
CDMTCS
Research
Report
Series

Pre-Proceedings of The
Workshop on Multiset
Processing
(WMP-CdeA 2000)

C. S. Calude and M. J. Dinneen
(editors)
University of Auckland, New Zealand

Gh. Păun (editors)
Institute of Mathematics of the Romanian
Academy, Bucureşti, Romania

CDMTCS-140
August 2000

Centre for Discrete Mathematics and
Theoretical Computer Science

Preface

The Workshop on Multiset Processing (WMP-CdeA 2000), held in Curtea de
Argeş, Romania, from 21 to 25 of August, 2000, has the ambitious goal of being the first one
in a series devoted to explicitly and coherently developing the FMT, the “Formal Multiset
Theory”, following the experience and the model of FLT, the Formal Language Theory.

It starts from two observations: (1) multisets appear “everywhere” (this is also proved
by a series of papers in the present volume), and (2) Membrane Computing is a sort of
distributed multiset rewriting framework, without having equally well developed the non-
distributed multiset rewriting (whatever “rewriting” means when dealing with multisets).
This is in contrast with what happened in formal language theory, where the grammar
system branch has appeared many years after extensively dealing with single grammars and
single automata.

As an immediate scope, the workshop is intended to gather together people interested
in multiset processing (from a mathematical or a computer science point of view) and in
membrane computing (P systems), grounding the development of the latter on the “theory”
of the former (although this theory looks rather scattered in this moment, spread in many
papers, without any systematic/monographic presentation).

Taking seriously the etymology, the workshop will mean not only presentations, but also
discussions, exchange of ideas, problems and solutions, joint work, collaboration. It is quite
probable that during this process the present papers will be improved, changed, developed.
We advise the reader to take this volume as provisory (as pre-proceedings), mainly meant
to be a support for the work during the meeting.

The workshop was organized by the Romanian Academy (by its Institute of Mathemat-
ics, Bucharest), the Politechnical University of Madrid (by the Artificial Intelligence De-
partment), the Auckland University, New Zealand (by the Centre for Discrete Mathematics
and Theoretical Computer Science), and by “Vlaicu-Vodă” High School of Curtea de Argeş,
with the Organizing Committee consisting of Cristian Calude (Auckland), Costel Gheorghe
(Curtea de Argeş), Alfonso Rodriguez Paton (Madrid), Gheorghe Păun (Bucharest, chair).

Many thanks are due to all these institutions for their consistent help.
We also thank to the contributors to this volume, as well as to the participants to the

workshop.
C. S. Calude

M. J. Dinneen
Gh. Păun

Table of Contents

A. Atanasiu
Arithmetic with Membranes 1

J.-P. Banatre
Programming by Multiset Transformation: A Review of the Gamma Approach 18

A. Baranda, J. Castellanos, R. Molina, F. Arroyo and L.F. Mingo
Data Structures For Implementing Transition P System in Silico 21

P. Bottoni, B. Meyer and F.P Presice
Visual Multiset Rewriting 35

H. Cirstea and C. Kirchner
Rewriting and Multisets in Rho-calculus and ELAN 51

E. Csuhaj-Varjú and G Vaszil
Objects in Test Tube Systems 68

A. Dovier, C. Piazza and G. Rossi
A Uniform Approach to Constraint-Solving for Lists, Multisets, Compact-Lists, and
Sets 78

P. Frisco
Membrane Computing Based on Splicing: Improvements 100

S. Kobayashi
Concentration Prediction of Pattern Reaction Systems 112

S.N. Krishna
Computing with Simple P Systems 124

M. Kudlek
Rational, Linear and Algebraic Languages of Multisets 138

M. Kudlek, C. Martin-Vide and Gh. Paun
Toward FMT (Formal Macroset Theory) 149

M. Maliţa
Membrane Computing in Prolog 159

V. Manca
Monoidal Systems and Membrane Systems 176

S. Marcus
Bags And Beyond Them 191

T.Y. Nishida
Multiset and K-subset Transforming Systems 193

Gh. Paun
Computing with Membranes (P Systems): Twenty Six Research Topics 203

R. Rama
Computing with P Systems 218

M. Sturm and T.H. Dresden
Distributed Splicing of RE with 6 Test Tubes 236

H. Suzuki
Core Memory Objects with Address Registers Representing Hige-dimensional Inter-
section 249

Y. Suzuki and H. Tanaka
Artificial Life and P Systems 265

A. Syropoulos
Mathematics of Muiltisets 286

C. Zandron, C. Ferretti and G. Mauri
Using Membrane Features in P Systems 296

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 1 - 17.

Arithmetic with membranes1
by

Adrian ATANASIU

Faculty of Mathematics, Bucharest University
Str. Academiei 14, sector 1
70109 Bucharest, Romania

E-mail: aadrian@pcnet.ro

Abstract: P - systems are computing models, where certain objects
can evolve in parallel into an hierarchical membrane structure. Recent
results show that this model is a promising framework for solving NP

- complete problems in polynomial time.

The present paper considers the possibility to perform operations with

integer numbers in a P - system. All four arithmetical operations are

implemented in a way which seems to have a lower complexity than

when implementing them in usual Computer Architecture.

1 Introduction

For the elements of formal languages we shall use definitions and notations in
[6]; for basic notions, notations and results about P - systems [2],[3],[4],[5] can
be consulted. In this paper we shall use a variant of P system with Active
Membranes, very closed to that defined in [5].

A P system with active membranes is a construct

Π = (V, T,H, µ, w1, . . . , wm, R)

where:

1. m ≥ 1;

2. V is an alphabet (the total alphabet of the system); its elements are
called objects;

3. T ⊆ V (the terminal alphabet);

1Supported by Spanish Secretaria de Estado de Educacion, Universidades, Investigacion
y Desarrollo, project SAB1999-0025

4. H is a finite set of labels for membranes;

5. µ is a membrane structure, consisting in m membranes, labeled (not nec-
essarily in a one-to-one manner) with elements of H; there is a (unique)
membrane s called skin; all the other membranes are inside of the skin.

6. w1, w2, . . . , wn are strings over V , describing the multisets of objects
placed in the m regions of µ;

7. R is a finite set of development rules, of the following forms:

(a) [hu −→ v]αh , for h ∈ H, u, v ∈ V ∗, u �= λ, α ∈ {+,−, 0};

(b) u[h]α1h −→ [hv]α2h , where u, v ∈ V +, u �= λ, h ∈ H, α1, α2 ∈
{+,−, 0};

(c) [hu]α1h −→ v[h]α2h , where u, v ∈ V +, u �= λ, h ∈ H, α1, α2 ∈
{+,−, 0};

(d) [hu]αh −→ v, where u, v ∈ V +, u �= λ, h ∈ H, α ∈ {+,−, 0}, h �= s;

(e) [hu]αh −→ [hv1]
α1
h [hv2]

α2
h , where u, v1, v2 ∈ V ∗, u �= λ, h ∈ H, α, α1, α2 ∈

{+,−, 0}, h �= s;

(f) [h0 [h1u]+h1 [h1v]−h1]
α
h0
−→ [h0[h1u]β1h1

]βh0[h0 [h1v]β2h1
]βh0 , where α, β, β1, β2 ∈

{+,−, 0},
h �= s.

In [5], rules (a)− (e) are defined only for u, v ∈ V, u �= λ (λ is the empty
word); we shell use here a general variant, defined in [3]; this can be reduced
to that in [5], but some problems of synchronization can arise.

The rules (e) and (f) have a reduced form here (see also [1]); in a rule of
type (e) the membrane h can contain other membranes; also, rules of type (f)
are used in [1] with u = v = λ, p = 2.

The rules (a) − (d) are applied in parallel: any objects which can evolve,
should evolve. If a membrane with label h is divided by a rule of type (e),
which involves an object a, then all other objects and membranes situated in
the membrane h which are not changed by other rules, are introduced in each
of resulting membranes h. Similarly when using a rule of type (f): the whole
contains of the membranes h0, h1 are reproduced unchanged in their copies,
providing that no rule is applied to their objects.

When applying a rule of type (e) or (f) to a membrane, if there are objects
in this membrane which evolve by a rule of type (a), then in the new copies of
the membrane the results of evolution are introduced. The rules are applied
bottom - up, in one step, but first the rules of the innermost region and then
level by level until the region of the skin.

When applying a rule of type (b) or (f) it is possible to arise several pos-
sibilities. In this case any variant will be accepted.

At one step, a membrane h uses only one rule of types (b)− (f). The skin
can never divide. During a computation, objects can leave the skin (by means
of rules of type (c)) The terminal objects which leave the skin are collected in
the order of their expelling of the system; when several terminal symbols leave
the system at the same time, then any ordering of them is accepted.

2 Arithmetical P - systems

Let us consider a basis q ≥ 2 and

x = a1a2 . . . ak = a1 · q
k−1 + a2 · q

k−2 + . . . + ak, ai ∈ {0, 1, . . . , q − 1}, k ≥ 1

be an integer in basis q.
A P -system for x (called here Arithmetical P - System - APS for short)

can be defined in a natural way as
Π = (V, T,H, µ, w1, w2, . . . , wn0, R),

where:
the integer n0 is a constant fixed by the system (in Computer Architecture

structures, n0 = 8, 16, 32, 64 or 128); the examples of this paper uses – without
loss of the generality – the value n0 = k + 1; T = {0, 1, . . . , q − 1}, V \ T =
{f}, H = {1, 2, . . . , n0}, µ = [1[2. . . [n0]n0 . . .]2]1, wi = ak+1−i (1 ≤ i ≤
k), wi = f (k + 1 ≤ i ≤ n0), R is a set of rules, unspecified in this stage.

Initial, all membranes have a neutral polarity.
Graphically, an APS is represented in Figure 1

Figure 1: The structure of an APS'

&

$

%

'

&

$

%

�

�

	

1

2

n0

f

ak

ak−1

a1
�

�

�

�k
...

So, in an APS each membrane contains only one object: a digit (terminal
object) or f (special nonterminal object); a digit from the membrane i is more
significant that all digits situated in the membranes j with j < i and less

significant that all digits situated in the membranes j with j > i. A f -
membrane is the most inner membrane or contains only f - membranes.

We consider here that every APS contains at least one f - membrane.
Because an APS will be placed in other P - systems, the outer membrane

1 of an APS will be not considered the skin.

3 The addition of two APS

In this section we consider that the skin contains two APS. A special object
xa will be the catalyst of operation: the addition of these APS will start in
the moment when xa is placed (somehow) in the skin.

'

&

$

%

�

�

�

�

�

�

�

�
xa IMA IMB

0

Also, in whole this paper we shall consider the binary case (q = 2). The
generalization to an arbitrary q is easy to be accomplished.

3.1 Addition with listing

The simplest case we present is the addition of two integers, when the sum
is obtained outside the skin. In this situation, no APS remains in the skin
(denoted here by membrane s).

Let a = a1a2 . . . ak, b = b1b2 . . . br be two binary integers. We construct a
P - system Π = (V, T,H, µ, ws, w1, w2, . . . , wn0, R),
where: T = {0, 1}, V \ T = {xa, x, y, a, b, f}, H = {s, 1, 2, . . . , n0},

µ = [s[1[2. . . [n0]n0 . . .]2]1[1[2. . . [n]n . . .]2]1]s
(polarity is ignored in this construction), ws = xa, wi (1 ≤ i ≤ n0) defined
accordingly with the definition of APS. The set R of rules is defined as follows:

1. [sxa −→ 0xx]s: in skin are introduced 0 (the carry digit) and x - the
object which will penetrate membranes. This will be always the first
rule applied.

2. x[i]i −→ [iy]i (1 ≤ i ≤ n0): the object y is introduced by x in the
membrane i. This action is performed n0-times, in parallel for both
APS.

3. [iy]i −→ x (1 ≤ i ≤ n0): the membrane i is dissolved. This rule acts in
tandem with (2).

4. [s000 −→ 0a, 001 −→ 0b, 011 −→ 1a, 111 −→ 1b]s: after the dissolving
of the membrane i, two new digits appear in the skin; they react with
the carry digit and we obtain a pair: a binary digit – the new carry, and
a codification of the sum between these digits (a for 0, b for 1).

5. [s00f −→ 0a, 01f −→ 0b 11f −→ 1a]s: one of the two numbers has
finished its digits and offers f ; then the sum is accomplished by the
carry digit and the digit of the second number.

6. [s0ff −→ λ, 1ff −→ b]s: the last membranes were dissolved and two f

are free in the skin. The carry digit becomes the most significant digit of
the sum; of course, only 1 is kept (usually, a 0 as most significant digit is
ignored). Any object f which appears later in the skin will be ignored.

7. [sa]s −→ 0[s]s, [sb]s −→ 1[s]s: the sum of two digits is decodified and
transported (listed) outside the skin. This operation is synchronized
with (2); so the skin will contain in every moment the codification of at
most one digit.

Attention: the number obtained as result is in reverse order ! If c1c2c3 . . . is
the sequence obtained (ci after dissolving of membranes labeled with i), the
sum of the initial two numbers is

c1 · 2
0 + c2 · 2

1 + c3 · 2
2 + . . .

Example 1 Let us consider the binary numbers 110 and 1011. We consider
(for simplicity) n0 = 5; then the initial configuration is

[sxa[10[21[31[4f [5f]5]4]3]2]1[11[21[30[41[5f]5]4]3]2]1]s.

This configuration will be transformed step-by-step as follows:
[s0xx[10[21[31[4f [5f]5]4]3]2]1[11[21[30[41[5f]5]4]3]2]1]s
[s0[1y0[21[31[4f [5f]5]4]3]2]1[1y1[21[30[41[5f]5]4]3]2]1]s
[s001xx[21[31[4f [5f]5]4]3]2[21[30[41[5f]5]4]3]2]s
[s0b[2y1[31[4f [5f]5]4]3]2[2y1[30[41[5f]5]4]3]2]s
1[s011xx[31[4f [5f]5]4]3[30[41[5f]5]4]3]s
1[s1a[3y1[4f [5f]5]4]3[3y0[41[5f]5]4]3]s
10[s011xx[4f [5f]5]4[41[5f]5]4]s
10[s1a[4yf [5f]5]4[4y1[5f]5]4]s
100[s11fxx[5f]5[5f]5]s
100[s1a[5yf]5[5yf]5]s
1000[s1ffxx]s
1000[sbxx]s
10001[sxx]s

So, the result is 10001 = 110 + 1011.

It is easy to generalize this construction for any basis q: the rules (1), (2), (3)
remains unchanged. The rules from (4) are modified in ijk −→ pxp where
p = (i + j + k) mod q and xp ∈ V \ T are new special objects.

The sets (5), (6) of rules are modified similarly. The rules from (7) are now
[sxp]s −→ p[s]s, p ∈ {0, 1 . . . , q − 1}.

The complexity of addition with listing is constant: O(n0), because n0 is a
constant beforehand fixed and 2n0 + 3 steps are necessary to realise the sum
between two APS.

This evaluation can be optimised if we work with a variable number n (n ≤
n0) of membranes, but in this case the definition of rules becomes more com-
plex.

3.2 Addition without listing

In the most cases, we need to keep the result into a membrane, in order to use
it later on. That’s why another construction of the addition of two APS will
be realised.

Let us establish the general characteristics of a calculus with membranes
we define later on:

• Any membrane from APS contains only one digit or f . The most inner
membrane contains f .

• An APS contains at least one digit.

• Both terms of an arithmetical operation have the same number of mem-
branes (n0 is a constant beforehand fixed).

• The result of the operation can be an APS without f in the most inner
membrane, but the number of digits is always at most n0 (overlaps are
not considered).

• All numbers codified in APS’s are nonnegative and unsigned.

We can imagine that in the skin there is a membrane – always denoted by 0
– where a single APS – denoted by B – is initially placed (the result of the
operation will remain in this APS).

We are interested only what will happen in that peculiar membrane, not
in the skin (which can be – for example – a dispatcher for other computing
membranes 0); that’s why in the following we shall ignore the skin s.

A meta-command ADD will introduce in the membrane 0 another APS –
denoted by A – with its first membrane polarised +, and an object xa which
starts the addition.

After the addition is accomplished, in the membrane 0 remains only the
APS B, which contains the result. Now, another meta-command concerning
the membrane 0 can be produced by the skin.

A meta-command OUT will list outside the membrane 0 the digits from
the APS B.

In order to add two positive integers without listing the result, we shall
define a little more complicated P - system. Because the skin s is neutral
operational and electrical, in the following s will be sistematic ignored in no-
tations.

Consider the binary integers
a = a12

k−1 + a22
k−2 + . . . + ak, b = b12

r−1 + b22
r−2 + . . . + br.

The P - system will be composed by
T = {0, 1}, V \ T = {xa, x0, x, y, z, u, v, f, a, b, c, d}, H = {0, 1, 2, . . . , n0},

µ = [0xa[1ak[2ak−1 . . . [n0f]0n0 . . .]
0
2]
+
1 [1br[2br−1 . . . [n0f]0n0 . . .]

0
2]
0
1]
0
0

Figure 2: The structure of a P - system for a binary operation

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

xa

ak

A

br

B

0
1+ 10

20 20

and rules

1. [0xa −→ x0x0]0, x0[1]
+
1 −→ [1y]+1 , x0[1]

0
1 −→ [10]+1 .

At the first step, xa introduces (via x0) the objects y in A and 0 in B
(which will change its polarity); 0 is the first (virtual) carry digit.

2. [iy]+i −→ x (1 ≤ i < n0), [n0y]+n0 −→ z.

y dissolves membranes polarized +; for the most inner membrane, an
object z appears inside the membrane 0; otherwise, the object is x.

3. x[i]
0
i −→ [iy]0i , [iy]0i −→ [iy]+i (1 < i ≤ n0).

x introduces an object y in the neutral membrane i; at the next step,
this membrane is polarized + (for synchronization).

4. p[i]
α
i −→ [ip]αi , p ∈ {0, 1}, α ∈ {+,−} (1 ≤ i ≤ n0).

Any digit penetrates through all non-neutral membranes.

5.

000 −→ ac

001 −→ bc
011 −→ ad

111 −→ bc

+

i

,

 000 −→ 0

001 −→ 1
011 −→ 0v

0

i

(1 ≤ i ≤ n0).

The addition ai +bi +c is accomplished (c is the carry digit) in the mem-
brane i, polarized +. If A has finished its digits earlier and polarization
in B is still neutral, then the second variant is used.

6.

 00f −→ ac

01f −→ bc

11f −→ ad

+

i

,

[
00f −→ f

01f −→ 1

]0
i

(1 ≤ i ≤ n0).

B has fewer digits than A, so bi = f (the sum contains only ai and the
carry digit).

If both APS have finished their digits but the carry digit has affected
the next unpolarized membrane, the second variant is used.

7. [ia]+i −→ [ia]−i , [ib]
+
i −→ [ib]

−
i , c[i]

0
i −→ [i0]+i , d[i]

0
i −→ [i1]+i (1 ≤

i ≤ n0).

The objects a and b change polarity of the membrane i (here the cal-
culation is over); c and d rebuild the carry digit of the next membrane,
which is ready for computation of the sum (its polarization becomes +).

8.

[
zf −→ u
ff −→ f

]0
0

,

[
za −→ 0u
zb −→ 1u

]0
i

,

u[i]
−
i −→ [iz]0i , u[i]

+
i −→ [i0]0i , v[i]

0
i −→ [i01]0i (1 ≤ i ≤ n0).

Final rules: A is dissolved completely, the objects z and u rebuild the
neutral polarization of B; v solves the situation when the most inner
membrane in B receives a nonzero carry digit.

Example 2 Let us compute 11 + 10. The sequential transformations of the P
- system are the following:

[0xa[11[21[3f]03]
0
2]
+
1 [10[21[3f]03]

0
2]
0
1]
0
0

[0x0x0[11[21[3f]03]
0
2]
+
1 [10[21[3f]03]

0
2]
0
1]
0
0 [0[11y[21[3f]03]

0
2]
+
1 [100[21[3f]03]

0
2]
+
1]00

[01x[21[3f]03]
0
2[100[21[3f]03]

0
2]
+
1]00 [0[21y[3f]03]

0
2[1001[21[3f]03]

0
2]
+
1]00

[0[21y[3f]03]
+
2 [1bc[21[3f]03]

0
2]
+
1]00 [01x[3f]03[1b[201[3f]03]

+
2]−1]00

[0[3yf]03[11b[201[3f]03]
+
2]−1]00 [0[3yf]+3 [1b[2011[3f]03]

+
2]−1]00

[0zf [1b[2ad[3f]03]
+
2]−1]00 [0u[1b[2a[31f]+3]−2]−1]00

[0[1zb[2a[31f]+3]−2]01]
0
0 [0[11u[2a[31f]+3]−2]01]

0
0

[0[11[2za[31f]+3]02]
0
1]
0
0 [0[11[20u[31f]+3]02]

0
1]
0
0

[0[11[20[301f]03]
0
2]
0
1]
0
0 [0[11[20[31]03]

0
2]
0
1]
0
0

Indeed, 11 + 10 = 101.

The complexity of the addition is obviously constant – O(n0), because all
APS have the same depth n0.

3.3 The Incrementation

The incrementation (addition with 1) is an operation often used in program-
ming languages; thus, it has a separate implementation and an increased exe-
cution speed.

We can realise this operation in an easier manner, which will justify its
utilisation later on.

Let A be an APS and {p, +} be two new objects; we shall consider – as
usually – only the binary case.

The rules which will be introduced in every membrane of A are:
p[i]i −→ [i+]i (1 ≤ i ≤ n0),
 +0 −→ 1

+1 −→ 0p
+f −→ 1

i

(1 ≤ i ≤ n0).

So, p starts the incrementation and will be the carry digit (if the actual
element of the current membrane is 1). + will add an unit and – in dependence
on the other digits – stops the operation or generates a carry digit for the next
inner membrane.

4 The Subtraction

4.1 The Decrementation

The decrementation (subtract with 1), can be defined as a special operation
with increased speed (like the incrementation). The main problem is to build
the most significant digit, because after we subtract one unit, it is possible to
remain 0 on the most significant position; all that 0 should be replaced by f .

Five new objects d, du, e, eu and g are used. The rules are (the polarization
is always neutral and therefore was omitted):

d[i]i −→ [idu]i,

[
0du −→ 1d
1du −→ 0e

]
i

(1 ≤ i ≤ n0).

d starts decrementation. By penetrating the membrane i, the object d is
transformed in du; this new object accomplishes the decrementation. When 1
is transformed in 0, the decrementation is finished and an object e is generated,
in order to check if that was the most significant 1 or not.

e[i]i −→ [ieu]i,

 0eu −→ 0d

1eu −→ 1
feu −→ fg

i

(1 ≤ i ≤ n0).

e penetrates the membrane i and becomes eu. If eu matches a digit, it will
be deleted (and the decrementation is finished). If it matches an f , then a
new object g is generated.

[ig]i −→ g[i]i (2 ≤ i ≤ n),

[
0g −→ fg
1g −→ 1

]
i

(1 ≤ i ≤ n0).

g comes back in the embedding membranes and changes any 0 in f . The
first 1 is the most significant digit and g will be eliminated.

Remark: The rule [0g −→ fg]i can be avoided; it was introduced as a
supplementary precaution, when – by mistake – some 0’s remains as most
significant digits.

Example 3 Let us consider the decrementation 100 − 1. The P -system will
go through the following transformations:

[0d[10[20[31[4f]4]3]2]1]0 [0[10du[20[31[4f]4]3]2]1]0
[0[11d[20[31[4f]4]3]2]1]0 [0[11[20du[31[4f]4]3]2]1]0
[0[11[21d[31[4f]4]3]2]1]0 [0[11[21[31du[4f]4]3]2]1]0
[0[11[21[30e[4f]4]3]2]1]0 [0[11[21[30[4feu]4]3]2]1]0
[0[11[21[30[4fg]4]3]2]1]0 [0[11[21[30g[4f]4]3]2]1]0
[0[11[21[3fg[4f]4]3]2]1]0 [0[11[21g[3f [4f]4]3]2]1]0
[0[11[21[3f [4f]4]3]2]1]0.
Therefore 100− 1 = 11.

4.2 The Subtraction of two APS

Having defined the addition of two APS, the subtraction will be easy to be
constructed.

Let be the unsigned integers a =
k−1∑
i=0

ak−iq
i, b =

r−1∑
i=0

br−iq
i contained into

APS A and B respectively. We make the supposition that a < b.

Then b − a = b −
k−1∑
i0

ak−iq
i = b +

k−1∑
i0

(q − 1 − ak−i)q
i −

k−1∑
i=0

(q − 1)qi =

b + a + 1− qk.
Hence, to subtract a from b means to add b with the complement of a and

with 1; finally, one unit have to be subtracted in position k + 1.
The algorithm is:

1. a −→ a (A contains the complement of a);

2. b + 1 −→ b (the incrementation of B – see section 3.3);

3. a + b −→ b (B contains the sum a + b + 1);

4. b− qk −→ b (one unit is subtracted in the position k + 1 of B).

Steps (1) and (2) can be accomplished in parallel; moreover, for (2) and
(3) the problem is reduced to the addition of two integers. It remains to solve
only steps (1) and (4).

Initial, the P - system is shown in Figure 2, with one starting object xs

placed instead of xa.
There are necessary 2n0+5 new objects: {xs, c

′, d′, e′, c0, . . . , cn0, x
′
0, . . . , x

′
n0
}

(the objects used in addition, incrementation and decrementation are not en-
countered; we suppose there are already there). The rules used are:

1. [0xs −→ pc′c0]
0
0.

The first step consists in initialization of the objects which will start the
four actions of the subtraction. Object p starts the incrementation of B
and c′ starts the operation of complementarity (of A).

2. The rules used in complementarity of an APS are defined as follows:

c′[i]
0
i −→ [id

′]0i (1 ≤ i ≤ n0);
[ixd

′ −→ (1− x)c′]0i x = 0, 1, (1 ≤ i ≤ n0);
[ifd

′ −→ e′f]0i (1 < i ≤ n0);
[ie
′]00 −→ e′[i]

0
i (1 ≤ i ≤ n0).

Because only A has initially neutral polarity, c′ will penetrate the mem-
brane 1 of A and starts the operation of complementarity.

3. When e′ arrives in the membrane 0, the operation of addition of these
two membranes (A and B) begins:

[0e
′ −→ xa]00.

4. When the addition is performed (section 3.2), each dissolution of a mem-
brane from A modifies a counter:

[0xci −→ xci+1]
0
0 (0 ≤ i < n0).

5. The first object f appears in the membrane 0 after dissolving of the
membrane k + 1 from A (k ≥ 1).

[0ckf −→ hx′k]00. (i)

x′k are new objects which penetrates B until the membrane k + 1 and
will start the decrementation beginning with that position. h neutralizes
the other apparitions of f (if k < n):

[0hf −→ h]00. (ii)

Finally, the rule [zf −→ u]00 from the set (8) of addition rules will be
replaced by

[0zhf −→ u]00 (iii)

These three rules acts following priorities (iii) > (ii) > (i) because, if an
object can evolve, it should evolve !

6. After the addition is finished, the action of x′k begins:

x′k[i]
0
i −→ [ix

′
k]0i i = 1, . . . k + 1, (1 ≤ k < n0);

[k+11x
′
k −→ 0]k+1 [k+10x

′
k −→ 1x′k+1]

0
k+1;

[k+1x
′
k −→ du]0k+1.

Later on, du performs the rules defined in the decrementation (section
4.1).

The complexity of subtraction is still constant – it depends only on the
number n0 of membranes which are in an APS.

5 The Product of two APS

To multiply two integers means to add one of the numbers with itself by a
number of times equal with the second number. It is a very simple idea, but
– for very large numbers – it becomes difficult to be accomplished in a good
time.

Let us consider the classical operation of multiplying of the binary numbers
a and b. The position of digits from b is essential here. So, if a digit is 0,
then the number a is shifted one position to left (this shift corresponds to a
multiplying by 2); if the digit is 1, then the actually number a is kept into a
temporary location, then it is also shifted. Finally, all the numbers from the
temporary locations are added.

For example:
1101× 110 = 11010 + 110100 = 1001110.
So, the number of integers which will be added equals the number of digits

1 in the second factor of the product.
The P - system which realize the product has initially the same structure

with that of addition (see Figure 2), but here the starting object is xm.
The nonterminal objects used in this operation are {xm, y0, y, z, x0, x1, a, b, v, v0, v1, p0,

p1, 1, g, f}. The rules are:

1. [0xm −→ x0y0]
0
0.

The first rule to be applied; the object x0 starts the splitting of B into
several membranes, which have were shifted with the powers of 2; y0 will
command the dissolution of the last membrane split.

2. y0[1]
+
1 −→ [1a]−1 , [1a −→ zb]−1 , b[i]

0
i −→ [ib]

−
i (1 < i ≤ n0), [n0b −→

λ]−n0.

In order to separate A from B, all membranes of A are negative polarized.
In its membrane 1, the object z is placed.

3. [iz]−i −→ y, y[i]
−
i −→ [iz]−i (1 ≤ i ≤ n0).

The membranes of A are dissolved one by one.

4. 1[1]
0
1 −→ [11]01, 0[1]

0
1 −→ [1v]01, [11]01 −→ [1v]01[1]

+
1 .

The digit obtained by dissolving one of the membranes from A specifies
the behavior of B: an 0 starts one shift (designed by the object v), while
an 1 makes one copy of B (positive polarized) and starts also a shift for
the initial B (neutral).

5. [1vj −→ 0vj]
0
1, vj [i]

0
i −→ [ipj]

0
i , [ipjt −→ jvt]

0
i , [ipjf −→ j]0i j, t =

0, 1, (2 ≤ i ≤ n0).

The shift of elements from B; in the first membrane (the lowest signifi-
cant digit) a 0 is placed.

6. [0x0f −→ x0g]00, g[i]
0
i −→ [ih]0i , [ixh]0i −→ g (1 ≤ i < n0), [n0xh]0n0 −→

x1 (x = 0, 1, f), [00x0f −→ x0]
0
0.

A has no more digits. Therefore B should be entirely dissolved. The
object x1 deletes all next f , finally remaining only one object in the
membrane 0, outside all APS.

7. x1y[1]
+
1 −→ [1x1]

0
1, [1x1]

0
1 −→ x2[1]

0
1, [x0x2 −→ xa]00.

The final rules before the addition of temporary locations; xa starts the
addition (section 3.2). The first rule changes the polarization of an APS
arbitrarily chosen (where the final result will be collected).

8. The addition of all APS in the membrane 0 is performed. The finally
result represents the product between A and B.

The selection of two APS and the application of the algorithm from 3.2
is not detailed. A meta-command ADD coordinated by the skin can
accomplish this operation.

The complexity of the product is very low: only O(log p) where p =
max{k, r} (remember, k is the number of digits from the integer a, r is the
number of digits from the integer b). The number of digits from B assures
how many times the operation of shifting is performed. The duplication (of
A) and the negative polarization (of all membranes from B) are accomplished
in parallel.

Example 4 Let us perform the multiplication 110 × 101. We will consider
n0 = 6 (in order to have enough locations in keeping of the result). The
computation will be performed using the following transformations:

[0xm[10[21[31[4f [5f [6f]06]
0
5]
0
4]
0
3]
0
2]
0
1[11[20[31[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
+
1]00

[0x0y0[10[21[31[4f [5f [6f]06]
0
5]
0
4]
0
3]
0
2]
0
1[11[20[31[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
+
1]00

[0x0[10[21[31[4f [5f [6f]06]
0
5]
0
4]
0
3]
0
2]
0
1[1a1[20[31[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
−
1]00

[0x0[10[21[31[4f [5f [6f]06]
0
5]
0
4]
0
3]
0
2]
0
1[1zb1[20[31[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
−
1]00

[0x0y1[10[21[31[4f [5f [6f]06]
0
5]
0
4]
0
3]
0
2]
0
1[2b0[31[4f [5f [6f]06]

0
5]
0
4]
0
3]
−
2]00

[0x0[110[21[31[4f [5f [6f]06]
0
5]
0
4]
0
3]
0
2]
0
1[2z0[3b1[4f [5f [6f]06]

0
5]
0
4]
−
3]−2]00

[0x0y0 [10[21[31[4f [5f [6f]06]
0
5]
0
4]
0
3]
0
2]
+
1︸ ︷︷ ︸

B+1

[1v0[21[31[4f [5f [6f]06]
0
5]
0
4]
0
3]
0
2]
0
1[31[4bf [5f [6f]06]

0
5]
−
4]−3]00

[0x0B
+
1 [1v0v0[21[31[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
0
1[3z1[4f [5bf [6f]06]

−
5]−4]−3]00

[0x01yB
+
1 [10v0[2p01[31[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
0
1[4f [5f [6bf]−6]−5]−4]00

[0x0B
+
1 [110[2p0v10[31[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
0
1[4zf [5f [6f]−6]−5]−4]00

[0x0fyB
+
1 [10[2v00[3p11[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
+
1 [1v0[2v00[3p11[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
0
1[5f [6f]−6]−5]00

[0x0gB
+
1 [10[20[3p0v11[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
+
1 [10n0[20[3p0v11[4f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
0
1[5zf [6f]−6]−5]00

[0x0B
+
1 fy[10[20[30v1[4p1f [5f [6f]06]

0
5]
0
4]
0
3]
0
2]
+
1 [1hp00[30v1[4p1f [5f [6f]06]

0
5]
0
4]
0
3]
0
2[6f]−6]00

[0x0B
+
1 [10[20[30[4p11[5f [6f]06]

0
5]
0
4]
0
3]
0
2]
+
1 [2hv00[30[4p11[5f [6f]06]

0
5]
0
4]
0
3]
0
2[6zf]−6]00

[0x0B
+
1 gfy[10[20[30[4v11[5f [6f]06]

0
5]
0
4]
0
3]
0
2]
+
1 [30[4v11[5f [6f]06]

0
5]
0
4]
0
3]
0
0

[0x0yB
+
1 [10[20[30[41[5p1f [6f]06]

0
5]
0
4]
0
3]
0
2]
+
1 [3h0[41[5f [6p1f]06]

0
5]
0
4]
0
3]
0
0

[0x0ygB
+
1 [10[20[30[41[51[6f]06]

0
5]
0
4]
0
3]
0
2]
+
1︸ ︷︷ ︸

B+2

[41[51[6f]06]
0
5]
0
4]
0
0

[0x0yB
+
1 B

+
2 [4h1[51[6f]06]

0
5]
0
4]
0
0

[0x0yB
+
1 B

+
2 g[51[6f]06]

0
5]
0
0

[0x0yB
+
1 B

+
2 [5h1[6f]06]

0
5]
0
0

[0x0ygB
+
1 B

+
2 [6f]06]

0
0

[0x0yB
+
1 B

+
2 [6hf]06]

0
0

[0x0x1yB
+
1 B

+
2]00

[0x0B
+
1 [1x1 . . .]

0
1]
0
0 (B2 was arbitrary selected)

[0x0x2B
+
1 B

0
2]
0
0

[0xaB
+
1 B

0
2]
0
0.

B1 contains 110 and B2 contains 11000. After the addition is performed,
the final result (collected into B2) is [0[10[21[31[41[51[6f]06]

0
5]
0
4]
0
3]
0
2]
0
1]
0
0,

that means 110× 101 = 11110.

Remark: If a product of a binary integer by 2 is required, only the step (5)
from the algorithm is used. This corresponds in Computer Architecture to a
shift to right operation and it has a separate faster implementation (similar
to the operations of incrementation and decrementation).

6 The Division

The division of two integers is a little more complicated. Having two APS
corresponding to a (nominator) and b (denominator), the algorithm of division
will work in three steps:

1. At first, two other APS for quotient (q) and remainder (r) will be gen-
erated;

2. By decrementing q and r, new membranes 0 will be constructed, each
membrane containing four APS for these integers (a, b, q, r).

3. In parallel, in each membrane 0 one verifies if the equality a = bq + r
holds. The membrane where this assertion is true will keep the values q
and r (the APS A and B are dissolved). All the other membranes are
dissolved.

The P - system will have as new objects {xd, x
′, x”, z, a, b, a′, b′, a1, b1, q, q1, q2, r, r0, r1,

r2, r3, †,�}. Its initial structure is that from Figure 2, with xd instead of xa

(remember, the membrane 0 is not the skin; the skin s was not drawn).
The rules are:

1. [0xd −→ x′x”]00, x′[1]
0
1 −→ [1z]01, x”[1]

+
1 −→ [1z]+1 .

The first rules which will be applied. The two APS are prepared to be
split.

2. [1z]01 −→ [1a]+1 [1q]01, [1z]+1 −→ [1b]
+
1 [1r]01.

Two new APS Q – for the quotient and R - for the remainder, are
created. All APS contain into their first membrane a stamp (a, b, q, r)
to identify which integer is stored. We shall identify this stamp x with
the value of integer kept in APS X (x = a, b, q, r).

3. The rules for decrementation of Q and R are introduced. The initial
value for q is a− 1, and for r is b− 1.

When the decrementation is finished q is replaced by q1 into Q, r with
r1 into R. Their polarization remains still neutral (A and B are positive
polarized).

4. [1q1x]01 −→ [1q1x]+1 [1q2x]−1 x ∈ {0, 1}, [0[1q1]
+
1 [1q2]

−
1]00 −→ [0[1q]01[0[1q2]

+
1]00.

If Q contains a nonzero integer, then the membrane 0 is split in two
other membranes, each of them containing the four APS (A,B,Q,R).
The process (the decrementation and the splitting) continues with that
membrane 0 which contains Q, neutral polarized.

5. [1q2 −→ r0q]+1 , [1r0]
+
1 −→ r0[1]

+
1 , r0[1]

0
1 −→ [1r1]

0
1, [r1r1 −→ r2]

0
1

In a membrane 0 with Q polarized +, only R may have a neutral po-
larization. These rules transfer from Q to R properties to decrementing
and splitting (copies of A, B and Q are automatically produced in the
membrane 0 at each splitting).

6. [1r2x]01 −→ [1r2x]+1 [1r3x]−1 , x ∈ {0, 1}, [0[1r2]
+
1 [1r3]

−
1]00 −→ [0[1r1]

+
1]00[0[1r1r]01]

0
0.

One of these two membranes 0 obtained contains four APS positive
polarized; this membrane stops its splitting and it is ready to check the
relation a = bq + r. In the other membrane 0, the APS R is neutral and
contains r; therefore, it will be decremented and the string r1r1 obtained
leads to r2, so to another (possible) splitting.

7. [1fr2]
0
1 −→ [10r]+1 .

The case r = 0; the last remainder generated.

8. [1r1]
+
1 −→ xsxm[1]

−
1 .

All APS are positive polarized. The APS R produces the objects xs

which will start the subtraction a− r (accordingly with 4.2) and xm will
start the product b · q (accordingly with section 5). These results are
obtained in A and B respectively.

After this step, all APS from such a membrane 0 are negative polarized.
The rules which accomplishes this restriction are easy to be defined.

9.

[ia]−i −→ a′

[ib]
−
i −→ b′ (1 ≤ i < n0)

a1[i]
0
i −→ [ia]−i

b1[i]
0
i −→ [ib]

−
i (1 < i ≤ n0)

[n0af]−n0 −→ λ
[n0bf]−n0 −→ λ

a′b′ff −→ a1b1
a′b′00 −→ a1b1
a′b′11 −→ a1b1
a′b′01 −→ †
a′b′0f −→ †
a′b′1f −→ †

0

0

.

One verifies if the contents of the APS A and B are equals. These two
APS are dissolved. If the answer is Y ES, in the membrane 0 remains
only tho APS: Q and R.

10.

†[1]
±
1 −→ [1†]01, [1†]01 −→ †�,

†[i]0i −→ [i†]0i , [i†]0i −→ † (1 < i ≤ n0),
[0�]00 −→ λ, [0�x −→ �]00 x = 0, 1, f,
[1q1f −→ †]01.

The APS A and B contain different values; then the whole embedding
membrane 0 is dissolved.

The last rule is used when Q contains the value 0 (after the last decre-
mentation). Then the membrane 0 is not able to check if a = bq + r
holds, therefore it should be dissolved.

It is interesting to see that the complexity of this algorithm is linear O(a+
b). Indeed, a steps are necessary in generating the 0 membranes with q =
a− 1, a− 2, . . . , 1 (the last membrane, for q = 0 will be immediate dissolved).
The generating of b 0 - membranes for values of r = b − 1, . . . , 0 is commited
in parallel with q, so this does not spend time, unless the last generating – for
q = 1 – where these b steps are encountered.

The subtraction is constant and the product has a lower complexity. The
dissolution of membranes spends also a constant time.

Some optimisations can be made to this algorithm.
For example, when a 0 membrane reaches the correct result, from here

an object can be eliberated in the skin, object which ”kills” all the other 0
membranes (because all of them will failed later on).

So, the rule [0a
′b′ff −→ a1b1]

0
0 from group (9) is replaced by [0a

′b′ff −→
a1b1$]00, where $ is a new object. $ is eliberated in the skin and ”viruses” with
† all the other 0 membranes.

This optimization is easy to be constructed, but $ finally remains in the
skin and we have care to protect the other membranes which will be generated
in the skin later on (by other meta-commands).

7 Final remarks

We have shown that (and how) an arithmetical calculus can be defined in the
P - systems framework. Such a calculus can be the basis for more elaborated
applications, maybe also for constructing computer chips or for solving general
mathematical problems. Anyway, it seems that complexity of this calculus is
lower than that on which actual computers are based.

The whole construction from this paper is purely theoretical, the validation
of the discussed ideas should be made in a biochemical framework.

References

[1] Krishna, S.N., Rama, R - A variant of P - systems with active membranes:
Solving NP - complete problems, Romanian J. of Information Science and
technology, 2, 4 (1999), 357-367.

[2] Paun, Gh. - Computing with membranes, Journal of Computer and System
Science, 2000, and Turku Center for Computer Science - TUCS Report No.
208, Nov. 1998 (www.tucs.fi).

[3] Paun, Gh. - Computing with membranes. An introduction, Bull. of the
EATCS, 67 (Febr. 1999), 139-152.

[4] Paun, Gh. - Computing with membranes - A variant: P systems with po-
larized membranes, Intern. J. of Foundations of Computer Science, 11, 1
(2000), 167 - 182, and Auckland University CDMTCS Report No. 098,
1999 (www.cs.auckland.ac.nz/CDMTCS).

[5] Paun, Gh - Computing with membranes (P - systems); Attacking NP -
complete problems, Unconventional Models if Computing (I. Antoniou, C.S.
Calude, M.J. Dinnen, eds.), Springer - Verlag, 2000 (in press).

[6] Handbook of formal languages, vol. 1, Rozenberg, G, Salomaa, A (Eds),
Springer Verlag 1997.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 18 - 20.

Programming by multiset transformation: a review of the

Gamma approach

Jean-Pierre Banâtre∗

Extended abstract.

The Gamma paradigm was originally introduced in [1] and has been developed
further by a number of researchers [2]. It allows algorithms to be expressed with-
out introducing any superfluous sequentiality which would not be required by the
very logic of the algorithms. Essentially, Gamma uses only one data stucture, the
multiset, and one control structure, the rewriting through the Gamma operator.
The multiset rewritings can be compared with chemical reactions which consume
elements of the multiset while producing other elements as the reaction product.

Gamma is a very high level programming language, clearly defined by an oper-
ational semantics, and which can be implemented in a rather straightforward way,
although in practice, information on the target architecture is welcome to produce
an efficient implementation.

Gamma programs consist of applications of conditional rewriting rules to a mul-
tiset. These rules have the following form:

x1, . . . , xn → A(x1, . . . , xn)⇐ R(x1, . . . , xn)

in which the reaction condition R is a predicate, and the action A is a function
operating on a multiset of data elements. An application of this rule consists of
finding, if possible, elements x1, . . . , xn of the multiset such as R(x1, . . . , xn) is true
and replacing them by the result of the application of A(x1, . . . , xn). The process
is repeated until it is not possible to find any new tuple such as R(x1, . . . , xn). At
this point of the computation, hopefully, the resulting multiset is the answer.

As an example consider the Gamma version of a program computing the maxi-
mum of a set of values.

max : x, y → y ⇐ x ≤ y.

The same program written in a more traditional language would use an array for
an imperative language or a list for a declarative language and would use an iteration
to explore the array or a recursive walk through the list. So, the data structure
would impose constraints on the order in which the elements would be processed.

∗Université de Rennes 1 and Inria, France. Email: Jean-Pierre.Banatre@inria.fr

The essential feature of Gamma programming style is that a data structure is no
longer seen as a hierarchy that has to be decomposed by the program in order
to access atomic elements. Atomic values are gathered into one single bag and
the computation is the result of their individual interactions. A related notion
is the “locality principle” in Gamma: individual values may react together and
produce new values in a completely independent way. As a consequence, a reaction
condition cannot include any global property on the multiset. The locality principle
is crucial as it makes it easier to reason about programs and allows an highly parallel
interpretation of Gamma programs.

A formal semantics of the language in terms of multiset rewriting has been
proposed and discussed in [3]. In this paper, techniques have been proposed in
order to prove properties of programs and to derive programs from specifications.
Without going into details here, let us mention an interesting property of multisets
which is very useful to produce termination proofs for gamma programs. To this
purpose, we can use a result from [4] allowing the derivation of a well-founded
ordering on multisets from a well-founded ordering on elements of the multiset.

Let � be an ordering on V and � be the ordering on Multisets(V) defined in
the following way:

M �M ′ ⇔

∃X,Y ∈Multisets(V). X �= ∅ and

X ⊆M and M ′ = (M −X) + Y and (∀y ∈ Y, ∃x ∈ X. x � y).

The ordering� onMultisets(V) is well-founded if and only if the ordering� on V is
well-founded. This result is fortunate because the definition of� precisely mimicks
the behaviour of Gamma (removing elements from the multiset and inserting new
elements). The significance of this result is that it allows us to reduce the proof of
termination, which is essentially a global property, to a local condition.

Our presentation will emphasize the very minimal nature of the Gamma for-
malism as a key factor which makes possible the development of elegant programs
in a very rigourous way. Of course, the elegance and power of the multiset data
structure is central to the Gamma approach. We will also review some of the work
which has been done here and there on the gamma paradigm or on the chemical
reaction model (which has been derived from the original Gamma model). Three
kinds of contributions will be developed:

1. the relevance of the Gamma model to program development and software
engineering,

2. some extensions of the original model, concerning in particular, data structur-
ing facilities and

3. implementation issues.

References

[1] J.-P. Banâtre and D. Le Métayer, Programming by multiset transformation,
Communications of the ACM, Vol. 36-1, pp. 98-111, january 1993.

[2] J.-P. Banâtre and D. Le Métayer, Gamma and the chemical reaction model: ten
years after, in Coordination programming: mechanisms, models and semantics,
Imperial College Press, Andreoli, Hankin and Le Métayer editors, pp. 3-41, 1996.

[3] J.-P. Banâtre and D. Le Métayer, The Gamma model and its discipline of pro-
gramming, Science of Computer Programming, Vol. 15, pp. 55-77, 1990.

[4] N. Dershowitz, Z. Manna, Proving termination with multiset ordering, Commu-
nications of the ACM, Vol. 22-8, pp. 465-476, august 1979.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 21 - 34.

Data Structures for Implementing Transition P System

in Silico�

Baranda A., Castellanos J., Molina R.

Dpto. de Inteligencia Arti�cial

Facultad de Inform�atica - U.P.M.

Campus de Motegancedo, Boadilla del Monte

28660 Madrid - SPAIN

jcastellanos@fi.upm.es

Arroyo F., Mingo L.F.

Dpto. de Lenguajes, Proyectos y Sistemas Inform�aticos

Escuela de Inform�atica - U.P.M.

Carretera de Valencia Km. 7

28031 Madrid - SPAIN

f farroyo, lfmingo g@eui.upm.es

Abstract

P Systems introduce a new parallel and distributed computational model.

They are based in the membrane structure notion. The constituent structure of

a P System is built by some membranes recursively placed inside a special and

unique membrane named skin. Each membrane de�nes a region in which objects

can be placed. Objects inside membranes are able to evolve, that is, they can be

transformed in other objects, can go throw a membrane, or even this evolution

can produce a membrane dissolution in which objects are placed. The way in

which objects of a P System evolve is by rules execution. Associated to each

membrane there are objects and rules, evolution is performed by execution of

all the rules inside each membrane of a P System that they can be executed over

objects placed in the same membrane. Rules execution is done in a parallel and

non-deterministic way. Through P Systems evolution, we get computational

devices starting in S0 estate. This initial estate has been obtained putting

objects and rules inside each membrane of the P System. Them we let the

system goes on until there are no objects able to evolve. At this point, we

say that computation has �nished and the result is determined by the number

of objects situated in a determined membrane of the P System. Because of

non-determinism in P Systems, in some occasions, P Systems dont stop their

evolution, then we cannot obtain any output from them and it is said that

computation is not valid. Where implementing P Systems is actually an open

problem. It can be though to be implemented in living being ("in vivo") or in

traditional computers either. Implementation in digital computers of P Systems

�Thanks to George P�aun for his stay at the Technical University of Madrid - Spain.

can be a diÆcult task, over all in order to obtain high degree of parallelism and

non-determinism exhibit by P Systems. However it is an interesting challenge

for computer researchers and they have already done some attempts to simulate

them -some variant of P Systems- in a digital computer.

This paper explores di�erent data structures to facilitate Transition P Sys-

tems implementation in a digital computer. It is structured in a constructive

manner to facilitate the comprehension of �nal representation of Transition P

Systems into proposed data structures. Firstly, we present a theoretical presen-

tation of Transition P Systems including the necessary notation to understand

their operational mode. Secondly, we study di�erent data structures in which

are possible to represent them. Finally, we �nd out a computational paradigm

in order to determine the feasibility of simulating Transition P System by a

program running in a digital computer.

Keywords: Membrane structure, P System, Data structure, Natural Computing.

1 Introduction

Within Natural computing area P System is a new computing model based on the

way nature organises cellular level in living organisms [1, 2]. Di�erent processes

developed at this level can be thought as computations.

Among di�erent variants of P Systems, we have chose transition P Systems as

objects of our study to try to translate their structure into data structures what it

will permit their simulation in digital computers.

Transition P Systems have two di�erent components: the static one or super-cell,

and the dynamic one compounds by evolving rules. Evolving rules de�ne objects

evolution in the system and they can eve change the static component by dissolving

membranes from super-cell.

Going towards de�nition of super-cell, we can say that a super-cell is a hierar-

chical structure of biuniquely labelled membranes. A membrane can contain none,

one o more than one membrane. The external one is named skin and it can never be

dissolved. Membranes without inner membranes are called elemental membranes.

Membranes de�ne regions. We name region to the area enclosed by a membrane

and this area is not enclosed by any inner membranes to the �rst one. Regions

contain objects that evolve following evolution rules associated to the membrane.

Objects are symbols from an alphabet.

For rules associated to a membrane, we can de�ne a priority relation what de�ne

a partial order among rules for each membrane. We can think that rules consume

objects from the region they are associated and send objects to their regions or to

adjacent regions to their regions.

The transforming process due to evolving rules in transition P Systems is done in

parallel in every region of the P System. Moreover, inside each region, at the same

step, in an exhaustive manner, every executable rule is executed in the same step, in

a non-deterministic way. That is, if there are several possibilities to execute rules, in

a determined step, the system are free to execute one of them and every executable

rule is executed in parallel at the same step. Some rules associated to a region have

the capability of dissolving the membrane; they must to have as consequent the

delta symbol.

Transition P System can make computation sending objects to a determined

region of the system [2, 3]. This output region is named i0. We can say that a

computation is �nished when any rule can be executed in the system.

'

&

$

%

1

'

&

$

%

2
'

&

$

%

3

Skin
-

Region
-

-

Membrane
-

-

Objects

?

Priority Relation

?

Rules

?

baaccc

aa! b
b! (in2; c)> bb! a

bbac

b! c

bbcccc

b! c
b! (out4; c)

Figure 1: Membrane architecture, including objects, relations and rules.

One of the most important problems in simulating systems is to decide which

data structure is the most adequate to representing the system and the needed

additional information to simulate the dynamic component of it, in an eÆcient

manner. This paper explores two possibilities one based on array data structure,

and the other one based on tree data structure.

2 Theoretical presentation of Transition P Systems

In this, point Transition P Systems are presented in a constructive manner. Firstly

we will de�ne the needed basic concepts and �nally we will joint adequately in order

to de�ne a Transition P System [1, 2, 5].

2.1 Membrane Structure

Now we are going to give some necessary de�nitions to de�ne and understand mem-

brane structure of Transition P Systems.

Let the language MS be de�ned recursively as:

(a) [] 2MS

(b) if �1 � � ��n 2MS then [�1 � � ��n] 2MS

(c) objects de�ned by 1 or 2 only belongs to MS

A membrane structure � is de�ned as a word belonging to the languageMS over

an alphabet f[;]g. Let � a membrane structure then to each pair of [;] is named

membrane. The external one is named skin. Every membrane of � having the form

[], without word concatenation from MS between both symbols is named elemental

membrane.

The degree of a membrane structure � or number of membranes of � is denoted

by deg(�) and it is recurrently de�ned by:

(a) deg([]) = 1

(b) deg([�1 � � ��n]) = 1 +
P

n

1 deg(�i)

Let us de�ne now the depth of a membrane structure � by dep(�). It is recur-

sively de�ned by:

(a) dep([]) = 1

(b) dep([�1 � � ��n]) = 1 +maxfdep(�1); � � � ; dep(�n)g

In a membrane structure �, the number of regions is equal to deg(�). A natural

way to represent membrane structures is by Venn Diagrams, see �gure 2. This kind

of representation is very useful to clarify the notion of region de�ned above as every

closed space delimited by membranes. We say two regions are adjacent if and only

if there is only one membrane between them. Communication between two regions

is possible if and only if regions are adjacent [3, 4].

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

'

&

$

%

'

&

$

%

Figure 2: Venn diagram of a membrane architecture.

2.2 Multisets

In this point we will give a compact representation to multisets as word generated

by a given alphabet.

Let N the natural number set, and let U an arbitrary set. A multiset over U

is a mapping M : U ! N . For every a 2 U , M(a) = multiplicity of a in M . We

indicate this fact also in the form M = f(a;M(a))=a 2 Ug.

Some more de�nitions about multiset: Let M : U ! N a multiset. The support

ofM is denoted by supp(M) and it is de�ned by supp(M) = fa=a 2 U ^M(a) > 0g.

Size of M is denoted by size(M) and it is de�ned by size(M) =
P
M(a) with a

varying in U . A Multiset is empty if and only if supp(M) = fg if and only if

size(M) = 0.

Let M1 and M2 two multiset over U . Then M1 is included in M2 i� for every

a 2 UM1(a) <=M2(a). The union of M1 and M2 is de�ned by: M1 [M2 : U !

N=(M1 [M2)(a) =M1(a) +M2(A) for every a 2 U .

Let M1 and M2 two multiset over U and M2 is included in M1. Then the

multiset M1 �M2 is de�ned by: M1 �M2 : U ! N given by (M1 �M2)(a) =

M1(a) �M2(a) for every a 2 U .

Let M a multiset of �nite support, that is, card(supp(M) = n 2 N , let M 0 =

f(a;M(a))=a 2 supp(M)g = f(a1;M(a1)); � � � ; (an;M(an))g. ThenM
0 -the multiset

in which elements of cero multiplicity have been removed- can be represented by

any word resulting of permuting a
M(a1)
1 � � � a

M(an)
n . It is necessary noted that empty

multiset over U is represented by �.

An alphabet is a �nite nonempty set of abstract symbols. Given an alphabet V

we de�ne V � as the set of all �nite words of elements in V , including empty word �.

Length of a word x belonging to V � is denoted by jxj. The number of occurrences

of an abstract symbol "a" from the alphabet V in a word x of V � is denoted by

jxja. A set of words is named language. Every word x from V � describe a multiset

over V denoted by m(x) and de�ned by: m(x) = f(a; jxja)=a 2 V g it is necessary

to note that:

(a) m(�) = f(a; 0)=a 2 V g

(b) supp(m(�)) = f g

(c) size(m(x)) = 0

aabbcc = a2b2c2 = f(a; 2); (b; s); (c; 2)g (1)

anabnb � � � znz = f(a; na); (b; nb); � � � ; (z; nz)g (2)

2.3 Supper-cell concept

A super-cell is de�ned from de�nition of concept previously introduced: multiset

and membrane structure.

Let U a denumerable set of objects. Let � a membrane structure with its mem-

branes biuniquely labelled with natural number from 1 to deg(m). Regions associ-

ated to membranes in m are labelled automatically too.

A partial order relation <� can be de�ned over f1; � � � ; deg(�)g by � Let i; j 2

f1; � � � ; deg(�)g two labels from di�erent regions of �. Then i <� j i� region i

contains region j directly or i contains a region k which contains j.

Now we can de�ne concept of adjacent in a formal way. Let i; j 2 f1; � � � ; deg(�)g

two labels from two regions of �, we say that i is adjacent to j i�:

'

&

$

%

1

#

"

!

2 #

"

!

3

abbccc

bbac baccbb

Figure 3: Membrane architecture with statics components.

(i <� j^ 6 9k 2 f1; � � � ; deg(�)g=i <� k ^ k <� j) _

(j <� i^ 6 9k 2 f1; � � � ; deg(�)g=j <� k ^ k <� i)

A super-cell is obtained associating to each region of a membrane structure � a

multiset over U of objects in such a manner that: for i varying from 1 to n = deg(�),

labelled region i has associated the multiset Mi : U ! N . Mi is said to be the

content of region i.

By now we have the static component of a Transition P System (�gure 3), this

part brings structure and content to the computational device, but it needs dynamic

part bringing by evolution rules.

2.4 Evolution rules: Algebraic De�nition and their Representation

We here will de�ne algebraically evolution rules from a multiset and from a linguis-

tically point of view.

Let N the natural number set. Let U set of objects. An evolution rule is a terna

(u; v; Æ), where:

i. u is a multiset over U

ii. v is a multiset over U � (fhere; outg) [finj=j 2 Ng)

iii. Æ is a boolean value

Let r = (u; v; Æ) an evolution rule. Radius of r is denoted by radius(r) = size(u).

If we have into account that we can represent multiset over U as word from an

alphabet U , we can rede�ne rules as follow.

Let N the natural number set. Let V an alphabet whose elements (abstract

symbols) are named objects. An evolution rule is a terna (u; v; Æ) where:

i. u is a word over V

ii. v is a word over V � (fhere; outg) [finj=j 2 Ng)

iii. Æ is a boolean value

Let r = (u; v; Æ) an evolution rule. Radius of r is denoted by radius(r) = juj.

Usually, a rule is represented by:

iv. u! vÆ if Æ

v. u! v if :Æ

u is said to be the antecedent and v the consequent rule.

2.5 Transition P System: Algebraic De�nition

Now we are going to give a formal de�nition of a Transition P System [5]. This def-

inition will be based on previous concepts and de�nitions: Super-cell and evolution

rules.

Let N the natural number set. Let U a set (alphabet) whose elements are named

objects. A Transition P System over U is a construct

PS = (�; !1; � � � ; !deg(�); (R1; �1); � � � ; (Rdeg(�); �deg(�)); i0) (3)

Where:

i. � is a membrane structure with biuniquelly labelled membranes with natural

number from 1 to deg(�).

ii. !i, 1 � i � deg(�), is a multiset (word) over U associated to region i.

iii. Ri, 1 � i � deg(�), is a �nite set of evolution rules associated to region i.

iv. <i, 1 � i � deg(�), is a partial order over Ri.

v. 1 � i0 � deg(�), is a label to determined output membrane of the system.

First part of the P System (�; !1; � � � ; !deg(�)) de�nes one supe-cell, it is the

static part of the system. The second one ((R1; �1); � � � ; (Rdeg(�); �deg(�)); i0)) is the

dynamic part of the system giving evolving capacity to it.

In this case, we have de�ned a Transition P System with a membrane output (�g-

ure 4), but it is possible to de�ne some di�erent variant without output membrane,

or with multiples output membranes either.

'

&

$

%

1

'

&

$

%

2 '

&

$

%

3

abbccc

abc! bc
bc! c > c! abc

bbac

bb! ac
a! bb

baccbb

c! a
ac! b

Figure 4: Dynamic components of a membrane architecture.

Now we are ready to understand how a Transition P System works.

2.6 Dynamic Description of P System

Initially, we will give an informal description of Transition P Systems operational

mode. Afterwards, we will describe it more formally.

Inside each region de�ned by a membrane system, evolution rules associated to

this region describe possibilities of evolution for objects inside it. We say that an

evolution rule is useful, when all regions referred in the consequent rule exist in the

system and all of them are adjacent to the region where the rule belongs to. We

say that an evolution rule is potentially active in a region when its antecedent is

contained in the multiset associated to the region. We say that a rule is active in

a region when there are no evolution rules in the region with higher priority. In a

region, objects evolve following active rules of the region.

Now, if we have a multiset of objects which can evolve following a multiset of

active evolution rules, in parallel, and it is not determined by which of active multiset

evolution rules then they will evolve but it is sure that the multiset object will do.

When a multiset u of objects in a region R evolve following an evolution rule

r = (u; v; Æ), following e�ects are produced in the region:

i. object involved on u is removed from region R.

ii. objects referred in v are sending to their destinations.

iii. if Æ, then membrane containing R is dissolved. This fact has following efects:

iii.a. Objects contained in R are associated to Rs father region.

iii.b. Rules associated to R disappear

iii.c. Membranes included in R now are included directly in Rs father region.

These e�ects are happened in parallel for every region of P System. Because

of this fact, it can be said that a P System has two parallelism levels; one local or

regional and another one global.

The main reason for labelling membranes in a biuniquelly manner, with no

dependence of their position into membrane structure, is the necessity of referring

membranes without ambiguity although some of them were dissolved.

We will now give some de�nition that they will be used from now on going.

2.6.1 Maximal set of a given set from a partial order relationship

Let < a partial order relationship over U � U . Let S a sub-set from U . We de�ne

maximal set of S respect < as:

Maximal<(S) = fxj(x; y) 2 S � S ^ :(x < y)g (4)

2.6.2 Representation of parallel application of evolution rules

In order to represent parallel application of evolution rules we denote application of

r1 rule n1 times, � � �, rm rule nm times as the multiset f(r1; n1); � � � ; (rm; nm)g.

2.6.3 Addition of evolution rules

Let r1 = (u1; v1; Æ1) and r1 = (u2; v2; Æ2) two evolution rules associated to the same

region R. Then evolution rule r1 + r2 = (u1 [u2; v1 [v2; Æ1 _ Æ2) by de�nition.

This binary inner operation de�ned over evolution rules set inherits all algebraic

properties from multiset union and boolean disjunction.

From the dynamic point of view of P Systems, we can say that are equivalent:

i. Objects from a region R evolved using in parallel the multiset de�ned by the

expression f(r1; n1); � � � ; (rm; nm)g.

ii. Objects from a region R evolved using the rule n1r1 + � � �+ nmrm

From a computational point of view, application of addition rules is equivalent

to a parallel application of rules (note that nr = r + � � � (n) � � � + r).

3 Addition rule of evolution of a region

Now we are going to describe in a formal manner how objects evolve in a region.

3.1 Useful rules determination.

Let Ri the set of evolution rules associated to a determined labelled region i. The

sub-set of rules which their consequent have all their destination labelled with ad-

jacent region to i, is named useful rules set.

3.2 Active potentially rules determination.

Active potentially rules set of a region is formed removing from useful rules set those

rules which their antecedent is not included in the multiset associated to the region.

3.3 Active rules determination. Maximal respect to priority.

Active rules set of a region is the maximal set respect partial order relationship

described by priorities associated to the region over active potentially rules set of

the region.

3.4 Set of all multiset over active rules.

Let A the set of all multiset over the active rules set in a region R. Let A+ the

set formed by applying addition rules over every element from A. Let B+ the set

formed removing from A+ those rules with their antecedent is not included in the

multiset associated to R. Let C+ the maximal set in relation to antecedent inclusion

of evolution rules over B+.

The set describing every possible parallel application of evolution rules in a region

is formed by removing from A, those elements which their associated addition rule

is not included in C+.

3.5 Satisfactory computation concept.

In a Transition P System, we will say that computation has �nished satisfactorily if

and only if:

i. There are no objects in the system which can evolve.

ii. In the system exists the output membrane i0, and it is an elemental membrane.

4 Representation of Transition P System in silico

When we try to translate an algebraic structure into data structures, it is possible

to �nd several possibilities due to:

i. The same data structure with di�erent de�ned operation on itself can represent

di�erent algebraic structures.

ii. The same algebraic structure can be represented by di�erent combinations of

data structures with operations.

'

&

$

%

1

'

&

$

%

2 '

&

$

%

3

a

a! bc

aa

aa! bb

aaa

a! b
ab! aa

a aa aaa
a! bc aa! b a! b

ab! aa

1 2 3

Figure 5: Representations with Independent References.

These facts make that main di�erence, between two data structures and their

associated operations representing the same algebraic structure, will be eÆciency in

run time and allocated memory.

However, the best choice in order to represent an algebraic structure into a data

structure will be the one that allows the highest eÆciency maintaining the original

algebraic structure properties.

Algebraic structure used for de�ning Transition P System has, from a computa-

tional point of view, one basic characteristic: hierarchical structure of regions and

their contents are independents, but both of them are linked by labels. So, these

facts make easy to design a structure of references (tree, graph) that automati-

cally build a structure for referred items. That is to say, we can deal with items

relationships (inter-structure) independently of themselves (intra-structure)

Firstly, we are going to present data structures based on these ideas. These

kinds of structures are called independents references. Afterwards, we will present

a data structure which no need refer region in order to de�ne its structure, but it

builds directly a region structure. It is called region tree.

4.1 Representations with Independent References

We need a data structure that permits to store regions and references to regions.

Moreover, by eÆciency aspects, access to regions must be direct or with time access

complexity O(1). Natural data structure satisfying these constrictions is array or

vector. Main array structure disadvantage is the necessity of de�ning its dimension

usually in compilation time. Moreover, it is a program constant without possibility

of change in run-time. This data structure has a �xed size (static memory). Of

course, it is possible to simulate dynamism, but without pass over the maximal

permitted size. Finally, to say that array structure is eÆcient in memory because it

represents region only one time, �gure 5.

4.2 Labels Arboreal Structure Representation

How it has been said, a tree, algebraically speaking, can be represented by multiple

data structures, computationally speaking. Among them:

'

&

$

%

1

'

&

$

%

2 '

&

$

%

3

- 1 1

1 2 3

f2; 3g - -

"

"

"

"

"

"

""

"

"

"

"

"

"

""

"

"

"

"

"

"

""

Figure 6: Vector representation with father's information.

i. An array or vector of pair of labels in the form (fathers label, sons label).

ii. A list of pair of labels in the form (fathers label, sons label).

iii. A square matrix whose index will be the labels.

However, those which permit an more eÆcient treatment due to they minimise

unnecessary searches are the following:

i. An array or vector of pair in the form (fathers label, list of sons labels) and its

index are labels. The main advantage of this data structure is that it permits

a direct access from every region to its father region. That is why it represents

a bi-directional tree. The structure has a certain redundancy degree, because

the same label could appears as index, as father of some others ones or even

as son of another one , �gure 6.

ii. A general non-empty tree whose elements are labels. In this case labels appear

only one time on the structure. This is the most likely structure in form to

original Transition P Systems de�nition (�gure 7).

'

&

$

%

1

'

&

$

%

2 '

&

$

%

3

�

�

�

��

�

�

�

�

�

�

�2

1

3

H

H

H

H

H
Hj

�

�

�

�

�
��

Figure 7: Tree representation with membrane index.

4.3 Representation as Regions Tree

How in a tree structure, labels appear only one time, so we can directly substitute

labels by regions without loosing memory eÆciency. That is to say the tree structure

is used to store directly regions, not references to regions. In our opinion, this is the

best way for representing P Systems, from a functional or declarative framework,

�gure 8.

5 Parallelism Treatment in Silico

How it has been said in theoretical explanation, Transition P Systems have two

parallelism levels. Level one of parallelism or Global, and level two of parallelism

or regional. This paper is not dealing with regional parallelism at a computational

point of view; it is out of our purposes here. However, global parallelism is very

important at this level of representation, since it will be necessary to maintain

auxiliary data structures in order to store objects from each region. This allows us

to simulate global parallelism in a sequential device.

'

&

$

%

1

'

&

$

%

2 '

&

$

%

3

a

a! bc

aa

aa! bb

aaa

a! b
ab! aa

�

�

�

��

�

�

�

�

�

�

�

2

1

3
H

H

H

H

H
Hj

�

�

�

�

�
��

aa

aa! bb

aaa
a! b
ab! aa

a
b! c

Figure 8: Tree representation with dynamic components.

Two processes can be executed in parallel if they are independents. So if we

serialize the execution of independent parallel process, we can execute each one of

them in a non-deterministic order. This fact gives a great freedom degree when we

are simulating in sequential silicon media a parallelism biological based process like

Transition P Systems.

To maintain a certain order in the global parallelism simulation process, we

decided to perform a depth search throught the region tree.

Let us explain what happens in this process: When we �rstly access to a region

of the tree, it is possible that in the simulation process some objects from the region

evolve transitting to adjacents regions. If target region has not been simulated yet,

it means that objects sent to this region cannot be incorporated to its associated

multiset Ri. So these objects must be store in an auxiliary multiset. Second time

we access to a region, auxiliary object multiset is included in the associated multiset

region.

In some cases, it could be possible that membrane containing a region must be

disolve. If it would be disolved the �rst time we visit the region (it could be happened

that objects from inner adjacent regions evolved transitting into this region) then it

cannot be done because it could be some objects from inner adjacent regions which

could evolve to the region and has already been disolved. So they (objects) have no

target region. What this fact means is that some evolution rules are useful no more.

Therefore to avoid this case we will disolve membranes second time we access to

regions.

6 Conclusions

P Systems are a very versatile computational model due to their capability for mod-

ifying their structure in run time [5, 6]. They are also very powerful computational

devices because of their high parallelism degree.

To simulate global paralelism behaviour of transition P Systems in a sequential

computational device it has been required to include auxiliary data structures from

original model.

References

[1] Gh. P�aun, Computing with membranes, Journal of Computer and System Sci-

ences, 61 (2000), and Turku Center for Computer Science-TUCS Report No

208, 1998 (www.tucs.�).

[2] Gh. P�aun, G. Rozenberg, A. Salomaa, Membrane computing with external

output, Fundamenta Informaticae, 41, 3 (2000), 259{266, and Turku Center

for Computer Science-TUCS Report No 218, 1998 (www.tucs.�).

[3] Gh. P�aun, Computing with membranes (P systems): Twenty six re-

search topics, Auckland University, CDMTCS Report No 119, 2000

(www.cs.auckland.ac.nz/CDMTCS).

[4] J. Castellanos, G. Paun, Rodriguez-Paton A, Computing with Membranes: P

Systems with Worm-Objects. IEEE Conf. SPIRE 2000, and Auckland Univer-

sity, CDMTCS Report No. 123, 2000 (www.cs.auckland.ac.nz/CDMTCS).

[5] S. N. Krishna, R. Rama, On the power of P systems with sequential and parallel

rewriting, International J. of Computer Math., in press.

[6] J. Dassow, Gh. P�aun, On the power of membrane computing, J. of Universal

Computer Sci., 5, 2 (1999), 33{49 (www.iicm.edu/jucs).

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 35 - 50.

Visual Multiset Rewriting1

Paolo Bottoni,2 Bernd Meyer2;3 and Francesco Parisi Presicce2

2Dipartimento di Scienze dell' Informazione

Universita' La Sapienza di Roma
3School of Computer Science & Software Engineering

Monash University, Australia

[bottoni | parisi]@dsi.uniroma1.it
bernd.meyer@acm.org

Abstract

Diagrammatic notations, such as Venn diagrams, Petri-Nets and �nite state

automata, are in common use in mathematics and computer science. While the

semantic domain of such systems is usually well formalized, the visual notation

itself almost never is, so that they cannot be used as valid devices of formal

reasoning. A complete formalization of such notations requires the construction

of diagram systems with rigorously de�ned syntax and semantics. We discuss

how diagram speci�cation can be interpreted as multiset rewriting and, based

on this, how it can be formalized in linear logic. The main contribution of

the paper is the identi�cation of a small fragment of linear logic that is suÆ-

ciently expressive for modelling diagram parsing and transformation, yet small

enough to be suitable for automated deduction. We prove the equivalence of

our modelling to attributed multiset grammar approaches and demonstrate its

utility with two concrete applications: Animation of �nite state automata and

diagrammatic reasoning about sets with Venn diagrams.

1 Motivation

Diagrammatic notations in mathematics date as far back as Euler circles, Venn
diagrams, Peirce's existential graphs and Frege's Beweisschrift. Computer science
uses many diagrammatic notations of its own, such as Petri-Nets or �nite state au-
tomata. While the underlying abstract semantics of such systems is usually well
formalized, the visual notation itself almost never is. Hence, even though \execu-
tion" of diagrams is often used as a simulation technique for reasoning about the
system behavior, it is not possible to treat the visual level of this reasoning process
formally.

Consequentially, most researchers reject visual methods as valid devices of for-
mal reasoning. A major line of contemporary research in diagrammatic reasoning
therefore attempts to establish the status of diagrams as reasoning devices that
are acceptable in proofs and other formal mathematical arguments. Obviously this

1This work is in part supported by the European Community TMR network GETGRATS.

requires the construction of diagram systems with rigorously de�ned syntax and
semantics as well as the construction of visual proof calculi on the basis of which
an analysis of the soundness and completeness of these systems can be given. The
prototypical example of diagram systems for which this has successfully been per-
formed are variants of Venn diagrams [Shi95, Ham96]. In a software engineering
context, such a formalization could be the basis for a rigorous treatment of tasks
like re�nement and consistency checks using diagrammatic notations like UML.

The diversity of types and applications of diagrammatic notations has led to a
variety of individual specialized formalization techniques, typically based on rewrit-
ing systems. In this paper we interpret diagram transformations as consumption
and production of graphical tokens and demonstrate how a modelling as multiset
rewriting opens the way for a uni�ed treatment on the basis of linear logic.

The main contribution of the paper is the identi�cation of a small fragment of
linear logic suÆcient for modelling diagram parsing and transformation, yet small
enough to be suitable for automated deduction. We show how certain forms of
diagrammatic reasoning can be formalized in this fragment with two concrete ap-
plications: Animation of �nite state automata and diagrammatic reasoning about
sets with Venn diagrams.

2 Representing Diagrams as Multisets

The �rst step to formalizing diagram transformation systems obviously is to �nd
a proper representation for static diagrams. Diagrams can be considered as col-
lections of graphical tokens such as lines, circles, etc. A fundamental distinction
between diagrammatic languages and string languages is that no single linear or-
der is inherently de�ned on diagram elements. Hence, diagrammatic expressions
must be considered as non-linear structures, such as graphs or multisets, rather
than as sequences of tokens. Diagram transformation can then be interpreted as
rewriting of such structures. In this paper we describe a multiset-based approach,
i.e. we view the tokens as resources that can be produced, consumed, queried and
changed. Linear logic presents itself naturally as a framework for studying diagram
transformations based upon such a model.

The objects in a multiset that represents a diagrammust contain a representation
of their geometry. Obviously, a proper typing mechanism is also desirable. For
example, on the most elementary level, the square of Figure 1 could be represented
as the multiset fline(140, 5), line(140, 85), line(220, 85), line(220, 5)g. However, we
might want to model objects on a higher level of abstraction, so that the entire square
in the �gure is represented as a single object fsquare(140; 5; 80)g. The construction
of this new type from the primitives could be de�ned by a simple rule and parsing
could be used to construct the higher-level presentation.

For the purpose of this article, we adopt a view in which meaningful types
of graphical entities are given by speci�c graphical data types. We regard their
construction as encapsulated in abstract constructors and thus the process by which
they can be recognized is hidden. From a technical perspective, the recognition
of these data types from a diagram can be done in various forms, for example
by transformation of prototypes [BCM99], by parsing [MMW98], with algebraic
speci�cations [BMST99] or using description logic [Haa98].

A strong requirement to be imposed on the graphical data type system is that
type assignment must be unambiguous. For example, in a system where both a
rectangle and a square data type exist, rectangles with equal sides must consistently

be considered as squares. Inheritance can be used to model the relation between
these types [Haa98].

ia

Figure 1: A sim-

ple diagram.

An important requirement for the transformation mecha-
nism is implied: A transformation which modi�es the geometry
of an element so that it is incompatible with its original data
type must also change the type of this element accordingly. In
the rest of this paper we assume that these conditions are met
by the type systems and by the transformation rules adopted in
the examples. For discussions of the limits of these assumptions
see [BCM99, BMST99, MMW98].

The second question to be addressed is how to represent the spatial relations
between the diagrammatic objects. Several alternatives for this have been considered
in the literature:
Explicit representation of relations: The relations existing between tokens are
rei�ed and inserted in the multiset as tokens in themselves. In this case, the diagram
of Figure 1 could be represented as fletter1(\a", 35, 45, 10, 10), square1(0; 0; 80),
circle1(40; 40; 20), inside(letter1, circle1), inside(circle1, square1)g.
Use of constraints: The multiset is combined with a set of constraints that de-
scribes the relevant spatial relations expressed as (usually arithmetic) constraints
on attributes of the objects. The pair (M;C) representing the diagram of Figure
1 could be described by fletter(\a"; ~x1); circle(~x2); square(~x3)g together with the
constraints finside(~x1; ~x2) ^ inside(~x2; ~x3)g. Since attributes are used to represent
the geometries, spatial relations can be queried by inspection of this geometry, e.g.
by testing constraint entailment or consistency. These functions are realized by a
constraint solver for the underlying domain.
Use of concrete geometries: For this representation, tokens with geometric at-
tributes are used as in the case of the constraint representation. However, attributes
are always given concrete values. In this case, the representation of Figure 1 would
be fletter(\a", 35, 45, 10, 10), square(0, 0, 80), circle(40, 40, 20)g.
The choice of representation has some important implications related to the frame
problem. Consider the transformation rule depicted in Figure 2 which expresses the
removal of a circle object. It corresponds to a multiset transformation rule which
could informally be written as:

circle(; ;); square(X; Y; Z); inside(circle; square)! square(X; Y; Z)

Applying this rule to Figure 1 we are left with the problem of what to do with the
inside relation between the letter and the circle. Since the circle no longer exists, it
should be removed, but now an inside relation should hold between the letter and
the square. This causes problems with the �rst two representations.

The fundamental di�erence in the way these representations handle the problem
is this: In the �rst representation, the inside relation is represented explicitly by
an uninterpreted, symbolic relation. Any transformation must therefore explicitly
handle such relations and relevant change in the spatial relations must be propagated
explicitly. Essentially, the speci�cation needs to re-implement the relevant fragment
of geometry, which makes the speci�cation cumbersome and error-prone.

d -

Figure 2: Simple

Transformation.

In the constraint-based representation, the inside relation is
managed by mapping the geometry to the underlying arithmetic
domain and by having a constraint solver handle the arithmetic
constraint theory. The propagation of spatial constraints hap-
pens for free, because the corresponding arithmetic constraints
are propagated automatically by this solver. However, in the

context of transformation we are now facing a new problem, which stems from the
fact that an appropriate constraint solver must work incrementally. The full set of
constraints is only evaluated once for the initial diagram. After this, the constraint
store should be adapted incrementally during the transformation, i.e. only those
spatial constraints that change should be updated, added or deleted. The problem
arises, because constraints in the store have to be kept in a solved form, so that it
is diÆcult to perform a meaningful constraint deletion. Even if a single constraint
can explicitly be removed, it is diÆcult to remove all implied constraints. As a sim-
ple example, consider the existence of three attributes a; b; c. When the constraints
a = b ^ b = c are asserted, a = c is automatically derived. Even if we remove b = c
from the constraint store, a = c would still be in the store, but it would no longer be
justi�ed. Transformation of constraint diagram representations therefore requires a
re-evaluation of the existing spatial relations, which is ineÆcient. These problems
have been explored in [Mey97].

These kinds of problem make it diÆcult to provide a linear logic characterization
of diagram transformation based on either of these representations. For this reason,
we adopt the representation based on concrete geometry here, and we assume the
existence of a specialized geometry agent which is able to answer queries regarding
spatial relations in a given diagram based on its concrete geometry.

3 Diagram Transformation as Multiset Rewriting

We now move from discussing the representation of diagrams as multisets to investi-
gating diagrammatic transformations through multiset transformations. In general,
such diagram transformations detail how one diagram can syntactically be trans-
formed into another diagram that directly and explicitly exhibits additional infor-
mation that is either not present or only implicit and hidden in the prior diagram.
This transformation can be understood as multiset transformation or rewriting.
This is not a completely new idea, since whereas the speci�cation of diagram trans-
formation has often been based on graph grammars [BMST99], other approaches
have also used type-0 variants of attributed multiset grammars [MMW98, MM00].

Even though di�erent formal theories for multi-dimensional grammars have been
developed, there is no grammar calculus that would allow us to deduce soundness or
completeness results for diagrammatic calculi on the basis of their grammar speci�-
cations. It is for these reasons that logic has been explored as an alternative tool for
diagram rewriting. The �rst obvious choice to explore is classical �rst-order logic.
Roughly speaking, two di�erent embeddings are possible: Either the objects of the
diagram and their relations are represented as predicates or, alternatively, they can
be modelled as term structures. For diagram rewriting, the �rst type of embedding
has been demonstrated in [HM91, Mar94, Mey00]. The second approach is closely
related to modelling string language grammars in logic programming by De�nite
Clause Grammars and to their extension in the form of De�nite Clause Set Gram-
mars [Tan91]. Variations for the use of diagram parsing and/or rewriting have been
demonstrated and discussed in [HMO91, Mey97, MMW98].

Both possible embeddings of diagram rewriting into �rst-order logic have draw-
backs that make their universal utility questionable. In the �rst embedding (graph-
ical entities as predicates) a typical rewrite step needs to add as well as to remove
objects which amounts to deriving new predicates (conclusions) and deleting old
conclusions. This is not possible in classical �rst order logic due to its monotonicity.
In the second embedding there are no restrictions on how the diagram could be

rewritten, but the modelling does not leverage from the structure of the underlying
logic anymore, since, essentially, this is \abused" as a rule-based rewrite mechanism.
In contrast, what is really desirable is that the logical derivation relation can directly
deal with terms representing the graphical elements, so that a direct correspondence
between logical derivations and those in the diagram system exists.

A detailed analysis of these problems has recently been given for the �rst time
in [MM00], where the use of linear logic [Gir87, Gir91] is advocated instead. The
major advantage of linear logic over classical logic in the context of diagram rewriting
is that it is a logic of resources and actions, and therefore adequately models a
non-monotonous rewrite process. Linear implication models the fact that the left-
hand side resources (the antecedent) are used and consumed (!) in the process of
producing the right-hand side resources (the consequent). This is exactly the process
of multiset rewriting that we have to model.

The question arises which fragment of linear logic we should use. Obviously
we need to use multiplicative connectives to express the simultaneous existence of
elements in the multiset of diagram elements and linear implication is adequate
to express the rewriting as such. Since all the elements in a multiset of objects
representing a diagram have to exist simultaneously, a natural choice is to use mul-
tiplicative conjunction (
) to model their union in a multiset. Therefore, we might
decide to express, for instance, the transformation rule in Figure 2 as

circle(~x1)
 square(~x2)
 inside(~x1 ; ~x2)(square(~x2)

This choice, advocated in [MM00], seems natural and conceptually correct. How-
ever, we are not interested in modelling diagram rewriting in linear logic for its
theoretical properties alone, but we are also interested in linear logic as a well-
founded theoretical framework for declarative computational implementations of
diagram transformation. Therefore, we have to pay attention to whether the chosen
fragment is adequate as the basis of implementations.

3.1 LO and Interaction Abstract Machines

Figure 3: IAM Evolution

The basic idea for an implementation of
our framework is that it should be di-
rectly transformable into a linear logic
program. Unfortunately, current linear
logic programming languages [Mil95] do
not o�er multiplicative conjunction in
the rule head. It would therefore be ad-
vantageous to �nd a di�erent fragment
of linear logic that directly corresponds
to a linear logic programming language.
The fragment we introduce in this paper
is a slight extension of the one used in
the linear logic programming language
LO. A bene�t of LO is that it has an
interpretation as a system of interacting
collaborating systems of agents, called Interaction Abstract Machine (IAM). This
can later be used as the basis of integrating interaction speci�cations with our ap-
proach. We will now give a very brief introduction to the IAM and its interpretation
in LO. For a full introduction the interested reader is referred to [ACP93, AP91].

The IAM is a model of interacting agents in which an agent's state is fully

described as a multiset of resources. The agents' behavior is described by a set of
rules called \methods". A method takes the form A1O � � �OAn

Æ�B; meaning that
a multiset containing the elements A1; � � � ; An

(the head) can be transformed by
eliminating these elements and producing e�ects as speci�ed by the form of B (the
body). Each resource A

i
and each resource in B is syntactically given as a �rst-order

term f(X1; : : : ; Xn
) like in standard logic programming. A method can �re if the

appropriate head elements are found among the agent's resources.
If more than one rule can �re at a given time, e.g. if the agent's resource set is

fa; p; qg and its rules are pOaÆ�r and qOaÆ�s, these rules compete, i.e. one of them
will be chosen, committed and applied. If the body could only contain the connective
O, the rules would only allow us to describe the behavior of a single agent, but IAMs
also use a second kind of connective (in the body of a rule) which e�ectively spawns
another agent. All the resources of the spawning agent not consumed by the rule
application are copied into each spawned agent. This connective is the N, read
\with". N takes priority on O. A �nal IAM operation is to terminate an agent.
This is denoted by a > in the body of a method. This behavior is illustrated in
Figure 3 (redrawn from [ACP93]), depicting a possible development of an agent with
state fp; a; ug whose behavior is speci�ed by the rules p O a Æ� (q O r) N s and r
O u Æ� >.

The complete behavior of a method in a multiagent IAM is summarized by the
following rules: (1) A rule is applicable to an agent only if all the rule head atoms
occur in the agent's state. (2) If a rule is applicable and is selected for application
to an agent, the rule's head atoms are �rst removed from the agent's state; (3) The
new con�guration of the IAM is de�ned according to the form of the body: (a) If the
body is the symbol >, the agent is terminated; (b) If the body is the symbol ?, no
atom is added to the state of the agent; (c) If the body does not contain any N, then
the body elements are added to the agent state; (d) If the body consists of several
conjuncts connected by N, then for each occurrence of N a new agent containing
a copy of the original agent's resources is spawned. For all the resulting agents
(including the original one) the atoms in the corresponding conjunct are added to
the agent's state.

The IAM, even when restricted to the single agent case, de�nes a form of multiset
rewriting that is applicable to the rewriting of diagrams as outlined above.

The advantage gained from using the IAM as our basic model is that its inter-
pretation can be given in a small fragment of linear logic which only consists of the
connectives par (O), with (N) and linear implication (Æ�), as implemented by the
linear logic programming language LO [AP91]. IAMs and LO also use another kind
of connective that emulates broadcasting among di�erent agents. We do not need
this connective for our tasks and will therefore exclude it.

3.2 Diagram Parsing as Linear Logic Programming

Parsing can be considered as the most basic task in diagram transformation. First,
it seems of fundamental importance to be able to analyze the correctness of a dia-
gram and to interpret its structure. Secondly, context-free parsing according to a
multiset grammar corresponds to a particularly elementary form of diagram trans-
formation in which each transformation step replaces a multiset of diagram objects
with some non-terminal object. We will therefore �rst look at diagram parsing in
linear logic, before proceeding to arbitrary diagram transformation. Diagram pars-
ing has been studied by a number of di�erent researchers before. The interested

reader is referred to [MMW98, BMST99] for comprehensive surveys and to [MM00]
for diagram parsing in linear logic. Here we review a particular type of attributed
multiset grammars, termed constraint multiset grammars (CMGs), which have been
used by a number of researchers for reasonably complex tasks such as the interpre-
tation of state diagrams and mathematical equations. In [Mar94] a precise formal
treatment is given, and we review only the basic notions here. CMG productions
rewrite multisets of attributed tokens and have the form

U ::= U1; : : : ; Un where (C) fEg (1)

indicating that the non-terminal symbol U can be recognized from the symbols
U1, . . . , Un whenever the attributes of U1, . . . , Un satisfy the constraints C. The
attributes of U are computed using the assignment expression E. The constraints
enable information about spatial layout and relationships to be naturally encoded
in the grammar. The terms terminal and non-terminal are used analogously to the
case in string languages. The only di�erence lies in the fact that terminal types in
CMGs refer to graphic primitives, such as line and circle, instead of textual tokens
and each of these symbol types has a set of one or more attributes, typically used to
describe its geometric properties. A symbol is an instance of a symbol type. In each
grammar, there is a distinguished non-terminal symbol type called the start type.

CMGs also include context-sensitive productions. Context symbols, i.e. symbols
that are not consumed when a production is applied, are existentially quanti�ed
in a production. As an example, the following context-sensitive production from a
grammar for state transition diagrams recognizes transitions:

T:transition ::= A:arc exist S1:state,S2:state where (

OnCircle(A.start,S1.mid,S1.radius) and OnCircle(A.end,S2.mid,S2.radius))

fT.start = S1.label and T.tran = A.label and T.end = S2.label g

A diagrammatic sentence to be parsed by a CMG is just an attributed multiset
of graphical tokens. Therefore we can view a sentential form as the resources of
an IAM agent. Intuitively, it is clear that the application of a CMG production
corresponds closely to the �ring of IAM methods and that a successful parse consists
of rewriting the original set of terminal symbols into a multiset that only contains
the single non-terminal symbol which is the start symbol.

We can map a CMG production to an LO rule (IAM method, respectively) and
hence to a linear logic implication in the following way: For a CMG production

U ::= U1; : : : ; Un exists Un+1; : : : ; Um where (C) fEg (2)

we use the equivalent LO rule:

�(u1)O : : :O�(um)Æ�fCgNfEgN�(u)O�(un+1)O : : :O�(um) (3)

In LO, each CMG terminal and non-terminal object u
i
will be represented by a �rst

order term �(u
i
) which has the token type of u

i
as the main functor and contains the

attributes in some �xed order. We extend this mapping function canonically so that
we use �(u1; : : : ; un) to denote �(u1)O : : :O�(un). In the same way, �(p), for a CMG
production p, will denote its mapping to an LO rule and �(G) = f�(p) j p 2 Pg
denotes the complete mapping of a CMG G to an LO program.

The linear logic reading of such a rule �(p) is its exponential universal closure:

! e8 �(u1)O : : :O�(um)Æ�fCgNfEgN�(u)O�(un+1)O : : :O�(um) (4)

To evaluate the constraints in the grammar and to compute the attribute assign-
ments we assume that the geometric (arithmetic) theory is available as a �rst-order
theory �

g
in linear logic. Obviously, geometry cannot be completely axiomatized in

LO, because its fragment of linear logic is too small. However, we can encapsulate a
more powerful \geometry machine" (and arithmetic evaluator) in a separate agent
and give evaluation requests to this agent. This is what we do by using \with" (N)
to spawn agents for these computations in the above LO translation.

From an operational point of view, this requires us to adopt a proactive inter-
pretation of LO in which we can spawn an agent and wait for it to return a result
before proceeding with the rest of the computation. A di�erent implementation of
a proactive LO interpretation, by sending requests from a coordinator to registered
participants, is provided by the Coordination Language Facility [AFP96].

Each rule �(p) emulates exactly one production p. To emulate parsing fully, we
also need a rule which declares that a parse is successful if and only if the initial
diagram is reduced to the start symbol and no other symbols are left. For a CMG G
with start symbol s, we could do this in linear logic by adding �(s) as an axiom to
�(G). Unfortunately, from an implementation point of view, we cannot formulate
true linear axioms in LO. It is more consistent with the LO model to extend the
language with the linear goal 1, which terminates an agent if and only if this agent
does not have any resources left (i.e. 1 succeeds if and only if the linear proof context
is empty). We will call this extension of the LO language LO1. Instead of the axiom
�(s) we can then add the method �(s)Æ�1 to the LO1 program. The complete set
of LO1 rules that implement a grammar G is: � = �(G)[f(�(s)Æ�1)g

Operationally, a successful parse of a diagram D now corresponds to an IAM
evolution with method set � starting from a single agent with the resource set �(D)
in which all agents eventually terminate. Logically, it corresponds to a proof of
�
g
;� ` �(D). This linear logic embedding of CMGs is sound and complete.

Theorem 1 D 2 L(G), �
g
;� ` �(D)

The proof is given in the appendix.
LO1 is only a minor extension of LO and a proper subset of the linear logic

programming language Lygon [HPW96]. Thus we still have an executable logic as
the basis of our model. In fact, it is Lygon's sequent calculus [HP94] that we will use
in the remainder of this article. In contrast to LO which applies rules by committed
choice, Lygon actually performs a search for a proper proof tree. Therefore, if there
is a proof for �

g
;� ` �(D), i.e. if D 2 L(G), Lygon will �nd this proof. This

is in contrast to LO, which, even disregarding the extension with 1, can only be
guaranteed to �nd the proof if G is conuent.

4 Applications

In the previous sections we have presented a general approach to diagram transfor-
mation based on linear logic. In this section we present two simple applications of
this approach: One in which the diagram transformation corresponds to the execu-
tion of a computation and one in which diagram transformations are used to reason
in some underlying domain represented by the diagram.

4.1 Executable diagrams

��

��

��

��
-s1 s2a

Figure 4: FSA

Transition

By executable diagrams we refer to such diagram notations that
are used to specify the con�gurations of some system. Transfor-
mation of such diagrams can be used to simulate and animate
the transformation of these con�gurations. Typical examples of
such systems are Petri nets, �nite state machine and a number
of domain speci�c visual languages. For these systems, a multi-
set representation is intuitively apt and the transformation rules
for the multiset closely correspond to the diagram transformation rules. As an ex-
ample, consider a transition in a �nite state diagram, such as the one in Figure
4.

Let us adopt a set of data types corresponding to the de�nition of states, with a
geometry, a name and a couple of attributes denoting whether the state is initial or
�nal; transitions, de�ned by their geometry and an input symbol; and input labels,
which are positioned under the current state and are read one symbol at a time.

