w; v) = 1,

ii. 8w 2W , d(w;w) = 0,

iii. 8w 2 [K];8v 2W n [K], d(w; v) = dK(v),

iv. 8w 2W n [K];8v 2W;d(w; v) = gw(v),

where gw : W ! IR+ is any function at all assigning values greater than

0. We extend d as a function on sets as usual, taking d(;; v) = dK(v), for

the empty set. We have to check that the function d is of the kind needed

to generate a analytic revision operation. We just check that the induced

relations �w over W de�ned by setting

u �w v i� d(w; u) � d(w; v), for all u; v;2 W

satisfy (1) �w is a a total preorder on W , and (2) �w is centered at w; i.e.

if v �w w then v = w.

Now (1) is immediate. To prove (2), let u 2 W with u 6= w. We want

to show that w �w u; i.e. that if u 6= w then d(w;w) < d(w; u). By the
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second case of our de�nition of d, d(w;w) = 0 for all w 2W , hence we have

to show that for w 6= u, d(w; u) > 0. If u;w are both in [K], then by the

�rst case d(w; u) = 1 > 0. If w is not in [K], it follows from the fourth case

that d(w; u) > 0. If w in [K] and u is not, then d(w; u) = r(u) > 0 since r

is itself centered in [K]. Thus in all cases d(w; u) > 0 and we are done.

It is immediate from the de�nition of d that (3) for all u; v 2W n [K], for

any w 2 [K], d(w; v) � d(w; u) i� dK(v) � dK(u) i� c
K(v) � cK(u), and (4)

for any u;w 2 [K] and for all v 2 W n [K] , d(w; v) = d(u; v) = d([K]; v) =

dK(v).

Now let � be the analytic revision function determined by the structure

hW;di. We have to show that for all A, [K �A] = [K] � [A]. If [K]\ [A] 6= ;,

by (K*4) in Lemma 4.4 we have [K � A] = [K] \ [A] = [K] � [A]. Suppose

[K]\ [A] = ;. By de�nition of analytic revision and (4) [K]� [A] = fv 2 [A] :

d([K]; v) = d([K]; [A])g = fv 2 [A] : dK(v) is �-minimal in fdK(w) : w 2

[A]gg= fv 2 [A] : v is in the �-minimal sphere in S that intersects [A]g =

(by (3) above) [K � A]. qed

We observe in the proof above and also in De�nition 3.2 that we have con-

siderable freedom when de�ning the behaviour of the revision for the in-

consistent theory. For example we could require what Makinson called the

Overkilling property (O). It says that the analytic revision of an inconsistent

theory should result in plain acceptance of the new information.

(O) If K is inconsistent then K��A = Cn(A).

Coincidentally, this property de�nes the revision of the inconsistent theory

in [19]. The analytic revision function that comply with (O) can be char-

acterized by the function f : W ! IR+ involved in the de�nition of d (see

De�nition 3.2).

Observation 4.9 (Makinson, personal communication) �� satis�es (K*1)-

(K*8) and (O) if and only if f is a constant function.

Proof. �� satis�es (K*1)-(K*8) and (O) i�, by Theorem 4.6 and 4.8, �� is a

analytic revision in hW;di s.t. if K is inconsistent then K��A = Cn(A) i� �� is

a analytic revision in hW;di and for any A, fw 2 [A] : d(;; w) = d(;; [A])g =

[A]. Now, fw 2 [A] : d(;; w) = d(;; [A])g = [A] i� for any v, w in [A], f(w)=

f(v) i� f is a constant function. qed

5 Representation Theorems

Theorem 4.8 proved the correspondence between analytic revisions and AGM

transitively relational partial meet revisions of a given theory. However,

analytic revisions of distinct theories are delicately balanced, while AGM

revisions of distinct theories can be totally independent. That is, the set of

22



AGM revisions is essentially right unary (Observation 2.3), while the set of

analytic revisions is not. Can we impose additional constraints to the set

of AGM revision functions to achieve the needed balance corresponding to

analytic operations? We are looking for postulates that link the behaviour

of AGM revision of di�erent theories. In the case of a �nite propositional

language the needed postulate is dual to the Ventilation condition, which

we name

(K*�n) (K1 \K2) � A 2 fK1 � A;K2 � A; (K1 �A) \ (K2 � A)g.