A straightforward translation of the partial diagram of Figure 4 results in a rule
which corresponds exactly to the semantics of the depicted transition, assuming that
in a diagrammatic animation of the transformation the input string is always placed
under the current state:

state((109; 24); s1; non�nal ; noninitial) O transition((129; 24); (189; 24); \a") O

state((209; 24); s2; non�nal ; noninitial) O input((109; 40); [\a"jRest])
Æ� state((109; 24); s1; non�nal ; noninitial) O transition((129; 24); (189; 24); \a") O

state((209; 24); s2; non�nal ; noninitial) O input((209; 40); Rest)

The whole diagram is translated into such a set of rules, one for each transition, and
its execution can be started by placing the input string under the initial state.

We can, however, have a more general view of this process and de�ne the behavior
of such animations independently of a concrete diagram:

state(Geom1; Name1; F1; I1) O state(Geom2; Name2; F2; I2) O

transition(Geom3; Lab) O input(Geom4; [LabjRest])
Æ� state(Geom1; Name1; F1; I1) O state(Geom2; Name2; F2; I2) O

transition(Geom3; Lab) O input(Geom5; Rest) N

startsat(Geom3; Geom1) N endsat(Geom3; Geom2) N

below(Geom4; Geom1) N below(Geom5; Geom2)

where startsat, endsat and below are suitable predicates that check the corresponding
spatial relations, possibly instantiating the geom attribute appropriately.

In the LO1 setting, a rule for expressing acceptance of the input would be:

state(Geom1; Name1; final;) O input(Geom2; []) Æ� >Nbelow(Geom2; Geom1).

Note that the termination of an agent indicates the success of a branch in the
corresponding proof.

It is easy to see how the two alternative approaches can both provide an opera-
tional semantics for executable diagrams. In both cases, the actual execution of the
transformations occurs uniformly according to the LO1 proof system.

4.2 Diagrammatic reasoning

Often we are using diagram transformations not so much to de�ne the con�guration
of a computational system, but instead to reason about some abstract domain. A

typical case of the use of diagrams to perform such reasoning are Venn Diagrams.
A variant of these, developed by Shin [Shi95], provides a formal syntax, semantics
and a sound and complete system of visual inference rules.

In these diagrams, sets are represented by regions, shaded regions imply that the
corresponding set is empty and a chain of X implies that at least one of the regions
marked by an X in the chain must be non-empty.

x

xx

BA

Figure 5: A Venn

diagram

As an example, Figure 5 says thatA is non-empty (expressed
by the chain of X), nothing is both in A and in B (expressed
by shading), and at least one element is in B. By inference we
can obtain that the elements in B and in A must belong to the
symmetric di�erence A�B [B�A. This diagram is equivalent
to one in which the X in the shaded region is removed. Such an
equivalence is expressed by the \Erasure of Links" inference rule.
This can be stated as \an X in a shaded region may be removed
from an X-chain provided the chain is kept connected." We
reformulate this textual rule as a set of linear logic rules, de�ned
on the following graphical data types: (1) chain, associated with
an attribute setOfX which stores the locations of the X elements in the chain; (2)
x, with an attribute pt giving its position and an attribute num, giving the number
of lines attached to it; (3) line, with an attribute ends giving the positions of its
two ends; (4) region, with an attribute geom, allowing the reconstruction of the
geometry of the region, and an attribute shading, indicating whether the region is
shaded or not. Additionally, some synchronization resources are used to indicate
that the transformation is performing some not yet completed process. Link erasure
is de�ned by the following actions:
(1) A point inside a shaded region is eliminated and the set in the chain is updated
accordingly. A synchronization resource is used to ensure that all the elements
previously connected to it will be considered:

chain(SofX) O x(Pt;Num) O region(Geom; shaded)

Æ� chain(G;P t;Num) O region(Geom; shaded) N

inside(Pt;Geom) N G == SofX n fPtg

(2) Points previously connected to the removed element are marked and the con-
necting lines are removed:

chain(G;P t;Num) O line(Ends) O x(Pt1; Num1)

Æ� chain(G;P t;Num) O x(Pt1; cand;Num11) N

Ends == fPt; P t1g N Num11 = Num1� 1

(3) If the removed point was inside the chain, its two neighbors are connected by a
new line. Synchronization resources are removed and a consistent state is restored:

chain(G;P t; 2) O x(Pt1; cand;Num1) O x(Pt2; cand;Num2)

Æ� chain(G) O x(Pt1; Num11) O x(Pt2; Num21) O line(Ends) N

Ends == fPt1; P t2g N Num11 = Num1 + 1 N Num21 = Num2 + 1

(4) If the removed point was at an end of the chain, its neighbor is now at an end.

chain(G;P t; 1) O x(Pt1; cand; 1) Æ� chain(G) O x(Pt1; 1)

(5) If the removed point was an isolated element, the diagram was inconsistent, and
the chain is removed altogether:

chain(G;P t; 0) Æ� ?

The erasure process goes through intermediate steps in which the diagram is not a
Venn diagram (for instance, dangling edges appear in the chain). Such inconsistent
diagrams correspond to states in which synchronization resources appear in the mul-
tiset. The process is, however, guaranteed to terminate with a consistent diagram.
Such situations often occur in diagrammatic transformations, where a complex step
is broken up to produce several intermediate diagrams, of which only the start and
�nal diagram belong to the language of interest. The problem of deciding whether
a diagram produced during the transformation process belongs to the language or is
just an intermediate diagram can in many cases be solved without resorting to pars-
ing. In fact, knowing that the starting diagram was in the language and knowing the
possible transformations, we can usually de�ne some simple test for the validity of
a transformed diagram. For example, among all the multisets produced during the
link erasure process, all and only those which do not contain any synchronization
resource represent a Venn diagram.

In general, a language L can be speci�ed by a triple (L0;)
�; L

f
), where L0 is

an initial language,)� is the reexive and transitive closure of the yield relation,
and L

f
is a �nal language acting as a �lter for sentences produced starting from L0

according to)�, i.e. L = fs j 9s0 2 L0 : s
0)� sg \ L

f
.

This view was proposed for string languages in [Man98] and independently
adopted for the diagrammatic case in [BCM99, BPPS00]. This suggests a line
of attack for typical problems in diagram transformations related to the possible
production of inconsistent diagrams. In our approach, the �lter language can be
characterized by a set of LO1 rules. A valid state in a diagram transformation
process is one for which there exists an LO1 proof of the �lter property.

As an example, consider the dangling edge problem which is typical of graph
transformation systems. The double-pushout approach to algebraic graph trans-
formation [CMR+97] faces this problem by not allowing deletion of a node if its
elimination would leave dangling edges after rule application. From our perspec-
tive, this could be modelled by giving a simple set of LO1 �lter rules:

edge(G1)Onode(G2)Onode(G3)Æ� node(G2)Onode(G3)Ntouches(G1; G2)Ntouches(G1; G3)

node()Æ�?
node()Æ�1

5 Conclusions

We have shown how diagram transformation can be formalized in linear logic and
we have discussed interpretations in multiset rewriting. Many important kinds of
diagrammatic reasoning, which can be understood as syntactic diagram transforma-
tion, can be formalized in this way.

The main technical contribution of this paper over previous work is the identi-
�cation of a small fragment of linear logic that is expressive enough to model dia-
grammatic transformations, yet small enough to directly correspond to a calculus
of linear logic programming. Our formalism therefore is a directly executable spec-
i�cation language. We have also proven equivalence of our model with attributed
multiset grammar approaches and correctness of the corresponding mapping.

The next extension to be investigated is negative application conditions. These
are required in many transformation systems to check the non-existence of certain

contexts or to ensure exhaustive rule application. It is not yet clear whether LO1 is
an adequate and suÆciently strong fragment of linear logic to model such systems.

From an implementation point of view, it appears worthwhile to explore the
integration of constraints into linear logic programming languages.

Ultimately, we are interested in speci�cation languages for diagram notations in
which the rules themselves are visual. The idea is that this can be formalized by an
additional mapping between linear logic rules and visual rules. Such an approach
necessarily raises the question if and when visual rules are adequate to describe a
transformation system. We hope that the ability to formalize the transformation as
well as the embedding conditions and the underlying geometric theory within the
unifying framework of linear logic will allow us to develop formal criteria that help
to answer this important question.

Appendix A: Linear Sequent Calculus

This appendix shows the relevant rules of the sequent calculus presented in [HP94].

� ` �
(ax)

� ` �;� �0; � ` �0

�;�0 ` �;�0
(cut)

�; �; ;�0 ` �

�; ; �;�0 ` �
(X � L)

� ` �; �; ;�0

� ` �; ; �;�0
(X �R)

�; � ` �

�; N� ` �

�; ` �

�; N� ` �
(N�L)

� ` �;� � ` ;�

� ` �N ;�
(N�R)

�; � ` � �0; ` �0

�;�0; O� ` �;�0
(O� L)

� ` �; ;�

� ` �O ;�
(O �R)

� ` �;� �0; ` �0

�;�0; �(` �;�0
((�L)

�; �[t=x] ` �

�; 8x:� ` �
(8 � L)

� ` �
�; !� ` �

(W !� L)
�; !�; !� ` �

�; !� ` �
(C!� L)

�; � ` �

�; !� ` �
(!� L)

` 1
(1�R)

Appendix B: Proof of Theorem 1

Due to space restrictions we can only give a limited amount of detail here. We
�rst show the \only if" direction. An accepting derivation in G has the following
structure: D !

pi1
D1 !pi2

! : : :!
pin

fsg In which !
pij

indicates the application

of production p
ij
in step j. We show that each derivation step j corresponds to a

valid sequent in linear logic. We can consider each derivation step in isolation. Let
p
ij
have the form (2). Then derivation step j has the form: fV; u1; : : : ; umg !pij

fV; u; u
n+1; : : : ; umg where V is the application context, u

n+1; : : : ; um is the rule
context and there is a ground substitution � for C and E such that �

g
` (C ^ E)�

where �
g
is the geometric/arithmetic theory. Let � = �(V), � = �(u), �

i
= �(u

i
).

Now, the linear equivalent of p
ij
is the exponential universal closure of �(p

ij
)

which has the form (4). Therefore the following sequent can be constructed:

�
g
` >;�

(>� R)

...
�
g
` (CNE)�;� �

g
;� ` ��O�

n+1O : : :O�m;�

�
g
;�

g
;� ` (CNE)�N��O�

n+1O : : :O�m;�

...
�
g
;� ` (CNE)�N��O�

n+1O : : :O�m;�
(C!� L)

(N�R)

�1

�
g
;�; �(p

ij
)� ` �1; : : : ; �m;�

�
g
;�; e8�(p

ij
) ` �1; : : : ; �m;�

�
g
;� ` �1; : : : ; �m;�

...
�
g
;� ` �1O : : :O�m;�

(O� R)

(C!� L); (!� L)

(8 � L)

((�L)

�1 ` �1
(ax)

: : : �
m
` �

m

(ax)

...
�1O : : :O�m ` �1O : : :O�m

�1

(O� L)

Therefore, to prove that �
g
;� ` D

i
it suÆces to show that �

g
;� ` D

i+1. So all
that remains to show is that �

G
;� ` �(s). This is trivial, since we have included

the appropriate rule �(s)(1 explicitly in �:

` 1
...

�
g
;� ` 1

(W !� L)

(1� R)

�(s) ` �(s)
(ax)

�
g
;� ` �(s)

((�L)

In the opposite direction (\if") the proof proceeds by induction on the number of
derivation steps in the linear proof. We �rst have to note that every linear represen-
tation of a sentential form has a special syntactic form:2 In � ` �, the linear senten-
tial form representation � on the right hand side must be of a form corresponding
to some �(D). This is the case if and only if � = � or � = CN�0O�, where �0
is a token corresponding to a terminal or non-terminal symbol, � = �1O : : :O�n
is a multiplicative disjunction of tokens and C = C0N: : :NCm

is an additive con-
junction of arithmetic/geometric constraints, i.e. C does not contain any tokens. �
can also take the form � = �1; : : : ; �n which we consider as an alternative linear
representation for the sentential form �1O : : :O�n.

We will show that every proof that ultimately leads to a conclusion � ` � in
which � is in this form contains only sequents of the forms

� ` � (5)

�1 ` �1 �2 ` �2

� ` � (6)

2Note that subsequently we will use the terms sentential form and linear representation of a

sentential form interchangeably where the intended meaning is evident from the context.

in which the left hand side can be decomposed as � = �
g
;�;� into arithmetic

axioms �
g
, the grammar rules � and a multiset of tokens � and � is a sentential

form that can be derived from � according to � under the theory �
g
. Note that we

consider � = C1N: : :NCk
with �

g
` � as a sentential form for an empty diagram

and that the empty diagram is implicitly always contained in the language.
Throughout the proof, the left hand side � of any sequent can only be augmented

except for by application of ((�L). But ((�L) introduces a form �(into
� which must be the representation of a grammar rule, since no other implications
may ultimately exists on the left hand side. Therefore must be of the form
� = 1O : : :O m.

This means that only axioms of the geometric theory and rules for the grammar
productions or elements of the form of � may be introduced into � in any sequent
for the proof to �nally arrive at the form �

g
;� ` �(D) where � = f�(G); �(s)Æ�1g.

It follows that the left hand side of any sequent in the proof can be decomposed as
� = �

g
;�;� into arithmetic axioms �

g
, the grammar � and a multiset of tokens �.

W.l.o.g. we assume that the arithmetic/geometric theory �
g
contains all arith-

metic truths as facts, i.e. contains no implications. We also note that we can replace
the rule �(s)(1 in � by the axiom �(s) thus eliminating the single use of 1.

According to the syntactic structure of our rules, we can only have sequents of
the following types in the proof after the elimination of cuts: (ax); (X � L); (X �
R); (N�R); (O� L); (O� R); ((�L); (!� L); (W !� L); (C!� L); (8� L).

Therefore any production of form (5) is of type (ax) so that � is a sentential form.
If the proof contains only a single sequent, it must be of the form (5). Therefore �
is a sentential form.

If the proof contains n + 1 sequents, the last sequent can have any of the forms
(X�L); (X�R); (N�R); (O�L); (O�R); ((�L); (!�L); (W !�L); (C!�L); (8�L)

The induction is trivial for (X�L); (X�R), because only the order of elements in
the grammar and axiom set (sentential form, respectively) is changed. The induction
is also trivial for (! � L); (W !� L); (C!� L) since only axioms and grammar rules
are exponential. For (O� R) it is trivial, because we consider �; ;� and �O ;�
as equivalent representations of the same sentential form. Thus we need only show
that the induction holds for (N�R); (O� L); ((�L).

In the case of
� ` �;� � ` ;�

� ` �N ;�
(N�R)

we can observe that either � or must be an arithmetic/geometric truth, be-
cause otherwise � ` �N ;� could never reach the syntactical structure required
for a sentential form. Let this be �. Then must either be a token or an arith-
metic/geometric truth and � must be a sentential form. So ��1(;�) is a sentential
form that can be derived from � with the grammar ��1(�) and �

g
` �, i.e. � can

be derived from the arithmetic theory. Therefore ��1(�N ;�) is a sentential form
that can be derived from � with the grammar ��1(�) under the axiom set �

g
. This

proves the induction for (N�R).
The form

�; � ` � �0; �0 ` �0

�;�0; �O�0 ` �;�0
(O� L)

is explained by the concatenation of two grammars: As above, we can decompose the
left hand sides into arithmetic axioms �

g
, the grammar � and a multiset of tokens

� (�0
g
;�0;�0, respectively). Thus the grammar ��1(�) allows to derive ��1(�)

from ��1(�) under �
g
and the grammar ��1(�0) allows to derive ��1(�0) from

��1(�0) under �0
g
. We can concatenate these grammars into a grammar G and the

arithmetic theories into a theory T such that G allows to derive ��1(�0) [��1(�)
from ��1(�0) [��1(�) under T . This proves the induction for (O� L).

For the case of
� ` �;� �0; �0 ` �0

�;�0; �(�0 ` �;�0
((�L)

we can decompose �;�0 as above.
The grammar ��1(�) allows to derive ��1(�;�) from ��1(�) under �

g
and

the grammar ��1(�0) allows to derive ��1(�0) from ��1(�0; �0) under �0
g
. We can

concatenate these grammars into a grammar G and the arithmetic theories into
a theory T such that G allows to derive ��1(�0) [��1(�) from ��1(�); ��1(�0)
under T , if we add the production ��1(�) ::= ��1(�0) to G. Exactly the linear
representation of this production is added to the axiom set by ((�L).

This concludes the proof. 2

References

[ACP93] J.-M. Andreoli, P. Ciancarini, and R. Pareschi. Interaction abstract machines.

In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in Con-

current Object-Oriented Programming, pages 257{280. MIT Press, Cambridge,

MA, 1993.

[AFP96] J.-M. Andreoli, S. Freeman, and R. Pareschi. The coordination language facility:

Coordination of distributed objects. Theory and Practice of Object Systems,

2:77{94, 1996.

[AP91] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in

inheritance. New Generation Computing, 9:445{473, 1991.

[BCM99] P. Bottoni, M.F. Costabile, and P. Mussio. Speci�cation and dialogue control

of visual interaction through visual rewriting systems. ACM Transactions on

Programming Languages and Systems, 21:1077{1136, 1999.

[BMST99] R. Bardohl, M. Minas, A. Sch�urr, and G. Taentzer. Application of graph trans-

formation to visual languages. In H. Ehrig, G. Engels, H.-J. Kreowski, and G.

Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph

Transformation, volume 2, pages 105{180. World Scienti�c, 1999.

[BPPS00] P. Bottoni, F. Parisi Presicce, and M. Simeoni. From formulae to rewriting

systems. In H. Ehrig, G. Engels, H.-J. Kreowsky, and G. Rozenberg, editors,

Theory and Application of Graph Transformations, pages 267{280. Springer,

Berlin, 2000.

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Lowe. Al-

gebraic approaches to graph transformation - Part I: basic concepts and double

pushout approach. In G. Rozenberg, editor, Handbook of Graph Grammars and

Computing by Graph Transformation, volume 1, pages 163{245.World Scienti�c,

1997.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.

[Gir91] J.-Y. Girard. Linear logic: A survey. Technical report, Int. Summer School on

Logic and Algebra of Speci�cation, 1991.

[Haa98] V. Haarslev. A fully formalized theory for describing visual notations. In K. Mar-

riott and B. Meyer, editors, Visual Language Theory, pages 261{292. Springer,

New York, 1998.

[Ham96] E. Hammer. Representing relations diagrammatically. In G. Allwein and J.

Barwise, editors, Logical Reasoning with Diagrams. Oxford University Press,

New York, 1996.

[HM91] R. Helm and K. Marriott. A declarative speci�cation and semantics for visual

languages. Journal of Visual Languages and Computing, 2:311{331, 1991.

[HMO91] R. Helm, K. Marriott, and M. Odersky. Building visual language parsers. In

ACM Conf. Human Factors in Computing, pages 118{125, 1991.

[HP94] J. Harland and D. Pym. A uniform proof-theoretic investigation of linear logic

programming. Journal of Logic and Computation, 4(2):175{207, April 1994.

[HPW96] J. Harland, D. Pym, and M. Winiko�. Programming in Lygon: An overview.

In Algebraic Methodology and Software Technology, LNCS 1101, pages 391{405.

Springer, July 1996.

[Man98] V. Manca. String rewriting and metabolism: A logical perspective. In G. Paun,

editor, Computing with Bio-Molecules, pages 36{60. Springer-Verlag, Singapore,

1998.

[Mar94] K. Marriott. Constraint multiset grammars. In IEEE Symposium on Visual

Languages, pages 118{125. IEEE Computer Society Press, 1994.

[Mey97] B. Meyer. Formalization of visual mathematical notations. In M. Anderson,

editor, AAAI Symposium on Diagrammatic Reasoning (DR-II), pages 58{68,

Boston/MA, November 1997. AAAI Press, AAAI Technical Report FS-97-02.

[Mey00] B. Meyer. A constraint-based framework for diagrammatic reasoning. Applied

Arti�cial Intelligence, 14(4):327{344, 2000.

[Mil95] D. Miller. A survey of linear logic programming. Computational Logic, 2(2):63{

67, December 1995.

[MM00] K. Marriott and B. Meyer. Non-standard logics for diagram interpretation. In

Diagrams 2000: International Conference on Theory and Application of Dia-

grams, Edinburgh, Scotland, September 2000. Springer. To appear.

[MMW98] K. Marriott, B. Meyer, and K.B. Wittenburg. A survey of visual language

speci�cation and recognition. In K. Marriott and B. Meyer, editors, Visual

Language Theory, pages 5{85. Springer, 1998.

[Shi95] S.-J. Shin. The Logical Status of Diagrams. Cambridge University Press, Cam-

bridge, 1995.

[Tan91] T. Tanaka. De�nite clause set grammars: A formalism for problem solving.

Journal of Logic Programming, 10:1{17, 1991.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 51 - 67.

Rewriting and Multisets in ρ-calculus and

ELAN

Horatiu Cirstea & Claude Kirchner
LORIA and INRIA and UHP
615, rue du Jardin Botanique

54600 Villers-lès-Nancy Cedex, France
{Horatiu.Cirstea,Claude.Kirchner}@loria.fr

Abstract

The ρ-calculus is a new calculus that integrates in a uniform and simple
setting first-order rewriting, λ-calculus and non-deterministic computations.
The main design concept of the ρ-calculus is to make all the basic ingredients
of rewriting explicit objects, in particular the notions of rule application and
multisets of results. This paper describes the calculus from its syntax to its basic
properties in the untyped case. The ρ-calculus embeds first-order conditional
rewriting and λ-calculus and it can be used in order to give an operational
semantics to the rewrite based language ELAN. We show how the set-like data
structures are easily represented in ELAN and how this can be used in order to
specify the Needham-Schroeder public-key protocol.
Keywords: Rewriting, Strategy, Multisets, Matching.

1 Introduction

It is a common claim that rewriting is ubiquitous in computer science and mathe-
matical logic. And indeed the rewriting concept appears from the very theoretical
settings to the very practical implementations. Some extreme examples are the
mail system under Unix that uses rules in order to rewrite mail addresses in canon-
ical forms (see the /etc/sendmail.cf file in the configuration of the mail system)
and the transition rules describing the behaviors of a tree automata. Rewriting is
used in semantics in order to describe the meaning of programming languages as
well as in program transformations like, for example, re-engineering of Cobol pro-
grams [vdBvDK+96]. It is used in order to compute [Der85], implicitly or explicitly
like in Mathematica [Wol99] or OBJ [GKK+87], but also to perform deduction
when describing by inference rules a logic [GLT89], a theorem prover [JK86] or a
constraint solver [JK91]. It is of course central in systems making the notion of rule
an explicit and first class object, like expert systems, programming languages based
on equational logic, algebraic specifications, functional programming and transition
systems.

In this very general picture, we introduce a calculus whose main design concept
is to make all the basic ingredients of rewriting explicit objects, in particular the no-
tions of rule application and multisets of results. We concentrate on term rewriting,

we introduce a very general notion of rewrite rule and we make the rule application
and result explicit concepts. These are the basic ingredients of the rewriting- or
ρ-calculus whose originality comes from the fact that terms, rules, rule application
and therefore rule application strategies are all treated at the object level.

In ρ-calculus we can explicitly represent the application of a rewrite rule (say
a → b) to a term (like the constant a) as the object [a → b](a) which evaluates to
the singleton {b}. This means that the rule application symbol @ (where @ is
our notation for the placeholder) is part of the calculus syntax.

But the application of a rewrite rule may fail like in [a→ b](c) that evaluates to
the empty set ∅ or it can be reduced to a multiset with more than one element like
exemplified later in this section and explained in Section 2.3. Of course, variables
may be used in rewrite rules like in [f(x) → x](f(a)). In this last case the evalu-
ation mechanism of the calculus will reduce the application to {a}. In fact, when
evaluating this expression, the variable x is bound to a via a mechanism classically
called matching, and we recover the classical way term rewriting is acting.

Where this game becomes even more interesting is that @ → @, the rewrite
arrow operator, is also part of the calculus syntax. This is a powerful abstractor
whose relationship with λ-abstraction [Chu40] could provide a useful intuition: A
λ-expression λx.t could be represented in the ρ-calculus as the rewrite rule x → t.
Indeed the β-redex (λx.t u) is nothing else than [x → t](u) (i.e. the application of
the rewrite rule x→ t on the term u) which reduces to {{x/u}t} (i.e. the application
of the substitution {x/u} to the term t).

So, basic ρ-calculus objects are built from a signature, a set of variables, the
abstraction operator @ → @, the application operator @, and we consider
multisets of such objects. That gives to the ρ-calculus the ability to handle non-
determinism in the sense of multisets of results. This is achieved via the explicit
handling of reduction result multisets, including the empty set that records the
fundamental information of rule application failure. For example, if the symbol +
is assumed to be commutative then applying the rule x+ y → x to the term a+ b

results in {a, b}. Since there are two different ways to apply (match) this rewrite
rule modulo commutativity the result is a set that contains two different elements
corresponding to two possibilities.

To summarize, in ρ-calculus abstraction is handled via the arrow binary operator,
matching is used as the parameter passing mechanism, substitution takes care of
variable bindings and results multisets are handled explicitly.

The operational semantics of ELAN, a language based on labeled conditional
rewrite rules and strategies controlling the rule application, can be described using
the ρ-calculus. We use the ELAN language in order to describe and analyze the
Needham-Schroeder public-key protocol [NS78].The implementation in ELAN is very
concise and the rewrite rules describing the protocol are directly obtained from a
classical presentation like the one given in Section 3.2.1.

2 Description of the ρT -calculus

We assume given in this section a theory T defined equationally or by any other
means and we present the components of the ρT -calculus and we comment our main
choices.

2.1 Syntax of the ρT -calculus

The syntax makes precise the formation of the objects manipulated by the calculus
as well as the formation of substitutions that are used by the evaluation mechanism.
In the case of ρT -calculus, the core of the object formation relies on a first-order
signature together with rewrite rules formation, rule application and multisets of
results.

Definition 2.1 We consider X a set of variables and F =
⋃

mFm a set of ranked
function symbols, where for all m, Fm is the subset of function symbols of arity m.
We assume that each symbol has a unique arity i.e. that the Fm are disjoint. We
denote by T (F ,X) the set of first-order terms built on F using the variables in X .

The set of basic ρ-terms can thus be inductively defined by the following gram-
mar:

ρ-terms t ::= x | f(t, . . . , t) | {t, . . . , t} | t | t→ t

where x ∈ X and f ∈ F .

We adopt a very general discipline for the rewrite rule formation, and we do
not enforce any of the standard restrictions often used in the rewriting community
like non-variable left-hand-sides or occurrence of the right-hand-side variables in the
left-hand-side. We also allow rewrite rules containing rewrite rules as well as rewrite
rule application. We consider that the symbols {} and ∅ both represent the empty
set. For the terms of the form {t1, . . . , tn} we assume as usual that the comma is
associative and commutative.

The main intuition behind this syntax is that a rewrite rule is an abstractor,
the left-hand-side of which determines the bound variables and some contextual
structure. Having new variables in the right-hand-side is just the ability to have free
variables in the calculus. We will come back to this later but to support the intuition
let us mention that the λ-terms and standard first-order rewrite rules [DJ90, BN98]
are clearly objects of this calculus. For example, the λ-term λx.(y x) corresponds
to the ρ-term x → [y](x) and a rewrite rule in first-order rewriting corresponds to
the same rewrite rule in the rewriting-calculus.

We have chosen multisets as the data structure for handling the potential non-
determinism. A multiset of terms could be seen as the set of distinct results obtained
by applying a rewrite rule to a term. Other choices could be made depending on the
intended use of the calculus. For example, if we do not want to provide the identical
results of an application a set could be used. When the order of the computation
of the results is important, lists could be employed. The confluence properties are

similar in a the set and multiset approaches. It is clear that for the list approach
only a confluence modulo permutation of lists can be obtained.

Example 2.1 If we consider F0 = {a, b, c}, F1 = {f, g}, F = F0 ∪ F1 and x, y

variables in X , some ρ-terms from �(F ,X) are:

• [a → b](a); this denotes the application of the rewrite rule a→ b to the term
a. We will see that the evaluation of this application is {b}.

• [f(x, y) → g(x, y)](f(a, b)); a classical rewrite rule application leading to a
{g(a, b)}result.

• [y → [x → x + y](b)]([x → x](a)); a ρ-term that corresponds to the λ-term
(λy.((λx.x + y) b)) ((λx.x) a).

• [[(x→ x+ 1)→ (1→ x)](a→ a+ 1)](1); a more complicated ρ-term without
corresponding standard rewrite rule or λ-term.

These examples show the very expressive syntax that is allowed for ρ-terms.

2.2 Matching and substitution application

The matching algorithm is used to bind variables to their actual values. In the case
of ρT -calculus, this is in general higher-order matching. But in practical cases it
will be higher-order-pattern matching, or equational matching, or simply syntactic
matching and their combination. The matching theory is specified as a parameter
(the theory T) of the calculus and when it is clear from the context this parameter
is omitted.

Definition 2.2 For a given theory T over ρ-terms, a T -match-equation is a formula
of the form t�?T t′, where t and t′ are ρ-terms. A substitution σ is a solution of the
T -match-equation t �?T t′ if T |= σ(t) = t′. A T -matching system is a conjunction
of T -match-equations. A substitution is a solution of a T -matching system P if it is
a solution of all the T -match-equations in P . We denote by F a T -matching system
without solution. A T -matching system is called trivial when all substitutions are
solution of it.
We define the function Solution on a T -matching system S as returning the set of all
T -matches of S when S is not trivial and {ID }, where ID is the identity substitution,
when S is trivial.

Notice that when the matching algorithm fails (i.e. returns F) the function So-
lution returns the empty set.

Example 2.2 If�?∅ denotes a syntactic matching and�?C a commutative matching
then we have:

1. a�?∅ b has no solutions, and thus Solution(a�?∅ b) = ∅;

2. f(x, x)�?∅ f(a, b) has no solution and thus Solution(f(x, x)�?∅ f(a, b)) = ∅;

3. a�?∅ a is solved by all substitutions, and thus Solution(a�?∅ a) = {ID };

4. f(x, g(x, y)) �?∅ f(a, g(a, b)) has as solution the substitution σ ≡ {x/a, y/b},

and Solution(f(x, g(x, y))�?∅ f(a, g(a, b))) = {σ};

5. x + y �?C a + b has the two solutions {x/a, y/b} and {x/b, y/a} and thus
Solution(x+ y �?C a+ b) = {{x/a, y/b}, {x/b, y/a}}.

The description of the substitution application on terms is often given at the
meta-level, except for explicit substitution frameworks.

As for any calculus involving binders like the λ-calculus, α-conversion should be
used in order to obtain a correct substitution calculus and the first-order substitution
(called here grafting) is not directly suitable for ρ-calculus. In order to obtain a
substitution that takes care of variable bindings we consider the usual notions of
α-conversion and higher-order substitution as defined for example in [DHK00].

The burden of variable handling could be avoided by using an explicit substitu-
tion mechanism in the spirit of [CHL96]. We sketched such an approach in [CK99a]
and this will be detailed in a forthcoming paper.

2.3 Evaluation rules of the ρT -calculus

The evaluation rules describe the way the calculus operates. It is the glue between
the previous components and the simplicity and clarity of these rules are fundamen-
tal for the calculus usability.

The evaluation rules of the ρT -calculus describe the application of a ρ-term on
another one and specify the behavior of the different operators of the calculus when
some arguments are multisets. They are defined in Figure 1.

In the rule Fire, {σ1, . . . , σi, . . .} represents the set of substitutions obtained
by T -matching l on p (i.e. Solution(l �?T p)) and σir represents the result of the
application of the substitution σi on the term r. When the matching yields a failure
represented by an empty set of substitutions, the result of the application of the
rule Fire is the empty set.

We should point out that, like in λ-calculus an application can always be eval-
uated, but unlike in λ-calculus, the set of results could be empty. More generally,
when matching modulo a theory T , the set of resulting matches may be empty, a sin-
gleton (like in the empty theory), a finite set (like for associativity-commutativity)
or infinite (like for associativity). We have thus chosen to represent the result of
a rewrite rule application to a term as a multiset. An empty set means that the
rewrite rule l → r fails to apply on t in the sense of a matching failure between l

and t.
In order to push rewrite rule application deeper into terms, we introduce the two

Congruence evaluation rules. They deal with the application of a term of the form
f(u1, . . . , un) (where f ∈ Fn) to another term of a similar form. When we have the
same head symbol for the two terms of the application [u](v) the arguments of the
term u are applied on those of the term v argument-wise. If the head symbols are
not the same, an empty set is obtained.

Fire [l→ r](t) =⇒
{σ1r, . . . , σnr, . . .}

where σi ∈ Solution(l �?T t)
Congruence [f(u1, . . . , un)](f(v1, . . . , vn)) =⇒

{f([u1](v1), . . . , [un](vn))}
Congruence fail [f(u1, . . . , un)](g(v1, . . . , vm)) =⇒

∅
Distrib [{u1, . . . , un}](v) =⇒

{[u1](v), . . . , [un](v)}
Batch [v]({u1, . . . , un}) =⇒

{[v](u1), . . . , [v](un)}
SwitchL {u1, . . . , un} → v =⇒

{u1 → v, . . . , un → v}
SwitchR u→ {v1, . . . , vn} =⇒

{u→ vn, . . . , u→ vn}
OpOnSet f(v1, . . . , {u1, . . . , um}, . . . , vn) =⇒

{f(v1, . . . , u1, . . . , vn), . . . , f(v1, . . . , um, . . . , vn)}
Flat {u1, . . . , {v1, . . . , vn}, . . . , um} =⇒

{u1, . . . , v1, . . . , vn, . . . , um}

Figure 1: The evaluation rules of the ρT -calculus

The reductions corresponding to the cases where some sub-terms are multisets
are defined by the last evaluation rules in Figure 1. These rules describe the prop-
agation of the multisets on the constructors of the ρ-terms: the rules Distrib and
Batch for the application, SwitchL and SwitchR for the abstraction and OpOnSet

for functions. The evaluation rule that corresponds to the multiset propagation for
set symbols and that eliminates the redundant set symbols is the evaluation rule
Flat.

This design decision to use multisets to represent reduction results has another
important consequence concerning the handling of sets with respect to matching.
Indeed, sets are just used to store results and we do not wish to make them part
of the theory. We are thus assuming that the matching operation used in the Fire
evaluation rule is not performed modulo set axioms. This requires in some cases to
use a strategy that pushes set braces outside the terms whenever possible.

To summarize, we can say that every time a ρ-term is reduced using the rules
Fire, Congruence and Congruence fail of the ρT -calculus, a multiset is generated.
These evaluation rules are the ones that describe the application of a rewrite rule
at the top level or deeper in a term. The multiset obtained when applying one of
the above evaluation rules can trigger the application of the other evaluation rules
of the calculus. These evaluation rules deal with the (propagation of) multisets and
compute a ”set-normal form” for the ρ-terms by pushing out the set braces and
flattening the sets.

2.4 Evaluation strategies for the ρT -calculus

The strategy guides the application of the evaluation rules. The strategy S guiding
the application of the evaluation rules of the ρT -calculus could be crucial for obtain-
ing good properties for the calculus. In a first stage, the main property analyzed is
the confluence of the calculus and if the rule Fire is applied under no conditions at
any position of a ρ-term confluence does not hold.

The use of multisets for representing the reductions results is the main source of
non-confluence. Unlike in the standard definition of a rewrite step where the rule
application yields always a result, in ρ-calculus a rule application always yields a
unique result that can be a multiset with several elements, representing the non-
deterministic choice of the corresponding results from rewriting, or with no elements
(∅), representing the failure. Therefore, the relation generated by the evaluation
rules of the ρ-calculus is finer and consequently non-confluent.

The confluence can be recovered if the evaluation rules of ρ-calculus are guided
by an appropriate strategy. This strategy should first handle properly the problems
related to the propagation of failure over the operators of the calculus. It should
also take care of the correct handling of multisets with more than one element in
non-linear contexts and details on this strategy are given in [CK99b].

2.5 Using the ρT -calculus

The aim of this section is to make concrete the concepts we have just introduced by
giving a few examples of ρ-terms and ρ-reductions. Many other examples could be
found on the ELAN web page [Pro00].

Let us start with the functional part of the calculus and give the ρ-terms rep-
resenting some λ-terms. For example, the λ-abstraction λx.(y x), where y is a
variable, is represented as the ρ-rule x→ [y](x). The application of the above term
to a constant a, (λx.(y x) a) is represented in the ρ∅-calculus by the application
[x → [y](x)](a). This application reduces in the λ-calculus to the term (y a) while
in the ρ∅-calculus the result of the reduction is the singleton {[y](a)}. When a func-
tional representation f(x) is chosen, the λ-term λx.f(x) is represented by the ρ-term
x→ f(x) and a similar result is obtained. One should notice that for ρ-terms of this
form (i.e. that have a variable as a left-hand side) the syntactic matching performed
in the ρ∅-calculus is trivial, it never fails and gives only one result.

There is no difficulty to represent more elaborated λ-terms in the ρ∅-calculus.
Let us consider the term λx.f(x) (λy.y a) with the β-derivation: λx.f(x) (λy.y a)
−→β λx.f(x) a −→β f(a). The same derivation can be recovered in the ρ∅-calculus
for the corresponding ρ-term: [x → f(x)]([y → y](a)) −→F ire [x → f(x)]({a})
−→Batch {[x → f(x)](a)} −→F ire {{f(a)}} −→F lat {f(a)}. Of course, several
reduction strategies can be used in the λ-calculus and reproduced accordingly in
the ρ∅-calculus.

Now, if we introduce contextual information in the left-hand sides of the rewrite
rules we obtain classical rewrite rules like f(a) → f(b) or f(x) → g(x). When we
apply such a rewrite rule the matching can fail and consequently the application of
the rewrite rule can fail. As we have already insisted in the previous sections, the

failure of a rewrite rule is not a meta-property in the ρ∅-calculus but is represented
by an empty set (of results). For example, in standard term rewriting we say that
the application of the rule f(a)→ f(b) to the term f(c) fails while in the ρ∅-calculus
the term [f(a)→ f(b)](f(c)) evaluates to ∅.

When the matching is done modulo an equational theory we obtain interesting
behaviors. Take, for example, the list operator ◦ that appends two lists with ele-
ments of sort Elem. Any object of sort Elem represents a list consisting of this
only object.

If we define the operator ◦ as right-associative, the rewrite rule taking the first
part of a list can be written in the associative ρA-calculus l◦ l′ → l and when applied
to the list a ◦ b ◦ c ◦ d gives as result the ρ-term {a, a ◦ b, a ◦ b ◦ c}. If the operator
◦ had not been defined as associative we would have obtained as result of the same
rule application one of the singletons {a} or {a ◦ b} or {a ◦ (b ◦ c)} or {(a ◦ b) ◦ c},
depending of the way the term a ◦ b ◦ c ◦ d is parenthesized.

Let consider now a commutative operator ⊕ and the rewrite rule x⊕y → x that
selects one of the elements of the tuple x⊕ y. In the commutative ρC-calculus the
application [x ⊕ y → x](a ⊕ b) evaluates to the set {a, b} that represents the set
of non-deterministic choices between the two results. The rewrite rule x ⊕ y → x

applies as well on the term a⊕ a and the result is the multiset {a, a} representing
the non-deterministic choice between the two elements that in this case represents
two possible reductions with the same result. In a set approach the result of this
latter reduction is {a}.

We can also use an associative-commutative theory like, for example, when an
operator describes multiset formation. Let us go back to the ◦ operator but this time
let us define it as associative-commutative and use the rewrite rule x◦x◦L→ L that
eliminates doubletons from lists of sort Elem. Since the matching is done modulo
associativity-commutativity this rule eliminates the doubletons no matter what is
their position in the multiset. For instance, in the ρAC-calculus the application
[x ◦ x ◦L→ L](a ◦ b ◦ c ◦ a ◦ d) evaluates to {b ◦ c ◦ d}: the search for the two equal
elements is done thanks to associativity and commutativity.

Another facility is due to the use of multisets for handling non-determinism. This
allows us to easily express the non-deterministic application of a multiset of rewrite
rules on a term. Let us consider, for example, the operator ⊗ as a syntactic operator.
If we want the same behavior as before for the selection of each element of the couple
x⊗y, two rewrite rules should be non-deterministically applied like in the reduction:
[{x ⊗ y → x, x⊗ y → y}](a ⊗ b) −→Distrib {[x ⊗ y → x](a⊗ b), [x ⊗ y → y](a⊗ b)}
−→F ire {{a}, {b}} −→F lat {a, b}.

As we have seen, the ρ-calculus can be used for representing some simpler calculi
like λ-calculus and rewriting. This can be proved formally by restricting the syntax
and the evaluation rules of the ρ-calculus in order to represent the terms of the
two calculi. Thus, for any reduction in the λ-calculus or conditional rewriting a
corresponding natural reduction in the ρ-calculus can be found. We can extend the
encoding of conditional rewriting in the ρ-calculus to more complicated rules like
the conditional rewrite rules with local assignments from the ELAN language.

3 Specifications in the ELAN language

3.1 ELAN’s rewrite rules

ELAN is an environment for specifying and prototyping deduction systems in a
language based on labeled conditional rewrite rules and strategies to control rule
application. The ELAN system offers a compiler and an interpreter of the language.
The ELAN language allows us to describe in a natural and elegant way various
deduction systems [BKK+96]. It has been experimented on several non-trivial ap-
plications ranging from decision procedures, constraint solvers, logic programming
and automated theorem proving but also specification and exhaustive verification of
authentication protocols [Pro00]. ELAN’s rewrite rules are conditional rewrite rules
with local assignments. The local assignments are let-like constructions that allow
applications of strategies on some terms. The general syntax of an ELAN rule is:

[2] l⇒ r [if cond | where y := (S)u]∗ end

We should notice that the square brackets ([]) in ELAN are used to indicate the label
of the rule and should be distinguished from the square brackets of the ρ-calculus
that represent the application of a rewrite rule (ρ-term).

The application of the labeled rewrite rules is controlled by user-defined strate-
gies while the unlabeled rules are applied according to a default normalization strat-
egy. The normalization strategy consists in applying unlabeled rules at any position
of a term until the normal form is reached, this strategy being applied after each
reduction produced by a labeled rewrite rule.

The application of a rewrite rule in ELAN can yield several results due to the
equational (associative-commutative) matching and to the where clauses that can
return as well several results.

Example 3.1 An example of an ELAN rule describing a possible naive way to search
the minimal element of a list by sorting the list and taking the first element is the
following:

[min-rule] min(l) => m

if l != nil

where sl := (sort) l

where m := () head(sl) end

The strategy sort can be any sorting strategy. The operator head is supposed to
be described by a confluent and terminating set of unlabeled rewrite rules.

The evaluation strategy used for evaluating the conditions is a leftmost innermost
standard rewriting strategy.

The non-determinism is handled mainly by two basic strategy operators: dont
care choose (denoted dc(s1, . . . , sn)) that returns the results of at most one
non-deterministicly chosen unfailing strategy from its arguments and dont know

choose(denoted dk(s1, . . . , sn)) that returns all the possible results. A variant of
the dont care choose strategy operator is the first choose operator (denoted

first(s1, . . . , sn)) that returns the results of the first unfailing strategy from its
arguments.

Several strategy operators implemented in ELAN allow us a simple and concise
description of user defined strategies. For example, the concatenation operator
denoted ; builds the sequential composition of two strategies s1 and s2. The strategy
s1; s2 fails if s1 fails, otherwise it returns all results (maybe none) of s2 applied to the
results of s1. Using the operator repeat* we can describe the repeated application
of a given strategy. Thus, repeat*(s) iterates the strategy s until it fails and then
returns the last obtained result.

Any rule in ELAN is considered as a basic strategy and several other strategy
operators are available for describing the computations. Here is a simple example
illustrating the way the first and dk strategies work.

Example 3.2 If the strategy dk(x => x+1,x => x+2) is applied on the term a,
ELAN provides two results: a+1 and a+2. When the strategy first(x => x+1,x

=> x+2) is applied on the same term only the a+1 result is obtained. The strategy
first(b => b+1,a => a+2) applied to the term a yields the result a+ 2.

Using non-deterministic strategies we can explore exhaustively the search space
of a given problem and find paths described by some specific properties.

A partial semantics could be given to an ELAN program using the rewriting
logic [Mes92], but more conveniently ELAN’s rules can be expressed using the
ρ-calculus and thus an ELAN program is just a set of ρ-terms.

3.2 Representing multisets in ELAN

Using non-deterministic strategies we can explore exhaustively the set of states of a
given problem and find paths described by some specific properties. For example, for
proving the correctness of the Needham-Schroeder authentication protocol [NS78]
we look for possible attacks among all the behaviors during a session.

In the this section we briefly present some of the rules of the protocol and we
give the strategy looking for all the possible attacks, a more detailed description of
the implementation is given in [Cir99].

3.2.1 The Needham-Schroeder public-key protocol

The Needham-Schroeder public-key protocol [NS78] aims to establish a mutual au-
thentication between an initiator and a responder that communicate via an insecure
network. Each agent A possesses a public key denoted K(A) that can be obtained
by any other agent from a key server and a (private) secret key that is the inverse
of K(A). A message m encrypted with the public key of the agent A is denoted by
{m}K(A) and can be decrypted only by the owner of the corresponding secret key,
i.e. by A.

The protocol uses nonces that are fresh random numbers to be used in a single
run of the protocol. We denote the nonce generated by the agent A by NA.

The simplified description of the protocol presented in [Low95] is:

1. A→ B: {NA, A}K(B)
2. B → A: {NA,NB}K(A)
3. A→ B: {NB}K(B)

The initiator A seeks to establish a session with the agent B. For this A sends
a message to B containing a newly generated nonce NA and its identity, message
encrypted with its key K(B). When such a message is received by the agent B,
he can decrypt it and extract the nonce NA and the identity of the sender. The
agent B generates a new nonce NB and he sends it to A together with NA in a
message encrypted with the public key of A. When A receives this response he can
decrypt it and assumes that he has established a session with B. The agent A sends
the nonce NB back to B and when receiving this last message B assumes that he
has established a session with A since only A could have decrypted the message
containing NB.

The main property expected for an authentication protocol like the Needham-
Schroeder public-key protocol is to prevent an intruder from impersonating one of
the two agents.

The intruder is an user of the communication network and so, he can initiate
standard sessions with the other agents and he can respond to messages sent by
the other agents. The intruder can intercept any message from the network and
can decrypt the messages encrypted with its key. The nonces obtained from the
decrypted messages can be used by the intruder for generating new (fake) messages.
The intercepted messages that can not be decrypted by the intruder can be replayed
as they are.

3.2.2 Encoding the Needham-Schroeder public-key protocol in ELAN

We present now a description of the protocol in ELAN. The ELAN rewrite rules
correspond to transitions of agents from one state to another after sending and/or
receiving messages.

Data structures The initiators and the responders are agents described by their
identity, their state and a nonce they have created. An agent can be defined in
ELAN using a mixfix operator:

@ + @ + @ : (AgentId SWC Nonce) Agent;

The symbol @ is a placeholder for terms of types AgentId, SWC and Nonce respec-
tively representing the identity, the state and the current nonce of a given agent.

There are three possible values of SWC states. An agent is in the state SLEEP if
he has not sent nor received a request for a new session. In the state WAIT the agent
has already sent or received a request and when reaching the state COMMIT the agent
has established a session.

A nonce created by an agent A in order to communicate with an agent B is
represented by N(A,B). Memorizing the nonce allows the agent to know at each mo-
ment who is the agent with whom he is establishing a session and the two identities

from the nonce are used when verifying the invariants of the protocol. A dummy
nonce is represented by N(di,di).

The nonces generated in the ELAN implementation are not random numbers but
store some information indicating the agents using the nonce. If the uniqueness of
nonces is important like, for example, in an implementation describing sequential
runs of the protocol, an additional (random number) information can be easily added
to the structure of nonces.

The agents exchange messages defined by:

@-->@:@[@,@,@] : (AgentId AgentId Key Nonce Nonce Address) message;

A message of the form A-->B:K[N1,N2,Add] is a message sent from A to B and
contains the two nonces N1 and N2 together with the explicit address of the sender,
Add. The address contains in fact the identity of the sender but we give it a different
type in order to have a clear distinction between the identity of the sender in the
encrypted part of the message and in the header of the message. The header of the
message contains the source and destination address of the message but since they
are not encrypted they can be faked by the intruder. The body of the message is
encrypted with the key K and can be decrypted only by the owner of the private
key.

The communication network is described by a possibly empty multiset of mes-
sages:

@ : (message) network;

@ & @ : (network network) network (AC);

nill : network;

with nill representing the network with no messages.
The intruder does not only participate to normal communications but can as

well intercept and create (fake) messages. Therefore a new data structure is used
for intruders:

@ # @ # @ : (AgentId setNonce network) intruder;

where the first field represents the identity of the intruder, the second one is the set
of nonces he knows and the third one the set of messages he has intercepted. In our
specification we only use one intruder and thus, the first field can be replaced by a
constant identifying the intruder.

As for the messages, a set of nonces (setNonce) is defined using the associative-
commutative operator | and a set of agents is defined using the associative-commuta-
tive operator ||.

The ELAN rewrite rules are used to describe the modifications of the global state
that consists of the states of all the agents involved in the communication and the
state of the network. The global state is defined by:

@ <> @ <> @ <> @ : (setAgent setAgent intruder network) state;

where the first two fields represent the set of initiators and responders, the third
one represents the intruder and the last one the network.

Rewrite rules The rewrite rules describe the behavior of the honest agents in-
volved in a session and the behavior of the intruder that tries to impersonate one of
the agents. We will see that the invariants of the protocol are expressed by rewrite
rules as well.

Each modification of the state of one of the participants to a session is described
by a rewrite rule. At the beginning all the agents are in the state SLEEP waiting
either to initiate a session or to receive a request for a new session.

When an initiator is in the state SLEEP, he initiates a session with one of the
responders by sending the appropriate message as defined by the first step of the
protocol. The following rewrite rule is used:

[initiator-1]

x+SLEEP+resp || IN <> RE <> I <> lm =>

x+WAIT+N(x,y) || IN <> RE <> I <> x-->y:K(y)[N(x,y),N(di,di),A(x)]&lm

where (Agent)y+std+init :=(extAgent) elemIA(RE) end

In the above rewrite rule x and y are variables of type AgentId representing the
identity of the initiator and the identity of the responder respectively. The initiator
sends a nonce N(x,y) and his address (identity) encrypted with the public key of
the responder and goes in the state WAIT where he waits for a response. Since only
one nonce is necessary in this message, a dummy nonce N(di,di) is used in the
second field of the message. The message is sent by including it in the multiset of
messages available on the network.

Since the operator || is associative-commutative, when applying the rewrite
rule initiator-1 the initiator x is selected non-deterministicly from the set of
initiators. The identity of the responder y is selected non-deterministicly from the
set of responders or from the set of intruders; in our case only one intruder. The non-
deterministic selection of the responder is implemented by the strategy extAgent

that selects at each application a new agent from the set given as argument.
If the destination of the previously sent message is a responder in the state

SLEEP, then this agent gets the message and decrypts it if it is encrypted with his
key. Afterwards, he sends the second message from the protocol to the initiator and
goes in the state WAIT where he waits for the final acknowledgement:

[responder-1]

IN<> y+SLEEP+init || RE <>I<> w-->y:K(y)[N(n1,n3),N(n2,n4),A(z)]&lm

=> IN<> y+WAIT+N(y,z) || RE <>I<> y-->z:K(z)[N(n1,n3),N(y,z),A(y)]&lm

One should notice that due to the associative-commutative definition of the
operator & the position of the message in the network is not important. A non-
associative-commutative definition would have implied several rewrite rules for de-
scribing the same behavior.

The condition that the message is encrypted with the public key of the respon-
der is implicitly tested due to the matching that instantiates the variable y from
y+SLEEP+init and K(y) with the same agent identity. Therefore, we do not have
to add an explicit condition to the rewrite rule that remains simple and efficient.

Two other rewrite rules describe the other message exchanges from a session.
When an initiator x and a responder y have reached the state COMMIT at the end of

a correct session the nonce N(y,x) can be used as a symmetric encryption key for
further communications between the two agents.

The intruder can be viewed as a normal agent that can not only participate to
normal sessions but that tries also to break the security of the protocol by obtain-
ing information that are supposed to be confidential. The network that serves as
communication support is common to all the agents and therefore all the messages
can be observed or intercepted and new messages can be inserted in it. There is no
difficulty to implement the rules for the intruder in ELAN but for reasons of space
they are omitted in this presentation.

The invariants of the protocol are easily represented by two rewrite rules de-
scribing the negation of the conditions that should be verified by the participants
to the protocol session. If one of these two rewrite rules can be applied during the
execution of the specification then the authenticity of the protocol is not ensured
and an attack can be described from the trace of the execution.

Some additional properties on the multisets (of messages) can be expressed using
unlabeled rewrite rules. For example the elimination of duplicates from a multiset
of messages is represented by the rule

[] m & m & l => m & l

that is applied implicitly after each application of any labeled rule.

Strategies The rewrite rules used to specify the behavior of the protocol and the
invariants should be guided by a strategy describing their application. Basically,
we want to apply repeatedly all the above rewrite rules in any order and in all the
possible ways until one of the attack rules can be applied.

The strategy is easy to define in ELAN by using the non-deterministic choice op-
erator dk, the repeat* operator representing the repeated application of a strategy
and the ; operator representing the sequential application of two strategies:

[]attStrat =>

repeat*(dk(attack-1, attack-2,

intruder-1, intruder-2, intruder-3, intruder-4,

initiator-1, initiator-2, responder-1, responder-2

)); attackFound

The strategy tries to apply one of the rewrite rules given as argument to the dk
operator starting with the rules for attacks and intruders and ending with the rules
for the honest agents. If the application succeeds the state is modified accordingly
and the repeat* strategy tries to apply a new rewrite rule on the result of the
rewriting. When none of the rules is applicable, the repeat* operator returns the
result of the last successful application. Since the repeat* strategy is sequentially
composed with the attackFound strategy, this latter strategy is applied on the result
of the repeat* strategy.

The strategy attackFound is nothing else but the rewrite rule:

[attackFound] ATTACK => ATTACK end

If an attack has not been found and therefore the strategy attackFound cannot
be applied a backtrack is performed to the last rule applied successfully and another
application of the respective rule is tried. If this is not possible the next rewrite
rule is tried and if none of the rules can be applied a backtrack is performed to the
previous successful application.

If the result of the strategy repeat* reveals an attack, then the attackFound

strategy can be applied and the overall strategy succeeds. The trace of the attack
can be recovered in the ELAN environment.

The trace obtained when executing the ELAN specification describes exactly the
attack presented in [Low95] where the intruder impersonates an agent in order to
establish a session with another agent.

The ELAN specification can be easily modified in order to reflect the correction
shown sound in [Low96] and as expected, when the specification is executed with
the modified rules no attacks are detected.

4 Conclusion

We have presented the ρT -calculus and we have seen that by making explicit the
notion of rule, rule application and application result, the ρT -calculus allows us to
describe in a simple yet very powerful manner the combination of algebraic and
higher-order frameworks.

In the ρT -calculus the non-determinism is handled by using multisets of results
and the rule application failure is represented by the empty set. Handling multisets
is a delicate problem and the raw ρT -calculus, where the evaluation rules are not
guided by a strategy, is not confluent but when an appropriate evaluation strategy
is used the confluence is recovered.

The ρT -calculus is both conceptually simple as well as very expressive. This
allows us to represent the terms and reductions from λ-calculus and conditional
rewriting. Starting from this representation we showed how the ρT -calculus can be
used to give a semantics to ELAN rules. This could be applied to many other frame-
works, including rewrite based languages like ASF+SDF, ML, Maude or CafeOBJ
but also production systems and non-deterministic transition systems.

We have shown how the ELAN language can be used as a logical framework
for representing the Needham-Schroeder public-key protocol. This approach can
be easily extended to other authentication protocols and an implementation of the
TMN protocol has been already developed. The rules describing the protocol are
naturally represented by conditional rewrite rules. The mixfix operators declared as
associative-commutative allow us to express and handle easily the random selection
of agents from a set of agents or of a message from a set of messages.

Among the topics of further research, let us mention the deepening of the re-
lationship between the ρT -calculus and the rewriting logic [Mes92], the study of
the models of the ρT -calculus, and also a better understanding of the relationship
between the rewriting relation and the rewriting calculus.

References

[BKK+96] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vit-
tek. ELAN: A logical framework based on computational systems. In
J. Meseguer, editor, Proceedings of the first international workshop
on rewriting logic, volume 4 of Electronic Notes in TCS, Asilomar
(California), September 1996.

[BN98] F. Baader and T. Nipkow. Term Rewriting and all That . Cambridge
University Press, 1998.

[CHL96] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of
weak and strong calculi of explicit substitutions. Journal of the ACM,
43(2):362–397, 1996.

[Chu40] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[Cir99] H. Cirstea. Specifying authentication protocols using ELAN. In
Workshop on Modelling and Verification, Besancon, France, Decem-
ber 1999.

[CK99a] H. Cirstea and C. Kirchner. Combining higher-order and first-order
computation using ρ-calculus: Towards a semantics of ELAN. In
D. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems
2, Research Studies, ISBN 0863802524, pages 95–120. Wiley, 1999.

[CK99b] H. Cirstea and C. Kirchner. An introduction to the rewriting calcu-
lus. Research Report RR-3818, INRIA, December 1999.

[Der85] N. Dershowitz. Computing with rewrite systems. Information and
Control, 65(2/3):122–157, 1985.

[DHK00] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via
explicit substitutions. Information and Computation, 157(1/2):183–
235, 2000.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, chap-
ter 6, pages 244–320. Elsevier Science Publishers B. V. (North-
Holland), 1990.

[GKK+87] J. A. Goguen, C. Kirchner, H. Kirchner, A. Mégrelis, J. Meseguer,
and T. Winkler. An introduction to OBJ-3. In J.-P. Jouannaud
and S. Kaplan, editors, Proceedings 1st International Workshop on
Conditional Term Rewriting Systems, Orsay (France), volume 308 of
Lecture Notes in Computer Science, pages 258–263. Springer-Verlag,
July 1987. Also as internal report CRIN: 88-R-001.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7
of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1989.

[JK86] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo
a set of equations. SIAM Journal of Computing, 15(4):1155–1194,
1986. Preliminary version in Proceedings 11th ACM Symposium on
Principles of Programming Languages, Salt Lake City (USA), 1984.

[JK91] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract
algebras: a rule-based survey of unification. In J.-L. Lassez and
G. Plotkin, editors, Computational Logic. Essays in honor of Alan
Robinson, chapter 8, pages 257–321. The MIT press, Cambridge
(MA, USA), 1991.

[Low95] G. Lowe. An attack on the Needham-Schroeder public key authenti-
cation protocol. Information Processing Letters, 56:131–133, 1995.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public key
protocol using CSP and FDR. In Proceedings of 2nd TACAS Conf.,
volume 1055 of Lecture Notes in Computer Science, pages 147–166,
Passau (Germany), 1996. Springer-Verlag.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of con-
currency. Theoretical Computer Science, 96:73–155, 1992.

[NS78] R. Needham and M. Schroeder. Using encryption for authentica-
tion in large networks of computers. Communications of the ACM,
21(12):993–999, 1978.

[Pro00] Protheo Team. The ELAN home page. WWW Page, 2000.
http://www.loria.fr/ELAN.

[vdBvDK+96] M. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E. A.
van der Meulen. Industrial applications of asf+sdf. In M. Wirsing
and M. Nivat, editors, AMAST ’96, volume 1101 of Lecture Notes in
Computer Science, pages 9–18. Springer-Verlag, 1996.

[Wol99] S. Wolfram. The Mathematica Book, chapter Patterns, Transforma-
tion Rules and Definitions. Cambridge University Press, 1999. ISBN
0-521-64314-7.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 68 - 77.

Objects in Test Tube Systems ∗

Erzsébet CSUHAJ-VARJÚ
and

György VASZIL

Computer and Automation Research Institute

Hungarian Academy of Sciences

Kende utca 13-17, 1111 Budapest, Hungary

E-mail: csuhaj/vaszil@sztaki.hu

Abstract

We introduce the notion of a test tube system with objects, a distributed
parallel computing device operating with multisets of symbols, motivated by
characteristics of biochemical processes. We prove that these constructs are
suitable tools for computing, any recursively enumerable set can be identified
by a TTO system. We also raise some open questions arising from the uncon-
ventional nature of this computational tool.

1 Introduction

Recently there have been a growing interest in investigating the principles and po-
tentials for natural design and programmability in constructs simulating complex
biomolecular systems. Among these investigations proposals for distributed parallel
devices inspired by DNA-related structures or constructions motivated by biochem-
ical processes are of particular interest.

Test tube systems based on splicing [1] or test tube systems with cutting and
recombination operations [2] are examples for the first types of constructions. A
test tube system is a finite collection of generative mechanisms (test tubes) which
operate on strings (sets of strings or multisets of strings) using language theoretic
operations motivated by the recombinant behaviour of DNA strands, and which
communicate with each other by transferring the result of their computation. The
notions were inspired by the famous experiment of L. M. Adleman computing an
instance of the Hamiltonian path problem with DNA molecules in test tubes. Test
tube systems realize universal computational devices, their computational capacity
is equal to that of Turing machines ([1], [2]). For several other variants and related
models the interested reader is referred to [5].

∗Research supported in part by the Hungarian Scientific Research Fund ”OTKA” Grant no. T
029615.

For computing devices of biochemical types, a recent paradigm, called P system
was proposed in [6]. Since then the model has obtained increasing interest, for an
early survey on the topic we refer to [7]. In these systems objects move among regions
realizing cells of a membrane structure. Objects in the region can undergo operations
which simulate biochemical processes. Since the same object can be present in a
region in several copies, the model is based on multisets of objects, which makes the
model to be closer to the realistic approximations of natural processes. Interesting
questions are what can we say about the computational capacity of the different
variants of these systems and related models, how to compute multisets, and how
to measure complexity of these systems.

In this article we deal with these questions. We introduce and study so-called
test tube systems with objects, which are models capturing certain characteristics
of both test tube systems and P systems.

A test tube system with objects, a TTO system for short, is a finite collection
of mechanisms operating with multisets of objects by performing operations called
reactions among the objects and by communication which means the transfer of the
contents of a test tube (the multiset of objects in the test tube) to another tube.
The objects in the tubes are represented by symbols of an alphabet and a multiset
of objects is given as a word over this alphabet with the same number of occurrences
of a letter as the multiplicity of the object in the multiset which is identified by the
letter. A reaction is prescribed by a rewriting rule of the form u → v where u and
v are strings, u is not equal to the empty string. The meaning of this rule is that a
multiset of objects represented by a word u is transformed to a multiset of objects
represented by word v, supposing that the objects can form a chain (a structure)
corresponding to u. If the obtained multiset is represented by ε, the empty word,
then the objects forming the chain described by u disappear from the multiset. TTO
systems compute multisets of objects by sequences of alternating steps: reaction and
communication. Any computation starts from the initial configuration where each
test tube contains a multiset of objects called its initial contents (this can be empty).
The result of the computation is a set of multisets of objects that can be found at
a dedicated tube, called the master, at any step of the computation starting from
the initial configuration.

We prove that TTO systems are suitable tools for computation, any recursively
enumerable set of integers can be obtained as the cardinality of the multiset that
can be found at the master tube of a TTO system at some step of any computation
starting from the initial configuration.

In addition to this result, we raise open questions arising from the nature of this
unconventional computational tool.

2 Basic definitions

Throughout the paper we assume that the reader is familiar with formal language
theory, for further details consult [4], [5], and [8].

The set of nonempty words over an alphabet Σ is denoted by Σ+, if the empty
word ε is included, then we use notation Σ∗. A set of strings L ⊆ Σ∗ is said to be a

language over Σ. For a string w ∈ L, we denote the length of w by lg(w) and for a
set of symbols U, we denote by |w|U the number of occurrences of letters of U in w.

A multiset of objects M is a pair M = (Σ, f), where Σ is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : Σ → N ; f assigns to each
object in Σ its multiplicity in M . The set Σ is called the support of M.

If Σ is a finite set, then M is called a finite multiset.
The number of objects in a finite multiset of objects M = (Σ, f), the cardinality

of M, denoted by card(M), is defined by card(M) =
∑

a∈Σ f(a).
The reader can easily observe that any finite multiset of objects M with support

Σ = {a1, . . . , an} can be represented as a stringw over alphabet Σ with |w|ai = f(ai),
1 ≤ i ≤ n, the empty multiset is represented by [ε]. Clearly, all words obtained from
w by permuting the letters can also represent M .

In the following we often will use this type of representation, and we will denote
by [w] the finite multiset of objects M with support Σ represented by word w over
Σ.

Now we introduce the notion of a test tube system with objects and define how
it functions. The notion captures certain features of test tube systems based on
splicing and test tube systems based on cutting and recombination operations from
DNA computing [1], [2] and P-systems [6].

Definition 2.1 A test tube system with objects (a TTO system, for short) is an
n+ 1-tuple

Γ = (V,Π1, . . . ,Πn),

for n ≥ 1, where

• V is a finite alphabet, the alphabet of objects in the system,

• Πi = (Ri, [wi]), 1 ≤ i ≤ n, is the i-th test tube, where

– Ri is a finite set of rules u→ v, with u ∈ V +, v ∈ V ∗, the set of reaction
rules in test tube Πi,

– [wi] is a multiset of objects from V represented by the word w, wi ∈ V ∗,
called the initial contents (the axiom) of Πi.

Test tube systems function through reactions processed in the tubes and communi-
cation which means the transfer of the contents of a tube to another tube. At any
moment of time, the state of the test tube system is represented by the contents of
the test tubes (the multiset of objects in the test tubes) at that moment.

Definition 2.2 Let Γ = (V,Π1, . . . ,Πn), n ≥ 1, be a test tube system with objects.
An n-tuple ([u1], . . . , [un]) where [ui], 1 ≤ i ≤ n, is a multiset of objects represented
by string ui ∈ V ∗, is said to be a configuration (a state) of Γ. Multiset [ui], 1 ≤ i ≤ n,

is called the contents of the i-th test tube.
The initial configuration of Γ is ([w1], . . . , [wn]), where [wi] is the initial contents

of test tube Πi, 1 ≤ i ≤ n.

Now we define the reactions processed by the objects in test tube systems.

Definition 2.3 Let Γ = (V,Π1, . . . ,Πn), n ≥ 1, be a test tube system with objects,
and let S1 = ([u1], . . . , [un]), S2 = ([v1], . . . , [vn]) be two configurations of Γ. We
say that S2 directly follows from S1 by reaction, denoted by S1 =⇒rea S2, if the
following holds:

For each i, 1 ≤ i ≤ n, there are words zi ∈ V ∗, such that [ui] = [zi] and zi =⇒ vi

by applying Ri; that is, zi = α1 . . . αm, vi = β1 . . . βm and for all j, 1 ≤ j ≤ m,
αj → βj ∈ Ri.

Notice, that zi, 1 ≤ i ≤ n, can differ from ui. Reaction rules Ri, 1 ≤ i ≤ n, prescribe
possible reactions between objects which are poured into the test tube separately
but they can form structures in the tube. A reaction is successful if and only if
the objects in the tube can form a chain which corresponds to a string which can
be rewritten by parallel application of some rewriting rules from the set of reaction
rules of the tube. The computation process gets blocked if it is not possible to find
a representation where all symbols of the representing string are rewritten; that is,
all objects participate in the reaction. If the rules have only one symbol on their
left-hand side, then there is no interaction between the objects in the test tube, the
chosen representation makes no difference in the result of the reaction.

It is an interesting question, how many string representations of the multiset of
objects in the tube can be found to induce a successful reaction in the tube. That is,
how many strings composed from the letters representing the objects can be rewrit-
ten by parallel application of the given rewriting rules. This property, called reaction
capacity, expresses determinism. Clearly, if the reaction rules are context-free rules
all strings are ”good” strings according to this property. It would be interesting
to study reaction capacity of test tubes according to different presentations of the
reaction rule set.

Notice also, that there are several possibilities to define reactions. Here we
require that all objects in the tube must participate in the reaction, that is, all
objects must appear on the left-hand side of a rule. Other possibilities would be to
allow some objects (substrings in the representation) not to be rewritten at all, or to
require that in each reaction not necessarily all, but the maximal possible number
of objects must participate. Again, it would be interesting to study the question
how we can minimize the number of objects in the test tubes not taking part in any
reaction and, whether there are different presentations of reaction rules which imply
the same multisets of objects not involved in any reaction.

These properties are size complexity measures for test tubes with objects.
After the reactions, the contents of the tubes are redistributed by communica-

tion.

Definition 2.4 Let Γ = (V,Π1, . . . ,Πn), n ≥ 1, be a test tube system with objects,
and let S1 = ([u1], . . . , [un]), S2 = ([v1], . . . , [vn]) be two configurations of Γ.

We say that S2 directly follows from S1 by communication, denoted by S1 =⇒com

S2, if the following condition holds:

There exists a set of ordered pairs of test tubes C ⊆ {(Πi,Πj) | 1 ≤ i, j ≤ n}
with the property that if (Πi,Πj) ∈ C and (Πi,Πk) ∈ C, then j = k and for each
i, 1 ≤ i ≤ n,

• either [vi] = [uiui1 . . . uis], where (Πij ,Πi) ∈ C, 1 ≤ j ≤ s, s ≤ n, and there is
no k, 1 ≤ k ≤ n, with (Πi,Πk) ∈ C, or

• if for some k, 1 ≤ k ≤ n, (Πi,Πk) ∈ C, then [vi] = [ui1 . . . uis], (Πij ,Πi) ∈ C

1 ≤ j ≤ n, s ≤ n.

We call C the actual communication graph in this communication step.
Communication in a configuration S is realized by redistributing the contents of

the test tubes, pouring the contents of a tube Πi into another tube Πj , 1 ≤ i, j,≤ n,
if the ordered pair (Πi,Πj) is an element of C. The pairs are chosen before the
communication in such a way that the contents of each test tube is transferred to
at most one other tube.

If for some i, j, 1 ≤ i, j ≤ n, the contents [αi] of the tube Πi is poured into Πj

having contents [αj], then the objects of the two test tubes are mixed, we obtain
the new test tube contents [αiαj] in Πj .

The reader can invent several other ways of communication. For example, in the
case of test tube systems based on splicing and that of with cutting and recombi-
nation operations the contents of the test tube to be transferred was allowed to be
amplified, the same contents could be transferred in several copies to different test
tubes. We also can prescribe fixed or dynamically changing graphs for the commu-
nicating test tubes, or we can control communication through filters (multisets of
objects prescribed to be included in the communicated contents). The reader can
find several examples for these types of constructs in the literature [5].

The sequence of reactions and contents redistributions (communications) define
a computation in Γ.

Definition 2.5 A computation in a TTO system Γ = (V,Π1, . . . ,Πn) is a sequence
of states, Sj , j ≥ 0, such that

• Sj =⇒rea Sj+1 for j = 2k, k ≥ 0, and

• Sj =⇒com Sj+1 for j = 2k + 1, k ≥ 0.

Let also =⇒ denote a computation step, either =⇒rea or =⇒com, and let =⇒∗ denote
the reflexive and transitive closure of =⇒.

The result of a computation in a TTO system is the set of multisets of objects
which can be found at a given node of the system (the master) after processing the
reactions during the computation.

Definition 2.6 Let Γ = (V,Π1, . . . ,Πn), n ≥ 1, be a TTO system. The computa-
tional capacity of Γ is the set of multisets

L(Γ) = {[β1] | ([w1], . . . , [wn]) =⇒
∗ ([α1], . . . , [αn]) =⇒rea ([β1], . . . , [βn])},

where component Π1 is the master and ([w1], . . . , [wn]) is the initial state of Γ.

We give an example for a TTO system.

Example 1 Let G = (V,P1, . . . , Pn, w), n ≥ 1, be a TOL system, a tabled in-
teractionless Lindenmayer system. (These systems are parallel language generat-
ing mechanisms for modelling developmental systems.) In a TOL system G =
(V,P1, . . . , Pn, w), n ≥ 1, V denotes the alphabet of the system, and w ∈ V ∗ is
the axiom. Pi, 1 ≤ i ≤ n, are sets of pure context-free rules over V , called tables,
such that each Pi contains at least one production for each letter in V . A direct
derivation step in G is defined as a1 . . . am =⇒ u1 . . . um, m ≥ 1, where ai ∈ V,

ui ∈ V ∗, 1 ≤ i ≤ m, and ai → ui, 1 ≤ i ≤ m, is in Pj for some j, 1 ≤ j ≤ n. Thus,
each letter in the word is rewritten by applying a corresponding rule of a table. In
a derivation step only one of the tables can be used. The reader can easily observe
that G can be interpreted as a TTO system Γ = (V,Π1, . . . ,Πn): V denotes the
alphabet of the objects, Pi corresponds to the the set of reaction rules of the i-th
test tube, and w is a word representing the initial contents of the first test tube, the
initial contents of the other tubes are empty. Any derivation step in G by using a
table Pi, 1 ≤ i ≤ n, corresponds to a reaction in test tube Πi, and the change of a
table corresponds to a communication in the TTO system Γ. Moreover, the Parikh
vector of a word obtained from the axiom of G by a derivation d using table Pj ,

1 ≤ j ≤ n, at the last step corresponds to the contents of test tube Πj obtained by a
computation in Γ simulating derivation steps of d. (For a word w over an alphabet
V = {a1, . . . , an), n ≥ 1, the n-tuple of integers (|w|a1 , . . . |w|an) is called its Parikh
vector, that is, the values of the Parikh vector give the multiplicity of the occurrences
of the different letters in the word.)

3 Computing by TTO systems

In the following we shall demonstrate that recursively enumerable sets can be com-
puted by TTO systems, that is, for any recursively enumerable language L we can
construct a TTO system such that the cardinality of any multiset resulted by any
computation in the TTO system is equal to an integer that represents a word of the
language in a unique manner.

First, we need a technical result.
It is obvious that any recursively enumerable language over an alphabet Σ =

{a1, . . . , an}, n ≥ 1, determines a recursively enumerable set of integers since any
word w ∈ Σ∗ can be considered as a number written in (n+ 1)-ary notation, where
each symbol ai, 1 ≤ i ≤ n, represents the digit i. This way each different string
corresponds to a different integer, and the notation of these integers do not contain
the digit 0, so we do not have to consider strings corresponding to numbers with
leading zeros. This means that the value of such a representing integer uniquely
determines the string it represents. In the following, for a word w ∈ Σ∗ we denote
by val(w) the representing integer.

Our result will be based on the simulation of the so-called Extended Post Cor-
respondence by TTO systems.

Definition 3.1 Let Σ = {a1, . . . , an}, 1 ≤ n, be an alphabet. An Extended Post

Correspondence (an EPC) is a pair

P = ({(u1, v1), . . . , (um, vm)}, (za1 , . . . , zan)),

where ui, vi, zaj ∈ {0, 1}
∗, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The language represented by P ,

denoted by L(P) is the following:

L(P) = {x1 . . . xr ∈ Σ∗ | there are i1, . . . is ∈ {1, . . . ,m}, s ≥ 1,

such that vi1 . . . vis = ui1 . . . uiszx1 . . . zxr}.

It is known (see [3]) that for each recursively enumerable language L there exists an
EPC system P such that L(P) = L. Clearly, the statement remains true if words
ui, vi, zaj , 1 ≤ i ≤ m, 1 ≤ j ≤ n are defined over alphabet {1, 2}. Let us use
this modified version of the EPC. According to the above theorem, if we consider
an EPC system P , then a word w = x1 . . . xr ∈ Σ∗ is in L if and only if there
are indices i1, . . . , is,∈ {1, . . . ,m}, s ≥ 1, such that the two numbers vi1 . . . vis and
ui1 . . . uiszx1 . . . zxr with digits from {1, 2} are equal.

Thus, we can check if a string w = x1 . . . xr is an element of the language L(P)
in the following manner: We start from a string ui1vi1 and then append strings from
{u1. . . . , um} to ui1 and strings from {v1, . . . , vm} to vi1 . At the end of the procedure,
we obtain a string of the form ui1 . . . uisvi1 . . . vis . Then, we continue by appending
strings from {za1 , . . . , zan} to vi1 . . . vis , obtaining ui1 . . . uisvi1 . . . viszx1 . . . zxr , xi ∈
Σ, 1 ≤ i ≤ r. Finally, we check whether or not the two words α = ui1 . . . uis and
β = vi1 . . . viszx1 . . . zxr have the same value as numbers.

Our idea is based on the above considerations. We generate a multiset repre-
senting the word w = x1 . . . xk . . . xr ∈ Σ∗ by computations in test tubes as fol-
lows. At any moment of time, the string x1 . . . xkαβ, where α = ui1 . . . uil and
β = vi1 . . . vilzx1 . . . zxk , is present in a test tube represented as a multiset including
objects A,B,C, where the multiplicities of A and B are equal to the value of α
and β as numbers with digits from {1, 2}, and the multiplicity of C is equal to the
value of x1 . . . xk as an (n+ 1)-ary number when a symbol ai, 1 ≤ i ≤ n, from Σ is
interpreted as the (n+ 1)-ary digit i.

When we pour the contents of a tube representing the string x1 . . . xkαβ into
another one, a reaction takes place changing the number of objects A,B, and C to
simulate the appending of a pair (ui, vi) or (x, zx), 1 ≤ i ≤ m, x ∈ Σ, to α and
β, or to x1 . . . xk and β, respectively. Then, the obtained multiset is poured into
another tube again. After repeating these steps several times, the multiset of objects
is poured into a tube dedicated for deciding whether the objects A and B have the
same multiplicity. This is done by simple reactions, namely applying rules AB → ε.
These reactions check whether the computed words α and β have the same value as
numbers. After a successful reaction, the tube will contain the object C in as many
occurrences as the (n+ 1)-ary value corresponding to the string x1 . . . xr.

Theorem 3.1 For any recursively enumerable language L we can construct a TT0
system Γ such that

{card(M) |M ∈ L(Γ)} = {val(w) | w ∈ L}.

Proof. Let L be a recursively enumerable language over an alphabet Σ = {a1, . . . , at}
and let P be an Extended Post Correspondence with L = L(P). Without loss of
generality we may assume that P is in the slightly modified form given above.

We construct a TTO system Γ with the property that [w] ∈ L(Γ) if and only if
card([w]) = val(u) for some u in L, and reversely, for any u ∈ L there is a multiset
[w] in L(Γ) such that card[w] = val(u). Let

P = ({(u1, v1), . . . , (um, vm)}, (z1, . . . , zt)),

where ui, vi, zj ∈ {1, 2}∗, 1 ≤ i ≤ m, 1 ≤ j ≤ t, and let

Γ = (V,Π0,Π1, . . . ,Πn,Πn+1),

where Πi = (Ri, [wi]), 0 ≤ i ≤ n+ 1, with n = m+ t, the master is Πn+1, and

V = {$,#,&, A,B,C}.

Let

[w0] = [$],

R0 = {$→ $}.

Now for 1 ≤ i ≤ m, let

[wi] = [ε],

Ri = {$→ Aval(ui)#Bval(vi),#→ Aval(ui)#Bval(vi),

A→ Ak, B → Bl | k = 3lg(ui), l = 3lg(vi)}.

For 1 ≤ i ≤ t, let

[wm+i] = [ε],

Rm+i = {#→ Cval(ai)&Bval(zi),&→ Cval(ai)&Bval(zi), C → Ct+1, B → Bl |

l = 3lg(zi)},

and let also for a fixed w ∈ L

[wn+1] = [Cval(w)],

Rn+1 = {#Cval(w) → ε,&Cval(w) → ε,AB → ε,C → C}.

This system simulates the Extended Post Correspondence P as outlined above.
The test tubes can be grouped into four types according to their function: the
initial tube Π0, tubes of the second type Πi, 1 ≤ i ≤ m, tubes of the third type
Πi, m+ 1 ≤ i ≤ n, and the master tube Πn+1.

In the initial state, the tubes are empty, except Π0, where the reaction leaves
the object $ unchanged, and the master, where a multiset representing a word w

of L is present. To start the computation, we can pour the contents of the initial
tube into a tube of the second type, Πi, 1 ≤ i ≤ m, where the reactions change
the object $ to # and add several As and Bs corresponding to the value of ui and
vi. Now we can repeat the procedure several times by leaving the contents in the
tube or pouring it into another tube of the second type, creating this way a multiset

representing a string u1 . . . ukv1 . . . vk by [Aval(u1...uk)#Bval(v1...vk)]. (We note that
according to the given way of communication the multiset can remain in the tube
after the reaction.)

If we consider a string αβ, where α ∈ {u1, . . . , um}∗, β ∈ {v1, . . . , vm}∗, and
a representation of this string [Aval(α)#Bval(β)], we can get the representation of
αujβvj by pouring the objects above into test tube Πj . In this tube the number of
A and B objects are multiplied by 3lg(uj) and 3lg(vj) respectively, and then val(uj)
As and val(vj) Bs are added. This way we obtain [Aval(αuj)#Bval(βvj)], the multiset
representing αujβvj.

After the tubes of the second type, the tubes of the third type, Πi, m+1 ≤ i ≤ n,
or the master tube can be used. If the master tube is used and the reaction is
successful, then the multiplicities of A and B objects are equal. This means that
we have a representation of string u1 . . . urv1 . . . vr where u1 . . . ur = v1 . . . vr, thus
the empty string, ε, is part of the language represented by P , the empty multiset,
the representation of ε, is computed by Γ.

If a multiset of objects [Aval(α)#Bval(β)] is poured into a tube of the third type,
Πm+j , then the object # is changed to & and a number of B and C objects are
added, so the obtained multiset corresponds to the string αxjβzxj , for some xj ∈
Σ. It is done in the same way as above by multiplying and adding, obtaining
the multiset [Aval(α)Cval(xj)&Bval(βzxj)]. The tubes of the third type can be again
used repeatedly, and then we have a multiset [Aval(α)Cval(w)&Bval(βγ)] with α ∈
{u1, . . . , um}∗, β ∈ {v1, . . . , vm}∗, and γ = zxi1

. . . zxis , where w = xi1 . . . xis .
If we pour this into the master tube, Πn+1, then a successful reaction means

that number of occurrences of As and Bs are the same; that is α = βγ, and w ∈ L,
α, β, γ,w as above, and the tube contains C objects in as many occurrences as the
(t+1)-ary value of w = xi1 . . . xis . If the reaction is not successful, w �∈ L, then the
work of the system is blocked. By the construction of Γ, no multiset can be computed
with cardinality being different from the value of an integer representation of some
word in L. 2

4 Final remarks

The unconventional nature of TTO systems leads to several interesting problems.
For example, it would be interesting to study how economical is a TTO system,
that is, how economically the reactions are processed in the whole system, how
many test tubes are necessary to obtain the same result of computation, how freely
we can choose the reaction rules. Another topic is the way of communication, how
can it be organized to obtain the same or different result. Clearly, many questions
and open problems remain for further investigations.

References

[1] E. Csuhaj-Varjú, L. Kari, Gh. Păun, Test Tube Distributed Systems Based
on Splicing. Computers and Artificial Intelligence 15(2) (1996), 21-232.

[2] R. Freund, E. Csuhaj-Varjú, F. Wachtler, Test Tube Systems with Cut-
ting/Recombination Operations. In: Proc. Pacific Symp. on BIOCOMPUT-
ING’97. ED. by R.B. Altman et al., World Scientific, Singapore, 1997, 163-
175.

[3] V. Geffert, Context-free-like forms for phrase structure grammars. Proc.
MFCS’88, LNCS 324, Springer Verlag, 1988, 309-317.

[4] Handbook of Formal Languages. Vol. I-III. Eds. by G. Rozenberg, A. Salo-
maa, Springer-Verlag, Heidelberg, 1997.

[5] Gh. Păun, G. Rozenberg, A. Salomaa, DNA-Computing: New Computing
Paradigms. Springer Verlag, Heidelberg, 1998.

[6] Gh. Păun, Computing with membranes. J. of Computer and Systems Sci-
ences, to appear. (Also in: TUCS Research Report No. 208, November
1998.)

[7] Gh. Păun, Computing with membranes. An introduction. Bulletin of the
EATCS 67 (1999), 139-152.

[8] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems. Aca-
demic Press, New York, 1981.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 78 - 99.

A uniform approach to constraint-solving for lists,

multisets, compact lists, and sets

Agostino Dovier� Carla Piazzay Gianfranco Rossiz

Abstract

Lists, multisets, and sets are well-known data structures whose usefulness

is widely recognized in various areas of Computer Science. These data struc-

tures have been analyzed from an axiomatic point of view with a parametric

approach in [12] and the relevant uni�cation algorithms have been also para-

metrically developed. In this paper we extend these results considering more

general constraints including not only equality but also membership constraints

as well as their negative counterparts. This amounts to de�ne the privileged

structures for the considered axiomatic theories and to solve the relevant con-

straint satisfaction problems in each of the theories. Like in [12], moreover,

we adopt a highly parametric approach which allows all the results obtained

separately for each single theory to be easily combined so as to obtain a general

framework where it is possible to deal with more than one data structure at a

time. Keywords: Constraints, Computable Set and Multiset Theory.

1 Introduction

Programming and speci�cation languages allow the user to specify aggregation of

elementary data objects and, in turn, aggregation of aggregates. Besides the well-

known example of arrays, also lists, multisets, and sets are other important forms of

data aggregates whose usefulness is widely recognized in various areas of Computer

Science. Lists are the \classical" example used to introduce dynamic data structures

in imperative programming languages. They are the fundamental data structure in

the functional language LISP, and list predicates, such as member and append, are

among the �rst predicates that are taught to students of the logic programming

language PROLOG.

Sets are the main data structure used in speci�cation languages (e.g., in Z [25])

and in high-level declarative programming languages [5, 13, 18, 16]; but also im-

perative programming languages can take advantage from the set data abstraction

(e.g., SETL [26]).

Multisets emerge as the most natural data structure in several interesting ap-

plications. Solutions to the equation x4 � 2x2 + 1 = 0 are better described by the

multiset f[�1;�1; 1; 1]g rather than by the set f�1;�1; 1; 1g which is equivalent to

f�1; 1g. As explained in [28], sets came to mean types of objects, while multisets

�
Dip. Scienti�co-Tecnologico, Univ. di Verona. Strada Le Grazie 15, 37134 Verona (Italy). dovier@sci.univr.it
y
Dip. di Matematica e Informatica, Univ. di Udine. Via Le Scienze 206, 33100 Udine (Italy). piazza@dimi.uniud.it
z
Dip. di Matematica, Univ. di Parma. Via M. D'Azeglio 85/A, 43100 Parma (Italy). gianfr@prmat.math.unipr.it

are based on tokens. This justi�es the use of multisets in describing processes which

consume resources. In particular, multisets over some set of basic elements (urele-

ments) can be perfectly connected to fragments of linear logic [28]. Multisets are the

fundamental data structure of the Gamma coordination language [3], based on the

chemical metaphor, and of the Chemical Abstract Machine [4]: a multiset can be

seen as a solution containing molecules that can react inside it. Using this metaphor

it is natural to write parallel algorithms. For instance, assume that a multiset con-

tains all the numbers between 2 and n and consider the multiset rewriting rule `x
destroys one of its multiples'. Several process can run in parallel inside the multiset

applying the rule; at the end of the execution, only the prime numbers from 2 to n
remain in the multiset [3]. Some issues on the relevance of multisets in Databases

and the related complexity problems can be found in [17].

The basic di�erence between lists, multisets, and sets lies in the importance

of order and/or repetitions of their elements: in lists both order and repetitions of

elements are important; in multisets the order is immaterial, whereas the repetitions

are important; in sets order and repetitions are not taken into account.

These three data structures have been analyzed from an axiomatic point of view

in [12]. The axiomatizations provided in that paper induce a lattice of four points,

having sets as top and lists as bottom, as shown in the �gure below. In this lattice,

Sets
% -

Multisets Compact lists
- %

Lists

between sets and lists, we �nd both multisets and a new data structure, called

compact lists. Compact lists are lists in which contiguous occurrences of the same

element are immaterial: a property complementary to that characterizing multisets.

Their practical usage in programming has not been explored yet, although some

possible examples are suggested in [12].

Lists, multisets, compact lists and sets have been studied in the context of (Con-

straint) Logic Programming (CLP) languages. In this context all these data struc-

tures are conveniently represented as terms, using four di�erent data aggregate

constructors endowed with the proper interpretations. The theories studied are

hybrid, i.e. they can deal with interpreted function symbols as well as with an

arbitrary number of free constant and function symbols (technically, we are in a

general context). [12], however, focuses only on equality between terms in each of

the four theories. This amounts to solve the relevant problems of uni�cation in

the equational theories describing the properties of the four considered data struc-

tures. Uni�cation algorithms for these four data structures are provided in [12];

NP-uni�cation algorithms for sets and/or multisets are also presented in [1, 10].

In this paper we extend the results of [12] to the case of more general constraints.

The constraints we consider are arbitrary conjunctions of literals (i.e., positive and

negative atoms) based on both equality and membership predicate symbols. The

problem of dealing with such kind of constraints in the context of CLP languages

has been already faced in [14], but limited to the set data structure. In this paper,

in contrast, we face the same problem for all the four data structures mentioned

above. We identify the privileged models for the axiomatic theories used to describe

the considered data structures. We de�ne a notion of (satis�able) solved form for

constraints that are conjunctions of positive and negative equality and membership

constraints. We develop the rewriting algorithms which map these constraints into

solved form constraints|proved to be correct and terminating|for all the four

theories.

The whole presentation will be parametric with respect to the considered ax-

iomatic theories, high-lightening di�erences and similarities between the four ag-

gregates. As a consequence, the proposed solutions (axiomatic theories, structures,

constraint satis�ability procedures) can be easily combined so as to account for more

than one data structure at a time.

The paper is organized as follows. In Section 2 we �x the overall notation and we

recall from [12] the (parametric) axiomatic presentation of the �rst-order theories

we deal with. In Section 3 we de�ne the privileged models and we show that they

correspond with the related theories. We also present a global notion of solved

form for constraints that ensures satis�ability in the four models. In Section 4

we briey discuss constraint solving when constraints are conjunctions of equality

atoms (uni�cation problem) and we recall the results from [12]. In Section 5 we

describe, for each kind of data structure, the constraint rewriting procedures used

to eliminate the literals not in solved form possibly occurring in a given constraint,

while in the next section, Section 6, we show how to solve parametrically the general

satis�ability problem for the admissible constraints. In Section 7 we show how it

is possible (and simple) to combine the procedures developed in order to obtain a

unique general framework. Finally, some conclusions are drawn in Section 8. Due

to lack of space, we omit all the proofs. They will be available in a forthcoming

technical report of the University of Parma toghether with the analysis of Bag

theories with multi-membership.

2 Preliminaries

We assume basic knowledge of �rst-order logic (e.g., [15, 7]). A �rst-order language

L = h�;Vi is de�ned by a signature � = hF ;�i composed by a set F of constant

and function symbols and a set � of predicate symbols, and by a denumerable set

V of logical variables.

Usually, capital letters X;Y;Z, etc. will be used to represent variables, f , g,
etc. to represent function symbols, and p, q, etc. to represent predicate symbols.

We will use �X to denote a (possibly empty) sequence of variables. T (F ;V) (T (F))
denotes the set of �rst-order terms (resp., ground terms) built from F and V (resp.,

F). Given a sequence of terms t1; : : : ; tn, FV (t1; : : : ; tn) will be used to denote the

set of all the variables which occur in at least one of the terms ti. When the context

is clear, we will use �t to denote a sequence t1; : : : ; tn of terms.

An atomic formula (atom) is an object of the form p(t1; : : : ; tn), where p 2 �,

ar(p) = n and ti 2 T (F ;V). The formulae are built up from the atomic ones using

�rst-order connectives (^;_;:; : : :) and quanti�ers (9;8). We assume the standard

notion of free variables and we use FV (') to denote the set of free variables in the

�rst-order formula '. If FV (') = ;, then the formula is said to be closed. ~9' (~8')
denotes the existential (universal) closure of the formula ', namely 9X1 � � �Xn '
(8X1 � � �Xn '), where fX1; : : : ;Xng = FV (').

A �-structure (or, simply, a structure) A is composed by a non-empty domain

A and by an interpretation function (�)A which assigns functions and relations on

A to the symbols of �. A valuation � is a function from a subset of V in A. Each
valuation can be exteded to a function from T (F ;V) in A and to a function from the

set of formulae over L on the set ffalse; trueg. A valuation � is said a successful

valuation of ' if �(') = true.

A (�rst-order) theory T on L is a set of closed �rst-order formulae of L, such

that each closed formula of L which can be deduced from T is in T . A (�rst-order)

set of axioms Ax on L is a set of closed �rst-order formulae of L. A set of axioms

Ax is said to be the an axiomatization of T if T is the smallest theory such that

Ax � T . Sometimes we use the term theory also to refer to an axiomatization of

the theory.

A substitution is a mapping � : V �! T (F ;V). A substitution is then extended

inductively to terms as usual. With " we denote the empty substitution, namely the

substitution such that "(x) = x for all variables x. A substitution � is a T -uni�er

of two terms t; t0 if T j= ~
8(�(t) = �(t0)) [27].

A constraint (admissible constraint) is a conjunction of literals, namely atomic

formulae or negation of atomic formulae. When C is a constraint, jCj is used to

denote the number of occurrences of variables, constant, function, and predicate

symbols in C.

Given a theory T on L and a structure A, T and A correspond on the set of

admissible constraints Adm [19] if, for each constraint C 2 Adm, we have that

T j= ~9(C) if and only if A j= ~9(C). This property guarantees that A is a canonical

model of T with respect to Adm: if C is an element of Adm and we know that C is

satis�able in A then it will be satis�able in all the models of T .

The following binary function symbols are introduced to denote lists, multisets,

compact lists, and sets:

[� j �] for lists, f[� j �]g for multisets,

[[� j �]] for compact lists, f� j �g for sets.

The empty list, multiset, compact list, and set are all denoted by the constant

symbol nil. We use simple syntactic conventions and notations for terms built

using these symbols. In particular, the list [s1 j [s2 j � � � [sn j t] � � �]] will be denoted
by [s1; : : : ; sn j t] or simply by [s1; : : : ; sn] when t is nil. The conventions used for

lists will be exploited also for multisets, compact lists, and sets.

In [12] it is proposed a uniform parametric axiomatization of the data structures

lists, multisets, compact lists, and sets that we briey recall below. In each axiomatic

theory T used to describe these data structures we have that �T = f=;2g and FT

contains the constant symbol nil, exactly one among [� j �], f[� j �]g, [[� j �]], or f� j �g,

plus possibly other (free) constant and function symbols.