(K*�n) forces a constraint between the revision of a theory and the revision

of theories in which it is included. We can indeed show that in a �nite

language, (K*1)-(K*8) and (K*�n) completely characterize analytic revision

functions.

Theorem 5.1 Given a �nite propositional language L, an operator � satis-

�es postulates (K*1)-(K*8) and (K*�n) if and only if there exists an analytic

revision function �� such that for any K 2 IK, A 2 L, K �A = K��A.

Proof. By Theorem 4.6 we know that �� validates (K*1)-(K*8). We shall

verify that �� also validates (K*�n).

Let M be any model for �� M = hW;di, A any formula of L and K any

theory of L such that K = K1 \K2 for theories K1;K2.

We have to show that in modelM , [K��A] 2 f[K1��A]; [K2��A]; [(K1��A)][

[(K2��A)]g.

By De�nition 3.3 [K��A] = fv 2 [A] : d([K]; v) = d([K]; [A])g. Also

by de�nition, d([K]; v) = d([K1][ [K2]; v) = minfd([K1]; v); d([K2 ]; v)g and

d([K]; [A]) = d([K1] [ [K2]; [A]) = minfd([K1]; [A]); d([K2 ]; [A])g.

Then either d([K1]; [A]) < d([K2]; [A]) andK��A = K1��A, or d([K2]; [A]) <

d([K1]; [A]) and K��A = K2��A, or d([K1]; [A]) = d([K2]; [A]) and then K��A

= K1��A \K2��A.

By Theorem 4.8, given a �xed theory K, � restricted to K is a analytic

revision function, but a priori, with respect to di�erent modelsMK , one for

each theory. We want to prove that this family of functions can actually be

obtained from a single update model. i.e. that when considered as a binary

function, � can be obtained in the semantic framework of analytic revision.

Take the following model, M = hW;di where W is the set of complete,

consistent theories of the language and d is de�ned as d(w; v) = dw(v), for

dw a function characterizing the behaviour of � when taking w �xed as �rst

parameter. Also d(;; v) = d;(v). We extend d to a function on sets as we

did before, by means of the min function. We now proceed by induction on

the size of K.

Clearly, if K is empty or a singleton, K � A = K��A, by de�nition of d.

Suppose K is not a singleton.
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[K��A � K �A]. We want to show that if w 2 [K �A] then w 2 [K] � [A].

Clearly, K��A = K � A for [K] a singleton or [K] the empty set.

Assume [K] = fx1; : : : ; xng, v 2 [K�A] and v 62 [K��A]. Since � validates

(K*�n) andK is �nite, then there must be some x in [K] such that v 2 [x�A].

Let IN = fx 2 [K] : v 2 [x � A]g. Also, by De�nition 3.3 there must exist

some y 2 [K] such that d(y; [A]) = d([K]; [A]). Then v 62 fyg � [A]. Hence

v 62 [y �A]. Let OUT = fy 2 [K] : v 62 [y � A]g.

Consider the following sets of two elements, fy1; y2g � OUT, then triv-

ially, by an application of (K*�n) v 62 fy1; y2g � A. Take now fx; yg such

that x 2 IN and y 2 OUT, then either (1) d(x; [A]) < d(y; [A]) or (2)

d(x; [A]) = d(y; [A]) or (3) d(x; [A]) > d(y; [A]). But (1) is impossible

since x; y 2 [K] and d(y; [A]) = d([K]; [A]). If (2) holds then, (using that

v 2 [x � A]), d(y; [A]) = d(x; v). Therefore, v 2 [K] � [A], contrary to our

assumption. Then (3) should be the case for any pair x, y. According to

our de�nition of d, cfyg(A) = cfx;yg(A) and cfxg(A) 6= cfx;yg(A). Hence

fx; yg � A = y � A, therefore, v 62 fx; yg � A.

Now we are almost done. Notice that by pairing elements of IN with

elements of OUT we can \delete" the elements of IN from [K]. I.e. let

x 2 IN, y 2 OUT and write [K] as fx; yg [ ([K] n fxg), then applying

(K*�n) v 2 [Th([K] n fxg) � A]. Because IN is �nite, we will �nally have

v 2 [Th(OUT) � A]. A contradiction.

[K � A � K��A]. Let u 2 [K��A] and let x 2 [K] such that d([K]; [A]) =

d(x; u). Then u 2 [x �A]. Also, because K is �nite, by repeatedly applying

(K*�n) we have [K �A] =
S
[Ti �A] for some complete theories Ti extending

K. If x = Ti for some i we are done. Suppose u 62 [Ti � A] for any Ti. We

now use again (K*�n) and comparison of pairs to arrive to a contradiction

(write [K] = fx; Tig[([K]nfTig) and consider K �A � Th(fx; Tig)�A must

hold for each Ti). Full details are given for the case of in�nite languages in

Theorem 5.3. qed

The general case is slightly harder. Postulates (K*1)-(K*8) and (K*�n)

do not fully characterize the �� operation in a language with an in�nite

number of propositional letters.

Observation 5.2 Consider an in�nite propositional language L. Postulates

(K*1)-(K*8) and (K*�n) do not fully characterize the �� operation.

Proof. Given a propositional language L with an in�nite but countable

number of propositional letters we will exhibit a function � satisfying pos-

tulates (K*1)-(K*8) and (K*�n) for which there is no model M = hW;di,

satisfying that 8K 2 IK, 8A 2 L;K � A = K��A. We de�ne � semantically

as follows. Let K 2 IK, A 2 L and v 2 [A], then

[K � A] =

8<
:

[K] \ [A] ; if [K] \ [A] 6= ;:

fvg ; if [K] \ [A] = ; and [K] is �nite.

[A] ; if [K] \ [A] = ; and [K] is in�nite.
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For each incomplete theory K 2 IK such that [K] has a �nite number of

elements (i.e., there are only a �nite number of maximal consistent sets

extending K), then let �K be a �xed AGM maxichoice revision function for

K always returning one and the same maximal consistent set of A. And

for each incomplete theory K 2 IK such that [K] has an in�nite number

of elements then let �K be the full meet revision function for K, namely

K �A = Cn(A).

Clearly � validates (K*�n). If [K] is �nite it is easily veri�ed. If [K] is

in�nite, for any theories K1;K2 such that K = K1 \K2, either [K1] or [K2]

are in�nite. Then either K1 � A = Cn(A) or K2 �A = Cn(A), as required.

Suppose for contradiction that there is a model M = hW;di such that

for every K 2 IK, for every A 2 L, K � A = Th(fy 2 [A] : d([K]; A) =

d([K]; y)g).

According to our de�nition of �, for every theory K such that [K] is

�nite, if [K] \ [A] = ; then [K � A] = fvg. Therefore d must verify that

8x 2W;d(x; x) = 0; 8x;w 2W;w 6= v, d(x; v) < d(x;w).

For any [K] such that [K] \ [A] = ;, Then 0 < d([K]; [A]) = d([K]; v),

since for each x 2 [K], d(x; v) = d(x; [A]). Then [K � A] = fy 2 [A] :

d([K]; A) = d([K]; y)g= fvg. This contradicts the case when [K] is in�nite,

because according to our de�nition [K �A] = [A]. qed

(K*�n) gives us the following insight: when performing the analytic revision

of K by A, we should hear the opinions of the theories to which K can be

extended. If we now turn to the way � is de�ned given K and A, we see that

we can always identify an element w of [K] which is responsible for de�ning

d([K]; [A]). Then [K] � [A] is obtained as the subset of [A] standing at the

same distance from [K] as w is. These complete theories are clearly the ones

we should pay attention to. Following this intuition we propose:

(K�9) K � A =
T
(Ti � A), for some complete theories Ti extending K.

(K�8) IfK � K 0
� T , for T a complete theory then, for all A, K�A � T �A

implies K �A � K 0
� A � T � A.