These theories, therefore, are hybrid theories: the objects they deal with are built

out of interpreted as well as uninterpreted symbols. In particular, lists (multisets,

compact lists, sets) may contain uninterpreted Herbrand terms as well as other lists

(resp., multisets, compact lists, sets). Moreover, all the data aggregates can be built

by starting from any ground uninterpreted Herbrand term|called the kernel of the

data structure|and then adding to this term the other elements that compose the

aggregate. We refer to this kind of data structures as colored hybrid data structures

(namely, lists, multisets, compact lists, and sets).

2.1 Lists

Let us consider a �rst-order language LList = h�List ;Vi over a signature �List =

hFList ;�i such that the binary function symbol [� j �] and the constant symbol nil

are in FList , and � = f=;2g. A �rst-order theory for lists over the language LList|

called List|is shown in the �gure below:

(K) 8x y1 � � � yn (x 62 f(y1; : : : ; yn)) f 2 FList ; f 6� [� j �]
(W) 8y v x (x 2 [y j v]$ x 2 v _ x = y)

(F1) 8x1 � � � xny1 � � � yn

�
f(x1; : : : ; xn) = f(y1; : : : ; yn)
! x1 = y1 ^ � � � ^ xn = yn

�
f 2 FList

(F2) 8x1 � � � xmy1 � � � yn f(x1; : : : ; xm) 6= g(y1; : : : ; ym) f; g 2 FList ; f 6� g
(F3) 8x (x 6= t[x])

where t[x] denotes a term, having x as proper subterm

The three axiom schemata (F1); (F2), and (F3) (called freeness axioms, or Clark's

equality axioms|see [8]) have been originally introduced by Mal'cev in [22]. Observe

that axiom (F1) holds for [� j �] as a particular case. Axiom (F3) states that there
does not exist a term which is also a subterm of itself. In particular if x = [x] had
solutions, then, by (W), x 2 x would also have solutions. Thus, axiom schema (F3)
is a weak form of the foundation axiom (see, e.g., [21]) which has the aim, among

others, of guaranteeing the acyclicity of membership. Note that (K) implies that

8x (x =2 nil).

2.2 Multisets

Let LBag = h�Bag ;Vi be a language over a signature �Bag = hFBag ;�i such that

the binary function symbol f[� j �]g and the constant symbol nil are in FBag , and

� = f=;2g. A hybrid theory of multisets|called Bag|can be simply obtained

from the theory of lists shown above. The constructor [� j �] used for lists is replaced

by the binary function symbol f[� j �]g. The behavior of this new symbol is regulated

by the following equational axiom

(Em

p
) 8xyz f[x; y j z]g = f[y; x j z]g

which, intuitively, states that the order of elements in a multiset is immaterial

(permutativity property). Axioms (K), (W), (F2), and (F3) of List|with [� j �]

replaced by f[� j �]g andFList replaced by FBag|still hold. Conversely, axiom schema

(F1) does not hold for multisets, when f is instantiated to f[� j �]g.

The same is true for compact lists and sets. Thus, in the general case|that is,

assuming that also the symbols for compact lists and sets are introduced|axiom

schema (F1) is replaced by:

(F 0

1) 8x1 � � � xny1 � � � yn

�
f(x1; : : : ; xn) = f(y1; : : : ; yn)
! x1 = y1 ^ � � � ^ xn = yn

�

for any f 2 FBag [FCList [FSet ,

f distinct from f[� j �]g, [[� j �]], f � j � g

In KWEm

p
F 0

1F2F3, however, we lack in a general criterion for establishing equalities

and disequalities between multisets. To obtain it, the following multiset extensiona-

lity property is introduced:

Two (hybrid) multisets are equal if and only if they have the same number

of occurrences of each element, regardless of their order.

The axiom proposed in [12] to force this property is the following:

(Em

k
) 8y1y2v1v2

0
@ f[y1 j v1]g = f[y2 j v2]g $

(y1 = y2 ^ v1 = v2)_
9z (v1 = f[y2 j z]g ^ v2 = f[y1 j z]g)

1
A

Observe that (Em

k
) implies (Em

p
). (Em

k
) is needed for establishing disequalities

between bags.

2.3 Compact lists

Let LCList = h�CList ;Vi be a �rst-order language over a signature �CList = hFCList ;�i
such that the binary function symbol [[� j �]] and the constant symbol nil are in

FCList , and � = f=;2g. Similarly to bags, a hybrid theory of compact lists|called

CList|can be obtained from the theory of lists with only a few changes. The list

constructor symbol is replaced by the binary function symbol [[� j �]], to be used

as the compact list constructor. The behavior of this symbol is regulated by the

equational axiom

(Ec

a
) 8xy [[x; x j y]] = [[x j y]]

which, intuitively, states that contiguous duplicates in a compact list are immaterial

(absorption property). An example showing usefulness of compact lists comes from

formal languages: let s1; : : : ; sm; t1; : : : ; tn be elements of an alphabet, then

s+1 � � � s
+
m
and t+1 � � � t

+
n

are the same regular expression

if and only if [[s1; : : : ; sm]] = [[t1; : : : ; tn]] :

As for multisets, a general criterion for establishing both equality and disequality

between compact lists is needed. This is obtained by introducing the following

axiom:

(Ec

k
) 8y1y2v1v2

0
B@

[[y1 j v1]] = [[y2 j v2]] $

(y1 = y2 ^ v1 = v2)_
(y1 = y2 ^ v1 = [[y2 j v2]])_
(y1 = y2 ^ [[y1 j v1]] = v2)

1
CA

Note that axiom (Ec

a
) is implied by (Ec

k
). Axioms (K), (W), (F2)|with [� j �]

replaced by [[� j �]] and FList replaced by FCList|and axiom (F 0

1) introduced for

multisets, still hold. The freeness axiom (F3), instead, needs to be suitably modi�ed.

As opposed to lists and multisets, an equation such as X = [[nil jX]] admits a �nite

tree solution, namely a solution that binds X to the term [[nil j t]], where t is any
term. Therefore, axiom (F3) is replaced by

(F c

3) 8x (x 6= t[x])
unless t has the form [[t1; : : : ; tn jx]],
x not occurring in t1; : : : ; tn, and t1 = � � � = tn

2.4 Sets

Let LSet = h�Set ;Vi be a �rst-order language over a signature �Set = hFSet ;�i such
that the binary function symbol f� j �g and the constant symbol nil are in FSet , and

� = f=;2g. The last theory we consider is the simple theory of sets Set. Sets have

both the permutativity and the absorption properties which, in the case of f� j �g, can

be rewritten as follows:

(Es

p
) 8xyz fx; y j zg = fy; x j zg

(Es

a
) 8xy fx; x j yg = fx j yg

A criterion for testing equality (and disequality) between sets is obtained by merging

the multiset equality axiom (Em

k
) and the compact list equality axiom (Ec

k
):

(Es

k
) 8y1y2v1v2

0
BBB@

fy1 j v1g = fy2 j v2g $

(y1 = y2 ^ v1 = v2)_
(y1 = y2 ^ v1 = fy2 j v2g)_
(y1 = y2 ^ fy1 j v1g = v2)_

9k (v1 = fy2 j kg ^ v2 = fy1 j kg)

1
CCCA

According to (Es

k
) duplicates and ordering of elements in sets are immaterial. Thus,

(Es

k
) implies the equational axioms (Es

p
) and (Es

a
). In [12] it is also proved that they

are equivalent when domains are made by terms.

Axioms (K), (W), (F2)|with [� j �] replaced by f� j �g, and FList replaced by

FSet|and axiom (F 0

1) introduced for multisets, still hold. The modi�cation of axiom

(F3) for sets, instead, simpli�es the one used for compact lists:

(F s

3) 8x (x 6= t[x])

unless t has the form ft1; : : : ; tn jxg, x not occurring in t1; : : : ; tn

Figure 1 summarizes the four theories. The two right-most axioms, Perm. (Per-

mutativity) and Abs. (Absorption) are implied by (E�

k
) axioms and so they are

actually superuous. However, they are su�cient to characterize the theories from

an equational point of view (see Section 3.1).

3 Privileged structures and solved form

In this section we briey recall the privileged structures proposed in [12] for the

four theories of the previous section. Then, we show that these structures and the

theories correspond on the class of constraints analyzed. Moreover, we give a general

notion of solved form that holds for constraints in all the four theories, and we show

that a constraint in solved form is satis�able in the corresponding privileged model

(hence, in all the models of the theory, thanks to the correspondence result).

Name empty with Equality Herbrand Acycl. Perm. Abs.
List (K) (W) (F1) (F2) (F3)
Bag (K) (W) (Em

k
) (F 0

1
) (F2) (F3) �

CList (K) (W) (Ec

k
) (F 0

1
) (F2) (F c

3
) �

Set (K) (W) (Es

k
) (F 0

1
) (F2) (F s

3
) � �

Figure 1: Axioms for the four theories

3.1 Privileged structures

In Section 2 we have presented four �rst-order hybrid theories for aggregates. For

each of them, the behavior of a particular function symbol|the relevant aggregate

constructor|is precisely characterized by an equational theory :

- EList , the empty theory for List,

- EBag , the theory consisting of the Permutativity axiom (Em

p
) for Bag,

- ECList , the theory consisting of the Absorption axiom (Ec

a
) for CList,

- ESet , the theory consisting of both the Permutativity (Es

p
) and Absorption (Es

a
)

axioms for Set.

Using the appropriate equational theory we can de�ne for each di�erent kind of

aggregate a privileged model for the relevant �rst-order theory. Let T be either List

or Bag or CList or Set .

- The domain of the model is the quotient T (FT)= �T of the ordinary Herbrand

Universe T (FT) over the smallest congruence relation�T induced by the equational

theory ET on T (FT).

- The interpretation of a term t is its equivalence class [t].

- = is interpreted as the identity on the domain T (FT)= �T.

- The interpretation of membership is the following: [t] 2 [s] is true if and only if

there is a term in [s] of the form [t1; : : : ; tn; t j r] (f[t1; : : : ; tn; t j r]g, [[t1; : : : ; tn; t j r]],
or ft1; : : : ; tn; t j rg) for some terms t1; : : : ; tn; r.

Remark 3.1 When [s] is a multiset or a set, since the permutativity property holds,

the requirement for [t] 2 [s] to be true can be simpli�ed to: [s] contains a term of

the form f[t j r]g or ft j rg, respectively.

These structures|named LIST ;BAG; CLIST ; and SET|are important mod-

els for the theories of aggregates we are studying, as it ensues from the following

theorem.

Theorem 3.2 The structures LIST ;BAG; CLIST , and SET and the theories List,

Bag, CList, and Set correspond on the class of admissible constraints.

3.2 Solved form

A particular form of constraints|called solved form|plays a fundamental rôle in

establishing satis�ability of (general) constraints in the corresponding structures.

De�nition 3.3 A constraint C is in pre-solved form if all its literals are in pre-

solved form, that is, they are in one of the following forms:

- X = t and X does not occur neither in t nor elsewhere in C

- t 2 X and X does not occur in t

- X 6= t and X does not occur in t

- t =2 X and X does not occur in t.

In order to establish satis�ability of a constraint in pre-solved form we need

to introduce two further conditions that must be satis�ed by the constraint, in

particular by membership literals. If both conditions are satis�ed we will say that

the constraint is in solved form. Solved form constraints will be proved to be always

satis�able in the corresponding structure.

The �rst condition is informally motivated by the following example. Consider

the constraint X 2 Y ^ Y 2 X. It is in pre-solved form but it is clearly unsatis�-

able in the structures LIST ;BAG; CLIST , and SET . These constraints could be

satis�able in non well-founded models of membership. This topic is studied in [1]

for equality constraints in the theory Set.

The �rst condition takes care of these situations and is precisely de�ned as

follows. Let C be a pre-solved form constraint and C2 be the part of C containing

only 2-atoms. Build the directed graph GC2 as follows:

nodes: Associate a distinct node to each X 2 FV (C2).

edges: If t 2 X is in C2, �1; : : : ; �n are the nodes associated with the variables

in t, and � is the node associated with the variable X, then add the edges

h�1; �i; : : : ; h�n; �i.

A pre-solved form constraint C is acyclic if GC2 is acyclic.

The second condition for pre-solved form constraints is intuitively motivated by

the following observations. Consider the constraint a 2 X^a 62 X. It is in pre-solved

form and acyclic but unsatis�able. Conversely, the constraint fAg 2 X ^ fag =2 X
is satis�able in SET|take, for instance, any value of A 6= a and X = ffAgg.

More in general, it is easy to see that whenever there are two literals t 2 X and

t0 62 X in C and t and t0 unify in the considered theory ET with the empty sub-

stitution ", the constraint C is unsatis�able. For example, the constraint fA;Bg 2
X ^ fB;Ag =2 X in LSet is unsatis�able (indeed, terms fA;Bg and fB;Ag unify in

Set with the empty substitution ").

This condition, however, does not cover all the possible cases in which an acyclic

constraint in pre-solved form is unsatis�able, as it ensues from the following example.

Let C be the LSet -constraint a 2 X ^X 2 Y ^ fa jXg 62 Y . Observe that there are
no pairs of terms t; t0 of the form singled out above. Nevertheless, since a 2 X is

equivalent to 9N (X = fa jNg), by applying the substitution for X we get the pair

of literals fa jNg 2 Y and fa; a jNg 62 Y . fa jNg and fa; a jNg unify in Set with

": the latter constraint (hence, the former since it has been obtained by equivalent

rewritings) is unsatis�able.

To formally de�ne the second condition for pre-solved constraints, taking into

account all the possible cases informally described above, we introduce the following

de�nitions and the subsequent lemma.

De�nition 3.4 Given a substitution � � [X1=t1; : : : ; Xn=tn] and a natural number

m � 0 we de�ne by induction on m the substitution �m as:

�0 � "

�m+1
� [X1=�

m(t1); : : : ; Xn=�
m(tn)]

If there exists m > 0 such that �m+1
� �m we say that � is convergent. Given a

convergent substitution � the closure �� of � is the substitution �m such that 8k > m
it holds �k � �m.

De�nition 3.5 Let C be a constraint in pre-solved form over the language LList

(LBag ;LCList ;LSet) and let

p11 2 X1; : : : ; p
k1
1 2 X1; : : : ; p

1
q
2 Xq; : : : ; p

kq
q 2 Xq

be all the membership atoms of C. We de�ne the member substitution �C as follows:

�C � [X1=[F1; p
1
1; : : : ; p

k1

1 jM1]; : : : ;Xq=[Fq; p
1
q
; : : : ; p

kq
q jMq]]

(resp., �C � [X1=f[F1; p
1
1; : : : ; p

k1

1 jM1]g; : : : ;]; �C � [X1=[[F1; p
1
1; : : : ; p

k1

1 jM1]]; : : : ;];

�C � [X1=fF1; p
1
1; : : : ; p

k1

1 jM1g; : : : ;]) where Fi and Mi are new variables not oc-

curring in C.

Lemma 3.6 If C is a constraint in pre-solved form and acyclic, and �C is its

member substitution, then �C is convergent and ��
C
� �q�1

C
, where q is the number

of variables which occur in the right-hand side of membership atoms.

As an example, let C be the pre-solved form and acyclic LSet -constraint

a 2 Y ^ Y 2 X ^X 2 Z ^ ffa jY g jXg 62 Z (1)

It holds that:

�C � [Y=fFY ; a jMY g;X=fFX ; Y jMXg; Z=fFZ ;X jMZg] ;

��
C

� [Y=fFY ; a jMY g;X=fFX ; fFY ; a jMY g jMXg;

Z=fFZ ; fFX ; fFY ; a jMY g jMXg jMZg]

We are now ready to introduce the de�nition of solved form.

De�nition 3.7 Let ET be one of the four equational theories associated with the

four kinds of aggregates. A constraint C in pre-solved form and acyclic is in solved

form if for each pair of literals of the form t 62 X; t0 2 X in C we have that:

ET 6j= ~8(��
C
(t) = ��

C
(t0)):

The condition in the De�nition 3.7 requires the ability to perform the test ET j=
~8(s = s0) for any pair of terms s and s0 in LT. This test is connected with the

availability of a uni�cation algorithm for the theory ET. As a matter of fact, this

test is equivalent to check if the empty substitution " is a ET-uni�er of s = s0. Since
in [12] it is proved that the four theories we are dealing with are �nitary (i.e., they

admit a �nite set of mgu's that covers all possible uni�ers), this can be done using

a uni�cation algorithm for the theory at hand.

As an example, consider again the constraint (1). It holds that

��
C
(X) � fFX ; fFY ; a jMY g jMXg

��
C
(ffa jY g jXg) � ffa; FY ; a jMY g; FX ; fFY ; a jMY g jMXg

Hence, the constraint is not in solved form sinceESet j= ~8(��
C
(X) = ��

C
(ffa jY g jXg)).

Observe that using �C instead of ��
C

the situation would not be detected, since

fFX ; Y jMXg = ffa; FY ; a jMY g; FX ; Y jMXg is not satis�ed, for instance, when

FX 6= fFY ; a jMY g ^ Y 6= fFY ; a jMY g ^ fFY ; a jMY g 62MX .

Remark 3.8 The solved form considered in [14], where only sets are taken into

account, di�ers from the one considered in this paper in that the former does not

include any atom of the form t 2 X. As a matter of fact, in the theory Set it holds

that (see also Remark 3.1) s 2 t $ 9N(t = fs jNg): Thus, in Set all membership

constraints can be always replaced by equivalent equality constraints. This in turn

implies that the additional conditions on the pre-solved form are not required at

all. Cycle detection, for instance, is simply delegated to the uni�cation algorithm

used by the constraint rewriting procedure. The same holds also for multisets, but

unfortunately it does not hold for lists and compact lists. In fact, t 2 X in the

theory List (as well as in CList) cannot be replaced by a �nite number of equality

constraints. Therefore, since we want to have a single solved form which is adequate

for all the four theories considered in this paper|in view of the combination of them

into a single theory|we need to keep also atoms of the form t 2 X as irreducible

constraints which can therefore occur in the solved form. Consequently, we added the

further conditions on the literals to characterize solved forms in order to guarantee

satis�ability.

Theorem 3.9 Let CList (CBag , CCList , CSet) be a constraint in solved form over the

language LList (resp., LBag , LCList , LSet). CList (CBag , CCList , CSet) is satis�able

in LIST (resp., BAG, CLIST , SET).

4 Equality constraints

Equality constraints are conjunctions of atomic formulae based on the predicate

symbol `=' (i.e., equations). Uni�cation algorithms for verifying the satis�ability

and producing the solutions of equality constraints in the four theories discussed in

Section 2 have been proposed in [12]. They have been proved to terminate and to be

sound and complete with respect to the corresponding axiomatic theories (namely,

List, Bag, CList, and Set). It has been shown that the equality constraints are

parametric with respect to these theories and that it is easy to merge them and

to work in the combined theory that takes into account the four proposed data

structures simultaneously.

The uni�cation algorithms proposed in [12], namely:

- Unify lists for lists,

- Unify bags for multisets,

- Unify clists for compact lists, and

- Unify sets for sets,

will be used unaltered in the four global constraint solvers that we are going to

propose in this paper (Section 6).

The output of the algorithms is either false, when the constraint is unsat-

is�able, or a disjunction of solved form constraints (Def. 3.7) composed only by

equality atoms. The complexity results for uni�cation problems have been studied

and proved to require linear time for lists, and to be NP-complete for the other

forms of data aggregates.

5 Constraint rewriting procedures

We now extend the results presented in [12] for equality constraints to the whole

classes of admissible constraints for the four constraint domains. We describe the

constraint rewriting procedures used to eliminate all the literals not in pre-solved

form possibly occurring in a given constraint C. We provide a di�erent procedure

for each kind of constraint literals|except for equality constraints whose constraint

simpli�cation procedures are constituted by the uni�cation algorithms mentioned

in the previous section. In the next section we will show how these procedures can

be combined to test satis�ability, in the corresponding privileged structure, of any

constraint written in one of the considered languages.

As done with the uni�cation algorithms we will stress the parametric nature

of all the procedures we de�ne, by keeping their presentation as independent as

possible from the kind of data aggregate they deal with. This will serve to let the

merging of these procedures into a single general procedure be a straightforward

step.

5.1 Lists

We begin the investigation with the theory List. If a constraint is a conjunction of

equality atoms, then the decision problem for satis�ability can be solved in linear

time, since it is simply a standard uni�cation problem ([23, 24]).

If a constraint C is a conjunction of equalities and disequalities, then the satis�a-

bility problem for List is still solvable in polynomial time O(n2) where n = jCj [2, 9].
As far as disequalities are concerned, they can be managed by the procedure neq-list

of Figure 2.

Lemma 5.1 Let C be a constraint. Then List j= ~8(C $ neq-list(C)). Moreover,

neq-list(C) can be implemented so as to run in time O(n), where n = jCj.

These polynomial results can not be extended to all the admissible constraints.

Theorem 5.2 The satis�ability problem for conjunctions of 2-atoms and 6=-literals

in List is NP-hard.

We have seen how to reduce equality constraints (algorithm Unify lists, Section 4)

and disequality constraints (algorithm neq-list, Figure 2). In Figure 3 we show the

function neq-list(C)
while there is a 6=-constraint c not in pre-solved form in C do
case c of

(1)
d 6= d

d is a constant

�
7! false

(2)
f(s1; : : : ; sm) 6= g(t1; : : : ; tn)

f 6� g

�
7! true

(3)
t 6= X

t is not a variable

�
7! X 6= t

(4)
X 6= X

X is a variable

�
7! false

(5)
f(s1; : : : ; sn) 6= f(t1; : : : ; tn)

n > 0; f 6� [� j �]

�
7! s1 6= t1_ (i)

...
...

sn 6= tn (n)
(6) [s1 j s2] 6= [t1 j t2] g 7! s1 6= t1_ (i)

s2 6= t2 (ii)

(7)
X 6= f(t1; : : : ; tn)

X 2 FV (t1; : : : ; tn)

�
7! true

Figure 2: Rewriting procedure for disequations over lists

rewriting procedures in-list and nin-list for membership and negated membership

literals over lists.

Theorem 5.3 Given a constraint C, LIST j= ~8(C $ nin-list(in-list(C))).

In the proof of Theorem 5.3 no one of the axioms that distinguish the four

theories is involved. Thus, the rewriting procedures for 2 and =2 constraints over

bags, compact lists and sets can be obtained from in-list and nin-list by replacing

[� j �] with the corresponding aggregate constructor symbol. When useful, we will

refer to these procedures with the generic names in-T and nin-T, where T is any of

the considered theories.

Corollary 5.4 Let C be a constraint and T be one of the theories Bag, CList, and

Set. Then A j= ~8(C $ nin-T(in-T(C))) where A is the structure corresponding to

the theory T. 2

The following lemma will be useful to prove soundness and completeness of the

global constraint solving procedure for List.

Lemma 5.5 Let t; t0 be two terms and C a solved form constraint over the language

LList , such that FV (t) [FV (t0) � FV (C). If LIST 6j= ~8(t = t0), then EList 6j=
~8(��

C
(t) = ��

C
(t0)).

5.2 Multisets

We already know from [12] that the decision problem for multiset uni�cation is NP-

complete. Thus, the global satis�ability test is NP-hard. We know also that the

function in-list(C)
while there is a 2-constraint c in C not in pre-solved form do

case c of

(1)
r 2 f(t1; : : : ; tn)

f 6� [� j �]

�
7! false

(2) r 2 [t j s] g 7! r = t _ (a)
r 2 s (b)

(3)
r 2 X

X 2 FV (r)

�
7! false

function nin-list(C)
while there is a =2-constraint c in C not in pre-solved form do

case c of

(1)
r =2 f(t1; : : : ; tn)

f 6� [� j �]

�
7! true

(2) r =2 [t j s] g 7! r 6= t ^ r =2 s

(3)
r =2 X

X 2 FV (r)

�
7! true

Figure 3: Rewriting procedures for 2 and 62 constraints over lists

same complexity results hold for compact list and set uni�cation. Thus, the global

satis�ability test will be NP-hard for all the considered data structures.

Equality constraints are managed by Unify bags (see Section 4). Furthermore,

thanks to Corollary 5.4, we know that the rewriting procedures in-list and nin-list

developed for lists (see Figure 3) can be used almost unaltered also for bags.

As far as disequality constraints are concerned, a rewriting procedure|called

neq-bag|capable of eliminating disequality constraints not in pre-solved form from

the input constraint is presented in Figure 4.

In this procedure we make use of the functions tail and untail which are de�ned

as follows:1

tail(f(t1; : : : ; tn)) = f(t1; : : : ; tn) f 6� f[� j �]g
tail(X) = X
tail(f[t j s]g) = tail(s)

untail(X) = nil

untail(f[t j s]g) = f[t j untail(s)]g :

Special attention must be devoted to the management of disequalities between

bags (rule (6:2) of neq-bag). If we use directly axiom (Em

k
), we have that:

f[t1 j s1]g 6= f[t2 j s2]g $ (t1 6= t2 _ s1 6= s2)^

8N (s2 6= f[t2 jN]g _ s1 6= f[t1 jN]g)

An universal quanti�cation is introduced: this is no longer a constraint according

to our de�nition and, in any case, this is a quite complex formula to deal with.

Alternatively, we could use the intuitive notion of multi-membership: x 2i y if

x belongs at least i times to the multiset y. This way, one can write an alternative

1Function tail is easily adapted to work with sets as well, assuming f[� j �]g is replaced by f� j �g.

function neq-bag(C)
while there is a 6=-constraint c in C not in pre-solved form do

case c of
(1)|(5) as in neq-list

(6:1)
f[t1 j s1]g 6= f[t2 j s2]g
tail(s1) and tail(s2)

are the same variable

)
7! untail(f[t1 j s1]g) 6= untail(f[t2 j s2]g)

(6:2)
f[t1 j s1]g 6= f[t2 j s2]g
tail(s1) and tail(s2)

are not the same variable

)
7! (t1 6= t2 ^ t1 =2 s2)_ (a)

(f[t2 j s2]g = f[t1 jN]g ^ s1 6= N) (b)

(7)
X 6= t

X 6� t;X 2 FV (t)

�
7! true

Figure 4: Rewriting procedure for 6=-constraints over bags

version of multiset equality and disequality. In particular, we have:

f[t1 j s1]g 6= f[t2 j s2]g $ 9X9n (n 2 N ^

(X 2
n
f[t1 j s1]g ^X =2n f[t2 j s2]g)_

(X 2
n
f[t2 j s2]g ^X =2n f[t1 j s1]gf[t2 j s2]g))

In this case, however, we have a quanti�cation on natural numbers: we are outside

the language we are studying.

The rewriting rule shown in Figure 4 (rule (6:2)) avoids these di�culties intro-

ducing only existential quanti�cation. Its correctness and completeness are proved

in the following lemma.

Lemma 5.6 Let C be a constraint. Then BAG j= ~8(C $ 9 �N neq-bag(C)) where

�N = FV (neq-list(C)) n FV (C).

Remark 5.7 The procedure in-bag could safely be extended by the rule:

(4) r 2 X 7! X = f[r jN]g

where N is a new variable. One can add this rewriting rule, justi�ed by the model

BAG, to reach a solved form that removes all occurrences of 2-constraints (see Re-

mark 3.8) without a�ecting termination and completeness. As a matter of fact, none

of the rewriting procedures Unify bags, neq-bag, nin-bag introduces 2-constraints.

Thus, if we add rule (4) we are sure to completely remove 2-constraints from the

constraints. Termination of this modi�ed version of the algorithm follows trivially.

The same considerations and results hold for sets but, as already observed in Re-

mark 3.8, they do not hold for lists and compact lists. Therefore, when dealing with

a theory at a time one could add rule (4) where appropriate. But when dealing with

the global combined theory (see Section 7), since we assume that 2 is a polymorphic

operator (i.e., it applies indistinctly to all the four types of data structures) and that

there are no type declarations, we are no longer able to distinguish whether t 2 X
can be rewritten using rule (4)|that is X is a set or a bag|or not. This is the

function neq-clist(C)
while there is a 6=-constraint c in C not in pre-solved form do

case c of
(1)|(5) as in neq-list

(6) [[t1 j s1]] 6= [[t2 j s2]]
	

7!

t1 6= t2_ (a)
s1 6= s2 ^ [[t1 j s1]] 6= s2 ^ s1 6= [[t2 j s2]] (b)

(7:1)

X 6= t
X 2 FV (t);

X is not [[t1; : : : ; tn jX]] ;
n > 0 and X =2 FV (t1; : : : ; tn)

9>=
>; 7! true

(7:2) X 6= [[t1; : : : ; tn jX]]
X =2 FV (t1; : : : ; tn)

)
7! t1 6= t2_ (a:1)

...
...

t1 6= tn_ (a:n)
X = nil_ (b)
X = [[N1 jN2]] ^N1 6= t1 (c)

Figure 5: Rewriting procedure for disequations over compact lists

reason why we prefer to not introduce this rule neither when dealing with bags and

sets alone.

The following lemma will be useful to prove soundness and completeness of the

global constraint solving procedure for Bag.

Lemma 5.8 Let t; t0 be two terms and C a solved form constraint over the language

LBag , such that FV (t) [FV (t0) � FV (C). If BAG 6j= ~
8(t = t0), then EBag 6j=

~8(��
C
(t) = ��

C
(t0)).

5.3 Compact Lists

As far as equality constraints are concerned, we can use the uni�cation algorithm

Unify clists for compact lists (cf. Section 4). 2 and =2 constraints are dealt with

by the procedures in-clist and nin-clist trivially adapted from the same procedures

for lists shown in Figure 3. It remains to deal with 6=-constraints. The rewriting

procedure for this kind of constraints|called neq-clist|is shown in Figure 5.

Lemma 5.9 Let C1; : : : ; Ck be the constraints non-deterministically returned by

neq-clist(C) and �Ni = FV (Ci) n FV (C). Then CLIST j= ~8
�
C $

W
k

i=1
9 �NiCi

�
.

Observe that, di�erently from multisets, the rewriting rule for disequality of

compact lists mimics perfectly the axiom (Ec

k
). This has been possible since this

axiom does not introduce (new) existentially quanti�ed variables.

The following lemma will be useful to prove soundness and completeness of the

global constraint solving procedure for CList.

function neq-set(C)
while there is a 6=-constraint c in C not in pre-solved form do

case c of
(1)|(5) as in neq-list

(6) ft1 j s1g 6= ft2 j s2g
	

7!

Z 2 ft1 j s1g ^ Z =2 ft2 j s2g_ (a)
Z 2 ft2 j s2g ^ Z =2 ft1 j s1g (b)

(7:1)

X 6= t
X 2 FV (t);

X is not ft1; : : : ; tn jXg;
n > 0 and X =2 FV (t1; : : : ; tn)

9>=
>; 7! true

(7:2)
X 6= ft1; : : : ; tn jXg

X =2 FV (t1; : : : ; tn)

�
7! t1 =2 X_ (i)

...
...

tn =2 X (n)

Figure 6: Rewriting procedure for disequations over sets

Lemma 5.10 Let t; t0 be two terms and C a solved form constraint over the language

LCList , such that FV (t) [FV (t0) � FV (C). If CLIST 6j= ~8(t = t0), then ECList 6j=
~8(��

C
(t) = ��

C
(t0)).

5.4 Sets

The handling of equalities involving sets is governed by the uni�cation algorithm

Unify sets (cf. Section 4). Procedures in-set and nin-set|adapted from the corre-

sponding procedures for lists shown in Figure 3|are used for membership literals

involving sets. The remaining constraints, namely, 6=-constraints, are managed by

the rewriting procedure neq-set shown in Figure 6.

Some remarks are needed regarding rule (6). As for multisets, axiom (Es

k
) in-

troduces an existentially quanti�ed variable to state equality. Thus, its direct ap-

plication for stating disequality requires universally quanti�ed constraints that go

outside the language.

The rewriting rule (6:2) used for multisets can not be used in this context. In

fact, the property that s1 6= N implies f[t1 j s1]g 6= f[t1 jN]g, that holds for �nite

multisets does not hold for sets. For instance, fag 6= fa; bg but fb; ag = fb; a; bg.
Thus, this rewriting rule would be not correct for sets.

A rewriting rule for set-disequalities can be obtained by taking the negation of

the standard extensionality axiom extended to deal with hybrid colored sets:

(Ek) x = y $ 8z (z 2 x$ z 2 y)^

ker(x) = ker(y)

ker(t) identi�es the kernel of a ground term t (operationally, it is the same as function

tail of Section 5.2). Intuitively, ker(t) is what remains of a set when all its elements

have been removed. In \standard" sets, ker(s) = nil. In colored sets, ker(s)
can be any ground term of the form f(t1; : : : ; tn), with f 6� f� j �g (axiom (K)

ensures that such terms|called kernels|do not contain any element). For instance,

SATT(C) = repeat
C 0 := C;
C := Unify Ts(neq-T(nin-T(in-T(C))));

until C = C 0;
return(is solvedT(C)):

Figure 7: The satis�ability procedure, parametric with respect to T

ker(fa j f(b)g) = f(b). Axiom (Ek) has been proved in [12] to be equivalent to (Es

k
)

in models whose domains are terms: in particular it holds in SET .

This is the approach followed in [14]. Unfortunately this solution introduces

some technical complications that require further special controls to check that a

constraint possibly involving ker terms is satis�able. We prefer to skip this issue

here and refer the interested reader to [14].

In rule (6) of neq-set, therefore, we assume that all sets have the same kernel.

If this would not be the case, then the neq-set procedure could be not correct.

For example, fa j bg 6= fa j cg is false according to rule (6), whereas it is true if

also the kernels are taken into account. This simpli�cation, however, is further

motivated by the fact that in the combined theory (see Section 7) it will turn out

to be convenient adding sorts to our underlying logic in order to avoid \mixed"

aggregates|i.e., aggregates built using di�erent aggregate constructors in the same

term. The addition of sorts would provide also an immediate solution to the problem

of colored sets, since sorts could force all sets to be based only on the empty set.

Lemma 5.11 Let C1; : : : ; Ck be the constraints non-deterministically returned by

neq-set(C) and �Ni = FV (Ci) n FV (C). Then SET j= ~8
�
C $

W
k

i=1
9 �NiCi

�
, pro-

vided rule (6) is never �red by two terms with di�erent ker.

6 Constraint solving

In this section we address the problem of establishing if a constraint C written in

one of the languages studied in this paper is satis�able in the related privileged

structure|and, thus, in any structure that models the corresponding theory.

We show how to produce solution constraints, namely, returning an equisatis�-

able disjunction of solved form constraints|for each of the four theories.

Constraint satis�ability for the theory T is checked by the non-deterministic

rewriting procedure SATT shown in Figure 7. Its de�nition is completely parametric

with respect to the theory involved. SATT uses iteratively the various rewriting

procedures presented in the previous section. Each disjunction generated by the

rewriting rules of these procedures is interpreted as a (don't know) non-deterministic

choice. Thus, SATT(C) returns a collection C1; : : : ; Ck of constraints. Each of

them is either in solved form or false. The two conditions that guarantee that

a constraint in pre-solved form is in solved form are tested by function is solvedT
shown in Figure 8. By Theorem 3.9 a constraint in solved form is guaranteed to be

satis�able in the corresponding structure.

function is solvedT(C)
build the directed graph GC2
if GC2 has a cycle

then return false

else
compute ��

C

if there is a pair t 2 X; t0 =2 X in C s.t. T j= ~8(��

C
(t) = ��

C
(t0))

then return false

else return C.

Figure 8: Final check for solved form constraints

Theorem 6.1 (Termination) Let T be one of the theories List, Bag, CList, and

Set. Each non-deterministic execution of SATT(C) terminates in a �nite number of

steps. Moreover, the constraint returned is either false or a solved form constraint.

Lemma 6.2 Let T be one of the theories List, CList, Bag and Set, and C a con-

straint in pre-solved form over the language of T. If is solvedT(C) returns false,

then C is not satis�able in the structure A which corresponds to T.

Theorem 6.3 (Soundness and Completeness) Let T be one of the theories List,

Bag, CList, and Set, and C1; : : : ; Ck be the solved form constraints non-deterministically

returned by SATT(C), and �Ni = FV (Ci)nFV (C). Then A j= ~8
�
C $

W
k

i=1
9 �NiCi

�
,

where A is the structure corresponding to the considered theory T.
2

Corollary 6.4 Given a constraint C, it is decidable whether A j= ~
9C, where A is

one of the structures LIST , BAG, CLIST , SET .

7 Combining Theories

The four theories presented in the paper can be combined in order to provide more

general frameworks where to deal with several of the proposed data structures si-

multaneously. As a matter of fact, the axioms of the four theories have been de�ned

so as to make this combination a straightforward task. All the data structures are

built in the same way (as regulated by axioms (W)), using the same kind of ele-

ments. Each axiom involves at most one aggregate constructor symbol, so that the

theory for one aggregate is not inuenced by the presence of axioms for the other

aggregates. The combined theory is therefore obtained by simply taking the union

of the sets of axioms of the four individual theories.

As regards the interpretation domain of the privileged structure for the combined

theory a simple solution is obtained by: taking the union of the four equational

theories considered in the individual cases (axioms (Em

p
) and (Es

p
), as well as axioms

(Ec

a
) and (Es

a
) must be considered di�erent); taking the union of the set of terms

for the individual theories; using the combined equational theory to compute the

quotient of the combined Herbrand Universe T (FList [FBag [FCList [FSet). This

2With the small exceptions for sets (see Lemma 5.11) that can however easily be overtaken.

simply causes some equivalence classes that are distinct in the individual cases to be

merged in the same class in the combined case. Thus, for instance, terms f[a; b]g and
terms f[b; a]g which are put into di�erent classes if we consider only the equational

axioms for Set , are instead members of the same equivalence class when considering

the combined equational theory.

Theorem 3.9 ensures the satis�ability of a solved form constraint for all the

theories: an e�ective way to �nd a successful valuation is given. It is easy to extend

the result to the combined theory. The crucial point is that for variablesX occurring

only in constraints X 6= t; t =2 X; t 2 X the solution is found in SET .

As regards constraint solving, also the various constraint rewriting procedures

can be easily combined in order to obtain a general constraint solver for the com-

bined theory. As a matter of fact, all rewriting rules used in these procedures have

been obtained in a quite direct way from the relevant axioms and thus they inherit

from the latter their parametric de�nition. Parametricity of the rewriting rules has

been made evident throughout the presentation in previous sections. Speci�c in-

stances of these rules are obtained by simply replacing one aggregate constructor

with a di�erent one. The global satis�ability procedure SAT for the combined case

is obtained from the generic de�nition of SATT (see Figure 7) by replacing each

call to a generic procedure pT(C) with the composition of the four speci�c calls

pSet(pBag(pCList(pList(C)))).

Since, for each theory T, all the rewriting procedures do not generate any con-

straint not belonging to the theory itself, termination of the satis�ability procedure

SAT for the combined case is immediately obtained from the termination of the

satis�ability procedures for the individual theories. Similarly, soundness and com-

pleteness of the global satis�ability procedure is also preserved.

The language obtained by the combination of the four theories allows one to

write terms that freely mix various kinds of di�erent data structures. Thus, for

instance, we can write a term like fa j [[b; c]]g, which is in part constructed as a set

and in part as a compact list.

To avoid the existence of such terms, for which it is hard to �nd a \natural"

interpretation and which are likely to be of little practical utility, an elegant solution

is to introduce a notion of sort|hence moving to the context of multi-sorted �rst-

order languages.

Roughly speaking, in this context, one can associate a di�erent sort with every

symbol in the language. Thus, for instance, one can introduce the sort Set which

is intuitively the sort of all the terms which denote sets. In the term ft1 j t2g, t2
is required to be of sort Set, while t1 can be of any sort. Thus, the sort of f� j �g

is any � set ! set. Only terms that respect their sorts are allowed to occur in

admissible constraints.

This way, di�erent data structures|i.e., data structures of di�erent sorts|can

not be mixed within the same term. Also the problem of colored aggregates dis-

appears (provided a constant nil with the proper sort is assumed to exist for each

distinct data structure, e.g., nil, f[]g, [[]], ;).

A detailed discussion of this topic is outside the scope of this paper. Indeed, the

aim of this section is to show that the choices made in the axiomatic de�nition of

the theories for the considered data aggregates, as well as the parametric de�nition

of the relevant constraint rewriting procedures, make their combination into a single

general framework immediately feasible, with only a very limited e�ort.

Conversely, turning this proposal into a concrete CLP programming language

that provides all the four data structures altogether requires a few technical matters,

such as those concerning the use of sorts, to be further re�ned.

8 Conclusions

In this paper we have extended the results of [12] studying the constraint solving

problem for four di�erent aggregate theories: the theories of lists, multisets, compact

lists, and sets. The analyzed constraints are conjunctions of literals based on equality

and membership predicate symbols. We have identi�ed the privileged models for

these theories by showing that they correspond with the theories on the set of

admissible constraints. We have developed a notion of solved form (proved to be

satis�able) and presented the rewriting algorithms which allow to use this notion to

decide the satis�ability problems in the four contexts.

In particular, we have shown how constraint solving can be developed paramet-

rically for these theories and we have pointed out the di�erences and similarities

between the four aggregate data structures. Moreover, we have faced complexity

problems and we have discussed the issue of combining the independent results

obtained.

As further work it could be interesting to analyze parametrically the behavior

of the four data structures in presence of append-like operators (append for lists,

[for sets,] for multisets). It has been recently proved that these operators can

not be de�ned without using universal quanti�ers (or recursion) with the languages

analyzed in this paper [11].

Acknowledgments

The authors wish to thank Ashish Tiwari and Silvia Monica for useful discussions on the

topics of this paper. This work is partially supported by MURST project Certi�cazione

automatica di programmi mediante interpretazione astratta.

References

[1] D. Ali�, A. Dovier, and G. Rossi. From Set to Hyperset Uni�cation. Journal of

Functional and Logic Programming, 1999(10):1{48. The MIT Press, September 1999.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

Cambridge, 1998.

[3] J. Banatre and D. Le Metayer. Programming by Multiset Transformation. Communi-

cations of the ACM, 36(1):98{111. January 1993.

[4] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer

Science, vol. 96 (1992) 217-248.

[5] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set Constructors in a Logic Database

Language. Journal of Logic Programming 10, 3 (1991), 181{232.

[6] D. Cantone, E. G. Omodeo, and A. Policriti. The Automation of Syllogistic. II. Opti-

mization and Complexity Issues. Journal of Automated Reasoning, 6:173{187, 1990.

[7] C. C. Chang and H. J. Keisler. Model Theory. Studies in Logic. North Holland, 1973.

[8] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and

Databases, pages 293{321. Plenum Press, 1978.

[9] J. Corbin and M. Bidoit. A rehabilitation of Robinson's uni�cation algorithm. In

R.Mason ed., Information Processing 1983, Elevisier (North Holland), pp. 909{914.

[10] E. Dantsin and A. Voronkov. A Nondeterministic Polynomial-Time Uni�cation Algo-

rithm for Bags, Sets and Trees. In W. Thomas ed., Foundations of Software Science

and Computation Structure, LNCS Vol. 1578, pages 180{196, 1999.

[11] A. Dovier, C. Piazza, and A. Policriti. Comparing expressiveness of set constructor

symbols. In H. Kirchner and C. Ringeissen, eds., FROCOS'00, LNCS No. 1794, pp.

275{289, 2000.

[12] A. Dovier, A. Policriti, and G. Rossi. A uniform axiomatic view of lists, multisets, and

sets, and the relevant uni�cation algorithms. Fundamenta Informaticae, 36(2/3):201{

234, 1998.

[13] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. flogg: A Language for Program-

ming in Logic with Finite Sets. Journal of Logic Programming, 28(1):1{44, 1996.

[14] A. Dovier and G. Rossi. Embedding Extensional Finite Sets in CLP. In D. Miller, editor,

Proc. of International Logic Programming Symposium, ILPS'93, pages 540{556. The

MIT Press, Cambridge, Mass., October 1993.

[15] H. B. Enderton. A mathematical introduction to logic. Academic Press, 1973. 2nd

printing.

[16] C. Gervet. Interval Propagation to Reason about Sets: De�nition and Implementation

of a Practical Language. Constraints, 1:191{246, 1997.

[17] S. Grumbach and T. Milo. Towards tractable algebras for bags. Journal of Computer

and System Sciences, 52(3):570{588, 1996.

[18] P. M. Hill, and J. W. Lloyd. The G�odel Programming Language. The MIT Press,

Cambridge, Mass., 1994.

[19] J. Ja�ar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of Logic

Programming, 19{20:503{581, 1994.

[20] D. Kapur and P. Narendran. NP-Completeness of the Set Uni�cation and Matching

Problems, In J. H. Siekmann ed., 8th CADE, LNCS n. 230, pp. 489{495, 1986.

[21] K. Kunen. Set Theory. An Introduction to Independence Proofs. Studies in Logic.

North Holland, 1980.

[22] A. Mal'cev. Axiomatizable Classes of Locally Free Algebras of Various Types. In The

Metamathematics of Algebraic Systems, Collected Papers, Ch. 23. North Holland, 1971.

[23] A. Martelli and U. Montanari. An e�cient uni�cation algorithm. ACM Transactions

on Programming Languages and Systems, 4:258{282, 1982.

[24] M. S. Paterson and M. N. Wegman. Linear uni�cation. Journal of Computer System

Science, 16(2):158{167, 1978.

[25] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Speci�cation and Z,

Second Edition. Prentice Hall, 1996.

[26] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming with

sets, an introduction to SETL. Springer-Verlag, Berlin, 1986.

[27] J. H. Siekmann. Uni�cation theory. In C. Kirchner, editor, Uni�cation. Academic

Press, 1990.

[28] A. Tzouvaras. The Linear Logic of Multisets. Logic Journal of the IGPL, Vol. 6, No.

6, pp. 901{916, 1998.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 100 - 111.

Membrane computing based on splicing: improvements

Pierluigi Frisco

LIACS, Leiden University,

Niels Bohwerg 1, 2333 CA Leiden, The Netherlands

e-mail: pier@liacs.nl

Abstract. New computability models, called super-cell systems or P

systems, based on the evolution of objects in a membrane structure,

were recently introduced. The seminal paper of Gheorghe P�aun describes

three ways to look at them: transition, rewriting and splicing super-cell

systems having di�erent properties.

Here we investigate two variants of splicing P systems improving results

concerning their generative capability. This is obtained with a variant

of the "rotate-and-simulate" technique classical in H systems area.

1 Introduction

P systems were recently introduced in [5] as distributed parallel computing models.

In the seminal paper the author considers systems based on a hierarchical ar-

ranged, �nite cell-structure consisting of several cell-membranes embedded in a main

membrane called skin. The membranes delimit regions where objects, elements of a

�nite set or alphabet, are placed.

The objects evolve according to given evolution rules associated with a region;

priorities can be associated to evolution rules. They contain symbols as ahere; aout
or aini

where a is an object. The meaning of the subscripts is: here indicates that

the object remains in the membranes in which it was produced; out means that that

the object in sent out of the membranes in which it was produced; ini means that

the object is sent to membrane i if it is reachable from the region where the rule is

applied, if not the rule is not applied.

The objects can evolve independently or in cooperation with the other objects

present in the region in which it is. An evolution rule can destroy the membrane

in which it is. In this case all the objects of the destroyed membrane pass to the

immediately superior one and they evolve according to this one's evolution rules.

The rules of the dissolved cell are lost. The skin membrane cannot be dissolved.

Such a system evolves in parallel: at each step all objects which can evolve should

do it. A computation starts from an initial con�guration of a system, de�ned by a

cell-structure with objects and evolution rules in each cell, and terminates when no

further rule can be applied.

It is possible to assign a result to a computation in two ways: considering the

multiplicity of objects present in a designed membrane in a halting con�guration,

or concatenating the symbols leaving the system in the order they are sent out of

the skin membrane.

In [5] the author examines three ways to look at P systems: transition, rewriting

and splicing super-cell systems. Starting from these several variants were considered:

[6] gives a survey; in [7] polarized membranes and "electrical charges" assigned to

objects are considered; in [10] rules with ain (indicating that an object passes to

any of the adjacent lower membranes non-deterministically chosen) and other types

of structures (planar maps described by asymmetric graphs) are introduced; in [11]

variants of splicing P systems with or without planar map are investigated. In most

of the cases the characterization of recursively enumerable (RE) number relations

or representation of permutation closures of RE languages are obtained.

We focused our attention on some of the systems introduced and studied in

[11]. The objects of our investigations are P systems using string-object evolving by

splicing with non-deterministic way of communicating and P system using string-

object evolving by splicing working on planar maps described by asymmetric graphs.

The characterization of RE languages is improved reducing the degree and the depth

of the systems. One minimal result is obtained.

2 Splicing and P systems

The operation of splicing as a formal model of DNA recombination with the presence

of restriction enzymes and ligases was introduced in [2]. Now we give de�nitions

strictly related with our work; more general information may be found in [9].

Consider an alphabet V and two special symbols, # and $ not in V . With V
�

we indicate the free monoid generated by by the alphabet V under the operation of

concatenation; � indicates the empty string; the length of x 2 V
� is indicated with

jxj.

A splicing rule is a string of the form r = u1#u2$u3#u4; where u1; u2; u3; u4 2

V
�. For such a splicing rule r and strings x; y; z; w 2 V

� we write:

(x; y) `r (z; w) i� x = x1u1u2x2; y = y1u3u4y2;

z = x1u1u4y2; w = y1u3u2x2; (1)

for some x1; x2; y1; y2 2 V
�
:

What just de�ned is called 2-splicing as two strings, z and w, are obtained as

output. For a 2-splicing we call z and w the �rst and the second output string

respectively.

In (1) it is also possible to consider only z as output. In this case the operation

is called 1-splicing.

Considering a rule r as the one de�ned above it is possible to create r
0 =

u3#u4$u1#u2 so that:

(y; x) `r0 (w; z) i� x = x1u1u2x2; y = y1u3u4y2;

z = x1u1u4y2; w = y1u3u2x2; (2)

for some x1; x2; y1; y2 2 V
�
:

where x; y; z; w; u1; u2; u3; u4 2 V
�.

Based on 2-splicing the notion of an H scheme can be de�ned as a pair � = (V;R)

where V is an alphabet and R � V
�#V �$V �#V � is a set of splicing rules. For an

H scheme and a language L � V
� we de�ne

�(L)=fz 2 V
�
j (x; y) `r (z; w) or (x; y) `r (w; z);

for some x; y 2 L; r 2 R;w 2 V
�
g;

�
0(L)=L;

�
i+1(L)=�

i(L) [�(�i(L)); i � 0;

�
�(L)=

[

i�0

�
i(L):

The diameter of � (the concept of diameter was introduced in [3] where it was

called width) is indicated by dia(�) = (n1; n2; n3; n4), where

ni = maxfjuij j u1#u2$u3#u4 2 Rg; 1 � i � 4: (3)

If we consider two families of languages FL1 and FL2, we de�ne:

H(FL1; FL2) = f�
�(L) j L 2 FL1 and � = (V;R); R 2 FL2g:

We denote by FIN;REG the families of �nite and of regular languages respec-

tively. We have (see details in [9])

FIN � H(FIN;FIN) � REG:

An extended H system is a construct = (V; T;A;R), where V and T are al-

phabets so that T � V (T is called terminal alphabet), A is a language on V (A is

the set of axioms), and R is a set of splicing rules over V . The language generated

by is L() = �
�(A) \ T �. The diameter of an extended H system (indicated by

dia() = (n1; n2; n3; n4)) is de�ned in a way similar to (3).

It is known by [1] and [12] that extended H systems with �nite sets of axioms

and splicing rules characterize REG.

A splicing P system of degree m;m � 1, is a construct

� = (V; T; �; L1; � � � ; Lm; R1; � � � ; Rm);

where V is an alphabet; T � V is the terminal alphabet; � is a membrane structure

consisting of m membranes labeled in a one-to-one manner with 1; � � � ;m; Li �

V
�
; 1 � i � m are languages associated with the regions 1; � � � ;m of �; Ri; 1 � i � m,

are �nite sets of evolution rules associated with the regions 1; � � � ;m of �, of the

following form: (r; tar1; tar2), where r = u1#u2$u3#u4 is a 2-splicing rule over V ,

#; $ 62 V and tar1; tar2 2 fhere; out; ing are called target indication.

A con�guration of � is an m-tuple (M1; � � � ;Mm) of languages over V . For

two con�gurations (M1; � � � ;Mm); (M
0
1; � � � ;M

0
m) of � we write (M1; � � � ;Mm))

(M 0
1; � � � ;M

0
m) if it is possible to pass from (M1; � � � ;Mm) to (M

0
1; � � � ;M

0
m) applying

in parallel the splicing rules of each membrane of � to all possible strings of the

corresponding membrane. So for 0 � i � m if x = xi1ui1ui2xi2; y = yi1ui3ui4yi2 2

Mi and (r = ui1#ui2$ui3#ui4; tari1; tari2) 2 Ri; xi1; xi2; yi1; yi2; ui1; ui2; ui3; ui4 2

V
�, we have (x; y) `r (z; w), z; w 2 V

�. The strings z and w will go to the regions

indicated by tari1 and tari2 respectively. For j = 1; 2, if tarij = here then the string

remains in membrane i; if tarij = out the string is moved to the region immediately

outside membrane i (if i if the skin membrane the string leaves the system); if

tarij = in the string is moved to any region immediately below membrane i. Note

that as strings are supposed to appear in arbitrary many copies, after the application

of rule r in a membrane i the strings x and y are still available in the same region,

but if a string is sent out of a membrane then no copy of it remains here.

A computation is a sequence of transitions between con�gurations of a system

� starting from the initial con�guration (L1; � � � ; Lm). The result of a computation

is given by all strings in T
� the skin membrane sends out. All strings of this type

de�ne the language generated by � and it is indicated by L(�).

Note that if a string is sent out of the system but it is not entirely made of

symbols in T it is ignored, on the other hand a string in the system composed only

by symbols in T does not contribute to the generated language.

The depth of a P system is de�ned by the height of the tree describing its

membrane structure.

The diameter of a splicing P system � = (V; T; �; L1; � � � ; Lm; R1; � � � ; Rm), indi-

cated by dia(�) = (n1; n2; n3; n4), is de�ned by

ni = maxfjuij j u1#u2$u3#u4 2 R1 [� � � [Rmg; 1 � i � 4: (4)

We denote by SPL(i=o;m; p; (n1; n2; n3; n4)) the family of languages L(�) gen-

erated by splicing P systems as above of degree at most m;m � 1, depth p; p � 1

and diameter (n1; n2; n3; n4).

It is possible to generalize the description of a P system passing from a tree

structure to a graph (di�erent from a tree) structure. An asymmetric planar graph

is so made that for each two nodes i; j there is at most one of (i; j); (j; i) edges. Such

a graph is a representation of a planar map such that each border segment can be

crossed in one direction only.

A splicing P system on asymmetric graph of degree m;m � 1, is a construct

� = (V; T; g; L1; � � � ; Lm; R1; � � � ; Rm);

where V; T; L1; � � � ; Lm; R1; � � � ; Rm are similar to the ones de�ned for a splicing P

system of degree m. The only di�erence is that tarij 2 fhere; out; gog; 1 � i �

m; j = 1; 2, where here and out have the same e�ect as described for splicing P sys-

tems, and go indicates that the string must go to another room non-deterministically

chosen among the ones to which the string can move through a wall which permits

communications. The set g de�nes couples indicating the edges of the graph hav-

ing L1; � � � ; Lm as nodes. So g de�nes the permitted communication between the

membranes in �.

The diameter of a splicing P system on asymmetric graph � (indicated by

dia(�)) is de�ned in a way similar to (4).

We denote by SP 0
L(go;m; (n1; n2; n3; n4)) the family of languages L(�) gener-

ated by splicing P systems on asymmetric graph as above of degree at mostm;m � 1,

and diameter (n1; n2; n3; n4).

In the next two sections we demonstrate theorems regarding the generative power

of splicing P systems and splicing P systems on asymmetric graphs. These theorems

represent an improvement of results present in [11] and [4].

3 Splicing P systems

In [11] the authors demonstrate that SPL(i=o; 3; 3) = RE (Theorem 1) and that

SPL(i=o; 5; 2) = RE (Theorem 3). Both systems used for the proofs have (1, 2, 2, 1)

as diameter. In [4] the authors show that SPL(i=o; 2; 2; (2; 2; 2; 2)) = RE (Theorem

1). Hereby, using a variant of the "rotate-and-simulate" technique introduced in

[8], we demonstrate that it is possible to have a splicing P system generating RE

keeping the degree of the system equal to 2 (so as a consequence also the depth is

2) and the diameter equal to (1, 2, 2, 1).

Theorem 1 SPL(i=o; 2; 2; (1; 2; 2; 1)) = RE

Proof. Let G = (N;T; S;R) be a type-0 Chomsky grammar in Kuroda normal

form (this means that the productions in R can be of the forms A ! a;A !

CD;AC ! DE or A ! � where A;C;D;E 2 N and a 2 T) and B be a symbol

not in N [T . Let us assume that symbols in N [T [fBg can be numbered in

a one-to-one manner so that N [T [fBg = f�1; � � � ; �ng and that R contains

m productions: ui ! vi; 1 � i � m. Moreover R can be divided in two sets:

R1 = fui ! vi j ui ! vi 2 R ^juij = 1g and R2 = fui ! vi j ui ! vi 2 R ^juij = 2g

so that R1[R2 = R and R1\R2 = ;. Consider also R0 = fu! u j u 2 f�1; � � � ; �ngg

and that fo;X;X1; X2; Y; Y1; Y2; ZX1
; ZX2

; ZY ; ZY2 ; Z�; Z
0

�g [fZXi
; ZYi

j 1 � i �

n+mg [fY 0
i ; ZY 0

i
j ui ! vi 2 R2g are symbols not in N [T .

Hereby the splicing P system of degree 2, depth 2 and diameter (1, 2, 2, 1)

simulating the just de�ned grammar is described. For a better understanding of the

demonstration splicing rules are numbered.

�=fV; T; �; L1; L2; R1; R2g;

V=N [T [fo;B;X;X1; X2; Y; Y1; Y2; ZX1
; ZX2

; ZY ; ZY2 ; Z�; Z
0

�g[

fZXi
; ZYi

j 1 � i � n+mg [fY 0
i ; ZY 0

i
j ui ! vi 2 R2g;

�=[1[2]2]1;

L1=fXBSY;X2ZX2
; ZY1Y1; XZX ; Z�; Z

0

�g [fZYi
o
i
Y1 j 1 � i � n+mg[

fZ 0

Yi
Y
0
i j ui ! vi 2 R2g;

L2=fZY2Y2;X1ZX1
; ZY Y g [fX1o

i
viZXi

j 1 � i � n+mg;

R1=f1)(#uiY $ZYi
#; in; out) j 1 � i � n+mg[

f2)(#CY $ZY 0

i
#;here; out); 3)(#AY 0

i $ZYi
#; in; out) j ui ! vi 2 R2g[

f4)(#ZX2
$X1#o;here; out); 5)(#oY2$ZY1#; in; out); 6)(#ZX$X1#�; in; out);

7)(#BY $Z�#;here; out); 8)(#Z 0

�$X#; out; out) j � 2 N [T [fBgg;

R2=f9)(#Y1$ZY2#;here; out); 10)(#ZXi
$X#; out; out); 11)(#ZX1

$X2o#; out; out);

12)(�#Y2$ZY#; out; out) j 1 � i � n+m;� 2 N [T [fBgg:

During the subsequent demonstration note that all second output strings do not

have any active role in the system, so � could be based on 1-splicing.

The idea of the proof is based on the "rotate-and-simulate" technique, classic in

H systems area. The sentential forms generated by G are simulated in � in a circular

permutation Xw1Bw2Y;w1; w2 2 fN [Tg�, with variants of X and Y . They will

be present in a membrane of � if and only if w2w1 is a sentential form of G. It is

possible to remove the nonterminal symbol Y only with B from strings of the form

XwBY . In this way the correct permutation of the string is ensured.

The simulation of a production in R and the rotation are done in the same way.

Assume that in membrane 1 we have a string of the form XwuiY with w; ui 2

fN [T [fBgg� (initially we have XBSY).

If a production in R1 [R
0 is simulated we have (Xw j uiY;ZYi

j oiY1) `1
(Xwo

i
Y1; ZYi

uiY) the �rst output string is sent into membrane 2 while the second

is sent out of the system.

If a production in R2 is simulated we have (XwA j CY;ZY 0

i
j Y

0
i) `2

(XwAY
0
i ; ZY 0

i
CY) (the �rst output string remains in membrane 1 and the second

leaves the system) and then (Xw j AY 0
i ; ZYi

j oiY1) `3 (Xwo
i
Y1; ZYi

AY
0
i); 1 � i �

n + m (the �rst output string is sent to membrane 2 and the second leaves the

system).

In both cases the su�x uiY is changed with o
i
Y1; 1 � i � n +m. The strings

leaving the system do not belong to T � so they do not contribute to the language

generated by �.

In membrane 2, with a string as Xwo
i
Y1, it is possible to perform (Xwo

i j

Y1; ZY2 j Y2) `9 (Xwo
i
Y2; ZY2Y1). The second output string is sent to membrane 1

where no splicing rule can be applied; the string Xwo
i
Y2, remaining in membrane 2,

can be spliced so to have (X1o
j
vj j ZXj

;X j woiY2) `10 (X1o
j
vjwo

i
Y2; XZXj

); 1 �

j � n+m. Both output strings are sent to membrane 1 but only the �rst one can be

involved in splicing operations. A string as Xwo
i
Y1 can also be spliced in membrane

2 by rule 10 so to have: (X1o
j
vj j ZXj

;X j woiY1) `10 (X1o
j
vjwo

i
Y1;XZXj

); 1 �

j � n +m. Both output strings are sent to membrane 1. The second one cannot

be involved in any splicing, with the �rst it is possible to have (X2 j ZX2
;X1 j

o
j
vjwo

i
Y1) `4 (X2o

j
vjwo

i
Y1;X1ZX2

) but both strings, remaining in membrane 1,

are no longer spliced.

A string of the form X1o
j
vjwo

i
Y2 can be spliced in membrane 1 so to sub-

stitute X1 with X2 and oY2 with Y1. This happens by (X2 j ZX2
;X1 j

o
j
vjwo

i
Y2) `4 (X2o

j
vjwo

i
Y2; X1ZX2

) (the �rst output string remains in mem-

brane 1 while the second is sent out of the system) and (X2o
j
vjwo

i�1 j oY2; ZY1 j

Y1) `5 (X2o
j
vjwo

i�1
Y1; ZY1oY2) (the �rst output string is sent in membrane 2

while the second leaves the system). In membrane 1 it is also possible to have

(X1o
j
vjwo

i�1 j oY2; ZY1 j Y1) `5 (X1o
j
vjwo

i�1
Y1; ZY1oY2). The second output

string is sent out of the system while the �rst to membrane 2. Here this last string

can be spliced so to have (X1o
j
vjwo

i�1 j Y1; ZY2 j Y2) `9 (X1o
j
vjwo

i�1
Y2; ZY2Y1).

The �rst output string remains in membrane 2, the second is sent to membrane 1

and both cannot be involved in any splicing operation. The strings sent out of the

system do not belong to T � so they do not contribute to the language generated by

�.

In membrane 2 a string as X2o
j
vjwo

i�1
Y1 can be spliced so to substitute Y1

with Y2 and X2o with X1. This is obtained by (X2o
j
vjwo

i�1 j Y1; ZY2 j Y2) `9
(X2o

j
vjwo

i�1
Y2; ZY2Y1) (the �rst string remains in membrane 2, the second is sent

to membrane 1 and cannot be involved in any splicing) and (X1 j ZX1
;X2o j

o
j�1

vjwo
i�1

Y2) `11 (X1o
j�1

vjwo
i�1

Y2;X2oZX1
) (both output strings are sent to

membrane 1 but only the �rst one can be spliced). In membrane 2 it is also possible

to have (X1 j ZX1
;X2o j o

j�1
vjwo

i�1
Y1) `11 (X1o

j�1
vjwo

i�1
Y1;X2oZX1

). Both

strings are sent to membrane 1 but only the �rst one can be spliced with X2ZX2

by rule 4 so to obtain X2o
j�1

vjwo
i�1

Y1, remaining in membrane 1 and no more

spliced, and X1ZX2
not in T � sent out of the system.

The process of decreasing the number of o's on the left and on the right of strings

goes on between membranes 1 and 2. At a certain point three kinds of strings can

be present: X1vjwY2;X1o
k
vjwY2 in membrane 1 and X2vjwo

k
Y1 in membrane 2,

1 � k � n+m� 1.

As described before a string as X1o
k
vjwY2 can be spliced with X2ZX2

by rule

4 so to obtain X2o
k�1

vjwY2, remaining in membrane 1 and no more spliced, and

X1ZX2
62 T

� sent out of the system.

In membrane 2 a string as X2vjwo
k
Y1 can change the su�x oY1 with Y2 by rule

9 and the string ZY2Y2. The output strings X2vjwo
k�1

Y2, remaining in membrane

2, and ZY2Y1, sent in membrane 1, are no longer used.

The string X1vjwY2 can be spliced in membrane 1 so that (X j ZX ;X1 j

vjwY2) `7 (XvjwY2;X1ZX). The �rst output string is sent to membrane 2 while

the second (not in T
�) out of the system. In membrane 2 it is possible to have

(Xvjw j Y2; ZY j Y) `12 (XvjwY;ZY Y2). Both output strings are sent to membrane

1 but only the �rst one can get involved in splicing operations.

What it was just described is the process to pass from XwuiY to XvjwY sim-

ulating a production in R or rotating the substring between X and Y with one

symbol.

At any moment a string of the form XwY can be spliced in membrane 1 by rules

7 and 8.

If (j Z 0

�;X j wY) `7 (wY;XZ
0

�) is performed, the �rst output string, sent out

of the system, does not contribute to the language generated by � as Y 62 T ; the

second output string remains in membrane 1 and cannot be involved in any splicing.

If w = xB; x 2 fN[Tg� then (Xx j BY;Z� j) `6 (Xx;Z�BY) can be performed.

The �rst output string, remaining in the same membrane, can be involved in (j

Z
0

�;X j x) `7 (x;XZ
0

�). The strings x;Z�BY and XZ
0

� are sent out of the system

but only x can contribute to the language generated by �.

If x 2 T
� the system � has simulated a derivation of G.

In the initial con�guration of membrane 2 no splicing can be performed.

As just demonstrated all derivations in G can be simulated in � and, conversely,

all correct computations in � correspond to correct derivations in G. As we only col-

lect strings in T � leaving the system �, we have L(G) = L(�) proving the theorem.

Considering the de�nitions (2) and (4) it is easy to see that

SPL(i=o; 2; 2; (2; 1; 1; 2)) = RE. The proof is similar to the one of Theorem

1 where for each rule the target indications are switched.

4 P systems on asymmetric graphs

By SP 0
L(go; �) we denote the union of all families SP 0

L(go;m);m;m � 1; in [11] the

authors demonstrate that SP 0
L(go; �) = RE (Theorem 9). Hereby we improve this

result demonstrating that SP 0
L(go; 3) = RE and, considering that SP 0

L(go; 1) =

SP
0
L(go; 2) = REG (Theorem 7 in [11]), our result is minimal.

A simple way to prove that SP 0
L(go; 3; (1; 2; 2; 1)) = SP

0
L(go; 3; (2; 1; 1; 2)) =

RE is using Theorem 1. If we consider the graph and the planar map represented

in Figure 1 we can imagine that membranes 1 and 2 have the same languages and

similar set of evolution rules of membranes 1 and 2 (respectively) present in Theorem

1. Membrane 3 is only used to pass strings from membrane 2 to membrane 1 without

changing them. Each splicing rule present in Theorem 1 and containing in as target

indication is present in the P system on asymmetric graph with go instead of in,

the other target indications are not changed.

1

2

3

3

1

2

Figure 1: Graph system and planar map in the proof of Theorem 2

The language associated with membrane 3 is fZg and the set of evolution rules

is f13)(�#$Z#; go; here) j � 2 fY; Y1; Y2; ZXi
j 1 � i � n + mgg. The passage

of strings from membrane 2 to membrane 1 is made through membrane 3: the

�rst output string is sent to membrane 1, the second, Z, remaining in membrane

3, belongs to its language. No splicing is possible in the initial con�guration of

membrane 3.

Keeping the number of membranes equal to 3 it is possible to reduce the diameter

of a P system on asymmetric graph generating RE.

Theorem 2 SP
0
L(go; 3; (0; 2; 1; 0)) = SP

0
L(go; 3; (1; 0; 0; 2)) = RE:

Proof. We only prove that SP 0
L(go; 3; (0; 2; 1; 0)) = RE, the other equality can be

obtained using this proof and de�nitions (2) and (4).

Let G = (N;T; S;R) be a type-0 Chomsky grammar in Kuroda normal form (this

means that the productions in R can be of the form A ! a;A ! CD;AC ! DE

or A ! � where A;C;D;E 2 N and a 2 T) and B be a symbol not in N [T .

Let us assume that symbols in N [T [fBg can be numbered in a one-to-one

manner so that N [T [fBg = f�1; � � � ; �ng and that R contains m productions:

ui ! vi; 1 � i � m. Moreover R can be divided in two sets: R1 = fui ! vi j

ui ! vi 2 R ^ juij = 1g and R2 = fui ! vi j ui ! vi 2 R ^ juij = 2g so that

R1 [R2 = R and R1 \ R2 = ;. Consider also R
0 = fu ! u j u 2 f�1; � � � ; �ngg

and that fX;X 0
; Y; Y

0
; ZX ; ZX0 ; ZY ; ZY 0 ; Z�; Z

0

�g [fXi; Yi; Zi; ZXi
; ZYi

j 1 � i �

n+mg [fY 0
i ; ZY 0

i
j ui ! vi 2 R2g are symbols not in N [T .

Hereby the P system on asymmetric graph of degree 3 and diameter (0, 2, 1, 0)

simulating the just de�ned grammar is described. For a better understanding of the

demonstration splicing rules are numbered.

�=fV; T; g; L1; L2; L3; R1; R2; R3g;

V=N [T [fB;X;X 0
; Y; Y

0
; ZX ; ZX0 ; ZY ; ZY 0 ; Z�; Z

0

�g[

fXi; Yi; Zi; ZXi
; ZYi

j 1 � i � n+mg [fY 0
i ; ZY 0

i
j ui ! vi 2 R2g;

g=f(1; 2); (2; 3); (3; 1)g;

L1=fXBSY;X
0
ZX0 ; Z�; Z

0

�g [fZYi
Yi j 1 � i � n+mg[

fXiZXi
j 1 � i � n+m� 1g [fZY 0

i
Y
0

i j ui ! vi 2 R2g;

L2=fZY 0Y
0g [fXiviZi j 1 � i � n+mg [fZYi

Yi j 1 � i � n+m� 1g;

L3=fXZX ; ZY Y g [fXiZXi
j 2 � i � n+mg;

R1=f1)(#uiY $ZYi
#; go; out) j 1 � i � n+mg[

f2)(#CY $ZY 0

i
#;here; out); 3)(#AY 0

i $ZYi
#; go; out) j ui ! vi 2 R2g[

f4)(#ZXi�1
$Xi#; go; out) j 2 � i � n+mg[

f5)(#ZX0$X1#; go; out); 6)(#BY $Z�#;here; out); 7)(#Z 0

�$X#; out; out)g;

R2=f8)(#Zi$X#; go; go) j 1 � i � n+mg[

f9)(#Yi$ZYi�1
#; go; go) j 2 � i � n+mg [f10)(#Y1$ZY 0#; go; go)g;

R3=f11)(#ZXi
$Xi#; go; here) j 2 � i � n+mg[

f12)(#ZX$X
0#; go; go); 13)(#Y 0$ZY#; here; gog

The idea of the proof is again based on the "rotate-and-simulate" technique.

The sentential forms generated by G are simulated in � in a circular permutation

Xw1Bw2Y;w1; w2 2 fN [Tg�, with variants of X and Y . They will be present in

a membrane of � if and only if w2w1 is a sentential form of G. It is possible to

remove the nonterminal symbol Y only with B from strings of the form XwBY . In

this way the correct permutation of the string is ensured.

The simulation of a production in R and the rotation are done in the same way.

Assume that in membrane 1 we have a string of the form XwuiY with w; ui 2

fN [T [fBgg� (initially we have XBSY).

If a production in R1 [R
0 is simulated we have (Xw j uiY;ZYi

j Yi) `1

(XwYi; ZYi
uiY) the �rst output string is sent into membrane 2 while the second

is sent out of the system.

If a production in R2 is simulated we have (XwA j CY;ZY 0

i
j Y

0
i) `2

(XwAY
0
i ; ZY 0

i
CY) (the �rst output string remains in membrane 1 and the second

leaves the system) and then (Xw j AY 0
i ; ZYi

j Yi) `3 (XwYi; ZYi
AY

0
i) (the �rst

output string is sent to membrane 2 and the second leaves the system).

In both cases the su�x uiY is changed with Yi; 1 � i � n + m. The strings

leaving the system do not belong to T � so they do not contribute to the language

generated by �.

In membrane 2, with a string as XwYi, it is possible to perform (Xjvj j Zj ;X j

wYi) `8 (XjvjwYi;XZj) (for some 1 � j � n + m), and both strings are sent to

membrane 3, where only the �rst can be involved in splicing operations.

A string as XjvjwYi is spliced so to decrease the value of the subscripts of X and

Y until special situations are present. The subscript of Y is decreased in membrane

1, the one of X in membrane 2; membrane 3 is simply used to pass strings during

this process.

So when a string of the form XjvjwYi; 2 � j � n+m is present in membrane 3

it is moved to membrane 1 by (Xj j ZXj
;Xj j vjwYi) `11 (XjvjwYi;XjZXj

). The

string XjZXj
, remaining in membrane 3, belongs to its language.

In membrane 1 it is possible to have (Xj�1 j Zj�1;Xj j vjwYi) `4

(Xj�1vjwYi;XjZj�1). The �rst output string is sent to membrane 2, the second

leaves the system (but do not contributes to the language generated by � as it is

not in T �).

A string as Xj�1vjwYi can be spliced in membrane 2 so to have (Xj�ivjw j

Yi; Zi�1 j Yi�1) `9 (Xj�ivjwYi�1; Zi�1Yi), both output strings are sent to mem-

brane 3 but the second one cannot be involved in any splicing.

Decreasing the subscripts of X and Y it is possible to have: X1vjwYk in mem-

brane 1, XkvjwY1 in membrane 2 or X 0
vjwY

0 in membrane 3, where 2 � k � n+m.

In the �rst case (X 0 j ZX0 ; X1 j vjwYk) `5 (X
0
vjwYk;X1ZX0)) is performed. The

string X1ZX0 is sent out of the system and do not contributes to the language gen-

erated by � as it is not in T �. The �rst output string ins sent to membrane 2 where

the subscript of Y is decreased so to have X 0
vjwYk�1 which is sent to membrane 3.

Here X 0 is substituted with X by (X j ZX ;X
0 j vjwYk�1) `12 (XvjwYk�1;X

0
ZX).

Both strings are sent to membrane 1 and no splicing can be performed on them.

In the second case the Y1 in XkvjwY1 is substituted with Y 0 in membrane 2 by

(Xkvjw j Y1; ZY 0 j Y 0) `10 (XkvjwY
0
; ZY 0Y1) and both output strings are sent to

membrane 3. Here only the �rst one can be involved in a splicing operation changing

Y
0 in Y : (Xkvjw j Y 0

; ZY j Y) `13 (XkvjwY;ZY Y
0). The �rst output string remains

in membrane 3, the second is sent to membrane 1. In both cases no splicing can be

performed on them.

In the third case two directions of splicing are possible. If (X j ZX ; X
0 j

vjwY
0) `12 (XvjwY

0
; X

0
ZX) is performed the two output strings are

sent to membrane 1 where no splicing rule can be applied on them. If

(X 0
vjw j Y

0
; ZY j Y) `13 (X 0

vjwY;ZY Y
0) is performed the second output

string is sent to membrane 1 where no splicing can be performed on it. The string

X
0
vjwY remains in membrane 3 where X 0 can be changed with X by rule 12 so to

obtain XvjwY and X 0
ZX . both sent to membrane 1. Here the string X 0

ZX cannot

be involved in any splicing.

What just described is the process to pass from XwuiY to XvjwY simulating

a production in R or rotating the substring between X and Y of one symbol.

At any moment a string of the form XwY can be spliced in membrane 1 by rules

6 and 7.

If (j Z 0

�;X j wY) `7 (wY;XZ
0

�) is performed the �rst output string, sent out

of the system, does not contribute to the language generated by � as Y 62 T ; the

second output string remains in membrane 1 and cannot be involved in any splicing.

If w = xB; x 2 fN[Tg� then (Xx j BY;Z� j) `6 (Xx;Z�BY) can be performed.

The �rst output string, remaining in the same membrane, can be involved in (j

Z
0

�;X j x) `7 (x;XZ
0

�). The strings x;Z�BY and XZ
0

� are sent out of the system

but only x can contribute to the language generated by �.

If x 2 T
�, the system � has simulated a derivation of G.

If we consider the three membranes in their initial con�gurations we can see that

the splicing operations that can be performed do not produce any terminal string.

In membrane 1 it is possible to have (Xi�1 j ZXi�1
;Xi j ZXi

) `4

(Xi�1ZXi
;XiZXi�1

) and (X 0 j ZX0 ;X1 j ZX1
). In both cases the �rst output strings

are sent to membrane 2 where no splicing can be performed; the second exit the

system but do not contribute to the language generated by � as not terminal.

In membrane 2 the splicing operation (ZYi
j Yi; ZYi�1

j Yi�1) `9 (ZYi
Yi�1; ZYi�1

Yi)

generates two strings sent to membrane 3 and no longer used.

In membrane 3 it is possible to have (Xi j ZXi
; Xi j ZXi

) `11 (XiZXi
;XiZXi

).

The �rst output string is sent to membrane 1 while the second, remaining in mem-

brane 3, belongs to its alphabet. In membrane 1 the use of the rule 4 brings to

(Xi�1 j Zi�1;Xi j ZXi
) `4 (Xi�1ZXi

;XiZi�1). The �rst output string is sent to

membrane 2 and no longer used; the second exit the system but do not contribute

to the language generated by � as not terminal.

As just demonstrated all derivations in G can be simulated in � and, conversely,

all correct computations in � correspond to correct derivations in G. As we only

collect strings in T � leaving the system �, we have L(G) = L(�) proving the theo-

rem.

5 Final remarks

We have considered P systems based on splicing having a tree or a graph as structure.

In both cases improvements of theorems demonstrating their generative capability

were found. In particular our result concerning splicing P systems on asymmetric

graphs is minimal.

Acknowledgments

I thank the Universit�a degli Studi di Milano for its �nancial support to my PhD and

the Universiteit Leiden, personi�ed by Prof. G. Rozenberg, accepting me as PhD

student in his friendly group of research.

References

[1] K. Culik II, T. Harju, Splicing semigroups of dominoes and DNA, Discrete

Appl. Math., 31 (1991), 261-277.

[2] T. Head, Formal language theory and DNA; an analysis of the generative ca-

pacity of speci�c recombinant behaviors, Bull. Math. Biology, 49 (1987), 737 -

759.

[3] A. P�aun, Controlled H systems of small radius, Fundamenta Informaticae, 31,

2 (1997), 185 - 193.

[4] A. P�aun, M. P�aun, On the membrane computing based on splicing, submitted,

2000

[5] Gh. P�aun, Computing with membranes. Journal of Computer and System Sci-

ences, 61 (2000), and also Turku Centre for Computer Science-TUCS Report

No. 208, 1998 http://www.tucs.�.

[6] Gh. P�aun, Computing with membranes. An introduction, Bulletin of the

EATCS, 67 (Febr. 1999), 139-152.

[7] Gh. P�aun, Computing with membranes - A variant: P systems with po-

larized membranes, Inter. J. of Foundations of Computer Science, 11, 1

(2000), 167-182, and Auckland Univ. CDMTCS Report No. 089, 1999,

http://www.cs.auckland.ac.nz/CDMTCS.

[8] Gh. P�aun, Regular extended H systems are computationally universal, J. Au-

tomata, Languages, Combinatorics, 1, 1 (1996), 27 - 36.

[9] Gh. P�aun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing

Paradigms, Springer-Verlag, Berlin, 1998.

[10] Gh. P�aun, Y. Sakakibara, T. Yokomori. P systems on graphs of restricted forms,

submitted, 1999.

[11] Gh. P�aun, T. Yokomori, Membrane computing based on splicing. In E. Winfree

and D. Gi�ord,

editors, DNA Based Computers V. MIT, June 1999,

http://bramble.princeton.edu/DNA5/Tar�les/paun.tgz. Article accepted to

the DIMACS 5th International Meeting on DNA Based Computers.

[12] D. Pixton, Regularity of splicing languages, Discrete Appl. Math., 69 (1996),

101-124

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 112 - 123.

Concentration Prediction of Pattern Reaction Systems

Satoshi Kobayashi
Dept. of Information Sciences, Tokyo Denki University

Ishizaka, Hatoyama-machi, Hiki-gun, Saitama 350-0394, JAPAN
e-mail:satoshi@j.dendai.ac.jp

Abstract

In this paper, we will propose a formal system for analyzing the computa-
tional capability of chemical reaction systems of linear molecules. In this model,
each linear molecule is represented as a string w with a real value c, where c is
the concentration of the molecule w. Thus, the system could be regarded as a
real-valued multiset system dealing with linear structures (strings). We further
discuss on the problem of predicting the concentration of a molecule w at the
specified time t in a given chemical reaction system. In particular, we give a
polynomial time prediction algorithm for ligation reaction systems.

1 Introduction

Since Adleman’s seminal paper on a DNA solution to directed Hamiltonian path
problem ([Adl94]), there have been proposed many models of DNA computation,
based on string manipulations ([Adl96][Win96]), nondeterministic Turing machines
([Rei95][Rot96]), boolean circuit ([OR98]), splicing operations ([Hea87][PRS99]),
horn clause computation ([KYSM97][Mih97][Kob99]), etc. Although these works
presented some interesting aspects of computational capability of chemical reac-
tions, from a realistic point of views, there exists a problem that the concentration
of each molecule is not considered in their models.

In this paper, we will propose a computational model of chemical reaction sys-
tems with linear molecules, in which every molecule has its concentration. In this
model, each linear molecule is represented as a string w with a real value c, where
c is the concentration of the molecule w. Thus, the system could be regarded as a
real-valued multiset system dealing with linear structures (strings). We further dis-
cuss on the problem of predicting the concentration of a molecule w at the specified
time t in a given chemical reaction system. In particular, we give a polynomial time
prediction algorithm for ligation reaction systems.

Inspired from the information processing by biological molecules in a cell, Păun
proposed a parallel computation model, computing with membranes (P-system), in
which contents of a cell is represented as a multiset of objects (molecules), and dis-
cusses on the computational capability of the multiset processing with membrane
structures. Further, the model is extended in order to deal with linear molecules
([KR99][Pau00][PP00][Pau98][PY99] [Zan00a][Zan00b]). Although most of these

works use the concentration model which assigns an integer to each molecule, the
current paper assumes that each molecule has a real value as its concentration. Fur-
thermore, we have interests in analyzing the computational capability of real valued
dynamical systems, which is approximately obtained from differential equation sys-
tems representing the kinetics of chemical reactions.

Hagiya and Nishikawa ([HN99]) proposed a model of molecular computation
motivated from the work by Berry and Boudol ([BB92]). They claim that it is
important to deal with in the model (1) the concentration of each molecule, and
(2) the rate of each chemical reaction. The reactions of their model is classified
into three basic types: assembly, dissociation, and state transition. One of their
open research topics include a problem of analyzing the computational capability of
the system with various restrictions on the reaction types. In particular, they have
interests in the relationship between the computational capability and molecular
topologies, or in the effect of simultaneous state transitions on the computational
capability of the systems.

The purpose of the present work is to give a first step toward answering one of
such questions, i.e. revealing the computational capability of chemical reactions of
linear molecules. For that purpose, we will propose a realistic model of molecular
computation, inspired from differential equations representing chemical reactions.
Although the proposed system is discretized in time and thus cannot deal with
actual chemical reactions, we think that the proposed model could be used as an
approximation of real chemical reaction systems.

In section 2, we propose our model of molecular computation and its relationship
to actual chemical reactions. Section 3 describes an efficient algorithm for predicting
the concentration of a given molecule at the specified discrete time in a given ligation
system. This result suggests that the ligation reaction of linear molecules does not
have computational capability beyond the class P ([GJ79]), even if we consider
the concentration of molecules. Conclusions and open research topics are given in
section 4.

2 Pattern Reaction System: A Model of Chemical Re-
action System

Let Σ be a finite alphabet, V be a countable set of variables, and F be a countable
set of function symbols such that each element f of F is associated with a function
f̂ : Σ∗ → Σ∗. The length of a string w ∈ Σ∗ is denoted by | w |. By F(V), we
denote the set {f(X) | f ∈ F ,X ∈ V }. We can regard V and F(V) as countable
alphabets. Thus, in the sequel, we often regard elements X ∈ V and f(X) ∈ F(V)
as single letters. An f-pattern is a non-empty string over Σ∪V ∪F(V). For a pattern
p, by | p |, we denote the length of p as a string.

A ground substitution (or substitution, in short) θ is a mapping from V to Σ∗.

For an f-pattern p and a ground substitution θ, we define:

pθ ≡def

θ(X) if p is a variable X
c if p is a symbol c ∈ Σ

f̂(θ(X)) if p is of the form f(X) for some X ∈ V
p1θ · p2θ if p is of the form p1p2 for some f-patterns p1, p2

A rule of the form r : q1, ..., qm ← p1, ..., pn, where pi (i = 1, ..., n) and qi

(i = 1, ...,m) are f-patterns, is called a reaction rule. The size size(r) of r is defined
as
∑m

i=1 | qi | +
∑n

i=1 | pi |. The f-pattern qi (i = 1, ...,m) is called a product of
r, and the f-pattern pi (i = 1, ..., n) is called a resource of r. By V (r), we denote
the set of all variables appearing in the rule r. In this paper, we assume that each
reaction rule r is associated with a function fr from Rn to R, where n is the number
of resources of r and R is the set of real numbers. A finite subset of reaction rules
is called a pattern reaction system (PRS). For a PRS P , by size(P), we denote∑

r∈P size(r). By PRS , we denote the set of all PRSs.

Example 1 Let Σ = {a, c, g, t, [a/t], [c/g], [g/c], [t/a]} and consider two function
symbols f1, f2 whose associated functions are defined as follows:

f̂1(a) = t, f̂1(c) = g, f̂1(g) = c, f̂1(t) = a,

f̂1(x · w) = f̂1(w)f̂1(x) for x ∈ {a, c, g, t}, w ∈ {a, c, g, t}∗,

f̂2(a) = [a/t], f̂2(c) = [c/g], f̂2(g) = [g/c], f̂2(t) = [t/a],

f̂2(w1w2) = f̂2(w1)f̂2(w2), for w1, w2 ∈ {a, c, g, t}
∗.

Then, the complete hybridization of two DNA molecules based on Watson-Crick
complementarity can be represented by the following reaction rule:

f2(X)← X, f1(X).

The pattern reaction system has a close relation to the elementary formal system
(EFS), whose computational capability and learnability from positive data are well
studied([Smu61][ASY92][Shi94]). However, PRS is different from EFS in that it
deals with a real valued multiset.

Let us consider the following two chemical reactions:

A1 +A2
k1→ A4,

A1 +A3
k2→ A5,

where k1 and k2 are the rate constants of the above reactions. Differential equations
to model these chemical reactions can be written as follows:

d[A]1
dt

= −k1[A]1[A]2 − k2[A]1[A]3,

d[A]2
dt

= −k1[A]1[A]2,

d[A]3
dt

= −k2[A]1[A]3,

d[A]4
dt

= k1[A]1[A]2,

d[A]5
dt

= k2[A]1[A]3.

Let us denote by [A]i(t) the concentration of the molecule [A]i at time t. Then, a
naive numerical calculation gives the values [A]i(t+∆t) for small ∆t as follows:

[A]1(t+∆t) = [A]1(t)− k1[A]1[A]2∆t− k2[A]1[A]3∆t,

[A]2(t+∆t) = [A]2(t)− k1[A]1[A]2∆t,

[A]3(t+∆t) = [A]3(t)− k2[A]1[A]3∆t,

[A]4(t+∆t) = [A]4(t) + k1[A]1[A]2∆t,

[A]5(t+∆t) = [A]5(t) + k2[A]1[A]3∆t.

Inspired from this naive method for calculating the concentrations of the molecules,
we will propose bellow a dynamics of PRS.

Let X be any set. A function from X to R is called a real valued multiset (or
multiset, for short) over X. The value M(x) of an object x ∈ X represents the
concentration of x. By supp(M), we denote the set {x | M(x) �= 0}. We say that
a multiset M is finite if supp(M) is finite. For any finite relation M from X to R,
i.e. M ⊆ X ×R, by Γ(M), we denote a function from X to R defined as:

Γ(M)(x) =
∑

(x,v)∈M

v, for every x ∈ X.

Note that we sometimes regard a multiset M as a relation M ⊆ X ×R. For any
finite relation M from X to R, by size(M), we denote

∑
(w,c)∈supp(M) | w |.

For a pattern reaction system P and a multiset M over Σ∗, we define:

δP (M) = { (q1θ, v), ..., (qmθ, v), (p1θ,−v), ..., (pnθ,−v) |

r : q1, ..., qm ← p1, ..., pn ∈ P,

θ is a ground substitution defined only on V (r),

v = fr(M(p1θ), ...,M(pnθ)) },

γP (M) = Γ(M ∪ δP (M)),

γ0P (M) = M,

γi
P (M) = γP (γ

i−1
P (M)), for every i ≥ 1.

Thus, the pattern reaction system could be regarded as a dynamical system
which transforms a multiset over Σ∗.

Now we will describe bellow how to use this system as a computational device
for solving decision problems. Let A be an alphabet, and Q be a decision problem
defined as a function from A∗ to {0, 1}. For a problem instance w ∈ A∗, Q(w) is
the answer to the question w.

LetN be the set of nonnegative integers, and FM be the set of all finite multisets
over Σ∗. An encoding function is a function from A∗ to FM which can be computed
in polynomial time. A PRS generator is a function from A∗ to PRS which can be
computed in polynomial time. A time function is a function from A∗ to N which
can be computed in polynomial time.

We say that a decision problem Q can be computed in polynomial steps using
PRS if there exist an encoding function α, a PRS generator β, a time function T , a
real value h ∈ R, and a string wg ∈ Σ∗ such that for every problem instance w ∈ A∗,

γ
T (w)
β(w) (α(w))(wg) ≥ h holds if and only if Q(w) = 1. In this definition, h and wg are
called a threshold and a goal molecule, respectively.

In the next section, we consider the following problem:

[Concentration Prediction Problem(CPP)]

Input: a PRS P , a finite multiset M over Σ∗ and an integer t > 0.

Output: the value γt
P (M)(w).

We say that CPP for a subclass P of PRS is efficiently computable if there exists
an algorithm which for every P ∈ P, a multiset M over Σ∗ and an integer t > 0
computes the value γt

P (M)(w) in polynomial time with respect to size(P), size(M),
t and | w |. Note that in this paper we assume that basic operations of real values,
such as addition and multiplication, could be computed in a constant time.

The problem CPP is closely related to the computational capability of a PRS,
which is shown in the following theorem:

Theorem 1 Assume that CPP for a subclass P of PRS is efficiently computable,
and that a decision problem Q can be computed in polynomial steps using PRS
with a PRS generator β such that β only produces elements of P. Then, Q can be
computed in polynomial time by deterministic Turing machines.
Proof
For a problem instance w ∈ A∗, we execute the efficient algorithm ACP P for CPP
with inputs of the PRS β(w), the multiset α(w) and the integer T (w). We return
the value 1 if and only if the answer from ACP P is greater than or equal to the
threshold h. This algorithm computes the solution for Q(w) and runs in polynomial
time.

3 Concentration Prediction of Ligation Systems

For a string w over Σ, by prfk(w) and sufk(w), we denote the prefix and the suffix
of w of length k, respectively. In case of | w |< k, both of prfk(w) and sufk(w)
are not defined. For a set L of strings, by Prfk(L) and Sufk(L), we denote the set
{prfk(w) | w ∈ L} and {sufk(w) | w ∈ L}, respectively.

A simple ligation system is a PRS consisting of reaction rules of the form:
Xw1w2Y ← Xw1, w2Y which is associated with a function fr(x, y) = krxy, where
kr is called the rate constant of the reaction r. For a rule r of the form Xw1w2Y ←
Xw1, w2Y , max(| w1 |, | w2 |) is called the radius of r.

Let P be a simple ligation system, and k be the maximum of the radius of rules
in P .

In the sequel, we will assume that the input multiset M of the concentration
prediction problem should satisfy the following condition:

| w |≥ k holds for every w ∈ supp(M).

It is clear that the following proposition holds:

Proposition 1 For any input M of multiset over Σ∗ and a simple ligation system
P satisfying the above condition, the following equations hold for every t ≥ 0:
Prfk(supp(γ

t
P (M)) ⊆ Prfk(supp(M)), Sufk(supp(γ

t
P (M)) ⊆ Sufk(supp(M)).

Let M be a finite multiset over Σ∗ satisfying the condition above. For a reaction
rule r : Xw1w2Y ← Xw1, w2Y in P and a pair (u, v) of strings, we write r→ (u, v)
if and only if w1 is a suffix of u and w2 is a prefix of v. Note that r → (u, v) holds if
and only if there exists a ground substitution θ such that Xw1θ = u and w2Y θ = v.

For every integer t ∈ N, we define a multiset C(t) over Prfk(Σ
∗) × Sufk(Σ

∗)
inductively as follows:

C(0) = Γ({((prfk(w), sufk(w)),M(w)) | w ∈ Σ∗}),

C(t+ 1) = Γ(C(t) ∪ δC1(t) ∪ δC2(t) ∪ δC3(t)), (t ≥ 0)

δC1(t) = {((p, q), C(t)((p, u)) · C(t)((v, q)) · kr) | p, q, u, v ∈ Σk, r ∈ P, r → (u, v)},

δC2(t) = {((p, q),−C(t)((p, q)) · C(t)((u, v)) · kr) | p, q, u, v ∈ Σk, r ∈ P, r → (q, u)},

δC3(t) = {((p, q),−C(t)((u, v)) · C(t)((p, q)) · kr) | p, q, u, v ∈ Σk, r ∈ P, r → (v, p)}.