(K�9) claims there are some complete theories | \the intended interpre-

tations" of our theory | that determine the result of the revision. (K�8)

expresses the primacy of these complete theories and establishes a restricted

form of monotony for the � operator. In particular, if our theory K is re-

garded as an intersection of two larger theories K1 and K2, then (K�9) and

(K�8) constrain the revision of K in terms of the other two. By (K�9) the

revision of each K is guided by some complete theories. These complete

theories either extend K1 or K2 or both. Then, by (K�8) the revision of K

is included in the revision of K1 or in the revision of K2, or both. Notice

that, in the presence of (K*1)-(K*8), the postulates (K�9) and (K�8) imply

(K*�n).
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We now prove that the eight AGM postulates plus (K�9) and (K�8)

completely characterize the analytic revision operation. This is the most

important result in this paper.

Theorem 5.3 (Representation Theorem, general case) An operator

� satis�es postulates (K*1)-(K*8), (K�9) and (K�8) if and only if there

exists a model M = hW;di, where d is a distance function and for any

K 2 IK, A 2 L K � A = K��A.

Proof. We have proved in Theorem 4.6 that �� satis�es postulates (K*1)-

(K*8). That �� validates (K�9) follows immediately from De�nition 3.2,

since min requires the existence of elements in [K] such that their distance

to [A] is minimal. �� also validates (K�8) since for any Y if x 2 [K] and

d([K]; Y ) = d(x; Y ) then d(x; Y ) = minz2[K]fd(z; Y )g. Therefore, for all

X � [K], if x 2 X then d(X;Y ) = d(x; Y ) and d(X;Y ) = d([K]; Y ) as

required. This proves the right to left implication.

Let's see the left to right part. Let � be a change function satisfying

(K*1)-(K*8),(K�9) and (K�8). We will construct a analytic revision model

M = hW;di which corresponds to �.

We have to show that 8K 2 IK;8A 2 L;K � A = K��A. We start by

de�ning the modelM . The domainW will be the set of all complete theories

in the language L. To de�ne the distance function d, let fSKg be the family

of systems of spheres corresponding to �. If SK is a given system of sphere

we note as SKi a particular element of it, and for a given formula A, cK(A)

is the minimal sphere in SK with nonempty intersection with [A].

As before, we start by determining the value of d for elements in W and

then extend the function to subsets of W as in De�nition 3.2. Any function

d : P(W )�P(W )! IR+ satisfying the following restrictions is appropriate.

i. 8v 2W , d(v; v) = 0.

ii. 8v; u;m; d(v; u) < d(v;m) i� 9Sv1 ; S
v
2 2 S

vu 2 Sv1 ;m 2 Sv2&S
v
1 � Sv2 .

iii. 8v; u;m; d(v; u) = d(v;m) i� 8Svi 2 Svu 2 Svi , m 2 Svi .

iv. d(fx; yg;X) = d(x;X) i� cfxg(X) = cfx;yg.

v. d(x;X) < d(y;X) i� cfxg(X) = cfx;yg(X) and cfyg(X) 6= cfx;yg(X).

vi. d(x;X) = d(y;X) i� cfxg(X) [ cfyg(X) = cfx;yg(X).

vii. 8v; u;m; d(;; u) < d(;;m) i� 9S;1 ; S
;
2 2 S;u 2 S;1 ;m 2 S;2&S

;
1 � S;2 .

It is clear that by case vii), whenK is the inconsistent theoryK�A andK��A

agree. Furthermore if [A] = ;, by (K � 5), K � A = L, and also K��A = L

by de�nition. We will now prove, for K and A consistent, that u 2 [K � A]

i� u 2 [K��A] by analyzing the di�erent cases.

Suppose [K] = fvg.
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[K��A � K �A]. Let u 2 [K �A], to prove (1) u 2 fw 2 [A] : d(w; [A]) =

d(v; w)g. Let m 2 [A] be such that d(v; [A]) = d(v;m), then (1) is equivalent

to (2) d(v;m) = d(v; u). By iii) we have to prove that for all S
fvg

i 2 Sfvg; u 2

S
fvg

i , m 2 S
fvg

i . As d(v; [A]) = d(v;m) thenm 2 cfvg(A). Let S
fvg

i be any.

If cfvg(A) � S
fvg

i then both m and u are in S
fvg

i . If S
fvg

i � cfvg(A), then

u 62 S
fvg

i . Suppose m 2 S
fvg

i , but then d(v; [A]) > d(v;m), a contradiction.

[K � A � K��A]. To prove the other inclusion, let u 2 [A] and suppose

d(v;m) = d(v; u) for m 2 [A] such that d(v; [A]) = d(v;m). Suppose u 62

cfvg(A). Then by iii) m 62 cfvg(A). Let S
fvg

i be the �-smallest such that

m 2 S
fvg

i , cfvg(A) � S
fvg

i . By the limit assumption cfvg(A) is de�ned and

let m0
2 cfvg(A) \ [A]. But then by i) d(v;m0) < d(v;m) contradicting the

selection of m.

The general case, [K] > 1.

[K�A � K��A]. Let u 2 [K��A] and let x 2 [K] be such that d([K]; [A]) =

d(x; u) (notice that then, u 2 [x��A] and by the previous case u 2 [x � A]).

By (K�9), [K � A] =
S
[Ti � A] for some complete theories extending K. If

for some i, u 2 [Ti �A] we are done, so assume u 62 [Ti �A] for all i.

Consider for any i the proposition fx; Tig � [K]. Then by (K�8), [Ti �

A] � [Th(fx; Tig) � A] � [K � A]. Apply (K�9) to Th(fx; Tig) � A now. If

[x � A] � [Th(fx; Tig) � A] we are done. Rests to consider the case when

[Th(fx; Tig) �A] = [Ti �A], and furthermore [Th(fx; Tig) �A] 6= [x �A]. But

then by condition v), d(Ti; [A]) < d(x; [A]), contradicting the choice of x.

[K��A � K �A]. For this inclusion, we should further prove the case for

[K] = fv; wg separately. Suppose u 2 [K �A], then by (K�9), u 2
S
[Ti �A]

for some Ti complete theories extending K, either

a. K � A = v � A. Then by iii), d(fv; wg; [A]) = d(v; [A]). As u 2

cfv;wg(A), by de�nition of d, i) and ii) we have that d(v; u) = d(v; [A]) =

d([K]; [A]). Hence u 2 [K] � [A].

b. K � A = w � A. Similar to a.

c. K � A = v � A \ w � A. By iv), d(v; [A]) = d(w; [A]). Also, either

u 2 cfvg(A) or u 2 cfwg(A). Hence, as above, either d(v; u) = d(v; [A]) or

d(w; u) = d(v; [A]). In both cases, u 2 [K] � [A].

[K] > 2. Suppose u 2 [K � A], then by (K�9), u 2
S
[Ti � A] for some

Ti complete theories extending K. In particular, let Ti 2 W be such that

u 2 [Ti �A].

Let x be any in [K], by (K�8), K �A � Ti�A implies (Ti\x)�A � Ti�A.

Hence, (Ti \ x) � A � Ti � A. We are now in the previous cases, of re-

vising theories whose proposition has cardinality one or two. Therefore

we can claim that (Ti \ x)��A � Ti��A. I.e., by de�nition for all w 2

[A], d(fTi; xg; [A]) = d(fTi; xg; w) then d(Ti; [A]) = d(fTi; xg; w), i� for all

w 2 [A], minfd(Ti; [A]); d(x; [A])g = minfd(Ti; w); d(x;w)g then d(Ti; [A]) =

d(Ti; w).
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Therefore d(Ti; [A]) = d(fTi; xg; [A]). As this is true for all x 2 [K],

d(Ti; [A]) = d([K]; [A]). Because u 2 [Ti��A], d(Ti; u) = d(Ti; [A]) and u 2

K��A. qed

Theorems 5.1 and 5.3 are interesting because they give general characteri-

zation results for AGM revisions based on pseudo-distances, for both, the

�nite and the general cases.

We now turn our attention to two natural constraints on the distance

functions which give rise to proper subclasses of analytic AGM revisions.

One is to consider a distance function d :W �W ! IR+ is such that no two

points are at the same distance from a given point, if d(v; u) = d(v; w) then

v = w. This is to take dv, the the projection of the distance function over

its �rst argument, to be injective. It is quite strightforward to prove that

such a distance function gives rise to an analytic AGM revision that takes

consistent complete theories to consistent complete theories. For complete

theories this analytic function behaves as a maxichoice AGM revision. For

this reason we name it maxi-analytic AGM functions, and we show that they

are characterized by the following postulate.