We have the following lemma:

Lemma 1 For every t ≥ 0, the following equation holds:

C(t) = Γ({((prfk(w), sufk(w)), γ
t
P (M)(w)) | w ∈ Σ∗}).

Proof
We will prove the claim by induction on t ≥ 0.

In case of t = 0, the definition of C(0) gives the claim. Assume that the claim
holds for the case of t ≤ i and let

R = Γ({((prfk(w), sufk(w)), γ
i+1
P (M)(w)) | w ∈ Σ∗}).

Then, we have:

R = Γ({((p, q),Γ(γi
P (M) ∪ δP (γ

i
P (M)))(w)) | w ∈ Σ∗, p, q ∈ Σk,

p = prfk(w), q = sufk(w)})

= Γ({((p, q), γi
P (M)(w)) | w ∈ Σ∗, p, q ∈ Σk,

p = prfk(w), q = sufk(w)} ∪

{((p, q),Γ(δP (γ
i
P (M)))(w)) | w ∈ Σ∗, p, q ∈ Σk,

p = prfk(w), q = sufk(w)})

= Γ(C(i) ∪ {((p, q),Γ(δP (γ
i
P (M)))(w)) | w ∈ Σ∗, p, q ∈ Σk,

p = prfk(w), q = sufk(w)})

= Γ(C(i) ∪ X1 ∪ X2 ∪ X3),

where

X1 = Γ({ ((p, q), c) | r ∈ P, p, q, u, v ∈ Σk, w1, w2 ∈ Σ∗, prfk(w1) = p,

sufk(w1) = u, prfk(w2) = v, sufk(w2) = q,

r→ (u, v), c = kr · γ
i
P (M)(w1) · γ

i
P (M)(w2) }),

X2 = Γ({ ((p, q), c) | r ∈ P, p, q, u, v ∈ Σk, w1, w2 ∈ Σ∗, prfk(w1) = p,

sufk(w1) = q, prfk(w2) = u, sufk(w2) = v,

r→ (q, u), c = −kr · γ
i
P (M)(w1) · γ

i
P (M)(w2) }),

X3 = Γ({ ((p, q), c) | r ∈ P, p, q, u, v ∈ Σk, w1, w2 ∈ Σ∗, prfk(w1) = u,

sufk(w1) = v, prfk(w2) = p, sufk(w2) = q,

r→ (v, p), c = −kr · γ
i
P (M)(w1) · γ

i
P (M)(w2) }).

Then, we can obtain:

X1 = Γ(
⋃

p, q, u, v ∈ Σk,
r ∈ P, r → (u, v)

{ ((p, q), c) | w1, w2 ∈ Σ∗, prfk(w1) = p, sufk(w1) = u,

prfk(w2) = v, sufk(w2) = q,

c = kr · γ
i
P (M)(w1) · γ

i
P (M)(w2) })

= Γ(
⋃

p, q, u, v ∈ Σk,
r ∈ P, r → (u, v)

{ ((p, q), x) | x =
∑

w1, w2 ∈ Σ
∗ such that

prfk(w1) = p, sufk(w1) = u,

prfk(w2) = v, sufk(w2) = q

kr · γ
i
P (M)(w1) · γ

i
P (M)(w2) })

= Γ(
⋃

p, q, u, v ∈ Σk,
r ∈ P, r → (u, v)

{ ((p, q), x) | x = kr ·
∑

w1 ∈ Σ
∗ such that

prfk(w1) = p,

sufk(w1) = u

γi
P (M)(w1) ×

∑
w2 ∈ Σ

∗ such that

prfk(w2) = v,

sufk(w2) = q

γi
P (M)(w2) })

= Γ(
⋃

p, q, u, v ∈ Σk,
r ∈ P, r → (u, v)

{ ((p, q), x) | x = kr · C(i)((p, u)) · C(i)((v, q)) })

= δC1(i).

In a similar manner, we have:

X2 = δC2(i),

X3 = δC3(i).

Therefore, we have:

R = Γ(C(i) ∪ δC1(i) ∪ δC2(i) ∪ δC3(i))

= C(i+ 1),

which completes the proof.

Let w = a1 · · · an (ai ∈ Σ, i = 1, ..., n) be a string whose concentration at some
specified time we want to predict. Using the multisets C(t), we define, for every
integer t ∈ N and l1, l2 ∈ N with 0 ≤ l1 < l2 ≤ n, a real value A(t, l1, l2) inductively
as follows:

A(0, l1, l2) = M(al1+1 · · · al2),

A(t+ 1, l1, l2) = A(t, l1, l2) + δA1(t, l1, l2) + δA2(t, l1, l2) + δA3(t, l1, l2),

δA1(t, l1, l2) =
∑

l1 < m < l2, r ∈ P ,
r → (sufk(al1+1 · · · am), prfk(am+1 · · ·al2))

kr ·A(t, l1,m) · A(t,m, l2),

δA2(t, l1, l2) =
∑

u, v ∈ Σk, r ∈ P ,
r → (sufk(al1+1 · · · al2), u)

−kr ·A(t, l1, l2) · C(t)((u, v)),

δA3(t, l1, l2) =
∑

u, v ∈ Σk, r ∈ P ,
r → (v, prfk(al1+1 · · · al2))

−kr · C(t)((u, v)) ·A(t, l1, l2).

We have the following lemma:

Lemma 2 For every t ≥ 0 and 0 ≤ l1 < l2 ≤ n, the following equation holds:

A(t, l1, l2) = γt
P (M)(al1+1 · · · al2).

Proof
We will prove the claim by induction on t ≥ 0.

In case of t = 0, the claim is obtained immediately from the definition. Assume
the claim holds for the case of t ≤ i and let

R = γi+1
P (M)(al1+1 · · · al2).

Then, we have:

R = Γ(γi
P (M) ∪ δP (γ

i
P (M)))(al1+1 · · · al2)

= γi
P (M)(al1+1 · · · al2) + Γ(δP (γ

i
P (M)))(al1+1 · · · al2)

= A(i, l1, l2) +X1 +X2 +X3,

where

X1 =
∑

l1 < m < l2, w1 = al1+1 · · · am,
w2 = am+1 · · · al2 , u, v ∈ Σ

k ,

sufk(w1) = u, prfk(w2) = v,

r ∈ P, r → (u, v)

kr · γ
i
P (M)(w1) · γ

i
P (M)(w2),

X2 =
∑

w1 = al1+1 · · · al2 , w2 ∈ Σ
∗,

u, v ∈ Σk, prfk(w2) = u,
sufk(w2) = v, r ∈ P ,
r → (sufk(w1), u)

−kr · γ
i
P (M)(w1) · γ

i
P (M)(w2),

X3 =
∑

w1 ∈ Σ
∗, w2 = al1+1 · · · al2 ,

u, v ∈ Σk, prfk(w1) = u,
sufk(w1) = v, r ∈ P ,
r → (v, prfk(w2))

−kr · γ
i
P (M)(w1) · γ

i
P (M)(w2).

Then, we will obtain:

X2 =
∑

w1 = al1+1 · · ·al2 ,

u, v ∈ Σk, r ∈ P ,
r → (sufk(w1), u)

(−kr · γ
i
P (M)(w1) ×

∑
w2 ∈ Σ

∗,

prfk(w2) = u,

sufk(w2) = v

γi
P (M)(w2))

=
∑

w1 = al1+1 · · ·al2 ,

u, v ∈ Σk, r ∈ P ,
r → (sufk(w1), u)

(−kr · A(i, l1, l2) × C(i)((u, v)))

= δA2(i, l1, l2).

In a similar manner, we have:

X1 = δA1(i, l1, l2),

X3 = δA3(i, l1, l2).

Therefore, we have:

R = A(i, l1, l2) + δA1(i, l1, l2) + δA2(i, l1, l2) + δA3(i, l1, l2)

= A(i+ 1, l1, l2),

which completes the proof.

By Lemma 1 and Lemma 2, we have the following theorem:

Theorem 2 The CPP problem for simple ligation systems is efficiently computable.
Proof
By Proposition 1, we have for every t ≥ 0,

C(t) ⊆ Prfk(supp(M))× Sufk(supp(M)).

Then, it is easy to see that C(t) can be computed in polynomial time with respect
to size(M), size(P) and t. Therefore, it is also straightforward to see that for
every 0 ≤ l1, l2 ≤ n, A(t, l1, l2) can be computed in polynomial time with respect to
size(M), size(P) t and n, where n is the length of the input string w. Thus, the
value γt

P (M)(w) = A(t, 0, n) is efficiently computable.

Note that in this paper we only deal with real values with finite representations and
assume that basic operations of real values, such as addition and multiplication,
could be computed in a constant time.

By Theorem 1 and Theorem 2, we have the following main theorem:

Theorem 3 Any decision problem Q which can be computed in polynomial steps
using simple ligation systems can be computed in polynomial time by deterministic
Turing machines.

4 Conclusions and Open Problems

In this paper, we proposed a computational mechanism, called pattern reaction
system, to model chemical reactions of linear molecules, in which every molecule
has its concentration. We discuss on the problem of predicting the concentration
of a molecule w at the specified time t in a given chemical reaction system and
shows its relationship to the computational capability of the system. In particular,
we give a polynomial time prediction algorithm for ligation reaction systems, which
suggests that the ligation reaction of linear molecules does not have computational
capability beyond the class P, even if we consider the concentration of molecules.

One of the problems is that since the proposed model is discretized, there exist
numerical errors if we compare it with real chemical reactions systems. Therefore,
there still exists a gap between the real system and the proposed one. We think that
the model should follow the real kinetics of chemical reactions as far as possible.
The authors think that the theory of numerical methods with guaranteed accuracy
might give us one of the ways to fill the gap.

Another important research topic is that on the error tolerant molecular com-
putation. Molecular computation is essentially error prone. One of the most basic
types of errors might be the errors in the initial concentration of each molecule and in
the condition parameters (e.g., temperature) of chemical reactions. The theory and
methods for the concentration prediction problem might give an analytical method
for making an error tolerant molecular computer, since they give the relationship
between the input parameters and the concentration of final products.

The current paper discusses only on a simple version of the ligation reaction.
It is an interesting open research topic to generalize the method presented in this
paper and investigate and characterize a class of chemical reactions whose CPP is
efficiently solvable.

References

[Adl94] Leonard M. Adleman, Molecular computation of solutions to combinatorial
problems, Science, 266:1021–1024 (1994)

[Adl96] Leonard M. Adleman, On Constructing A Molecular Computer, in DNA
Based Computers, Proc. of a DIMACS Workshop, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, R. J. Lipton and E. B. Baum
(Eds.), pp. 1-21 (1996)

[ASY92] S. Arikawa, T. Shinohara and A. Yamamoto. Learning Elementary Formal
Systems. Theoretical Computer Science, 95, pp.97-113, 1992

[BB92] Gérard Berry and Gérard Boudol, The chemical abstract machine. Theo-
retical Computer Science, Vol.96, No.1, pp. 217-248, 1992.

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman and Company (1979)

[HN99] Masami Hagiya and Akio Nishikawa, Concurrency Calculi from the View-
point of Molecular Computing – Making Chemical Abstract Machines More
Chemical –, Journal of Japan Society for Fuzzy Theory and Systems, Vol.11,
No.1, pp.2-13, 1999 (in Japanese).

[Hea87] Tom Head, Formal language theory and DNA : An analysis of the generative
capacity of specific recombinant behaviors, Bulletin of Mathematical Biology,
49:737–759 (1987)

[KYSM97] Satoshi Kobayashi, Takashi Yokomori, Gen-ichi Sampei and Kiyoshi Mi-
zobuchi, DNA Implementation of Simple Horn Clause Computation, in Proc.
of IEEE International Conference on Evolutionary Computation, pp.213-217
(1997)

[Kob99] Satoshi Kobayashi, Horn Clause Computation with DNA Molecules, Jour-
nal of Combinatorial Optimization, Vol.3, pp.277-299, 1999. in Proc. of IEEE
International Conference on Evolutionary Computation, pp.213-217 (1997)

[KR99] S. N. Krishna, R. Rama, On the power of P systems with sequential and
parallel rewriting, manuscript, 1999.

[Mih97] Valeria Mihalache, Prolog Approach to DNA Computing, in Proc. of IEEE
International Conference on Evolutionary Computation, pp.249-254 (1997)

[OR98] Mitsunori Ogihara and Animesh Ray, Minimum DNA Computation Model
and Its Computational Power, in Proc. of 1st Workshop on Unconventional
Models of Computation, pp.309-322 (1998)

[Pau95] Gh. Păun, Regular extended H systems are computationally universal, J.
Inform. Process. Cybern., EIK,, (1995)

[Pau98] Gh. Păun, Computing with membranes, Journal of Computer and System
Sciences, in press, and Turku Center for Computer Science-TUCS Report No
208, 1998 (www.tucs.fi).

[Pau00] Gheorghe Păun, Computing with membranes (P Systems): Twenty Six
Research Topics. manuscript, 2000.

[PP00] A. Păun, M. Păun, On the membrane computing based on splicing, submit-
ted, 2000.

[PRS99] G. Păun, G. Rozenberg, A. Salomaa, DNA Computing – New Computing
Paradigms, Springer-Verlag, 1998.

[PY99] Gh. Păun, T. Yokomori, Membrane computing based on splicing, Prelimi-
nary Proc. of Fifth Intern. Meeting on DNA Based Computers (E. Winfree, D.
Gifford, eds.), MIT, June 1999, 213–227.

[Rei95] John H. Reif, Parallel Molecular Computation: Models and Simulations, in
Proc. of Seventh Annual ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA95), ACM, Santa Barbara, 213-223 (1995) Also to appear in
Algorithmica, special issue on Computational Biology, 1998.

[Rot96] Paul Wilhelm Karl Rothemund, A DNA and restriction encyme imple-
mentation of Turing Machine, in DNA Based Computers, Proc. of a DIMACS
Workshop, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, R. J. Lipton and E. B. Baum (Eds.), pp. 75-119 (1996)

[Shi94] T. Shinohara. Rich Classes Inferable from Positive Data : Length Bounded
Elementary Formal Systems. Information and Computation, 108, pp.175-186,
1994

[Smu61] Raymond M. Smullyan, Theory of Formal Systems, Annals of Mathematics
Studies, 47, revised edition, Princeton University Press, 1961.

[Win96] Eric Winfree, Complexity of Restricted and Unrestricted Models of Molec-
ular Computation, in DNA Based Computers, Proc. of a DIMACS Workshop,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
R. J. Lipton and E. B. Baum (Eds.), pp. 187-198 (1996)

[Zan00a] Cl. Zandron, Two normal forms for rewriting P systems, manuscript, 2000.

[Zan00b] Cl. Zandron, Priorities and variable thickness of membranes in rewriting
P systems, manuscript, 2000.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 124 - 137.

Computing with Simple P Systems

S.N. Krishna

Department of Mathematics

Indian Institute of Technology, Madras

Chennai-600036,Tamil Nadu, India

E-mail : maph9801@violet.iitm.ernet.in

Abstract

The P Systems have been recently introduced as a new model for distributed parallel

computing. We describe in this paper, a new variant of P Systems: Simple P Sys-

tems. We consider two variants of Simple P systems: Rewriting simple P systems

and splicing simple P systems. Both the variants are proved to be computationally

complete. In the case of rewriting simple P systems, computational completeness is

achieved using two membranes with priorities, whereas in splicing simple P systems,

the same is achieved by systems of degree seven and no priorities.

Keywords: Membrane structure, Recursively enumerable set, Simple P system,

Matrix grammar, Splicing, Natural Computing

1 Introduction

In this paper, we consider a new model of computation, called P Systems or Su-

per Cell Systems. In this model, a computation is performed by computing cells.

Membranes are used to enclose computing cells in order to make them independent

computing units. Also, a membrane serves as a communication channel between

a given cell and other cells adjacent to it. The name "membrane" is suitable here

because also biological membranes surrounding biological cells have these two func-

tions. The structure of cells is recursive; computing cells may contain other com-

puting cells. In this way, through the inclusion relation, a hierarchical structure is

imposed for the whole computing unit. If a cell does not contain other cells, it is

called elementary. The membrane surrounding the cell which is the highest in the

hierarchy is called the skin. The structure of cells is dynamic: the cells may be

"removed" - this is achieved by dissolving the membrane surrounding a cell to be

removed. A single cell is a complete computing unit in the sense that it has its own

computing program. To be more precise, this computing program governs the area

of a given cell included between the membrane of a cell and the membranes of the

cells included in the given cell - this area is referred to as a region.

A membrane structure is a construct consisting of several membranes placed in a

unique skin membrane; we formalize a membrane structure by means of well-formed

paranthesized expressions, strings of correctly matching parantheses, placed in a

unique pair of matching parantheses;each pair of matching parantheses correspond

to a membrane. This notion is similar to that used by the chemical abstract machine,

[1]. The membranes are labeled in a one-to-one manner. Each membrane identi�es

a region, delimited by it and the membranes inside it(if any). If in the regions de-

limited by the membranes we place multisets of objects from a speci�ed �nite set

V, then we obtain a super cell. (A multiset over V is a mapping M : V ! N ; N is

the set of natural numbers. M(a), for a in V is the multiplicity of a in the multiset

M).

Figure 1: A membrane structure.

'

&

$

%

�

�

�

�

'

&

$

%

�

�

�

�

skin �!

elementarycell �!
 � membrane
 � cell

A membrane structure can also be represented by means of a Venn diagram as

above. The above �gure corresponds to the membrane structure [[] [[]]]. If we

have a membrane structure [1[2]2[3[4[5]5]4]3]1, we say membranes 2, 3, 4, 5 are inside

1; membrane 4 is immediately inside 3, membrane 5 is inside 3 and so on. More

formally, a P system or Super cell system of degree m;m � 1, is a construct

� = (V; T;C; �;M1;M2; : : : ;Mm; (R1; �1); (R2; �2); : : : ; (Rm; �m))

where:

(1) V is the total alphabet of the system; its elements are called objects;

(2) T � V (the output alphabet or terminal alphabet);

(3) C � V, C \ T = � (catalysts);

(4) � is a membrane structure consisting of m membranes, with the membranes

and the regions labeled in a one-to-one manner with elements in given set;

here we always use labels 1,2,. . . ,m;

(5) Mi; 1 � i � n, are multisets over V associated with the regions 1; 2; : : : ;m of

�;

(5) Ri; 1 � i � m are �nite sets of evolution rules over V associated with the

regions 1; 2; : : : ;m of �; �i is a partial order relation over Ri, specifying a

priority relation among rules of Ri. An evolution rule is a pair (u; v) which

we usually write in the form u �! v, where u is a string over V and v = v0 or

v = v0Æ, where v0 is a string over

(V � fhere; outg) [(V � finj j 1 � j � mg),

and Æ is a special symbol not in V. The length of u is called the radius of the

rule u �! v. (The strings u; v are understood as representations of multisets

over V).

If � contains rules of radius greater than one, then we say that � is a system with

cooperation. Otherwise, it is a non-cooperative system. A particular class of co-

operative systems is that of catalytic systems; the only rules of radius greater than

one are of the form ca �! cv, where c 2 C; a 2 V � C, and v contains no catalyst;

moreover, no other evolution rules contain catalysts (there is no rule of the form

c �! v or a �! v1cv2, for c 2 C). The membrane structure and the multisets in �

constitute the initial con�guration of the system. We can pass from one con�gura-

tion to another one by using the evolution rules. This is done in parallel; all objects,

from all membranes, which can be the subject of local evolution rules, as prescribed

by the priority relation should evolve simultaneously. The priority checking is done

as follows : we take a rule for which there is no rule of a higher priority and assign

to it the objects to which it can be applied; we repeat this operation with the rule of

a maximal priority which can be applied to the objects which were not assigned yet

to rules (the objects are assigned only once to a rule). We continue till no further

rule u �! v exists such that u is included in the multiset of non-assigned objects.

All objects which were assigned to rules will evolve by using these rules, in one step

all.

The use of a rule u �! v in a region with a multiset M means to subtract the mul-

tiset identi�ed by u from M, providing that the multiset identi�ed by u is included

in M, then to follow the prescriptions of v: If an object appears in v as (a; here),

then it remains in the same region; if we have (a; out), then a copy of the object a

will be introduced in the membrane placed immediately outside the region of the

rule u �! v; if we have (a; in i), then a copy of a is introduced in the membrane

with the label i, providing that it is adjacent to the region of the rule u �! v,

otherwise the rule cannot be applied; if the special symbol Æ appears in v, then the

membrane which delimits the region where we work is dissolved; in this way, all the

objects in this region become elements of the region placed immediately outside,

while the rules of the dissolved membrane are removed. The rules are applied in

parallel, an object introduced by a rule cannot evolve at the same step by means of

another rule. Note that the catalysts cannot pass from a region to another one by

indications of the form (c; out) or (c; inj), but only by membrane dissolving actions.

A sequence of transitions between con�gurations of a given P System � is called a

computation with respect to �. A computation is successful i� it halts, that is there

is no rule applicable to the objects present in the last con�guration of the compu-

tation. The result of a successful computation is assigned as follows: we observe

the system from outside and collect the objects ejected from the skin membrane,

in the order they are ejected. Using these objects, we form a string. When several

objects are ejected at the same time, then any permutation of them is considered.

The result of a successful computation can also be considered as T (w), where w

describes the multiset of objects from T sent out of the system. The set of vectors

 T (w) for w describing the multiset from T sent out of the system at the end of

a halting con�guration is denoted Ps(�) and we say that it is generated by �. (If

V = fa1; a2; : : : ; amg, then the Parikh mapping associated with V is V : V � �! Nn

de�ned by V (x) = (j x ja1 ; j x ja2 ; : : : ; j x jam) for x 2 V �. L(V) is called the

Parikh set of L � V �. The family of Parikh sets of languages in a family F is denoted

by Ps F). Similarly, the family of length sets of languages in a family F is denoted

by Ls F; and the the permutation closure of a language L is denoted p(L).(For a

set M � Nk, consider the language l(M) � V �, for V = fa1; a2; : : : ; akg, de�ned

by l(M) = fw 2 V � j V (w) 2 Mg. Then p(L) is used to denote the language

l(V (L))). There is yet another way to assign the result of a successful computa-

tion: designate some membrane as the output membrane, and this membrane should

be an elementary one in the last con�guration. (Note that the output membrane

was not necessarily an elementary one in the initial con�guration). In this case, the

total number of objects present in the output membrane of the halting con�guration

or T (w) where w represents the multiset of objects from T present in the output

membrane in a halting con�guration is the resultant of a successful computation.

In the following sections, we consider two variants of Simple P systems; these vari-

ants di�er from one another in the way of application of rules. In rewriting and

splicing simple P systems, the objects considered are strings. The evolution rules

used in rewriting simple P systems are rewriting rules and those used in splicing

simple P systems are splicing rules. Many variants of P systems are considered and

investigated in [2-7], [9-12]. All of them have been proved to be computationally

universal. Some variants [3], [7] are also capable of solving hard problems.

2 Simple P Systems

In this section, we de�ne a new variant of P systems : Simple or Uniform P Systems.

The idea of having this system and to study its properties was suggested as an open

problem in [8]. These are systems for which we have a single set of rules for all the

membranes. Unlike usual P systems for which we have local evolution rules for each

of the membranes, in Simple P systems we have a set of "global" rules, in the sense

that it is applicable to all membranes. In the earlier systems, the dissolvation of a

particular membrane resulted in the loss of the corresponding set of rules; whereas

in Simple P systems, the rules are never lost. That is, the rules are pertaining to the

objects alone; the earlier systems had rules pertaining to the membranes and the

objects within each membrane. Formally, we de�ne a Simple P System as follows:

De�nition 2.1 A Simple P System of degree n, n�1, is a construct

� = (V; T;C; �;w1; w2; : : : ; wn; (R; �))

where:

(1) V is the total alphabet of the system; its elements are called objects;

(2) T � V (the output alphabet or terminal alphabet);

(3) C � V, C \ T = � (catalysts);

(4) wi; 1 � i � n, are multisets over V associated with the regions 1; 2; : : : ; n of �;

(5) R is the set of evolution rules over V associated with all the regions of �; � is a

partial order relation over R; specifying a priority relation among rules of R.

An evolution rule is a pair (u; v) which we usually write in the form u �! v,

where u is a string over V and v = v0 or v = v0Æ, where v0 is a string over

(V � fhere; outg) [(V � finj j 1 � j � mg),

and Æ is a special symbol not in V. The length of u is called the radius of the

rule u �! v.

Note that we refer to a system with just one set of rules and objects of any kind

as a simple P system. If the objects are "atomic" in nature, that is if we consider

multisets of objects, and if there is only one set of rules, we call it a transition simple

P system. Since we have just one set of rules, the following points must be noted: if

there is a rule a �! (v; in j), this is applicable only in the membrane surrounding

j; similarly, a rule involving Æ is applicable in all membranes other than the skin

membrane. Rules with target "here" and "out" are globally applicable: that is

to all membranes. The language generated is de�ned similarly as above. That is,

we collect all the objects over T coming out of the system at the end of a halting

con�guration.

3 Examples

In this section, we give some examples of Transition Simple P systems.

Example 3.1 First we give an example to show how transitions take place in a Sim-

ple P System. Consider the system � = (fA;B;E; a; d; fg; fa; fg; fcg; [1 [2]2[3]3]1; fcAg; fBdg;

fEg; (R; �)) where the rules and the priorities are as follows:

r1 : cA �! c(a; out); r2 : B �! B(AA; out); r3 : B �! B; r4 : B �! �; r5 :

d �! d; r6 : d �! fÆ; r7 : E �! Ef ; r8 : E �! fÆ; r9 : f �! (f; out). The

priorities are r1 > r2. We start working by applying rules r1; r3 or r4; r5 or r6; r7
or r8. Suppose r1; r3; r5; r7 are applied. r2 can be applied only when r1 cannot be

applied; that is when there is no copy of A in the skin membrane. The system can

come to a halt only after applying r6 and r8. If r2 is applied after r6, r1 is no longer

applicable, as the A's will go out of the system. The following steps will clarify the

way transitions take place.

[1cA[2Bd]2[3E]3]1 =) a[1c[2Bd]2[3Ef]3]1 =) a[1fcAA[2Bd]2[3Ef]3]1 =)

a(af or fa)[1fcA[2Bd]2[3Ef]3]1 =) a(af or fa)(af or fa)[1fc[2Bd]2[3Ef]3]1 =)

a(aforfa)(aforfa)f [1c[2Bd]2ff]1 =) a(aforfa)(aforfa)fff [1cBf]1 =)

a(aforfa)(aforfa)ffff [1c�]1. The rules applied here are in the following order:

Step 0:Initial con�guration Step 1 : r1; r3; r5; r7 Step 2 : r2; r5; r7; r9 Step 3; 4 :

r1; r3; r5; r7; r9 Step 5 : r3; r5; r8; r9 Step 6 : r3; r6; r9 Step 7 : r4; r9. The objects a

and f collected outside at the end of Step 7 are the resultant of this computation.

After Step 7, the system halts as no more rule is applicable. Note that the system

can be made to halt in any step after applying rules r6 and r8.

Example 3.2 Consider the Simple P System � = (fA;B;C; a; b; cg; fa; b; cg; �; [1 [2]2[3]3]1; fAg;

fBg; fCg; (R; �)) with no catalysts and having priorities. The rules are:

A �! aA;B �! bB;C �! cC;A �! a;B �! b; C �! c; a �! a(out);

b �! b(out); c �! c(out). The priorities for the rules are A �! a > B �!

bB;C �! cC; B �! b > A �! aA;C �! cC; C �! c > A �! aA;B �! bB.

Clearly, the language generated is L(�) = fx 2 fa; b; cg� j j x ja=j x jb=j x jcg.

The priorities ensure that the evolutions corresponding to A;B;C terminate at the

same time. The terminals a; b; c leave the system using the rules a �! a(out); b �!

b(out); c �! c(out).

Example 3.3 Consider the following system of degree two, with priorities and no

cooperation � = (fA;A0; B; a; b; c; dg; fa; b; c; dg; [1 [2]2]1; fAg; �; (R;�)) where R con-

sists of the following rules:

r1 : A �! A(a; out)(B; in 2); r2 : A �! B(b; out)(A0; in 2); r3 : c �! (c; out); r4 :

d �! (d; out); r5 : B �! Bc; r6 : A0 �! dÆ; r7 : B �! �; r8 : c �! c.

The priorities are : r1; r2 > r3; r7; r6 > r7; r3; r4 > r5: We start working in the

skin membrane, where there is available a copy of A. By using the rule A �!

A(a; out)(B; in 2), we reproduce the object A in membrane one and send out a copy

of a, and we introduce a copy of B in membrane two. From now on, both in the inner

and outer membranes, we have applicable rules. At each step in membrane one, we

repeat the the previous operation, while in the inner membrane we produce a copy of c

from each available copy of B in parallel.(The rule r7 is not applicable because of the

priority). For instance, after �ve steps, we have �ve copies of a outside, one copy of

A in membrane one, �ve copies of B in membrane two, and 4+3+2+1=10 copies of c

in membrane two. In any moment, the rule A �! B(b; out)(A0; in 2) can be applied.

One copy of B is kept in membrane one, a copy of b is sent outside (hence the string

collected becomes anb for some n � 0.) and a copy of A0 is sent to membrane two.

At the same time with the use of the rule B �! Bc for all copies of B present here,

we have to apply the rule A0 �! dÆ. Membrane two is dissolved, its contents are left

free in membrane one, where the rules c �! (c; out), d �! (d; out) and B �! � are

applicable. Since the d and the c's are sent out in parallel, outside the system we get

n(n+ 1)=2 copies of c, one copy of d. Consequently, as an output we can consider

any of the strings anbcidcj for n � 0 and i+ j = n(n+ 1)=2. That is, the language

obtained in this way is L(�) = fanbcidcj j n � 0; and i+ j = n(n+ 1)=2; i; j � 0g.

4 Simple P Systems based on Rewriting

In this section, we consider Simple P systems in which the objects are described by

�nite strings over a �nite alphabet. The evolution of an object will then correspond

to a transformation of the string. In this section, we consider transformations in

the form of rewriting steps, as usual in formal language theory. Consequently, the

evolution rules are given by rewriting rules. Assume that we are given an alphabet

V . As in the previous section, here also the rules are provided with indications

on the target membrane. Always we use only context-free rules. Thus rules of the

form X �! v(tar) where tar 2 fhere; out; in jg are used with the obvious meaning:

the string produced by using this rule will go to the membrane indicated by tar.

A string is now an unique object, hence it passes through membranes as a unique

entity, its symbols do not follow di�erent itineraries as it was possible for the objects

in a multiset; of course, in the same region, we have several strings at the same time.

In this way, we obtain a language generating mechanism of the form

� = (V; T; �;w1; w2; : : : ; wm; (R; �))

where V is the total alphabet, T is the terminal alphabet or output alphabet, �

is the membrane structure, w1; w2; : : : ; wm are �nite languages over V present in

membranes 1; 2; : : : ;m, and R is a �nite set of context-free rules of the form X �!

v(tar), with X 2 V; v 2 V �; tar 2 fhere; out; in jg and � is a partial order relation

over R. We call such a system a rewriting simple P system. The language generated

by � is denoted by L(�) and consists of all strings over T � sent out of the system

at the end of a halting con�guration. A computation is de�ned similarly as in the

previous section, with the di�erences speci�c to an evolution based on rewriting

: we start from the initial con�guration of the system and proceed iteratively, by

transition steps done by using the rules in parallel, to all strings which can be

rewritten obeying the priority relations, and collecting the strings sent out of the

system. Note that each string is processed by one rule only, the parallelism refers to

processing simultaneously all available strings by all applicable rules. If several rules

can be applied to a string, at several places each, then we take only one rule and

only one possibility to apply it and consider the obtained string as the next state

of the object described by the string. The evolution of strings are not independent

of each other, but interrelated in two ways: if we have a priority r1 > r2, and

if r1 is applicable to a string x, the application of r2 to another string y present

in the system is forbidden; even without priorities, if a string x can be rewritten

forever, then the system never halts and all strings are lost, irrespective of all the

strings sent out. If non-context free rules or rules of radius greater than one are

applied, then the system is said to be cooperative. As in the previous section, a rule

with target in j is applicable only in a membrane adjacent to j. Here we do not

introduce the membrane dissolving action as it is not required for computational

completeness. We denote by ERSPm(�; �), the language generated by rewriting

Simple P systems of degree atmost m, � 2 fPri, n Prig, � 2 fCoo, n Coog, where

"Coo" stands for cooperative or non context-free rules, "n Coo" stands for non

cooperative or context-free rules. The union of all families ERSPm(�; �) is denoted

by ERSP (�; �); � 2 fPri; nPrig; � 2 fCoo; nCoog:

Theorem 4.1 CF = ERSP1(n Pri, n Coo), and CF � ERSP2(n Pri, n Coo).

Proof : The equality can be proved in a similar manner as in [5]. To prove the strict

inclusion, consider the rewriting simple P system � = (fA;B;C; a; b; cg; fa; b; cg; [1 [2]2]1;

AB; �; (R;�)) where the rules are A �! (aAb; out); B �! (cB; in 2); A �! (ab; out);

B �! c. Clearly, the language generated is L(�) = fanbncn j n � 1g.

Theorem 4.2 RE � ERSP2(Pri, n Coo).

Proof : Let G = (N, T, S, M, F) be a matrix grammar in binary normal form. Let

there be k matrices numbered m1;m2; : : : ;mk. We construct the rewriting simple P

system � = (V; T; �;w1; w2; (R; �)) where V = N1[N2[fYi; ZYi
; Y 0

i
; ZY

0

i

; i; i0; i00; i000; Ai; A
0
i
; A00

i
; DAi

j

Y 2 N1; A 2 N2; 1 � i � kg; � = [1[2]2]1; w1 = XA such that (S �! XA) is a

matrix of type 1 in G, w2 = �. The rules are as follows:

r1 : fX �! Yi j mi : (X �! Y;A �! x) is a matrix of Type 2 in Gg

r2 : fX �! Y 0
i
j mi : (X �! Y;A �! y) is a matrix of Type 3 in Gg

r3 : fX �! i0 j mi : (X �! �;A �! x) is a matrix of Type 4 in Gg

r4 : fYi �! i000ZYi
j Y 2 N1; 1 � i � kg; r5 : fi

0 �! i00�i j 1 � i � kg

r6 : fA �! (Ai; in 2) j mi : (X �! Y=�;A �! x) is a matrix of type 2 or 4 in Gg

r7 : fA �! A0
i
DAi+1

: : : DAk
j mi;mi+1; : : : ;mk are type 3 matrices having a rule

for A 2 N2g

r8 : fY
0
i
�! (ZY

0

i

; in 2)g; r9 : fA
0 �! A j A 2 N2g

r10 : fAi �! iA00
i
j A 2 N2; 1 � i � kg; r11 : fa �! (a; out) j a 2 Tg

r12 : fZYi
�! Y g [f�i �! �g; r13 : fi �! � j 1 � i � kg; r14 : fY

0
i
�! Y 0

i
j Y 2

N1g

ry : fy �! yg; ri1 : fZY
0

i

�! (Y; out) j 1 � i � kg

ri2 : fA
0
i
�! (y; out) j A 2 N2; 1 � i � kg; ri3 : fA

00
i
�! (x; out) j 1 � i � kg

ri4 : fi
00 �! i j 1 � i � kg [fi000 �! i j 1 � i � kg

r0
j1
: fA0

j
�! A0;DAj

�! � j 1 � j � kg; r0
j2
: fj �! y j 1 � j � kg

The priorities for the rules are as follows:

fr1; r2; r3; r4; r5; r9; r10; ri1 ; r
0
j1
; ri3 > r6; r7; r13 > r1; r2; r3; ri4 > r0

j2
; r10; ri3 ; r10; r12 >

r13; r12 > ri3 ; r7; r6 > ri4 ; r12; r10; r
0
j2
> ri3 ; i 6= j; r10 > r0

j2
; r7 > r8; r

0
j1
; r14 >

r6; r9 > ri1 ; r
0
j1
> r9; ri1 ; i 6= j; ri2 > ri1 ; r8 > r0

j1
; ri2g

The system works as follows: Suppose at some instant, we have a string Xw;X 2

N1; w 2 (N2 [T)
� in membrane one. One of the rules r1; r2; r3 can be applied to

X. The rules r1 or r3 mean that we are simulating a matrix of type 2 or 4. First

we consider simulating a type 2 matrix. In this case we apply r1 to X. In the next

two steps, we apply r4 and r6 and the string moves to membrane two.(note that if

r4 is applied, the symbol ZYi
is introduced and this prevents the application of r7.

so if a rule corresponding to a type 2 matrix is applied to X, then to symbols of

N2 also, rules corresponding to type 2 matrices are applied). Now the rule ri4 is

applied changing i000 to i. Then the rules r10; r
0
j2
; r12; ri3 ; r13 are applied in order (due

to the priorities) and the string reaches membrane one if the symbol A for which

the rule r6 was applied corresponds to X. Otherwise, the rule r0
j2

is applied and

the computation never halts. Thus, if the simulation is correctly done, the string

reaches membrane one after successfully simulating a type 2 matrix.

Now, we consider simulating a type 3 matrix. In this case, r2 is applied to X. In

the next step, we apply r7 (here r6 cannot be applied as r14 > r6). By this rule, we

simulate all symbols of N2 corresponding to type 3 matrices, and all matrices of type

3 corresponding to each symbol. Once this is done, the string moves to membrane

two using r8 (r8 > r0
j1
; ri2). Here, we apply r0

j1
(r0

j1
> ri1) to check if the symbol

A 2 N2 corresponding to X occurs or not. The A0
j
's converted to A0's are further

changed to A in the next step using r9. After this step, if any more A0
i
's remain

(which mean that the A corresponding to X occurs), then ri2 is applied and the

computation never halts. Otherwise, the string goes to the skin membrane using

ri1 , replacing ZY
0

i

by Y . In this way, an appearance checking rule is also correctly

simulated. The simulation of a type 4 matrix is similar to that of type 2. The

string can leave the system using r11. If the string which comes out is purely over

terminals, it is listed in the language. Hence, RE � ERSP2(Pri; nCoo).

Theorem 4.3 RE � ERSP (nPri; nCoo)

Proof : Let G = (N, T, S, M, F) be a matrix grammar in binary normal form. Let

m1;m2; : : : ;mk be matrices of type 2 or 4 and mk+1; : : : ;ml be matrices of type 3.

We construct the rewriting simple P system � = (V; T; �;w0; w1; w10 ; : : : ; wl; wl0 ; (R;�))

where V = N1[N2[fd; d
0; d00; yg[fAi; A

0
j
; Y 0 j A 2 N2; Y 2 N1; 1 � i � k; k+1 �

j � lg, � = [0[1[10]10]1 : : : [l[l0]l0]l]0, w0 = XA such that (S �! XA) is a matrix of

type 1 in G, wi = � for all other i. The rules are as follows:

fX �! (Y; in i) j mi is a type 2 matrix having the rule X �! Y for X 2 N1; 1 �

i � kg;

fX �! (�; in i) j mi is of type 4 having the rule X �! � for X 2 N1; 1 � i � kg;

fX �! (Y 0; in i) j mi is of type 3 having the ruleX �! Y forX 2 N1; k+1 � i � lg;

fA �! (Ai; in i
0) j A 2 N2; 1 � i � k;and mi is of type 2 or 4 having a rule for Ag;

rAi
: fAi �! d0(dx; out) j mi is a matrix having the rule A �! x;A 2 N2; 1 � i �

kg;

rd00 : fd00 �! yg; if rAi
is applicable

r0
d00 : fd00 �! �g; if rd00 is not applicable

fA �! (A0
i
; in i0) j mi has a rule for A 2 N2; k + 1 � i � lg;

fA0
i
�! y j k + 1 � i � lg; fd �! (�; out)g; fd0 �! d00g;

fY 0 �! Y (Y; out) j Y 2 N1g; fa �! (a; out) j a 2 Tg; fy �! yg;

The system works as follows : Suppose that at some instant we have a string

Xw;X 2 N1; w 2 (N2 [T)
� in the skin membrane. Then, we can apply one of

the rules X �! (Y; in i);X �! (Y 0; in i) or X �! (�; in i). If the �rst rule is

applied, it means we are simulating a type 2 matrix. In this case, the string moves

to membrane i; 1 � i � k. Now the rule A �! (Ai; in i0) can be applied to some

A 2 N2 provided it corresponds to matrix mi. In the next step, we apply rAi
which

leaves a copy of the string with Ai replaced by d0 in membrane i0; 1 � i � k and

another copy of the string comes out to membrane i with Ai replaced by dx, where

d is a new symbol and x corresponds to the rule A �! x in mi. In the next step,

the copy of the string in membrane i can either go to the skin membrane using

d �! (�; out) or again move to membrane i0 using the rule A �! (Ai; in i
0). In the

former case, the simulation is correct and the rules d0 �! d00; r0
d00 can be applied in

consequent steps. The copy of the string remaining in membrane i0 will be inactive

during the rest of the computation. If on the other hand, the rule A �! (Ai; in i
0)

is applied to the string in membrane i instead of d �! (�; out), then along with it

we apply d0 �! d00 to the string in membrane i0. The symbol d00 then takes care of

this wrong simulation; in the next step, the rule rd00 is applied and the computation

never stops.

Now we will see how a type 3 matrix is simulated. In this case, the rule X �!

(Y 0; in i); k+1 � i � l is applied and the string moves to membrane i; k+1 � i � l.

Now the applicable rules are A �! (A0
i
; in i0) or Y 0 �! Y (Y; out). If the second

rule is applied, a copy of the string with Y 0 replaced with Y is placed in membrane

i itself, while another copy of the same string is sent to the skin membrane. To the

copy of the string in membrane i, the rule A �! (A0
i
; in i0) can be applied(provided

there exists an A 2 N2 in the string which has a rule in mi; k + 1 � i � l). If

there is no such A in the string, the copy of the string in membrane i; k + 1 � i � l

remains as such; the computations can be continued with the other copy which has

been sent to the skin membrane. If on the other hand, such an A exists, the string

goes to membrane i0; k + 1 � i � l, with A replaced by A0
i
. In the next two steps,

the rules A0
i
�! y and y �! y are applied and the computation never halts. In this

way, an appearance checking rule is also correctly simulated. The simulation of a

type 4 matrix is similar to that of a type 2 matrix. The rule a �! (a; out) can be

applied to push the string out. If the string which leaves the system is purely over

terminals, it is listed in the language. Hence, RE � ERSP (nPri; nCoo).

5 Splicing Simple P Systems

In this section, we relate the idea of computing with membranes with another im-

portant area of natural computing, DNA Computing. We consider Simple P sys-

tems with objects in the form of strings and with the evolution rules based on

splicing. First we de�ne a splicing operation. Consider an alphabet V and two

symbols #; $ not in V . A splicing rule over V is a string r = u1#u2$u3#u4 where

u1; u2; u3; u4 2 V
�. For such a rule r and for x; y; w 2 V � we de�ne (x; y) `r w i�

x = x1u1u2x2; y = y1u3u4y2; w = x1u1u4y2, for some x1; x2; y1; y2 2 V �. We say

that we splice the strings x and y at the sites u1u2 and u3u4 respectively. For clarity,

we usually indicate by a vertical bar the place of splicing : (x1u1ju2x2; y1u3ju4y2) `

x1u1u4y2. Speci�cally, for each splicing rule r = u1#u2$u3#u4 over a given al-

phabet V , we associate a string z 2 V �. For x; y 2 V � we write x =)(r;z) y i�

(x; z) `r y.

A splicing simple P system over a given alphabet V is a simple P system � with

strings as objects, with evolution rules given in the form (r; z)tar where r is the splic-

ing rule over V , z 2 V �, and tar is the target indication for the resulting string, one

of here; out; in j. The indication here is omitted usually. With respect to such a rule

we de�ne a relation x =)(r;z) y(tar)as mentioned above. That is, if there is a string

x1u1u2x2 in membrane i and if there is a rule (x1u1#u2x2$y1u3#u4y2; y1u3u4y2)in j

where y1u3u4y2 is a string over V �, and j is a membrane adjacent to i, then the

string x1u1u4y2 moves to membrane j. Using this relation, we de�ne the transition

between con�gurations, taking into consideration also a possible priority among evo-

lution rules. Here also, as in the case of rewriting simple P systems, we apply only

one rule to a string, the parallelism refers to processing strings in all membranes

simultaneously. We do not provide the membrane dissolving action again as it is

not required for computational completeness. A computation is correctly �nished

in the same conditions as in the previous sections: no further move is possible.

The language generated by � consists of all strings over T � sent out of the system

at the end of a halting con�guration. Note that a rewriting simple P system and

splicing simple P system di�er only in the evolution rules: in a rewriting system,

the evolution rules are rewriting rules, in a splicing system, the rules are splicing

rules. The way the rules are applied and the the resultant of a computation are

de�ned exactly in the same way for both the systems. We denote by ESSPm(�)

the language generated by splicing simple P systems with atmost m membranes,

� 2 fPri; nPrig.

Theorem 5.1 The family ESSP3(nPri) contains non-regular languages and ESSP6(nPri)

contains languages which are not in the family MAT .

Proof : We �rst construct a splicing simple P system of degree 3 which contains non-

regular languages. Consider � = (fa; b; d; d1; d2; Zg; fa; b; dg; [1 [2[3]3]2]1; fdabdg; �; �; (R;�))

where R consists of the rules : r1 : (da#Z$d#a; daZ)in 2; r2 : (#Z$d#a; Z)out; r3 :

(b#d$Z#d1; Zd1)in 3; r4 : (b#d1$Z#bd2; Zbd2)out; r5 : (b#d2$Z#d; Zd)out. Ini-

tially, we have dabd in the skin membrane. The possible rules which can be applied

now are r1 or r2. The application of r2 sends abd out of the system. If r1 is used,

the string goes to membrane 2 with an additional a. Now the applicable rules are

r2; r3. r3 changes the right end marker d to d1 and the string is moved to membrane

3. Otherwise if r2 is applied, we have in the skin, aabd and the system halts as no

more rules are applicable. In the former case, we can either apply r4 by which we

have the string daabbd2 in membrane two; or r2 by which aabd1 comes to membrane

2. If the string present in membrane 2 is aabd1, the only applicable rule is r4, and

this puts aabbd2 in the skin, and application of r5 pushes the string aabbd out of the

system. If on the other hand, the string present in membrane 2 is daabbd2, rules r2
or r5 can be applied. Application of r2 leaves the string aabbd2 in the skin and as

above, aabbd leaves the system. r5 puts the string daabbd in the skin, from where

aabbd can leave the system by applying r2. Proceeding in this way, the language

generated by � is fanbnd j n � 1g.

Now we construct a splicing simple P system of degree 6 to show that the fam-

ily ESSP6(nPri) contains languages outside the family MAT . The system � =

(fX;Y; Y 0; Y 00; Z; a; b; c; c0g;

fa; Y g; fXabY g; �; �; �; �; �; [1[2[3]3]2[4[5]5]4[6]6]1; (R;�)); where R consists of the rules

r1 : (X#Z$Xa#; XZ)in 2; r2 : (#Y $Z#aaY
0; ZaaY 0)in 3; r3 : (#Y

0$#Y 00; Y 00)out; r4 :

(#Y 00$#Y; Y)out; r5 : (X#Z$Xb#;XZ)in 4; r6 : (#Y $Z#bY
0; ZbY 0)in 5;

r7 : (c#Z$Xb#; cZ)in 6; r8 : (c0#a$c#a; c0a)out; r9 : (#a$c0#a; a)out generates

the language fa2
n

Y j n � 1g. The system works as follows: Assume that we have

a string of the form XaibajY in membrane one; initially we have i=1, j=0 . if

i � 1, then we have to use the rule X#Z$Xa# and the string Xai�1bajY is sent to

membrane 2. The only applicable rule now is #Y $Z#aaY 0 and we get the string

Xai�1baj+2Y 0 in membrane 3. In this way, the number of a's is doubled every time

the string goes to membrane 3. In the next two steps, we apply #Y 0$#Y 00 and

#Y 00$#Y and we obtain the string Xai�1baj+2Y in membrane one. In this way,

we will eventually obtain Xbaj+2iY in membrane 1. Then if the rule X#Z$Xb# is

applied, we obtain the string Xaj+2iY in membrane 4. The only applicable rule now

is #Y $Z#bY 0 which puts Xaj+2ibY 0 in membrane 5, and by applying #Y 0$#Y 00,

#Y 00$#Y , we obtain Xaj+2ibY in the skin membrane and the above process can be

iterated. To terminate the above process, we apply to the string Xbaj+2iY in the

skin membrane the rule c#Z$Xb#. Then we obtain the string caj+2iY in mem-

brane 6. Applying c0#a$c#a, the string c0aj+2iY comes to the skin membrane. This

string then leaves the system as aj+2iY after #a$c0#a is applied to c0aj+2iY . Thus

the language generated is fa2
n

Y j n � 1g.

Theorem 5.2 RE � ESSP7(nPri)

Proof : Let G = (N, T, S, P) be a type-0 Chomsky grammar. Assume that N[T =

fD1;D2; : : : ;Dng and take a further symbol B, also denoted by Dn+1. We construct

the following splicing simple P system � = (V; T; �; �;XBSY; �; �; �; �; �; (R;�))

V = N [T [fB; d;X; Y; Z; Z 0; Xj ; Yi; Y
0
i
; Y 00

i
; Y 000

0 ; Y
4
0 ; Y

5
0 ;X

0;X 00; X 000;X4; y j 1 �

j � n; 0 � i � ng; � = [1 [2[3[4[5]5]4]3]2 [6[7]7]6]1 and the rules are

r1 : (#uY $Z#vY; ZvY) such that u �! v is a rule from P

r2 : (#DiY $Z#Y
0
i
; ZY 0

i
)out; 1 � i � n + 1; r3 : (XiDi#Z$X#; XiDiZ)in 2; 1 �

i � n+ 1

r4 : (#Y
0
i
$Z#Yi; ZYi)in 3; 0 � i � n+1; r5 : (#Yi$Z#Y

00
i�1; ZY

00
i�1)out; 1 � i � n+1

r6 : (#Y
00
i
$Z#Y 0

i
; ZY 0

i
)out; 1 � i � n+ 1; r7 : (Xi�1#Z$Xi#;Xi�1Z)in 2; 2 � i �

n+ 1

r8 : (X#Z$X1#;XZ)in 6; r9 : (#Y
0
i
$Z#y; Zy)in 7; 1 � i � n+ 1

r10 : (#Y
0
0$Z#Y

000
0 ; ZY

000
0)in 7; r11 : (#Y0$Z#Y;ZY)in 4

r12 : (X
0#Z$X#;X 0Z)in 5; r13 : (y#Z$Xi#; yZ)in 5; 1 � i � n+ 1

r14 : (y#Z$ y#; yZ); r15 : (# y $Z#y; Zy)

r16 : (#Y
000
0 $Z#Y 4

0 ; ZY
4
0)out; r17 : (#Y

4
0 $Z#Y

5
0 ; ZY

5
0)out

r18 : (#Y
5
0 $Z#Y

0
0 ; ZY

0
0)in 2; r19 : (X

00#Z$X 0#;X 00Z)out

r20 : (X
000#Z$X 00#;X 000Z)out; r21 : (X#Z$X 000#; XZ)out

r22 : (#BY $Z#Z
0; ZZ 0); r23 : (#Z

0$Z#d; Zd)out

r24 : (#d$Z#; Z)in 6; r25 : (X
4Di#$XDi#;X

4Di)out; Di 2 T

r26 : (#Z$X
4#; Z)out

The system works as follows: In the initial con�guration, we have the string XBSY

in membrane two, which introduces the axiom of G, together with a new sym-

bol B and end markers X and Y. Assume that we have a string of the form

XwY in membrane two. If we apply a splicing rule #uY $Z#vY , then we sim-

ulate the use of a rule from P at the end of the string, Xw0uY =) Xw0vY ,

and this corresponds to w0u =) w0v in G. The string remains in membrane 2.

In the next step, we can either apply the above rule itself or perform a splicing

(Xw0jDiY;ZjY
0
i
) ` Xw0Y 0

i
. Then the string exits membrane two. In the skin

membrane, if the rule XjDj#Z$X# is applied, we get a string XjDjw
0Yi which

is again passed to membrane 2. Here, we have to apply the rule #Y 0
i
$Z#Yi and

the string is passed to membrane 3 with Y 0
i
replaced by Yi. In the next two steps,

the only applicable rules are #Yi$Z#Y
00
i�1 and #Y 00

i�1$Z#Y
0
i�1 which decrements

the subscript of the right end marker by one and the string is placed in the skin

membrane. Now the rule Xi�1#Z$Xi# should be applied and the subscript of the

left end marker is decreased by one and the string moves to membrane 2 and the

process is repeated. When in the skin membrane we have the string XkDjw
0Y 0

0 ,

it is passed to membrane 6 if k=1 using the rule X#Z$X1# from where the rules

#Y 0
0$Z#Y

000
0 ;#Y

000
0 $Z#Y 4

0 ;#Y
4
0 $Z#Y

5
0 ;#Y

5
0 $Z#Y

0
0 ;#Y

0
0$Z#Y0;#Y0$Z#Y;X

0#Z$X#;

X 00#Z$X 0#;X 000#Z$X 00#;X#Z$X 000# take the string to membrane two asXDjw
0Y

passing through membranes 7, 6, 1, 2, 3, 4, 5, 4, 3, 2 in order. If k 6= 1, then we

apply to XkDjw
0Y 0

0 in the skin membrane the rule Xi�1#Z$Xi#Z and we have the

string Xk�1Djw
0Y 0

0 in membrane 2, k� 1 � 1. Here, the rule #Y 0
0$Z#Y0 is applied

and we have the string Xk�1Djw
0Y0 in membrane 3. Then the rule #Y0$Z#Y is

applied and the string moves to membrane 4 with Y0 replaced by Y . In membrane

4, the rule y#Z$Xk�1#; k�1 � 1 is applied and the computation never halts. (r14
can be applied forever)

Suppose that in the skin membrane we have the string X1Djw
0Y 0

k
, with k � 1, then

we apply r8 and the string moves to membrane 6. Now if the rule #Y 0
i
$Z#y is

applied, from the next step the rule r15 can be applied forever. Consequently, in

order to �nish correctly the computation, the subscripts of the end markers have to

reach the value zero at the same time, that is i = j. This means the symbol Di which

was cut from the right hand end of the string has been reproduced in the left end

of the string. Note that the symbol B can be moved from one end of the string to

the other like any symbol from N [T . In this way, the string is circularly permuted

making possible the the simulation of rules of G in any position. If in � we have

generated the string Xw1Bw2Y then the string w2w1 is a sentential form of G, and

conversely. To terminate, we apply r22 to the string in membrane 2. The right end

marker and the symbol B are removed. In the next step, we apply r23 and the string

is sent to membrane 1 with d as the right end marker. Then in the next three steps,

the rules r24; r25 and r26 are applied; r24 removes d, r25 replaces XDi;Di 2 T in

the left end of the string by X4Di, and r26 removes X4 and sends the string out

of the system. If rules are applied in a di�erent order from that stated above(this

can happen since rules r1; r2; r5; r22; r25 can be applied at any time; irrespective of

which membrane the string is in), then either the system halts with no string going

out or the strings leaving the system will not be listed in the language. Hence the

language generated by � consists of all strings over T � generated by G.

6 Final Remarks

We have considered a new variant of super-cell systems, based on the natural modi-

�cation in the way of applying a single set of rules, in comparison with the usual way

of applying separate set of rules for each membrane. The minimum number of mem-

branes required to get a characterization of RE using rewriting simple P systems of

type (n Pri, n Coo) and whether there exists a splicing simple P system with lesser

than seven membranes and no priorities which can generate recursively enumerable

languages are problems to be pursued. It is also worthwhile to investigate whether

this system can solve any hard problems.

References

[1] G. Berry, G. Boudol, The chemical abstract machine, Theoretical Computer

Science, 96(1992), 217-248

[2] J. Dassow, Gh. P�aun, On the power of membrane computing, J. of Universal

Computer Sci., 5, 2 (1999), 33{49 (www.iicm.edu/jucs).

[3] S. N. Krishna, R. Rama, A variant of P systems with active membranes: Solving

NP-complete problems, Romanian J. of Information Science and Technology,

2, 4 (1999).

[4] S. N. Krishna, R. Rama, On Power of P systems based on sequentual and

parallel rewriting International J. of Computer Mathematics, Vol 77 (1 or 2),

1 - 14, to appear.

[5] Gh. P�aun, Computing with membranes, Journal of Computer and System Sci-

ences, to appear and Turku Center for Computer Science-TUCS Report No

208, 1998 (www.tucs.�).

[6] Gh. P�aun, Computing with membranes { A variant: P Systems with Polarized

Membranes, IJFOCS, in press, and Auckland University, CDMTCS Report No

098, 1999.

[7] Gh. P�aun, P systems with active membranes: Attacking NP complete problems,

submitted 1999, and Auckland University, CDMTCS Report No 102, 1999.

[8] Gh.P�aun, Computing with P Systems: Twenty Six Research Topics, Personal

Communication

[9] Gh. P�aun, G. Rozenberg, A. Salomaa, Membrane computing with external

output, Fundamenta Informaticae.

[10] Gh. P�aun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted

forms, IFIP Conf. on TCS: Exploring New Frontiers of Theoretical Informatics,

Sendai, Japan, 2000.

[11] Gh. P�aun, T. Yokomori, Membrane computing based on splicing, Preliminary

Proc. of Fifth Intern. Meeting on DNA Based Computers (E. Winfree, D. Gif-

ford, eds.), MIT, June 1999, 213{227.

[12] Gh.P�aun, S.Yu, On synchronization in P systems, Fundamenta Informaticae,

38, 4 (1999), 397{410.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 138 - 148.

Rational, Linear and Algebraic Languages of Multisets

Manfred Kudlek

Abstract

The theory of algebraic characterization of rational, linear and algebraic
languages over an ω-complete semiring, defined by corresponding systems of
equations, is applied for various underlying operations on multisets.

0. Introduction

For ω-complete semirings rational, linear and algebraic languages can be defined
as solutions of corresponding systems of equations. These solutions are least fixed
points which are limits starting with he empty sets. It can be shown that, similar
to the well-known normal forms for regular, linear and context-free languages with
catenation as underlying operation, normal forms for such systems also hold. Fur-
thermore, corresponding grammars and trees (or better forests) can be constructed,
too. If the nderlying operation is commutative, then regular, linear and algebraic
languages coincide.

In part 1 the necessary definitions and results from the theory of ω-complete
semirings are presented. In part 2 grammars, trees, and forests are constructed,
and it is shown that they define languages identical to such defined as least fixed
points. Following that normal forms are shown if a non-divisibity condition of the
unit element is true. Finally, in part 3, several associative operations on multisets
are presented.

It is also possible to define norms on multisets, fulfilling some monotonicity
condition, such that iteration lemmata for multiset languages hold.

1. Systems of Equations

In this section the definitions of rational, linear and algebraic languages as least
fixed points of corresponding systems of equations are introduced.

LetM be a monoid with binary operation ◦ and unit element 1, or with a binary
operation ◦ :M×M→ P(M) with unit element 1, i.e. 1 ◦ α = α ◦ 1 = {α}.

Extend ◦ to an associative operation ◦ : P(M)×P(M) → P(M), being distribu-
tive with union ∪ (A◦(B∪C) = (A◦B)∪(A◦C) and (A∪B)◦C = (A◦B)∪(B◦C)),
with unit element {1} ({1} ◦ A = A ◦ {1} = A), and zero element ∅, i.e.
∅ ◦A = A ◦ ∅ = ∅.

Then S = (P(M),∪, ◦, ∅, {1}) is an ω-complete semiring, i.e. if Ai ⊆ Ai+1 for
0 ≤ i then B ◦

⋃
i≥0Ai =

⋃
i≥0(B ◦Ai) and (

⋃
i≥0Ai) ◦B =

⋃
i≥0(Ai ◦B).

Define also A(0) = {1}, A(1) = A,A(k+1) = A ◦A(k), A◦ =
⋃

k≥0A
(k).

Let X = {X1, . . . ,Xn} be a set of variables such that X ∩M = ∅.
A monomial over S with variables in X is a finite string A1 ◦A2 ◦ . . .◦Ak , where

Ai ∈ X or Ai ⊆ M, |Ai| < ∞, i = 1, . . . , k. Without loss of generality, Ai = {αi}
with αi ∈ M suffices. The αij (or {αij}) will be called constants. A polynomial
p(X) over S is a finite union of monomials where X = (X1, · · · ,Xn).

In the following the symbol
∏

will be used to denote finite products with oper-
ation ◦ :

m∏
i=1

Ai = A1 ◦ · · · ◦Am

and the symbol
∑

to denote finite unions :

n∑
i=1

Ai =
n⋃

i=1

Ai = A1 ∪ · · · ∪An .

A system of equations over S is a finite set of equations :
E := {Xi = pi(X) | i = 1, . . . , n}, where pi(X) are polynomials. This will also

be denoted by X = p(X).

The solution of E is a n-tuple L = (L1, . . . , Ln) ∈ P(M)n, of sets over M, and
the n-tuple is minimal with this property, i.e. if L′ = (L′1, . . . , L

′
n) is another n-tuple

satisfying E , then L ≤ L′ (where the order is defined component- wise with respect
to inclusion : A = (A1, · · · , An) ≤ (B1, · · · , Bn) = B ⇔ ∀n

i=1 : Ai ⊆ Bi).
¿From the theory of semirings follows that any system of equations over S has

a unique solution, and this is the least fixed point starting with

X(0) = (X
(0)
1 , · · · ,X

(0)
n) = (∅, · · · , ∅) = ∅, and Xt+1 = p(X(t))

Then the following fact holds : X(t) ≤ X(t+1) for 0 ≤ t.
This is seen by induction and the property of the polynomial with respect to

inclusion, as ∅ ≤ X(1) and X(t+1) = p(X(t)) ≤ p(X(t+1)) = X(t+2).

For the theory of semirings see [1, 4].

A general system of equations is called algebraic, linear if all monomials are
of the form A ◦ X ◦ B or A, and rational if they are of the form X ◦ A or A,
with A ⊆ M and B ⊆ M . Corresponding families of languages (solutions of such
systems of equations) are denoted by ALG(◦), LIN(◦), and RAT (◦). In the case
◦ is commutative then all families are identical : ALG(◦) = LIN(◦) = RAT (◦).

Note that the algebraic case corresponds to context-free languages if ◦ is normal
catenation.

Grammars
Interpreting an equation Xi = pi(X) as a set of rewriting productions Xi → mij

with mij ∈ M(Xi) where M(Xi) denotes the set of monomials of pi(X), regular,
linear, and context-free grammars Gi = (X , C,Xi, P) using the operation ◦, can be
defined. Here C stands for the set of all constants in the system of equations, and P

for all productions defined as above. As the productions are context-free (terminal)

derivation trees can also be defined. Note that the interior nodes are labelled by
variables, and the leafs by constants from C.

2 Normal Forms

In the following lemma forests of terminal trees are constructed representing
approximations of the least fixed point, and it is shown that the stes of terminal
derivation trees with respect to ◦ are equivalent.

Lemma 1 : (Approximation of the least fixed point)

Terminal trees for the approximation of the least fixed point and terminal deriva-
tion trees are equivalent.

Proof:

X(0) = ∅ , X(t+1) = p(X(t))
Thus

X
(t+1)
i =

∑
j

∏
k

X
(t)
ijk +

∑
j

{αij}

especially

X
(0)
i = ∅ , X

(1)
i =

∑
j

{αij}

Construct forests T of terminal trees as follows :
T (1) consists of all trees with roots X

(1)
i and children (only leafs) {αij} with

1 ≤ i ≤ n.
T (t+1) is constructed from trees in T (1) as the set of trees with roots X

(t+1)
i and

their children either X
(t)
ijk being roots of trees from T (t) or {αij}.

Thus the set of frontiers of leafs of all trees in T (t) with root X
(t)
i is just the

approximation X
(t)
i .

On the other hand, any terminal derivation tree for Xi is contained in T . For
this, interprete a deepest non-terminal vertex (i.e. with greatest distance from the

root) as X
(1)
j for some j, and the root as X

(t+1)
i for some i. Then all non-terminal

vertices get some step number s with 1 ≤ s ≤ t+ 1.
2

Lemma 2 :
Any linear system of equations can be transformed, with additional variables,

into another one where all monomials are of the form X ◦ α, α ◦X, or α, and the
new system has identical minimal solutions in the old variables.

Proof : Consider any monomial α ◦X ◦ β. Replace it by α ◦ Y , and add a new
equation Y = X ◦ β. Then it is obvious that the new system has identical solutions
in the old variables.

2

In the following it will be shown that any algebraic system of equations can
be transformed, with additional variables, into a system of equations where all

monomials have the form X ◦ Y or {α}, and the new system has identical minimal
solutions for the old variables. To prove this some lemmata have to be shown first.
For that the ω-complete semiring has to have the following

Property
Let S = (P(M), ∅,1,∪, ◦) be an ω-complete semiring whereM is a monoid. S

has property (⊗), if
(⊗) 1 ∈ A ◦B ⇔ (1 ∈ A ∧ 1 ∈ B).
This property is some kind of nondivisibility of the unit.

Lemma 3 :
If (⊗) holds then

1 ∈
k∏

i=1

Ai ⇔ ∀k
i=1 : 1 ∈ Ai

Proof : ⇐ is trivial.
⇒ : ∀k

i=1 : 1 ∈ Ai implies 1 ∈ A1 ∧ ∀k
i=2 : 1 ∈ Ai by property (⊗), and then

induction.
2

Let X = {X1, · · · ,Xn} be a set of variables. To each variable X ∈ X in an
algebraic system of equations E there exists a set of monomials M(X) such that
X =

∑
m∈M(X).

Lemma 4 : (Separation of variables and constants)
For any algebraic system of equations there exists another one, possibly with

additional variables, having the same (partial) solution in the original variables,
for which the following property holds :

if Xi =
∏r(i)

j=1mij then each monomial is either of the form
∏s(ij)

k=1 Xijk or {αij}
(a constant).

Proof : If mij is not of that form and not a constant then mij =
∏s(ij)

k=1 Aijk with
Aijk either a variable or a constant βijk. Replace each constant βijk in it by a new
variable Yijk, and add a new equation Yijk = {βijk}.

Trivially, the new system of equations has the same solution in the original
variables.

2

Lemma 5 : (Removal of {1})
To each algebraic sysytem of equations there exists another one with the same

set of variables such that no monomial has the form 1 and the solutions are Li−{1}
if Li are the solutions the old system.

Proof :

Let Y be a set of variables and F(Y) the set of all (formal) terms on Y with
operation ◦.

Define inductively
Y1 = {X ∈ X | 1 ∈M(X)}, Yi+1 = Yi ∪ {X ∈ X | ∃m ∈ F(Yi) : m ∈M(X)}
Note that all monomials m consist only of variables.
Trivially Yi ⊆ Yi+1, and therefore there exists a k with Yk = Yk+j = Y for all

0 ≤ j since X is finite.
The following fact holds :
{1} ⊆ X ⇔ X ∈ Y.
⇐) If X ∈ Y then 1 ∈ X is seen by induction. Trivially, if X ∈ Y1 then

1 ∈ M(X) and therefore 1 ∈ X. Assume 1 ∈ X for all X ∈ Yj for 1 ≤ j.
If X ∈ Yj+1 then by definition there exists a monomial m ∈ F(Yj) such that
m ∈M(X). Therefore 1 ∈ X.

⇒) Let X = Xi. 1 ∈ Xi implies {1} ⊆ X
(t)
i for some t ≥ 1. Let t be minimal,

i.e. 1 �∈ Xs
i for s < t. If t = 1 then 1 ∈M(Xi) and therefore Xi ∈ Y1 ⊆ Y.

Let t > 1. If 1 ∈ M(Xi) then again Xi ∈ Y1 ⊆ Y. By assumption for t

1 �∈M(Xi). Then {1} ⊆ Y
(t−1)
1 ◦ · · · ◦ Y

(t−1)
r = m1 ∈M(Xi). Property (⊗) implies

{1} ⊆ Y
(t−1)

j for 1 ≤ j ≤ r. Put Yj into the set Z if 1 ∈ M(Yj), and repeat the

procedure for all remaining Y
(t−1)

j with 1 �∈M(Yj). The procedure must terminate

for some Y
(1)

k for which 1 ∈ M(Yk), yielding a set of variables Z with 1 ∈ M(Y)
for Y ∈ Z. Therefore Z ⊆ Y. By the construction there exists a m ∈ M(Xi) with
m ∈ F(Z) ⊆ F(Y). Obviously, Xi ∈ Y.

Now construct a new system of equations E ′ in which in all monomials mij none
or more variables Yj ∈ Y are deleted, such that the new monomials m′ij �= {1}.

Then the system E ′ has the solutions Li − {1}
2

Lemma 6
To each algebraic system of equations there exists another one with additional

variables X ′i for each old Xi such that the monomials in p′i(X,X
′) are either of the

form {1} or don’t contain X ′j . The solutions of the new system for the new variables
X ′i are L

′
i = Li.

Proof :
By Lemma 5 let E ′ be a system of equations with L′i = Li − {1}.
Construct a new system E ′′ in which for each variable Xi a new one X ′i is defined.

Let pi(X,X
′) = pi(X) for Xi and define p′i(X,X

′) = {1} + pi(X) if 1 ∈ Li, and
in case 1 �∈ Li p

′
i(X,X

′) = pi(X). Then the solutions for the new variables are
L′i = Li.

2

Lemma 7 : (Removal of monomials of the form Y)
To each algebraic system of equations there exists another one with the same

variables such that no monomial is of the form Y and the solutions is identical to
the old one.

Proof :
Assume that the system is already in the form according to lemmata 4, 5, and

6.
Construct inductively sets of variables for X ∈ X :
Y1(X) = {X}
Yj+1(X) = Yj(X) ∪ {Y ∈ X | ∃Z ∈ Yj(X) : Y ∈M(X)}
Since X is finite there exists a k with Yk(X) = Yk+j(X) = Y(X) for j ≥ 0.
Obviously, the following fact holds : Y ⊆ X ⇔ Y ∈ Y(X).
Now construct the new system by taking all monomials which are constants and

consider all monomials m = Y1 ◦ · · · ◦ Yk ∈ M(X) with k ≥ 2. Construct the new
monomials m′ = Zi ◦ · · · ◦ Zk ∈M(Y) with X ∈ Y(Y) and Zj ∈ Y(Yj).

Then L′i = Li.
2

Lemma 8 (Normal form)
To each algebraic system there exists another one with additional variables such

that all monomials have only the forms 1 ∈M(X) (then no other monomial contains
X), or Y ◦Z, or {α} with α �= 1n and the solutions for the old variables are identical.

Proof :
Assume that the system of equations has the form according to the previous

lemmata.
Consider an arbitrary monomial m = Y1 ◦ · · · ◦ Yk ∈M(X) with k ≥ 2. Replace

it by Y1 ◦ Z1 ∈M(X) and the new equations Z1 = Y2 ◦ Z2, · · · , Zk−2 = Yk−1 ◦ Yk.
Then the new system of equations obviously has the same solutions in the old

variables.
2

4 Multisets

Let Σ = {a1, · · · , an} be an alphabet.
A multiset over Σ will either be denoted by x = 〈µx(a1) · a1, · · · , µx(an) · an)〉

where µx(ai) is the multiplicity of ai, or as a vector x = (µx(a1), · · · , µx(an)) ∈ IN
n.

Let the set of multisets over Σ be denoted by M(Σ).
If x is a multiset define σ(x) =

∑n
i=1 µx(ai) as its norm or length.

Write ξ ∈ x if µx(ξ) > 0.
To be more general, instead of a finite alphabet Σ an infinite set may be consid-

ered, like Γ∗ or INk where Γ is a finite alphabet.
A multiset is then denoted by x = 〈µ(ai) ·ai | i ≥ 0〉 with ai ∈ Γ∗ (or ai ∈ IN

k)
and

∑∞
i=0 µx(ai) <∞.

For two multisets x = 〈µx(ai)·ai | i ≥ 0〉 and y = 〈µy(ai)·ai | i ≥ 0〉 define x ⊆ y

iff ∀i ≥ 0 : µx(ai) ≤ µy(ai). Analogously, define z = x∪y by µz(ai) = µx(ai)+µy(ai)
for i ≥ 0, and z = x− y by µz(ai) = max(0, µx(ai)− µy(ai)).

Example 1 : (Vector Addition System)
Let n be fixed and consider M1 = INn with 0 = (0, · · · , 0) ∈ INn. Then the

structureM1 = (M1,+,0) is a commutative monoid, and S1 = (P(M1),∪,+, ∅,0)
a commutative ω-complete semiring.

Define

A+B =
⋃

a∈A,b∈B

(a+ b)

σ(A) = max{σ(m) | m ∈ A} with σ(∅) = σ({0}) = 0 defines a norm on S1.
2

Example 2 : (Tensor Product)
Consider

M2 =
∞⋃

k=0

INk −
∞⋃

k=1

{0}k

(IN0 = {1} where 1 is considered as a unit element).
If x = (x1, · · · , xr) ∈ IN

r − {0}r, y = (y1, · · · , ys) ∈ IN
s − {0}s define

x⊗ y = (x1 · y, · · · , xr · y) = (x1y1, · · · , x1ys, · · · , xry1, · · · , xrys) ∈ IN
r·s− {0}r·s.

⊗ is an associative operation since with z = (z1, · · · , zt) ∈ IN
t − {0}t

(x⊗ y)⊗ z = ((x1y1) · z, · · · , (x1ys) · z, · · · , (xry1) · z, · · · , (xrys) · z) =
(x1y1z1, · · · , x1y1zt, · · · , x1ysz1, · · · , x1yszt, · · · , xry1z1, · · · , xry1zt,

· · · , xrysz1, · · · , xryszt)
and
x⊗ (y ⊗ z) = (x1 · (y ⊗ z), · · · , xr · (y ⊗ z)) =

(x1y1z1, · · · , x1y1zt, · · · , x1ysz1, · · · , x1yszt, · · · , xry1z1, · · · , xry1zt,

· · · , xrysz1, · · · , xryszt).

Define 1⊗ x = x⊗ 1 = x.
ThenM2 = (M2,⊗,1) is a monoid, and by extending ⊗ to P(M2) follows that
S2 = (P(M2),∪,⊗, ∅, {1}) is an ω-complete semiring.

With σ as in Example 1 (σ(1) = 1) follows σ(A), σ(B) ≤ σ(A⊗B) ≤ σ(A)·σ(B).
With τ(x) = 1 + 2log2(σ(x))3 for x �= 1 and τ(1) = 0 a usual norm is defined

with
τ(A), τ(B) ≤ τ(A)⊗ τ(B) ≤ τ(A) + τ(B).

2

Note that all x ∈ INp with p a prime number are also prime with respect to ⊗.

Example 3 :
Consider

M3 =
∞⋃

k=0

IN |Σ|
k

−
∞⋃

k=1

{0}|Σ|
k

(IN0 = {1} where 1 is considered as a unit element).

Interprete x ∈M3 as a multiset representing the multiplicities of words of length
k in lexicographical order. An operation 4 : M3 × M3 → M3 is defined in the
following way.

x4 y = 〈ξ · η | ξ ∈ x, η ∈ y〉 , 14 x = x4 1 = x .

respecting all multiplicities, and where · is catenation.
Examples :
〈a, a, b〉 4 〈aa, ba〉 = 〈aaa, aaa, aba, aba, baa, bba〉
or in other notation (2, 1) 4 (1, 0, 1, 0) = (2, 0, 2, 0, 1, 0, 1, 0).

〈a, a, b〉 4 〈ab, ba〉 = 〈aab, aab, bab, aba, aba, bba〉
or in other notation (2, 1) 4 (0, 1, 1, 0) = (0, 2, 2, 0, 0, 1, 1, 0).

4 is an associative operation since
(x4 y)4 z = 〈ξ · η · ζ | ξ ∈ x, η ∈ y, ζ ∈ z〉 = x4 (y 4 z).

Thus,M3 = (M3,4,1) is a monoid.

Extending 4 to P(M3) gives an ω-complete semiring S3 = (P(M3),∪,4, ∅, {1}).
2

Example 4 :
In this example the elements of two multisets may combine or not.
Consider again as in Example 3

M4 =
∞⋃

k=1

IN |Σ|
k

−
∞⋃

k=1

{0}|Σ|
k

(IN0 = {1} where 1 is considered as a unit element).
With 4 as in Example 3 define an operation ⊗ :M4 ×M4 → P(M4) by

x⊗ y = {x4 y} ∪ {x} ∪ {y} , 1⊗ x = x⊗ 1 = {x} .

⊗ is an associative operation since
(A⊗B)⊗C = (A4B∪A∪B)⊗C = A4B4C∪A4C∪B4C∪A4B∪A∪B
A⊗(B⊗C) = A⊗(B4C∪B∪C) = A4B4C∪A4C∪A4C∪A∪B4C∪B∪C
and therefore (A⊗B)⊗ C = A⊗ (B ⊗ C).

Extending⊗ to P(M4) gives a monoidM4 = (P(M4),⊗, {1}) and an ω-complete
semi- ring S4 = (P(M4),∪,⊗, ∅, {1}).

Example :
〈a, a, b〉 ⊗ 〈ab, ba〉 = {〈aab, aab, aba, aba, bab, bba〉} ∪ {〈a, a, b〉} ∪ {〈ab, ba〉},
or in other notation
(2, 1) ⊗ (0, 1, 1, 0) = {(0, 2, 2, 0, 0, 1, 1, 0), (0, 1, 1, 0), (2, 1)}.

2

Example 5 :
Consider again

M5 =
∞⋃

k=0

IN |Σ|
k

−
∞⋃

k=1

{0}|Σ|
k

(IN0 = {1} where 1 is considered as a unit element).
An operation 4 :M5 ×M5 → P(M5) is defined in the following way.

x4 y = 〈ξ η | ξ ∈ x, η ∈ y〉 , 14 x = x4 1 = x .

respecting all multiplicities, and where is the shuffle operation.
Examples :
〈a, a, b〉 4 〈aa, ba〉 = 〈a aa, a ba, a aa, a ba, b aa, b ba〉
= 〈aaa, aba, baa, aaa, aba, baa, baa, aba, aab, bba, bab〉
or in other notation (2, 1) 4 (1, 0, 1, 0) = (2, 1, 3, 0, 3, 1, 1, 0).

〈a, a, b〉 4 〈ab, ba〉 = 〈a ab, a ba, a ab, a ba, b ab, b ba〉
= 〈aab, aba, aba, baa, aab, aba, aba, baa, bab, abb, bba, bab〉
or in other notation (2, 1) 4 (0, 1, 1, 0) = (0, 2, 4, 1, 2, 2, 1, 0).

4 is an associative operation since
(x4 y)4 z = 〈ξ η ζ | ξ ∈ x, η ∈ y, ζ ∈ z〉 = x4 (y 4 z).

4 is a commutative operation since x4 y = 〈ξ η | ξ ∈ x, η ∈ y〉 = y 4 x.

Extending4 to P(M3) gives a monoidM5 = (P(M5),4, {1}) and an ω-complete
semi- ring S3 = (P(M3),∪,4, ∅, {1}).

2

Example 6 :
In this example the elements of two multisets may combine or not.
Consider again as in Example 5

M6 =
∞⋃

k=1

IN |Σ|
k

−
∞⋃

k=1

{0}|Σ|
k

(IN0 = {1} where 1 is considered as a unit element).
With 4 as in Example 5 define an operation ⊗ :M6 ×M6 → P(M6) by

x⊗ y = {x y} ∪ {x} ∪ {y} , 1⊗ x = x⊗ 1 = {x} .

⊗ is an associative operation since
(A⊗B)⊗C = (A B∪A∪B)⊗C = A B C∪A C∪B C∪A B∪A∪B∪C
A⊗(B⊗C) = A⊗(B C∪B∪C) = A B C∪A B∪A C∪A∪B C∪B∪C
and therefore (A⊗B)⊗ C = A⊗ (B ⊗ C).

⊗ is a commutative operation since A⊗B = A B ∪A ∪B = B ⊗A.

Extending⊗ to P(M6) gives a monoidM6 = (P(M6),⊗, {1}) and an ω-complete
semi- ring S6 = (P(M6),∪,⊗, ∅, {1}).

2

Example 7 :
In this example multisets of vectors (multisets) on INk for fixed k are considered.

Let M7 =M(INk).
Writing 〈mi | 1 ≤ i ≤ r〉 for 〈m1, · · · ,mr〉, where some of themi may be identical,

an operation 4 : M7 ×M7 →M7 is defined by

〈mi | 1 ≤ i ≤ r〉 4 〈mj | 1 ≤ j ≤ s〉 = 〈mi +mj | 1 ≤ i ≤ r, 1 ≤ j ≤ s〉.
The unit element is 〈0〉 ∈M(INk).
Trivially, 4 is a commutative and associative operation, and therefore M7 =

(M7,4, 〈0〉) is a commutative monoid, and S7 = (P(M7),∪,4, ∅, {〈0〉}) an ω-
complete semiring.

Example :
〈(1, 1), (1, 1), (2, 0)〉 4 〈(0, 2), (1, 1)〉 = 〈(1, 3), (1, 3), (2, 2), (2, 2), (2, 2), (3, 1)〉.

2

Example 8 :
In this example again multisets of vectors (multisets) on INk for fixed k are

considered. Let M8 =M(INk).
Define an operation ⊗ :M8 ×M8 → P(M8) in the following way.
Let x, y ∈M8. Consider the multiset partitions x = x12∪x1 and y = y12∪y2 with

|x12| = |y12| = p. Order x12 and y12, i.e. x12 = 〈ξ1, · · · , ξp〉 and y12 = 〈η1, · · · , ηp〉,
and define x12 + y12 = 〈ξ1 + η1, · · · , ξp + ηp〉.

Then let (x12 + y12) ∪ x1 ∪ y2 ∈ x⊗ y for all partitions and all orderings.
The unit element is 〈0〉 with 0 ∈ INk.
Trivially, ⊗ is a commutative operation. ⊗ is also associative. To show that

consider the following partitions.
x = x123 ∪ x12 ∪ x13 ∪ x1, y = y123 ∪ y12 ∪ y23 ∪ y2, z = z123 ∪ z13 ∪ z23 ∪ z3
with |x123| = |y123| = |z123|, |x12| = |y12|, |x13| = |z13|, |y23| = |z23|,
such that x̃12 = x123∪x12, x̃1 = x13 ∪x1, ỹ12 = y123∪ y12, ỹ2 = y23∪ y2 for x⊗ y
and ŷ23 = y123 ∪ y23, ŷ2 = y12 ∪ y2, ẑ23 = z123 ∪ z23, ẑ3 = z13 ∪ z3 for y ⊗ z.
Then x⊗ y = (x̃12 + ỹ12) ∪ x̃1 ∪ ỹ2

= ((x123 ∪ x12) + (y123 ∪ y12)) ∪ (x13 ∪ x1) ∪ (y23 ∪ y2)
= (x123 + y123) ∪ (x12 + y12) ∪ x13 ∪ y23 ∪ x1 ∪ y2 ∈ x⊗ y and

(x123+y123+z123)∪(x13+z13)∪(y23+z23)∪(x12+y12)∪x1∪y2∪z3 ∈ (x⊗y)⊗z.
Using the same partitions and orderings implies
y ⊗ z = (ŷ23 + ẑ23) ∪ ŷ2 ∪ ẑ3

= ((y123 ∪ y23) + (z123 + z23)) ∪ (y12 ∪ y2) ∪ (z13 ∪ z3)
= (y123 + z123) ∪ (y23 + z23) ∪ y12 ∪ z13 ∪ y2 ∪ z3 ∈ y ⊗ z and

(x123+y123+z123)∪(x13+z13)∪(y23+z23)∪(x12+y12)∪x1∪y2∪z3 ∈ x⊗(y⊗z).

The opposite is shown in a similar way. Thus M8 = (P(M8),⊗, {〈0〉}) is a
commutative monoid, and S8 = (P(M8),∪,⊗, ∅, {〈0〉}) a commutative ω-complete
semiring.

Example : 〈(0, 1), (1, 0)〉 ⊗ 〈(0, 1), (0, 1), (1, 0), (1, 1)〉
= {〈(0, 1), (0, 1), (0, 1), (1, 0), (1, 0), (1, 1)〉} (x12 = ∅)
∪ {〈(0, 1), (0, 2), (1, 0), (1, 0), (1, 1)〉,
〈(0, 1), (0, 1), (1, 0), (1, 1), (1, 1)〉,
〈(0, 1), (0, 1), (1, 0), (1, 0), (1, 2)〉} (x12 = 〈(0, 1)〉)

∪ {〈(0, 1), (0, 1), (1, 0), (1, 1), (1, 1)〉,
〈(0, 1), (0, 1), (0, 1), (1, 1), (2, 0)〉,
〈(0, 1), (0, 1), (0, 1), (1, 0), (2, 1)〉} (x12 = 〈(1, 0)〉)

∪{〈(0, 2), (1, 0), (1, 1), (1, 1)〉,

〈(0, 1), (0, 2), (1, 1), (2, 0)〉,
〈(0, 1), (1, 1), (1, 1), (1, 1)〉,
〈(0, 1), (0, 2), (1, 0), (2, 1)〉,
〈(0, 1), (1, 0), (1, 1), (1, 2)〉} (x12 = 〈(0, 1), (1, 0)〉).

2

References

[1] J. S. Golan : The Theory of Semirings with Application in Mathematics and
Theoretical Computer Science. Longman Scientific and Technical, 1992.

[2] M. Kudlek : Generalized Iteration Lemmata. PU.M.A., Vol. 6 No. 2, 211-216,
1995.

[3] M. Kudlek : Iteration Lemmata for Certain Classes of Word, Trace and Graph
Languages. Fundamenta Informaticae, Vol. 34, 249-264, 1999.

[4] W. Kuich, A. Salomaa : Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science 5, Springer, Berlin, 1986.

[5] A. Salomaa : Formal Languages.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 149 - 158.

� � � � � 	 � � � � � � � � � � � � � � � � � � � � � ! "

$ % & ' () * , . 0 1 2 ,
3 4 5 6 7 9 : 9 ; 5 6 < = > ? : @ 4 B ; C D F = ; G 9 : H ; B I4 B J 4 @ 7 L : M

N ? M B P Q I? R R = P S B : T U V D W P X X Y X Z J 4 @ 7 L : M D [9 : @ 4 = \
] P @ 4 ; R ^ _ ` a b c _ d e f g h i j k l e _ m ` f e n o k j p ` i q m a c

r % (t u v $ x z { |} ~ � � } 0 2
� 9 H 9 4 : 5 6 [: ? L � ? = � 4 B 6 9 @ 4 B ; 5 4 R � ; = M L ; H B ; 5 H

� ? G ; : 4 ; N ; : M ; R ; F = ; G 9 : H ; B \ D � R T < @ � 9 : ; 4 R � �4 : : 4 5 ? � D � U V V Y � 4 : : 4 M ? = 4 D S � 4 ; =
] P @ 4 ; R ^ � j � d k � l h i m ` i � m c �

� �) u (� �) � �x . ~ �
< = H B ; B L B 9 ? > � 4 B 6 9 @ 4 B ; 5 H ? > B 6 9 � ? @ 4 = ; 4 = � 5 4 � 9 @ \

� � � ? � � P Z � � D Z V Z V V � L 5 L : 9 �H B ; D � ? @ 4 = ; 4
] P @ 4 ; R ^ q � k ` f d e j k i m i h

x � v � (% � � � � � ¡ ¢ £ ¤ ¥ ¦ § ; H 4 ¨ © = ; B 9 ? : ; = © = ; B 9 ª H 9 B ? > @ L R B ; H 9 B H ? G 9 : 4 © = ; B 9
4 R � 6 4 7 9 B T « 9 ; = B : ? � L 5 9 4 ¬ 6 ? @ H C \ P R ; C 9 6 ; 9 : 4 : 5 6 \ ? > @ L R B ; H 9 B : 9 : ; B ; = M
� 9 G ; 5 9 H 6 ; 5 6 D B 6 9 : 9 > ? : 9 D M 9 = 9 : 4 B 9 @ 4 5 : ? H 9 B H T S ? @ 9 : 9 H L R B H 4 : 9 � : ? G 9 �
4 7 ? L B B 6 9 � ? 9 : ? > B 6 9 H 9 � 9 G ; 5 9 H 4 = � H ? @ 9 ? � 9 = � : ? 7 R 9 @ H 4 : 9 > ? : @ L R 4 B 9 � T
« 9 4 R H ? � : 9 H 9 = B 4 = 4 R M 9 7 : 4 ; 5 5 6 4 : 4 5 B 9 : ; ® 4 B ; ? = ? > H ? @ 9 ? > B 6 9 @ 4 5 : ? H 9 B
> 4 @ ; R ; 9 H 4 H R 9 4 H B © � 9 � � ? ; = B H ? R L B ; ? = H ? > 4 R M 9 7 : 4 ; 5 H \ H B 9 @ H ? > 9 ¯ L 4 B ; ? = H T

° ± ³ � � � 	 ´ � � µ � ³

< = B 6 9 R 4 H B \ 9 4 : H D B 6 9 ; � 9 4 ? > @ L R B ; H 9 B � : ? 5 9 H H ; = M 6 4 H 4 � � 9 4 : 9 � @ ? : 9 4 = � @ ? : 9 > : 9 P
¯ L 9 = B R \ ; = G 4 : ; ? L H � ? @ 4 ; = H ^ = ? = � 9 B 9 : @ ; = ; H B ; 5 � : ? M : 4 @ @ ; = M · � ¸ D B 6 9 5 6 9 @ ; 5 4 R 4 7 P
H B : 4 5 B @ 4 5 6 ; = 9 · � ¸ D W ¹ � 5 ? @ � L B ; = M · X Y ¸ D @ 9 @ 7 : 4 = 9 5 ? @ � L B ; = M ¨ � H \ H B 9 @ H ª · X X ¸ D

· X U ¸ ¨ H 9 9 4 5 L : : 9 = B 7 ; 7 R ; ? M : 4 � 6 \ ? > B 6 9 4 : 9 4 ; = · X � ¸ ª T � L R B ; H 9 B H 4 R H ? 4 � � 9 4 : ; = R ? M ; 5
· � ¸ D R ; = M L ; H B ; 5 H · Z ¸ D · � X ¸ D 4 : B ; © 5 ; 4 R R ; > 9 · X Z ¸ D 9 B 5 T � 6 9 B 6 9 H ; H · X ¼ ¸ ; H 9 = B ; : 9 R \ � 9 G ? B 9 � B ?

@ 4 B 6 9 @ 4 B ; 5 4 R R \ > ? : @ 4 R ; ® ; = M @ L R B ; H 9 B H T S 9 G 9 : 4 R � 4 � 9 : H 6 4 G 9 5 ? = H ; � 9 : 9 � > L ® ® \ G 4 : ; 4 = B H
? > @ L R B ; H 9 B H ¨ · X � ¸ D · � ½ ¸ D · U X ¸ ª D 6 ; R 9 · � V ¸ 4 = � · Y ¸ � 9 4 R ; B 6 ¾ ¤ � ¥ ¦ § ¥ ¨ � 4 : B ; 4 R R \ ? : � 9 : 9 �
@ L R B ; H 9 B H ª T

� @ L R B ; H 9 B ? G 9 : 4 M ; G 9 = H 9 B ? > ¤ ¿ À ¦ ¢ § ¥ 5 ? : : 9 H � ? = � H B ? 4 H B : ; = M ? G 9 : B 6 9 4 R � 6 4 7 9 B
= 4 @ ; = M B 6 ? H 9 ? 7 Á 9 5 B H T � ? 4 R 4 = M L 4 M 9 ; B 5 ? : : 9 H � ? = � H 4 H 9 B H ? > @ L R B ; H 9 B H D 5 4 R R 9 � 6 9 : 9
4 � ¡ ¢ £ ¤ ¥ ¦ § T

� 7 H 9 : G ; = M B 6 4 B � H \ H B 9 @ B 6 9 ? : \ ; H � 9 G ? B 9 � B ? 4 M 9 = 9 : 4 B ; G 9 4 � � : ? 4 5 6 B ? @ L R B ; H 9 B
� : ? 5 9 H H ; = M ; = 4 � ; H B : ; 7 L B 9 � 4 \ D ; = · X � ¸ ? = 9 > ? : @ L R 4 B 9 H B 6 9 � : ? 7 R 9 @ ? > � : ? � L 5 ; = M 4
= ? = P � ; H B : ; 7 L B 9 � B 6 9 ? : \ ? > @ L R B ; H 9 B M 9 = 9 : 4 B ; = M D R ; C 9 ¬ 6 ? @ H C \ M : 4 @ @ 4 : B 6 9 ? : \ T « 9
H \ H B 9 @ 4 B ; 5 4 R R \ 4 � � : 9 H H 6 9 : 9 B 6 ; H ¯ L 9 H B ; ? = D 7 \ 5 ? = H ; � 9 : ; = M 4 = 4 B L : 4 R B : 4 = H R 4 B ; ? = ? > = ? P
B ; ? = H : 9 R 4 B 9 � B ? H 9 ¯ L 9 = B ; 4 R : 9 : ; B ; = M ? > H B : ; = M H B ? : 9 : ; B ; = M ? > @ L R B ; H 9 B H T � ¬ 6 ? @ C H \ P
R ; C 9 6 ; 9 : 4 : 5 6 \ ? > � Â Ã § Ä ¥ ¦ § Å £ ¡ � � ¡ £ ¥ ; H ? 7 B 4 ; = 9 � D 7 L B ; B 6 H ? @ 9 : 9 R 4 B ; ? = H 6 ; � H 7 9 B 9 9 =
5 R 4 H H 9 H ? > @ 4 5 : ? H 9 B H 6 ; 5 6 4 : 9 � ; Æ 9 : 9 = B > : ? @ B 6 ? H 9 4 @ ? = M B 6 9 5 ? : : 9 H � ? = � ; = M > 4 @ ; R ; 9 H
? > R 4 = M L 4 M 9 H T

Ç È É Ê É Ë Ì Í Î Ê Ï Ð Ð Ñ Ì Ò É Ó Ô Õ Ò Î É Ö × Ì É Í Í × ØÑ Ù É Ú É Ì Ë Û Ó É È É Í É Ì Í Ë Ü Ù É Ú É Ì Ë Û × Ò Ë Ò Ó É Ý Ë Ò Ë Û Ï Ú Õ Ë Þ ß à á â ã

� � � � � � �
 � � � �
 � � � � � � � �
 � � � � � � � � � � �
 � � � � � � � � � � �
 � � � � � � � � �
 � � � � � �

� � � � � � � � � � ! � � � � " � ! �
 � � �
 � � � �
 � � � �
 � # $ � � � � �

 � � � � ' � � � � � �
 �) * �

� � � �
 �
 � � � � � + �
 � � � � � � � � � �
 � � � � � � � " � ! �
 � � �
 � " * � � � � � � � � �
 � � '

� � � � � � ' � � � � � � � � � � � �
 � � � � �
 � * � �
 � � � � � � � � � � � � � � � �
 � � � �
 * � � ' � �

� �
 �) * � � � � * * � � � � � � �
 � � * � � '
 �
 � � � � � �
 � � � � �
 �
 � � �
 � � � � �
 � * �

� � �
 � � � � � � �
 � � � �
 � � � � � �
 � " �
 � � � �
 � 4 � � � � � � � � � � �
 � � � � � � � � � � 5 6

� � � � � � * ') � � � ' � � � � � � 7 8 9 : � 7 8 < : � � � *
 � ' = � � � � � '
 � � � �) � �
 � � �
 �
 � � � � �

� � * � � � � � = � � � 4 ? @ A B � � �
 � � �
 � 5 � � � � � � � �

 � � � � ' � � � � �
 �
) � �
 �
 = � � * � � � �

�
 � � � �
 � � � � � � � � � � � �
 � ' � � � � � � �
 � � � � * �
 4 C � � � � � = ! * � � 5 D �
 � � � � � E � � ? @ A B �

� � � � * = � � ' � � � � �
 � � * �
 � � � �
 � � �
 � � � � * � � � � � � � ' D * � � � � � � � � � � � * � � � � � �

� � �
 � � F � � � * * � � ! * � � � � � � � � � � 6 A �
 � D
 � * � � � � � � � � � G H I J K L M J L 4 �
 N O P L 5 � � * � � � � * * '

Q R G G H J O J K S M * � � � � � � � � � � ' * � � � � � � � � � � * � � 4 �
 � � � � � � � ? T U V � � ? T U V � 5 � � � � � !