(K*M) If K is consistent and complete then, for any A, K �A is complete.

Observation 5.4 (maxi-analytic AGM functions) An operator � sat-

is�es postulates (K*1)-(K*8), (K*9) (K*8) and (K*M) if and only if there

exists a distance model M = hW;di, such that for each v 2W , dv = d(v; w)

is injective, and for any K 2 IK, A 2 L K �A = K��A.

Proof. The characterization result follows directly for the fact that for

every nameable Y �W , fxjdv(Y ) = dv(x)g is a singleton. qed

Another interesting consideration is the case of well founded distances, that

is distances that are de�nable over the ordinals, d :W �W ! O. Applying

Observation 2.6, a well founded system of spheres centered in [K] can be

represented by ordinal function dK : W ! O. In this setting actual values

of the function d(w; v) can be obtained by counting the number of ancestors

of the argument along the well founded system of spheres centered in fwg.

The class of AGM revision functions de�nable over well founded system of

spheres has been characterized by [14]. They are called well behaved revision

functions and they are characterized by postulates (K*1)-(K*8) plus

(K*WB) For every nonempty set X of consistent formulae of L there

exists a formula A 2 X such that :A 62 K � (A _B), for every B 2 X.

Well behaved analytic AGM functions satisfy (K*1)-(K*8),(K�9),(K�8) and

(K*WB), and are a proper subclass of general analytic functions that can

be characterized semantically by a distance function d over the ordinals.
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Of course, this characterization carries over analytic functions and update

functions.

It is apparent from the proofs of Theorems 5.1 and 5.3 that the distance

function that we use is just a convenient means to express the comparative

relations relative to sets, that are induced from the comparative relations

relative to single points. In fact the analytic operation can be regarded as

a particular case of a more general framework. Consider a model with two

ordering relations, hW; f�1
w: w 2 Wg; f�2

X : X 2 P(W )gi, being �1, �2

possibly independent (total) preorders on W . Then the � operation would

be a double minimization over the two relations, de�ned as

min
�2

X

[
x2X

min
�1
x

(Y )

where min�(V ) = fv 2 V : 8z 2 V; v � zg. Our de�nition of analytic revi-

sion in terms of distances obtains in this general framework, by considering

�
1 as an ordering encoding d : W �W ! IR+ and �2 as one encoding the

extension d : P(W ) � P(W ) ! IR+. We believe it is interesting to study

characterization results for the double minimization operation on the gen-

eral framework. This seems to be the proper setup to investigate which are

the needed properties connecting the two orderings as well as the particular

properties of each of them.

6 Properties

Theorem 5.3 makes clear that analytic revision functions are a proper subset

of AGM functions, those that enforce a special relation between the revision

of di�erent theories. Interestingly, inside the AGM framework we �nd two

nice examples of functions enforcing a strong dependency on the revison of

di�erent theories. One is the AGM full meet revision [2, 1]. It was considered

a limiting case of acceptable revision functions because it returns theories

that are too small, and it is almost a constant function when the second

argument is held �xed:

(Full Meet) For every K 2 IK such that :A 2 K, K �A = Cn(A):

The other example arises from the work of Alchourr�on and Makinson in [3]

where they de�ne the safe contraction function and state properties of the

intersection and union of theories. A generalization of those properties is

provided by the so called postulate (K*9) which counts as simple way of

linking the revisions of all di�erent theories, [4, 16]. Our analytic function

imposes a more subtle dependence on the revision di�erent theories than

that of (K*9).

Observation 6.1 The following properties are not validated by the analytic

revision operation.
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(Weak Intersection) If :A 2 K1\K2 then (K1\K2)�A = (K1�A)\(K2�A).

(Union) (K1 [K2) � A = (K1 � A) [ (K2 �A):

(Weak Union) If :A 2 K1 \K2 then (K1 [K2) �A = (K1 �A) [ (K2 � A).

(K*9) If :A 2 K; K �A = L �A.