� � � � � � D * � � � � � � � � � � D) � � � � � � '
 ' � � 7 < : � 7 W X : � 7 W Y : � 7 W 9 : � 7 W Z : 6 [� � � � � � �

� � �
 � �
 � � � � � � C � � � � � = ! * � � � �
 �
 � � = � � � � * � � � � �
 � � � � � � � �
 � � � �
 � 6

\] _ a b c d e b f h j k k j h d

? * * � �
 � � * * � � � � � � � � �
 = �

 � � � � � � � � � � � � �) � � � � ' � � 7 8 Y : 6

U � n) � F � � � � * � � �) � E � � � * � � � � �
 � � * * ') � � � L p G N R I L � � ' R N q M Q J L 6 $ �

� � � � � �
 � � � � � D
 n � � ' � � � ') = n r E � � � � � = � �
 � � � � � ' � � � ') = s � � � * � � � �

� � t u n r � � ' � � � ') = v t v � � � ' � � � � �)
 � � � � � �

 � � � � � � � = �) � * w u n � � �

� �
 � � � t u n r � � ' � � � ') = v t v x 6

? � � * � � � � � D
 � � � * � � �) � n � � � � � � � � � � z � n | ~ � 6 � ' � � �) =

n � � � � � � � � * * � � * � � � � � � D
 n 6 � � � �
 �
 � � � � � � � * � � � � z � � � D � � �
 �

z 4 n 5 � 4 z 4 w � 5 � 6 6 6 � z 4 w � 5 5 � � �
 n � � w � � 6 6 6 � w � � 6 [� � � � � � � � �
 '
 � � � � � � �

�) � � � � � � n � �
 * D � � � 6 $ � � � * � � � � z � � � � * � �)
 �
 � � � ') = � � = �
 � � � � � � � �

� � � � � �
 � � � � � � w
� � x � �
� 6 6 6 w

� � x � �
� 6 C * �
 * = � � �
 � � � �
 � � � � � � � � � � � � � � � � � D

� � 4 � � 5 � z 4 n 5 � � �
 � � � � � � + �
 � � � � � � � � � � � � � � � � � � ' � � � � n 6

C � � D
 � * = � � � � � � � � � �
 � � � t u n r � � � � � � � � � � � � � � � � * � � � � z � � n | ~ �

' F � ') = z � 4 w 5 � v t v x � � �
 � � � w u n 6

T �
 � � � * � � � � z � ' � � �) = v z v � � � � M K P � J � ' F � ') = v z v � � x � � z 4 w 5 � v � � v E

� �
 � � n � � � * � � ' � � � v z v � � � x � � z 4 w 5 � v � � v � 6

? 4 F � � � �
 � � F � � � 5 � � � � � � * � � � � � � D
 � � � * � � �) � n � � � � * * ' � G O Q � R L M J 6

$ � � � � n � � � � � H � K S M � L O I G O Q � R L M J � D
 n 4 � � � �

 � � � � ' � � � � � � � � D
 � � * * � � !

� � � � ¡ n r � D
 n 5 6 ? � � �
 � � � ¢ � n � � � �
 n � � w � � 6 6 6 � w � � � � �) � � � �
 � * * =

 �
 � � � ') = � � � � � � D � � �
 � � 4 z 4 n 5 5 v z u ¢ � 6

T �
 � � � � � * � � � � � z � � z ¥ � D
 � � � � � n � ' F � � � K � Q I H L K R � z � � z ¥ � � �

L H G z � ¦ z ¥ � � � H � K R � z � § z ¥ � � � K � J M � L M Q J K R � z � ¨ z ¥ � � � ' � � �
 � � � � � z � � z ¥

� � * = � � � © K ª M � M � Q M z � | z ¥ � � � � � � * * � � � � � � � = � �

z � � z ¥ � « z � 4 w 5 ¬ z ¥ 4 w 5 � � �
 � * * w u n E

4 z � ¦ z ¥ 5 4 w 5 � z � 4 w 5 ¦ z ¥ 4 w 5 � � �
 � � � w u n E

4 z � § z ¥ 5 4 w 5 � � � " 4 z � 4 w 5 � z ¥ 4 w 5 5 � � �
 � � � w u n E

4 z � ¨ z ¥ 5 4 w 5 � � � � 4 z � 4 w 5 � z ¥ 4 w 5 5 � � �
 � � � w u n E

4 z � | z ¥ 5 4 w 5 � z � 4 w 5 | z ¥ 4 w 5 � � �
 � � � w u n

� � � � � � � 	
 � � � � � � � �
 � � 	
 � � � �
 � � � � ! " $ � & ' � * + � 	 	 � ,
 -

� � �
 � � 	
 � � / 	 0 1
 	 / 2 - 4 � 0 / �
 5 1 6 6 	 � , 1 0 / �
 1
 � 	 	 � ,
 - �
 6 � 0 8 9 *

+ � 	 5 1 6 6 	 � , 1 0 / 	 0 5 	 � � 1 0 8 �
 6 � 0 8 � � 0 / � � �
 � � 	
 � � � 	 0 5 	 � � 1 0 8 � � 0 8 � � 8 	 � � 0 /

� � 5 6 1 � 	
 � ! � � 8 8 	 �
 � 5 1 0 � � / 	 6 � 0 8
 � 	 < 1 � � 1 � � 0 8 � � 5 6 1 � 	
 � 8 	 0 	 6 �
 � 0 8 / 	 = � 5 	 � *

> ? @ A B C D E B F G H ? ? H G � � � 5 1 0 �
 6 � 5
 I " � J K L K M K N ! P � � 	 6 	 J K L � 6 	 / � � R 1 � 0

� � , � � 2 	
 � P
 � 	 S T S B E G ? C S H A � 0 /
 � 	 B E G ? C S H A 1 0 	 P 6 	 � , 	 5
 � = 	 � - � � 	 / 	 0 1
 	
 � 	 � 6 � 0 � 1 0

2 - � ! P M � Y � � � [0 �
 	 � � 5 6 1 � 	
 1 = 	 6 � � �
 � 	 � 	 � 	 0
 � � 6 	 5 � � � 	 / H \ C T ? D P � 0 / N

� � � [0 �
 	 � 	
 1 < ? @ A B C D E B G E] G C B C S F G @ A E D � � 0 � � 1 6
 P G @ A E D ! 1 <
 � 	 < 1 6 � � _ ` � b P

� � 	 6 	 � _ K � b � 6 	 � � �
 � � 	
 � 1 = 	 6 � � 0 / c � _ c d e $ * � + � g � 0 8 � / = � 0
 � 8 	 1 <
 � 	 �
 6 � 0 8

6 	 , 6 	 � 	 0
 �
 � 1 0 1 < � � �
 � � 	
 � P � 	 � � � � � � � � � � - � 6 �
 	 �
 6 � 0 8 � � 0 �
 	 � / 1 < � � �
 � � 	
 � � 0 M

� 0 / � 0 6 � � 	 � * !

h 1 6
 � 1 � � �
 � � 	
 � i _ K i b 1 = 	 6 � P � 	 � 6 �
 	 i _ " j k i b < 1 6 � 1 � 	 l m � _ ` � b ' N

� < � _ i _ � 0 / i b " � i _ n � _ ! o � b * p < l � � � 0 / 	 6 �
 1 1 / P
 � 	 0 � 	 � 6 �
 	 " j � 0 �
 	 � /

1 < " j k * r 	 / 	 0 1
 	 2 - " j s
 � 	 6 	 t 	 u � = 	 � 0 /
 6 � 0 � �
 � = 	 5 � 1 � � 6 	 1 <
 � 	 6 	 � �
 � 1 0 " j *

+ � 	 � � 5 6 1 � 	
 F E S E G H B E v 2 - I � � / 	 [0 	 / 2 -

w � I ! " x y ' L Y c i " j s y K < 1 6 � 1 � 	 i ' M z {

� 0 �
 � 6 � � } � 1 � � g - ~ � � g 	 5 � � � � � [5 �
 � 1 0 1 < � � 5 � 8 6 � � � � 6 � � �
 � 	 < 1 � � 1 � � 0 8 1 0 	 m

$ * � 6 � � � � 6 � I � � � 2 1 = 	 � 6 	 � � � /
 1 2 	 H G � C B G H G � *

� * p < c � _ c � c � b c < 1 6 � � � 6 � � 	 � � _ ` � b � 0 N P
 � 	 0 I � � � � � /
 1 2 	 ? T S T B T S E *

� * p < c � _ c " $ < 1 6 � � � 6 � � 	 � � _ ` � b � 0 N P
 � 	 0 I � � � � � /
 1 2 	 � T S B E \ B � � G E E *

� * p < c � _ c " $ � 0 / c � b c d � $ < 1 6 � � � 6 � � 	 � � _ ` � b � 0 N P
 � 	 0 I � � � � � /
 1 2 	

A C S E H G *

� * p < c � _ c " $ K c � b c � � K � 0 / c � b c d � $ < 1 6 � � � 6 � � 	 � � _ ` � b � 0 N P
 � 	 0 I � � � � � /

 1 2 	 G E F @ A H G *

r 	 � � � 1 5 1 0 � � / 	 6
 � 	 < 1 � � 1 � � 0 8 � � 2 5 � � � � 1 < � � 0 	 � 6 8 6 � � � � 6 � P � � � 5 � 5 1 6 6 	 � , 1 0 / �

 1 0 1 } � 1 � � g - 5 � � � � m

� * p < I � � � � � 0 	 � 6 � � �
 � � 	
 8 6 � � � � 6 � � 5 �
 � �
 < 1 6 	 � 5 � 6 � � 	 � _ ` � b � 0 N � � 5 �

 � �
 � b � � ! � � K � b � � ! � � < 1 6 � 1 � 	 $ � � � � � � P
 � 	 0 � b � � ! � � < 1 6 � � �

� � � � � P
 � 	 0 I � � � � � /
 1 2 	 A T � H A * � r 	 � � � � - � � 0 5 6 	 � � 	
 � 	 0 � � 2 	 6 1 < 5 1 , � 	 �

1 < 1 2 R 	 5
 � � � � 5 � � 6 	 � / R � 5 	 0
 � 0
 � 	 1 6 / 	 6 � 0 8 1 < � * !

r 	 / 	 0 1
 	 2 - ? > � � � ? � � � � ? � � � ? ¡ � � ? � ¢ £ � ? � �
 � 	 < � � � � � 	 � 1 < � � ~

5 6 1 � 	
 � 8 	 0 	 6 �
 	 / 2 - � 6 2 �
 6 � 6 - P � 1 0 1
 1 0 	 P 5 1 0
 	 u
 ~ < 6 	 	 P � � 0 	 � 6 P 6 	 8 � � � 6 P � 0 / � 1 5 � �

� � �
 � � 	
 8 6 � � � � 6 � P 6 	 � , 	 5
 � = 	 � - * ¤ - � ¡ � � � ¢ £ � ¡ � � � � � � ¥ � � ¢ � 	 / 	 0 1
 	
 � 	

< � � � � � 	 � 1 < [0 �
 	 P 6 	 8 � � � 6 P � � 0 	 � 6 P 5 1 0
 	 u
 ~ < 6 	 	 P 5 1 0
 	 u
 ~ � 	 0 � �
 � = 	 P � 0 / 6 	 5 � 6 � � = 	 � - 	 0 � ~

� 	 6 � 2 � 	 � � 0 8 � � 8 	 � P 6 	 � , 	 5
 � = 	 � - * h 1 6 � < � � � � - ¦ 1 < � � 0 8 � � 8 	 � � 	 / 	 0 1
 	 2 - N § ¦
 � 	

< � � � � - 1 < ¨ � 6 � g � � 	
 � 1 < = 	 5
 1 6 � � � � 1 5 � �
 	 / � �
 � � � 0 8 � � 8 	 � � 0 ¦ * + � 	 < � � � � - 1 < � � �

� 	 � � � � 0 	 � 6 � � 0 8 � � 8 	 � � � / 	 0 1
 	 / 2 - © ª � � *

r 	 � � � 1 5 1 0 � � / 	 6 � 	 6 	 ? H B G C \ F G H ? ? H G D P � �
 � � 0 / � �
 � 1 �
 � , , 	 � 6 � 0 5 	 5 � 	 5 g � 0 8 P

2 1
 � < 1 6
 � 	 �
 6 � 0 8 � 0 /
 � 	 � � �
 � � 	
 5 � � 	 * + � 	 / 	 [0 �
 � 1 0 < 1 6 � � �
 � � 	
 � � � � / � 6 	 5

	 u
 	 0 � � 1 0 1 <
 � 	 / 	 [0 �
 � 1 0 < 1 6 �
 6 � 0 8 � * � � � � - � � 	 5 1 0 � � / 	 6 1 0 � - � �
 6 � u 8 6 � � � � 6 �

� �
 � 5 1 0
 	 u
 ~ < 6 	 	 6 � � 	 � * r 	 / 	 0 1
 	 2 - w M L
 � 	 < � � � � - 1 < � � 0 8 � � 8 	 � 8 	 0 	 6 �
 	 /

2 - � �
 6 � u 8 6 � � � � 6 � � �
 � 1 �
 9 6 � � 	 � � 0 / � �
 � 1 �
 � , , 	 � 6 � 0 5 	 5 � 	 5 g � 0 8 « � < 	 6 � � � 0 8

� � � � � � � � � � � 	
 � 	 	 � 	
 �
� � � 	
 � � � � � � � � � � � � � � � � � ! � � � 	 	 � 	 " # % � � � � & � � � � � � � � � � �) � � 	 	 � � � � � � � � � ,

� � � � % � � % � � � � � � � % � � � � % � �
 � � � � % � � � � � � � � � � � � � & � � � � � , . / 1 3 , . / 1 4 3 , . / 1 5 6

� � 	 , . / 1 45 6
 � � � � � � � � 7 � � 8 "

9 : < > < ? @ A B D < E G H < ?

I � � � � � � � 8 � � % 7 � � � � � % � & � � � % � & � � � � � �) � � � � � � 8 � � � � � � � � � � � 	 % � � K � � � � � � � % �
� L � % & �
) � & � 8 � % � � � 	 � � % � � � L � % & % � � 8
 � � � � � � % � & % � � � � � � � � � % � � � � & � � � � � 8 & � % �

M � � � � � � N � % & � � 8 � � � & & � � � O "

P Q S S T U W X Z [\ � !] ^ _ ` a b c \ a d [� ^ ^ � [e f M h 3 1 3 / 3 i O j a] \ [\ b c � k \ l _ b m � ` \ k a
^ _ ` a b c \ a d [� ^ ^ � [e n f M h n 3 1 3 / n 3 i n O j o] \ [\ / n ! Z k a � b k c Z k ` p Z k \ ^ _ ` a b c \ a q Z m \ [

h n r 1 j c _ !] a] � a s q s f t u v Z [\ Z m \ [j e n b c Z w a] \ c � ^ \ a p x \ � c e u

y [Z Z w u # % � � � � � � � � � 8
 & % � % � % � �
 � � 	 � % � � � L � z � � � � � � � & & � � � � � � � � � � � � � % � � � % � 7 � % � � {
� � � � % � � & % � � � % � � � � & � � � � � 8 & � % �
 q
 � 	 	 � � � % h � � 	 � 	 	 � � � � � � � � q | }
 � % �
} � /
 � % i " I � % � � � � � � � � � � � 7 � � � � � � � � & & � �
) � � � � � � & % � % � % � � M � % � � � L � z � � � � O
� � e) � � & % � % � % � � M � % � � � L � z � � � � O "

# % � � � � � � � � � � � � � �) � � � % � � � 	 � � � % � � %) � " � � � � & � � � � � / f � } � 3 " " " 3 } � �
) � � �
} � � M h r 1 O � � � � � h M } � O 3 1 M } � O � � � � � & � � � � � � � � % � � % � � � � & � � � � � � � 	 % � � � � & � � � � �

� � � � � � � � 7 � � 8
) � � � � � � � � � � � � } � 3 t � � � �
 � � 	 	 � � % � � � f & � L � s h M } � O s s t � � �
� � � � � � �
 � % � � � 	 � �

h n f � � } � � h � s t � s } s � � � r � q � 3

/ n f � q � 3

i n f � q | � h M } � O � 1 M } � O s t � � � � �
r � � } � | � } n � � s � } � 3 � } n � � h n 3 } n f M } � � O � � 3 � % � � � � � �

� | � � � i 3 � 3 � � h 3 � � 1 � �
r � � � � | � s � % � � | � � i 3 � � h 3 � � 1 � � �

� � � � � � � � � � 8 . M e O f . M e n O � � % � 7 � % � � � � 	 � � � % % � 7 � % � � � � � � � � � � � � � � � e n � � � � � � � �

� � � � � � �
 � % � � � � � e � � � � � � � �
 � � � � � � �
 � % � � �
 � � � � � � � � 7 � � 8 " �

� � � � � � � & % � � % � � � � � � � � � � % � � � � � � � � �) � � � � � � � � % 7 � & � � � � % � � 	 � � & � � � � � % � & � z
� � % � � � � � � � � � � 8 � % � � � � � � � � � � � � 	
) � 	 � � � � � � 8 � � 7 � � � 8 � � � � � � � � � � � � � M � � � % � � � � � 	 � � �
� � � � � � � % �) � � � �) � � � � � � � % 7 � 	 � � � � � O {

 ¡ Q ¢ £ Q S U W M ¥ � � � % � � � ¦ � � � � � � � 8 � � � % � � & O §] \ [\ ` � a b Z k c b k a] \ ¨ b � d [� ^ w [Z ^
X b d _ [\ ©] Z ` ¨ ª a] \ � [[Z o c ¨ \ k Z a \ b k ! ` _ c b Z k c Z w a] \ ` Z o \ [w � ^ b ` b \ c b k a Z a] \ _ x x \ [

w � ^ b ` b \ c ª � ` ` a] \ c \ b k ! ` _ c b Z k c � [\ x [Z x \ [j o b a] a] \ \ « ! \ x a b Z k Z w a] \ a o Z � [[Z o c ^ � [¬ \ ¨

o b a] � l _ \ c a b Z k ^ � [¬ j w Z [o] b !] a] \ x [Z x \ [k \ c c b c Z x \ k u

y [Z Z w u � 7 � �) % � � � & & � t
) � � � � � �) � 8 � � � � � & � � � � � � � � � � � % � � L � % & � � % � � � � � �
% � � 8 % � � � L � % &
 � % � � � � � � � � % � � � � � � � � � % � � � � & � � � � "

� � � � � � � � � � � � � , ® ¯ e f i ° ® ¯ e 3 , ± ² h f i ° ± ² h � � 	 , ³ ´ f i ° ³ ´ � � �
% � 7 � % � � µ � � � � � � � i ° ® ¯ e f i ° ± ² h f i ° ³ ´ f q ± � �
) � � � � � � � � � � � � � � 8 % � � � �
� � � � � � � & � � � � � "

� � � � � � � 	
 � � 	 � � � � � � � � � 	 � � � � � � � � � � � 	 �
 � � � � � �

� � � � � � �
 � � � � 	 �
 � � � � ! # % & ') ' & * , & -) 0 1 2 �
 3 ! # 5 6 ' 5 7 ' 5 8 0 � � � � � � 	 � 9 � �

� � � � � 	 � ; � � 	 � � � � = � � �
 	 � � � � � � � 	 �
 � � � � > 9 	 � � � 	 � � ? � � � � � � =
 	 � � 	
 % 	 � � @ � � � �
 �

% & ') ' & * ' & -) 1 > � � � � = � � 1 � � � � � ; � � 	 @ � � � � � �
 � 	 � � � � � � ? � > �
 � 2 5 6 	 � � 5 8

� � � ?

 � � � � � � � 	 � 9 � � �
 � � � G � � ; 	 9 1 > ? � ; � � 	 � � � � � � � � � � � � 	 � � � 	 � ; 	 9 * 1 > ? � ; �

� 	 @ � H � � J K � L � � � � � � ; � � � 	 � � � � � M � � J K � � 	 P
 � P �
 � � � � ? � � � � �

Q � @ � � 	 � � � � � � � � � ? � � � � � � =
 	 � � 	
 R ! % K ' T ' U ' V * 1 ; � � 	 � � � � � �
 ? � � 	 � 	 W

�
 � X � ? � � � � � � =
 	 � � 	
 � � � � � 2 � � � � ; � � = ; 	 9 � Y �
 � 	 � � Z H K \ T � � � � � � �
 � � � � � ;

� 9 � > � � � Z] ' Z]] � Y �
 � 	 � �
 ? � � Z 6 Z 7 � � � Z ^ _ ` 6 ` 7 � � � ` a � � V 1 ; � � � b c d % ; � ? � �

� � � � �
 � � =
 � P
 � � � � � 	 � � � � � 2
 ? � � � * 1 � � � � � � �
 � � � � 	 �
 � X

% Z]6 _ `]]6 ' � � � ' Z]^ f 6 _ `]]^ f 6 ' Z]^ _ `]^ `]^ g 6 � � � `]a ' `]]6 _ `]6 ' � � � ' `]]^ f 6 _ `]^ f 6 * h

% L � � ? � � � 2 � � ? > � � P
 � � � � � 9 � > � � � P
 � @ � � � � � � �
 � ;
 � � � � = � 2 	 � � > i � � � � � �
 � � ? � � �

> 9 	 P
 � @ � � ? �
 ? � � � 2 � � � � 	 � � � 	 �
 � X j � � � � � � 	 � � � ; � � � � � 	 �
 � X =
 	 � � 	
 � > ? � � � �

� � � � � � � � � � =
 	 � � 	
 � � * L � � � 	 �
 � X =
 	 � � 	
 ; � � � � � � � � � 	 �
 � � � � 1 ; � � � 	 � � P
 � � � �

� 9 � > � � � 	 � � � � � �
 � � � 	 � � 1 	 � � ; � � � � � � 	 X � � � � � > � 	 � � � � 2
 � � � � � 	 X � � � � � 2 U > 9

P
 � � � � = � � � �
 � > i � � � � = � � �
 	 � � � � � � 	 � � � 	 �
 � � � � 	 � R � L � � � � � � � � � 	 � � � � 	 � � � 	
 �

� � 2 � � � � � �
 � 	 � �
 � L � ? � 1 � � K l � U T �

n � ; 1 � � � � o ? 	 � � � 9 � U T ! V q U T � � � > @ � � ? � � % r � �
 � 	 � 2 �
 � 	 � � � 	 �

� � � � � Y 	 � � ; � � 	 @ � � � 	
 � � � ; � � � 	 � � � � � � � � 2 �
 � 	 �
 � X =
 	 � � 	
 � � t � � 	 � � � u v w � *

Y
 � � 	 � �
 � � = � 	 �
 � X =
 	 � � 	
 R ! % K ' T ' y ' z * � � � � � > � � 	
 9 � �
 � 	 � 2 �
 � ; � � 	 �

� � � � � � 	 � � � 9 P 	 � � � � 	 � ? � � � � � � � 	 �
 � X =
 	 � � 	
 R] % 2 �
 % Z _ ` ' U _ } * H z

� � � � � � �
 � � � � ? � � � � � �
 � ;
 � � � � =
 ? � � Z U _ ` } 1 � � � * � ? � � � � 	 � % R] * ! � � % � % R * * �

� � � � � o ? � � � � 9 1 � U T l � � K 1 	 � � � � �
 � 2 �
 � � � K ! � U T ! V q U T �

� � � 	 ? � � U T � � � � 	 � � � � � � W � � � � � � � � 	
 � 	 � = ? 	 = � � 1 � � � � � � � ? � � � � � � � M � � K

� � P
 � P �
 �

L � � � o ? 	 � � � 9 � U T � � ! V q U T � � � � � > @ � � ? � � V q U T M V q U T � � � � 	

P
 � P �
 � � � � ? � � � � 1 > � � 	 ? � � � � � � � � W � � � � �
 � 	 � = ? 	 = � � � � U T � 	
 �
 � = ? � 	
 1 ; � � � �

 U T � � � � � � 	 � � � � � � � 	 � = ? 	 = � # 5
7 �

, & -) 0 � L � �
 � 2 �
 � 1 > � � � � � � � � � � ? � � � � �

� � K M � U T � � 	 � � � U T � M � U T �� � 	
 � P
 � P �
 �

L � � � o ? 	 � � � � � � � U z � ! � U T � ! V q U T � 2 � � � � ; � � � � � � 	 � � ; 	 9 	 �

� � K ! � U T ! V q U T �

L � � � o ? 	 � � � 9 � U T �� � ! V q U T �� � � � � > @ � � ? � 1 V q z � ! V q U T �� � 2 � � � � ; � 2
 � �

z � ! U T �� � � � � � 	 ? � � � � �
 � 	
 � � � � W � � � � �
 � 	 � = ? 	 = � � � � z � ; � � � � 	
 � � � � � � � y 1

� � � � � � � ? � � � � V q � y M � U T �� � � � P
 � P �
 �

L � � � � � � ? � � � � V q U T � � l V q � y 2 � � � � ; � 2
 � � U T � � M � y � �

� > � �
 @ � � � � ? � � X P � � � � �
 � � 	 � � � � � � � K ! � U T 1 � U z � ! � U T � 1

� � K M � U T � � � U T � � 1 � U z � M � U T �� � 1 � � K M V q � y 1 ; � � � �

� �

 � � P � � � � �
 � � 	 � � � � � 2
 � � � � � � 	 � = ? 	 = � � 	 � � ; � � � � 	
 � � � � �
 � � � 1 ? � � � � ; � 1 �
 � @ � �

� P P � � � � � % � � � � � 	 � � � 	 � � 	 P P � 	
 � 2 �
 � � K M � U T � � @ �
 � ? � U T � � M � y * �

� ? � � � � � � �
 � � � � � = � � 	 � � � � � � 2 	 � � � � 	 � � U z � M V q z � � � 	 � �
 � � � � � � � ? � � � � �

L � � � � � 	 � � � � 	 � 	
 > � �
 	
 9 � ? � � � � � �
 � ;
 � � � � =
 ? � � � 	
 � � � � � ? � � � � � � � � �
 � �
 � � = � �

	 � � 	
 	 � � �
 � G 	 � � � � � 2 � � � P � ; �
 � 2 L ?
 � � = � 	 � � � � � � 	 � � ? � � � � � � P
 � � � � � � � = � � @ � � � � �

� � = ? � 	 � � �
 � ;
 � � � � = � 2 � ? � � � � � � � % 2 � � � � ; � � = � � � � � � � � � 2
 � = ? � 	 � � �
 � ;
 � � � � = � � 2 �
 W

� 	 � � 	 � = ? 	 = � � � � �
 9 1 u � w * � � � � ? � � � � � � � 	
 9 	 � � 1 	 � � � 	 � � 2 �
 � 	 �
 � X =
 	 � � 	
 � ; � � �

� � � � � � � � � � � 	 � �
 � � � � � � � � � � 	 �
 � � ! " $ � 	 � 	 � � � � � � � � � � � � � � " � � � ' � � � $ � * � � � 	 � * � " � � � ' $ � � * � � � , � � � �
 � � -

" ! " � � , " . � 	 � � � � 0 � � $ " � ' " � � 0 � � � � � � 	 � � 1 2 � 4 5 � � � � � � � � 9 " � ' � " � � � � " �
� $ � � 	 � � , � � � 0 � � � � � � � , � , ' � � � � � � , � $ � � � � �

: ; < = ? @ A B D 	 � , � � � � " � � � � , � 9 � � " 	 � � � � � � 	 !

E F G H I K L F G H

E M N O

E P Q R I E M G H I E O F I K L P Q R I K L M G H I K L O F I S M T U

E V N H I E V W X I E W P Z [] I K L V W X

^

^

^

^_

_

^ E V W X ` a I K L V W X ` a

K L O S

E W P Z I E V W X b I K L V W X b
^

E V W X b` a I K L P Q I K L V W X b` a

ccccccd

e
e

e
e

e e f

g � � 	 � * � � � � � , � � i � � $ � � j � 	 � � � � � � � � � " � � � , � 9 ! � 	 � � 	 � � " � � � * � l � � * ! � �
1 2 � 4 m n � D 	 � " � " � 	 � � � , � 9 ! � � , � � � � " � � " � 	 � � 	 � � � ' � � � � � � � � � * ' ! � � ' � � � � � !
, $ 9 � � " � � � � � , , � � " � � � 	 � p q r s t u p v w x y r z s z { x u | } ~ t � s �

i � � � � � � � � � 2 � � � 9 � � � � � � � � � ' � � * � � � 0 � � � � � � � � 	 � � 2 � D 	 �
� � �
 " � � � � � � � * � � � � � * ' ! � � � � � � " � 	 � , � � � , � 9 � � � � 	 � � � , $ 9 � � " � � " � � � � � � � � �
� � � � D 	 � � � � � � � � � � � � $ �

� 2 � �

� � " � ! � 	 � � � 	 � " � 9 � � � � � 9 ! ' � $ � * � * � � �
 " � � � � � � � 	 � � � � " � � � � " � � � � � " $ � 	 � 	 � �
� � � � � � 	 � � � � � , � � ! � � � � � � � 	 � 0 � � � � � � ¡ � � � � �

D 	 � � � , � 9 ! � � � 9 9 , � � � � " � � " � � � � � � � � * ' ! � � � , , � � " � � � 	 � 9 � � � � � 9 ! ' � $ � * � *
� � �
 " � � � � � " * � � � � � * ' ! 1 2 � 4 m n �

D 	 � � � 9 9 � � � � � � � " $ 9 � � � � � � " � � � * " � � � 	 � � � �
 " � � � � � 	 � � � � , � � � � � , � 9 9 � � � $ � � �
� 	 � � � ! . � 	 � � � � � � � � � , $ 9 � � " � � " � " " � , � 9 � � � 	 � � � � � 	 � � � " � � � 9 � � � $ � � � " �

£ ¤ @ ¥ ? @ ¦ § © � � � �
 " � � � � D 	 � � � � , � 1 ª � � 1 2 � 4 m n �

« u x x ¬ � � 	 � 0 � � � 9 ! � � � � � 0 � � 	 � � � � 9 $ " � � � 1 2 � 4 m n ® 1 ª � �
¯ � � " � * � � � � � � ' � � � � � ! , $ 9 � � " � � � � � , , � � � � � � � � � 2 � � � � � * � � � � " � � � � � " $ � 	

� 	 � � � � � � � � ¡ � � � � � � � � 9 9 � � � � � , � � ! � � � � � � � � � � � " � � $ � � � 	 � , � � � � � � �

� � � � � � � � 	 � !

� � � " $ % & (%) � � + � + " . / � 0 � (% (� 2 / + " � / �

� ! � � � � � 4 5 . � � � 4 � � � 7 � 8 9 � � : � 4 5 � ! � ; 9 � � 9 � � 4 	 � � � � � � � � 5 � 4 9 � � = � � + � + " . / � >

? @ � A $ D E & @ @ @ $ D F & $ D F G E . I & � �
� A $ D E & @ @ @ $ D F & $ D F G E . I &
; 9 � D E @ @ @ D F D F G E) J � (D K (� 2 � ? M N M P � P Q R � � 4 5 (D F G E . I (� 2 � S Q R :

T @ � A $. U & � :

V @ $ % & $ D & A $ % � & $ D � &
; 9 � � � � % � D � % � � D �) = 0 � (% (� (D (� (% � (� (D � (� 2 � % X D � % � X D � :

Y @ $ % E & @ @ @ $ % Z & A $ D E & @ @ @ $ D Z & �
; 9 � � � [! $ % K & � $ D K &) � � � ? M N M ^ � ^ Q ? : � � [! � ! � � % E X % a X @ @ @ X % Z � b
D E X D a X @ @ @ X D Z 8 7 � � � � � % A D) � :

e @ $ % E & @ @ @ $ % Z & A $ D E & @ @ @ $ D Z & $ D Z G E & @ @ @ $ D I & �
; 9 � $ % K & � $ D f &) � � � ? M N M ^ � ? M g M S � ^ Q ? � S h ^ : � � [! � ! � � % E X % a X @ @ @ X
% Z � b D E X D a X @ @ @ X D Z X D Z G E X @ @ @ X D I 8 7 � � � � � % A D) � � 4 5 (D K (j � R

; 9 � � � � ? M N M S k ? � D I) = 0 � (D I (� 2 :

l @ $ % & A % : ; 9 � � � � %) � � + " . / � 0 � � � ! (% (m Q ? @

n ! � 4 9 4 � � � � � 4 � � � 9 ; � � � � � � � � � � � � � � 9 ; � � � 	 ! � 2 : � � 7 8 � � � � ! � � � � � o � � 9 [[� � p
� � 4 [� � 9 ; � ! � 9 8 q � [� . @ r 7 � � � � � 9 ; � 7 o � ? � � � 4 � � 9 5 � [� � ! � � s � 9 � � 9 ; � : � o � � � � � 5
� � 9 4 	 4 9 4 � � � � � 4 � � � 9 ; � � t ; � � � ! � � 4 9 4 � � � � � 4 � � � 9 ; � ! � ; 9 � � $. U & [� 4 8 � � 4 � � 9 5 � [� 5 :
� ; 4 � � 5 � 5 � 4 � ! � 5 � � � u � � � 9 4 : 8 7 � � � � � 9 ; � 7 o � T @ r 7 � � � � � 9 ; � 7 o � V : � ! � [9 4 � � 4 � � 9 ;
� � � � � � � � � � 4 � ! � 4 9 4 � � � � � 4 � � � 7 � 8 9 � � 9 ; � � [� 4 8 � ; � � � � 7 � 4 � � � [! � 4 	 � 5 @ r 7 � � � � � 9 ;
� 7 o � � Y � 4 5 e � � [� 4 � � � � � � � � � ! � � � � � � ; � 9 � � : 8 7 � � v � 4 	 � � � 9 ; � ! � w ; � � � � o � [� x
� � 5 � � u � � � � 8 � � 8 7 � ! � 9 [[� � � � 4 [� � 9 ; . � 4 � ! � 4 9 4 � � � � � 4 � � � 9 ; � � @ y ! � 4 4 9 4 9 4 � � � p
� � 4 � � � � � ! � � � o � [� � 9 � � � o � � � � 4 � � 4 � 4 9 4 � � � � � 4 � � $ % & : � ! � 4 8 7 � � � � � 9 ; � 7 o � l � �
� 4 � � 9 5 � [� � ! � � � � � � 4 � � 9 8 q � [� � 9 ; % : o � 9 u � 5 � 4 	 � ! � � � � � � � � � 9 4 � � s � � � t � ! � 9 [[� � � � 4 [� �
9 ; . � � � � 	 4 9 � � 5 @ n ! � � : 9 4 � [� 4 � � � � � 7 � � � � ! � � � � 	 � � z � � � � z � � � � @ {

n ! � o � � u � 9 � � � � � � � � � � � � � � � � 5 � 9 � ! � | } ~ � } � | � � ~ � � ! � � ! � � 9 � 4 9 � � ! � � 4 [� � � � 9 4
� z � � � � J � � � � o � 9 o � � @ � ; � � � � : � ! � � � � � � � � 7 � J � � � � J � � � j � 9 � � 5 8 �
� 4 9 � ! � � � � � � � � � � � o � � � � 4 	 � 7 5 � � � � � 4 � ; � 9 � � ! � � v 4 9 � 4 ; � 9 � � ! � [� � � 9 ; � � 4 	 � � 	 � � @

� �

¡ 4 9 � ! � � � � 7 � 9 [! � � � [� � � � ¢ � � ! � ; � � � � � � � � £ ¤ ¥ ¦ � § ¨ © ¦ � ª « ¦ ¬ £ ¤ ¥ ¦ ¬ § ¨ © : � 4 5
¬ ª « � � � 9 5 � ® 4 � � � [� 9 � � � � � � � � � � � ® s � 5 o 9 � 4 � � � � 9 � � � � 9 4 � � 9 ; [9 � � � � o 9 4 5 � 4 	 � 7 � � � � �

9 ; � � � � � � 9 4 � 9 4 � ! � ¯ p [9 � o � � � � � � � � � � 4 	 � � � ! u � [� 9 � � 5 5 � � � 9 4 � � � 4 5 � � � 7 � 4 	 9 o � � � � � 9 4
� ; 9 � � ! � � ! � 9 � 7 9 ; � � � � � � 4 	 � : � � � ° ? ? ± : ° ? Y ± � @ n ! � � [� 4 8 � 5 9 4 � � 4 � � � � � � 	 � 4 � � � �

� � 4 4 � � ; 9 � 9 � ! � � 9 o � � � � � 9 4 � : 	 � u � 4 	 � � � � 9 4 � � � [9 � � � � o 9 4 5 � 4 	 � 9 � � 	 � � � � � : � � 4 � � � : � 4 5
� � 	 � 8 � � � [� [9 � � � � o 9 4 5 � 4 	 � 9 [9 4 � � s � p ; � � � � � � 4 	 � � 	 � � ² � � [� 9 � � � � @ � ; � ! � � 4 5 � � � 7 � 4 	

� � � � � � � � 	 � 	 � � � � � � � � � � � � � � � � � � � 	 � � � � � 	 �
� 	 � 	 ! " #

% � � & (� � � � 	 � � � * � � � (� 	 � � , � � � � � � � � 	 - � 	 � � 	 � � � � � � � 	 � . / � � * � � � � (� 	 � � ,
� � � � � � � � 	 - 1 & 2 & 4 6 8 & 9 * � � � � 	 � � � � � � � 	 � . / � # � # / . - ; < ; - . < > ; @ #

A B � � 	 � - � � � 	 � � � � � � � � � � � (� 	 � � , � � � � � � � � 	 - 1 6 8 & 9 2 6 8 & 9 4 6 8 & 9 / (� � 	 �
� � � � � � (� � � � � * � � � � 	 � � 	 D 8 F - 8 G D H 9 < 8 F - G 9 D 8 F - H 9 � 	 � 8 F D G 9 - H <

8 F - G 9 D 8 G - H 9 9 / * � � � � 	 � � � � � � � 	 � > . @ 8 > . @ - F < F - > . @ < F 9 / � 	 � O � � � � � � � � 	 �
P 8 P - F < F - P < P 9 #

Q � � 	 R < 8 6 8 & 9 S D S - S P S > . @ 9 � � � 	 T U � � � � � � � � � � � � � � 	 � / � # � / # � � F V W F V X Y � � �
Z [\ � � � 	 G -] V ^ _ F V <] V ^ _ 8 G - F V 9 � 	 � 8] V ^ _ F V 9 - G <] V ^ _ 8 F V - G 9 #

` � a 	 � � � � � F b _ c < > . @ S F b Y c < F S F b d X Y c < F - F b d c S F e <] d ^ _ F b d c f
% � � g < > i Y S # # # S i " @ (� � � � � � � � � � � � (� � � � � � � � � � � g j & < P #
l m n o n m p q r � � � � R * � � � � � � � � (� � � � 	 g � � � a 	 � � � � � � � 	 � � � � � � � � � � 1 F Y - F t - # # # -

F d S * � � � � F V u g � � F V W & S w F V w x y S \ < z S # # # S | f } � � � � � � � � � � � � � � 	 � � � � � � , /
F V < > ; V @ * � � � ; V u & � � � � � � # Q � � ; V � 8 � � > ; V � @ 9 * � � � (� � � � � � � � n o � � q o � � # l
� n r � o n m p q r � 8 i 9 � � � � R � � � a 	 � � � � 	 � � 	 � � � � 	 � � � � � � * � � � � i < 8 i Y S � � � S i " 9 #

l � � � � � m n � � � � q � p n o � � � � � R � � � a 	 � � � � � � � � � � � � � � � 	 �

� 1 < > i V < � V 8 i 9 w \ < z S # # # S � @ S

* � � � � � V 8 i 9 � � � � � � , 	 � � � � � � # Q � � � * � � � � � � � (� � � 	 � � � � (, i < � 8 i 9 #
Q � � � n r � � p n o � � � � � � � U � � � � � � < 8 � Y S # # # S � " 9 � � � � � � � � � � & / * � � � � V <

� V 8 � Y S # # # S � " 9 � 	 � � � � � U � � � � � � � � � 	 � � � � * � � � � � � � � � � � � � � , / � # � # / � � � � < 8 � � Y S # # # S � �" 9
� � � 	 � � � � � � U � � � � � � � � � � � , � 	 � � / � � � 	 � [� � 8 * � � � � � � � � � � � � � � � � a 	 � � � � � � � 	 � 	 � U
* � � � * � � � � � � � � � � � � � 	 � � � � � � 	 / � # � # / F < 8 F Y S � � � S F " 9 [8 G Y S � � � S G " 9 < G � � "V � Y 1
F V W G V 9 #

� � � � � � � � � � � � , � � � � � � � � 	 � � � � � � � � � * � � � � � � 	 , � , � � � � � � � � � � � � � 	 � � � � � R � � �
� � 	 � � � � � � � � � � � 	 / � 	 � � � � � � � � � � � � � � � a B � � � � � 	 � � � � � � � 	 � * � � �

i b _ c < 8 i b _ c
Y S � � � S i b _ c

" 9 < 8 P S � � � S P 9 < P S � 	 � i � X Y < � 8 i b � c 9 f

Q � � 	 � � � � � � � � * � 	 � � � � � � � � � � 1 i b � c [i b � X Y c � � � Z [� #
Q � � � � � � � � 	 (, � 	 � � � � � � 	 � 	 � � � � � � � � � � � , � � � � � � � � , 	 � � � � � * � � � � � � � � � � � �

� 	 � � � � � � 	 / � � P [i b Y c � 	 � i b � X Y c < � 8 i b � c 9 [� 8 i b � X Y c 9 < i b � X t c #
l � � 	 � � � � � , � � � � � � � � � � � � � 	 � � � � � � � � � q r � � � � q p � � � � � � r p o � q � � � � � � � � 	 � � � � � �

� � � � � � � � � � � � F - i - G � � F / � 	 � � q � p n o q r � � � � � , � � � � � � � � � � � � i - F � � F /
* � � � F W � � 	 � G W � # � � � � � � � 	 � � 	 � 8 � � � � � � � 	 � � � � � � �
� , � � � � � � � � � � � � � � 	 � 9 � � � � � 	 � � � � (, F � ¡ 8 - 9 / � ¢ £ 8 - 9 / � 	 � ¤ F ¥ 8 - 9 # ¦ 	 � � � � � � � -
� � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � 	 � � � � � 1 F � ¡ 8 - 9 < � ¢ £ 8 - 9 < ¤ F ¥ 8 - 9 #

¦ 	 � � � � � � � � 	 � � � � � � � � � (� � � � � � � � � , � � � � � � � � � � � � � 	 � � � 	 � 	 U � � � � � 	 � � � � � � � � � U
� � � 	 � � 8 � � � � � � � 9 / � � 	 � � � � 	 � � � � � (� � � � 8 � � 	 � � B � U � � � � 9 � � � � � � � � � � 	 (� � � a 	 � � # Q � � ,
� � 	 � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � a 	 � � (, � � � � � a B � � � � � 	 � � #

§ � 	 � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 � * � � � � � � � � � � 	 � � /
� � 	 � � � � 	 � � � � � (� � � � � � 	 � � � � � � � � � 	 � � � � # ¦ 	 � � � � * � , / * � � � � � � � � � 	 � (� � � 	 � � � � �
� � � � � � � � 	 � � 	 � � � � � � � � � � � � � � � Q � � � � � � z #

� � � � � � � � 	
 � � � � �
 � � � � �
 �
 � � � � � � � � � � � � � � �
 � �
 � � � � � � � �
 � � � � � �
 � � � � �� � �
 � � �
� "$

% & ') + , + - .
"$

% & 0 2 3 4 + , + -
5

)
'

2 6 4 7
	 � � �

6

 � � � �
 � � � � � � � � �
 � � � � � � � : �

; � � � � � � � � < = � � � � � � � �
 � � � � � � � � � � �
 � � 	 � � � � �
 � �
 �
 �
 � � � A
7

� � � � � A � � � � 	B
 � � C
 � � � � � � 	
 � � � � � � � � � D � � � � � �
 � E F � H � J �
 � � � K � �
 � 	 � A � � � �
7

 �
7

� � F
< E M O P Q R S P = < T R = M U T

6
E < < E

6
 < T

� � � � � � �
 � � � � � � � �
 � �
 �
 �
 � � X � �
7

	 � � � Q
 � � 	 � � � � � � �
 � �Y C � � � � � F
O Z T Z T [U E O Z Z T [Z U O Z Z Z T Z Z Z T Z [Z T Z [Z T [Z Z T [[Z U T

� � X
 � � 	 � � � � � �
 � X 5] T ^ : E 5 ^ T
3

T ^ T
3

: 5] T
3

T] T
3

T ^ T
3

T ^ T
3

: �
E
 � � � � � � �
 � �
 � � � � � � � �
 � �
 � �

5 < E M : E a O P Q R Q b S P = < T R = M T b = a U < E 5 M E a : c
Y C � � �
 � E � � e 5 � : �
 � � � � � � �
 � g 5 e 5 � : T E T

6
: � � � j k � � � � � � � �

� � �
 �
 � l 5 e 5 � : T m T E T n T
2 6 4

: �
o p r s t u v w x r s
y A � � � � � � X � � � � � 	 � � � � � � � � � � � � � �
 � � � �
 � � � �
 � � � � � z � 	 �

7
	 � � � � � � � � � � � A

A � � � � � � � � � � � � � 	 � � � � � � | � � � � � � � � � � � � � � A � � � � � � � � � � � � } � �
 � � � � � X
7

� � �
� � K � � � � � X �
 � � �
 � � � � � 5 �
 ~ �
 � � � � � � � � � � � � � � � � � : X � � � � � � � � � � 5 �
 ~ �
 �
 � � k� � � � � � �
 � � � � � � � � � � � : � � � �
 � � � � � � � � � � � z � � � � � � 	 � � � � � � � � �
 � � � � 	 �
 � � �
� 	 � � 	 � � � � �
 C � � � � � � � � �
 � � � � � � � � � � � � � � � � 	 �
 � � � � � � � � � � � � � � � 	 � � � � ~� � � � ~ � � 	 � A � � � 	 � � � � � � � �

7
� � � } � � � � � � � � � � � � � � 	 � � � � �

� � � � � � s t � w
� � � � � � � � � � �� � ¡ ¢ £ � � ¤ � � � � � £ ¥ � � � � � � ¥ ¤ � � ¦ � � £ � � � � § £ � ¥ � � � ¨ � � £ � ¨ ¥ � � � � � © ª « ª ¬ ® ¯ ¬ ° « ± ² ¯ ³ ² ´ µ ª « ¬ ¶ · ¸ « ´ ¸ � ¹ º � » ¼ ¼ ½ �� ¾ ¾ ¿ � ¹ ¹ �� À � � � � � � � � �� � � � � � � � � � � � � � � � � Á ¢ � Â � � � § � � � � § £ � ¥ § £ ¥ ¡ £ � � £ � � � ¤ � � � ¨ � � £ � ¨ �¶ Ã ± ¯ Ã ² Ä ³ ² ´ µ ª « ¬ Å ¬ ² Æ ¬ ° ´ ´ ± ¯ Æ � � Ç º � » » È ½ � Ç Ç ¿ É É �� ¾ � � � � � � � � �� � � � � � � � � � � � � � � � � Â � � � � § � ¢ � ¡ ¢ � £ ¡ � � � � � ¡ � £ � � � § � � Ê � � � � � � � ¥ � ¤ ¦� � � � ³ ² ² ¬ Ë ± ¯ ° « ± ² ¯ Å ¬ ² Æ ¬ ° ´ ´ ± ¯ Æ Ì Í Ã Î ° ¯ ± ¸ ´ ¸ Ï Í ² Ë Ð ¸ ° ¯ Ë ¶ ´ ° ¯ « ± Ã ¸ � Ñ � � � £ � � � � � � � ¨ �� � � ¥ ¥ � � » » Ò �� ¹ � Ó � � � � � � � � § � � ¨ � � Ô Î Õ ° ´ Ö Ë ° ³ ° Ð Ã ª Ð ª ¸ × Ø « ¸ ¶ · ¯ « ° Ù ° ¯ Ë ¶ ´ ° ¯ « ± Ã ¸ � Ú � � � ¢ ¦ Ó � � � � � § �� ¥ � � � § � � � » ¼ ¹ �� Ç � Á � � � ¥ � � � � � � � ¥ £ � ¨ � � � � £ � � � � � � § � � � § � � � £ ¥ � � ¥ � Ø ¯ « ¬ ¯ Û Ü Û © ² ª ¯ Ë Û ³ ² ´ µ ª « ¬ ¶ Ã ± Û � ¼ � ¹º � » » É ½ � ¾ É » ¿ ¹ È É �� Ò � Â � � � � � � � Â � � � � § � � � Á ¢ � ¡ ¢ � £ ¡ � � � Ý ¥ � � � ¡ � � ¡ ¢ £ � � � Ô Î ² ¬ « ± Ã ° Ð ³ ² ´ µ ª « ¬ ¶ Ã ± Û � » Òº � » » À ½ � À � É ¿ À ¹ ¼ �

� � � � � � �
 �
 � " # $ " % & ' # " ()

* (+ ' ($, " (% $ " (- . % + / 0 ' (' 2 + . " (, " 3 4 6 + ' & 7 8 + ' 3 8 � 9 � : ; � � < = > ? � > @ A = = �

� > � B � � � � � C � D E � F G � H H � � I � J � � � � � �
 � � � � � � � � � � � M � N � � � � � � � � , 2 Q # " Q " � M �
 � R S S S � T � � U � S S
V < = � W X � < � Y D < > = �

� = � Z � I � � � � [� N G � \]� � � � ^ ' _ 6 Q 2 + ') ^ ' a . + . (_ . (- " 3 2 Q c 2 (_ 6 2 _ ' d / ' " 7 � B C � � � F � � D

f � �
 � F � g � �
 � � � < = > = �

� < h � Z � i � N � � U G � � � 9 G � � � � � � � � � �
 � G � � � ; � T C � � � � � � � d / ' " ' + . # 2 Q , " 3 4 6 + ' & # . $ � W < � j D Y
V < = > > X � < = = A j j ? �

� < < � Z � B � N �
 � � � d / ' d / ' " 7 " % & ' 3 . . (_ 8 a . + / k 4 4 Q . # 2 + . " (. (l 2 + / ' 3 2 + . # 8 2 () d / ' " ' + . # 2 Q
, " 3 4 6 + ' & # . ' (# ' � i � � F � � � B U � � � � � � U � � � 9 � U G � � U �
 � < = = j �

� < j � B � N � � � � � n C
 � U � � � � � � � � � � � � � � �
 � � F � � � � � U � � � � � � � � � � � Z � o � � � � B � 9 � : � � � � � � � � � & 7 p
8 + ' 3 8 2 () , " 3 4 6 + ' & # . ' (# ' � q � � M � � T 9 � � � � � � \ � � � � � 9 � � � � � � � < = W � � � � A < < @ �

� < Y � Z � r � � � �
 � � � � � � \ � � C � � � � � � � T � � � � � � � � � s i � [� � G t � � � � � � � � U � � � � � � � � M � F � � � � � � � � � �
l 2 + / ' 3 2 + . # 8 u v (. w ' 8 . + 7 " % x 6 Q 6 � y � � @ Y � < = > h �

� < ? � z � r � � U G � � � B �
 � � � � � & ' 3 . . (_ 8 u k 6 + " 3 2 + 2 u c 2 (_ 6 2 _ ' 8 � � � 9 � B J � � � F � � C G � � �
9 G � � � � � � U �
 � � � C � � � � B U � � � U � @ � B C � � � F � � D f � �
 � F � g � �
 � � �

� < @ � J � i � � � � � n � � {� � � � � � � � � � � �
 � U � � � � � � � � M � � � � � U
 � � � ^ $ k $ * $ ^ $ x $ � < < � < V < = � � X � j = A @ < �

� < W � J � i � � � � � n � i � � F � F � � U � � � � � � � � T � � \ � t
 � U � � � � � � � � i � t � � � � � � � � � � � �
 U �
 � �

 � q � � M � � � � � �� � � � B U � � � U � � � � 9 � U G � � � � � � � � i �

 � � J � � < = � > �

� < � � J � i � � � � � n � � {� � � � � � � � � � � �
 � U � � � � � � � � T � � � , & & � < > V < = � = X � Y h � A Y Y Y �

� < > � B � J � ; � � � � � � s � H H ; � �
 � � � � � � � � � � C C
 � U � � � � � � � � � � F G � C C � � n � � � � � � � � T T � H H ; � � � � �
d ' # / ($ ^ ' 4 $ * (8 + $ " % * (% " 3 $ & # . ' (# ' 8 2 () � Q ' # + " (. # 8 � q � � M � � T 9 � � : � t � � < B � D 9 E D = W D

< Y W � Z � � � < = = W � < A < h �

� < = � B � J � ; � � � � � � g � � � U � C � � � � � � � � � � T � H H ; � �
 � � � � � � � � $ " % � 2 4 2 (& " # $ " % - 6 � � 7 d / ' " 7
2 () & 7 8 + ' 3 8 � > � ? V < = = W X �

� j h � B � J � ; � � � � � � s � H H ; � �
 � � � � � � [� � G � � � � � � � U �

 � U � � � � � � T � � � t � � � G � C � � � " # $ � + / * (+ ' ($
- 6 � � 7 & 7 8 + ' 3 8 k 8 8 $ � " Q) $, " (_ ' 8 8 V S s B � � = � X � Z � � � < = = � � \ � � F � � � M �
 � S � W < A W W �

� j < � g � i � � s � H H ; t � F � � � � � C C
 � U � � � � � � � - 6 � � 7 & ' + 8 2 () & 7 8 + ' 3 8 � Y ? V < = = h X � W < A � < �

� j j � N G � \]� � � � � � � C � � � � F [� � G � � � t � � � � � � � " 6 (2 Q " % , " 3 4 6 + ' 2 () & 7 8 + ' 3 & # . ' (# ' 8 � W <
V j h h h X � � � C � � � � � � � � d 6 � 6 , ' (+ ' % " , " 3 4 6 + ' & # . ' (# ' p d v , & ^ ' 4 " + y � j h > � < = = >
V [[[� � � U � � � X �

� j Y � N G � \]� � � � � � � C � � � � F [� � G � � � t � � � � � � � � � � � � � � � U � � � � � � 6 Q Q ' + . (" % + / ' � k d , & � W �
V s � t � � < = = = X � < Y = A < @ j �

� j ? � N G � \]� � � � � � � C � � � � F [� � G � � � t � � � � � V \ � ; � � � � � X � 9 [� � � ; � � n � � � � � � U G � � D
C � U � � � G � � M �
 � � � � � � k 6 # � Q 2 () v (. w ' 8 . + 7 u , � l d , & ^ ' 4 " + y � < < = � j h h h

V [[[� U � � � � U :
 � � � � � U � � H � � I J 9 � B X �

� j @ � N G � \]� � � � N � E � H � � t � � F � � � B �
 � � � � � � � k , " 3 4 6 + . (_ $ � ' a , " 3 4 6 + . (_ � 2 2) . _ 3 8 �
B C � � � F � � D f � �
 � F � o � � � �
 t � � F � < = = > �

� j W � N � E � H � � t � � F � � � B �
 � � � � � � � � � � � 2 () � " " � " % - " 3 2 Q c 2 (_ 6 2 _ ' 8 � Y M �
 � � � � � B C � � � F � � D

f � �
 � F � g � �
 � � � < = = � �

� j � � � � B � H � : � � o � 9 � � � : � � B ; � t �
 � U U G � � � U �
 � ; � � � � t � � � � � � � t � � � � U � � � [� � � � � F � ; � � � �
� � � � � � t � G � M � � � C � � � � � � � k + . � # . 2 Q c . % ' ^ " � " + . # 8 � < V < = = � X � j < < A j < = �

� j > � � � B � H � : � � o � 9 � � � : � � � G � � � U �
 � M �
 � � � � � � � � � F � � � � � U � �
 C � � � � D U �

 � � � " # $ " % k + . � # . 2 Q
c . % ' � * * * , " (% $ � J S 9 \ � � � � � j h h h

� j = � � � B ; � � C � �
 � � � � � � � � � � � �
 � � D � � � � � t � � � U C � � � � � � � � G � U G � � � U �
 � t � � � � U � � � U G � � � �
� � � � � U � � C � � j h h h �

� Y h � � � B ; � � C � �
 � � � s � H H ; � � � � � � � T � H H ; � �
 � � � � � � � � � G � � C � U � � � � � � � � U � � C � � j h h h �

� Y < � � � B ; � � C � �
 � � � l 6 Q + . 8 ' + 8 2 () , / 6 & 4 2 # ' 8 � \ G I 9 G � � � � � q � � M � � T R � � � � � N � � � U � � � �
C � � C � � � � � � � �

� Y j � E � E � � � F � � � � � � G � � G � � � ; � T t � F � � * (+ ' ($ � $ 0 ' (' 2 Q & 7 8 + ' 3 8 � < Y V < = > W X � j Y A Y � �

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 159 - 175.

Membrane Computing in Prolog

Mihaela Maliţa
Faculty of Mathematics, University of Bucharest
str.Academiei 14, 70109 Bucharest, ROMANIA

Email: malita@rnc.ro

Abstract

This paper presents a simulation environment written in Prolog for the new
paradigm of computation proposed by G. Pǎun in ”Computing with Mem-
branes” [1]. We present from [1] the concept and our Prolog predicates dealing
with the main operations on multisets, on membrane structures and on super
cell systems. The program was tested on the examples from [1]. The simulator
is conceived to be useful for developing applications, which might test the power
of this new computing paradigm.

1 Introduction

In November 1998 Gheorghe Pǎun at the Center for Computer Science, Turku,
Finland proposed a new paradigm of computation: Membrane Computation [1].

The Membrane Computation seems to be an interesting and original approach
to computing inspired from biochemestry.

Meantime this new paradigm captured the attention of many other researchers
(J.Dassow [2], G.Rozenberg [3], A.Salomaa [3]).

The main new concepts defined are: the membrane, membrane structure and
super cell system [1].

Inspired from biochemestry this model is based on the concept of membrane
represented in his formalism by the mathematical concept of multiset.

A membrane structure is a set of labeled multisets with certain restrictions. On
the membrane structure Pǎun adds a set of transforming rules and he obtains thus
the super cell system.

The calculus is the evolution of a super cell system from its initial state accord-
ing to the given rules. Applying rules and working with symbol manipulation is
appropriate for programming in Prolog. Although our Prolog [5] is not concieved
for parallel programming we choosed this approach taking into account its other
facilities.

When we define a new concept the question arises: ”which is the most appropri-
ate representation for it?”. The membrane computation paradigm starts from the
concept of multiset. In our paper we followed in detailed each step in the presenta-
tion of the model in order to make the code transparent.

Let us take the intuitive definition of the multiset: an ”extended” set where we
admit that the elements could occure multiple times. In our paper we shall always

give an example of calling a predicate (the ?- is the Prolog prompt) and then the
answer of the Prolog interpreter. Let us show as an example how we write the
Prolog predicate multiset(List) which tests if a list is representing a multiset.

Example 1 The multiset {a,a,b,c,c,c} is in Prolog: [a(2),b(1),c(3)]. 5

multiset(Ms). Tests if a list Ms is a Multiset.
?- multiset([a(1),b(2),c(4)]).

yes

Then we shall write the clauses defining the predicate.

object((N)):-integer(N).

multiset([]).

multiset([H|T]):-object(H),multiset(T).

In our paper all the predicates follow the same previous pattern. Some definitons
are very simple as those in section 2, dealing with the well known concept of multiset.
We decided to present them also in detail as a Prolog exercise: how to use the list
representation for multisets.

The most difficult thing was the simulation of paralelism of the membrane com-
puting model in Prolog.

2 Multisets in Prolog. Basic Operations

In the following, we present multisets in the list representation for Prolog.

Representation of a multiset. A multiset is a set where we admit multiple
occurrences of its elements now named objects. In Prolog, we shall represent a
multiset as a list of objects together with their multiplicity.

multiplicity(Object,Muliset). The multiplicity of an object from a multiset is
the number of occurrences of the object.

?-multiplicity(a,[a(2),b(3),c(8)],M).

M=2

multiplicity(H,Ms,R):-on(H(R),Ms),!.

Usually objects that have multiplicity 0 are of no use and we can delete them from
the multiset. The following predicate describes this property:
mult zero((0)).

Support of a multiset is the set (ignoring the multiplicity).
support(Ms,R). From the multiset Ms we select the objects without their

multiplicity. The resulting set is R.
?- support([a(2),b(3),c(8)],R).

R=[a,b,c]

support([],[]).

support([H()|T],[H|R]):- support(T,R).

Inclusion of multisets. X is included in Y if all the objects from X are also
in Y and their multiplicity in X is smaller or equal than their multiplicity in Y.

include(X,Y). Returns yes if X ⊂ Y else no.
?- include([a(2),b(3)],[a(3),b(4),c(7)]).

yes

include([],).

include([H(R1)|T],L):- on(H(R2),L),R1=<R2,include(T,L).

In the following, we use the classical concat(L1,L2,R) for concatenating two
lists L1 and L2:
concat([],Y,Y).

concat([H|T],Y,[H|R]):- concat(T,Y,R).

Union of multisets. The union of two multisets is a multiset, which contains
all the objects from X and Y, and their multiplicity is the sum of their multiplicity
in X and Y.

union(X,Y,R). X ∪ Y = R
?- union([a(2),b(3)],[a(4),c(8)],R).

R=[a(6),b(3),c(8)]

union([],Y,Y).

union([H(R1)|T],Y,[H(R)|S]):- concat(Y1,[H(R2)|Y2],Y),

R is R1+ R2,concat(Y1,Y2,Ynew),union(T,Ynew,S),!.

union([H(R1)|T],Y,[H(R1)|S]):- union(T,Y,S).

Difference of multisets. The difference is defined only if the multisets are
included one in another. The difference is a multiset with the objects from M1 and
their multiplicity is the difference between the multiplicity in M1 and the corre-
sponding multiplicity in M2.

difference(M1,M2,Dif). M1 - M2 = Dif
?- difference([a(2),b(3),c(3)],[a(2),b(1)],R).

R=[b(2),c(3)].

?- difference([a(2),b(3)],[a(2),b(3)],R).

R=[].

?- difference([a(2),b(3)],[b(5)],R).

no

difference(Y,[],Y):- !.

difference(Y,[H(R2)|T],RR):- concat(Y1,[H(R1)|Y2],Y),R1 >= R2,

R is R1-R2,concat(Y1,Y2,Ynew),difference(Ynew,T,S),

(R = 0, RR=S,!; R > 0, RR=[H(R)|S]).

3 The Membrane Structure in Prolog

A membrane is an labeled multiset.
A membrane structure is a structure composed by labeled paranthesis. Example

of a membrane structure: [[] [[]]. If we fill this structure with elements from
an alphabet. Let us consider A=a,b,c) the following is an example of a super cell:
[a,a,[b,a],[c,[],a].

A filled membrane with objects from an alphabet is actually a multiset.
In the super cell membranes structures cannot have any intersection. Mem-

branes are disjoint or included one in another. The biological interpretation is that
membranes don’t intersect.

Example 2 Let’s take Pǎun’s first example from [1] of a super cell.

Ms= [a,a,c,[a,[c,d]],[]]

The representation that we work with is:

Ms=[a(2),c(1),[a(1),[c(1),d(1)]],[]].

5

a a

c

a

c
d

1
s

2
z

3
z

4

1

Fig. The diagram of Ms.

The membranes are labeled with numbers, so we could refer them in the super
cell. Let’s put numbers in the front of each sublist. Each sublist represents a
membrane. There are four membranes and the membrane labeled 4 is empty.

Ms=[1,a(2),c(1),[2,a(1),[3,c(1),d(1)]],[4]]

Let’s try to work with this representation. Advantages:

• the list structure respects the initial topology of the membrane

• the membranes are labeled with numbers (different!).

membrane(Nr,Ms,Mnr). In the list Mnr we obtain the content of membrane
with number Nr from the super cell Ms.

?-membrane(2,[1,a(2),[2,a(3),b(4),[3,f(1),j(7)]]],[4]],R).

R=[a(3),b(4)]

?-membrane(4,[1,a(2),[2,a(3),b(4),[3,f(1),j(7)]]],[4]],R).

R=[]

?-membrane(5,[1,a(2),[2,a(3),b(4),[3,f(1),j(7)]]],[4]],R).

no

object(()):-!.

object(X):- atomic(X),not X=[].

membrane(K,[K|T],R):- select p(object,T,R),!.

membrane(K,[H|T],R):- not atomic(H),membrane(K,H,R).

membrane(K,[H|T],R):- membrane(K,T,R).

dissolve(K,Ms,R). Dissolve the membrane K of the super cell Ms. The resulting
super cell is R. To dissolve a membrane all its content is poured into the membrane
in which it is contained (included). Moreover, the membrane disappears. In a list
representation that means the brackets of the membrane are removed. If nothing
could be dissolved then the function returns the initial super cell

?-dissolve(2,[1,a(2),c(1),[2,a(1),[3,c(1),d(1)]],[]],R).

R=[1,a(2),c(1),a(1),[3,c(1),d(1)],[4]]

?-dissolve(3,[1,a(1),[2,c(2),[3,c(2)]]],R).

R=[1,a(1),[2,c(4)]]

?-dissolve(4,[1,a(1),[2,b(2),[3,c(2)]]],R).

R=[1,a(1),[2,b(2),[3,c(2)]]]

dissolve(K,[],[]):-!.

dissolve(K,M,R):- concat(M1,M2,M),concat([[K|T]],Ig,M2),

concat(M1,T,R1),concat(R1,Ig,R),!.

dissolve(K,[H|T],[H|Tr]):- atomic(H),dissolve(K,T,Tr),!.

dissolve(K,[H|T],[Hr|Tr]):- dissolve(K,H,Hr),dissolve(K,T,Tr).

where is(K,Ms,N). We want to know the number N of the membrane that is in
the super cell Ms and includes membrane K.

?- where is(3,[1,a(1),[2,b(3),[3]],[4]],I).

R=2

?- where is(5,[1,a(1),[2,b(3),[3]],[4]],I).

no

where is(K,[],):- fail.

where is(K,[H|T],H):- number(H),on([K|],T),!.

where is(K,[H|T],R):- atom(H),where is(K,T,R).

where is(K,[H|T],R):- where is(K,H,R),! ; where is(K,T,R),!.

transf(K,M,Ms,R). Transforms the super cell Ms by replacing exclusively the
content of membrane K with a new multiset M. The resulting super cell is R.

?-transf(2,[b(3)],[1,a(2),[2,a(1),[3,c(1),d(1)]],[4]],R)

R= [1,a(2),[2,b(3),[3,c(1),d(1)]],[4]]

?-transf(5,[b(3)],[1,a(2),[2,[3,c(1),d(1)]],[4]],R)

no

transf(K,M,[],[]):-!.

transf(K,M,[K|T],[K|R]):-delete p(object,T,Tr),concat(M,Tr,R),!.

transf(K,M,[H|T],[H|R]):-(object(H);number(H)),transf(K,M,T,R),!.

transf(K,M,[H|T],[Hr|Tr]):-transf(K,M,H,Hr),transf(K,M,T,Tr).

4 The Super Cell System (P -system)

The super cell system or P-system is a super cell together with a set of rules of
transformation [1].

The super cell evolves according to the rules. The rules are applied in parallel
for each membrane. In [1] Gh. Pǎun defines some types of rules. We implemented
them in Prolog in section 3.2. In the following, we present some necessary Prolog
predicates used in the program but not specially characteristic with the membrane
calculus.

4.1 Necessary Predicates for our Program

subst all(V,N,Old list,New list). Substitutes on all levels in Old list the old object
V by the new object N.

?- subst all(x,y,[1,a(1,x),[2,b(1,x]]).

R= [1,a(1,y),[2,b(1,y]]

subst all(V,N,X,X):- atomic(X),!.

subst all(V,N,O(X,Y),O(X,Y)):- not Y=V,!.

subst all(V,N,[O(F,V)|T],[O(F,N)|R]):- subst all(V,N,T,R),!.

subst all(V,N,[H|T],[R1|R2]):- subst all(V,N,H,R1),

subst all(V,N,T,R2).

select p(P,List,R). Selects all the elements from List (first level) which have a
certain property P. The resulting list is R.

?- select p(object,[1,a(1),c(4),[2,b(3)]],I).

I=[a(1),c(4)]

select p(P,[],[]):- !.

select p(P,[H|T],[H|R]):- P(H),select p(P,T,R).

select p(P,[H|T],R):- select p(P,T,R).

delete p(P,List,R). Deletes all objects from the first level of List that have the
property P. The resulting list is R.

?- delete p(integer,[2,a,3,b],R).

R=[2,3]

?- delete p(mult zero,[a(2),d(0),b(0),c(7)],R).

R=[a(2),c(7)]

delete p(P,[],[]).

delete p(P,[X|T],R):- P(X),delete p(P,T,R),!.

delete p(P,[X|T],[X|R]):- delete p(P,T,R).

4.2 Basic Operations in a Super Cell

In our program objects from a multiset look like: a(1,x) or c(1,y). We shall
explain later why we introduced the markers x and y for each object. This small
modification obliged us to rewrite the main operations on multisets and membranes,
presented in section 2 and section 3.

union(M1,M2,R). R is the union of membranes M1 and M2. It follows the same
pattern as the union for multisets.

?- union([a(2,x),b(3,x)],[a(1,x),b(1,y)],R).

R=[a(3,x),b(3,x)],b(1,y)]

union([],Y,Y).

union([H(R1,K1)|T],Y,[H(R,K1)|S]):- concat(Y1,[H(R2,K1)|Y2],Y),

R is R1+ R2,concat(Y1,Y2,Ynew),union(T,Ynew,S),!.

union([H(R1,K)|T],Y,[H(R1,K)|S]):- union(T,Y,S).

difference(M1,M2,D). D is the difference of membranes. It follows the same
pattern as for multisets section 2. If the multisets (membranes) are not included
one in another the difference is not possible (fails).

?- difference([a(2,x),b(3,x),c(3,x)],[a(2,x),b(1,x)],R).

R=[b(2,x),c(3,x)].

?- difference([a(2,x),b(3,x)],[a(2,x),b(3,x)],R).

R=[].

?- difference([a(2,x),b(3,x)],[b(2,y)],R).

no

difference(Y,[],Y):- !.

difference(Y,[H(R2,Mark)|T],RR):-

concat(Y1,[H(R1,Mark)|Y2],Y), R1 >= R2,

R is R1-R2,concat(Y1,Y2,Ynew),difference(Ynew,T,S),

(R = 0, RR=S,!; R > 0, RR=[H(R,Mark)|S]).

membrane(K,Ms,Mk). Mk will be the content of membrane K from the
membrane structure Ms (exclusively the content of membrane K).

?-membrane(2,[1,a(2,x),[2,b(4,x),[3,f(1,x)]]],[4]],R).

R=[b(4,x)]

membrane(K,[K|T],R):- select p(object,T,R),!.

membrane(K,[H|T],R):- not atomic(H),membrane(K,H,R).

membrane(K,[H|T],R):- membrane(K,T,R).

dissolve(K,Ms,R). Dissolve the membrane K in the membrane structure Ms.
The resulting membrane structure is R.

?-dissolve(3,[1,a(1,x),[2,c(2,x),[3,b(1,x)]]],R).

R=[1,a(1,x),[2,c(2,x),b(1,x)]]

dissolve(K,[],[]):- !.

dissolve(K,M,R):- concat(M1,M2,M),concat([[K|T]],Ig,M2),

concat(M1,T,R1),concat(R1,Ig,R),!.

dissolve(K,[H|T],[H|Tr]):- object(H),dissolve(K,T,Tr),!.

dissolve(K,[H|T],[Hr|Tr]):- dissolve(K,H,Hr),dissolve(K,T,Tr).

where is(K,Ms,X). We want to know the number X of the membrane that
includes K in the membrane structure Ms.

?- where is(4,[1,a(1,x),[2,b(3,x),[3]],[4]],I).

R=1

where is(K,[],):- fail.

where is(K,[H|T],H):- number(H),on([K|],T),!.

where is(K,[H|T],R):- atom(H),where is(K,T,R).

where is(K,[H|T],R):- where is(K,H,R),! ; where is(K,T,R),!.

in order(Ms,R). Ms is a list (representing a super cell) where different objects
may appear several times with different multiplicities. We want to put in order
M that is each object must appear only once with the sum of all occurrences in a
resulting list R, a correct written membrane structure .

?-in order([1,a(1,x),c(1,x),a(1,x),[2,b(2,x),b(2,x)]],R).

R=[1,a(2,x),c(1,x),[2,b(4,x)]]

in order([],[]):-!.

in order([N|T1],[N|T2]):- integer(N),in order(T1,T2),!.

in order([O(F,Y)|T1],[O(F,Y)|T2]):- not on(O(,),T1),in order(T1,T2),!.

in order([O(F,Y)|T1],R):- concat(X,[O(Fnew,Y)|Rest],T1),

Fr is Fnew + F,concat(X,[O(Fr,Y)|Rest],T),in order(T,R).

in order([H|T],[Hr|Tr]):- in order(H,Hr),in order(T,Tr),!.

transf(K,M,Ms,R). This predicate transforms the membrane structure Ms by
replacing the old membrane K with a new membrane M resulting the membrane
structure R.

?-transf(2,[b(3,y)],

[1,a(5,x),[2,a(1,x),c(1,x),[3,c(1,x),d(1,x)]],[4]],R)

R= [1,a(5,x),[2,b(3,y),[3,c(1,x),d(1,x)]],[4]]

object((,)):-!.

object(X):- atomic(X),not X=[].

transf(K,M,[],[]).

transf(K,M,[K|T],[K|R]):-delete p(object,T,Tr),concat(M,Tr,R),!.

transf(K,M,[H|T],[H|R]):-(object(H); number(H)),transf(K,M,T,R).

transf(K,M,[H|T],[Hr|Tr]):-transf(K,M,H,Hr),transf(K,M,T,Tr).

4.3 The Rules of a Super Cell System

A membrane structure that has rules concerning the transformation of its objects
is called Super Cell System [1]. The rules could be defined, of course, in different
ways. Here we take in consideration only the rules that appear in [1].

Let us start with an example from the following membrane structure:

Ms=[1,a(2,x),c(1,x),[2,a(1,x),[3,c(1,x),d(1,x)]],[4]]

For membrane 1, the following rule is proposed [1]:

(1) c → [in(4),a]

This means the number of the rule is 1 and we can apply it only for membrane
1. If membrane 1 has a c inside, then the c is moved and an object a appears in
membrane 4. We write this rule in our data file as:

rule(1,1,[c(1,x)],[in(4),a(1,y)]).

The first 1 is the number of the membrane. The second 1 is the label of the rule.
We label each rule by a number. The left side of the rule is the list of objects that
are moved from membrane 1: [c(1,x)]. The right side of the rule says to put the
objects from the list which begins with in(4) in membrane 4: [in(4),a(1,y)].

The Super Cell System is a parallel machine. The rules are applied simultane-
ously. In this version our solution to simulate the parallelism is to mark the new
objects that appear in one clock with y. For rule [1,1] we write a(1,y) to make a
difference from the objects marked with x which are not processed yet.

All the objects that appear in the right part of a rule are marked with y. This
gives the possibility to make the difference between the new object and the old one
in order not to apply at the same clock two different rules on the same object. We
could also have a rule like that

(1) c,c,b → [in(4),a]

Our representation is:

rule(1,2,[c(2,x),b(1,x)],[in(4),a(1,y)]).

That means if membrane 1 contains two c’s and one b we take them and in membrane
4 we put an a.

We could also have a rule for the same membrane:

(4) b → a

In our representation:

rule(4,1,[b(1,x)],[a(1,y)]).

This means in membrane 4 we could change b with a. Actually all the b’s are
transformed in a’s. Another principle is:

If a rule works for a membrane we apply the rule until it works no more.

We could also dissolve a membrane. Let’s consider the rule:

(2) aac → dissolve

If membrane 2 has a(2) and one c inside then delete the membrane. The content of
the membrane is poured into the upper membrane.

Our representation:

rule(2,2,[a(2,x),c(1,x)],dissolve).

We could also throw out an object. This means the object is moved in the upper
membrane (the ”immediate” membrane which contains membrane 4):

(4) c → [out,d].

rule(4,1,[c(1,x)],[out,d(1,y)]).

Let’s take now each rule and see how it works following the Prolog program. All
the rules are applied with the predicate

apply(rule(MembraneNr,RuleNr,Multiset,List), Ms,R).

R is the resulting membrane structure after applying the rule(..) on the membrane
structure Ms.

rule(K,RuleNr,Mset,dissolve). If there is in the membrane structure a membrane
K then dissolve membrane K, after we take Mset from it.

Example 3
rule(2,2,[a(1,x),c(1,x)],dissolve).

rule(3,1,[a(1,x)],dissolve).

?- apply(rule(2,1,[a(1,x)],dissolve),

[1,b(1,x),[2,a(2,x),[3]],[4]],R).

R=[1,b(1,x),a(1,y),[3],[4]]

apply(rule(K, ,Mset,dissolve),Ms,R):- membrane(K,Ms,Mk),

difference(Mk,Mset,New),modify x(New,Newy),

transf(K,Newy,Ms,Ms1),dissolve(K,Ms1,R),!,

retractall(rule(K, , ,)).

5

rule(K,RuleNr,Mset,[dissolve,ob(N,y),...]). If there is a multiset Mset in mem-
brane K then dissolve membrane K, after you take Mset from it and put also all the
objects Ob(N,y) from the list inside the membrane upper than K.

Example 4
rule(2,2,[c(1,x),a(1,x)],[dissolve,d(1,y)]).

?- apply(rule(2, ,[a(1,x)],[dissolve,b(1,y)]),

[1,b(1,x),[2,a(2,x),[3]],[4]],R).

R=[1,b(1,x),a(2,y),[3],[4]]

apply(rule(K, ,Mset,[dissolve|List]),Ms,R):- membrane(K,Ms,Mk),

difference(Mk,Mset,New),union(New,List,U1),

transf(K,U1,Ms,Ms1),dissolve(K,Ms1,R),!,

retractall(rule(K, , ,)).

5

rule(K,RuleNr,Mset,out). If membrane K has inside the multiset Mset then
throw Mset out. That means that two membranes modify their content: membrane
K and the membrane that includes K. The topology remains the same only the
content of the membranes changed.

Example 5
rule(4,1,[c(1,x),d(1,x)],out).

?-apply(rule(2,[a(1,x)],out),

[1,a(3,x),c(1,x),[2,a(2,x),[3,d(1,x)]]],R).

R=[1,a(4,x),c(1,x),[2,a(1,x),[3,d(1,x)]]]

apply(rule(K, ,Mset,out),Ms,R):- membrane(K,Ms,Mk),

difference(Mk,Mset,D1),where is(K,Ms,X),

membrane(X,Ms,Mx),modify x(Mset,Mset2),

union(Mx,Mset2,Newx),transf(X,Newx,Ms,Ms1),

transf(K,D1,Ms1,R),!.

5

rule(K,RuleNr,Mset,[out|List]). Two membranes modify their content. From
membrane K, we took Mset and in the membrane that includes K, we add all the
objects from List. Applying the rule on the membrane structure Ms, we obtain a
new membrane structure R.

Example 6
rule(4,1,[c(1,x)],[out,d(1,y)]).

?-apply(rule(2,[a(1,x)],[out,b(1,y)]),

[1,a(3,x),[2,a(2,x),[3,d(1,x)]]],R).

R=[1,a(3,x),b(1,y),[2,a(1,x),[3,d(1,x)]]]

apply(rule(K, ,Mset,[out|List]),Ms,R):-membrane(K,Ms,Mk),

difference(Mk,Mset,D1),where is(K,Ms,X),

membrane(X,Ms,Mx),union(Mx,List,Newx),

transf(X,Newx,Ms,Ms1),transf(K,D1,Ms1,R),!.

5

rule(K,RuleNr,Mset,[in(N)|MsetNew]). If membrane K contains the multiset
Mset then we take Mset from it and put the multiset MsetNew in membrane N.

Example 7
rule(1,1,[c(1,x)],[in(4),a(1,y),b(2,y)]).

?-apply(rule(2,1,[a(1,x)],[in(3),a(1,y),d(2,y)]),

[1,a(2,x),c(1,x),[2,a(1,x),[3,c(1,x)]],[4]],R).

R=[1,a(2,x),c(1,x),[2,[3,a(1,y),c(1,x),d(2,y)]],[4]]

apply(rule(K, ,Mset,[in(NrM)|List]),Ms,R):-

membrane(K,Ms,Mk),membrane(NrM,Ms,Mnr),

difference(Mk,Mset,Newk),union(Mnr,List,NewNr),

transf(K,Newk,Ms,Ms1),transf(NrM,NewNr,Ms1,R),!.

5

rule(K,Mset,[[in(K1),Ob(Freq,y),..],[in(K2),Ob(Freq,y),..],[Ob(Freq,y),..]). This
is a little bit more complex. It is a combination of two types of rules. If in membrane
K we find the multiset Mset then we take Mset from it and in each membrane K1,
K2,.. we put the corresponding list of objects. If the list has no number in front
that is there is no in(Kx), then we put the following objects in the same membrane
that is K.

Example 8
rule(1,3,[a(1,x)],[[in(2),a(1,y)],[b(1,y)]]).

?-apply(rule(2,3,[a(1,x)],[[in(3),a(1,y)],[b(1,y)]]),

[1,d(1,x),[2,a(1,x),[3,c(1,x),d(1,x)]],[4]],R).

R= [1,d(1,x),[2,b(1,y),[3,a(1,y),c(1,x),d(1,x)]],[4]],R).

?-apply(rule(1,4,[a(1,x)],[[in(3),b(1,y)],[in(4),c(1,y)]),

[1,a(1,x),[2,d(2,x),[3]],[4]],R).

R= [1,[2,d(2,x),[3,b(1,y)]],[4,c(1,y)]],R).

apply(rule(K, ,Mset,[[H|T]|List]),Ms,R):- membrane(K,Ms,Mk),

difference(Mk,Mset,D1),transf(K,D1,Ms,Rk),

collect union(K,[[H|T]|List],Rk,R),!.

collect union(K,[],Ms,Ms):-!.

collect union(K,[[H|T]|List],Ms,RR):- (H=in(I),membrane(I,Ms,Mi),

union(Mi,T,Newi),transf(I,Newi,Ms,R1),

collect union(K,List,R1,RR)),!;

(not H=in(),membrane(K,Ms,Mk),union(Mk,[H|T],Newk),

transf(K,Newk,Ms,R1),collect union(K,List,R1,RR)).

5

rule(K,RuleNr,Mset,List). This is the case of changing in the same membrane
K the multiset Mset with the multiset List.

Example 9
rule(4,2,[b(1,x),d(2,x)],[a(1,y),c(2,y)]).

?-apply(rule(2,3,[b(1,x)],[c(1,y),d(2,y)]),

[1,a(2,x),[2,b(1,x),[3,d(1,x)]],[4]],R).

R=[1,a(2,x),[2,c(1,y),d(2,y),[3,d(1,x)]],[4]],R).

apply(rule(K, ,Mset,[X|List]),Ms,R):- not X=in(),not X=out,

not X=dissolve,membrane(K,Ms,Mk),difference(Mk,Mset,D1),

union(D1,[X|List],New),transf(K,New,Ms,R),!.

5

As we seen before each apply(rule(MemNr,RuleNr,Mset,List),Ms,R) applies
the rule only once. With the predicate try(K,No,Ms,RR) we try to apply the
rule(K,No, ,) on the membrane structure Ms as many times as it is possible. The
resulting membrane structure is RR.

try(K,No,Ms,RR). Try rule [K,No] until it is no more applicable on membrane
structure Ms.
try(K,No,Ms,RR):- rule(K,No,X,Y),apply(rule(K,No,X,Y),Ms,R1),

write(’Rule=’),write([K,No]),write(X),write(’→’),

write(Y),nl,write(’OLD= ’),write(Ms),nl,

write(’SUCCEEDED! New=’),write(R1),nl,new(change),

assert(succeeded(K,No)),try(K,No,R1,RR).

try(K,No,Ms,Ms):- !.

The super cell system has a clock. The clock starts with 1 and is incremented
by 1. We call a generation the resulting configuration of the membrane structure
after we applied all the possible rules in a clock.
clock(0).

new(Counter):- Counter(K),X is K+1, retract(Counter(K)),

assert(Counter(X)).

start. This is the main predicate.
?- start.

.. listing from section 4

start:- write(’File name for Super Cell= ’),read(File),

consult(File), write(’Rules are ’),nl,listing(rule),

write(’Order of the rules is’),nl,listing(order),

write(’How many generations?=’),read(Gen),

nl,write(’Membrane is ’),mstructure(M),write(M),nl,

again(M,Gen).

again(M,Gen):- new(clock),clock(C),nl,write(’Clock=’),write(C),

nl,retractall(change()),assert(change(0)),

retractall(succeeded(,)),assert(succeeded(0,0)),

retractall(tried(,)),assert(tried(0,0)),

write(’Membrane=’), write(M),nl,

generation(C,M,R),write(’Result=’),write(R),nl,

modify y(R,Rx),

(change(X),not X=0, C < Gen, again(Rx,Gen) ; true).

We choose only one rule that works successful for a membrane. Therefore, if the
rule [1,1] worked we don’t try another rule for membrane 1 in this clock. If rule [1,1]
does not succeed, we try another rule guided by

order(MembraneNr,RuleNr1,RuleNr2).

generation(C,M,RR):- rule(K,N, ,),not succeeded(K,),

not tried(K,N),not better rule(K,N),assert(tried(K,N)),

try(K,N,M,R),generation(C,R,RR).

generation(C,M,M):- !.

list of rules(Rules). In the list Rules we find all the rules of the Super Cell
we are working with. We assume in our program that each rule has a number.

?- list of rules(R).

R=[[1,1],[1,2],[1,3],[1,4],[2,1],[2,2],[3,1],[4,1],[4,2]]

list of rules(R):- findall([I,K],rule(I,K, ,),R).

better rule(K,N). Let’s see if rule [K,N] has a better rule in front, that is a rule
of higher order that is not tried yet. The answer is yes or no.
better rule(K,N):- order(K,N1,N),not tried(K,N1).

modify x(Membrane structure, Result). Substitutes all x in the membrane struc-
ture by y. We need this in order to simulate the parallelism. We need to unmark
the objects (substitute y in x back) when another generation begins.

?- modify x([1,a(1,x),[2,b(1,x),c(1,x)],[3]],R).

R= [1,a(1,y),[2,b(1,y),c(1,y)],[3]]

?- modify y([1,a(1,x),[2,c(1,x),c(1,y)],[3]],R).

R= [1,a(1,x),[2,b(1,x),c(2,x)],[3]]

modify y(R,RR):- subst all(y,x,R,Rx),in order(Rx,RR).

modify x(R,RR):- subst all(x,y,R,Ry),in order(Ry,RR).

4.4 An Example

The program is entirely the collection of predicates presented in section 4. Here is
the first example from Pǎun [1]. The super cell system is described in the file called
paun1.dec. This is the listing of the program after we type start.

?- start.

File name for Super Cell= paun1.

rule(1,1,[c(1,x)],[in(4),c(1,y)]).

rule(1,2,[c(1,x)],[in(4),b(1,y)]).

rule(1,3,[a(1,x)],[[in(2),a(1,y)],[b(1,y)]]).

rule(1,4,[d(2,x)],[in(4),a(1,y)]).

rule(2,1,[a(1,x)],[in(3),a(1,y)]).

rule(2,2,[a(1,x),c(1,x)],dissolve).

rule(3,1,[a(1,x)],dissolve).

rule(4,1,[c(1,x)],[out,d(1,y)]).

rule(4,2,[b(1,x)],[b(1,y)]).

Order of the rules is

order(1,1,3).

order(1,2,3).

How many generations?= 4

Membrane is [1,a(2,x),c(1,x),[2,a(1,x),[3,c(1,x),d(1,x)]],[4]]

Clock=1

Membrane=[1,a(2,x),c(1,x),[2,a(1,x),[3,c(1,x),d(1,x)]],[4]]

Rule=[1,1][c(1,x)]→[in(4),c(1,y)]

OLD= [1,a(2,x),c(1,x),[2,a(1,x),[3,c(1,x),d(1,x)]],[4]]

SUCCEEDED! New=[1,a(2,x),[2,a(1,x),[3,c(1,x),d(1,x)]],[4,c(1,y)]]

Rule=[2,1][a(1,x)]→[in(3),a(1,y)]

OLD= [1,a(2,x),[2,a(1,x),[3,c(1,x),d(1,x)]],[4,c(1,y)]]

SUCCEEDED! New=[1,a(2,x),[2,[3,c(1,x),d(1,x),a(1,y)]],[4,c(1,y)]]

Result=[1,a(2,x),[2,[3,c(1,x),d(1,x),a(1,y)]],[4,c(1,y)]]

Clock=2

Membrane=[1,a(2,x),[2,[3,c(1,x),d(1,x),a(1,x)]],[4,c(1,x)]]

Rule=[1,3][a(1,x)]→[[in(2),a(1,y)],[b(1,y)]]

OLD= [1,a(2,x),[2,[3,c(1,x),d(1,x),a(1,x)]],[4,c(1,x)]]

SUCCEEDED!

New=[1,a(1,x),b(1,y),[2,a(1,y),[3,c(1,x),d(1,x),a(1,x)]], [4,c(1,x)]]

Rule=[1,3][a(1,x)]→[[in(2),a(1,y)],[b(1,y)]]

OLD= [1,a(1,x),b(1,y),[2,a(1,y),[3,c(1,x),d(1,x),a(1,x)]],

[4,c(1,x)]]

SUCCEEDED!

New=[1,b(2,y),[2,a(2,y),[3,c(1,x),d(1,x),a(1,x)]],[4,c(1,x)]]

Rule=[3,1][a(1,x)]→dissolve

OLD= [1,b(2,y),[2,a(2,y),[3,c(1,x),d(1,x),a(1,x)]],[4,c(1,x)]]

SUCCEEDED! New=[1,b(2,y),[2,a(2,y),c(1,y),d(1,y)],[4,c(1,x)]]

Rule=[4,1][c(1,x)]→[out,d(1,y)]

OLD= [1,b(2,y),[2,a(2,y),c(1,y),d(1,y)],[4,c(1,x)]]

SUCCEEDED! New=[1,b(2,y),d(1,y),[2,a(2,y),c(1,y),d(1,y)],[4]]

Result=[1,b(2,y),d(1,y),[2,a(2,y),c(1,y),d(1,y)],[4]]

Clock=3

Membrane=[1,b(2,x),d(1,x),[2,a(2,x),c(1,x),d(1,x)],[4]]

Rule=[2,2][a(1,x),c(1,x)]→dissolve

OLD= [1,b(2,x),d(1,x),[2,a(2,x),c(1,x),d(1,x)],[4]]

SUCCEEDED! New=[1,b(2,x),d(1,x),a(1,y),d(1,y),[4]]

Result=[1,b(2,x),d(1,x),a(1,y),d(1,y),[4]]

Clock=4

Membrane=[1,b(2,x),a(1,x),d(2,x),[4]]

Result=[1,b(2,x),a(1,x),d(2,x),[4]]

5 Conclusions

This is the first version of the program. Let’s call it ProMem 0.1, from Prolog for
Membranes. The program is entirely presented in the section 4 and is written in
LPA [6]. We will highly appreciate any comments concerning the program because
as any first version, it might have bugs.

In writing ProMem 0.1, we had in mind only the transparency of the code in
order to follow the features of membrane computing paradigm. We did not try to
make programming shortcuts or tricks that might have given an optimal program.
Our intention was to write a program so transparent that anyone who knows Prolog
can understand how a super cell system works and any person familiar with the
super cell system could read the Prolog program.

ProMem 0.1 is devoted to develop applications for this new computational
paradigm in order to evaluate the power and the opportunity to build actual ma-
chines.

It might also be useful for the designers of this new paradigm of computation
in order to ”play” with all kinds of rules for the super cell systems. In this sense
we think that the next version should have graphics to visualize the mobility of the
objects.

References

[1] Gheorghe Pǎun: Computing with Membranes, Turku Centre for Computer
Science, TUCS Technical report, N.208, November 1998 (www.tucs.fi) and
Journal of Computer and System Sciences, 61 (2000).

[2] Jurgen Dassow, Gh. Pǎun: “On the Power of Membrane Computing”,
FCT’99, Iaşi, Romania, 1999.

[3] Gheorghe Pǎun, Grzegorz Rozenberg, Arto Salomaa: “Membrane Com-
puting with External Output”, FCT’99, Iaşi, Romania, 1999.

[4] Ivan Bratko: PROLOG, Programming for Artificial Intelligence, Addison-
Wesley Pub. Comp, 1990.