Proof. We prove Weak Intersection. Let a propositional language L

with just two letters A and B. Let [A] = fw1; w2g, [B] = fw2; w3g, and

[K1] = fw3g and [K2] = fw4g. Let d(wi; wi) = 0, d(wi; wj) = i if i is odd

d(wi; wj) = j if i is even. Thus, [K1] � [A] = fw1; w2g, [K2] � [A] = fw1g, so

fw1; w2g = [K1]�[A][[K2]�[A] = [(K1�A)\(K2�A)]. And [K1\K2]�[A] =

fw3; w4g � [A] = fw1g. Therefore (K1 \K2) �A 6= (K1 �A)\ (K2 �A). qed

Let's turn now to the problem of iterated application of the � operation. A

pertinent criticism of the AGM formalism is its lack of de�nition with respect

to iterated change ( see [10] and [18, 17]). Although the AGM formalism

does not forbid the iteration of change functions, it omits any speci�cation

of how it should be performed or what the properties of successive change

are. AGM functions � : IK � L ! IK can be iterated, that is, (K � A) � B

is well de�ned. But since there are no properties linking the revision of

di�erent theories the result can be erratic. Our analytic revisions do impose

some dependence between the revision of di�erent theories, for what they

can be candidate functions for iterated theory revision. Analytic revisions

inherit the form of iteration of the standard update operation. The formal

structure M = hW;di determines the distance from every [K]. Since the

analytic revision of K by A is a theory K��A, also a proposition in the same

modelM , distance from K��A is also de�ned in the structure. We can prove

that analytic revisions satisfy some natural conditions of iterated change.

(Or-Left) If D 2 (K � (A_B))�C then D 2 (K �A)�C or D 2 (K �B)�C.

(Or-Right) If D 2 (K�A)�C and D 2 (K�B)�C then D 2 (K�(A_B))�C.

And in general they fail

(Commutativity) (K � A) �B = (K � B) � A.

Observation 6.2 Analytic revision functions satisfy Or-Left and Or-Right

and fail Commutativity.

Proof. Let's name X = [K] � [A], Y = [K] � [B].

(Or-Left). [K]�[A_B]�[C] = fw 2 [C] : minfx2[K]�[A_B]gminfy2[C]gfd(x; y)gg =

(by (K*7) and (K*8)) [K] � [A_B] = [K] � [A], or [K] � [A_B] = [K] � [B],

or [K] � [A _B] = ([K] � [A]) [ ([K] � [B]). Then, either

(1) fw 2 [C] : minfx2Xgminfy2[C]gfd(x; y)gg = [K] � [A]; or

(2) fw 2 [C] : minfx2Y gminfy2[C]gfd(x; y)gg= [K] � [B]; or

(3) fw 2 [C] : minfx2X[Y g minfy2[C]gfd(x; y)gg =
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fw 2 [C] : minfminfx2Xgminfy2[C]gfd(x; y)g, minfx2Y gminfy2[C]gfd(x; y)ggg

is either equal to [K] � [A] or it is equal to [K] � [B].

(Or-Right). Assume (1) D 2 (K��A)��C and (2) D 2 (K��B)��C.

By (1) fw 2 [C] : minfx2Xgminfz2[C]gfd(x; z)gg � [D].

By (2) fw 2 [C] : minfy2Y gminfz2[C]gfd(y; z)gg � [D].

And [K] � [A _B] � [C] =

fw 2 [C] : minfx2X[Y gminfz2[C]gfd(x; z)gg = fw 2 [C] :

min(minfx2Xgminfz2[C]gfd(x; z)g;minfx2Y gminfz2[C]gfd(x; z)g)g

is either equal to [K] � [A] or is equal to [K] � [B].

Then [K] � [A _B] � [C] � [D].

qed

Analytic revisions provide a di�nitionally simple scheme of iterated change.

But, while formally attractive, they make a simplifying assumption. Each

theory is modi�ed in a predetermined way independently of how we have

obtained such a theory. Analitic revisions stisfy,

(Functionality) IfH = ((K�A1) : : :�An) thenH�A = ((K�A1) : : :�An)�A.

But if K is really considered an argument of the function �, this is to be

expected. If f is a function, it is required that f(a) = f(b) whenever a = b.