[5] Dave Westwood: LPA-Prolog 2.6 Technical reference, LPA Ltd, London
England,1994.

[6] Gh. Păun, Computing with membranes. An introduction, Bulletin of the
EATCS, 67 (Febr. 1999), 139–152.

[7] Gh. Păun, Computing with membranes – A variant: P systems with po-
larized membranes, Intern. J. of Foundations of Computer Science, 11,
1 (2000), 167–182, and Auckland University, CDMTCS Report No 098,
1999 (www.cs.auckland.ac.nz/CDMTCS).

[8] Gh. Păun, P systems with active membranes: Attacking NP-
complete problems, J. Automata, Languages and Combinatorics, to
apear, and Auckland University, CDMTCS Report No 102, 1999
(www.cs.auckland.ac.nz/CDMTCS).

[9] Gh. Păun, Computing with membranes. A correction, two problems, and
some bibliographical remarks, Bulletin of the EATCS, 68 (1999), 141–144.

[10] Gh. Păun, Computing with membranes (P Systems); Attacking NP-
complete problems, Unconventional Models of Computing (I. Antoniou,
C. S. Calude, M. J. Dinneen, eds.), Springer-Verlag, 2000 (in press).

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 176 - 190.

Monoidal Systems and Membrane Systems

Vincenzo Manca

Universit�a di Pisa

Dipartimento di Informatica

Corso Italia, 40 - 56125 Pisa - Italy

e-mail: mancav@di.unipi.it

Keywords and Phrases: String Rewriting, Formal Systems, Formal Languages,
Membrane Systems, Logical Representability.

Abstract

Monoidal systems are introduced that are computationally universal for-

malisms where a great quantity of other formalisms can be easily represented.

Many particular symbolic systems from di�erent areas are expressed as monoidal

systems. The possibility is outlined that these systems express localization as-

pects typical of membrane systems and other phenomena such as temporality

and multiplicity that are essential in the formalization of molecule manipulation

systems.

1 Introduction

In [12] we introduced some forms of logical representability in the study of

string derivation systems, giving examples of logical representations for many

kinds of symbolic systems, and general theorems showing the computational

universality of di�erent forms of logical representability, their relationships, and

their applicability in the analysis and uni�cation of many classical formalisms.

Among the methods of logical representations for symbolic systems, monoidal

theories and monoidal representability result to be very expressive tools. In

[13] some normalization results were presented in the general context of string

derivation and some monoidal theories were given in connection with some reg-

ulation mechanisms and with some examples of complex systems taken from

L-systems and grammar systems areas.

In this paper we continue to study monoidal representability by introducing

monoidal systems. In short, a monoidal system M consists of an alphabet A,

a �nite set P of predicates, some �nite axioms � plus the monoid axioms and

a subset Q of P , called representation predicates. The signature of the axioms

consists of: i) the symbols for the monoid operation and the monoid unit (con-

catenation and �), ii) the predicates P , and iii) the symbols of A as individual

constants. A k-ary representation predicate S de�nes a k-ary relation R over

A� such that (strings are closed terms): R(�1; : : :�k) () � j= S(�1; : : :�k):

This simple idea allows us to apply the �rst order logical apparatus for express-

ing: rewriting relations, derivations, regulations, and other concepts typical of

symbolic systems. It is enough to axiomatize by suitable predicates the struc-

ture of the system we want describe: all the dynamical aspects of the systems

can be deduced, with a logical calculus, from these axioms. In many cases

it is natural to distinguish the axioms common to all the systems of a class

(grammars, automata, transducers, . . .) from the axioms that are proper of

a particular system. In the sequel, we will present many examples aimed at

showing the large spectrum of applicability of monoidal systems. In a special

manner, we want to stress the intrinsic potentiality of monoidal systems in

expressing phenomena where some forms of localization mechanisms are con-

sidered: membranes, environments, or regions. In a series of papers concerning

the logical formalization of biochemical phenomena we already formulated in

several forms some ideas of possible formalizations of localization principles (see

the metabolic model META in [9], and the rules of logical metabolic systems

in [10, 12]), however, in the course of these attempts we arrived to the general

conclusion that any formal system able to cope with molecule manipulation

systems, arising in biochemical contexts, have to develop tools for describing

not only string generation or recognition, but also more general dynamical as-

pects: locality (interactivity, osmosis), temporality (stability, periodicity), and

multiplicity (growth, energetic trade-o�). In other words, space, time, and

matter/energy aspects have to be accounted for in any satisfactory modelling

of dynamical systems based on molecules.

P systems introduced in [16] and developed in many other papers (for ex-

ample [17, 18]) are systems explicitly devoted to a formalization of localization

phenomena in string elaborations. The membrane structure of a P system can

be easily expressed by suitable predicates and axioms; moreover, many di�er-

ent structural choices, and regulation strategies within these systems can be

formulated by other axioms. A monoidal system related to P systems will be

given in a next section.

We think that monoidal systems could be a good basis for developing sys-

tems where not only locality, but also temporality, and multiplicity can be dealt

with in a very general way. In fact, locality is given for free just by the use

of predicates, and temporality can be easily introduced by predicates with a

temporal parameter. Multiplicity can be represented by strings or by a typing

predicate (x : � means that x is an individual whose type is represented by the

string �).

Of course, this is only a starting point. In fact, many physical aspects

(polarity, osmosis, energetic trade-o�, . . .) could require more speci�c repre-

sentation tools; however, it seems us that monoidal systems have an intrinsic

exibility that allows us to extend in many directions their potentialities. Our

motto for future research is: molecules are strings with additional features in-

trinsic to their physicality; �nd predicates and axioms suitable to express this

physicality in the right manner (for a wide spectrum of situations).

In the sequel, we refer to [22, 21] for basic elements of formal language

theory, and to [3, 23] for basic elements of mathematical logic.

2 Monoidal Systems

We recall that:

� j= '

means that � is a �-theory over a signature �, ' is a formula on the same

signature, and ' is a logical consequence of the theory � (' holds in all the

�rst order �-models M of �).

Given a formula '(x) with a free variable x and an individual term t, we

indicate by '(t) the formula obtained from '(x) by replacing in it all the

occurrences of x with the individual term t (if in t some variable occurs, then

it has to be free in '(t)).

Let A be a �nite alphabet. A monoidal signature, of alphabet A and pred-

icates P , consists of: i) the symbols of A as constants plus another constant �

for the empty string, ii) a binary function symbol for concatenation (which we

indicate by juxtaposition), and iii) a �nite set P of symbols for predicates.

De�nition 2.1 A monoidal theory of alphabet A and predicates P is a theory

over a monoidal signature (of alphabet A and predicates P) that includes the

usual axioms of monoid (the associativity of concatenation and the indi�erence

of � with respect to concatenation).

Of course, in a monoidal theory the set of closed terms (terms without variables)

consists of the free monoid A�.

We call proper axioms of a monoidal theory the axioms that are di�erent

from the monoid axioms. Smullyan's formal systems [24] are particular case of

monoidal theories.

De�nition 2.2 Let � be a monoidal theory over a signature �, and let '(x)

be a �-formula with only one free variable. A language over the alphabet A is

representable in � by the formula ' if:

� 2 L () � j= '(�):

Example 2.1 fanbncnjn 2 !g � fa; b; cg� is representable by L in the the

monoidal theory having the following proper axioms:

1. L(�)

2. L(abc)

3. 8x y (L(xby) ! L(axbbyc)):

For example, this is the way we deduce L(aabbcc).

1. L(abc) axiom 2

2. 8x y (L(xby) ! L(axbbyc)) axiom 3

3. L(abc)! L(aabbcc) instance of axiom 3 for x = a; y = b

4. L(aabbcc) modus ponens from 1, 3.

Assume that � j= L(anbncn), then by the third axiom for x = anbn�1; y = cn

we get:

L(anbncn) ! L(aanbnbcnc), and by modus ponens: � j= L(an+1bn+1cn+1),

therefore:

� 2 fanbncnjn 2 !g () � j= L(�):

De�nition 2.3 A monoidal system M of alphabet A, axioms �, predicates P ,

and representation predicates Q is a system

M = (A;P;�; Q)

where � are the proper axioms of a monoidal theory of alphabet A and predicates

P , and Q is a subset of P .

A monoidal grammatical system M is a monoidal system with a represen-

tation unary predicate; if L is its representation predicate, then M de�nes a

language L(M) given by the language representable in the monoidal theory of

M by the predicate L.

Let C be the grammatical monoidal system of alphabet fa; b; cg, with the

representation predicate L and with the axioms given in the previous example,

then fanbncnjn 2 !g = L(C).

In the following we use lower case letters for the symbols of the alphabet A, cap-

ital letters or strings beginning with capital letters for predicates, and strings

ending with � for representation predicates. In this manner a monoidal system

can be completely expressed by its axioms (variables will be speci�ed explic-

itly).

The classML consists of the languages de�ned by means of monoidal grammat-

ical system. The following theorem establishes the computational universality

of monoidal systems.

Theorem 2.1 (Universality of Monoidal Systems) RE =ML:

Proof. We show that for any Chomsky grammar G = (A; T; S;R), where A is

the alphabet of G, T the terminal symbols of G, S the start symbol of G, and R

the productions of G, we can de�ne a monoidal grammatical system MG of al-

phabet A and predicates fStart;Derive;Replace; T erminal;Generate�g such

that L(G) = Generate�(MG). The systemMG is given by the following axioms

(x; y; u; v variables implicitly universally quanti�ed; S; a; �; � closed terms):

� Start(x)! Derive(x)

� Derive(uxv) ^Replace(x; y)! Derive(uyv)

� Derive(x) ^ Terminal(x)! Generate�(x)

� Terminal(x) ^ Terminal(y) ! Terminal(xy)

� Start(S)

� Terminal(a) 8 a 2 T

� Replace(�; �) 8 �! � 2 R:

It follows easily by induction that a terminal string � is generated by G i�

the formula Generate�(�) is deduced by the given axioms. This implies that

RE �ML, the converse inclusion is a consequence of a general theorem about

axiomatic systems: the theorems of an axiomatic theory are a recursively enu-

merable set [23]. Q.E.D.

The example given for the language fanbncnjn 2 !g shows that a monoidal

system for a given language can be more easily de�ned in a direct manner

rather than by the system MG associated to a grammar G that generates the

language.

The proof of the previous theorem gives an important information about the

logic we need in de�ning monoidal grammatical systems: it is not all �rst order

logic, but only a part of it, usually indicated as Horn logic. For this logic we

have a simple logical calculus ` in order to deduce all the logical consequences

of some axioms �. Namely, the axioms of a monoidal grammatical system are

universal quanti�cations of atomic formulae, of conjunctions of atomic formu-

lae, or of implications between a conjunction of atomic formulae and an atomic

formula. In this case we have that:

� j= ' () � ` '

and ` can be de�ned by these simple deductive rules (t any term):

� ' 2 �) � ` '

� � ` ';� `) � ` ' ^

� � ` '! ;� ` ') � `

� � ` 8x'(x)) � ` '(t):

In [12] we proved that a language is representable in a monoidal theory i�

it is representable, in the model SEQ of �nite sequences of natural numbers

with concatenation and length, by means of �1-SEQ formulae (a particular

class of 8-bounded formulae). Another interesting aspect, resulting from the

proof of the universality theorem above, is that the axioms of the monoidal

system related to a grammarG can be divided in two parts: a general part (the

�rst 4 axioms) are common to any monoidal system associated to a Chomsky

grammar, while the other particular axioms (the last 3 axioms) are relative to

the grammar G. It is very simple to �nd monoidal systems for many classes

of formalisms studied in formal language theory (e.g., L-systems, H-systems,

[8, 6, 5]); examples essentially based on monoidal systems can be found in

[12, 13]. Now we consider �nite state automata and �nite iterated transducers

[25, 20, 11], where the division into general and particular axioms is completely

apparent.

Example 2.2 (Monoidal Systems for Finite Automata)

Let (A;Q; q0; F;R) be a �nite state automaton of alphabet A, states Q, ini-

tial state q0, �nal states F , and transition rules R. The following are the

axioms of a grammatical monoidal system M such that Recognize�(M) is the

language recognized by the automaton (x; y; z; t; u; v; w variables implicitly uni-

versally quanti�ed; q; q0; s; a; � closed terms):

� Input(x) ^ Input(y) ! Input(xy)

� Input(x) ^ Initial(z) ! Derive(zx)

� Derive(uzxv) ^ Transition(zx; t)! Derive(uxtv)

� Derive(wz) ^ Final(z)! Recognize�(w)

� Input(a) 8 a 2 A

� Initial(q0)

� State(q) 8 q 2 Q

� Final(q) 8 q 2 F

� Transition(qa; s) 8 qa! s 2 R:

Example 2.3 (Monoidal Systems for Iterated Transducers)

Let (A;Q; q0; a0; F;R) be a �nite iterated transducer of alphabet A, states Q,

initial state q0, initial symbol a0, �nal states F , and transition rules R. The fol-

lowing are the axioms of a grammatical monoidal systemM such that Generate�

(M) is the language generated by the transducer (x; y; z; t; u; v; w variables im-

plicitly universally quanti�ed; q; q0; s; a0; a; � closed terms):

� Start(x) ^ Initial(z) ! Derive(zx)

� Derive(uzxv) ^ Transition(zx; yt) ! Derive(uytv)

� Derive(wz) ^ State(z) ^ Initial(t) ! Derive(tw)

� Derive(wz) ^ Final(z)! Generate�(w)

� Start(a0)

� Initial(q0)

� State(q) 8 q 2 Q

� Final(q) 8 q 2 F

� Transition(qa; �s) 8 qa! �s 2 R:

3 A Monoidal System for Red Algae

Red Algae are a famous example of application of L-systems in the formalization

of developmental processes. In the usual turtle representation, the �rst six

growth stages of a red alga are the following (F is a cell, drawn as a segment,

what is between brackets is alternatively at a positive or negative angle with

respect to the main growth axis):

� R(1) = F

� R(2) = FF

� R(3) = FFFF

� R(4) = FF [F]FF

� R(5) = FF [FF]FF [F]FF

� R(6) = FF [FFF]FF [FF]FF [F]FFFF

The growth process continues according to the following procedure (see [6]):

\From stage 6 onwards we may divide the organism into two parts.

The �rst six cells (from the left) of the main branch form a basal part

while the rest of the cells forms an apical part. Every second cell

in the basal part carries a non-branching �lament. These �laments

develop linearly in time, they repeat at each stage their own previous

structure with the addition of one new cell. At stage 6 the lengths of

these �laments are 3, 2, 1, respectively, the longer ones being nearer

the base. The apical part at stage 6 consists of four cells without

any branches. After this, the apical part at each stage is a repeat

of the apical part of the previous stage, together with two new cells

at the base end of the apical part. The second of these new cells

carries a branch which is identical to the whole organism six stages

previously."

Formal representations of this development in terms of OL systems can be found

in [8, 22, 6, 2, 7].

Here we present a monoidal theory that is a natural translation of the informal

description given above. In fact, for n > 6 we have the following conditions,

where R(n); B(n); A(n) are the strings representing the entire organism, the

basal part, and the apical part respectively at stage n (x, y, z are variables im-

plicitly universally quanti�ed, n can be represented by the string of n symbols

F):

� A(6) = FFFF

� R(n) = B(n)A(n)

� A(n) = FF [R(n� 6)]A(n� 1)

� y � xyz

� [x] � B(n � 1)! [xF]� B(n):

(By the way, it is easy to provide a generalized sequential mapping g such that

for any n � 6, g(R(n)) = anbncn; in fact, the basal part has a threefold syn-

chronized development, therefore Red Algae are not a context free language).

From a technical viewpoint, the axioms given above are not a monoidal the-

ory because they include terms di�erent from the strings of a free monoid.

However, this is only matter of syntactic sugar: it is very easy to transform

these axioms in the right form by transforming the functional symbols R;A;B

into predicates. We prefer this presentation because it makes more evident the

translation from the informal de�nition of the growth process.

4 A Monoidal System for Proteins

In [19] Pawlak introduced a formal language as an attempt to formalize the pro-

cess of protein formation. Since there are 64 types of codons (strings of length

3 over the nucleotide alphabet f0; 1; 2; 3g), but only 20 of them are associated

with some amino acid, Pawlak selects those codons that can be associated to

some particular triangles representing amino acids, that are just 20, and gives

a recursive de�nition of proteins, as the well-formed strings resulting from this

de�nition. What it is interesting, from our point of view, it is not the bio-

chemical adequacy of this language, but the fact that it is a language not easily

de�nable with the usual tools of formal language theory. De�nitions of this

language in terms of Chomsky grammars were proposed, but the equivalence of

these de�nitions with the original de�nition of Pawlak is not completely obvious

(a discussion on this regard, in the more general context of formal languages

as models of genetics, can be found in [14, 15]). The initial idea of Pawlak

is a linear ordering relations over the four bases A; T;C;G (this is the reason

we indicate them by 0; 1; 2; 3). The restriction proposed by Pawlak is that an

amino acid is represented by by a triangle labelled by the symbols of a codon

ijk such that if i is the label of the left left side, j the label of the base, and

k the label of the right side, then i < j � k. It easy to see that there are 20

triangle satisfying this condition, that we say amino triangles. The recursive

de�nition of Pawlak's language is the following:

� Every amino triangle is a well-formed polytriangle;

� Given a polytriangle x, we get a new polytriangle if we add to x an amino

triangle such that: its base and the relative label coincide either with the

left side and the relative label of a triangle of x, or with the right side and

the relative label of a triangle of x, and no side of the added triangle may

coincide with the base or the side of another triangle of x;

� A polytriangle is terminal if no amino triangle can be added to it that

gives a new polytriangle;

� A protein is a terminal polytriangle.

Pictorial representations of this language can be found in [14]. In the following

we give a monoidal system which in a very natural manner de�nes strings which

represents proteins according to this de�nition.

� 0 < 1 < 2 < 3

� x = 0 _ x = 1 _ x = 2 _ x = 3! Base(x)

� Base(x) ^Base(y) ^Base(z) ^ x < y ^ (z = y _ z < y)! Amino(xyz)

� Amino(x)! Polypeptide(x)

� Polypeptide(wxyz)^Amino(xyz)^Amino(uzv) ! Polypeptide(wxyzuzv)

� Polypeptide(xyzw)^Amino(xyz)^Amino(uxv) ! Polypeptide(uxvxyzw)

� Polypeptide(xyzwutv) ^ Amino(xyz) ^ Amino(uxv) ^ x = 0 ^ v = 0 !

Terminal(xyzwutv)

� Polypeptide(w) ^ Terminal(w)! Protein�(w)

(a triangle is a string of 3 symbols that are the labels of left side, base, and

right side; when two of these strings are contiguous, then the same symbols

occurring in them will represent labels that share the same segment).

5 A Monoidal System for Primality

In [10] a membrane system for the generation of prime numbers was given that

realizes a multi-agent version of Eratosthenes' sieve. It is essentially based on

the following recursive de�nition of the function q(n) giving the value of the

greatest prime number not exceeding n:

q(2) = 2

and for n > 2:

q(n) = minfi � n j i 6= j � q(k) 8 1 < j; k < ng

(for n > 1, q(n) = n if and only if n is a prime number). In the aforementioned

system the sieve was structured by generating natural numbers and by adding

a new membrane when a prime number was discovered, in such a way that in

any membrane, labeled with a prime, at any time there is included the biggest

multiple of its label among those generated at that time.

This process can be expressed by the following monoidal system where a

temporal parameter is indicated as a pre�x of predicates (Mult(z; y) means

that z is a multiplier of y; the meaning of the other predicates is obvious;

x; y; z; u; v are implicitly universally quanti�ed variables).

� 0�Prime(2)

� 0�Current(3)

� 0�Mult(4; 2)

� j�Current(x) ^ (j�Mult(z; y)! x < z)

! (j + 1)�Prime(x) ^ (j + 1)�Current(x+ 1)^ (j + 1)�Mult(x+ x; x)^

(j + 1)�Mult(z; y)

� j�Current(x) ^ j�Mult(x; y) ^ j�Mult(u; v) ^ u 6= x

! (j + 1)�Current(x+ 1) ^ (j + 1)�Mult(u; v) ^ (j + 1)�Mult(x + y; y)

� j�Prime(x)! Prime�(x)

The following is what is deduced for the �rst seven steps:

0�Prime(2); 0�Current(3); 0�Mult(4; 2)

1�Prime(3); 1�Current(4); 1�Mult(4; 2); 1�Mult(6; 3)

2�Current(5); 2�Mult(6; 2); 2�Mult(6; 3)

3�Prime(5); 3�Current(6); 3�Mult(6; 2); 3�Mult(6; 3); 3�Mult(10; 5)

4�Current(7); 4�Mult(8; 2); 4�Mult(9; 3); 4�Mult(10; 5)

5�Prime(7); 5�Current(8); 5�Mult(8; 2); 5�Mult(9; 3); 5�Mult(10;5);5�Mult(14; 7)

6�Current(9); 6�Mult(10; 2); 6�Mult(9; 3); 6�Mult(10; 5); 6�Mult(14; 7):

We remark that the only arithmetic operation we need in this generative process

is the sum; this means that any implementation of the sum via DNA is a good

basis for a DNA process of prime generation [4].

6 Monoidal Systems for SAT

In [18] a solution of the problem SAT is given by using a P system, in a time

which is linear in the number of variables and of clauses. The idea of this method

is the following. Let v1; : : : vn be n propositional variables and let C1; : : :Cm be

m clauses over the given propositional variables. Create m nested membranes

labelled with the clauses inside an external membrane labelled by C0 (C0 in-

cludes C1 that includes C2, . . . , that includes Cm). Inside the most internal

membrane, labelled by Cm, put the string v1; : : : vn of all variables. Then, du-

plicate this membrane into two membranes, both labelled by Cm, where the

strings t1; : : : vn, and f1; : : : vn are put respectively. Continue this duplication

process for all the membranes labelled by Cm, for all the propositional vari-

ables, until every variable vi is replaced by the two corresponding truth values

ti, and fi. At any step a membrane labelled by Cm produces two membranes

labelled by Cm, therefore after n steps all the possible 2n Boolean valuations of

the n propositional variables are generated into m membranes labelled by Cm.

All these membranes are inside a membrane labelled by Cm�1, that is inside a

membraneCm�2, an so on, being C0 the most external membrane. At this point

a process of membrane dissolving is performed by using the clauses. Starting

from the most internal membranes (labelled by Cm), if a valuation contains

ti and the clause which labels the membrane contains the literal vi, then the

membrane is dissolved; while, if a valuation contains fi and the clause contains

the literal :vi then the membrane is dissolved. In this manner, some valuation

reaches the external membrane if the given set of clauses is satis�able. This

process can be represented by the following monoidal theory (x; y variables).

The essence of linearity of this solution is intrinsically related to the second

axiom. Any computational model where this deduction can be represented in a

parallel way can also generate all the valuations in O(n) time. Moreover, if we

could activate, in a massive parallel way, a test procedure for the dissolution

of membranes including each generated valuation, we can completely solve the

problem in O(n+m) time.

� V ariables(v1v2 : : : vn)

� V ariables(xviy)! V ariables(xtiy) ^ V ariables(xfiy)

� V aluation(ti) ^ V aluation(fi)

� V aluation(x) ^ V aluation(y) ! V aluation(xy)

� V aluation(x) ^ V ariables(x)! Testm(x)

� Clausej(xviy) ^ Testj (xtiy) ! Testj�1(xtiy)

� Clausej(x:viy) ^ Testj(xfiy) ! Testj�1(xfiy)

� Test0(x)! Solution�(x):

Now we give a monoidal theory where a solution of SAT is constructed without

a preliminary generation of all possible valuations of propositional variables

(0; 1 stand for the truth values and ? for any of them; x; y; u; v are variables).

Encode the m clauses with the strings �1�2 : : :�m. Encode v1; : : : ; vn with with

the strings �1; �2 : : : ; �n. The �rst axioms are put for any value i (1 � i � n)

such that �i1�i2 : : : �ik encode the k clauses satis�ed by vi = true. The second

axioms are put for any value i (1 � i � n) such that �j1�j2 : : :�jh encode the

h clauses satis�ed by vi = false. The third axioms are put for the values of i

such that no clause is satis�ed by vi = true or by vi = false.

1. Positivei(�i1�i1�i2 : : : �ik)

2. Negativei(�i0�j1�j2 : : : �jh)

3. Neutrali(�i?)

4. Positivei(x)! Componenti(x)

5. Negativei(x)! Componenti(x)

6. Neutrali(x)! Componenti(x)

7. Componenti(x)! Componenti(uxv)

8. Component1(x) ^ : : :^ Componentn(x)! Presolution(x)

9. Substring(x; uxv)

10. Presolution(x) ^ Substring(�1 ; x)^ : : :^ Substring(�m ; x)

! Solution�(x):

The following (abstract) DNA solution of SAT was suggested by the previous

monoidal system. Encode the m clauses with the oligonucleotides �1�2 : : :�m
(strings in the alphabet fT;A;C;Gg). Encode v1; : : : ; vn with with the oligos

�1; �2 : : : ; �n. Construct for i = 1; 2; : : :n, the oligo

Positivei = �iT�i1�i2 : : : �ik�i+1

if �i1�i2 : : :�ik encode the k clauses satis�ed by vi = true, where �i+1 is the

oligo complementary of �i. Construct analogously the oligo

Negativei = �iA�j1�j2 : : : �jh�i+1

if �j1�j2 : : :�jh encode the h clauses satis�ed by vi = false. Moreover, put the

oligo

Neutrali = �iC�i+1

if no clause is satis�ed by vi = true or by by vi = false.

Amplify with PRC and add ligase for allowing complementary strands to an-

neal. Filter by a�nity, in m consecutive steps, the DNA strands where all

�1�2 : : :�m occur. If some strand remains in the �nal test tube, then it encodes

a solution of the given instance of SAT: it is enough sequencing the resulting

DNA strand, the base that follows �i indicates the right value to associate to

the variable vi (T stands for true, A for false, and C for any truth value).

7 Monoidal Systems for P Systems

P systems [16, 17, 18] are membrane systems where aspects of locality, and

multiplicity are explicitly treated. We show that a monoidal representation of

these systems is strongly related to an explicit introduction of some temporal

parameters.

The logical description we propose automatically ful�ls some general re-

quirements that are requested to their dynamics. Here we follow the variant

presented in [18]. Our starting point is the term [h a]
p
h that expresses a mem-

brane of label h and polarity p where the object a is located. In a P system

an inclusion structure of labelled membranes is given and multisets of objects

(represented as strings) are located inside them. The behavior of such a system

is driven by six types of rules:

� evolution rules (an object inside a membrane is changed);

� introduction rules (an object outside a membrane is put inside it);

� extraction rules (an object inside a membrane is sent outside it);

� dissolution rules (a membrane disappears and the objects inside it are

sent outside);

� elementary division rules (a membrane transforms into two membranes

possibly changing the polarity and replacing an object with other two in

the new membranes);

� division rules (submembranes with opposite polarizations are separated

into two new membranes, possibly changing their polarities).

Let us consider:

� three ternary predicates: 2; :;� and two binary predicates <; #;

� individual constants for labels, membranes, polarities, and object occur-

rences (M0 is the label for the most external membrane; E a constant for

the external environment; +;�; 0 for polarities, and 0 also for the initial

instant);

� the concatenation operator for expressing multisets by strings (all the

permutations of a string � represent the same multiset where an object

has n occurrences if the correspondent symbol occurs n times in �);

� a next step operator (t0 is the step that follows t).

The meaning of these predicates is the following:

� (p)m :t h

\at step t the membrane m has the label h and the polarity p";

� xay 2t m

\at step t an occurrence of the object a is located in the membrane m";

� m1 �t m2

\at step t the membrane m1 is included in the membrane m2";

� t1 < t2
\the instant t1 is before the instant t2";

� m # t

\in the instant t the membrane m changed with respect to the previous

instant" (t > 0, the initial con�guration will refers to the initial instant

0).

Now the rules of a P system can be easily expressed in the following manner

where m " t stands for 8x(m # x! x < t) and a notation such as

(t := t0)[F (m; t)� xay 2t m]

stands for the set of formulae already deduced where m; t occur, minus the

formula xay 2t m, after replacing t with t0 (x; y; z; t are implicitly universally

quanti�ed variables, and the comma will abbreviates the logical conjunction).

� m " t ; xay 2t m! xwy 2t0 m ; (t := t0)[F (m; t)� xay 2t m]

(evolution rule)

� m1 " t ;m2 " t ; xay 2t m1 ; z 2t m2 ;m2 �t m1 ! za 2t0 m2 ; xy 2t0 m1;

(t := t0)[F (m1;m2; t)� xay 2t m1;� z 2t m2] (introduction rule)

� m1 " t ; m2 " t ; xay 2t m2 ; z 2t m1 ; m2 �t m1 ! xy 2t0 m2 ; za 2t0

m1; (t := t0)[F (m1;m2; t)� xay 2t m2;� z 2t m1] (extraction rule)

� m1 " t ; m2 " t ; xay 2t m2 ; m2 �t m1 ! ; xby 2t0 m1;

(t := t0;m2 := m1)[F (m1;m2; t)� xay 2t m2 � m2 �t m1]

(dissolution rule)

� m1 " t ; m2 " t ; (p)m2 :t h ; xay 2t m2 ; m2 �t m1 !

m3 �t0 m1 ; m4 �t0 m1 ; xby 2t0 m3 ; xcy 2t0 m4;

(q)m3 :t0 h ; (s)m4 :t0 h;

(t := t0;m2 := m3)[F (m1;m2; t)� m2 �t m1 � (q)m2 :t h � xay 2t m2]

(t := t0;m2 := m4)[F (m1;m2; t)� m2 �t m1 � (q)m2 :t h � xay 2t m2]

(elementary division rule)

� m " t ; m1 �t m ; : : : ;mk �t m ; : : : ;mj �t m; : : : ;mn �t m; (p)m :t h;

(+)m1 :t h1 ; : : : ; (+)mk :t hk;

(�)mk+1 :t hk+1 ; : : : ; (�)mj :t hj;

(0)mj+1 :t hj+1 ; : : : ; (0)mn :t hn !

(t := t0;m := ma; p := pa)[F (m; t)�mk+1 �t m; : : : ;mj �t m];

(t := t0;m := mb; p := pb)[F (m; t)�m1 �t m; : : : ;mk �t m]

(division rule, m 6= M0).

In this monoidal representation of P systems, a crucial point is the use of

temporal parameters. In fact, there is a deep di�erence between the intrinsic

monotony of classical logic and the nonmonotony of a system where during

the process some element can disappear. In our rules we put in the premises

of implications the last instant requirement (m " t) and in the conclusion the

temporal updating where some facts are not updated, and so cannot anymore

determine the future behavior of the system. We remark that in this formulation

time is local to membranes. This makes possible having deductive processes

that are mutually independent. But, in order to partaking to the application of

rules, membranes that are in the inclusion relationship need to have the same

last instant. This require an additional improper rule of pure evolution:

'(t)! '(t0)

for every already deduced formula '(t) (this rule could be replaced by more

complex conditions in the rules given above). A membrane that does not apply

this rule in an appropiate way may block the application of rules giving parasitic

behaviors.

Many variants can be considered in dealing with the temporal parameter,

where more sophisticated temporal relations can be combined with localization

principles. Here, we do not go on in this analysis, but it is important to realize

that the monoidal formalism provides us a tool adequate for these investiga-

tions.

A P system is a generative device where a string � is an output of the system

if at end of a computation, when no rules can be applied, � 2 E (� represents

the multiset in the external environment where any order can be chosen when

many objects are sent out at the same time). The language generated consists

of all outputs corresponding to all initial con�gurations of the system.

In the usual manner we did for the other formalisms, if PP are the axioms

given above, and Th(M) are the axioms specifying the membrane structure of

a particular P system M with an initial con�guration, we have:

PP [Th(M) j= � 2t E

if and only if � is an output of M in correspondence to the given initial con�g-

uration, and no proper rule can be applied anymore (t is a �nal instant).

We remark that: all the behavior of the system is in the rules and no principle

must be added for specify its transitions; this behavior can be deduced logically

from the axioms; and �nally, several variants can be de�ned only by changing

the axioms PP .

8 Conclusion and Open Problems

In the previous sections we gave motivations and examples for the applicability

of monoidal systems, aimed at showing their role in the formalization of locality,

temporality, and multiplicity aspects. These aspects are crucial in biochemical

contexts, where space, time, matter, and energy are involved in many speci�c

forms: osmosis, polarity, gradient, channel, ow. Let us consider the oxidative

phosphorylation, that is, the mitochondrial ATP-ADP cycle [1]. It is a fun-

damental life process associated to Krebbs' cycle that makes possible the pro-

duction of ATP, the energetic chemical unity used in the biosynthesis processes

(the passage ATP ! ADP liberates energy). In the mitochondrial region the

NADH molecule resulting from Krebbs' cycle transforms into NAD++H+ with

an energy gain that makes possible, in several steps, and by means of speci�c

molecules, the passage of the H+ ions outside the mitochondrial membrane.

According to the chemiosmotic theory, the protonic gradient, between the in-

ternal and external regions of the mitochondrial membrane, activates a ionic

chanel that makes possible a ow of H+ from the outside to the internal region

and this ow inverts the reaction ATP ! ADT+P into ADP+P ! ATP , and

promotes, by using suitable vector molecules, many other passages across the

membrane (e.g. the passage from outside of NADH, phosphorus and ADP).

Of course, the right manner to express formally all the aspects of this pro-

cess depend strongly on the possibility of a good formal setting where speci�c

aspects of molecules are adequately treated. We need a lot of work in order to

obtain formal systems that can predict the behavior of biochemical processes,

or only explain some of their features as consequences of axioms expressing

general structural aspects, but certainly, discrete logical symbolic systems will

help us to extract their pure informational aspect, giving some clue in the com-

prehension of the global logic which controls the enormous number of molecule

manipulation systems cooperating in biological environments.

References

[1] Alberts B., Bray D., Lewis J., Ra� M., Roberts K., Watson, J.D., Molec-

ular Biology of the Cell, Garland Publishing Inc., New York, 1989.

[2] Dassow J., P�aun G., Regulated Rewriting in Formal Language Theory,

Springer-Verlag, Berlin, Heidelberg, 1989.

[3] Enderton H. B., A Mathematical Introduction to Logic, Academic Press,

New York, 1972.

[4] Guarnieri F., Fliss M., Bancroft C., Making DNA add, Science, 273, 220-

223, 1996.

[5] Head T., Formal language theory and DNA: an analysis of the genera-

tive capacity of recombinant behaviors, Bulletin of Mathematical Biology,

49(1987) pp. 737-759.

[6] Herman G. T., Rozenberg G., Developmental Systems and Languages,

North-Holland, Amsterdam, 1975.

[7] Kari L., Rozenberg G., SalomaaA., L Systems, in [21], Vol. II, pp. 253-328,

1997.

[8] Lindenmayer A., Mathematical models for cellular interaction in develop-

ment, I and II, J. Theoret. Biol., 18, pp. 280-315, 1968.

[9] Manca V., String Rewriting and Metabolism: A Logical Perspective, in:

Computing with Bio-molecules. Theory and Experiments, P�aun G. (ed.),

Springer-Verlag, Singapore, pp. 36-60, 1998.

[10] Manca V, Martino M. D., From String Rewriting to Logical Metabolic

Systems, in: G. P�aun, A. Salomaa (eds.), Grammatical Models of Multi-

agent Systems, Gordon and Breach Science Publishers, Topics in Computer

Mathematics, Vol. 8, pp. 297-315, London, 1999.

[11] Manca V., C. Martin-Vide, G. P�aun, Iterated GSM Mappings: A Collaps-

ing Hierarchy, in: Jewels Are Forever, A. Salomaa, H. Mauer, G. Paun

(eds.), pp.182-193, Springer-Verlag, New-York, 1999.

[12] Manca V., Logical String Rewriting, Theoretical Computer Science, Spe-

cial Issue devoted to MFCS 98, 23rd International Symposium on Mathe-

matical Foundations of Computer Science, 2001 (to appear).

[13] Manca V., Logical Representation of Grammatical Systems, International

Workshop Grammar Systems 2000, July 3-7, 2000, Bad Ischl, Austria, to

appear.

[14] Marcus S., Linguistic Structures and Generative Devices in Molecular Ge-

netics, in: Cahier de Linguistique Th�eorique et Appliqu�ee, Vol. 11, n. 2,

pp. 77-104, 1974.

[15] Marcus S., Language at the Crossroad of Computation and Biology, in:

Computing with Bio-molecules. Theory and Experiments, P�aun G. (ed.),

Springer-Verlag, Singapore, pp. 1-35, 1998.

[16] P�aun G., Computing with membranes, TUCS Research Report N. 208,

November 1998 (hhtp://www.tucs.�).

[17] P�aun G., Computing with membranes. An introduction, Bulletin of the

EATCS 67, pp. 139-152, Febr. 1999.

[18] P�aun G., P Systems with Active Membranes: Attacking NP Complete

Problems, CDMTCS Technical Report 102, May 1999

(hhtp://www.cs.auckland.ac.nz/CDMTCS).

[19] Pawlak Z., Gramatyka i Matematika, Panstwowe Zakadi Wydawnietw

Szkolnych, Warszawa, 1965.

[20] B. Rovan, A framework for studying grammars, Proc. MFCS 81, Lect.

Notes in Computer Sci. 118, Springer-Verlag, 473{482, 1981.

[21] Rozenberg G., Salomaa A.(eds.), Handbook of Language Theory, 3 Voll.,

Springer-Verlag, Berlin, Heidelberg, 1997.

[22] Salomaa A., Formal Languages, Academic Press, New York, 1973.

[23] Smory�nski C., Logical Number Theory, Springer-Verlag, Berlin, Heidel-

berg, 1991.

[24] SmullyanR. M., Theory of Formal Systems, Princeton Univ. Press, Prince-

ton, New Jersey, 1961.

[25] D. Wood, Iterated a-NGSM maps and �-systems, Inform. Control, 32,

1{26, 1976.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 191 - 192.

Bags And Beyond Them

Solomon Marcus
Romanian Academy,Mathematics

Calea Victoriei 125, Bucuresti, Romania
e-mail: smarcus@stoilow.imar.ro

1 Introduction

I will use the word ”bag” for what is usually understood by a multiset: a set A whose
each element x exists in a number c(x) of copies of x.We will accept the general
situation when A is of an arbitrary cardinal and c(x) too is an arbitrary cardinal.
As a matter of fact, even if A is finite, but very (too) large and of a cardinal which
is not exactly known (this is what happens in many situations occurring in physics,
chemistry or biology) it is convenient to approximate A by an infinite set.

2 Bags as equivalence relations

Denote by E(A) the set of all copies of elements in A. The relation asserting that y
belongs to c(x) is an equivalence relation in E(A), provided that we accept what is
usually implicitly understood: if u, v, w are elements in E(A), then u is a copy of
u; if u is a copy of v, then v is a copy of u; if u is a copy of v and v is a copy of w,
then u is a copy of w. We can proceed in the opposite way too: Given a set A and
an equivalence relation r in A, we can consider u as a copy of v exactly when urv;
again any element is a copy of itself; if u is a copy of v, then v is a copy of u; a copy
of a copy of u is still a copy of u.

3 What happens in some specific situations

It happened to me to meet some important bags in the field of linguistics, where the
passing from etic to emic units (in phonology, in morphemics and in semantics) is
just the move from individual elements to their equivalence classes, i.e., from copies
to classes of copies. For instance, in phonology it was generally assumed that a
phoneme is an equivalence class of sounds; each sound is a copy of any other sound in
the same equivalence class, i.e., belonging to the same phoneme. However, in a more
rigorous approach, as it was proposed by Kanger (1964) and improved by Marcus
(1965, 1967), starting from the viewpoint proposed in descriptive linguistics (Harris
1961), we are faced in the mathematical modeling of the phoneme with a binary
relation called ”variation in the broad sense”, which corresponds to what is called
in the linguistic analysis of the phoneme ”free variation”. As it is proved in Marcus

(1967: 63), the binary relation ”u and v are in the relation of variation in the broad
sense” is not transitive, despite the fact that u and v belong to the same phoneme.
So, if at a first glance the set of phonemes is a bag, where each sound is a copy of
another one iff they belong to the same phoneme, in the more rigorous approach
mentioned above the respective binary relation is no longer transitive, it is only
reflexive and symmetric, i.e., what is called a tolerance relation. A similar situation
occurs in the study of synonymy. At a first glance, the relation of synonymy is an
equivalence relation and leads to the structure of a bag: two strings are synonymous
if they have the same meaning (Marcus 1973, chapter IV). However, synonymy in
natural languages is generally not transitive, because it is context dependent, as it
can be seen on the example of ”great”, ”large” and ”big”, each of them selecting
specific contexts.

4 Tolerance spaces as an extension of bags

We reach in this way the idea to extend the notion of a bag, by considering the
relation ”u is a copy of v” as a tolerance relation, i.e., a binary relation which is
reflexive and transitive (Pogonowski 1981, Shreider 1975). The associated topology
is no longer the usual one; it is what is called a Cech topology (Cech 1966: chapter
3), which differs from the classical topology by the fact that the closure operator is
replaced by a more general one, where the closure of the closure of a set A contains
A, but it is not always equal to A. We have already used it in respect to learning
processes (Marcus 1989, 1994).

References

E. Cech 1966 Topological Spaces. Prague: Publishing House of the Czech Academy.
Z.S. Harris 1961 Structural Linguistics. Chicago: University Press.
S. Kanger 1964 The notion of a phoneme. Statistical Methods in Linguistics 3, 43-48
(Stockholm).
S. Marcus 1965 Sur un ouvrage de Stig Kanger concernant le phoneme. Statistical
Methods in Linguistics 4, 43-48.
S. Marcus 1967 Introduction Mathematique a la Linguistique Structurale. Paris:
Dunod.
S. Marcus 1973 Mathematische Poetik. Frankfurt/Main: Athenaum.
S. Marcus 1989 Interplay of innate and acquired in some mathematical models of
language learning processes. Revue Roumaine de Linguistique 34, 101-116.
S. Marcus 1994 Tolerance rough sets, Cech topologies, learning processes. Bull.
Polish Academyof Science, Technical Science 42, 3, 471-487.
J. Pogonowski, Tolerance Spaces with Applications in Linguistics. Poznan: Uni-
versity Press. Yu. A. Shreider 1975 Equality, Resemblance and Order. Moscow:
Mir.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 203 - 217.

Multiset and K-subset transforming systems

Taishin Yasunobu Nishida∗

Faculty of Engineering, Toyama Prefectural University,
Kosugi-machi, 939-0398 Toyama, Japan

Abstract

We introduce K-subset transforming systems as a generalization of multiset
transformation. A K-subset, which is a generalization of a multiset of which
“multiplicities” is take values of a semiring, is considered by S. Eilenberg. We
construct an example of K-subset transforming system which models a chaotic
discrete dynamical system. We show that for every basic reaction of multiset
transformation we can construct a K-subset transforming system which ex-
presses the multiset transformation. We also show that for every phrase struc-
ture grammar there is a K-subset transforming system such that the system
simulates derivations of the grammar.

1 Introduction

Recently a number of new computing models are proposed, quantum computing
[15], DNA computing [10], membrane computing or P system [3, 9, 11, 12, 13], and
so on. These new models and the “traditional” models, such as Turing machine,
phrase structure grammar, term rewriting system, cellular automata, etc, give us
quite different appearance. But we can find a common feature of them: they all
obey discrete time development. We can say that computational science is a science
of discrete dynamical systems, by contrast the physical science have been described
by continuous differential equations.

In this paper we try to build a general framework of discrete dynamical systems.
We adopt K-subset [5] to express objects in discrete dynamical systems. A K-
subset is a generalization of a multiset or a multiset of which “multiplicities” take
values of a semiring. Among many varieties of multiset theory, K-subset has a
firm theoretical background [4]. Our model has a set of rules which are pairs of a
condition and an action over K-subsets. Adding an initial K-subset, we obtain a
K-subset transforming system.

Multiset transformation is a good model of chemical reaction. But in such a
situation that a molecule of a protein changes its conformation according to a con-
centration of other molecules, such as pH or calcium ion, rational or real “multiplic-
ities” will be useful. And in quantum computing, the “multiplicities” of quantum
states are complex numbers. This is why we introduce non-integral multiplicities.

∗Email:nishida@pu-toyama.ac.jp, URL:http://www.comp.pu-toyama.ac.jp/˜nishida

After preliminaries describing semirings andK-subsets, we defineK-subset trans-
forming systems and give an example which models a chaotic discrete dynamical
system in Section 3. Then we mention the relation between K-subset transforming
systems and multiset transformation in Section 4. Finally, in Section 5, we show
that K-subset transforming systems include string rewriting systems: phrase struc-
ture grammars and L systems. Although some results in this paper are obtained
by only simulating existing models with K-subset transforming systems, we believe
that K-subset transforming systems open up new vistas of computational science.
Example 2 and Theorem 6 suggest the wide possibilities of K-subset transforming
systems.

2 Preliminaries

First we introduce the notion of semiring from [5]. A set K is said to be a semiring
if K has two operations addition and multiplication, K is a commutative monoid
with respect to addition, K is a monoid with respect to multiplication, and addition
and multiplication are connected by the following equations

x(y + z) = xy + xz

(x+ y)z = xz + yz

x0 = 0 = 0x

for every x, y, z ∈ K where 0 is the unit element with respect to addition, + stands
for addition, and omitted · stands for multiplication. The unit element with respect
to multiplication is denoted by 1. Thus for every element x, y, z ∈ K we have

x+ y = y + x

x+ (y + z) = (x+ y) + z

x+ 0 = x

x(yz) = (xy)z

1x = x = x1

Clearly any ring is a semiring. We give a few examples of semiring which will
appear in this paper.

Example 1 The following sets are all semirings.

1. B = {0, 1} with the operations:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 1

00 = 01 = 10 = 0, 11 = 1.

So 0 is the unit element for addition and 1 is the unit element for multiplica-
tion. Notice that B is different from GF(2)1.

1GF(2) is the only field of two elements and satisfies 1 + 1 = 0.

2. The set of all nonnegative integers IN.

3. The set of all real numbers IR.

A semiring K is called commutative if for every x, y ∈ K we have xy = yx.
Then we define K-subsets [5]. We assume that K is a nontrivial semiring, i.e.,

0 �= 1, or equivalently K has at least two elements. We also assume that K is
commutative. Let X be a set. A K-subset A of X is a function

A : X → K.

For every x ∈ X the element A(x) ofK is called themultiplicity with which x belongs
to A or multiplicity of x in A. The union ∪ and the intersection ∩ of two K-subsets
A and B of X are defined by

(A ∪B)(x) = A(x) +B(x) and

(A ∩B)(x) = A(x)B(x).

For every k ∈ K the operation kA is defined by

(kA)(x) = kA(x).

We note that every B-subset B of X corresponds a normal subset S of X by the
next equation.

S = {x ∈ X |B(x) = 1}.

A “normal” multiset is a collection in which elements may be duplicated, for
example,

{a, a, a, b, c, c}.

The number of times an element occurs in a multiset is called its multiplicity. In
this paper we denote a multiset in the form

{multiplicity of a · a,multiplicity of b · b, . . .},

so the multiset above is expressed as

{3 · a, 1 · b, 2 · c}.

Then we have the next proposition.

Proposition 1 For a set X, there exist functions µ and ν such that µ maps every
IN-subset A of X to a multiset µ(A) over X, ν maps every multiset M over X to
an IN-subset ν(M) of X, and µν and νµ are identities.

Proof . The function µ and ν are defined by

µ(A) =
⋃

x∈X∧A(x)>0

{A(x) · x}

and

ν(M)(x) =

{
the multiplicity of x in M if x ∈M
0 otherwise

.

Then the conclusions are obvious.
For every x, y ∈ IN we define x

.
− y by

x
.
− y =

{
x− y if x ≥ y

0 otherwise
.

Unless otherwise stated, for every predicate P , we assume that ∀i (P) and ∃i (P)
stand for ∀i ∈ IN(P) and ∃i ∈ IN(P), respectively.

3 Definitions of K-subset transforming systems

Here we give the definition of a K-subset transforming system.

Definition 1 AK-subset transforming system is a 4-tuple G = 〈X,K,R,A0〉 where
X is a set, K is a semiring, R is a set of rules of the form

〈condition〉 : 〈action〉

in which condition is a closed predicate whose variables take values over X and K-
subset of X and action consists a set of formulas that give a new K-subset from the
current K-subset. If condition and/or action have infinitely many formulas, then
rules may be expressed by a schema of rules. Usually, we omit, from actions, the
definition of multiplicities of elements of X in the new K-subset which take the same
multiplicities in the current K-subset. And A0 : X → K is the initial K-subset.

A K-subset A′ is derived from a K-subset A by G if there is a rule whose
condition is true for A and A′ is obtained from A by the action of the rule. A
K-subset transforming system G generates a sequence of K-subsets (A0, A1, . . .) in
which An is derived from An−1 by G for n = 1, 2, If there is no rule whose
condition is true for a K-subset An, then G derives no K-subset from An and the
sequence is terminated at An.

Example 2 Let G = 〈{y}, IR, R,A0〉 be an IR-subset transforming system where R
consists of

A(y) ≥ 0 : A′(y) = −2A(y) + 1

A(y) < 0 : A′(y) = 2A(y) + 1

and A0(y) = x0 for some x0 ∈ [−1, 1]. Then the multiplicities of y in the sequence
(A0, . . . , An, . . .) generated by G give the trajectory of the discrete dynamical system

xn+1 = −2|xn|+ 1,

i.e.,
xn = An(y).

This is an example of chaotic dynamical systems (Example 6.2.1 of [8]).

4 Multiset transformation and IN-subset transforming
system

The IN-subset transforming system will be equal to the multiset transformation. For
example, the sort program written in GAMMA [1, 2, 6] looks like:

Example 3 Let G = 〈X, IN, R,A0〉 be an IN-subset transforming system where

X = {(1, x1), . . . , (n, xn)}, xi ∈ IR, 1, . . . , n ∈ IN,

A0 is an IN-subset of X, and R consists of the rule schema

∃i∃j (∃x, y ∈ IR)(A((i, x))A((j, y)) > 0 ∧ i < j ∧ x > y) :

A′((i, x)) = A((i, x))
.
− 1, A′((j, y)) = A((j, y))

.
− 1,

A′((i, y)) = A((i, y)) + 1, A′((j, x)) = A((j, x)) + 1.

Now obviously G generates the finite sequence (A0, . . . , Ak) such that i ≤ j and
x ≤ y if Ak((i, x))Ak((j, y)) > 0.

Example 3 is generalized to the basic reaction of GAMMA program.

Theorem 2 Let X be a set and let

G : x1, . . . , xn → A(x1, . . . , xn)⇐ R(x1, . . . , xn)

be a basic reaction of multiset over X where x1, . . . , xn are variables and R and A
are of arity n [6]. Then there is an IN-subset transforming system H such that G
transform a multiset M to M ′ if and only if H generates IN-subset M ′ from M .

Proof. Let H = 〈X, IN, P,A0〉 be an IN-subset transforming system where P consists
of

(∃x1, . . . , xn ∈ X)R(x1, . . . , xn) : B′(xi) = B(xi) + ν(A(x1, . . . , xn))(xi)
.
− 1,

i = 1, . . . , n
B′(y) = B(y) + ν(A(x1, . . . , xn))(y)

for y �∈ {x1, . . . , xn}

and A0 = ν(M0) where M0 is the initial multiset for G and ν is the function defined
in Proposition 1. Then the conclusion follows immediately.

We do not treat sequential and parallel composition operators of GAMMA [6].
But by Theorem 4 in Section 5, K-subset transforming systems have computational
universality.

5 Phrase structure grammars, L systems, and K-subset
transforming systems

In this section we consider the relation between string rewriting systems and K-
subset transforming systems. We assume the reader is familiar with basics of phrase
structure grammars (see [14]) and L systems (see [7]).

Let Σ be a finite alphabet. A B-subset A of IN×Σ is said to be linearizable if A
satisfies

1. For every i ∈ IN and a, b ∈ Σ such that a �= b we have A((i, a))A((i, b)) = 0.

2. For every i < j < k and every a, b, c ∈ Σ we have ¬(A((i, a)) = 1∧A((j, b)) =
0 ∧A((k, c)) = 1).

For a linearizable B subset A, a mapping φ : A→ Σ∗ or Σω is defined by

φ(A) =

ai · · · aj ∈ Σ∗ if A((i, ai)) = · · · = A((j, aj)) = 1∧

A((k, b)) = 0 for k < i, k > j

ai · · · aj · · · ∈ Σω if A((j, aj)) = 1 for some i ∈ IN and every j ≥ i

.

Then the next theorem describes that B-subset transforming systems include
phrase structure grammars.

Theorem 3 Let G = 〈V,Σ, P, S〉 be a grammar. Then there exists a B-subset
transforming system H such that for every sentential form w generated by G there
is a B-subset A of IN× V generated by H which satisfies

w = φ(A).

Proof . Let H = 〈IN×V,B, R,A0〉 where A0((1, S)) = 1, A0((i, x)) = 0 for i �= 1 and
x ∈ V , and R consists of the following rule schema:
For every a1 · · · ak → b1 · · · bl ∈ P and l ≥ 1

∃i (A((i, a1)) = · · · = A((i+ k, ak)) = 1 ∧ a1 · · · ak → b1 · · · bl) :

A′((i, bi)) = · · · = A′((i+ l, bl)) = 1,

A′((i, a1)) = · · · = A′((i + k, ak)) = 0,

A′((i + l + j, ci+k+j)) = A((i+ k + j, ci+k+j)) for j > l, and

A′((j, cj)) = A((j, cj)) for j < i.

For every a1 · · · ak → ε ∈ P

∃i (A(i, a1)) = · · · = A((i+ k, ak)) = 1 ∧ a1 · · · ak → ε) :

A′((i, ai)) = · · · = A′((i+ k, ak)) = 0,

A′((i+ j − 1, ci+k+j)) = A((i+ k + j, ci+k+j)) for j > 0, and

A′((j, cj)) = A((j, cj)) for j < i.

First we observe that every B-subset A of IN × V generated by H is linearizable.
Then the definition of φ leads the conclusion.

Since the above theorem says that K-subset transforming systems can simulate
type 0 grammars, we have the following theorem.

Theorem 4 The K-subset transforming systems generate all recursively enumer-
able languages. There is a K-subset transforming system generating a sequence of
K-subsets which is not recursively enumerable.

Proof . The first assertion is a corollary of Theorem 3. Since a chaotic dynamical
system shows quite different behaviour by any infinitesimal change in the initial
value, the different initial IR-subset in Example 2 gives the different IR-subset trans-
forming system. So the cardinality of possible IR-subset transforming systems in
Example 2 is the cardinality of continuum. Then the second assertion is true.
We note that, by Charch’s hypothesis, the class of effectively computable K-subset
transforming systems must coincide with the class of Turing machines.

Next we consider L systems.

Theorem 5 Let G = 〈Σ, P,#, w〉 be a (1, 1)L system where # is the environmental
marker not in Σ. Then there is a B-subset transforming system H such that for every
u ∈ Σ+ derived by G, H generates the linearizable B-subset A of IN × (Σ ∪ {#})
satisfying

u# = φ(A).

Proof . Let H = 〈X,B, R,A0〉 be the B-subset transforming system where

X = {−1} ∪ IN ∪ {$} × IN ∪ IN× (Σ ∪ {#}) ∪ ({0, 1} × IN)× (Σ ∪ {#}),

A0((i, ai)) = 1, A0((l + 1,#)) = 1, and A0(x) = 0 for other x ∈ X

where w = a0 · · · al, and R has the following rules:

1. ∃i∃a ∈ Σ ∪ {#} (A((i, a)) = 1) : A′(((0, i), a)) = 1, A′((i, a)) = 0.

2. ∀i∀a ∈ Σ ∪ {#} (A((i, a)) = 0) ∧ ∃a, x ∈ Σ(A(((0, 0), a))A(((0, 1), x)) = 1)∧

(#, a, x)→ b1 · · · bk ∈ P :

A′(((1, 0), b1)) = · · · = A′(((1, k − 1), bk)) = 1,

A′(((0, 0), a)) = 0, A′(1) = 1, A′(($, k − 1)) = 1.

2’. ∀i∀a ∈ Σ ∪ {#} (A((i, a)) = 0) ∧ ∃a ∈ Σ(A(((0, 0), a))A(((0, 1),#)) = 1)∧

(#, a,#)→ b1 · · · bk ∈ P :

A′(((1, 0), b1)) = · · · = A′(((1, k − 1), bk)) = 1,

A′(((0, 0), a)) = 0, A′(−1) = 1, A′(((1, k),#) = 1.

3. ∃j (A(j) = 1) ∧ ∃l (A(($, l)) = 1)∧

∃a, x, y ∈ Σ(A(((0, j − 1), x))A(((0, j), a))A(((0, j + 1), y)) = 1)∧

(x, a, y)→ b1 · · · bk ∈ P :

A′(((1, l + 1), b1)) = · · · = A′(((1, l + k), bk)) = 1, A′(((0, j), a)) = 0,

A′(j + 1) = 1, A′(j) = 0, A′(($, l)) = 0, A′(($, l + k)) = 1.

4. ∃j (A(j) = 1) ∧ ∃l (A(($, l)) = 1)∧

∃a, x ∈ Σ(A(((0, j − 1), x))A(((0, j), a))A(((0, j + 1),#)) = 1)∧

(x, a,#)→ b1 · · · bk ∈ P :

A′(((1, l + 1), b1)) = · · · = A′(((1, l + k), bk)) = A′(((1, l + k + 1),#)) = 1,

A′(((0, j), a)) = 0, A′(j) = 0, A′(($, l)) = 0, A′(−1) = 1.

5. A(−1) = 1 ∧ ∃i∃a ∈ Σ ∪ {#}(A(((1, i), a)) = 1) :

A′((i, a)) = 1, A′(((1, i), a)) = 0.

6. A(−1) = 1 ∧ ∀i∀a ∈ Σ ∪ {#}(A(((1, i), a)) = 0) : A′(−1) = 0.

Now we show that for every B-subset A of IN× (Σ∪ {#}) satisfying u# = φ(A) for
some u ∈ Σ+, u ⇒G v if and only if there exists a B-subset B which is generated
from A by H and φ(B) = v#. Let u = a0 · · · an−1 where ai ∈ Σ, i = 0, . . . , n−1, let
A((0, a0)) = · · · = A((n− 1, an−1)) = A((n,#)) = 1, and let A((j, a)) = 0 for j < 0
or j > n. Then by iterating the rule 1 n+ 1 times, we have B-subset A1 such that

A1(((0, 0), a0)) = · · · = A1(((0, n − 1), an−1)) = A1(((0, n),#) = 1.

We note that the rule 2 cannot be iterated until the rule 1 is iterated n + 1 times
by the first condition of the rule 2:

∀i∀a ∈ Σ ∪ {#} (A((i, a)) = 0).

Next rules 2, 3, and 4 (or 2’) simulate the derivation of G from left to right. After
the rule 4 (or 2’) is iterated, we have B-subset A2 satisfying

A2(((1, 0), b0)) = · · · = A2(((1,m), bm)) = A2(((1,m + 1),#)) = 1,

A2(−1), and b0 · · · bm = v.

Finally rules 5 and 6 generate the desired B-subset B. Then it is proved that H
generates B-subset A of IN× (Σ ∪ {#}) if only if G generates u ∈ Σ+ such that

u# = φ(A).

If G generates ε, then H generates B-subset Aε and Aε derives nothing where

Aε(((0, 0),#)) = 1, Aε(x) = 0 for other x ∈ X.

Since all L systems generate ε from ε, this makes no problem.
The B-subset transforming system constructed in the above proof is quite unef-

ficient. It simulates one step derivation of an L system with many steps. We should
find K-subset transforming systems which can generate strings in parallel.

But by considering an IN-subset of Σ∗× IN, we can measure the multiplicity of a
word, that is, the total number of different derivations of a word in an L system.

Theorem 6 Let G = 〈Σ, P,#, w〉 be an L system. Then there is an IN-subset trans-
forming system H such that for every word u derived by G in i steps H generates
an IN-subset A of Σ∗ × IN and that A((u, i)) gives the multiplicity of u.

Proof . Let H = 〈Σ∗ × IN, IN, R,A0〉 where A0((w, 0)) = 1, A0((x, i)) = 0 for x �= w

or i �= 0 and R consists of the following rule schema

∃i∃u ∈ Σ∗(A((u, i)) > 0 ∧ ∀v ∈ Σ∗(u⇒G v)) :

A′((v, i + 1)) = A((v, i + 1)) +A((u, i)), A′((u, i)) = 0.

Then obviously A((u, i)) gives the multiplicity of u derived by G in i steps.

References

[1] J. Banâtre, A. Coutant, and D. Le Metayer, A parallel machine for multiset
transformation and its programming style, Future Generations Computer Sys-
tems 4 (1988) 133–144.

[2] J. Banâtre and D. Le Métayer, Programming by multiset transformation, Com-
munications of the ACM 36 (1993) 98–111.

[3] J. Dassow and G. Păun, On the power of membrane computing, Journal of
Universal Computer Science 5 (1999) 33–49.

[4] W. D. Blizard, The development of multiset theory, Modern Logic 1 (1991)
319–3522.

[5] S. Eilenberg, Automata, Languages, and Machines Volume A, (Academic Press,
New York, 1974).

[6] C. Hankin, D. Le Métayer, and D. Sands, Refining multiset transformers, The-
oretical Computer Science 192 (1998) 233–258.

[7] G. T. Herman and G. Rozenberg, Developmental Systems and Languages
(North-Holland, Amsterdam, 1975).

[8] M. Martelli, Discrete Dynamical Systems and Chaos, (Longman Scientific &
Technical, Harlow, 1992).

[9] G. Păun, Computing with membranes, Journal of Computer and System Sci-
ences, to appear, (and Turku Centre for Computer Science-TUCS Report No
208, 1998 (http://www.tucs.fi)).

2There is a correction to this paper. But you need not look at the correction. The correct
correction is
“Item [8] on p. 349 of this paper should have read as follows:
[8] Blizard, W., Dedekind Multisets and Function Shells, Theoretical Computer Science 110 (1993)
79–98.”

[10] G. Păun, G. Rozenberg, and A. Salomaa, DNA Computing , (Springer, Berlin,
1998).

[11] G. Păun, Computing with membranes. An introduction, Bulletin of the EATCS
67 (1999) 139–152.

[12] G. Păun, Computing with membranes. A correction, two problems, and some
bibliographical remarks, Bulletin of the EATCS 68 (1999) 141–144.

[13] G. Păun, P systems: an early survey, The Third International Colloquium on
Words, Languages and Combinatorics March 2000, Kyoto (Proceedings will be
published by World Scientific, Singapore).

[14] A. Salomaa, Formal Languages, (Academic Press, New York 1973).

[15] P. W. Shor, Algorithm for quantum computation: discrete log and factoring, in:
Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer
Science (1994).

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 203 - 217.

� � � � � 	 � � � � 	 � � � � � � � � � ! # % ' � 	 � � �) +

- � � 	 ' % � 1 2 � � � � � 4 � - � � � 4 � 6

7 8 : ; < = 8 : > @B C E

F G H I J I K I L M N O P I Q L R P I J S H M N I Q L T M R P G J P G U S P V L R W
X Y Z M \] _ ` a b c ` d ` d d Z K S K e L fH I J c T M R P G J P

g h R P J i j k l m n o p q r m s t s u

B v w x < y z x { | Q L P J R M N I Q L H L G M I L H J H I M H I P I L P H L e J L H M N M } L G } e M ~ i L R H
P G V c R P J G i W c e L H L P e S Q I M } J S H P ~ M K I X H W H I L R H � | Q L W S P G ~ L S i K H I L e L V J G
I Q e L L S i P H H L H j � K L H I J M G H V L P i J G � � J I Q � S i P H H J S � I M } J S H J G P K I M R P I P P G V
i P G � K P � L I Q L M e W c � K L H I J M G H R M I J � P I L V ~ W I Q L } M H H J ~ i L K H L N K i G L H H M N X
H W H I L R H P H S M R } K I J G � R M V L i H � J R } i L R L G I P I J M G P G V S M R } i L \ J I W J H H K L H � c
P G V � K L H I J M G H e L i P I L V I M I Q L � L i V H � Q L e L I Q L X H W H I L R H P e L J G H } J e L V
N e M R c ~ J M i M � W P G V ~ J M S Q L R J H I e W � X e L S J H L M } L G } e M ~ i L R H S P G ~ L N M K G V
} e P S I J S P i i W J G P i i } P } L e H } K ~ i J H Q L V M e V J H I e J ~ K I L V H M N P e M G I Q L � L ~ � Q L e L
� L P e L R P J G i W J G I L e L H I L V J G e L H L P e S Q V J e L S I J M G H c J G S i P H H L H M N } e M ~ i L R H �

� � � � � 	 � � � 2 � � � � � 4 � - � � � 4 �

| Q L e L P V L e J H H K } } M H L V I M P i e L P V W ~ L N P R J i J P e � J I Q X H W H I L R H c ~ P H J S � P e J P G I H P G V
~ P H J S e L H K i I H J G S i K V L V c H M F V M G M I e L S P i i V L � G J I J M G H c } e M M N H c P G V I Q L M e L R H J G P

N M e R P i R P G G L e � | Q L S K e e L G I ~ J ~ i J M � e P } Q W M N I Q L V M R P J G c � J � L G P I I Q L L G V M N I Q J H
V J H S K H H J M G c S P G ~ L Q L i } N K i I M I Q J H P J R � F G } P e I J S K i P e c � Q P } I L e � N e M R I Q L R M G M � e P } Q

� X � � J H e L S M R R L G V L V c P H I Q L � e H I H W H I L R P I J S H K e � L W M N I Q L V M R P J G � Q M � L � L e c P I I Q L
i L � L i M N Y S I M ~ L e] � � � c � Q J S Q J H G M I J e e L i L � P G I N M e X H W H I L R H H I K V W j H L � L e P i M N I Q L
} P } L e H R L G I J M G L V J G I Q L ~ J ~ i J M � e P } Q W P e L V P I L V i P I L e � �

F M G i W e L S P i i I Q L } J S I K e L J G � J � K e L] c J i i K H I e P I J G � I Q L J V L P M N P R L R ~ e P G L H I e K S h
I K e L c P H � L i i P H P i J H I M N � L W � M e V H c G P R J G � J G � e L V J L G I H M N X H W H I L R H M N � P e J M K H I W } L H j
R L R ~ e P G L c L i L R L G I P e W R L R ~ e P G L c H � J G R L R ~ e P G L c R L R ~ e P G L H I e K S I K e L c i P ~ L i c e L h
� J M G c M K I L e e L � J M G c M ~ � L S I c H W R ~ M i h M ~ � L S I c H I e J G � h M ~ � L S I c R K i I J H L I c L � M i K I J M G e K i L c
S M R R K G J S P I J M G c S M R R P G V H � � � � ¡ ¢ £ ¤ ¥ c I P e � L I c G M G V L I L e R J G J H I J S S M R R K G J S P I J M G c
S M G S L G I e P I J M G c L i L S I e J S P i S Q P e � L � } M i P e J ¦ P I J M G � c V J H H M i � J G � P R L R ~ e P G L � P S I J M G § � c
J G S e L P H J G � I Q L I Q J S � G L H H M N P R L R ~ e P G L � P S I J M G ¨ � c S M G � � K e P I J M G c I e P G H J I J M G c S M R h
} K I P I J M G c Q P i I J G � c J G I L e G P i © L \ I L e G P i M K I } K I c P S I J � L R L R ~ e P G L c V J � J V J G � P R L R ~ e P G L �

ª M c i L I K H ~ L � J G V J e L S I i W ~ W V J H S K H H J G � } M H H J ~ i L V J e L S I J M G H N M e e L H L P e S Q � F P R
� P e G J G � P ~ M K I I Q L N P S I I Q P I I Q L H L e L H L P e S Q V J e L S I J M G H P e L G M I P i i M N I Q L H P R L � L h
G L e P i J I W c V J « S K i I W P G V © M e J R } M e I P G S L c R M e L M � L e c I Q L W P e L G M I M e V L e L V P S S M e V J G � I M
P G W S M G S L J � P ~ i L S e J I L e J M G c H K S Q P H I Q L � L G L e P i J I W c V J « S K i I W c P G V © M e J R } M e I P G S L � F G
} P e I J S K i P e c J I J H } M H H J ~ i L I Q P I H M R L � K L H I J M G H P e L L P H W I M H L I I i L c � Q J i L M I Q L e H R J � Q I
~ L S i M H L I M G M G H L G H L � ¬ Q P I F S i P J R J H I Q P I I Q L H L � K L H I J M G H V L H L e � L H M R L L M e I H I M
S i P e J N W I Q L R c H I P e I J G � � J I Q I Q L � L e W } e M ~ i L R � Q L I Q L e M e G M I I Q L W P e L I e J � J P i P G V © M e

® ¯ ° ± ° ² ³ ´ µ ± ¶ · · ¸ ³ ¹ ° º » ¼ ¹ µ ° ½ ¾ ³ ° ´ ´ ¾ ¿¸ À ° Á ° ³ ² Â º ° ¯ ° ´ ° ³ ´ ² Ã À ° Á ° ³ ² Â ¾ ¹ ² ¹ º ° Ä ² ¹ ² Â ¶ Á ¼ ² Å Æ Ç È É Ã ² Á º
¹ µ ° Æ ¸ Â ¼ ¹ ° ´ µ Á ¾ ´ ² Â Ê Á ¾ Ë ° ³ ± ¾ ¹ ¼ ¸ Ì Í ² º ³ ¾ º Î

� � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	
 � ! � � � � � � � � # $ � � � � � � � � � � � � � � � � � � � % � � � � � % � � � � � () � *

+

,

-

.

+

,

-

.

/

0

1

2

/
0

1
2

34 56

34 56

+
,

-
.

34 56 34 56

7777 8
9 9 9 :

;;;;;<

� � � � � � � �
= = >

) �� � � � � � � �

� � @ � � � A A BC C C C C C C C C D

9 9 9 9 :

E F G H J K L M N � � � � � � � � � � ! (� ! � �

Q R

T

U V

X

Y

Z
[

\] _ � � ` ! � � � @ � � � � � � � � � � � � � � � % � � � � � � � � � � � @ � � % ` � � (� � � � (� � �) �` � � (� � � � � � (� � ` � � c � � ! (� ! � � � % � � � � � � @ (� � � � � � � (� � ` ! � � � @ ` � � (� � 	 � � � � � � � � � % � � � � � � � � � (� � � % � � � ! � � � _ � � ` ! � � � @ � � � � � � � % � � � � � � � � � * � � � ! � � � � (� � ` ! � � � @ � � � � � � � � � � � � � @ � � � � � � ! � � � ` � � � � � @ � * � � ! � � � � � � � (� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � @ � � � () � � � � � (� � � � � � � % � � � � ` � � � � � � � � @ � � �� � (� � ` ! � � � @ � � � � � � � �) � � � g � N _ � � ` ! � � � @ * � � � � � � � � � � (� � � � � ((� � ` ! � � � � � �� � � @ � � � � � � ` ! � ` � � � � � � � � � � � ` � (� � � � � � � � @ � � � � � � * % � � � � ` � � � � � � � � � � � � � �) �� � � � ! � � � � � � � �) � � � i � � � � � (N � @ � � � � � � * � j � @ ! � � R � � � ! � � � � � � � � � � � � � � � �
 � � (� � � � � � � ` � � � � � � � � � � � � � % ! � � � � � � � � � � � � % � � � � � � � � � � (� � ` ! � � � @ � � � � � � � � � � � �

k] l � � � � � � � � � � � � ` � � ` � � � � % � � � � � (� � � � � � � � � � ` � � � � � � � � � � � � % # � � � �
 � � � � � � � � � � � � � � � � � � � � ` � � � � � � � � � � � � % � � � � � ` � � (� � (� � � � � � � � � * � � � � � � � � � � � � � ` �
 � � � � � � � � � % � � � � � � m n m n o p �N � � � � % � � � � � q ! � � � � � � ` ` � � � � � � � r � � � � � � � ! ` � � � � * � � �) � � � � % ` �) � � � � % ` � � � % � � � � � � � � � � � � � # � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � ! � � � � � � � � � � � � @ ! � @ � � � � � � � s � � � � � � � � � � � � � � � (� � � � � � � � (� � ` ! � � � @� � � � � � � � � � � � � � � � � � � � � � � @ � � � � � � @ ! � @ � � � ! � � � � t u v w m x y w x � % � � � � � (p z { y | w x � 	 � � � � � � � � � � � � c � � � � � � � � � � � � � � � ! � � � � � ! � � � � (� � � � (� � � � � (�(� � � � (� � � � } � � � � � ! � � � ` � � (� � � � % (� ` � � � % � � � � � � � (� % � � � � @ � � � � � � @ � � � � � � � � � # � � � � � � � � � � � � � � � � (� � � � � � * � � � � � � (� � % � � � � � % � p � t � v � u v w m x y w � � y p � � �� � � � � � � % � p � t � v � � n � u � � y � � y p � � � � � � � ! � � � � � � � � � � � @ � � ` � (� � � � � � % � � �) �� � � � � ((� ! � � � � � � � � � � � � � � � � � � � � % ` � ` � � � � � � � � � � � � ! � � � � � � � � � � � � � � (� � �� � � � ` ! � � � � � � � � � � � � @ � � � Q � � � T � � � R R � � � � � � � � � � � % � � � � (� s � � � � �) � � � % � (� � � � � � � � � � ` � ` � � � � � � � � � � @ � � � � � � � � % � � ! � � � � � � * � � � � � � # � � � � (� � � � � � �� � ` � � � � % � � � � y n y � � w m � y � � � � � � � % � ! � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � 	
 � � 	 � ! � � � � # � � � � $
� # � � � � � � � � � � � � ' � � � � � � (! � � � � � � � � � � � � * � � � � , � � � � � � � � � � � � � � � ! � � - � � � / � � � � � � # � �
� � � � # � � � � � � � � � � � 1 � � � � � � � � � 2 � � � � � � � � , � � � ! � # � � � ! � � * � � � (� � � � � � � 6 � � 7 9

: ; < = > ? @ A B C D E F G H I F J K L M N F E P K Q G H K R S F J T G Q L M U

S D R R

V P W

X H K L M P D G H K R P D Q Y F H Z N

[D M D Q L \ W R U F H L Q C J N

V P W S F J T G Q L M U

^ D J _ H K M D S F J T G Q L M U `

`

b c N d N Q D J N e

f R D \ Q H F M L \ J D I L K
b g h i g j g k l e

X L F m J D I L K
b g h n g o p l q g h n g n l ` e

r

s s s t

u u u v

r

u u u v
s s s t

u u u vw
w

w
w

w
w

w
w w x

y y y z

{ D K R L Q d
b g h n g n l | n g o p l e

^ F I D R N
b g h g h } l e ~ J T R D J D M Q K Q L F M

� � � ! � � � � � � � � � � � � # ! � � � ! � (� � � , � � � # � � � � � � � � (� � � � � � � � � � � � � ! � � � � � � � � � # � �
� � � � � � � � � � � � � � � # � � � � � � � � � � � � � � � � / � � � � � � � � � � � ! � � � � � � � # � � � � 9 � # � * # � � �
� � � � � � � � , , � � � � � � � � � ! � � � � # � � � � � � � (� � � � � � � � � # � � � � � � � � � � � � � � / � � , � # � , � � �
* # � � # � � � � � � � * � � � � � * � � # � � � � ! � � � � � � * � � # � ! � � � � � � � � � � � � � � � � / � � � � � � ! � � � �
� � * � � $ � � � � ! � � � � � � � � � � � � - (� � # � * � � � * # � � � � � � � � � � � � � � � � � � (� � � � � � � � � � � � � ,
� � � � ! � � � � � � � � � � � � , � ! � � � � � � � � # � * � � � � � � � � � � � � � � � (� � � � � � � � � � � � � ,
� ! � � � � � � � � � � � � # � � � � � # � � � � � 7 $ � ! � � � � � � � � � � � � - � ! � #
� # � � � � � � � � � (! � � # � � � � � ! � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � ! � # � � � (� � � � � � � � 6 � � � � � � � 6 � � � � # � � � � � � # � � � � � � , � � � � � � � � � � � �
� # � � � * � � � , � � � � � � � � , � � � � � � � � 7 $ � � � � � � (� � � � � - � � � � � � � � � � � � � � � � � � 6 � � � � � � � � �
� � ! � / � � � � � � � � � � � (! � � � � � � � � � � 6 � � � � � � � � � � 6 � � � � � (� � � � � / � � � � � � � � / � � � � � / � � � � � 7 $
� � � � � � � � � � � , � � � � � � � � , � � � � � � � � � � � � � � # � � � � � * � � # � � # � � � ! � (� � � � � � � � ! � � �
� � � � � � � � � � � � / � � � � - � � � (� � � � � � � � # � � � ! � � � � � � � � ! � � � � � � � # � � � � � � � � � # � � � � � � ,
� � � � ! � � � � 7 $ � # � � � * � � � , � � � � � � � � � � � � - 6 � � � � * � # � / � � � � � 6 � � 1 � � � � � 2 � # � � � � � �
� � � � � � � � � � � � ! � � � � , � 7 $ � � � � � � � � � � � � , � � � # 9

� � � � � � � � � � � � � � � � # � � � � � � � � � � � � � # � � � � � � � � � � � � � � ! � � � # � (� (� � � � � � � # � � , �
� # � � - # � � 7 � � � , � ! � # � � � (� � � � 9

� � � ! � # � , � � � � # � � - � � � # � (� � � � / � � � � � � 7 * �
* � � � * � � # � ! � � � � � � � � (! � � � � � � # � � � � � � � �
 � � � � � � � � � * � � # � � � � � � � � � ! � � � � � � , � # � � �
� � � � � � � � � � � # � � � � � � (� � � � � � , * � � � � � � � � � � � � � � � � � � � 	 � �
 � � � � � � � � � � � � # � � � � � � # � � � �
, � � # � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 9 � � � � � � � � � � � � � � � � � � # � � � � � � # � � �
� # � � � � (� � � � � � � �
 � � � � � � � �
 � � � � � � � � �
 � ¡ � � � � � � 	 � � � 	 � � 9 ¢ � / � � � � � � � � � � # �
(� � � � � � � � � � � ! � � � � , � � � � � � � � � � � � * � � � � � � � � � � � � # � � � � (� � � � � � � � # � � � � � � � (£ � � � � �
(! � � # � � � � � (� � � � � � � ! � � � � � � � � � � � * # � � � � � � � � � , � � � � � � � � � � � � � � � � � 9 � � � � � � �

� � � � � � � 	 � � � � 	 � 	 � � � � � � � � � 	 � 	 � � � � 	 � � � � � � � � � � � � � � � �
� � � � � � � � 	 � � � 	 � � � � � � � � � � � � $ � 	 � � � %

& � 	 � (� � � � � � � � � � � � � � � � $ � 	 � � � � � � � � � $ � � � � � � � � � � � �
� � 	 � � � � � � � � 	 � � 	 � � � � (� 	 , - . / 0 1 2 - 3 � � � � � � � � � � � $ � � � � � � � � � � � � � � 	 4 � � � 	 � � � �
	 � � � $ � 	 � � � � � � � � � � � � 	 � � � � 	 � � � � � 	 � 	 � � 	 � � � � � � � � � � � � � � � � � (� � � � 	 � � � � � � � � 	 � � � � �
� � 	 � � $ � � � � � � � � 	 � � � � % 7 � � � � � � � � � � � � � � � � $ � � � � � � � 	 � � � � � � � (8 � � � � � � � 	 � $ �
� � � � � � 	 � 	 � � � � � 	 � 	 � � � � � � � � � � � � � : � � � � � � � � � 	 � � � � � ; (� � � � � � � � � � � � < � � � = � � 	 � > � � �

� � � � (� % � % (? @ A B 	 � � ? C @ B � % D � � � � � � � � � � � � � � : � � � � ; � � 	 � � � � � � � � � $ � � � � � � � � � � � � 	 �
	 � � � � � � 	 � � � � � � 	 � 	 � � � � � � � � � � � 	 � � � � � � � � 	 � � � � � � � � � � � � � � � � � $ � � � � � � H � � � � %
I � � � � � � � 	 � � � � � � � � 	 � � � � 	 � : � � � 	 � � 	 � � � � � ; � � 8 � � � � � � � �
� � � � � � � � 	 � � � $ � 	 � � � � � � � � 4 � � � � � : � � � � ; � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � (
� � � � 	 � � � � � � � 	 � � � � � � 	 � � � � � � � %

L M N � � 	 � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 � � � � (� � � � � � � � � � � � O � � � � � � � � � � � 	
� � � 	 � � 	 � � � � 	 � � � 	 � 	 � � � � � � � � � � � � � � � 	 � � � � � � � � � P � � 	 � 	 $ � � � � � � � � � � � $ � � � � � � � � � Q
� � � � � � � � 	 � � 	 � � � � 8 � � � � � � (� � 	 � � � � � � � � � � � (� � � � � � � � � � � � � � � $ R � � � � � � � � � � � � �
	 � � � 	 � � ($ � � � � � � � � � � � � � � � � � � � � $ R � � � � � � � � � � � 	 � � � � � � � � 	 � � � � � � � � 	 � � � � � �
� � � % T � � 	 � � � � � � $ R � � � � 	 � $ � � � � � � � � � � � � � � � � � � � �
� � � � V X Y [(� � � � � � � � � 	 � � � � � � � � � � $ � � � � � � � � � � � � � � � � � � $ R � � � � � � � � � � � � � � � (
� � � 	 � $ � � � � � � � � $ R � � � � � � � � 	 � � � � � = � � � � � � � � (� � � �] 	 � � � � (
� � � � � � � � � � � � � � � � � � % I � � � � 	 � $ � � � � � $ �
� � � � � � � � � � � � � � � Y X Y _ ` a [X [_ ` (� � � � � � � � � 	 � � � � � � 	 � 	 � � � � � Y 	 � � 	 � � � � �
[� � � � � � � � � � � � � � � � � � 4 � � � � � $ � 	 � � (� � $ � � � � � � � � � � � 	 � � � � � � � 	 � � 	 � � � � � 	 Q
� � � � � � � � $ R � � � � ($ � � � � � � b 0 - 0 c d e c 2 f g (� � � � � � � 	 � � � h 2 / 0 i � � � � � � � � � � � � � � � � � � $ � � �
Y j k l m � � � � $ � � � � � � � � � � � 4 � � � � � $ � 	 � � � � � (� � � � � � � � $ � � � � � � � 	 � � � � (� � $ � � � � � � �
	 � � � � � Y � � � � � � � � � � � � � � � � � � � %

n � � � � � 	 � V X Y 	 � � � � � 	 � � � � � � (� � � � � � � � 	 � �
� � � � � � � � 	 � � � � � � 	 � � � � � � � � $ R � � � � � � � � � 	 � � � � � � � � � � � � 	 � � � $ � 	 � � (� � � � � � � � � 	 � �
� � � � (� � � � � � � 	 � � � ($ � � � � � � � � � � � � $ � � V � � � � � � � � � � � � � � � 	 � � (� � � � � 	 � �
� � � � ($ � � � � � � � Y � � � � � � � � � � � � � � � � � � % q � � � � � � � � V X Y � � � � $ � � � � � � � 	 � � � � � � � �
� � � � � � (� � � � � � � � � � � � � � 4 	 � 	 � � � � � � � 	 � %

I � � � 	 � � � 	 � � � � 	 � � � 	 � � � s � � � � � � 	 � � � � � � � = � � � � � � � � � � � � � � � 	 � � � � 	 � � � �
� � � � � � � � � � � � � 	 � 	 � � � � � � � � Q � � � � � 	 � � � � � � � � � � � � � � � � � $ � � � � � 	 � � � � � 	 � � 	 � �
	 � � � 	 4 � � � � � 	 � � � � � � $ � � % t � � � � � � � � � � � � � � � � � � � $ � � $ �
� � � � � � � � 	 � � � � � � � � � (� � � � � � � 	 � � � (� � � � � � � � � � � � � � � � � 	 � Q
� � � � � 	 � � � � $ R � � � � 	 � % q � � � � � � � � � � � � 	 � � � � � � � $ � � � � � � � � � (
� � � � � � � � � � � � � � � � $ � � � � � � � � � ($ � � g 2 2 � � � � � � � � � � � � � � 	 � � � � � � � � 	 4 � � � � � � � � � �
� � � Q � � � � � � � � � � � % � v 	 $ � � � � � � � � � � 	 � � � � � � � 	 � $ �
	 $ � � � � � � � � � � � � Q � � � � � � � � 	 � � � � 8 � � � � � � % �

w M > � � � � � � 	 � � � � � � � $ � � � � � % t � � � � 	 � � � � � � � 	 � � � 	 � � 	 � � � � 	 � 	 � � � � � � � � � � � � � � 	 �
� 	 � � � � � � � $ � � � � � 	 � � $ � � � � � � � � � � � 	 � 	 � � � � 	 � �
� = � � � � 8 � � � � � � % y � � � � � � 	 � � � (� � � � 	 � � � � 	 � � 	 � � �
� � � � � � � � � � � � � h 2 e z 0 - { . g d 2 e 2 , / . g g 0 - % N � � � � � � � � � � � � � V X V V 	 � � � � � 	 � � � � 	 � � �
� � V � � � � � � � � � � � % | e d e , 2 � � � � � 	 � $ � � � � � (d e { d { 2 � � d e { d g - 2 � � � � � � � � 	 � � � � � % % %
& 	 � � � � � � � � � � � 	 � � � � � 	 � $ � � � � � � � � � 	 � � � � � � � � � � � $ � 	 � � � � � � � � � � � 	 � � 	 } < �
� 	 � � � � � � � � � � � � � � � � $ � � � � � � � � � � � � � 	 � � � � � � � � � $ � � � � � � � � � $ R � � � � � � � � � � �

� � � � � � � � � �
 � � � �
 � � � �
 � � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � �
 � � � � � � � ! �
 � ! �
� � � � � � � � � � � � � � � �
 � � � � � � $ �
 � � �
 � � � � � � � � ! �
 � � � � � ! � � ' (
 � ! ! �
 � � � � � � ! � � � �
� �

 � � � � � ! + � � � � � � � � , � � $ � �
 � � � � ! / 0 1 � � � � � �

 � � � � � � � 0
 � � �
 � � � $ �
 � � � �
� � � � � � � � � 0 �
 � � � � � � � �
 � �
 $ � � � � � � � � ! � �
 � � � � � 0 0 1 8 0 0 � $ � � � � � � � � �
� � � � � � �
 � � � ' 9 � � � � � �
 � � � � � �
 � � � � � � � � � : � �
 � � � �
 � � � ! � � � $ � � � ! ' ; � � ! � � � �
 $ � �

 � � � � � ! � , � � $ � �
 � � � � ! � / � � � � � � �
 � � � � � � � � � � � '

= � � � � � � � �
 � � � � � � � � � � � �
 � � � � � ! � , � �

 � � � � �
 � � � � � � � � ! � � / � �
 � � � � �
0 8 ? + � � �
 � � � �
 � � � � �
 � �
 � � � � $ � A � �
 � B � A � �

� � � �
 � � � , � � � � � � � / � $ � � � � � � � � � � � � ! � � � � � � $ � � � � � � � � � � � � � � � � � � � � �
 � �

 � �
� � �
 � � ' � ; � � � � � ! � � � �
 � � � D ! � � �
 � � � � E � � !
 � � �
 � � � � �
 � � � �

 � � � �
 � � � ' ' ' �

F G H � �
 � � � � � � � � � I � � � � J � � �
 � � � $ � �
 � � � � � � �
 � � � � � � � � � � � � � � � � ! � ! � � � � �

 � �

 � � � � � � � � � � �
 � K � � � � ! � � � � � � ! � � � � � � � ! ! � � � � � ! � � � � � � � � � � ! �
 � � � � � � � � � � � � !
� � � � � � � � � � L M L N O P � � � � � � � � � �
 �
 � � � � � � � � � � � � ' Q �

 � � � $ � � ! � � �
 � R � ! � � � � � ! � � � � � � � � ! � � � � � � � � � � � ! �
 � � � $ � � � � �
 � � � � � � J � � �
 � � � �
� � � � � � � � � � A � �
 � � � ! �
 � � � ' S � �
 � � � �
 � � � � � � T

U � � � � , � ! � � �
 � R � ! � � � � � ! � / � � � � � � � � � � � � � � � � � � � ! � � �
 ! � � � � � � �
 � �
 � � � � I � �
 � � �
� � � �
 � � � � � � � � � � � �
 � ' V � � � � �
 � � � � � � � � � � ! � � � � � � � � � � � � � $ � � � � � � � � � � � �
 � � �
� � ! � � � � � � 0 8 W Y � � � � � � � � � � � � � � � �
 � � � � � � � � � � �
 � � � �
 � � � � � �
 � � � � � � � � � �
� � � � � � �
 � �
 � � � � � � � �
 � � � 0 8 W � ! � � � � [� � �
 �
 � �
� � � � � � � $ � � � � � � � � K �
 � � � � � � � � � � '

(� � � ! � � ! � � $ � � � � � I � � � � � � � � � � �
 � � � � � � � � ! � � �
 � � � �
 � � � � �
 �
 � � � � � � � � � � � � �
� � ! �
 � �
 � � � � � � � + � � ! � 0 8 W � � � � � � � � �
 � � � � � ! �] 8 ^ � � � � � � �
 � � � � � �
 � � � �

� � � � ! � � � � � � � � �
 � � �
 � � �
 � � � � � �
 � � � � � � � ! � � � �
 � � ! �

 � � � � ! � ` � � � � � � � � � � � ! �
] 8 ^ � � � � �
 � � � � � ! � � � �

 � � � � � � �
 � � $ �
 � � � ! � 0 8 W A � �
 � � � � � � �
 � � � � � � � �
� � � � ! � � ! � $ � � � � � � � � � � � � 0 8 W � � � � � �
 � � � � � � �
 � �
 $ � � � ! � � � � � � �
 � � �
 � �
� � � � � � A � �
 � � '

H � � � + $ � �
 � � � �
 � R � ! � � �
 ! � � �
 � � � � � � � �
 � � � � � � � � � �
 � � � � � � ! T
U � � � � � � � � � � �
 � � � � � � � � � � � � ! � � � � � + � � � � � � � � � � � � � � � ! � � A � �
 � c � � � � � � �
 � � �

� d e f M g f h i L M L N O P � � � � � � � �
 � �
 � � � � ! � � � � � � �
 � � � � � � � � � � � � �
 � � � � � A � �
 '
V � � � � �
 � � � � � � � � ! � �
 � � � � � 0 c c 8 W � � � � �
 � �
 � � A � �
 0 � �
 � � � � � � � � � � �
 �
� � A � �
 W �

 � � � � �
 �
 $ � � � � � � � [� � �
 � ` � � � � �
 � � � � � 0 8 W c c � � � � � � � � � � � � � �

 $ � � � � � � � [� � �
 � � � � � � �
 � � � � � � � � � � 0 � �
 � W ' H �
 � � � � �
 �
� � �
 � � � � � $ � ! ! : � � �
 � � �
 � �
 � � � '

; � � � � ! � � � � � � � � � � � � � �
 � � � � � � � � �
 � � ! � � �
 � � � � � 0 8 c c � � � � � � �
c 8 0 W ' 9 � � � � � � � � � � � � � � � �
 � � � �
 � � � � �
 � � � � � � � � � � � � � � ! � T m � $
 � � � � � � � �
� � � � T � S � � � � K � � � � o p q] r : ! � K � � � � � ! � $ � � � � �
 � � � � � � � � T �

s G H � � � �
 � � � � �
 �
 � � � �
 � � � � � � � �
 � � � ! �
 � � � � �
 � � � � � � � , �
 � � � � / � � � � � � � � � � � �

 � � �
 � � � � � � � � � � � � � � � ! �
 � � � �
 � � � � � � ! �
 � � � � $ � �
 � � �
� � � � � � � � t u u v � + � w 8 x y z 8 | �
 � � �
 � � � � ! � z 8 | � � � �
 � ! ! � $ � �
 � � �
� � � � �
 � � � � ! � w 8 x � � � � � � � � � ' S � �
 � � � �
 � � � �
 � � � � �
 �
 � � � �
 � � � � � � � �
 �
� � � , $ � � K � � / $ � � + � � � ! � � � � � � � � � ! � � � �
 � � � � � � � � � A � �
 �
 � $ � � � � � � � � ! � � �
� � � � � � � � � � � �
 � � � � � � � � � ! � � � � � � � � � � � �
 � � � � $ � �
 � � � � � � �
 � � � � � � ! � � � � � � � � � �
� � � � � �
 � � � � � � � � � ! � � �
 � �
 � � � � � A � �
 � '

; � � R � � � ! � � � � � ! � � � �
 � � � � } � � � � � � � �
 $ � � �
 � �
 $ � � �
 � � � � �
 �
 � � � � ' 9 � � � � � � �

 � �
 $ � � � � �
 � � � � ! � � ~ � + 0 W 8]] � ~ r + W 8 ^ � $ �
 �
 � � � � � � � �
 � ~ � y ~ r � � � �
 � �

� � � � � � � � 	 � � 	 � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � " � � � � # " � � 	 � " & " � (� � � �
� � �) � � � � � 	 " + � � � 	 � 	 � � � � " " & � � � � 	 � " 	 � � � , � � � 	 � � � � - � " � � � � � � � � � � " � � �
	 � � � � + � " � � " & � � � " � (� � � � , � � � � � � � � � � � � � + � � � " � � � � 0 � � " 1 + � 	 � � " 2
� " � � 4 � � � � � , � � � 	 � � � � � � � 5 5 5 5 � �) � � � # � 8 � � � 	 � 	 � � � � " , � � � 	 � � � � - � � �
 � � � � � � � � � � � � � � � � � # � � � � � � " � � � 	 � � � � + � " � � " & � , � � � � � � � � � " � � � �
� � 2 � � � 	 � � � � � � � 5 5 5 5 : �

; � � " " # , " � � � � � � � 	 " + � � � 	 � 	 � � � � " � � � � � � < � � � � + � � � � � � � # � 8 " �
" � � � � � 	 � � � � � � � 8 � � � 0 � � � � & 	 " � � � � � � � � � � � 	 � � " 	 � < � 	 � � " " & > ? @ A B ,
 � � " � � � � � > ? @ C B D � � � � � � � " 	 	 � � � � " & 	 " � > ? @ F B G � H � � � " � � ? � � � � � � � � � � +
� 	 � " 	 � � � 	 � � � � " � � � � # � 8 � � � 	 � 	 � � � � " � � � � K

L M � � � � " � � 	 < � � " � # � � & � � � � � � , � � � � � " � � � N O P O N Q R S R T R U V � � � � � � � " � � " W
� � � � � � � 	 � � X � 	 � � � � " � 	 � 	 � < � 	 � � � � � , � + " � � � � � � 	 # � D � � � � � � � � � � +
" � � + � " & 	 � � � � " � " � � � � " � , & " 	 � � � � � , � � � � � 	 � � 	 � Z � � � � � � 	 + � < � � W
� � � � � � G �) � � � � � � � � � � � � , 	 � < � 	 � � � � � � � � � � � " � � # � � " � � " � � � � " " � � � � 	 � � � � � [
# � � < � � " � � 4 � � � � 1 � � � � � 	 � < � " � � � " 1 + � 	 � � " " & � � � � � � � � � � � 	 � � + & 	 " � � � �
� 	 � � � � � " 1 + � 	 � � " �] � 	 � � � � � � � � � � � � � � � � � 8 � + , 	 � < � 	 � � � � � � � � � � � 	 � < � 	 � � + � � �
� � 	 � � � � " " & � 4 � � � " � H � � � " � � 	 � < � 	 � � � � � ? � � � � � � � � � � � � � � � � � � � � � � �
� � � � , # � � � " � � ^ � " � � 	 � < � 	 � � � � � ? � � � � � � � _ , # � � � � � � 	 � � � � � � " # � � � " � � � � � �
� � " � � � � � � � D & " 	 � � � ` a b # � � < � � " � � " � � b a ` � " � � � � � � 	 � + � " G K

D d � � � � # � , � � � � 8 " # � � � � � � � � 	 � , > e B , � � � 	 � < � 	 � � � � � � � 	 � + � � � � � � 	 �
� " � � � � � � " � � � � � < � 	 � � � f 	 � < � 	 � � � � � � � � � � � 	 " � + � � ^ & " 	 & 	 � � _ � " ? � � � � � � � 	 �
& 	 " � � � 	 � + � � � � � � 	 � K G

h M i � � � � � " 	 � � 	 " & � � " � � � � � � � 	 � � � � � � � � � � � # � � 1 � � � & � 	 � � � 	
4 � � � � � " � � j � " & � � � � � " � � 	 � � � � l O U O N m R n R Q m � j � " & � � � � � � 	 � � � � 	 � � � � +
& � � � 	 � � " & � " � � � � � + # � � � � � � � 	 � � � � � � � � � � 	 � � " � � � � 	 � � � � � " & ? � � � � � � � �
� � � � � " 	 	 � � � " � � � " # � � � � � � � � � � � � � � � � � � � � � � � , # � � 	 � � � � � � � � � � � � " � W
� " � � � � # � � � � " � � � � " , � � � " � � � � � � � , � � < " � < � " � � � � 	 � � � � � � � � � � � W
� " 	 � � + � " � � 	 � � 	 � � � � �) & # � � � � � � � � " � � � � � � � � � � � � 	 � � " � � � � � + " � � �
� � � � � " � � � � � 	 , � � � � � + � 	 " � � � � D p � � q � � � � � G � � � 	 � [# � � < � � " � � � � � � � " W
� � � � 	 � � � � � " � � � � 	 � � � � � � � � � � � � D � � � � � � " 	 � [# � � < � � " � � � � � � � � 	 � � � � � � �
" � � 4 � � � � � � � � � � G � r " # � " � " � � � � � � � � � � " � � � � " � � � � � 	 � � � � � " � � �
� 	 " + 	 � � � + � + � + � � � � � , � � � � � � � � 	 � � � � � � 	 " � � � � � s 	 " � � � � � � � � � �
� " � � " & < � � # , � � � � 	 " � � � � � � � " � " � � � � 	 � � � � 	 � � � � � � � ? � � � � � � � D # � � � � � � � 	 � � � W
� � � � � � � , & " 	 � � � � � , � � � � � � � " & � " " � � 	 � � + � � � � � � � , � � � 	 � � � 4 � � � � � " G
 � � " � < � � � � + � � � � � � 	 � " # � 	 � D � � � � � � � 	 � � � � � < � 	 � � � " � � � � 	 � � � � � 4 � � � � � "
� � + � " 	 � " � � � � � � " 	 � � � � " � � � � � " 	 � � � u � � � � � � 	 � � � � � � � � � " 	 � , � "
� � + + � � � � " � � � � & " � � � � � � � � 	 � � � G

v M i � " � � � " # 	 � � � � � 4 � � � � � " [# � � � " � � ? � � � � � � � # � � � � � � � � � 	 � � � � � � � �
� � � 	 � + � " � K � � � � � � " & 	 � � � � � � " � � � � � # � � � 	 � + � " � � � � " � � < � � � � � � � � & � � � � �
	 � � � � � " � � � � � � � � � � 	 � � � � " � � � � � � � 	 � � � � " � � � � � � � � � 1 � � " � � � � " � , # � � � �
� � � � � � � � � � " � � � � � � � 1 � � " 	 � + � " � � w 	 � " � � 	 � + � " � � < � � � x � 	 � � 	 � � � � "
� " � � � � " � , � � � � � � x � 	 � � 	 � � � � � � � � � � � " & � � � � �] � � � � , � � � � � � � � � � 	 � � �
� � < � 	 � � � � � � 	 � + � " � " & � � � � � � � � � � � � " � � � � < � � � 	 � � � � + 	 � � " & � � & " 	 � � � � �
H � � � � � � � � � � " # � 	 " & ^ � � & " 	 � ? � � � � � � � _ , # � � � � � � � � � � � � " & 	 � � � � � � � + � � �
	 � + � " � K

� � � � � � � � � � �
 � � �
 � � �

� ! ! � � � � � � � � � � � � � # $ � � ! � � � � � � � � � � � ' � � � � � � � �) � � � � � � � �

) � � �
 � � � � � � � � � � �) � � � ! � ! � � , - . / #

0 1 $ � � ! � � � � � � � 2 � � � � � � � � � � � � � � �
 � �) � � �
 � 5 6 8 9 : ; < 6 8 9 �) � � � � � � �
 � � � � �

� � � � � � � ? � � � � � � � � � � � � � � � � ! � � # @ � � � � � � � � � � ! � � � � � � � � � � �) � � � �) � � � � � � � � � �

� � � ! � �) � # � � � ! � � � C � � � � � � � � � � � � � �
 � ! � � � C � � � � ! � � � � � � ' � �

�
 � � � � � � � � � � ! � � � � � � � � � � � � � � � � # $ � � � � � � � � �) ' � D � � � � �

� � � � � � � � � � � � � � � � � � ? � � � �) � � � � � � � � � � � � � � � � �) � � � � � � � � � # � � ! � � � � � ! � �
 � �

� � � � � � � � E � � � � � � � � � � � �
 ? � � � � � � � � � � � � � � � � � � ? �
 � �

� � � F � D � � � � � � � � G � � � � � � � � � � � � 2 � � � � � � � � �

F � � ! ! � J ! � � � � � � � � ? � � � � � � � � � �) � � � � � � � � � G #

K � � � � � � �) � � � � � � ! � � ! ! � � � � � , L L / � � ' , L N / # O � ! � P

� � � � � � � � � � � � � ! � � � �
 � ' � � � � � � ? � � � � � � � � � � ' � � � � � � �)

� � � � � � � � �
 � � �) � � � �) � � � � � � � � � � � � � � � � ' � � � � � � � � � � � � � � ' # Q � � � �
 � � � 2 � � � � � � � �)

C � ' � � ? � � � � � �) � � � � F � � ! � � � � � � �) � � � � � � ! � � � � �) � � � � �) � � � � � � ! � �) � � � � � � � � � � �

� � � � � � � � � G � � 2 � � � � �) � � � � � � � � � � � � � � � D � � � � #

R 1 � � � � � � � ? � � � � �
 � � � S � � T � � � � U � � � � � � � ') � � � � � � ? � � � � � � � � � � � � � � �
 � � � � � ? �

� � � � � � � � �
 � � � � E � � ? � � � �) � � � V 8 6 W X Y 5 Z [: 5 5 X ; \ ! � � � � � � � � � � � � � � � � �
 � � � � � � � � �

�) � � � � � � � � � � � � � � ? � �
 � � � � � ' � � � �
 � �
 � � � � � �
 � � � � � � � �) ' � D �

� � � ? � � � � � � ? � � ? � � � � #] � ' � � � � � � � � � � � � � � � � � � �) � � T � � � � � � �

� � � � � ' � � � ' � � � � � � , . /
 � � � � � � � � ! � � � � � � � � � � � � � � ? �

� � � � � � � ? � � � � � #

@ � � � � � � �
 � � � � � � � � � � � � ' � � � � � � � ? � � � � � � � � ! � �
 �) ' � C � � � ? � � � ! � � � � � � � � � � �

� � ? � � � ' � ! � � ' � � ? � � � � � Z 6 5 W X 5 W \ �) � � � � � � ? � � � # O � � � � � � � � � �
 � � � � � � � � � � � � � � � � � �

� � � � ' � � � � � � � � � � � � � ' � � ? � � � � � � � T � � � � ! � � � � � � � � � � � ? � � � # � � � � � � � � � � �
 ' � � � � � � �

� ! ! � � � � � � � ' � ! � � ' � � ? � � � � � � � � � � � � � �) � � � � � � �
 � ' � � � � � � ? � �

� � T � � � F � � � � � � � � �
 � � � � � � � ' � � � ' � � T � S � � � � � � � U � � � � � � � �
 � � '

� ! ! � � � � � � � � � � ! � � � G # @ � � � � � ^ � � � ' � ' ' � ! � � ' � � � � �)

� � � � � � � � � � � � � ? � ' � � � ' #

_ 1 ` � � � � � � � � � � ' � � � � � � � ' � � � S � � � � � � � � � U �) � � � � � � � � � � � � ! � � � � � � �
 � � � � � ?

� � � � � ' � ' a � � ! � � � � � � � ! � � � � � � � � � � ! � � � � � � � � � # @ � � � �

) � � � �) � � 2 � � � � � � �
 �) � � � � � � � � � � � � � ! � � � � � � � � � � � � ! � � � � � � � � � � � � � �
 � � � � � � � � [Y X 8 b

: 8 Z [Y X \ # � � c d - � � � � � � � � � � � � � ? � � � � � � c e � � ? � � � � � �
 � � � � � ^ ! � � � � ' � � � � � � # f � � �

! � � � � � � � � � � � � � � � � �
 � � � � �) � � � � �) � � � � � � � �) � � �

F � � � � � � ! � � ' � � ? � � ' � � � � � ! � � � � � � � � � ! � � ^ � � � � � � � � � � � � �) � � � � � � � � ? � � ? � � � � � � �
 � � �

� # ? #
 , - L / G
 � � � � � � � � � � ! � � � C � � � � � � � � � ' � � � � � � # $ � � � � � � � � �) � � � � � � � � �
 �) � � � P

� � � � � �
 �) � � � � � F � � � � � � � � � � � � � � ^ � � � � � � � � � � �) � � � � � � � � � � ? � � � G � � � �) � � � C � � �

� � ! �
 � � � ' � ! � � �) � F � � � � � � ? � � �) � � � � � � � � � � � � � � � � ' � � � �

� � G
 � � � � � ' � � � � S � � � ' � ? � � � U F � ? � � �
 ' � C � � � ? � � � � � � � � � � � �) � � � � � � � � � � � � � � ' � � � � G

� � � �) � � � � � � � � ' � � ! � # ` � � � � � � � � � � � � � g � � � � � � �) � � � ! � � � � �) $ � � � � ? � � � � � � � �

� � � � � � � � � � ' � � � � � � � � � �) � ? � � � � � � g � F) � � � � � � � � � �
 � � � � � � � � � � � �) � � � � � � P

� � � G
 � � � � � � � � � � � � � � � � � � � ! � �
 � g � � � � � � � � � E � � � � � � �

! � � � � � � � � � � � � � � � � � � � ? � � � � ! � � � � � � � � � � ' � � � � � � � � C �

� � � � � � � � � ? � � � ' #

� � � � � �
 � � � � � � � � � � � � �
 � � � �
 � � ! � � � � � � �

 � � � � � � � � �
 � � � $ � � % & ' � � � �) $!
 � �
 � * � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � �

 !
 � �
 � � - . / 0 � � � � � � � � �
 � � � �
 � � ! � � � � � � � � � � � � � � � � 3 � 5 ! 5 3 � � - 7 8 / 9 3

�
 � � � � � � � � $ � � �

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
 � � �
 � � $: $ 5

; � � � $ 3 : � � � � � � � � � < � $ � � � � � � � � � � � � � � � � � � � $ � � � � � � � � � � � � � �
 � � � � �

� � � �
 � � � � � � �
 � � �
 � � � �
 � � ! � � � � � � �
 � $ � � % & ' � � � �) $!
 � �
 � � � �

� � � � �
 � � � � � � @ � � � � � � � < � $ � � � � 3 � � � � 3 � $ � �
 � � � ! �
 � � � � � � �
 � � � � � � � � �

!
 � �
 : � ! � � � � � � �
 � � < � $ � � � � 3 C D E F � � � 3 : � � � � � � ! � � �
 � � � $! � � � �

� � � G � � � � � � �
 � * � � � � � � � < � $ � � � � �
 � 9 � $ � � � ! � � ! � � � � � J � � � � � � � � � � � $

�
 � � � � � � � � � � � $ � � � � 5 � � � � � � �
 � � � �
 � � � �
 � � � � � �
 � � � � : � � �
 � � � � � � � � � � 3

� � � $ � � � � � J � � � � � � � � � � � � � � � � � � L ! �
 � � � � : � � � � � � � � � � � G 5 N � � � � � : $ 3 � �

�
 � � � �
 � : � � � � � � � : � � � � � � �
 � � � � �
 � � � � : � � �
 � � � � � � � � � ! � � 5 � � � � � O �

� � � � � � � � � �
 � � < � $ � � � � : � � � � � � � � � �
 � � � � � � �
 � � � � �

 � � � � � � � �
 � � � �
 �

 � � � � � � � � � � �
 � � � � �
 � � � � * � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � J � � � �

�
 � � � � � � � � � � � $ � � � � 9 5 R � � � � � ! � � � � � � � � � � � � � � � � � � � � � �
 � � � �
 � 3 � � S � � � � � � �

� � � � � � � ! � � � � � � � � � � � � � � � � � � � � � � � 3 � � � � � � �
 @ � � � � � � � 3 � � � � � � � � � � � � $ � � � �

� � � � � � � �
 � � � � � � S � � � � $ 5

N � � � �
 � � �
 �
 � � � $ � � � � � � @ � � � � � � � 5 T � $ �
 � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � < � $ � � � � � � � �
 � � � � � $ � � � � �
 � �
 � � � �
 � � !
 � �
 � : � � � � %

� �
 � � � � � � �) � � ! *) � � : � � � � �
 � � �
 � O � � � �
 � � �
 � � � � � $ � � � � �
 � � � � � ! � ! � � 9 � �

� � � � � �
 $ � �
 � � � �
 � * � � � V � � � 7 5 W 5 X � � - 7 7 / 9 5 Y � : � � �
 3 � � � � � � �
 � � !
 � �

� � � � � � � $ � � � �) � � : � 3 � � 3 : � � � � � � ! � � � � � � � � � � ! � � �

 � � � � � � � � � � : $ � � � � � � � � �

 � � � � 5 R � � � � � ! � � � � �
 � � � �
 � � !
 � �
 3 � � � �
 � � � � � �
 $ � �
 � � � �
 � * : � � �

 � � � � � % � � � � � � � �
 � � � � � � � � � � � � ! � � � $ � : �
 � � � � 9 � � 3 � � �
 � � �
 � 3 � �
 � � � � ! � ! �

� � � �
 $ �
 � � � � � � � � � L � � � � � � � �
 � � � � �
 < � $ � � � � � � � �
 $ 5

[\ N � � � � � � �
 � $ � � � � � �
 � � � � ! � � � � � � �
 � �

� �
 � � � �
 � � � < � $ � � � � � $ � � � � � � �
 � � 5 � � � � � � � � � � �
 � � $ � � � � � � � � � � � �

- < 7] / � � - < ^ 7 / 3 � � � � � � � � �
 � � ! � � � � - < ^ ^ / � � �
 � � � ! � � � � � � � ! � � �
 � � O � � � �

� � � � � � � � � � � � � �
 � � � �
 � � � �
 � 3 � � � � � � �
 � � � � < � $ � � � � % � �) � � � � � � � � : �
) � � !

� � !
 � � � � � _ �
 � � � �
 � � �
 � � � * � � � $ � � �
 !
 � � � : �
 � � � � � � � �
 � � � � - < ^ ^ / 9 5 Y �
 �

� � � � � � �
 � ! � � �
 � @ � � � � � � � 3 : � � � � � � � � � � � $ � : � % � � � � � � � � * 7 9 � � �) � � � �

� � � � � � � � � � � � � � � � $ � � � � � � � �
 � � � � � � � � � � � �
 � � � �
 � � � �
 � � $ �
 � � � � � �

: �
) � � �
 � � � � � � $ � � � � � � � : $ 3 � � * ^ 9 � � � � � � � � �
 � $ � � � � � � � � � $ � � � � � � � �

: �
) � � ! � � !
 � � � � � � �
 � ! � � �
 � � �
 � � 5 ` � � � �
 � � 3 � � � � � � � � � � � � � � � � � � � � � � � �

 � � � �
 � � � �
 � � � �
 � � � � � � � : � � � � � � � � � � � � ! � � � � �
 � � � * � � � � � � � � � ! � � � �
 � �

� � � � � �
 � � � � � � � � � �
 � � � � � �
 � � � � � � � � �) � � � �
 � � � � � � � � � � � � � � � � � � � � � �

� � � � � �
 � � � � � � � 3 � � � � � � � � � � � ! � � J � � � � � �
 � � ! � � � � �
 � � � � � � � � � � � � �

� � J � � � � � � � � � � : � � � � � � �
 � � 3 � � � 9 3 � � � 3 � $ � � 3 � � � � � � � � � ! ! � � � � � � � �
 � � !
 � �

� � � �
 $: � � � � � � � � � � � � � � � � ! � 5

a \ � � � � � �
 �
 ! � � � � � � � �
 � � � � � � � � �
 � : � � � � � � � � � �
 � � ! � �
 � � ! % � � J � � � � � � %

� � � � � � � $ � � � � % � � J � � � � 5 � � � � � � � : � �
 � � $ � � � � � � � ! � � � � � - < 7] / 3 - < b / 3 - < 7 . / 3

- < ^ . / 3 � �
 � � � � � � $ � � - < W 7 / � � - < W ^ / 3 � � � � $ � � � � � � � � � � � $ � � � � � � � � � � � � � ! 5 c � � �

� � � � � ! : � � � � �
 � � ! � : � � � � � � �
 � � ! �
 � � � � � � � !
 � � � � 0
 � :
 � � � � !
 � � � � � � � � � � � � � !

 � � � � : �
 � � � � � � � �
 � � 3 � � � �
 � $ � � � � �
 � � � � � � � * � � � � � � � � �
 � � � � % � � � � � � � � �
 � � � � � � �

 � � � � � � � 3 � � � � � � � � � � � �
 � � � � � � � � � � � � !
 � �
 � 3 � � � - 7 d / 3 � � �
 � � � � � � � � � � %

� � � � � � � �
 � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � � � � � ! � � " # $ � � " � � � � � "

 � # � � � � � & � � (� " (� � � * � � � � � � � � � * � � � � � � � � $ � � " � � # � " � � / � � � � � � � � � 1 � � " � � � �

� � � �
 � � � � � " " # � � 3
 � � � � � " � � � � � �
 � � � � � � � * � � � � � � � � * " ! � � � � � � � $! � � � � � � * ! � � �

� �
 � � � � � � � � # � � � � � � � (� � # * � 6 � � � ! " � � � � � " " & � � � � � � * " � & � # � � � � � � � � � �

$ � � 8 * � � � � � � � �
 � � � � � � � � 9 � �
 � � � � ! � � � (� " # � ! � � � � $ " � " � � ! � � � � � : � ! � ! � " 6
 �

� (� � � � � � 6 � " � � � � � � # � � � � � � � " � � 6
 � " � � / � � � � � � � � � � * � � � � � � � � � # >

� � � � � 6 �
 � (� � � " � � / � � � � # � � � � � 6
 � �
 � � � � � � " � � � � � � * � � � � $ " � � ! � � � � � � � � * " �

� � * � � � � $ " � � � � � � � � � � �

: � � � � 6
 � � � � � � � � � � � � � � � � � � � �
 � � � � � ! � � � � � � � � � � � � � > � $ @ � � � � � � � � �

� � � � � � � � � �
 � � � � � � �
 � � � " " � 6 � � � " � � � � � � � � � � � � � � � � # � � � � � $ � � � � � 6 � � � �

* � � � � � � � � & C 6
 � � � � � ! � � � � � � � � � � � � � � � � � � � � � � � � � � � �
 � � � � � �
 � � ! �

� � � � $ � � � � * � � � � � � � � � * > $ # > � � � * 1 � # � $ � " > $ # > � # � $ � " D � � � � ! �
 � 6 � # �
 � � � � � � � �

� �
 � (� � * � � � � � � � � � � � � � � � �
 � � * � � � � � � �
 � � � � � � � 1 � � # $ � � � � � � � �

� �
 � (� * � � � � � � � (� � � " � � � � � � � � � � � �
 � � 6 � � E � � �
 � ! $ � � � � � � � * � � � � � � � � 1 � � �

� � � � � � � � � 6 � � � � � � $ # �
 � � ! " � � � �
 � � � � � � 6
 � � � � � " � � � � F
 � � � � � � � � " � � � � � 6 �

� � �
 � � � " G ! � � � � � �
 � � � C
 � 6 � � � � H � �
 � � � (� � � � � � � � � � �
 � � ! �
 � � � $ � � � � D

 � 6 � � � � H � �
 � � � � ! " � � � � � � � * ! � � � � � D

I J : � � ! � � � ! " � � � � � � � � � � � $ � �
 � � � � � � � $ � � � � # � $ � " > � $ @ � � � � � � � � � � > � $ @ � � �

 � # � � � � � � K � # � $ � " > � $ @ � � � � # � � � � � 6 � * � � � � � � � ! " � � � � � � � � � # � $ � " � � � �
 � � � � ! " �

� � � � � � * ! � � � � � � � � ! � $ � � � � � (� � � � � � � � � ! � � " ! � $ � � � � K � � � � � > � $ @ � � �

� # � � � � � 6 � * � � � � � � � � � � � � � � 6 � # G ! � � � � � � � " � � � � " � � ! � � � �
 � � � # 1 � � � � � � � � �

� # � � � � �
 � � � # � $ � � � ! � � � � � � � � � � $! � � � � � 6 � �
 � ! � ! � � � � ! " � � � � � � � � � �
 � � � � ! " � � �

� � � � * ! � � � � � � � � " � � ! � � � � N � � ! � � � � � � � � � ! " � � � � � � � � � � � � � � � * � � � � � � � � $ #

� � 6 � � � � � � � * " � � � � � � � $ # � �
 � � � � � � � � * � � � � � � � � $! � � " 6 � # � � � / � � � � � � � � � ! �

�
 � ! � $ � � � � � � * � � � � � � � �
 � � � � � � 1 O � � � � � � � � � 6
 � � � � � � (� � � � � � � * � � �
 �

� � � � P Q P R S P T Q U P R W P T Q X � � * � � � � � � � � � �
 � ! � $ � � � � � � * � � � � � �
 � � � � � � P

� � � � � � � � � � � $ # � � � � �
 � ! � $ � � � � � � * � � � � � �
 � � � � � � X � � � � � � � � � � $ # � � � �

Y � � � � � � � � �
 � � � � ! " � � � � � � � * ! � � � � � �
 � ! � $ � � � � � � � � � � * � � � � � � � �
 � � � � �

�
 � � � � * ! � � � � � � � � * � � � H � � � � � $ � � � �

Z � � � ! � � � � $ � � � ! � � 6 � � � � � � �
 � � � �
 � ! � $ � � � � � � � � � � � � � � � � � � * � � � � >

�
 � � � � � � � 6 � � � � � � * � � � � � � � 1 � � � * " � � � � � * � � � � � � � 6
 � �
 � � � � � $ � � � 6 � � � � � � �

� � * � � � ! � � � 6 � � 6 � � � � � � � � � � � � � � ! �
 � 6 � � � � � ! � �
 � � � * � � � � � � � � \ � � �

* � � � � $ � " � � � � � � � � � ! � � � � � � � $ # �
 � $ � � " � � # � � �
 � � � " " 1 � � � � � � � � � � �
 �] ^ : $ � � �
 � >

� � � � � # � C � ! � � � � � � � � � � � 6 � � 6 � � � � � � � � ! * " � � � � � � � � � � � � � � � � � � 6 � � � � � � � � � �

� � � 6 � � � � � E 6 � � � � � � � � � � � �
 � ! � $ � � � � � � � � � � � " � � $ # � � � � � �
 � � � ! �

� � �
 � � # � � � � � F
 � � � ! � # � � � ! �
 � # � � � � � 6 � � � " � � � � # � � � � � � � � � _ � � $! � � " # �

� � 6 * � � " � � � � � # � � � ! " � � 6 � � � � � ! � C � � � * ! � � � � � � " � � � * " � � � � � � � � �
 � * � � � � $ � " � � #

� � � � " (� � �
 � ` � � � " � � � � � �
 � � $ " � � � G ! � � � � � � � � � � � � � �
 � \ : F * � � $ " � �

� " � � � � � � � � � F
 � ! � � � � * � � � � � � � 6 � � � � � � ! * " � � � � � � � � * " � � � � � � � ! � � � � � � � �

� � � � � � � > � (� � � � � � (� * " � � � � � F
 � � � � * � � � � � � �
 � (� � � � � � � * � � � � � � �
 �] ^ :

$ � � �
 � � � � � � # � � � � � � " � � � * � � � � � � � � � � � " � � ! � � � � � a � � E � � � � � � � > � (� � � � � � * � � >

� � � � � � � P R b P T c X R b X T � � P R b X T c X R b P T � $ � � � ! � � � � �
 � $ " � � / b 1 �
 � � � � � � � � * � � � � �

�
 � � * � � � � � � � � a � � � �
 � � * " � � � � � �

: * � � � � � ! " � � * � � $ " � � � �
 � � � � � � � 6 � � / C � � � � � � � � " # � � � � � > � $ @ � � � � � � � $ � ! >

� � � " � � �
 �] � � � �
 � � � 8 � � � " " � � �
 � � ! � � � � H � � �
 � � � � � �
 # � � �
 � ! � $ � �

� � � � � � � �
 � � � �

� � � � � � � � � ! � � � � " � � � � � � � � � � � � � � � � % � & � � � � � � � � � � � � % � & � � � �) � � � � � � � � � � �

�
 � � " � � � � � � � � � � + � � �
 � �
 � � � � � � � � � � � � � � � � " � � & � � � �)

�
 � " � � � � � � �) � � � � " � � � � � � � � � � � � � � � �) � � � � � �) � � � - .
 � " � � � � � � � ! � � � � � � � � � � � � � � �

� � � � �
 � � � � " � � � � / � � � � " � � � � � � � � � � �) � � � � � � � � � � � � �) � � � � � � � � � � �
 � � � � � � %

� � � � � � � 2 � � � � � � � � � � � � � � � � 4 5 � � � � � � " � 8 9 : ; � � �
 � � � � 2 � � � � � � � � �
 � "

� � � � � � � ! � � � � � �) � � � � � � � � � � �) � � � � � � � � � � � � " � � � �

/ � � � � � � � � � � � � � � � �
 � � � � > ? @ A 4 - B � � � � � � � � 2 � � " � " � � � � � � �
 � � � � � � � � � � � � � � � %

� � � " � � � � � � � � + � � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � � " � � � � � � � � �) � �

� � � � �
 � � � � � � � � � � � � � � � � � � � � �
 �
 � � � � � � � � 2 � � " � � � � � + � & � � � � � � � � � � � � � � � -

D � � � � " � � � � � � + � � � � � � & � � � � / � � � � � � � � �
 � �
 � � � 2 �
 � � 4 � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � � � � � �) � � � � � � � E � � � � � � F � � � E � � � � � � � � � � � � � � � � F -

G � H � � � � I � � � � � � � � � � � � � � � � " � � � � � � � � " � � � � � � � � � � � � � � E � � � � � � � � � � � F � � J

� � � � � � � - : � " � � � � � � � � � � � � � � � � � �) � � � � � � � M N M N O P) � � � � � � � � � � � � � � � � � � � " � � � -

Q " � � � � � " � � � � � 2 � � " � � � � � � . : Q / � � > J R A � � � > J ? S A 4) � " � T � � � � � � � � � J � � " J � � � �

/ � � > J R A � � � > J S A 4) � � � � " � 9 � � � ; � � � � � � � J � � � � / � � > J S A 4 � � � � � � � � � � �) � � � �

 � � � V 8 W . / � � > J ? X A 4 - Y � � � �
 � � " � � " � � � / 9 J % � � � � � � � 4 � � � � � � 2 " � � " � � � �

E � � � � � F � � � " � � � � � � � � � � � �
 � � � � � � � � � 2 � � V � � � � � � � � � � � � � � � / � � � � � � � � �

� � � � � �) � � � � � � � � � � � � � � � �
 � � � � � � � � " � 9 J % � � � � � � � � � � � � � � � � � � � � � �

� � � � 4 - Z " � � � �
 � � " � � � � � � � � � \
 � � � � � �) � � � � � � � � � � � � � � � � � � � � � � � � � � J

� � � � � � � � � � 2 � � " �
 � � � �) � � � � � � � + � � � � � � � " � � �
 � � � � " � � � � \
 � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � " � J � � � � -

] � Z " � � � � � � � V � � � � " � � � � � � �
 � 9 J % � � � � � � � � � � � � �) � � �
 � � � J � � � � � � � 2 � � "

� " � � � � � � � � � � � � � � � � � � � � � � � � � � � � - Z " � � � � � � � � � � � � � � � � � � �) � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � " � � � � � � � � � � � � � � � � � � � � � � � � � 5 � � � � � � � � �)

� � � � � � � � � � � � � " � 2 � � � � � & � � � � � � � � 2 � � � � � � � � � � � � � � + � � �) � � � � " � � � � �

� � � � � � � � � / � � � " � � � � � � � > J ? S A � � � 2 � � � � � � �)
 � � � > J S A � " � �
 � � � � � � � � � � � � � � � �

 �
 � � � � 4 - Q " � � � � � � � � � � � 2 � � �
 � � � � � � � � �) � � � � � � � � �
 � � � � � � " � � � � � � " � � � � � %

 � � � � / � � � + � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
 � � � � �

� � � � � 4)
 � � � � � � �
 � � � � � " � � � � � % � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � & � � � � - H �

� " � � � " � � " � � �) � " � � � � � � � � � � �) � " � � 2 � � " �
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � %

� � � � � � � � � � � �
 � � � � � � � � � � � � / � � � � " � 2) � � � " � � � � � V � � 2 � � � � � ` � � � � � � � � � �

� � � � � � � 4 - B � � " � � � � � � � � � � �
 b � � � � � � � � � � � � � � � � � � � � � � � + � � � � � � � � � �

� b � � � � � 2 � � � Y � � � � � � � � � � � � I � 9 J % � � � � � � � � � � � � 2 " � � " � � � � � � � � � � � � � � %

� � � � � � � � � � � J � � � � � � 2 � � " �
 � � � � � � � � � � � � � � � � / � � �
 � � � � � � � � % � & � � � � 4

2 �
 � � � � � � � � � � � � � � � � � � �
 � / � " � � � � � � �
 � � � � �
 � � � � � �
 � � � � � � � " � � B � � �

 � � � � � � � � � � � � � � � � � � �
 � � " � � � � � � � � � � � d � " � � � � � � � � � � � � � � � � � � � E � � � �
 � " F

� � � � � � � � � � �) � � � � � � � " � � � � � 2 � � " � � � � � � � � � � � 2 � � " � � � � � � � 4 -

e � : E � � � F � � � � �) � � � � � � � � � " � � � � � � �
 � � 2 � � � � � � � - B � > J ? S A � � � � � � � 2 � � "

� " � � � � � 2 " � � � " � � � � � � � � � � � � � � � � � � � � � � � � � � 2 � � � 2 � � � � � � � �) 2 " � � � �

> J S A � � � � � � � � � � � � �
 � � � � � " � �
 � � � � � � " � � � 2 � � � � � � � � - B � � " � � � � � � �

� � � �
 � � � � � � � � � � �) � � � � � � � � � � � 2 � � ") � � �) g % � � � � � � � � � � � � � � �
 � � � � � � � � � � � �

2 � � " h % � � � � � � � �) � � � � 2 � � " � � � � � � � � � � � 2 � � 2 � � Q " � � � �
 � � � � � � � � � � " � � � " � �

2 �
 � � � " � � � � � d g � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � �
 �
 �
 � � �
 � � � � � �

 � � � � � � �
 � � � � � � �
 �
 �
 � � � � � � � $ % � & � � (� �) * � � � � (� � � � � * � � � & � � � & � � �
 � - � �

� � � $ �
 �
 � - � (� � �) � * � � � * � � � 0 2 0 4 5 0 4 2 0 6 5 7 7 7 5 0 8 2 0 8 : 4 5 7 7 7 5 0 < 2 0 7 > �

� � & & � � � � � � � � �
 �
 � � (
 �
 � �
 � � � � � � � � � � � � � � � � �
 � & � � � � � � � � 7 @ � � � * � � � � �
 �

�
 A (� �
 � � � & & � � � � �
 � � � � � �
 �
 �
 � � � * � � � B � � � � � � � � � � � � � � � � � � � C � � � � � � � � � � �

 � � � � � � � � � � �
 �
 �
 � � � � � C � � � � � � � � C � � � � � � � % � � �
 � � � � � � � � � � � � � � � &
 � � � *

� � � � � � � � � � � � (� � � � & � � � (� � 7

G � � H B �
 �
 �
 � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � * � � � 7 I � � � � - � � � � � � J (� B

� �
 � � * � � � � � � � � � �
 � � � � � � � � � � �
 �
 �
 � �
 � � � � � � % � � � � * � � � � � � � � * � � � � � � � � �
 � -

� � � � � * � � � (� � � C � � � � �
 � - �
 � � � � � � � � & � � * � � � � � � � � � � � � � � (� (� � � � � � � �
 �
 � - � � �

� � � (� � * & � �
 �
 � - � � � � � � � � � � � � (� (� � �
 - � � � �

� � � � * � � � �
 � � �
 � � � * � � � � � %
 � - * � � � (� � � � � � � * � � � � 7

L M > � � � � � � � � � � � � � � � � � � �
 � - � * � � � � � � � � � � � � � � � & � � �
 �
 �
 � � � *
 � � � � �
 � -

� � �
 � � (� � � � C � *
 � � � � � � � � � � � � � � � � � �
 � � � N � � � � � � � � � � � � � � � � � � � �
 � � � � �

(� � � � � � �
 � P (� � � � * � � � � � � C � � � � � � � �
 � - * � � � � & � � �
 � (� � � � � � � � � 7 > � � � � (� � C
 �

� � & & � - �
 � � � � �
 �
 � (� � � � � � � � (� � � � � � � � � - � �
 R � �
 � �

� * � � � �
 � � � �
 � � � � & � (� � � S �
 &
 � � � � � (� � � T 7 U � � � � � � (� � (� � � � * � � � * � � �

V 2 W 8 X Y 8 C � �
 � � � � � � � � � � � � � � � � � �
 � � � �
 Z � � � � V � � � � � � � � * � � � � �
 � � � � � �

� � � � � �
 � � � �
 Z � � � � X C � (� � � (� � � � � � � * � � � � � � � � � � � � � � �
 � - � � � � � � � � [7 \ � � (� �

� * � � � � � � � � C � � & � �
 � � � � % � � � � � � � (� � � � �
 � � � � �
 � � � � � � -
 � � � * � �
 � � � � � � � � �

[S � � � � � �
 � � �
 � � � � � � � � � � � � * � � � � (�
 � � � (� � � �
 � � � � � � � � � � � � � � � � � � T 7

G �
 � � � � � � � � � � & � � � � * (� � � & (�
 � - � � � � N � � � � (� � � * � � � * � � � 0 2 0 0 C
 �

_ � � � & � � � - � � H ` � &
 � � � * � � � � � � � � 0 � (�
 � - � � � � � � � � (� � 0 2 W 8 a Y 8 � � � � - � �

H ` � &
 � � � * � � � � � � � � � � � �
 � � � � � � � � � � [C � �
 �
 � � � � � � (� �
 �
 � � � � � � � � � � �

� * & � � � (
 � - � b & � � � � �
 � � � � � � � � � � � � � � � � �
 � � � � � � � � * � � � � � � � �
 � � � � � � � � � �

�
 �
 �
 � � 7

c M I � � � �
 � � � � � & � � � � � � � � � � � � � � � � �
 � - C � � � � � � � �
 � � � � � � & � � �
 �
 �
 � � � *

 � � � (�
 � �
 � - * � � � � � � -
 � & � � � � � � � � � � � C � (� � � � �

� � � � � � � � � � � � � � � � � 7 d � �
 � � � � � � C � � � & & � �
 � - � � (� � � * � � � * � � � W 8 W f Y f Y 8 2

W 8 Y 8 W f Y f � � � � � � � � � � � �
 � � � � � � � � � � g
 � � � � � � (� � * � � � � � � � � � � � �
 � � � � � � � � � �

[S
 * � � � � � � � � � � � �
 � � � � � %
 � � � � � � � � � C � � � � � � � � � � � � g � � � � � � � � � � � � � � � T 7 @ *

 � (� � � C � � � � �
 � - � � � � � � � � g � (� �
 � � � � � � � � � � [C � � � � � � � � � � � * � � � � � � � � g
 �

� � � � � � � � � � � � � S � � � � �
 � � � �
 � � � � � - � � (� � � � � * � � � � � � � � � � � � � (�
 � � � � � �

� � � � � � � �
 � � � (� �
 � � � � � � � � � � [� � �
 �
 � � � � � � � � � �
 �
 � � � � � �
 � � � � �
 � - � � � � � � � �

[C � � � (� � � � � � � � (�
 � � � � � � � � � � � � � � � � � � - � � � � �
 � � � � � � � � � g C � �
 �
 �

& � � � �
 � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � [C � � � � � � � � � � � � � � � � [� � � g

� � � � �
 � � & � � � � � �
 � � � � � � � � � � 7

\ � (�
 � - � � � & � � �
 � (� � (� �
 � � � � � � � � � � � � � � � � S � � � � � � � � � � � � � � � � �
 �
 �
 � � & � � B

� � � � � � � � � � � � (� � � � � % * � � � (� � � � �
 � � � Z � � � � �
 � � � � � (�
 � � � * � � � � � � � � �
 � � �

� � � � � � � � � � T C � � � �
 � � � � � (� � � � � � � � � g C � � - � � � � � �
 � �
 � � � � � � � � � C
 � �
 � � � � �

� � -
 � � � * � � � � � � � � [7 G � � � � & (�
 � - & � � �
 �
 �
 �
 � � � & � � � � (�
 � - � (� � (� � � C � � � �

� � � � �
 * � � � � � � � � � � & � � � - � � * � � � � � � � � � � � � � � (� (� � C � * $ � � � �
 �
 � -)
 � C � � � � � �

� � � � � � & � � � � * (� S � � �
 � � �
 � � � * � � � � � � � � � � � �
 � � & �
 � � � * �
 � � T 7

i M I � � � � (- � � �
 � � � � � � � �
 � � � � � � � � � � � �
 � � � � � * � � � C > * � � � (� � � � � � � � � b & �

 �

� � � � � � � � � &
 � � � � � � � � *
 � & � � � � � �
 � - j � � � � � � � � � � � � � � � � � � �
 � � & (� � � C � �

� � � � � � � 	 �
 	 � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � 	 � � � � � � �

� � � � � � � � � � � � 	 � � � � � � � � � 	 � 	 � � � � � � � � � � � 	 $ � 	 � � � � � 	 � 	 � � � � � � � � % � � %
 � � 	 % � �

� � � 	 � � � �
 	 � � � 	 � � � � � � � � % � � * 	 � 	 � � � + % � � � � � � � � � � �
 - � � � 	 � � / �
 � � 	 � � � * � � �

1 - � % � � � � 	 � 	 � � � � � 	 � � � � � � � 	 � � � � � 	 � 	 � � � � � � � � � � 	 4 � � � 	 � � � � � � � � � � 	 � � � % 	 / � � �

� � � � � �
 	 � � � 	 � � � �
 � � � � 	 � � 	 � 5
 	 � � � 	 � � 6 - 7 7 8 � � 6 - 9 : 8
 � * 	 � � � 	 � � � � 	 �
 � � /

� � � + � � � � � 	 � � � � �
 � � � � 	 � � � � � 	 � * � � � � � ; � � � 	 � * 	 � / �
 	 � � � 	 � � � � � � � � % � � 	

� % � � � � � � � � � � � � > � � � 	 �
 	 � � �
 � � �
 � * 	 � � %
 � � � ? � � � � � � � � � � � � � �
 	
 � * 	 � � �

 � � � � � � � � 	 �
 	 � @ �

A * 	 � � + � � �
 � � � � � 	 � � � � � 	 � � � � � � � 	 � 	 � � � � � � � � + - � � � 	 � � B C D B E B F G / � 	

% � � � 	 � � � � � � + � � � 	 � � � 	 � � � � � 	 � � / � � %
 � � � � � � � � � � � � �
 	 � � + 	 � + � � � � 	 � / � � �
 	

� 	 � � 	 � + H � � � I % � � � J � + 	 � > K � � � � � 	 � � � � �
 � � � � � 	 � 	 � � � � � 	 � � � � �
 �
 	 � � � � 	 �

� + � � � � � � � 	 � � L 	 % � � � � � � 	 / �
 � � � � � � � � 	 � � � 	 N � 	 	 6 - O P 8 � � � � � � 	 + 	 � 	 � % 	 � � @

Q R 1 � � / S % � � 	 � � � � � � � � � � � � � � � � � � / �
 	 � � � 	 � � T � 	 � � 	 	 � U V G W V X Y Y X Z B E B [\]

^ _ F B ^ C F \ / � � X ` X U [X Z B E B [\ a E ^ X V C X Z B E B [\ / � � � � � � � 	 � � � � b � c � � � � � � � 	 * 	 � � � � � �

� 	 � � / � 	 	 / 	 � � � / 6 d 8 / 6 e 8 � J � � ? � � � + � � % � � � � � � � � 	 * � % 	 � 	 $ � � � � � � � � 	 � � � 5 � � � � �

� � %
 � � 	 � � � � � � �
 � * � � � � � � * 	 � � � � � � � � � � 	 � � � 	 � > � � �
 	 � 	 � � 	 � + �
 	 	 4 � � � 	 � % 	 � +

� � � * 	 � � � � 	 * � % 	 � � � �
 	 % � � � � 	 � 	 % � � � � / �
 � %
 � � ? 	 � � � � � � � � 	 �
 	 � � � � � � � � � � � � � � @

� � � � � � � � � � � � 	 	 � � 	 � � � � � � 	 + � � � � g % � � � � � % h > i � � �
 	 � � � � % � � @ � � � � � � + * � 	 � / � � �

� � � � % � � � � � � � � � 	 	 � � � � � � ? 	 � � � � � � � 	 � � � � � 	 � � � + % � � � � � 	 � � % � 	 � % 	 / � � � � � � � 	

% � � � � � 	 � � / �
 � %
 % � � g � 	 � � � h � � �
 � � �
 	 � 	 * 	 � � + �
 	
 � � � � � 	 � � � � �
 	 � 	 * 	 � � +

�
 	 � � + � � � � 	 � A * 	 � � + �
 	 � � � % 	 � + � � � � � � � � � � � � �
 	 � � � � � + � � � � � � � � � � � � � � / � � � 	

� � � � � + 	 k % � 	 � % / � � � �
 � �
 � � � � � � � � 	 �
 � � % � � � � 	 � � + � � � � � 	 � � 	 4 � � � + � � �
 � %
 � � � �

� � 	 + 	 � � � � 	 � �
 � * 	 % � � � � � 	 � � � � �
 � � 	 * � � * � � �
 � � � � � 	 / � � � � 	 � � �
 	 � � � � � 	 �

�
 	
 � * 	 � � � � � * 	 � l
 � � �
 � � % � � � � 	 � � � � �
 	 � 	 � � � � � 	 % � � � � � � � � � � 	 � � � � � � � �

� � � % � 	 � � / � � � �
 	 � � � � � � � % � � � � � � � � � + - � � � 	 � � � � � � � � � � �
 	 $ � 	 � � � � � � + � � * 	 � � � � � � � � �

�
 � � � � � � % � � � � � 	 � � � � � � + � � � � � 	 � � � + 1 � � � � � � c � � � � � � � � �
 	 � 	 	 * � � � � � � � � � � �

� � � � � � � � n � 	 � � � � � � � � 	 � � � 	 � % 	 � � � � � � � � � 	 � / � � ? 	 1 	 � � � � 1 	 � � � � ? � � � A * � � � � � � � � �

c � � � � � � � � / � � � � � � � � � � � � 	 � � 	 + � � �

o R S � � 	 � 	 � � � / � � � � 	 � � � 	 � � � � % � � � � � � � � � �
 � �
 	 � � � 	 � � � + 1 � � � � � � c � � � � � � � �

� � � � �
 � �
 	 � � � � � � � %
 	 � � � � � � � � � � � 	 % � � � � � � � � > � � %
 � � � � � � � � % � � � 	 � � / � % � � �

� � � 	 � � / 	 � % @ � � � + � � � 	 � 	 � � � � / 	 4 � 	 % � 	 � / + � � � � + � � + � � � � �
 � � 	 � p � 	 � � + � � � � �
 	 �

 � � � � � � % � � � 	 � 	 > � 	 + � � � � � � � 	 @ � � � 	 � � � � � 	 % � � � � � � � � � � 	 � / �
 � � 	 � 	 � �

+ � � � � 	 � � � � � 	 % � � � � � � � � � � 	 � % � � >
 � � 	 + � � � @ � 	 � � 	 + � � � � � �
 	 � I 	 � � � - � � � 	 �

�
 	 � �
 � � � � � 	 � � � � � � � 	 � � � � � � � 	 � 	 � � � + � � � � � � � � � � � � � 	 � �
 	 � � > � 	 	 /

	 � � � / 6 : 8 @ � � + � � � �
 	 s 1 H c � � � � � � � � � � 	 � > � 	 	 / 	 � � � / 6 7 d 8 @ � H % � � � 	 % � � � 	 � � � � 	 � % 	

� � �
 c � � 	 � � � u � � � � � 	 � � % � � % � � � � > � 	 	 / 6 v 8 / 6 w 8 @ � � � + � � � � � 6 - 9 e 8 �

x R b 	 � � � � � 	 c � � � � � � � � % � � 	 � + � � � � � � � � � � � � � � � � � � � � � � � � %
 	 � � � � �

�
 	 � � � % 	 � � 	 � � � 	 � � � 	 � 	 � � � � � � � � % / �
 	 � 	 � � � � � � � � � � � � � � 4 � � � � 	 � n � � � � � � � � � � � � % � � �

� � � 	 � y � � � � � � / � � � g % � � � � h � � �
 	 � � � � % � � � � � � 	 � � - � � � 	 � � � 	 � > �
 	 � � � 	

� � � � � � � 	 � � 	 4 � 	 � � � � � 	 � � � � + � � s 1 H c � � � � � � � � @ � l
 � � � � � � � g � � � � � 4 � � � � 	 h

� � �
 	 � � � � % � � � � � � � � %
 	 � / � � � � � � � � � � � � � � � � 	 � / + � { { � 	 � � / � � � � � �
 � 	 � � �
 	 � � | > K � �

�
 	 � � � � 	 � � � 	 / � 	 	 6 7 v 8 ; �
 	 � � � � % � 	 � � � � � � � � � � 4 � � � � 	 � � 	 � + � � � �
 	 � � � 	 � � � � � �

+ � � � �
 	 	 4 � 	 � � � � / � % � � * 	 � � � � � � � � � � � � + 	 $ � � * � � 	 � % 	 N � � / � � � 	 � 	 � 	 � � � / � � � 	 � � � % 	 N

% � � � � 	 � � @ l
 � � � � � � � g � � � � � 4 � � � � 	 h % � � � � � � � � / �
 � � 	 * 	 � �
 � � % � � � 	 � � | H � � �
 	 � 	

� � � � � � � 	
 � � � � � � � � � � � � � �
 	 � � � � � � � � � � ! " # $ �
 % & � � & $ � � �)
 + � � �
 � $,
 � � � � � �
.
 � + � � � / 0 2 3 4 � � � � � � � � � � � � � � � � � � � 7 � � �
 � / � 9

: & � � � � � � �
 	 � � & � � � � � � � � � � � � & � � � + & � � � � $ �
 < � �
 + & � � � 9 9 9

= > ? @ A B C D E F G D @ J L M : & � � � �
 � � � � � � � / � � � � � � �) � � � � � � � �
 	 � � � � � � �
 � �
% � � & � � � � � � �
 	 + �
 + � � � � P
 � P � � � � � & � � � �)
 	 Q �) � � � � � 9 <
 � �) � � � � �
 � & � � � $
% � � & � � � � � � � � � � � � $ � 	 � %
 	 � & � � 0 � � + & � � � � � � � � �) 7 U V 9 . � � � � � � � �
 � 0 , � � � � � 7 $ X 9
. � & � Y Z [� � Y 0] � � + � � � 7 $ ^ 9 _ � � � � 0 [� � � � � 7 $. 9 , � � � � � Z [� � � 0 : � � � � /
 � � 7 $ a 9
, � � � 0 , � � � �
 7 $ [9 , � � � � � � 0] � & � � � � � 7 $ 4 9 ^
 � � � / � b Z Q � �
 � 0 , � � � � � 7 $ a 9 ^
 b � � Z
� � � / 0 c � � � � � 7 $ d 9 e � f � f � � � � � 0 :
 f)
 7 $ 4 9 e � �
 � � � 0 : � f 7 $ d 9 e b f � 0 :
 f)
 7 $: 9
d
 f
 �
 � � 0 :
 f)
 7 9

g h i j h k l m n o p q k s t u q u w x y u { | n q ~ � � � �

� Q � � 4 9 4 � � � � � � $ 4 �
 � � � � � � �
 	 Q �) � � � � � $ � � � � � & � � � � � � � � � + � $ � � � � 9
� Q � � . 9 . � � � � $ a & 9 Q �� � $ � � � � � � ! " # � ! � � � � � � � � " � � � � � � $: �) �
 � � � � _ � � � � � � $

c
 � �
 � $ � � � � 0 . & � + � � � � U � .
 � + � � � / % � � & , � � � � � � � � � 7 9
� Q � � V 9 . � � � � � � � �
 � $ a & 9 Q �� � $ 4 9 ^
 � � � / � b Z Q � �
 � $.
 � + � � � / % � � & � � � � � � � � � U

Q �) � � � � � % � � & %
 � � Z
 � Y � � � � $ � � � � � � " � � � � � � � $ � � � � 9
� Q � � V 9 2 � � �
 % $ a & 9 Q �� � $ � � � & � +
 % � �
 	 � � � � � � � � �
 � + � � � / $ � � � � � " ! � � � � �

� � � � � � � � � ! � $ ¡ $ � 0 � � � � 7 $ � � ¢ � � 0 % % % 9 � � � � 9 � � £ Y � � 7 9
� Q ¡ � V 9 2 � � �
 % $ a & 9 Q �� � $.
 � � � � � � � � �
 � �
 � � �
 � � � � Q �) � � � � � $ � � � � � � � � $ � � � � 9
� Q ¤ � ^ 9 _ � � � � $ a � � � � � � � b � � Q �) � � � � � $ ¥ � " � � � � " � � � � � � � � � � � � � � ! � " ¦ � � � § ¨

¥ � ¦ © ª ª $ < � «� � $ � � � � $ 0 a 9 . �
 � � � $ a & 9 Q �� � $ � � � 9 7 $ ¬ � � � ¤ ® � $ e + � � � / � � $ � � � � $
� ® � ¢ � � � 9

� Q ¯ � ^ 9 _ � � � � $ a � � � � � � � b � � Q �) � � � � � % � � & � + � � � � � / � � � � � � � � / £ � � �
 � � � � � � �
 � $
° � ± � � � � � " ¥ � � � � ¬ � " # � � # � � $ _ . : � � $ < � «� � $ � � � � 9

� Q ® � e 9 3 9 ² � � � & � � $ ^ 9 ^ � � � $ 4 P � � � � � �
 	 Q �) � � � � � % � � & � � � � P � � � � � � � � � � U e
 � Z
P � � / 3 Q Z �
 � + � � � � + �
 � � � � � $ � � � � " ! � " � � � � � " � � � � � ! � " � � ! � " � � � " � ¦ � � � ³

" � � � # § $ � $ � 0 � � � � 7 $ � ¡ ¯ ¢ � ¤ ¯ 9
� Q � � e 9 3 9 ² � � � & � � $ ^ 9 ^ � � � $ � � � & � +
 % � �
 	 Q �) � � � � � % � � & � � ´ � � � � � � � � �

+ � � � � � � � � � % � � � � � / $ � � � � � � � + � $ � � � � 9
� Q � � � e 9 3 9 ² � � � & � � $ ^ 9 ^ � � � $.
 � + � � � / % � � & Q �) � � � � � $ � � � � � � � � $ � � � � 9
� Q � � � , 9 , � � � «� � $, � � � � � � � �
 � + � � � / � � Q �
 �
 / $ � � � � � � � + � $ � � � � 9
� Q � � � . 9 , � � � � � Z [� � � $ [9 , � � � � � � $ Q �) � � � � � % � � & P � � � � �
 � $ � � � � � � � � $ � � � � 9
� Q � � � . 9 , � � � � � Z [� � � $ a & 9 Q �� � $.
 � + � � � / % � � & � � � � � � � � � U � � � �
 � � �
 � � � + Z

� � � / & � � � � � � &) $ µ � � � � � ! " � � � � � � � ¦ � � $ �
 � + + � � � 9
� Q � � � 4 9 Q �� � $, 9 Q �� � $ � � � & � � � � � � � � � �
 � + � � � / � � � � �
 � � + � � � � � / $ � � � � � Z

� � � $ � � � � 9
� Q � ¡ � a & 9 Q �� � $.
 � + � � � / % � � & � � � � � � � � � $ � � � " � � � � � � � � � � � � " � � § � � � �

� � ! � " � � � $ ¤ � 0 � � � � 7 $ � � + � � � � $ � � � ¦ � ± � � � " � � � � � � � � � � � � � ! � " � � ³ ¦ � � �
� � � � � 3
 � � ® $ � � � ® 0 % % % 9 � � � 9 � 7 9

� � � � � � 	 � � �� � � � � � � � � � � � � � � � 	 � � � ! " � � � # � $ � � � � " � ' �) � � � � � * + , , - . / 0 1 3 . 5 -
6 7 8 9 : � � ; < = � ! " � � > > > ? � � @ > A � B C �

� � � ; � � 	 � � �� � � � � � � � � � � � � � � � 	 � � � ! " � � � # A $ F � " � � � � H � # I # � � � # � � � 	 � � J � " � K
L � ' � � � ! " � � � # � N 0 . - O 0 P Q P 1 3 R 1 + 0 S T . / 1 0 U 1 3 9 1 W X + . - O : Z / - 0 Z - � � � � � < C [[[? �

� � ; A � \ C �
� � � \ � � 	 � � �� � � � � # I # � � � # � � � 	 �) � � F � � � � ! " � � � # H $ � � �) a � � � b �

) � � � J � � � � " � ! J � � # � Q P 7 + . 1 W T . T d e T 0 f + T f - U T 0 S 9 1 W h / 0 T . 1 O / Z U � � �
� " � # # � � � ' 7 + Z k , T 0 S l 0 / n - O U / . o d 9 p q 8 9 : r - X 1 O . b � � [C � � > > >

< � � � �) # � � �) a J � � ' � �) � � L t � u v w � x ? �
� � � > � � 	 � � �� � � � � � � � � � � � � � � � 	 � � � ! " � � � # � $) � " " �) � � � � � � � � � " � ! J � � # � � � '

# � � � ! � ! J � � � " � � 	 �) � J " � � � " a # � * + , , - . / 0 1 3 . 5 - 6 7 8 9 : � � \ < � > > > ? � � y � A � y y �
� � C [� � 	 � � �� � � � = " � �) � J J # � �) � � � � � � " # � � � � � � � � � � � � � 	 � � � ! " � � � # < � # I K

� � � # ? � # � ! � � � � � ' � � > > > �
� � C � � � 	 � � �� � � � � � { � L � � ! � " � � $ � x � J � � � � � v � � ! " � � �) � � � � � � � � � � � 	 � | � � " � � J

� � � � � � � R + 0 S T W - 0 . T N 0 3 1 O W T . / Z T - � y � � @ < C [[[? � C B > A C � � �
� � C C � � 	 � � �� � � � } � x � a � a � ! � " � � w � } � a � � � " � � � # I # � � � # � � � " � � 	 # � ~ " � # � " �) � � '

~ � " � # � # � ! � � � � � ' � � > > > �
� � C @ � � 	 � � �� � � � � � w 	 � � " " � � � v � J � � # � � � " �) � # # � � � ! I � � � � # � ~ # I # � � � # � ~ � � � � �

� � � � � " � � # ' �) � " # � � O - � � O 1 Z P 1 3 � 1 O k U 5 1 X 1 0 N W X , - W - 0 . / 0 f 7 + . 1 W T . T � � $ > > �
� � � # ' � � � $ � � � # � � > > > � � " � � " � � � B t � > > > � ~ � � � F � � � � # ' � � < � � � � J ' � � � �
� �� " � � � # � � � � � { � ! ! � � # � � ' # � ? � � � K � ; � � � ' 7 + Z k , T 0 S l 0 / n - O U / . o d 9 p q 8 9 :

r - X 1 O . b � � [� � � > > > < � � � �) # � � �) a J � � ' � �) � � L t � u v w � x ? �
� � C y � � 	 � � �� � � � w � } � a � � � " � � v � � ! " � � �) � � � � � � � � ! � # � ' � � # � J �) � � � � � O - , / W / �

0 T O o � O 1 Z P 1 3 R / 3 . 5 N 0 . - O 0 P q - - . / 0 f 1 0 p � 7 * T U - S 9 1 W X + . - O U < � � � � � ~ " � � �
u � � � � � " ' � � ' # � ? � v � w � � � � � � > > > � C � @ A C C ; �

� � C B � � 	 � � �� � � � w � } � a � � � " � � x � � � J � � � � � � # I # � � � # ! I � # I # � � � # � Q 1 + O 0 T , 1 3
l 0 / n - O U T , 9 1 W X + . - O : Z / - 0 Z - � � � C < C [[[? � � ; \ A � > @ < � � � � � �) � � � ' � t � �) # ? �

� � C � � � 	 � � �� � � � x � } � � � � # I �) 	 " � � � L � � � � � � � � # I # � � � # � R + 0 S T W - 0 . T N 0 3 1 O W T . / �
Z T - � @ \ � y < � > > > ? � @ > ; A y � [�

� � C ; � � � � � � " � � $ � � " � � J ~ � " � ~ � " � # I # � � � # � * + , , - . / 0 1 3 . 5 - 6 7 8 9 : � � ; < = � ! " �
� > > > ? � � � B A � ; C �

� � C \ � � � � � � " � � � � � � � " � � v � ! � J � � � ! � � � � # � � ' � # I # � � � # � � 1 O k U 5 1 X 1 0 R 1 O W T ,
e T 0 f + T f - U � = � w > > � � � �# � � � > > > � Q P l 0 / n - O U T , 9 1 W X + . - O : Z / P � B � > < � > > > ? � B \ \ A
B > \ �

� � C > � } � x � L � a � � � � w � � � a � � � � � � � x � � � � J � � � � � � � � � � � ~ �) J � # # � ~ � # I # � � � # �
r 1 W T 0 / T 0 Q P 1 3 N 0 3 1 O W T . / 1 0 : Z / - 0 Z - T 0 S 8 - Z 5 0 1 , 1 f o � @ � C < C [[[? �

� � @ [� } � x � L � a � � � � w � a � ! � I � # 	 � � � � w � � � a � � � � F � # � � � � � � � � � ~ � � �) � J � � �) � J # I # � � �
! I � # � � � � � � ! # � " �) � " � � " � � � � � # I # � � � � � � � J � � # � � # � � � r - Z - 0 . 8 1 X / Z U / 0 q T �

. 5 - W T . / Z T , T 0 S 9 1 W X + . T . / 1 0 T , e / 0 f + / U . / Z U < � 	 � � �� � � � � ' � ? � w 	 � � � ! J � � � � # �
� ~ � 	 � { � � � � � � � $) � ' � � I � � �) 	 � " � # � � C [[[� @ [[A @ [> �

� � @ � � � J � � � � ' " � � � � J � = � " " � � � � � � � v � � " � � w � � � � " � � J ~ � " � # ~ � " " � � " � � � � � �
I # � � � # � # � ! � � � � � ' � C [[[�

� � @ C � � J � � � � ' " � � � � J � = � " " � � � � � � � v � � " � � � " � � " � � � � # � � ' F � " � � ! J � � 	 �) a � � # # � ~
� � � ! " � � � # � � " � � " � � � � � � # I # � � � # � # � ! � � � � � ' � C [[[�

� � � � � � � 	 � �

 � � � � � � � � � �� � � � � � � ! " $ � � � � � % � & � (� � � * � � � � + � � � - - � - . � / 0 1 � � 2 " � . $ - � 1 4 � � � � � � 4 2 " � 5
. � � 1 " � � � 7 1 � 4 + � " 8 � � . . 1 � 8 4 � * - � � 9 : ; : < = > = @ = < A ; B C @ D C F G : ; = < H I J ; = F J � K L � N O O P �

� Q Q R � K K �

 S � ! � � � � � � � � � & " 8 1 / � - � � T � � 4 1 U 1 - 1 � * " 2 / " . + $ � � � 1 " � � V W X Y [\ = J [] = ^ [� � _ L � N _ Q P � ` S ` R ` Q S �

 Q � a � � � � � * � a � � " $ 7 " - � b 0 � / 0 � . 1 / � - � U 4 � � � / � . � / 0 1 � � � c d = C < = ; B e A f D C F G : ; = < H e B [� N g
L � N N S P � S � _ R S K O �

 K � ! � h � ! � - $ 7 � � a 0 � � i� $ � � a - " U � - 4 * � � � j � � 7 4 � . � � � 1 / 4 2 " � � � / $ � 4 1 T � - * � � $. � � � U - � - � � 5
8 $ � 8 � 4 � 9 : @ l A F = @ ; A V @ m C < F A ; B e A = � K � S L � N O � P � S K ` R S ` K �

 ` � & � ! � � 7 � - - 1 � � U 4 � � � / � 1 " � 4 2 " � . " U 1 - � / " . + $ � � � 1 " � � 1 � H = e : < = V @ ; = < @ = ; o < C p < A F F B @ p L � �

q 1 � � r � ! 0 � � � � 4 � � � � 7 4 � P � s = e ; : < = t C ; = J B @ D C F G : ; = < H e B = @ e = � � g v Q � h + � 1 � 8 � � 5 q � � - � 8 �
� N N N �

 g � & � ! � � 7 � - - 1 � � � a " � 7 " � � (" U 1 - � � . U 1 � � � 4 � 1 � o < C e = = l B @ p J C m 9 C H H A D H w x y L (� z 1 T � � �
� 7 � P � s = e ; : < = t C ; = J B @ D C F G : ; = < H e B = @ e = � � Q _ O � h + � 1 � 8 � � 5 q � � - � 8 � � N N O � � K v R � ` ` �

 _ � (� ! " � � � 7 � { � 2 " � . � � 1 " � + � " / � 4 4 1 � 8 1 � . " - � / $ - � � 4 * 4 � � . 4 � D : < < = @ ; J B @ X C l = < @ W B C f C p I �
` L � N _ S P � � R � K �

 O � (� ! " � � � 7 � b 0 � + � 1 / � " 2 + � " 8 � � . . � U 1 - 1 � * � c d = | @ B ^ = < J A f c : < B @ p X A e d B @ = } ~ � A f m �
D = @ ; : < I H : < ^ = I L � � � � � r � � � � 7 � P � � � . . � � � � � � 7 � � T � � � � 8 � � � � . U $ � 8 � � N O O � S O ` R Q v _ �

 N � � � ! 4 $ 0 � � 5 q � � � $ � � � % � 4 4 " � � � � � � - � . � � � a 0 � � i� $ � � > < A F F A < H I J ; = F J [~ > < A F F A ; B e A f
~ G G < C A e d ; C] B J ; < B � : ; B C @ A @ l D C C G = < A ; B C @ � a " � 7 " � � � 7 � � � � / 0 � & " � 7 " � � � N N K �

 � v � � � % � 4 4 " � � q � (1 � � � � � � � � 4 " . � " + � � � � 1 " � 4 4 $ 8 8 � 4 � � 7 U * 8 � � " . � � T " - $ � 1 " � � H = e C @ l
o A e B � e D C @ m [C @ W B C e C F G : ; B @ p � � � � � 1 1 � � N N _ �

 � � � � � % � 4 4 " � � a 0 � � i� $ � � \ = p : f A ; = l \ = � < B ; B @ p B @ 9 C < F A f s A @ p : A p = c d = C < I � h + � 1 � 8 � � 5

q � � - � 8 � � � � - 1 � � � N O N �

 � S � � � a � $ 4 r � � % � 4 / � 1 + � 1 " � � - / " . + - � j 1 � * " 2 / " � � � j � 5 2 � � � - � � 8 $ � 8 � 4 � o < C e [X A ; d [9 C : @ l [
D C F G : ; = < H e B [D C @ m [� � 1 8 0 b � � � � 4 � � N _ Q � _ � R O Q �

 � Q � ! � a � & � � 8 � " � � � � � 1 � / 1 � - & 1 2 � � 1 � T " - � ~ < ; B � e B A f s B m = � V V L ! � a � & � � 8 � " � � ! � b � * - " � � � � % �

� � � . � � � h � � � 4 . $ 4 4 � � � � 7 4 � P � � � " / � " 2 � 0 � � " � r 4 0 " + " � � � � 1 � / 1 � - & 1 2 � � h � � � � � � � � N N v �
h � � � � � � { � 4 � 1 � $ � � h � $ 7 1 � 4 1 � � 0 � h / 1 � � / � " 2 ! " . + - � j 1 � * � � � " / � T " - � � � � 7 7 1 4 " � 5 � � 4 - � * �

� N N v � � R K _ �

 � K � h � h � (� 7 � � � W B C f C p I L � 1 2 � 0 � 7 1 � 1 " � P � (/ a � � � 5 � 1 - - � � " 4 � " � � � N N g L ! 0 � + � � � � X = F � < A @ =
J ; < : e ; : < = A @ l m : @ e ; B C @ � O K R � v S P �

 � ` � � � � � � - � r � \ C : p d H = ; J [c d = C < = ; B e A f ~ J G = e ; J C m \ = A J C @ B @ p A � C : ;] A ; A � � - $ � � � � % " � 7 5
� � / 0 � � � N N S �

 � g � a 0 � � i� $ � � X A < e : J D C @ ; = � ; : A f > < A F F A < J � � - $ � � � � � " 4 � " � � % " � 7 � � / 0 � � � N N _ �

 � _ � a 0 � � i� $ � � a � � " � � � U � � 8 � � � h � - " . � � �] t ~ D C F G : ; B @ p [t = � D C F G : ; B @ p o A < A l B p F J �
h + � 1 � 8 � � 5 q � � - � 8 � � � � - 1 � � � N N O �

 � O � � � � " 8 " � 0 1 � � h . � - - $ � 1 T � � 4 � - b $ � 1 � 8 . � / 0 1 � � 4 � c d = C < = ; B e A f D C F G : ; = < H e B [� � g O L � N N g P �
S � ` R S K v

 � N � a � � " � � � U � � 8 � � � h � - " . � � � � 7 4 � � � A @ l � C C � C m 9 C < F A f s A @ p : A p = J � Q T " - $. � 4 � h + � 1 � 8 � � 5

q � � - � 8 � � � � - 1 � � � N N _ �

 S v � (� � � h / 0 �$ � � � � U � � 8 � � � � � � � 1 � � . " � " 1 7 4 0 � T 1 � 8 " � - * � � 1 T 1 � - 4 $ U 8 � " $ + 4 � V @ m C < F [D C @ �
; < C f � O L � N g ` P � � N v R � N K

 S � � (� h 1 + + � � � h � $ 7 * 1 � 8 � � � 1 � / 1 � - & 1 2 � $ 4 1 � 8 � 4 1 . + - � � 8 � � � � � - / � - - $ - � � . " 7 � - � ~ < ; B � e B A f s B m =
Y C : < @ A f � S � � L � N N ` P � � R Q ` �

 S S � � � h * � " + " $ - " 4 � � � " � � " � U � 8 4 � U � 4 1 / + � 1 � 4 � � 7 � 0 � / 0 � . 1 / � - � U 4 � � � / � . � / 0 1 � � � 4 $ U . 1 � 5
� � 7 � � N N N �

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 218 - 235.

Computing with P Systems 1

Raghavan RAMA

Department of Mathematics,

Indian Institute of Technology, Madras, Chennai-36

Tamilnadu, India

E-mail: ramar@acer.iitm.ernet.in

Abstract. P systems, introduced by Gh. P�aun form a new class of

biologically inspired distributed computing models. Several variants of

P Systems were already shown to be computationally universal. In this

paper, we establish that rewriting P Systems with priorities and two

membranes is computationally universal, improving the existing result

that RE � RP3(Pri). We give a new model in P Systems stressing the

importance of parallelism and investigate its power. We also propose a

class of P Systems capable of solving NP-complete problems like HPP

and NCD in linear time. We also show that this class of P Systems can

break the most widely used cryptosystem, DES in linear time.

Key Words: Membrane Computing, P Systems, NP-completeness, Hamiltonian

Path Problem, Node Covering Problem, DES

1 Introduction

The P Systems are a class of distributed parallel computing devices of a biochemical

inspiration. In this system, one considers a membrane structure consisting of several

cell membranes which are hierarchially embedded in the main membrane, called the

skin membrane. P Systems can be used as a support for a computing device based

on any type of objects and any type of evolution rules associated with them [1 -

9]. The set of objects can evolve in many ways de�ned by string processing rules

: Rewriting (Sequential and Parallel), point mutations and so on. In a P System

based on rewriting, the objects considered are strings and a string passes through

membranes as a unique entity, its symbols do not follow di�erent itineraries, as it

was possible for the objects in a multiset [3, 5]. In a P System based on parallel

rewriting, a string passes through as a unique entity, and evolves parallely. That

is, every symbol in the entity is rewritten whenever it is possible to do so. The

rewriting rules are rules of L- systems and hence the entity evolves parallely.

We consider here systematically the four possibilities : P Systems with or without

priorities, with or without cooperation. The four hierarchies on the number of

membranes used in a system are compared to languages generated by devices in the

Chomsky hierarchy and L-Systems. A characterization of recursively enumerable

languages is obtained in the case of P Systems based on sequential rewriting. The

proof uses the same technique as in [3], but this time, the number of membranes

used is still smaller : two.

1
this work was done with S.N.Krishna

We show that DES can be broken in constant time by using the variant of P Systems

proposed in [5]. Also, we propose a variant of P systems with active membranes,

where we allow an elementary membrane divide into �nitely many membranes. The

skin membrane is never divided. We prove that in this framework the Hamiltonian

Path Problem and the Node Cover Decision Problem can be solved in linear time.

This variant being more powerful and more general than the one considered in [5],

its computational universality follows immediately.

2 P Systems Based On Sequential/Parallel Rewriting

We refer the reader to [3, 4] for basic notions, notations, and results about P Sys-

tems. Here we directly introduce the class of systems we investigate.

De�nition 2.1 A P System based on sequential rewriting is a language generating

mechanism

� = (V; T; �;w1; w2; : : : ; wm; (R1; �1); (R2; �2); : : : ; (Rm; �m) where

(1) m � 1;

(2) V is an alphabet (the total alphabet of the system);

(3) T � V (the terminal alphabet);

(4) � is a membrane structure;

(5) w1; : : : ; wm are strings over V, associated with regions 1; : : : ;m of � describing

the �nite languages over V

(6) R1; R2; : : : ; Rm are �nite sets of developmental rules, associated with regions

1; : : : ;m of � of the following forms:

(a) Context-free evolution rules of the form X �! v(tar) where tar 2 fhere; out; inmg,

X 2 V; v 2 V �.(m is the label of a membrane with the obvious mean-

ing that the string produced using this rule will go into the membrane

indicated by tar)

(b) Non Context-free rules of the form u �! v(tar) of radius greater than

one, u; v 2 V �.

(7) �1; �2; : : : ; �m are partial order relations on R1; R2; : : : ; Rm, specifying priority

relations among the rules of Ri.

In P Systems based on sequential rewriting, the objects we consider are strings. We

apply atmost one rule in every step. The parallelism refers to the fact that we are

processing simultaneously all available strings by all applicable rules. If several rules

can be applied to a string, at several places each, we take only one rule and only

one possibility to apply it and consider the obtained string as the next state of the

object described by the string.

A P System based on parallel rewriting is similar to the system based on sequential

rewriting, but the parallelism is in two ways: We process simultaneously all strings

in all membranes by all applicable rules: We rewrite every symbol of the string

which can be rewritten. Thus several rules are applied to a string; each symbol is

processed by one rule at a time. If a symbol occurs at several places of the string

and if di�erent rules can be applied to it, then at each position we nondetermin-

istically choose a rule and apply it. In P Systems based on parallel rewriting all

symbols which can be replaced in a step are replaced. Consider a string a1a2 : : : an
and suppose there are rules ai �! bi(tari) where tari represents some membrane.

If all symbols are targeted to di�erent membranes, one membrane is chosen non-

deterministically and the string is moved there. Otherwise, if there are k targets

occurring in the rules of ai, n1; n2; : : : ; nk times each, the string moves to target i

provided ni = maxfn1; n2; : : : ; nkg and assuming that there are no wrong rules [6].

That is, there are no rules Ri of the form a �! v with v introducing b(in j) where

j is not a membrane placed immediately inside i. Always, the string moves to a

target only after all possible symbols are rewritten.

We denote by ERP (�; �) (EPP (�; �)) the family of languages generated by P

Systems based on sequential (parallel) rewriting with external output, � 2 fPri; nPrig,

� 2 fCoo; nCoog. If atmost mmembranes have been used, then we writeERPm(�; �)

and EPPm(�; �) for the family of languages generated by P Systems based on se-

quential and parallel rewriting respectively. The language generated by both the

systems is the set of all those strings over terminals which go out of the system .

Theorem 2.1 CF = ERP1(nPri; nCoo)

Proof : This result can be proved in exactly the same way as Theorem 2 in [3].

Theorem 2.2 CF � ERP1(Pri; nCoo)

Theorem 2.3 RE � ERP1(nPri; Coo)

Proof : The computational universality can be proved by considering a type-0

grammar G in Kuroda normal form.

Theorem 2.4 RE � ERP2(Pri; nCoo)

Proof : Let G =(N, T, S, F)be a matrix grammar in binary normal form, N =

N1 [N2 [fS;+g; N1 \N2 = �. Then the rules of F are of the following forms:

(1) (S �! XA);X 2 N1; A 2 N2:

(2) (X �! Y;A �! x);X; Y 2 N1; A 2 N2; x 2 (N2 [T)
�:

(3) (X �! Y;A �! +);X; Y 2 N1; A 2 N2, and + is a special symbol.

(4) (X �! �;A �! x); X 2 N1; A 2 N2; x 2 T �.

There is only one matrix of type 1, matrices of type 3 correspond to appearance

checking rules. The symbol + is a trap symbol, once introduced, it is never re-

moved. All derivations can terminate only by a rule of type4. Assume that there

are k matrices, numbered m1;m2; : : : ;mk.

We construct the P System � = (V; T; [1[2]2]1; w1; w2; (R1; �1); (R2; �2)) where V =

N1 [N2 [fXi;X
0

i
j 1 � i � k;X 2 N1g [fAi; A

0

i
j 1 � i � k;A 2 N2g [fi; i

0; i00 j

1 � i � kg.

w1 = XA such that (S �! XA) is a matrix in F , wi = �; i 6= 1. The rules are of

the following forms:

R1 :

r1 : fX �! Yi j mi : (X �! Y;A �! x) is of type 2g

r2 : fX �! Y 0

i
j mi : (X �! Y;A �! +) is of type 3g

r3 : fX �! i0 j mi : (X �! �;A �! x) is of type 4g

r4 : fYi �! i0Yi j Y 2 N1; 1 � i � kg.

r5 : fY
0

i
�! i00Y 0

i
j Y 2 N1; 1 � i � kg

r6 : fi �! � j 1 � i � kg

r7 : fA �! Ai(in2) j mi : (X �! Y;A �! x)or(X �! �;A �! x) is a matrix of

type 2 or 4 g

r8 : fA �! + j mi : (X �! Y;A �! +) is a matrix of type 3 g

r9 : fa �! a(out) j a 2 Tg

r10 : f+ �! +g

r11 : fX �! + j X 2 N1 and there does not exist any mi containing a rule for Xg

r12 : fA �! + j A 2 N2 and there does not exist any mi containing a rule for Ag

�1 : fr6 > ri; i = 1; : : : ; 5; 7; : : : ; 12; r1; r2; r3; r4; r11 > r7; r8 > r5g

R2 :

r1 : fAi �! iA0

i
j A 2 N2g

r2 : fi
0 �! i j 1 � i � kg [fi00 �! �g r02 : fY

0

i
�! Y j 1 � i � kg

r3 : fYi �! Y (in1) j Y 2 N1g

r4 : f+ �! +g

ri : fA
0

i
�! x j mi : (X �! Y;A �! x) is of type 2 g [

fA0

i
�! x(in1) j mi : (X �! �;A �! x) is of type 4g [

fA0

i
�! + j mi : (X �! Y;A �! +) is of type 3 g, 1 � i � k

r0
j
: fj �! + j 1 � j � kg

�2 : fr2; r
0

2 > r1; r3; r4; ri; r
0

j
; r1; r2; ri; r

0

j
; r4 > r3; r0

j
> ri; i 6= jg

The system works as follows: Assume that in membrane 1, we have a string of the

form Xw; (X 2 N1; w 2 (N2 [T)�). In membrane 1, one simulates matrix mi as

follows: First, the nonterminal from N1 is rewritten along with the index i of the

matrix, and then the nonterminal from N2 is rewritten and the string goes to mem-

brane 2, in case of a matrix of type 2 or 4. In case of an checking rule, the rule

A �! + is applied and the computation never halts.

In membrane 2, we have to rewrite the rule corresponding to Ai; A
0

i
, as this rule has

higher priority than r3 , which is the only rule to quit the membrane. Ai is �rst

rewritten as iA0

i
and the rule corresponding to A0

i
is applied if there does not exist

two di�erent indices i,j in the membrane. That is, A0

i
is rewritten if matrix mi has

been correctly simulated. If there exists two di�erent indices in the string, which

means the simulation has not been correctly done, the rule r0
j
: j �! + is applied

and the computation never halts. If the simulation of the matrix is done correctly,

the string goes to membrane 1 using r3 or ri according as a matrix of type 2 or 4 has

been simulated. So, if the simulations are done correctly, we end up in membrane

one with a terminal string which belongs to L(G). This string can go out using

a �! a(out); a 2 T: Hence, the language generated by the system is same as L(G).

Remark 2.1 We do not know whether this result is optimal. Whether a character-

ization of RE can be obtained with one membrane is left as an open problem.

Theorem 2.5 EOL = EPP1(nPri; nCoo) and E0L � EPP1(Pri; nCoo)

Theorem 2.6 RE � EPP2(Pri; nCoo)

Proof : Let G be a matrix grammar in binary normal form. Assume that the

matrices are numbered from 1 to k. We construct the parallel rewriting P System

� = (V; T; [1[2]2]1; w1; w2; (R1; �1); (R2; �2)),

V = N1 [N2 [fXiX
0

i
j X 2 N1; 1 � i � kg [fAi; A

0

i
j A 2 N2g [fA0 j A 2

N2g [fi; i
0; i00 j 1 � i � kg

w1 = XA such that (S �! XA) is the initial matrix of G w2 = �.

The rules are of the following forms:

R1 :

r1 : fX �! i0Yi(in2) j mi : (X �! Y;A �! x) is of type 2 in Gg

r2 : fX �! i00Y 0

i
(in2) j mi : (X �! Y;A �! +) is of type 3 in Gg

r3 : fX �! i0(in2) j mi : (X �! Y;A �! x) is of type 4 in Gg

r4 : fa �! a(out) j a 2 Tg

r5 : fX �! + j X 2 N1 and there does not exist any mi containing a rule for Xg

r6 : fA �! + j A 2 N2 and there does not exist any mi containing a rule for Ag

rA : fA �! Ai(in2) j A 2 N2;mi is a matrix of type 2, 3 or 4 in G and contains a

rule for Ag

r0
A
: fAi �! Ai(in2)g

r00
A
: fA �! A(in2) j A 2 N2g

rB : fB �! B(in2) j B 2 N2; B 6= Ag

r+ : f+ �! +g

�1 : fr
0

A
> rAg

R2 :

r1 : fi
0 �! i j 1 � i � kg [fi00 �! �g [fY 0

i
�! Y j Y 2 N1g

r2 : fYi �! Y j Y 2 N1g

r3 : fY �! Y (in1) j Y 2 N1g

ri : fA
0

i
�! x(in1) j mi : (X �! Y;A �! x) or (X �! �;A �! x) is a matrix of

type 2 or 4 in Gg [fA0

i
�! +(in1) j mi : (X �! Y;A �! +) is a matrix of type 3

in Gg [fi �! � j 1 � i � kg

rAi
: fAi �! iA0

i
g

rB : fB �! B0 j B 2 N2g

r0
B
: fB0 �! B(in1) j B 2 N2g

r0
j
: fj �! + j 1 � j � kg

�2 : fr
0

j
> ri; i 6= jg

The system works as follows : In the initial con�guration, we have the string XA

in membrane 1. Then, rules are applied to X and A and, as both targets are the

same, viz membrane 2, the string is placed in membrane 2. There are two steps

of rewriting taking place in membrane two : In the �rst step, we rewrite Yi, i
0, Ai

and the symbols from N2. As all the targets are the same,the string remains here

itself. In the next step, we rewrite i, A0

i
, B0 and Y giving priority to r0

j
over ri.

This checks whether any rule has been wrongly applied, that is whether the chosen

symbol A 2 N2 does not correspond to X 2 N1. If the simulation has been done

correctly, the string is placed in membrane 1 since, a majority of the rules (except

r0
j
) are targeted to membrane 1. Assume that in membrane 1, we have a string of

the form Y w, Y 2 N1; w 2 (N2 [T)
�. The rule corresponding to Y is applied, and

also to the symbol A 2 N2 which corresponds to Y . All other symbols of N2 are

rewritten using rB , and if the symbol A occurs more than once, it is rewritten using

r00
A
, since r0

A
has higher priority than rA and, since A can be rewritten in that step.

After this step, the string is placed in membrane 2 and the computation proceeds

in the manner described above. The rules a �! a(out); a 2 T take the string out

of the system, and it is listed in the language if it is purely over T �. The priorities

ensure that all simulations are done correctly and hence, we collect outside the skin

membrane exactly the terminal strings generated by the grammar G and hence,

L(�) = L(G).

Remark 2.2 We do not know whether this result is optimal. Whether a character-

ization of RE can be obtained using one membrane is left as an open problem.

Theorem 2.7 RE � EPP1(nPri; Coo)

3 The DES circuit

In this section, we consider the "known plaintext" attack of cryptanalysis, [10], for

breaking the data encryption standard. It means that the cryptanalyst knows some

of the pairs consisting of plain-text and corresponding cipher-text and, on the ba-

sis of this information, he/she is supposed to �nd the key. First we give a brief

overview of the DES circuit. The reader may refer [10] for further details on DES.

DES encrypts a 64 bit plain-text into a 64 bit cipher-text using a 56 bit key. The

DES circuit consists of 16 rounds or levels. The encryption is carried out as follows:

First a key of 56 bits is chosen, and eight bits in positions 8; 16; : : : ; 64 are added to

the key, to check that each byte is of odd parity. The bits added are determined by

the original 56 random bits, now in positions 1; 2; : : : ; 7; 9; : : : ; 15; : : : ; 57; : : : ; 63 of

the key. After subjecting these 56 bits to an initial permutation, we get two blocks

C0 and D0 each of 28 bits each. Having constructed Cn�1 and Dn�1, n = 1; : : : ; 16,

CnDn is obtained from Cn�1Dn�1 by a rotation of bits which is predetermined.

From CnDn, n = 1; : : : ; 16 we construct Kn, each of 48 bits by omitting certain

bits from CnDn. Now consider the 64 bit plain text. Subjecting this to an initial

permutation(*), we get two blocks L0 and R0, which are the lower and higher order

bits of the permuted plain text. After computing Ln�1 and Rn�1, n = 1; : : : ; 16

we obtain LnRn by applying the rules Ln = Rn�1 and Rn = Ln�1
L
f(Rn�1;Kn)

where
L

denotes bit-by-bit addition modulo 2. Now we see how f(Rn�1;Kn) is

calculated. Kn is of 48 bits, Rn�1 is of 32 bits. We convert Rn�1 into a 48 bit

according to a permutation which is predetermined. Then the 2 blocks Rn�1 and

Kn are added bit by bit modulo 2, which results in a 48 bit block. Let this block

be denoted by B1B2 : : : B8 , each Bi of 6 bits. We convert each Bi into a 4 bit

block using lookup tables T1; T2; : : : ; T8. Then a permutation is applied to this 32

bit block and this resultant is denoted by f(Rn�1;Kn). After this step, performing

a bit by bit addition modulo 2 on f(Rn�1;Kn) and Rn�2, we get Rn. The encrypted

text is obtained by applying the inverse of the initial permutation(*) to R16L16.

4 P Systems with Active Membranes and Plan of DES

Attack

In this section we propose a variant of P Systems with active membranes, for basic

notions we refer the reader to [5]. Let d � 1 be a natural number. A P system with

active membranes and d-bounded membrane division (in short, we say a P system

with d-bounded division) is a construct

� = (V; T;H; �;w1; : : : ; wm; R);

where:

(1) m � 1;

(2) V is an alphabet (the total alphabet of the system);

(3) T � V (the terminal alphabet);

(4) H is a �nite set of labels for membranes;

(5) � is amembrane structure, consisting ofmmembranes, labeled (not necessarily

in a one-to-one manner) with elements of H; all membranes in � are supposed

to be neutral;

(6) w1; : : : ; wm are strings over V , describing the multisets of objects placed in the

m regions of �;

(7) R is a �nite set of developmental rules, of the following forms:

(a) [
h
a ! v]�

h
, for h 2 H; a 2 V; v 2 V �, � 2 f+;�; 0g (object evolution

rules),

(b) a[
h
]�1
h
�! [

h
b]�2
h
, where a; b 2 V; h 2 H; �1; �2 2 f+;�; 0g (an object

is introduced in the membrane),

(c) [
h
a]�1

h
! [

h
]�2
h
b, for h 2 H; �1; �2 2 f+;�; 0g; a; b 2 V (an object is

sent out),

(d) [
h
a]�

h
! b; for h 2 H; � 2 f+;�; 0g; a; b 2 V (dissolving rules),

(e) [
h
a]�

h
! [

h
a1]

�1

h
[
h
a2]

�2

h
: : : [

h
an]

�n

h
, for �; �i 2 f+;�; 0g, a 2 V; ai 2

V �; i = 1; : : : ; n; h 2 H, and n � d(division rules for elementary mem-

branes),

(f) [
h0
[
h1

]�1
h1
: : : [

hk
]�k
hk
[
hk+1

]
�k+1

kk+1
: : : [

hn
]�n
hn

]
h0
]�0

! [
h0
[
h1

]�1
h1

]�0
h0
: : : [

h0
[
hk

]�k
hk

]�0
h0
[
h0
[
hk+1

]
�k+1

hk+1
]�0
h0
: : : [

h0
[
hn

]�n
hn

]�0
h0
;

for k � 1; n > k; hi 2 H; 0 � i � n; n � d, and there is i; 1 � i � n� 1,

such that

�i; �i+1 = f+;�g; moreover, �j 2 f+;�; 0g, 1 � j � n (division of

non-elementary membranes).

The rules of types (a) to (d) are applied following the same principles as in [5]:

in a maximally parallel manner (any objects which can evolve, should evolve). If a

membrane with label h is divided by a rule of type (e), which involves an object a,

then all other objects in membrane h which do not evolve are introduced in each of

the resulting membranes h. Similarly, when using rule of type (f), the membranes

which are not speci�ed in the rule, that is di�erent from [
h1

]
h1
; : : : ; [

hn
]
hn
, are

reproduced in each of the resulting membranes with the label h, unchanged if no

rule is applied to them (the contents of these membranes are reproduced unchanged

in these copies, providing that no rule is applied to their objects).

Note that in a rule of type (f) at least two membranes in its left hand side should

have opposite polarization. When applying a rule of type (f) or (e) to a membrane,

if there are objects in this membrane which evolve by a rule of type(a), changing

the objects, then in the new copies of the membrane, we introduce the results of

evolution. The rules are applied \from bottom up", in one step, but �rst the rules of

the innermost region and then level by level until the region of the skin membrane.

The rules associated with a membrane h are used for all copies of this membrane,

irrespective whether or not the membrane is an initial one or it is obtained by

division. At one step, a membrane h can be the subject of only one rule of types

(b) { (f). The skin membrane can never divide. As any other membrane, the

skin membrane can be \electrically charged". During a computation, objects can

leave the skin membrane (by means of rules of type (c)). The terminal symbols

which leave the skin membrane are collected in the order of their expelling from the

system, so a string is associated to a complete (that is, halting) computation; when

several terminal symbols leave the system at the same time, then any ordering of

them is accepted. In this way, a language is associated with �, denoted by L(�),

consisting of all strings which are associated with all complete computations in �.

The symbols not in T which leave the skin membrane as well as all symbols from T

which remain in the system at the end of a halting computation are not considered

in the generated strings; if a computation goes for ever, then it provides no output,

it does not contribute to the language L(�).

A P system with 1-bounded membrane division has no division at all, so rules

of types (e), (f) are not used. In [5] one considered P systems with 2-bounded di-

vision. It is clear that our variant is more general than the one considered in [5],

which is known to be computationally universal. Consequently, also P systems with

d-bounded division are computationally universal for all d � 2. Division of a mem-

brane into d membranes (d � 2) is biologically motivated from cell fragmentation,

where a cell can divide into two or more number of cells.

We are now ready to explain our attack on DES. Given a pair (plain-text, cipher-

text), we need to check through all 256 keys to �nd out which key maps the plain

text to the cipher text. We construct a P System with active membranes and 2-

bounded division which can output the secret key, given a (plain-text, cipher-text)

pair. The time is estimated here as the number of steps our system works. This

means, this is a parallel time where each unit is the time of a \biological" step in

the system, the time of using any rule, supposing that all rules take the same time

to be applied.

Theorem 4.1 Given an arbitrary (plain-text, cipher-text) pair, it is possible to

break DES in time linear in the size of the given crypto-text, using P Systems with

active membranes and 2-bounded division.

Proof : DES is a block cipher which operates on blocks of data. So, to encrypt a

big �le just think of the whole �le as a collection of 64 bit blocks. DES encrypts the

64 bit blocks, one at a time (using the same DES secret key for each 64 bit block).

In particular, if the �le size is N bits then there will be bN=64c blocks, each block

having exactly 64 bits. Of course if N is not an exact multiple of 64 then we pad

the �le with zeroes at the end in order to get an exact multiple of 64. First we con-

struct a P System which can �nd out the secret key, given any arbitrary (plain-text,

cipher-text) pair.

We construct the P System � = (V; T;H; �;w0; w1; : : : ; w18; w00 ; w10 : : : ; w640 ; R)

where

V = fai; ti; fi; bi; b
0

i
; 0i; 1i j 1 � i � 56g [fki;j j 1 � i � 16; 1 � j � 56g [

fm0;i j 1 � i � 64g [fci j 0 � i � 111g [ffi;j ; di;j j 0 � i � 15; 1 � j � 48g [

fgi;j ; g
0

i;j
j 0 � i � 15; 1 � j � 32g [fe0

j
; e00

j
j 1 � j � 64g

[fei;j j 1 � i � 16; 1 � j � 56g; T = ftg; � = [00 [640 : : : [10 [18: : : [1]
0
1 : : :]

0
18]

0
10]0640]000 ,

H = f0; 1; : : : ; 18; 00; 10; : : : ; 640g

w0 = c0a1a2 : : : a56m0;1m0;2 : : : m0;64 , w18 = e001 : : : e
00

64; wi = �; i 6= 0; 18.

Suppose we are given a (plain-text, cipher-text) pair denoted by (m0;1m0;2 : : : m0;64; e
00

1 : : : e
00

64).

The rules are as follows:

[0ci �! ci+1]
�

0 ; 0 � i � 110; � 2 f+;�; 0g

[0c111]
�

0 �! t; � 2 f+;�; 0g

[0ai]
0
0 �! [0ti]

+
0 [0fi]

�

0 ; 1 � i � 56

[i+1[i]
+

i
[i]

�

i
]0
i+1 �! [i+1[i]

0
i
]+
i+1

[i+1[i]
0
i
]�
i+1

, for 0 � i � 18,10 � i � 620

[640 [630]+
630 [630]�

630]0640 �! [640 [630]0
630]0640 [640 [630]0

630]0640

(we generate all the 256 permutations of the key. ti and fi stand for 0 and 1 re-

spectively. When the counter reaches 111, we have generated all the permutations,

and hence, membrane 0 dissolves. The last rule indicates that the skin membrane

cannot be divided.)

[1ti]
�

1 �! [0bi]
�

1 ; 1 � i � 56; � 2 f+;�; 0g

[1fi]
�

1 �! [0bi]
�

1 ; 1 � i � 56; � 2 f+;�; 0g

(i.e, we are renaming ti and fi, so that we have a string of bi, the bits being the

same.)

[1m0;j]
0
1 �! [1l0;k]1; 1 � k � 32; 1 � j � 64 .