This functional behavior has been interpreted as a lack of historic memory,

because each theory is modi�ed in a predetermined way independently of

how we have obtained such a theory. Lehmann in [12] mentions this property

as a \Non Postulate," for he considers that interesting iterated systems

should not make this strong simplifying assumption. Proposals that deal

with iterated change and possess historic memory ought to expand the AGM

model in such a way that change functions return not only the modi�ed

theory but also a modi�ed version of the change function (or equivalently,

return enough information to construct a new change function). Also in [12]

Lehmann proposes seven postulates for iterated change. In our notation

they are:

(I1) K � A is a consistent theory.

(I2) A 2 K �A.

(I3) If B 2 K �A, then A � B 2 K.

(I4) If A 2 K then K �B1 � : : : �Bn = K � A � B1 � : : : �Bn for n � 1.

(I5) If A 2 Cn(B), then K �A �B �B1 � : : : �Bn = K �B �B1 � : : : �Bn.

(I6) If :B 62 K�A thenK�A�B�B1�: : :�Bn = K�A�(A^B)�B1�: : :�Bn.

(I7) K � :B � B � Cn(K [ fBg).

Condition (I7) implies dependency between two revision steps and conse-

quently enforces (at least to some extent) the property of \historic memory"

which analytic revisions lack. As remarked by Lehmann, the standard up-

date operation fails postulates (I4), (I5) and (I7), and satis�es the rest. It
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is then expected that the analytic revision operation violates (I5) and (I7)

and validates the rest.

Observation 6.3
i) All analytic revision functions satisfy (I1), (I2), (I3), (I4) and (I6).

ii) There exist analytic revision functions violating (I5) and (I7).

Proof. The violation of (I5) and (I7) can be proved by constructing

a counterexample. (I1), (I2), (I3), (I4) follow from the AGM postulates

(K*1)-(K*4). For (I6) we should prove that if :B 62 K��A then K��A��B =

K��A��(A ^ B). But this is obvious since K��A��B = Cn(K��A [ fBg) =

Cn(K��A [ fA ^Bg). qed

Darwiche and Pearl [8] introduce (C1)-(C4) as desirable properties of iter-

ated revisions, while (C5) and (C6) are considered too demanding. Condi-

tion (C1) amounts to Lehmann's (I5) and condition (C2) has been proved

inconsistent with the AGM postulates (K*7) and (K*8) in [12]. Analytic

revisions do not validate any of Darwiche and Pearl's postulates.

(C1) If A 2 Cn(B) then (K � A) �B = K � B.

(C2) If :A 2 Cn(B) then (K � A) � B = K �B.

(C3) If A 2 K � B then A 2 (K � A) �B.

(C4) If :A 62 K � B then :A 62 (K �A) � B.

(C5) If :B 2 K � A and A 62 K � B then A 62 (K � A) �B.

(C6) If :B 2 K � A and :A 2 K � B then :A 2 (K �A) � B.

Observation 6.4 There exist analytic revision functions violating each of

(C1)-(C6).

Proof. C1 is just postulate I5 above.

C2. Assume a propositional language with three variables A;B and

C. Let w 2 [:A] \ [:B], z 2 [A] \ [:B], v 2 [:A] \ [B] \ [C] and u 2

[:A] \ [B] \ [:C]. Suppose d(z; v) < d(z; u) and d(w; u) < d(w; v). Let

[K] = fwg. Then [K��A] = fzg, [K��A��B] = fvg but [K��B] = fug.

C3 and C4. Let w 2 [:A]\ [:B], z 2 [A]\ [:B], v 2 [:A]\ [B]\ [C] and

x 2 [A]\[B]\[C]. Suppose d(w; z) < d(w; x) < d(w; v) and d(z; v) < d(z; x).

Let [K] = fwg. Then [K��B] = fxg � [A], [K��A] = fzg and [K��A��B] =

fvg 6� [A].

C5 and C6. Let w 2 [:A] \ [:B], z 2 [A] \ [:B], and x 2 [A] \ [B] and

u 2 [:A] \ [B] . Suppose d(w; z) < d(w; u) < d(w; x) and d(z; x) < d(z; u).

Let [K] = fwg. Then [K��B] = fug � [:A], [K��A] = fzg � [:B] but

[K��A��B] = fxg � [A]. qed
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