[1m0;j]
0
1 �! [1r0;k]

0
1; 1 � k � 32; 1 � j � 64.

(From the given plain text, we form two blocks L0 and R0, of 32 bits each, by a

permutation which is predetermined. Here also, the bits themselves do not change,

the only change made is in the ordering, by which we get two blocks L0 and R0)

[1bi]
0
1 �! [1b

0

i
k1;j1k2;j2 : : : k16;j16]

0
1; 1 � i; j1; : : : ; j16 � 56

[jb
0

i
]0
j
�! [j]

0
j
b0
i
; 1 � j � 18; 1 � i � 56

(From all the permutations of the key, we form C1D1, . . .C16D16. If the bit at

position i in the key is placed at positions j1; j2; : : : ; j16 in C1D1; C2D2; : : : ; C16D16,

we have the above rule. So, after this step, ki;1 : : : ki;56 represents CiDi, 1 � i � 16.

Also, b0
i
= bi, we are just renaming the key, we need b0

i
as the output after a complete

computation)

[1kn;j]
0
1 �! [1]

0
1; n > 1; 1 � j � 56

[1k1;j]
0
1 �! [1]

0
1; 1 � j � 56; j = 9; 18; 22; 25; 35; 38; 43; 54

[1k1;j]1 �! [1]1e1;l; 1 � l � 48; 1 � j � 56; j 6= 9; 18; 22; 25; 35; 38; 43; 54

(For generating R1, we need only K1. So, we let C2D2; : : : ; C16D16 go out of mem-

brane 1. Now, the bits at positions 9, 18, 22, 25, 35, 38, 43, 54 of C1D1 are removed

and the remaining bits permuted to get e1;1 : : : e1;48 which represents K1).

[1l0;j]
0
1 �! [1]

0
1l0;j ; j = 1; : : : ; 32.

(L0 goes out of membrane 1)

For 1 � j � 16; we have the rules given below:

[jrj�1;1]
0
j
�! [j]

0
j
rj�1;1dj�1;1dj�1;2; dj�1;1 = rj�1;32; dj�1;2 = rj�1;1

[jrj�1;2]
0
j
�! [j]

0
j
rj�1;2dj�1;3; dj�1;3 = rj�1;2

[jrj�1;3]
0
j
�! [j]

0
j
rj�1;3dj�1;4; dj�1;4 = rj�1;3

[jrj�1;4]
0
j
�! [j]

0
j
rj�1;4dj�1;5dj�1;6; dj�1;5 = rj�1;4; dj�1;6 = rj�1;5

[jrj�1;5]
0
j
�! [j]

0
j
rj�1;5dj�1;7dj�1;8; dj�1;7 = rj�1;4; dj�1;8 = rj�1;5

[jrj�1;6]
0
j
�! [j]

0
j
rj�1;6dj�1;9; dj�1;9 = rj�1;6

[jrj�1;7]
0
j
�! [j]

0
j
rj�1;7dj�1;10; dj�1;10 = rj�1;7

[jrj�1;8]
0
j
�! [j]

0
j
rj�1;8dj�1;11dj�1;12; dj�1;11 = rj�1;8; dj�1;12 = rj�1;9

[jrj�1;9]
0
j
�! [j]

0
j
rj�1;9dj�1;13dj�1;14; dj�1;13 = rj�1;8; dj�1;14 = rj�1;9

[jrj�1;10]
0
j
�! [j]

0
j
rj�1;10dj�1;15; dj�1;15 = rj�1;10

[jrj�1;11]
0
j
�! [j]

0
j
rj�1;11dj�1;16; dj�1;16 = rj�1;11

[jrj�1;12]
0
j
�! [j]

0
j
rj�1;12dj�1;17dj�1;18; dj�1;17 = rj�1;12; dj�1;18 = rj�1;13

[jrj�1;13]
0
j
�! [j]

0
j
rj�1;13dj�1;19dj�1;20; dj�1;19 = rj�1;12; dj�1;20 = rj�1;13

[jrj�1;14]
0
j
�! [j]

0
j
rj�1;14dj�1;21; dj�1;21 = rj�1;14

[jrj�1;15]
0
j
�! [j]

0
j
rj�1;15dj�1;22; dj�1;22 = rj�1;15

[jrj�1;16]
0
j
�! [j]

0
j
rj�1;16dj�1;23dj�1;24; dj�1;23 = rj�1;16; dj�1;24 = rj�1;17

[jrj�1;17]
0
j
�! [j]

0
j
rj�1;17dj�1;25dj�1;26; dj�1;25 = rj�1;16; dj�1;26 = rj�1;17

[jrj�1;18]
0
j
�! [j]

0
j
rj�1;18dj�1;27; dj�1;27 = rj�1;18

[jrj�1;19]
0
j
�! [j]

0
j
rj�1;19dj�1;28; dj�1;28 = rj�1;19

[jrj�1;20]
0
j
�! [j]

0
j
rj�1;20dj�1;29dj�1;30; dj�1;29 = rj�1;20; dj�1;30 = rj�1;21

[jrj�1;21]
0
j
�! [j]

0
j
rj�1;21dj�1;31dj�1;32; dj�1;31 = rj�1;20; dj�1;32 = rj�1;21

[jrj�1;22]
0
j
�! [j]

0
j
rj�1;22dj�1;33; dj�1;33 = rj�1;22

[jrj�1;23]
0
j
�! [j]

0
j
rj�1;23dj�1;34; dj�1;34 = rj�1;23

[jrj�1;24]
0
j
�! [j]

0
j
rj�1;24dj�1;35dj�1;36; dj�1;35 = rj�1;24; dj�1;36 = rj�1;25

[jrj�1;25]
0
j
�! [j]

0
j
rj�1;25dj�1;37dj�1;38; dj�1;37 = rj�1;24; dj�1;38 = rj�1;25

[jrj�1;26]
0
j
�! [j]

0
j
rj�1;26dj�1;39; dj�1;39 = rj�1;26

[jrj�1;27]
0
j
�! [j]

0
j
rj�1;27dj�1;40; dj�1;40 = rj�1;27

[jrj�1;28]
0
j
�! [j]

0
j
rj�1;28dj�1;41dj�1;42; dj�1;41 = rj�1;28; dj�1;42 = rj�1;29

[jrj�1;29]
0
j
�! [j]

0
j
rj�1;29dj�1;43dj�1;44; dj�1;43 = rj�1;28; dj�1;44 = rj�1;29

[jrj�1;30]
0
j
�! [j]

0
j
rj�1;30dj�1;45; dj�1;45 = rj�1;30

[jrj�1;31]
0
j
�! [j]

0
j
rj�1;31dj�1;46; dj�1;46 = rj�1;31

[jrj�1;32]
0
j
�! [j]

0
j
rj�1;32dj�1;47dj�1;48; dj�1;47 = rj�1;32; dj�1;48 = rj�1;1

(We convert Rn�1 which is of 32 bits into a 48 bit block, so that we can calculate

f(Rn�1;Kn), where Kn is of 48 bits. Now, dj;1 : : : dj;48 is of 48 bits, and it is passed

out along with Rj�1 to membrane (j + 1), where we compute Rj .)

The remaining rules are as follows:

[jkm;n]
0
j
�! [j]

0
j
km;n;m > j � 1; 2 � j � 16; 1 � n � 56; 1 � m � 16

[jkj�1;n]
0
j
�! [j]

0
j
, n= 9, 18, 22, 25, 35, 38, 43, 54.

[jkj�1;n]
0
j
�! [jej�1;l]

0
j
; 3 � j � 17, 1� n;� 56; 1 � l � 48; n 6= 9; 18; 22; 25; 35; 38; 43; 54.

(In membrane j, we need Cj�1Dj�1 and no other CiDi to compute Rj�1. So we

let kl;n; n = 1; : : : ; 56; and l > j � 1 to go out of membrane j. Then we convert

Cj�1Dj�1 into Kj�1)

[jdj�2;k]
0
j
�! [jdj�2;k

L
ej�1;k = fj�2;k]

0
j
, for 2 � j � 17; 1 � k � 48.

(For computing Rj�1 in membrane j, we need to compute f(Rj�2;Kj) �rst. That

is why we compute fj from the 48-bit block dj)

For 2 � j � 17,

[jfj�2;1]
0
j
�! [jg

0

j�2;1g
0

j�2;2g
0

j�2;3g
0

j�2;4]
0
j
,

[jfj�2;2]
0
j
: : : [jfj�2;6]

0
j
�! [j]

0
j
where g0

j�2;1g
0

j�2;2g
0

j�2;3g
0

j�2;4 is the four bit corre-

sponding to the six bit fj�2;1 : : : fj�2;6 from the lookup table T1.

[jfj�2;7]
0
j
�! [jg

0

j�2;5g
0

j�2;6g
0

j�2;7g
0

j�2;8]
0
j
,

[jfj�2;8]
0
j
: : : [jfj�2;12]

0
j
�! [j]

0
j

(Corresponding to lookup table T2)

[jfj�2;13]
0
j
�! [jg

0

j�2;9g
0

j�2;10g
0

j�2;11g
0

j�2;12]
0
j
,

[jfj�2;14]
0
j
: : : [jfj�2;18]

0
j
�! [j]

0
j

(Corresponding to lookup table T3)

[jfj�2;19]
0
j
�! [jg

0

j�2;13g
0

j�2;14g
0

j�2;15g
0

j�2;16]
0
j
,

[jfj�2;20]
0
j
: : : [jfj�2;24]

0
j
�! [j]

0
j

(Corresponding to lookup table T4)

[jfj�2;25]
0
j
�! [jg

0

j�2;17g
0

j�2;18g
0

j�2;19g
0

j�2;20]
0
j
,

[jfj�2;26]
0
j
: : : [jfj�2;30]

0
j
�! [j]

0
j

(Corresponding to lookup table T5)

[jfj�2;31]
0
j
�! [jg

0

j�2;21g
0

j�2;22g
0

j�2;23g
0

j�2;24]
0
j
,

[jfj�2;32]
0
j
: : : [jfj�2;36]

0
j
�! [j]

0
j

(Corresponding to lookup table T6)

[jfj�2;37]
0
j
�! [jg

0

j�2;25g
0

j�2;26g
0

j�2;27g
0

j�2;28]
0
j
,

[jfj�2;38]
0
j
: : : [jfj�2;42]

0
j
�! [j]

0
j

(Corresponding to lookup table T7)

[jfj�2;43]
0
j
�! [jg

0

j�2;29g
0

j�2;30g
0

j�2;31g
0

j�2;32]
0
j
,

[jfj�2;44]
0
j
: : : [jfj�2;48]

0
j
�! [j]

0
j

(Corresponding to lookup table T8)

For 2 � j � 17; 1 � k; l � 32,

[jg
0

j�2;k
]0
j
�! [jgj�2;l]

0
j

[jrj�3;k]
0
j
�! [jrj�3;k

L
gj�2;k = rj�1;k]

0
j
; 3 � j � 17; 1 � k � 32:

[jrj�2;k]
0
j
�! [j]

0
j
rj�2;k; 2 � j � 16; 1 � k � 32

(In membrane j, we are sending out Rj�2 as it is required in membrane (j + 1)

for producing Rj = Rj�2

L
f(Rj�1;Kj). We use Rj�3 for producing Rj�1 and the

obtained Rj�1 is converted to 48 bits and sent out to membrane (j + 1) for the

production of Rj)

[2l0;j]
0
2 �! [2r1;j]

0
2, where r1;j = l0;j

L
g0;j ; j = 1; : : : ; 32:

Now in membrane 17, we have, in addition to the above rules,the following:

[17r16;j]
0
17 �! [17]

0
17e

0

j
; j = 1; : : : ; 32:

[17r15;j]
0
17 �! [17]

0
17e

0

j+32; j = 1; : : : ; 32:

(Now e01 : : : e
0

64 is nothing but R16L16, since here also the bits are the same, the

order is only changed. Note here that r16;j = e0
j
, and r15;j = e0

j+32).

[18e
0

j
]018 �! [18hk]

0
18; 1 � j; k � 64

(hk is obtained from e0
j
by applying the inverse of the initial permutation. Here also,

only the order of the bits are changed, the bits are not changed.)

[18e
00

j
]018 �! [18]

0
18 j e

00

j
� hj jj ; 1 � j � 64:

(So we have 0j or 1j , 1 � j � 64. If we have zeroes alone, it means h1h2 : : : h64 is

the same as e001 : : : e
00

64, and this in turn means that bi is the secret key.)

[j00j]j0 �! 0j ; 1 � j � 64

(Membrane j0 dissolves if the di�erence between the jth bits is zero.)

[00b0
i
]0
00 �! [00]0

00 ; b0i; 1 � i � 55;

[00b056]
0
00 �! [00]+

00 ; b
0

56

(If the given cipher text matches with the computed cipher text, then all mem-

branes j0, 1 � j � 64 will dissolve. Then b0
i
approaches the skin membrane and from

there it can go out thereby, giving the information that b1 : : : b56 is the secret key.)

Now we analyze the time complexity of the above procedure:

First, we generate all possible permutations of 56 bits, and this stops when the

counter reaches 111. After this, membrane 0 dissolves and c111 is converted to t. In

the next step, ti and fi are converted to bi. So, the total time required is 113 steps.

Next we consider the operations in membrane 1 and those going parallely with that.

(1) Conversion of the key into C1D1 : : : C16D16, and conversion of m0;j into l0;k
and r0;l respectively. These two operations are carried out in parallel and take

O(1) time.

(2) L0, R0, C2D2; : : : C16D16 and b0
i
, 1 � i � 56 go out of membrane 1 and C1D1

is converted to K1.

These operations are also done in time O(1).Hence the total time spent in membrane

1 along with the operations going parallely with that takes 2 steps.

Next, we consider the operations going parallely in membrane 2 and outside mem-

brane 2.

(1) In membrane 2, R0, kn;j, b
0

i
go out, for n � 2, 1 � i � 56 and d0;j is converted

to f0;j.

(2) In membrane 2, f0;j; 1 � j � 48 is converted into g0
0;k
; 1 � k � 32, according

to the lookup tables, and in membrane 3, kn;j , b
0

i
go out for n > 2, 1 � i � 56

. Also, C2D2 is converted to K2.

(3) In membrane 2, g0
0;k
; 1 � k � 32 is converted to g0;k; 1 � k � 32, and in

membrane 4, kn;j , b
0

i
go out for n>3, 1 � i � 56, and C3D3 is converted to

K3.

(4) R1 is computed in membrane 2, and in membrane 5, kn;j, b
0

i
go out for n>4,

1 � i � 56, and C4D4 is converted to K4.

(5) R1 goes out of membrane 2 as R1 and as a 48-bit block, and in membrane 6,

kn;j , b
0

i
go out for n>5,1 � i � 56 and C5D5 is converted to K5.

Hence, the total time spent here is for 5 steps. Next, the operations in membrane 3

and the ones going parallely with it:

(1) In membrane 3, R1 goes out and d1;k is converted to f1;k1 � k � 32, and in

membrane 7, kn;j, b
0

i
go out for n>6, 1 � i � 56. Also, C6D6 is converted to

K6.

(2) In membrane 3, f1;k is converted to g0
1;l
; 1 � k � 48; 1 � l � 32, and in

membrane 8, b0
i
, kn;j go out for n>7, 1 � i � 56 and C7D7 is converted to K7.

(3) In membrane 3, g0
1;l
; 1 � l � 32 is converted to g1;j ; 1 � j � 32, and in

membrane 9, kn;j and b
0

i
go out for n>8, 1 � i � 56, C8D8 is converted to K8.

(4) R0 is converted to R2 in membrane 3, and in membrane 10, kn;j and b
0

i
go out

for n>9, C9D9 is converted to K9.

(5) R2 goes out of membrane 3 as R2 and as a 48-bit block, and in membrane

11,kn;j and b0
i
go out for n>10, 1 � i � 56, C10D10 is converted to K10.

Hence, the total time required is again, 5 steps. Similarly, the time required in

membranes 4; : : : ; 16 is also 5 steps.

In membrane 17, we have the following sequence of events:

d15;k; 1 � k � 48 is converted to f15;k,f15;k is converted to g0
15;l

; 1 � l � 32, g0
15;l

is converted to g15;j ; 1 � j � 32, R16 is computed, and e01 : : : e
0

64 is computed from

R15 and R16. Hence, the time required in membrane 17 is also 5 steps. Likewise,

we have in membrane 18, e01 : : : e
0

64 is converted to h1 : : : h64, e
00

j
is converted to

j e00
j
� hj jj; 1 � j � 64. The time required here is 2 steps. Finally we require time

corresponding to 65 steps to dissolve the 64 membranes 10; : : : ; 640, and to output

the secret key. Hence, the total time required to �nd the secret key is 113 + 2 +

16* 5 + 2 + 65 = 262 steps. Now given an encrypted text of size N bits, we do the

following steps:

(1) Divide the N bit text into blocks of size 64. If N is not an exact multiple of

64, pad it with zeroes so that we have k blocks each of size 64.

(2) Decrypt each block using the secret key obtained by the above procedure.

Since the whole encryption is made public, once we know the secret key, de-

crypting each block takes time O(1). Hence the total time required to decrypt

the given text is O([N/64]).

Therefore, the total time for breaking DES is 262+[N/64], which is linear in N.

5 The Hamiltonian Path Problem and Node Cover De-

cision Problem for Undirected Graphs

In this section, we consider two intractable problems, both of which can be solved

in linear time by P systems with active membranes and bounded division.

The �rst problem is the Hamiltonian Path Problem for undirected graphs, known

to be NP-complete. Given an undirected graph G = (U;E), where U is the set of

nodes and E the set of edges, the problem is to determine whether or not there

exists a Hamiltonian path in G, that is, to determine whether or not there exists a

path that passes through all the nodes in U exactly once.

Theorem 5.1 The Undirected Hamilton Path Problem can be solved by a P system

with bounded membrane division in a time which is linear in the number of nodes

of the given graph.

Proof : Let G = (U;E) be an undirected graph with n nodes, n � 2. We construct

the P system (with n-bounded division)

� = (V; T;H; �;w0; w1; : : : ; wn+1; R);

with the following components:

V = fai j 1 � i � ng [fci j 0 � i � 2n� 1g [f1; 2; : : : ; ng [ft; fg;

T = ftg;

H = f0; 1; : : : ; n+ 1g;

� = [
n+1

: : : [
1
[
0
]0
0
]0
1
: : :]0

n+1
;

w0 = c0f; wi = �; for 1 � i � n+ 1;

while the set R contains the following rules:

1. [
0
ci ! ci+1]

�

0
; for 0 � i < 2n� 1; and � 2 f+;�; 0g

(We count up to 2n� 1, which is the time required for the paths we look for

to grow to length n, beginning from every node.)

2. [
0
c2n�1]

�

0
! t, for � 2 f+;�; 0g

(After 2n � 1 steps from the beginning of the computation, the membranes

with label 0 are dissolved.)

3. [
0
f]0

0
! [

0
a1]

+

0
[
0
a2]

�

0
: : : [

0
an]

+

0
,

where the charge of the last membrane is + or � depending on whether n is

odd or even.

(Division rule for membrane 0 when it is electrically neutral. By this rule,

we get access to all n nodes and hence the adjacencies corresponding to each

node.)

4. [
0
ai]

0

0
! [

0
iaj1]

+

0
[
0
iaj2]

�

0
: : : [

0
iajk]

+

0
, if node i in G has the nodes j1; : : : ; jk

adjacent to it, 1 � jl � n; 1 � l � k; the charge of the last membrane is + or

� depending on whether i has an odd or even number adjacent nodes, while

1 � i; k � n. If i has only one node j adjacent to it, then the rule is

[
0
ai]

0

0
! [

0
iaj]

0

0

(By using these rules, we generate all possible paths starting from every node.)

5. [
1
ai ! i]�

1
; for 1 � i � n; � 2 f+;�; 0g

(After dissolving membrane 0, hence after growing paths of length n, the object

ai reaches membrane 1 and its own index, i, is introduced in the path.)

6. [
i
i]�
i
! i; for 1 � i � n; � 2 f+;�; 0g

(Membrane i is dissolved if node i is present in the path.)

7. [
1
a1]

�

1
! 1; for � 2 f+;�; 0g:

(Membrane 1 is dissolved when replacing a1 by 1.)

8. [
n+1

t]0
n+1

! [
n+1

]+
n+1

t

(The object t leaves the skin membrane if all lower membranes are dissolved,

which means that the graph has a Hamiltonian path.)

9. [
i+1

[
i
]+
i
[
i
]�
i
: : : [

i
]+
i
]0
i+1

! [
i+1

[
i
]0
i
]+
i+1

[
i+1

[
i
]0
i
]�
i+1

: : : [
i+1

[
i
]0
i
]+
i+1

, for 0 �

i � n� 2,

[
n
[
n�1

]+
n�1

[
n�1

]�
n�1

: : : [
n�1

]+
n�1

]0
n
! [

n
[
n�1

]0
n�1

]0
n
[
n
[
n�1

]0
n�1

]0
n
: : : [

n
[
n�1

]0
n�1

]0
n

(Division rules for membranes labeled with 0; 1; : : : ; n; the opposite polariza-

tion introduced when dividing a membrane with label 0 is propagated from

lower levels to upper levels of the membrane structure and the membranes are

continuously divided until dividing also membrane n { which will get neutral

charge).

Clearly, the system � has a d-bounded division, for d = n.

From the above explanations, it is easy to see that

L(�) =

�
ftg; if the given graph has a Hamiltonian path,

;; otherwise.

In 2n� 1 steps, we generate all possible paths of length n starting from every node.

In the next step, membrane 0 is dissolved, then, at the next step, each object ai is

replaced by i; at the same time, rules of type 6 are used, dissolving the membranes

with label 1 if node 1 is present in the corresponding path. Note that in the case

when membrane 1 containes the object a1, the dissolvation is done by the rule

[
1
a1]1 ! 1. In the next n � 1 steps, membranes 2 to n are dissolved if nodes 2

to n are present in the generated path. If all membranes are dissolved by a given

path, this means that it is a Hamiltonian path; in such a case { and only in such

a case { the object t reaches the skin membrane. Then it takes one more step to

output t. Consequently, in 3n+ 1 steps, we get the answer to the question whether

G has a Hamiltonian path or not by checking the emptiness of the language L(�)

(more precisely, by observing whether or not the system produces a symbol t at

the moment 3n+ 1). Note that in the above construction, we are using all rules of

types (a){(f), except (b). The above construction also solves the Hamiltonian Path

Problem for directed graphs.

We next consider the Node Cover Decision problem. Given a graph G with n nodes

and m edges, the Node Covering Problem asks whether or not there exists a node

cover for G of size k, where k is a given integer less than or equal to n. We show

that also this problem can be solved in linear time using the P systems introduced

above.

Theorem 5.2 The Node Cover Problem can be solved by the P systems with bounded

membrane division in a time which is linear in the number of edges and the number

of covering nodes.

Proof : Let G = (U;E) be a graph with n nodes and m edges. We construct the P

system

� = (V; T;H; �;w1; : : : ; wm+1; R);

where:

V = fai j 1 � i � ng [fci j 0 � i � 2k � 1g

[fei j 1 � i � mg [ft; fg;

T = ftg;

H = f0; 1; 2; : : : ;m+ 1g;

� = [
m+1

[
m
: : : [

1
[
0
]0
0
]0
1
: : :]0

m
]0
m+1

;

w0 = c0f; wi = � for 1 � i � m+ 1:

The rules are the following:

1. [
0
ci ! ci+1]

�

0
, for 0 � i < 2k � 1 and � 2 f+;�; 0g,

[
0
c2k�1]

�

0
! t, for � 2 f+;�; 0g

(We count till 2k � 1, the time required to produce all k-combinations of

nodes.)

2. [
0
f]0

0
! [

0
a1]

+

0
[
0
a2]

�

0
: : : [

0
an�k+1]

�

0
,

where � is + or � depending on whether n� k + 1 is odd or even.

(We start the generation of all k-combinations by initially getting access to

the �rst n� k + 1 nodes.)

3. [
0
ai]

0

0
! [

0
iaj1]

+

0
[
0
iaj2]

�

0
: : : [

0
iajl]

�

0
,

for j1; j2; : : : ; jl > i, 1� i; j1; : : : ; jl � n; � is + or � depending on whether l

is odd or even.

(We generate all k-combinations of the node set.)

4. [
1
ai ! i]�

1
, � 2 f+;�g; 1 � i � n.

[
1
ai ! ej1 : : : ejm]

0

1
, if edges ej1 ; : : : ; ejm are adjacent to node i.

5. [
1
i! ej1ej2 : : : ejm]

0

1
, if edges ej1 ; ej2 ; : : : ; ejm are adjacent to node i.

(Checking the coverage of edges by each k-combination. By listing the edges

adjacent to each node, we can see if a particular k-combination covers all edges

or not.)

6. [
i
ei]

�

i
! ei, for 1 � i � m;� 2 f+;�; 0g.

(Membrane i is dissolved if edge ei is covered.)

7. [
m+1

t]0
m+1

! [
m+1

]+
m+1

t.

(The object t reaches the skin membrane only if all m edges are covered, that

is, if all the m membranes in the substructure are dissolved. This means that

at least one k-combination of nodes covers all m edges.)

8. [
i+1

[
i
]+
i
[
i
]�
i
: : : [

i
]+
i
]0
i+1

! [
i+1

[
i
]0
i
]+
i+1

[
i+1

[
i
]0
i
]�
i+1

: : : [
i+1

[
i
]0
i
]+
i+1

, for 0 �

i � m� 2

[
m
[
m�1

]+
m�1

[
m�1

]�
m�1

: : : [
m�1

]+
m1

]0
m
! [

m
[
m�1

]0
m�1

]0
m
[
m
[
m�1

]0
m�1

]0
m
: : : [

m
[
m�1

]0
m�1

]0
m

(Division rules for membranes labeled with 0; 1; : : : ;m; the opposite polariza-

tion introduced when dividing a membrane 0 is propagated from lower levels to

upper levels of the membrane structure and the membranes are continuously

divided until dividing also membrane m { which will get neutral charge.)

Clearly, the system � constructed above has n-bounded membrane division.

It can be easily seen that

L(�) =

�
ftg; if there exists a node cover of size k,

;; otherwise.

Therefore, we get the answer to our decision problem by examining the emptiness

of the language L(�). This can be done in 2k +m + 3 steps: in 2k � 1 steps, we

generate all k-combinations of nodes. In the next step, membrane zero dissolves. In

the next two steps, we list the adjacent edges corresponding to each node in all the

k-combinations. In the next m steps, membranes 1 to m dissolve if edges e1 to em
are present in the expanded list of edges corresponding to the k-combinations. We

then need one more step to output t, if any copy of t has reached the skin membrane.

If no copy of t leaves the system at this step, then there is no node cover of size k

for G. Note that we have used rules of type (a)-(f) except type (b).

6 Conclusion

We have introduced a new computability model, the P System based on parallel

rewriting. Characterizations of RE languages are obtained by simple P Systems

with one membrane. Of de�nite interest is to consider what happens if targets are

nondeterministically chosen when a string is transformed; does this have any signif-

icant e�ect in increasing the power of the system .It is also of worthwhile interest

to consider other NP-complete problems which can be solved using P Systems with

d-bounded division.

Acknowledgement. The authors are much indebted to Gh. P�aun, for many

useful remarks about previous versions of this paper.

References

[1] J. Dassow, Gh. P�aun, On the power of membrane computing, J. of Universal

Computer Sci., 5, 2 (1999), 33{49 (www.iicm.edu/jucs).

[2] S. N. Krishna, R. Rama, A variant of P systems with active membranes: Solving

NP-complete problems, Romanian J. of Information Science and Technology,

2, 4 (1999).

[3] Gh. P�aun, Computing with membranes, Journal of Computer and System Sci-

ences, 61(2000) and Turku Center for Computer Science-TUCS Report No 208,

1998 (www.tucs.�).

[4] Gh. P�aun, Computing with membranes { A variant: P Systems with Po-

larized Membranes, Intern. J. of Foundations of Computer Science, 11, 1

(2000), 167{182, and Auckland University, CDMTCS Report No 098, 1999

(www.cs.auckland.ac.nz/CDMTCS).

[5] Gh. P�aun, P systems with active membranes: Attacking NP complete prob-

lems, submitted 1999, and Auckland University, CDMTCS Report No 102, 1999

(www.cs.auckland.ac.nz/CDMTCS).

[6] Gh. P�aun, G. Rozenberg, A. Salomaa, Membrane computing with external

output, Fundamenta Informaticae, 41, 3 (2000), 259{266.

[7] Gh. P�aun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted

forms, IFIP Conf. on TCS: Exploring New Frontiers of Theoretical Informatics,

Sendai, Japan, 2000.

[8] Gh. P�aun, T. Yokomori, Membrane computing based on splicing, Preliminary

Proc. of Fifth Intern. Meeting on DNA Based Computers (E. Winfree, D. Gif-

ford, eds.), MIT, June 1999, 213{227.

[9] Gh.P�aun, S.Yu, On synchronization in P systems, Fundamenta Informaticae,

38, 4 (1999), 397{410.

[10] A.Salomaa, Public Key Cryptography, Springer-Verlag,Berlin, 1990.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 236 - 248.

Distributed Splicing of RE with 6 Test Tubes

Monika Sturm and Thomas Hinze

Dresden University of Technology, Germany

Department of Theoretical Computer Science

e-mail: fsturm,hinzeg@tcs.inf.tu-dresden.de
www: http://wwwtcs.inf.tu-dresden.de/dnacomp

June 21, 2000

Abstract

This paper introduces a functional approach to distributed splicing sys-

tems for generation of recursive enumerable languages with 6 test tubes. The

speci�cation of this system serves both, the formal mathematical and the

lab-experimental aspect. The implementation of the splicing system using a

functional description of laboratory operations supports particularly the last-

mentioned aspect. Advantages of this approach consist in large experimental

practicability as well as in the independence of certain Chomsky type 0 gram-

mar parameters.

1 Introduction

Fast solutions of combinatorial problems have both, large economical and theoretical

importance. Starting from the consideration of di�erent approaches to tackle NP-

complete problems, several unconventional ideas for their solutions emerge. These

ideas can be divided into four raw categories: neural, quantum, heuristic, and

molecular computing, particularly using the data carrier DNA.

An interdisciplinary collaboration between computer scientists and molecular

biologists developed a DNA based algorithm to solve the NP-complete knapsack

problem with natural object weights and implemented it repetitively in the labora-

tory. In parallel to these experimental studies the laboratory-like DNA computing

model DNA-Haskell[13] was developed based on biochemical processes observed in

detail including some side e�ects that can occur indeed. DNA computing models fea-

ture by their computational completeness. DNA-Haskell also owns this property

proved by simulation of selected conventional universal models for computation.

Some DNA computing models are characterized by a high abstraction level and

by a clear formal model speci�cation. Between these models and an according im-

plementation in the laboratory a gap exists that has to be discussed. Simulating

those DNA computing models using the laboratory-like DNA-Haskell could be

a promising approach to �ll this gap and to combine the advantages of di�erent

models. The minimization of the number of used test tubes necessary for the

execution of DNA based algorithms acts as a signi�cant criterion to optimize DNA

computing models. A one pot architecture embodies the ideal case. The splicing

model is closed to this ideal. The splicing operation forms the principal item of this

model. It is possible to simulate the splicing operation in DNA-Haskell. Splicing

systems were established to reach universal computational power[4]. They require ei-

ther an in�nite set of axioms or an in�nite set of splicing rules to generate recursively

enumerable languages (class RE). A further approach based on multisets leads to

the necessary to determine the number of strand duplicates with high accuracy. The

recent state of the art in molecular bioengineering can not meet these requirements

completely. Therefore other extensions of splicing systems were sought for a prac-

ticable possibility to generate RE. The introduction of distributed splicing systems

with n test tubes seems to be a successful way. A functional approach to distributed

splicing of RE with 6 test tubes is proposed below. The arisen distributed splicing

system, named TT6 for short, owns a simulation in DNA-Haskell and performs

a distribution of test tube contents after each splicing operation. Further the TT6

uses compact sets of �lter patterns resulting in a comparable low exchange of DNA

strands between test tubes supporting a lab-implementation.

2 On the Basic Operation in Splicing Systems

The splicing operation forms the core of all types of splicing systems and embodies an

abstract formal emulation of DNA recombinant techniques cut with restriction en-

zymes (digestion) and ligation [4]. It is based on elements of mostly in�nite sets that

express DNA strands, further named words of formal languages. The description of

the splicing operation on words of formal languages also leads to a generalization

of the e�ect that is caused by digestion and ligation. The generalization suppresses

certain DNA strands resp. words that can really additional occur during the ligation

process as side e�ects. Here, we propose a sequence of DNA-Haskell operations

that simulate the splicing operation on linear data structures de�ned by a splicing

rule in [6].

Consider an alphabet �, and two symbols $ and # not in �. A splicing rule over

� is a string r = �1#�1$�2#�2, where �i; �i 2 ��, 1 � i � 2.

For each such rule r and strings x; y; w; z 2 �� we de�ne

(x; y) `r (z; w) if and only if x = x1�1�1x2; y = y1�2�2y2;

z = x1�1�2y2; w = y1�2�1x2:

A wet splicing system and its experimental implementation was introduced in

[8]. The results of this approach encourage the assumption that the splicing opera-

tion can be performed practically. This fact represents the �rst step to establish a

universal DNA computer based on splicing.

Unfortunally the ligation produces unwanted DNA fragments (e.g. of the com-

position x1�1�2y1 and y2�2�1x2). These DNA fragments occur because of the com-

patibility of the sticky ends resulting from the digestions �1j�1 and �2j�2. These

additional unwanted DNA fragments can hardly inuence the �nal result of iterated

executions of splicing operations, often used to generate a formal language by ap-

plying splicing rules of a splicing system. The following �gure 1 proposes an idea

how to overcome this insu�ciency. Let x and y be encoded by DNA double strands.

β1α 1 β

2βα

β

2

α

α

β

2

x α

2

1β

α

x2

1

y

2

α 2β

2

y2

1

x1α1

1

1x2

1

1

1α 2β2y2

1

x1α1β2y2

2

y1α 2β1x

β

β

α1β1
α 2β2
α1β2
α 2β1

y

α 2 β2’))

α1β

2

)

α 2β1))

α1β1

α 2β2

1α

2

Extraction Extraction

Cut

rest. enzym

Cut

rest. enzym

’-P’
5

Labeling

Union

maxlength

Ligation

Extraction Extraction

Union

Union

xy_pool :: Tube

maxlength :: Int

:: Dnastrand
:: Dnastrand
:: Dnastrand
:: Dnastrand

combine :: Tube -> Tube
combine t = lig
 (un
 (lab
 (cut
 (extr t
 ’restriction enzym
 ’-P’
 5)
 (cut
 (extr t
 ’restriction enzym
 maxlength

splicingop :: Tube -> Tube
splicingop t = un
 (un
 (extr

 (combine t)

 t

 (extr

 (combine t)

splicingop xy_pool

application of the function:

)

)

α1 β1’)

Figure 1: splicing operation as a owchart (left) and using the DNA-Haskell

syntax (right)

We are able to describe the splicing operation in a experimental convincing way.

DNA computing should lead to a unconventional universal model for computations.

Splicing systems based on the splicing operation represent an exact mathematical

model according to this aim [7]. A practical execution of di�erent splicing systems

can contain the scenario from �gure 2 as the central part. The challenge consists in

�nding a way how to adapt the real molecular biological processes in the laboratory

to the formal de�nition of the splicing operation. The focus lies in the laboratory-

like modelling of splicing systems to generate regular, context free, and recursive

enumerable languages.

3 Splicing Systems for RE { Comparison and Classi�-

cation

The sets FIN , REG, CF , CS, RE are used to denote the classes of �nite, regular

(Chomsky type 3), context free (2), context sensitive (1), and recursive enumerable

(0) languages. These classes form the Chomsky hierarchy.

To describe and characterize these classes of languages, di�erent formal systems

like Chomsky grammars of a certain type were developed. Each of these language

denotation systems is able to generate exactly those words the language is composed

of. Language denotation systems represent in general models for computation: Since

a language can be considered as a set (�nite or in�nite) consisting of its words as

elements, generating a language by producing its words and testing whether or not

a given string is a word of the described language can be assumed as computational

process. From FIN to RE the computational power increases and descriptions

of RE are said to be computational universal. Therefore, the generation of RE

by splicing systems based on an appropriate language denotation system will be

focussed.

Some extended splicing systems EH(F1;F2), F1: set of axioms, F2: set of

splicing rules, can produce RE , see table 1 [4]:

F1=F2 FIN REG CF CS RE

FIN REG RE RE RE RE

REG REG RE RE RE RE

CF CF RE RE RE RE

CS RE RE RE RE RE

RE RE RE RE RE RE

Table 1: computational power of EH systems

Weakest preconditions are required by EH(FIN ;REG) and EH(CS;FIN).

These systems need either a regular language to describe the splicing rules or a

context sensitive language to describe the axioms. Both, REG and CS, are in�nite

sets resulting in an in�nite number of DNA strands and/or restriction enzymes for

simulating the work of these splicing systems. To overcome this insu�ciency, three

di�erent ideas leading to special types of extended splicing systems were pursued:

� introduction of multisets

� extension of the basic data structure "�nite linear string"

� introduction of distributed splicing systems usually with more than one test

tube and control mechanisms for the resulting test tube systems

Table 2 illustrates extended splicing systems able to generate the class of recur-

sive enumerable languages together with a short characterization of some properties.

Further considerations focus on classes FIN , REG, and RE.

class

splicingsystem

reference

numberoftesttubes

numberofaxioms

numberofsplicingrules

basicdatastructure

requiredlanguagedenotation

supportsmultipleinstructions

E
le
m
e
n
ta
ry
F
o
rm
a
l
S
y
st
e
m

(E
F
S
)

E
F
S
=
(D
;
�
;
M

),

M
u
lt
ip
le

[1
2
]

1

O
(j
M

j)

O
(j
D
j3
)

li
n
e
a
r

P
o
st
N
o
rm
a
l
S
y
st
e
m

(P
N
S
)

n
o

G

=

(V
;�
;
P
;
A
)

C
h
o
m
sk
y
ty
p
e
0
g
ra
m
m
a
r

d
is
tr
ib
u
te
d

T
T

sy
st
e
m

[2
]

O
(j
�
G
j)

O
(j
P
G
j
+
j�
G
j)

O
(j
P
G
j
+
j�
G
j)

li
n
e
a
r

G

=
(V
G
;
�
G
;
P
G
;
S
G
)

y
e
s

[9
]

C
h
o
m
sk
y
ty
p
e
0
g
ra
m
m
a
r

C
D
E
H

sy
st
e
m

[1
1
]

3

O
(j
P
G
j
+
jV
G
j
+
j�
G
j)

O
(j
P
G
j
+
jV
G
j
+
j�
G
j)

li
n
e
a
r

G

=
(V
G
;
�
G
;
P
G
;
S
G
)

y
e
s

C
h
o
m
sk
y
ty
p
e
0
g
ra
m
m
a
r

T
T
6
sy
st
e
m

h
e
re

6

O
(j
P
G
j
+
j�
G
j)

O
(j
P
G
j
+
j�
G
j)

li
n
e
a
r

G

=
(V
G
;
�
G
;
P
G
;
S
G
)

y
e
s

C
h
o
m
sk
y
ty
p
e
0
g
ra
m
m
a
r

in
�
n
it
e
se
t

E
H
(F
I
N

;
R

E
G
)

[1
0
]

1

O
(j
P
G
j
+
jV
G
j
+
j�
G
j)

1

li
n
e
a
r

G

=
(V
G
;
�
G
;
P
G
;
S
G
)

n
o

e
x
te
n
d
e
d

P
o
st
N
o
rm
a
l
S
y
st
e
m

d
a
ta
st
ru
c
tu
re

C
ir
c
u
la
r

[1
4
]

1

O
(j
P
j
+
jA
j)

O
(j
P
j)

c
ir
c
u
la
r

G

=

(V
;�
;
P
;
A
)

n
o

C
h
o
m
sk
y
ty
p
e
0
g
ra
m
m
a
r

[1
]

1

O
(j
P
G
j
+
jV
G
j
+
j�
G
j)

O
(j
P
G
j
�
(j
V
G
j
+
j�
G
j)
5
)

li
n
e
a
r

G

=
(V
G
;
�
G
;
P
G
;
S
G
)

n
o

d
e
te
rm
in
is
ti
c
T
u
ri
n
g
M
a
ch
in
e

m
u
lt
is
e
t

E
H
(m
F
I
N

;
F
I
N

)

[5
]

1

O
(j
V
j2
jQ

j
+
jQ

j2
jV
j)

O
(j
V
j4
jQ

j)

li
n
e
a
r

T
M

=
(Q
;
V
;
�
;
f
L
;
R
g
;
F
;
q
0
;
"
;
�
)

n
o

P
o
st
N
o
rm
a
l
S
y
st
e
m

[3
]

1

O
(j
�
j
�
jP
j)

O
(j
�
j
�
jP
j)

li
n
e
a
r

G

=

(V
;�
;
P
;
A
)

n
o

Table 2: classi�cation of splicing systems able to generate recursive enumerable languages

Table 2 shows that TT6 as a model for distributed splicing is characterized by

a linear complexity of the number of axioms and splicing rules depending on the

number of grammar rules and terminal symbols of the language. Further the TT6

uses 6 test tubes in any case working on a linear DNA data structure.

4 A Test Tube 6 Distributing Splicing System � for

Chomsky Type 0 Grammars

The de�nition of � uses the components of Chomsky type 0 grammars that have to

be given for the construction of a concrete �.

Let G = (VG;�G;PG; SG) be a Chomsky type 0 grammar with

VG: �nite set of nonterminal symbols

�G: �nite set of terminal symbols �G = f�1; �2; : : : ; �ng; VG \ �G = ;

PG: �nite set of productions PG � ((VG [�G)
�
 VG
 (VG [�G)

�)

� ((VG [�G)
+)

SG: start symbol SG 2 VG

Let � = (V ; T1; T2; T3; T4; T5; T6) be a Test Tube Distributed Extended Head System

of degree 6 (TT6 for short) based on G with

V : �nite set of alphabet symbols V = VG [�G[

fB; �; �;X;X 0
; Y; Y

0
; Y

0
�; Y

0

�; Z; Z
0
; Z

00g

Ti: test tube i, i = 1; : : : ; 6 with Ti = (Ai;Ri;Fi)

Ai: �nite set of axioms Ai � V�

Ri: �nite set of splicing rules Ri � V�
 f#g
 V�
 f$g
 V�
 f#g
 V�

Fi: �nite set of �lter patterns Fi � (V [f@g)�, with an ambiguous

letter @, f@g� � f@g, that stands

for any �nite word 2 V�

": empty word

Each test tube Ti is called a component of �. Any Ai can be represented as

�nite languages over V , and any Ri can be represented as �nite languages over

V [f#g[f$g. # and $ are auxiliary symbols not in V . For simplicity, the operation
+ on an arbitrary set U is de�ned as U+ := U�
U . It excludes " from the result of

the �-operation. The components of � are de�ned as follows:

T1 = (A1;R1;F1)

A1 = fXBSGY g [fZvY
0 j 9u 2 (VG [�G)

+
:(u; v) 2 PGg

R1 = fr11g

r11 = "#uY $Z#vY 0; (u; v) 2 PG
F1 = f@Y g

T2 = (A2;R2;F2)

A2 = fZ��i�Y 0 j i = 1; : : : ; ng [fZY 0
�; ZY

0

� ; X
0
Z; ZY g

R2 = fr21; r22; r23; r24; r25; r26g

r21 = "#�iY
0$Z#��i�Y 0; i = 1; : : : ; n

r22 = "#�Y 0$Z#Y 0

�

r23 = "#�Y 0$Z#Y 0
�

r24 = X#"$X 0#Z

r25 = X��
i
�#"$X�i#Z; i = 1; : : : ; n

r26 = "#Y 0$Z#Y

F2 = fX@�iY
0 j i = 1; : : : ; ng [fX@Y 0

�; X@Y 0

�; X�@; X�@g

T3 = (A3;R3;F3)

A3 = fZY 0
; X�Zg

R3 = fr31; r32g

r31 = "#Y 0
�$Z#Y

0

r32 = X
0#"$X�#Z

F3 = fX 0@Y 0
�g

T4 = (A4;R4;F4)

A4 = fZY 0
; X�Zg

R4 = fr41; r42g

r41 = "#Y 0

�$Z#Y
0

r42 = X
0#"$X�#Z

F4 = fX 0@Y 0

�g

T5 = (A5;R5;F5)

A5 = fZ0Z0; Z00Z00g

R5 = fr51; r52g

r51 = "#BY $Z0Z0#"

r52 = X#"$"#Z 00Z00

F5 = f@BY g

T6 = (A6;R6;F6)

A6 = ;

R6 = ;

F6 = �+
G

The work of � can be described as an iterated loop in each of the test tubes Ti,

i = 1; : : : ; 5. The iterated loop consists of the consecutive executed steps splicing,

�ltering, and distributing. The test tube T6 has the function of a �nal tube and

stores the resulting words 2 L(G). The current contents of test tube Ti is denoted

as Li. Initially, Li = Ai with i = 1; : : : ; 6.

The iterated loop in each test tube Ti, i = 1; : : : ; 5 starts with the according

sets of axioms Ai. Subsequently, any executable splicing rule has been selected and

applied. If there is no applicable splicing rule, no splicing will be performed and

the set of strings in the relevant test tube remains unchanged. The application of

a splicing operation in a test tube Ti with the contents Li � V� is de�ned by the

function �:

�(Li) := fz 2 V� j (x; y) `r (z; w) or (x; y) `r (w; z); for some x; y 2 Li; r 2 Rig

During the splicing step of the iterated loop the splicing operation is performed

at most once in Ti. In consequence, the k-fold iterated splicing �k(Li) is de�ned by

�
0(Li) = Li

�
k+1(Li) = �

k(Li) [�(�k(Li)) for k � 0; 1 � i � 5

with

�
�(Li) =

[
k�0

�
k(Li):

During one pass of the iterated loop the splicing operation is executed at most

once in each test tube T1 until T5.

After splicing, the �ltering step prepares copies of those strings that have to

be distributed. Every test tube Ti, i = 1; : : : ; 5 provides separately exactly those

strings that will be moved into other test tubes. To do so, Ti evaluates all �lter

pattern Fj, j = 1; : : : ; 5, j 6= i. Those strands that are transmitted into other tubes

are removed from the producing tube Ti if they do not match its own �lter pattern

Fi. Each Fi describes those strings that are moved from other test tubes into Ti.

The subsequent distributing step exchanges the strings prepared by �ltering

between the test tubes.

The test tube T6 receives copies of all strings produced by splicing in T1 until

T5 during each iterated loop and collects those strings that describe words of the

language L(G), implemented by its �lter pattern F6. All other arriving strings are

eliminated. T6 does not practise a splicing operation itself, it evaluates the produced

words from all other test tubes. Because of this behavior T6 carries the meaning of

a �nal tube (master tube).

The steps splicing, �ltering, and distributing forming the iterated loop are

executed consecutively. After distributing, the next round of splicing starts. All

test tubes T1 until T5 perform iterated loops in parallel. The number of iterated

loops is not limited by �. One pass of the iterated loop transforms stepwise the

contents (L1;L2; : : : ;L6) into (L01;L
0
2; : : : ;L

0
6), denoted by the

1
�!TT6 operator

(L1;L2; : : : ;L6)
1
�!TT6 (L

0

1;L
0

2; : : : ;L
0

6)

with

L0i =

0
B@

6[
j=1^

j 6=i

�
k(Lj)

1
CA \ Fi [

0
B@�k(Li) n

0
B@

6[
j=1^

j 6=i

Fj

1
CA

1
CA ; k 2 f0; 1g; 1 � i � 6:

The contents of each Ti is composed by the result of the own splicing minus

those strings that move to other test tubes plus those strings that arrive from other

test tubes.

Therefore, the language L generated by � is described by

L(�) =
n
w 2 �+

G ^ w 2 L6 j (A1; : : : ;A6)
�
�!TT6 (L1; : : : ;L6)

o
;

where
�
�!TT6 is the reexive and transitive closure of

1
�!TT6.

Each of the splicing test tubes assumes a special task in the whole behavior of

�, listed in table 3.

test tube task

T1 � apply a production of the grammar G

T2 � encode the rightmost completing terminal symbol �j 2 �G into

the sequence ��j� if existing

� prepare the rightmost-leftmost rotation of the completing � or

�

� decode the leftmost complete rotated ��
j
� into the terminal

symbol �j

T3 � rightmost-leftmost rotation of one symbol �

T4 � rightmost-leftmost rotation of one symbol �

T5 � extract a ready generated word of the language L(G) from the

terminating auxiliary symbols X and BY

Table 3: tasks of the splicing test tubes

Figure 2 shows the general iterated loop practised in T1 until T5. Each iterated

loop in Ti, i = 1; : : : ; 5 has been initialized with the axioms from the according set

Ai encoded by appropriate unique DNA double strands. The encoding is done by

two one to one functions f_sense and f_antisense that produce complementary

single stranded DNA strings from any 2 V
+. The body of each iterated loop is

composed by steps splicing, �ltering, and distributing. Each splicing step executes

the splicing operation according to Ri at most once. The subsequent �ltering step

prepares in each Ti copies of those DNA strands according to �lter patterns Fj ,

j 6= i separately. All prepared DNA strands matching Fj are distributed to Tj . F6

extracts those DNA strands representing an arbitrary word 2 L(G) and collects it in

T6. The iterated loops of TT6 terminate as soon as an arbitrary word 2 L(G) exists

in T6. The case L(G) = ; leads to a nonterminating process. This consequence

coincides to a terminating property of programs with mutual recursion.

 (mel (splicingop t1)))

 (un
 (mel

 (un
 (filter_f2 (splicingop t1))
 (filter_f3 (splicingop t1)))

 ’+B’

 (filter_f4 (splicingop t1)))
 (filter_f5 (splicingop t1)))

 (un

tail (x:xs) = xs

f_sense :: [Char] -> [Char]
f_antisense :: [Char] -> [Char]

head :: [[Char]] -> [Char]
head (x:xs) = x

tail :: [[Char]] -> [Char]

tt6 :: Tube -> Tube -> Tube -> Tube -> Tube -> Tube

next_loop :: Tube -> Tube -> Tube -> Tube -> Tube -> Tube -> Tube
next_loop t1 t2 t3 t4 t5 [] = tt6
 (distr_t1 t1 t2 t3 t4 t5)
 (distr_t2 t1 t2 t3 t4 t5)
 (distr_t3 t1 t2 t3 t4 t5)

tt6 t1 t2 t3 t4 t5 = next_loop t1 t2 t3 t4 t5 (filter_f6 t1 t2 t3 t4 t5)

next_loop t1 t2 t3 t4 t5 t6 = t6

 (distr_t4 t1 t2 t3 t4 t5)

XBSG Y

Xα Z
XβZ

all elements from A

 (distr_t5 t1 t2 t3 t4 t5)

, each encoded by

 (axioms (tail l))

i

for T

for T(i mod 5)+1

((i+2) mod 5)+1for T

((i+1) mod 5)+1for T

((i+3) mod 5)+1for T

(i mod 5)+1from T

((i+1) mod 5)+1from T

((i+2) mod 5)+1from T

((i+3) mod 5)+1from T

 maxlength)
 (syn (f_antisense (head l))))

complementary sense and antisense ssDNA (syn (f_sense (head l)))
 (un
 (ann
axioms l = un

6

axioms [[]] = []
axioms :: [[Char]] -> Tube

’, ’Z’’Z’’’])
ZY’’, ’ ’])
ZY’’, ’ ’])
X’Z’, ..., ’ZY

’, ...])
application of the function:

(axioms [’
(axioms [’
(axioms [’
(axioms [’ ’])
(axioms [’

-- functions distr_t2 until distr_t5 analogue
 (filter_f1 (splicingop t5)))
 (filter_f1 (splicingop t4)))
 (filter_f1 (splicingop t3)))
 (filter_f1 (splicingop t2)))
 5)
 ’-B’
 maxlength)

 5)

 (lab

 (ann
 (splbl
 (un
 (un
 (un
 (un
distr_t1 t1 t2 t3 t4 t5 = tt6
distr_t1 :: Tube -> Tube -> Tube -> Tube -> Tube -> Tube

D
is

tr
ib

ut
in

g
F

ilt
er

in
g

S
pl

ic
in

g
E

nc
od

in
g

ax
io

m
s

F
(i mod 5)+1 ((i+3) mod 5)+1

 (un

maxlength

FF

tt6

Z’Z’

F

...

’-B’

((i+2) mod 5)+1((i+1) mod 5)+1

5

5

’+B’

Annealing

Synthesis

Union

Union

SynthesisSynthesis

Melting

Union

Splicing

Labeling

Melting

Operation

Union

Union

Union

Union

Union

Filter Filter

Annealing

Filter

SepLabel

Filter

Union

maxlength

Annealing

Union

Figure 2: iterated loop for Ti, i = 1; : : : ; 5; owchart and DNA-Haskell syntax [13]

[

1F {@Y}=

filter_f6 :: Tube -> Tube -> Tube -> Tube -> Tube -> Tube

 (un β

β

 (un

α

filter_f1 :: Tube -> Tube
filter_f1 t = extr t (f Y)

 ...

 (lab (syn (f_sense B)) ’+B’ 5))
 ...

Y’))

Y’)))

β

α

5

 (lab (syn (f_sense Z’’)) ’+B’ 5))

4

3

 (mel
 (un

2

from T

from T

from T

from T

1from T

 (lab (syn (f_antisense B)) ’+B’ 5)

’+B’

 (un

...
5

’+B’

filter_f4 t = extr
filter_f4 :: Tube -> Tube

 (extr t (f X’))

n (f
 (extr t (f X))

σ

 (extr

 (f Y’)

 ...
1σ

f(σ 1Y’) f(σ Y’)n

5

’-B’

 (f
 (extr t (f X))

f(Y’α) f(Y’β) f(Xα) f(Xβ)

5

 t5)))

 (extr
 (extr t (f X)))
 (extr t (f X)))

Y’α Y’β{X@σiY’, X@ , X@ ,F2 = Xβ@, Xα@ | i=1,...,n}

F5 = {@BY}

 maxlength)

, X, X’, Y, Y’,

 (f Y’))
 (extr t (f X))

,

f(BY)

filter_f5 :: Tube -> Tube
filter_f5 t = extr t (f BY)

F3 = Y’α{X’@ }

, Z, Z’, Z’’},

antisense ssDNA

 (extr
 (f Y’))
 (extr t (f X))
 (extr
 (un
 (un

f(X’)

f(Y’α)

Y’βF4 = {X’@ }

 (un
 (un
 ...
filter_f2 t = un
filter_f2 :: Tube -> Tube

)

f(X’)

f(Y’β

F6 = {σi | i=1,...,n}
+

filter_f6 t1 t2 t3 t4 t5 = splbl
 (ann

α (f Y’)
 (extr t (f X’))
filter_f3 t = extr

’+B’
5

filter_f3 :: Tube -> Tube

 (un
 (un
 (un t1 t2)
 t3)
 t4)

 ’-B’
 5

Y’α Y’β{B,α β,VG

all elements from

each encoded by complementary sense and

Extraction

Extraction

Extraction

Union

Union

ExtractionExtraction

Extraction

Extraction

Extraction

Union

Union

Union

ExtractionExtraction

f(X)

ExtractionExtraction

Extraction

Union

Melting

Union

Union

Labeling

Synthesis Synthesis

Labeling

Synthesis

Labeling

Union

maxlength

Annealing

SepLabel

Union

Union

Union

f(Y)

Figure 3: �lter patterns F1 until F6 and implementation of �ltering processes in-

cluding collection of words 2 L(G) in T6; owchart and DNA-Haskell syntax

5 Conclusions

This paper implies a proposal to the discussion about distributed splicing systems.

The objectives leading to the development of TT6 include the compliance with RE

by a constant number of test tubes (6), by a nonextended DNA structure, and by

an e�cient derivation of complexity theoretical relevant system parameters directly

from the grammar. Let �G be the set of terminal symbols and PG the set of grammar

rules, then TT6 requires O(jPGj + j�Gj) axioms and splicing rules independent of

the number of nonterminal grammar symbols.

TT6 is constructed with regard to a practicable implementation in the labora-

tory. The distribution of DNA strands between test tubes is organized in a way that

minimizes the number of transferred DNA strands. Beyond only few strand dupli-

cates are necessary to perform all �ltering and distributing processes. The number

of DNA double strands that have to be available initially is equal to the number

of axioms. The operations de�ned in the speci�cation of DNA-Haskell are based

on observable processes in the laboratory. The experimental practicability of each

single operation was shown.

References

[1] E. Csuhaj-Varj�u, R. Freund, L. Kari, G. Paun. DNA computation based on

splicing: universality results. Technical report 185-2/FR-2/95, TU Wien, Insti-

tute for Computer Languages, Wien, Austria, 1995

[2] E. Csuhaj-Varj�u, L. Kari, G. Paun. Test tube distributed systems based on

splicing. Computers and AI, vol. 15(2{3), p. 211-232, 1996

[3] C. Ferretti, G. Mauri, S. Kobayashi, T. Yokomori. On the Universality of Post

and Splicing Systems, University of Electro-Communications, Chofu, Japan,

1998

[4] R. Freund, L. Kari, G. Paun. DNA computing based on splicing: the existence

of universal computers. Theory of Computing Systems, vol. 32, p. 69-112, 1999

[5] P. Frisco, C. Mauri, C. Ferretti. Simulating Turing machines through extended

mH systems, Universit�a di Milano, Dipartimento di Scienze dell'Informazione,

1998

[6] T. Head. Formal language theory and DNA: an analysis of the generative ca-

pacity of speci�c recombinant behaviors. Bulletin of the Mathematical Biology,

vol. 49(6), p. 737-759, 1987

[7] L. Kari. DNA computing: the arrival of biological mathematics. The mathe-

matical Intelligencer, vol. 19, 2, 1997

[8] E. Laun, K. J. Reddy. Wet splicing systems. In Proceedings of the 3rd DIMACS

Workshop on DNA Based Computers, University of Pennsylvania, p. 115-126,

1997

[9] C. Martin-Vide, G. Paun. Cooperating distributed splicing systems. Workshop

on molecular computing, 1997

[10] G. Paun. SPLICING { a challenge for formal language theorists. Journal of

Automata, Languages and Combinatorics, vol. 4, no. 1, p. 3-16, 1999

[11] G. Paun, G. Rozenberg, A. Salomaa. DNA Computing. New Computing

Paradigms. Springer, 1998

[12] Y. Sakakibara. Splicing, Tree Splicing, and Multiple Splicing. Tokyo Denki

University, Department of Information Sciences, 1997

[13] E. Stoschek, M. Sturm, T. Hinze. On a DNA experiment for solving a certain

NP-complete problem. Technical Report TUD-FI99-02, Dresden University of

Technology, 1999

[14] T. Yokomori, S. Kobayashi, C. Ferretti. On the power of circular splicing sys-

tems and DNA computability. IEEE International Conference on Evolution-

ary Computation, Indiana University, Purdue University, Indianapolis, Illinois,

1997

[15] C. Zandron, C. Ferretti, G. Mauri. A reduced distributed splicing system for

RE languages. In Gheorghe Paun and Arto Salomaa, editors, Lecture Notes in

Computer Science, vol. 1218, p. 346-366. Springer Verlag, Berlin, Heidelberg,

New York, 1997

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 249 - 264.

Core Memory Objects with Address Registers
Representing High-dimensional Interaction

Hideaki Suzuki

ATR International, Information Sciences Division

2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288 Japan

hsuzuki@isd.atr.co.jp

Abstract

When we design a computational system using a comparison between infor-

mation objects and chemical molecules, we have to make the objects interact

with each others tightly to make them create higher functions like biological

catalyses. The one-dimensional core memory programming system SeMar is

revised on this notion, in which an object is represented by a variable-length

string and object-object interactions are represented by a set of address regis-

ters attached to an object. The register set is manipulated by a sequence of

operations triggered by the string. It is shown that functions like the replication

or transcription of DNA can be acccomplished using such a sequence. Several

advantages of the revised design of SeMar are also discussed.

1 Introduction

A biological system is a creative system. Although the organic living things on this

planet use enormous amounts of resources (time and space), they have succeeded

in adapting to their environments and have evolved various forms of life. This has

been a strong motivation in that, until recently, a number of life-like computational

systems have been proposed and studied. Genetic algorithms [1, 2, 3, 4], DNA

computing [5, 6], chemical computation [7, 8, 9, 10, 11], membrane computing [12,

13, 14], and a number of arti�cial life systems [15] have been classi�ed into this

category, and they have proved that the mechanisms they borrowed from biological

systems are in fact e�cient and useful for the purpose of computation.

Among them, the author focuses on chemical computation and several core

memory-type arti�cial-life systems, which are relevant to this paper. Chemical

computation [7, 8, 9, 10, 11] is an approach of trying to devise a computer system

using a comparison between information objects and chemical molecules. A set of

objects (denoted by characters or strings) are prepared in a computer memory, and

a set of operations are de�ned between them in the imitation of chemical reactions.

Speci�cally, in the P-system proposed by Paun [12, 13, 14], all objects are put into

membrane bound compartments, and computation proceeds with not only opera-

tions between objects but also the creation or extinction of membranes. One of the

most distinctive features of chemical computation is a at data structure between

objects. The character/string set is represented by a mathematical set or multi-set,

and these characters/strings are operated in parallel or in a random order. This

feature is considered to be a direct representation of chemical reaction processes

that proceed essentially in parallel in a solvent.

When we peep into biological reaction processes in a living cell, however, we

�nd that most of the processes in the cell or compartment are executed locally using

particular molecules densely distributred in that space [16]. Molecules produced by

a kind of chemical reaction slowly scatter by di�usion processes in a cell. The di�u-

sion constant is not an in�nite number; hence, during this di�usion, most catalytic

reactions can be accomplished locally. Another more important strategy taken by

a cell involves microtubules. Millions, or even billions, of microtubules do not only

constitute the skeleton of a cell, but also help dynamic molecular transfer to proceed.

Various kinds of molecules are conveyed along the microtubules stretched around a

cell, and without this transfer, the cell cannot even divide itself in a proper man-

ner. These observations suggest that some geographical information attached to a

computational object is essential for highly functional operations among objects.

We might as well consider a biological cell to be a set of geographically mapped

molecules besides considering it to be a at solvent in which chemicals are dissolved

homogeneously.

A core memory [17, 18, 19, 20, 21, 22, 23] is a one-dimensional information space

that holds data words (objects) with (geographical) addresses. The addresses align

the words in the order of address values, and at the same time, enable a word to

access or interact with another particular word. The apparent dimension of the

core memory is evidently one; however, the practical dimension of this space can

be measured by the number of nearest neighbors to a word, or in other words, the

number of other words that can be directly accessed by one word without translat-

ing address numbers. For example, if a core memory is manipulated by a central

processing unit (CPU) [19, 20], the number of directly accessed words is the number

of address registers implemented in the CPU, so that the practical dimension of the

core is given by a half of the number of the registers. For another example, in the

case of the dynamic core memory SeMar proposed by the author [21, 22, 23], every

word in the core is equipped with two address registers pointing to the previous and

next neighboring words, so that the core's practical dimension is one.

As can be easily recognized, however, the dimension of a computational medium

is of vital importance for the richness of the functions possibly emerging in the com-

putational system. The dimension (number of directly accessed words) determines

the number of operand objects (substrate molecules) operated by an operator object

(protein molecules) at once, and more importantly, the dimension determines the

number of operator objects that can cooperate simultaneously. In a biological cell,

several complicated and important functions such as transcription, splicing, and

translation are accomplished by the cooperation of dozens of protein molecules. We

cannot expect the emergence of higher functions in a computational system when

only a small number of operator objects can cooperate for a single task.

Inspired by this argument, here the author extends the SeMar core to a high-

dimensional medium. In addition to two address registers attached to a word, three

extra registers pointing to other words are prepared for each word explicitly. The

entire core is made up of a number of sections hierarchically structured by pointers,

and a section holds a set of data words. Each word is represented by a variable-

length string, and the type of string is judged to be under DNA, Protein, Membrane,

or others, depending upon the �rst character. Speci�cally, a Membrane word can

hold a pointer to a lower section, and a Protein word is executed using a pointer

that points to an (amino acid) character in the string.

In the following, the author �rst describes the proposed data structure of a

section or a word, together with the conceptual background (Sect. 2). Next, the

revised design of SeMar is briey explained in Sect. 3 focusing on machine operations

triggered by characters and the design of a sample creature. The implementation of

the total system for an evolutionary experiment has not yet been prepared. Sect. 4

is dedicated to a summary of the proposal and a discussion on its meanings and

merits.

2 A Dynamic Core that Represents Tight Molecular

Interaction

In order to imitate a biological system in which functionally relevant molecules ag-

glomerate and cooperate, we have to implement tight relations between information

objects. In a computational medium, the distance between a pair of objects cannot

be measured by the Euclid distance but by the time needed for one object to access

the other [24]. When one object can interact with the other object by using a direct

value stored in an address register, the pair is mapped close to each other; on the

other hand, when one object cannot interact with the other without a number of

translations of address numbers, the pair is mapped some distance away from each

other. An information object can interact with more objects at once with more

address registers. Accordingly, in order to make objects highly cooperate, we have

to increase the number of address registers directly manipulated by an object.

Figure 1 shows a case of interaction between words in the SeMar core. To make

the words interact like in Fig. 1(b), a word data structure as shown in Fig. 2 is pre-

pared in the revised model. Every word is equipped with �ve word-address registers

named PRV, NXT, OPR, RF1, and RF2, and three character-address registers named

E, X, and Y. E always points to a character in the current word, and X and Y always

point to characters in a word pointed to by OPR. Although we still think that all

words in a section are one-dimensionally aligned in the order of address numbers,

the practical dimension of the core is 5=2 = 2:5 in this implementation.

Furthermore, here we have to note that the address registers shown in Fig. 2

must be prepared explicitly and made `visible' or `readable' to other words for two

reasons. The �rst reason is for cooperation between operator words. If, for example,

the numbers in the address registers were hidden from other words, operator words

would be unable to copy numbers stored in the address registers of other operators,

and this would lead operators to cease to cooperate with other operators. The

visibilily enables di�erent operator words to have operand words in common and to

work for the same task of computation.

The second reason for the visiblily of registers is a more practical one. Although

a number of operator words in a SeMar core are executed logically in parallel, they

are actually put into action one by one in a simulation run using a standard single-

CPU computer. If all current statuses of an operator word are stored in the explicitly

Figure 1: Schematic illustrations of the relation between words in the SeMar core.

(a) Former model, and (b) the proposed model. In both �gures, a node represents

a word (object), and a directed edge represents an access by an address register

named PRV, NXT, or so on. (a) A word can interact with two words so that the

practical dimension is 2=2 = 1, and (b) a word can interact with �ve words so that

the practical dimension is 5=2 = 2:5.

prepared address registers, the CPU can resume its execution without any loss of

information after an interruption during which other operator words are executed.

3 The Revised Model of SeMar

The features of the revised model of Semar are summarized as follows.

� The entire core is made up of a number of sections hierarchically structured

by pointers at Membrane words. Almost all computational operations are

con�ned within a section.

� A section comprises a set of data words. Each word holds a variable-length

string (MMO), a set of address registers (PRV, etc.), and a pointer to a lower

section (LSc) (Fig. 2).

Figure 2: Data structure for one word in the SeMar core. MMO is a variable length

string that represents a macromolecule. PRV is an address register pointing to the

previous word, NXT is an address register pointing to the next word, OPR is an

address register pointing to the operand word, RF1 is an address register pointing

to the 1st reference word, RF2 is an address register pointing to the 2nd reference

word, E is an address register pointing to an execution cahracter in the present word,

and X and Y are address registers pointing to operand characters in the operand

word. LSc is a pointer to a lower section which is valid only when the word represents

Membrane.

� Depending upon the �rst character of MMO, all words are classifed into one

of four groups: DNA, Protein, Membrane, or others.

� All actions in the core are activated by Protein words that act as operators.

The characters in a Protein word are put into action one by one using a

character pointer. The proteins' actions are logically parallel.

In the revised implementaion, the SeMar core is not a single consecutive memory

but a set of separated sections, each of which has a data structure like that shown

in Fig. 1(b).

When the �rst character of MMO is the starter signal of a Membrane word,

LSc has a meaning and can point to a lower section. The creation, fusion, separa-

tion, deletion, or movement of sections is also accomplished by particular section-

operation characters in Protein words (although they are not fully implemented in

the present version).

The actions of the core proceed with a parallel execution of Protein words.

When the �rst character of MMO is a starter signal of a Protein word, a sequence of

characters in MMO is put into action by a character pointer E. After each character

execution, E is increased by one by default, so that the execution of the Protein

string is sequential.

3.1 Elementary Character Functions

Table ?? shows an example design of elementary characters. A string in MMO

consists of these characters for any kind of word. The prepared 45 characters are

classi�ed into six classes.

Class 0 characters are not put into action. They work as starters of Mem-

brane/DNA/Protein words (for M, D, or P), or work as units constituting a pat-

tern used for the detection of other words or other character regions. Namely, an

address-changing character followed by Nop characters uses a consecutive Nop se-

quence for a pattern and searches for a matched word/region using complementary

matching. This pattern matching strategy for determining address registers was

�rst invented by Ray [19] in the imitation of the conformation matching between

biological molecules.

Class 1 characters change the word address registers. A character of this class

substitutes a word register with the value of another word address register or the

address of a word detected by a Nop pattern matching. Note that characters able

to change a word address register numerically are not included in this class because

such kinds of characters cause a word address register to have a meaningless value.

Character h is for the cooperation between Proteins. This character makes a Protein

copy the values of OPR, RF1, X, and Y from the word at RF2 and has operand data

in common with the word at RF2.

Class 3 characters change the values of the character address registers E, X, or

Y. In contrast to Class 1 characters, the numerical modi�cations (reset, increase, or

decrease) of character registers are allowed by n, o, q, r, etc. Since these registers

always point to characters in a Protein/operand word, there is no possibility of their

pointing to meaningless characters even if they are modi�ed numerically.

Class 2 and Class 4 characters are in charge of the actual modi�cation of data

words in a section. When these characters are put into action, Proteins bring about

the creation or transfer of a word, or the insertion, deletion, or modi�cation of a

character.

The character in Class 5 is an operation for section modi�cation. In this interim

design, there is only one character prepared for this class, but the author plans to

prepare several other characters for this class in order to make a SeMar creature

able to ingest nutrition from the environment and divide itself.

3.2 An Example Design of a Creature

Using the elementary characters presented in the previous subsection, the author

tentatively designed a creature (a section), which is unable to reproduce itself but

has several important characteristics in common with a self-reproducing creature to

be designed in future. This self-reproducing creature, in its �nal form, will be used

as an ancestor innoculated in the SeMar core at the beginning of an evolutionary

run [23]. Here, the author summarizes the characteristics of the designed creature.

Class

description

Char.

mnem.
Function of a character

Class 0:

No

operation

0

1

2

3

4

M

D

P

Nop0. Complementarily matches with Nop1.

Nop1. Complementarily matches with Nop0.

Nop2. Complementarily matches with NopM.

Nop3. Complementarily matches with NopD.

Nop4. Complementarily matches with NopP.

NopM. Complementarily matches with Nop2.

Starter of a Membrane word.

NopD. Complementarily matches with Nop3.

Starter of a DNA word.

NopP. Complementarily matches with Nop4.

Starter of a Protein word.

Class 1:

Oper.

for

word

addresses

a

H

e

f

g

p

h

j

k

l

Jumps Protein to after the nearest matched word.

OPR (address of the tail of the section)

OPR RF1

RF1 OPR

OPR RF2

RF2 OPR

OPR/RF1/X/Y OPR/RF1/X/Y of word(RF2)

Changes OPR to the add. of a matched word before OPR.

Changes RF1 to the add. of a matched word before RF1.

Changes RF2 to the add. of a matched word before RF2.

Class 2:

Oper.

for words

I

m

Moves word(OPR) before RF1.

Creates a word with the matched pattern before RF1.

Table 1: Mnemonics of elementary characters and their functions. Here, for example,

word(RF1) represents the word at RF1, char(X) represents the character at X in the

word at OPR, and pat(X-) represents a consecutive Nop pattern that starts at X in

the word at OPR.

Class

description

Char.

mnem.
Function of a character

Class 3:

Oper.

for

char.

addresses

b

d

c

i

J

n

o

q

r

s

t

u

v

w

Jumps E to a matched pattern.

Jumps E to a matched pattern if X=0.

Jumps E to a matched pattern if X=Y.

Jumps E to a matched pattern if pat(X-)=pat(Y-).

Skips E if a matched word exists in the section.

X 0

X (address of the last char. of word(OPR))

Y X

X X �1

X X +1

Y Y �1

Y Y +1

Changes X to the add. of a matched pattern before X.

Changes Y to the add. of a matched pattern before Y.

Class 4:

Oper.

for

chars.

x

y

z

A

B

C

E

F

G

L

char(X) 0

Inverts the rightmost bit of char(X).

Shifts char(X) left.

Shifts char(X) right.

char(X) char(Y)

char(Y) char(X)

Deletes char(X).

Inserts a copy of char(X) before char(Y).

Inserts char(X) at the head of word(RF1).

Appends char(X) at the tail of word(RF1).

Class 5:

Oper.

for

sections

K Separates the current section at the border before OPR.

Table 1: (continued)

The detailed sequence of characters is shown in Appendix A using a C source code

form, and a sequence of snapshots of the creature's actions is shown in Fig. 3.

(1) The section includes initial two Protein words and one DNA word in which

two genes are coded (Fig. 3(a)).

(2) The two initial Protein words are a regulatory protein and a transcription

protein. The regulatory protein �rst changes the transcription capability of the

DNA word into 'active', and after that, the transcription protein transcribes

the DNA to create Protein words. (Figure 3(b) shows the �nal snapshot of

this procedure.)

(3) The two genes in the DNA word are a gene for DNA replication and a gene

for section division. The protein words created from these genes replicate the

DNA word, and then, divide the section. (Figure 3(c) shows the �nal snapshot

of this procedure.)

(4) The transcription capability of a DNA word is represented by the second

character of a string stored in MMO. A regulatory protein that activates a

DNA word changes a word beginning with 'D0' into a word beginning with

'D1' in a form accessible by the transcription protein.

(5) A gene's starting and stopping signals in a DNA word are patterns 'PP00' and

'PP11', respectively. The transcription protein creates a new word and copies

a substring delimited by these signals to the new word. The �rst character

of the created word is automatically set to 'P' on account of the copy of the

starting signal 'PP00'.

(6) Operation sequence control between Proteins is achieved by a signal word

created by the former Protein. At the initial substring of a Protein that must

be inhibited until the execution of another Protein, a small in�nite loop by

'b' is written. The execution address E can jump out of this loop by 'J' when

some signal word is created by the former Protein.

4 Discussion

The basic design of the core-memory-type arti�cial life system SeMar was revised

to enhance the interaction between words. A section that is a small compartment of

the core is represented by a set of words with address numbers, and each word holds

a number of address registers. The register set attached to a word can describe the

high-dimensional interaction between words aligned in the one-dimensional core. In

the following, several meanings of the revised design are discussed.

High-dimensional interaction in a one-dimensional core. The ability of a

multi-agent system like SeMar is largely determined by the richness of interaction

between agents (Proteins). In a standard sequential program for a von Neumann

Figure 3: A sequence of snapshots of a designed creature. (a) An initial snapshot, (b)

a snapshot after completing the transcription of two genes, and (c) a snapshot after

replicating a DNA word and performing section division. The contents of the address

registers are denoted by decimal integers, and strings in MMO are represented by

character mnemonics. A long string is shown with several separated lines using a

speci�c character '-' which represents the continuity of the string.

computer, an agent can be considered to be a subroutine (or a library function), and

the richness of the interaction between the subroutines is measured by the number

of variables given to or returned from a subroutine. At the level of an assembler

program, this number is nearly equal to the number of registers prepared in the

employed hardware so that the richness of the interaction between the assembler

routines is ensured by a number of registers in the CPU. From this point of view,

the former design of SeMar [22, 23] had a serious drawback. A Protein word in the

core had only two address registers visible to other Proteins; hence, the practical

dimension of the core was the same as the apparent dimension of the core (namely,

one). The word design proposed in Fig. 2 has remedied this problem and introduced

close cooperation between words in a dynamic core.

Parallel execution of sequentially executed strings. One of the most advan-

tageous features of SeMar is the parallel execution of operator words. A program

(DNA words) and operators (Protein words) are prepared apart in the core, and the

total execution of the program is accomplished by a number of operators working in

parallel. In the presented implementation of SeMar, a Protein word is represented

by a sequence of characters executed sequentially; and yet the system cannot be-

come stuck by a problem like an 'evolutionary dead end' [22]. In the SeMar core, a

small in�nite loop causing an evolutionary dead end always occurs in a single Pro-

tein so that the creature's total execution rarely stops if several Proteins become

non-functional on account of the dead end.

Estimation of the density of functional protein genotypes. Because evo-

lution can be explored only through a connected network of viable genotypes in a

genotype space, the evolvability (de�ned as the possibility of evolving a variety of

genotypes) of an evolutionary system (or a protein) can be measured by the den-

sity of viable (or functional) genotypes in the genotype space [25, 26, 27]. When

we consider the evolvability of an arti�cial protein on this notion, we �rst have

to clarify the de�nition of the 'functionality' of a digital protein. In the revised

design of SeMar, one appropriate de�nition of a functional protein is evidently a

string wherein the character pointer (E) does not become stuck by a small in�nite

loop and can trace a fairly large portion of the string. By determining a particular

threshold trace-rate value above which a protein is judged to be functional and by

estimating the density of functional proteins with some numerical method, we can

assess the design of elementary characters quantitatively. Optimizing the design of

SeMar using this assessment is a future study to be tackled.

Acknowledgements

The author would like to thank Dr. K. Shimohara of ATR-International for his

continual encouragement.

Appendix A: Character Codes of a Designed Creature

ff //################### NUT #####################//

'0', // Nop0

'1', // Nop1

'n0'g,

f //################### DNA #####################//

'D', // NopD

'0', // Nop0 ('1': transcibable)

'0', // Nop0 (operon signal)

'1', // Nop1 (operon signal)

'q', // Y X (dummy)

//////////////////////////// Gene for Replicating DNA ////////////////////////////

'P', // NopP

'P', // NopP

'0', // Nop0

'0', // Nop0

'H', // OPR tail

'j', // jump OPR (OPR = add of DNA)

'3', // Nop3

'f', // RF1 OPR

'k', // jump RF1 (RF1 = add of word [0-])

'1', // Nop1

'm', // create word before RF1 (create a word for DNA)

'3', // Nop3 (RF1 = add of created DNA)

'o', // X (add of tail)

'q', // Y X (Y = (add. of tail))

'n', // X 0

's', // X ++ (X = 1)

'2', // Nop2

'L', // append char(X) at the tail of RF1 (copy DNA)

'c', // jump E if X=Y

'0', // Nop0

'1', // Nop1

's', // X ++

'b', // jump E (go to Nop2)

'M', // NopM

'q', // Y X (dummy)

'1', // Nop1

'0', // Nop0

'm', // create word before RF1 (create terminating signal word [20])

'M', // NopM

'1', // Nop1

'q', // Y X (dummy)

'P', // NopP

'P', // NopP

'1', // Nop1

'1', // Nop1

'q', // Y X (dummy)

//////////////////////////// Gene for Splitting Section ////////////////////////////

'P', // NopP

'P', // NopP

'0', // Nop0

'0', // Nop0

'q', // Y X (dummy)

'M', // NopM

'J', // skip E if pat word exists (jump out of an in�nite routine)

'M', // NopM (activated by word [20]

'1', // Nop1

'b', // jump E (go to pat [M])

'2', // Nop2 (make an in�nite routine)

'K', // sep SCTN before OPR

'P', // NopP

'P', // NopP

'1', // Nop1

'1', // Nop1

'n0'g,

f //################### PRO #####################//

// Regulatory Protein : changes [D001] into [D101]

'P', // NopP

'H', // OPR tail

'j', // jump OPR (OPR = add of word [D001])

'3', // Nop3

'1', // Nop1

'1', // Nop1

'0', // Nop0

'n', // X 0

's', // X ++ (X = 1)

'y', // char(X) char(X)^00000001
'n0'g,

f //################### PRO #####################//

// Transcription Protein : transcribes DNA to create Protein

'P', // NopP

'0', // Nop0

'q', // Y X (dummy)

'M', // NopM

'J', // skip E if pat word exists (jump out of an in�nite routine)

'1', // Nop1 (activated by word [01]

'0', // Nop0

'b', // jump E (go to pat [M])

'2', // Nop2 (make an in�nite routine)

'H', // OPR tail

'f', // RF1 OPR (RF1 = add of tail)

'j', // jump OPR (OPR = add of word [D1])

'3', // Nop3

'0', // Nop0

'o', // X (add of tail)

'q', // Y X (X = Y = add of tail)

'0', // Nop0 (transcribe a Protein region)

'1', // Nop1

'1', // Nop1

'w', // jump Y prev (Y = add of pat [PP00])

'4', // Nop4

'4', // Nop4

'1', // Nop1

'1', // Nop1

'v', // jump X prev (X = add of pat [PP11])

'4', // Nop4

'4', // Nop4

'0', // Nop0

'0', // Nop0

'c', // jump E if X=Y (go to ending)

'0', // Nop0

'2', // Nop2

'r', // X ��

'm', // create word before RF1 (create a word for PRO)

'1', // Nop1

'G', // ins char(X) at the head of RF1 (copying DNA)

'r', // X ��
'c', // jump E if X=Y (go to next Protein)

'1', // Nop1

'0', // Nop0

'0', // Nop0

'b', // jump E

'0', // Nop0

'd', // jump E if X=0 (dummy)

'1', // Nop1 (ending)

'M', // NopM

'n0'gg;

References

[1] Holland, J.H.: Adaptation in Natural and Arti�cial Systems. MIT Press, Boston

(1992)

[2] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, New York (1989)

[3] Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Boston (1996)

[4] Suzuki, H., Iwasa, Y.: Crossover Accelerates Evolution in GAs with a Babel-like

Fitness Landscape: Mathematical Analyses. Evolutionary Computation 7(3)

(1999) 275-310

[5] Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems.

Science, 266 (1994) 1021-1024

[6] Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing

Paradigms, Springer-Verlag, Heidelberg (1998)

[7] Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer

Science 96 (1992) 217{248

[8] Fontana, W.: Algorithmic chemistry. In: Langton, C.G. et al. (eds.): Arti�cial

Life II: Proceedings of an Interdisciplinary Workshop on the Synthesis and

Simulation of Living Systems (Santa Fe Institute Studies in the Sciences of

Complexity, Vol. 10). Addison-Wesley (1992) 159{209

[9] Banzhaf, W.: Self-organization in a system of binary strings. In: Brooks, R.,

Maes, P. (eds.): Arti�cial Life IV: Proceedings of an Interdisciplinary Workshop

on the Synthesis and Simulation of Living Systems. MIT Press, Cambridge

(1994) 109{118

[10] Dittrich, P., Banzhaf, W.: Self-evolution in a constructive binary string system.

Arti�cial Life 4 (1998) 203{220

[11] Suzuki, Y., Tanaka, H.: Chemical evolution among arti�cial proto-cells. To be

published in Arti�cial Life VII Proceedings (2000)

[12] Paun, G.: Computing with membranes. Turku Centre for Computer Science

Technical Report No. 208 ISBN 952-12-0303-X (1998)

[13] Paun, G.: Computing with membranes (P-systems): Twenty six research

topics. Auckland University, CDMTCS Report No 119 (2000) Available at

http://www.cs.auckland.ac.nz/CDMTCS

[14] Castellanos, J., Paun, G., Rodriguez-Paton, A.: Computing with membranes:

P-systems with worm-objects. Submitted (2000)

[15] Adami, C.: Introduction to Arti�cial Life. Springer-Verlag, Santa Clara, CA

(1998)

[16] Alberts, B., Bray, D., Lewis, J., Ra�, M., Roberts, K., Watson, J.D.: Molecular

Biology of the Cell, The third Edition. Garland Publishing, New York (1994)

[17] Rasmussen, S., Knudsen, C., Feldberg, R., Hindsholm, M.: The coreworld:

Emergence and evolution of cooperative structures in a computational chem-

istry. Physica D 42 (1990) 111{194

[18] Rasmussen, S., Knudsen, C., Feldberg, R.: Dynamics of programmable matter.

In: Langton, C.G. et al. (eds.): Arti�cial Life II: Proceedings of an Interdis-

ciplinary Workshop on the Synthesis and Simulation of Living Systems (Santa

Fe Institute Studies in the Sciences of Complexity, Vol. 10). Addison-Wesley

(1992) 211{254

[19] Ray, T.S.: An approach to the synthesis of life. In: Langton, C.G. et al. (eds.):

Arti�cial Life II: Proceedings of an Interdisciplinary Workshop on the Synthesis

and Simulation of Living Systems (Santa Fe Institute Studies in the Sciences of

Complexity, Vol. 10). Addison-Wesley (1992) 371{408

[20] Ray, T.S.: Selecting Naturally for Di�erentiation. In: Koza, J.R. et al. (eds.):

Genetic Programming 1997: Proceedings of the Second Annual Conference.

Morgan Kaufmann, San Francisco (1997) 414{419

[21] Suzuki, H.: One-dimensional unicellular creatures evolved with genetic algo-

rithms. In: JCIS '98: The Fourth Joint Conference on Information Sciences,

Proceedings Vol. II. Association for Intelligent Machinery Inc., USA (1998)

411{414

[22] Suzuki, H.: An Approach to Biological Computation: Unicellular Core-Memory

Creatures Evolved Using Genetic Algorithms. Arti�cial Life 5 N.4 (2000) 367{

386

[23] Suzuki, H.: Evolution of Self-reproducing Programs in a Core Propeled by

Parallel Protein Execution. To be published in Arti�cial Life 6 N.2 (2000) 103{

108

[24] Ray, T.S.: An evolutionary approach to synthetic biology: Zen and the art of

creating life. Arti�cial Life 1 (1994) 179{209

[25] Suzuki, H.: Minimum Density of Functional Proteins to Make a System Evolv-

able. In: Sugisaka, M., Tanaka, H. (eds.): Proceedings of The Fifth Interna-

tional Symposium on Arti�cial Life and Robotics (AROB 5th '00) Vol. 1 (2000)

30-33

[26] Suzuki, H.: Evolvability Analysis Using Random Graph Theory. Proceedings

of AFSS 2000 (The Fourth Asian Fuzzy Systems Symposium) Vol. 1 (2000)

549-554

[27] Suzuki, H.: Evolvability Analysis: Distribution of Hyperblobs in a Variable-

Length Protein Genotype Space. To be published in Arti�cial Life VII Proceed-

ings (2000)

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 265 - 285.

Arti�cial Life and P Systems

Yasuhiro Suzuki and Hiroshi Tanaka

Bio-Informatics,

Medical Research Institute,

Tokyo Medical and Dental University

Yushima 1-5-45, Bunkyo, Tokyo 113 JAPAN

Abstract

Arti�cial chemical system is well studied in Arti�cial Life and Complexity. Here
we introduce a new ati�cial chemical system: Abstract Rewriting system on Multisets

(ARMS). This system belongs to P Systems and is able to show complex phenomena

such as non-linear oscillations. We introduce a membrane that is composed of \chemical

compounds (denoted by symbols)", and the compounds are generated through chemical

reactions in the cell. Furthermore, we apply a genetic method to the system and �nd
some interesting results.

1 Introduction

Arti�cial Life is the study of man-made systems that exhibit behaviors characteristic of

natural living systems. It complements the traditional biological sciences concerned with the

analysis of living organisms by attempting to synthesize life-like behaviors within computers

and other arti�cial media [8]

{ C.Langton, Arti�cial Life.

It has been over a decade since Langton proposed \Arti�cial Life (ALife)" with the

above de�nition. He also explained \by extending the empirical foundation upon which

biology is based beyond the carbon-chain life that has evolved on Earth, Arti�cial Life can

contribute to theoretical biology by locating life-as-we-know-it within the larger picture of

life-as-it-could-be"

With the advent in biotechology and increasing interests in genome information world-

wide, genome databases progress so fast that the whole sequence database of human genome

will be published soon. Hence now we are confronted with the problem of how to deal with

the overwhelming genome sequences. As traditional biological analysis is only powerful

in analysing a single gene most of the case, ALife study turns out to be more and more

important in carbon-chain life science.

One challenging and important theme in genome science is to discover gene-networks.

Our knowledge of the genes` regulation has come from an accumulation of funamental studies

over the past. However recently with a new technology, the DNA chip provides us with

genome wide information fast and informative. Combination with genomic database and use

of ALife, now we are closer to �nd the correlation and regulation between genes and genes.

To clarify gene network, we usually need to model a system by synthesizing the empirical

data at �rst, in which Alife approach is a necessary. One of an ALife model,Kau�uman's

boolean network model,has been a instructive model in analysis gene network[16].

However the subjects of ALife studies are changing. It is much easier for us to obtain

various and lots of data from living systems these days, though we are still want of method

to observe or analyse systematically. Therefore it is necessary for us to construct a system

meanwhile. This resemble the studies in cosmology. Although we can not observe Big-bang

in fact, we can infer many features from empirical data.

The way of ALife study is needed in carbon-chain life science in these days. Whole

human genome will be analyzed very soon and many other projects of analyzing whole

genome are performed. Thus, we will obtain huge genome data soon. But, in these projects

we do not analyze genome in fact but just read them. Thus, we can not know how it works

as a whole even if the all projects are completed.

Hence, the most challenging and important theme in genome science is to discover

genome networks. In order to �nd it, a knockout mouse has been used and it is not easy to

know the interactions between genes. But in these days very powerful technique, the DNA

chip is invented[4] and we can easily see the correlation between genes and genes. In order

to construct a gene network, we model a system by synthesizing the empirical data. Thus,

the way of Alife study is needed. In fact, Kau�uman's boolean network model[7], one of an

ALife model, is used to model a gene network[16].

Now ALife studies are changing. We can obtain various and huge data of living systems

easily but they are broken pieces, thus we have to contract a system upon them. In the

way of study, it looks like Cosmology. Although we can not observe Big-bang in fact, from

empirical data its existence is conjectured.

Emperically, abstract Chemical system turns to be powerful in describing a complex

system. In this contribution, we �rst introduce the abstract chemical model we use that

bases on a multiset rewriting, presented with some experimental results. We will also give a

brief introduction of its application in an ecological system. Then we show the application

of the system by introducing membrane structure, which is closely related to P Systems.

Abstract Chemical System

Life can be considered as a system in a speci�c class of chemical reaction systems, but real

biochemical systems are so complex that it is di�cult to reconstruct the precise dynamics in

the system. Thus, it is important to abstract the essential properties of biochemical systems

in order to obtain insights into its dynamical properties.

There have been developed various Arti�cial Chemistries. In broad sence, an arti�cial

chemistry is a man-made system which similar to a chemical system. It can be de�ned as a

set of objects and a set of reaction rules which specify how the objects interact[?]. It covers

large �eld;

� Modeling: living systems (e.g. origin of life), sociology and parallel processes,

� Information processing: control, automatic proving, chemical computing,

� Optimization: Combinatorial problems (e.g. TSP).

2 ARMS

We develop an abstract computational model (ARMS), which can deal with systems with

many degrees of freedom and con�rm that it can simulate the emergence of complex cycles

such as chemical oscillations that are often found in the emergence of life. We also study

mathematical properties of the model by using a computational algebra and propose an

order parameter to describe the global behavior of the system.

We will introduce the multiset rewriting system, \Abstract Rewriting system on Mul-

tiSets" in this section. Intuitively, ARMS is like a chemical solution in which molecules

oating on it can interact with each other according to reaction rules. Technically, a chem-

ical solution is a �nite multi-set of elements denoted by Ak = fa; b; : : : ; g; these elements

correspond to molecules. Reaction rules that act on the molecules are speci�ed in ARMS

by rewriting rules. As to the intuitive meaning of ARMS, we refer to the study of chemical

abstract machines [3]. In fact, this system can be thought of as an underlying \algorithmic

chemistry [2]."

Let A be an alphabet (a �nite set of abstract symbols). The set of all strings over A is

denoted by A�; the empty string is denoted by �. (Thus, A� is the free monoid generated

by A under the operation of concatenation, with identity �.) The length of a string w 2 A�

is denoted by jwj.

A rewriting rule over A is a pair of strings (u; v), u; v 2 A�. We write such a rule in the

form u ! v. Note that u and v can also be empty. A rewriting system is a pair (A;R),

where A is an alphabet and R is a �nite set of rewriting rules over A.

With respect to a rewriting system = (A;R) we de�ne overA� a relation =) as follows:

x =) y i� x = x1ux2 and y = x1vx2, for some x1; x2 2 A� and u ! v 2 R. The reexive

and transitive closure of this relation is denoted by =)�. A string x 2 A� for which there

is no string y 2 A� such that x =) y is said to be an dead one (in other words, from a dead

string no string can be derived by means of the rewriting rules).

From now on, we work with an alphabetA whose elements are called objects; the alphabet

itself is called a set of objects.

A multiset over a set of objects A is a mapping M : A �! N, where N is the set of

natural numbers, 0, 1, 2,. . . . The number M (a), for a 2 A, is the multiplicity of object

a in the multiset M . Note that we do not accept here an in�nite multiplicity. The set

fa 2 A j M(a) > 0g is denoted by supp(M) and is called the support of M . The numberP
a2AM (a) is denoted by weight(M) and is called the weight of M .

We denote by A# the set of all multisets over A, including the empty multiset, ;, de�ned

by ;(a) = 0 for all a 2 A.

A multisetM : A �!N, for A = fa1; : : : ; ang, can be naturally represented by the string

a
M(a1)
1 a

M(a2)
2 : : : a

M(an)
n and by any other permutation of this string. Conversely, with any

string w over A we can associate a multiset: denote by jwjai the number of occurrences of

object ai in w, 1 � i � n; then, the multiset associated with w, denoted by Mw, is de�ned

by Mw(ai) = jwjai ; 1 � i � n.

The union of two multisets M1;M2 : A �! N is the multiset (M1 [M2) : A �! N

de�ned by (M1 [M2)(a) = M1(a) +M2(a), for all a 2 A. If M1(a) �M2(a) for all a 2 A,

then we say that multiset M1 is included in multiset M2 and we write M1 �M2. In such a

case, we de�ne the multiset di�erence M1 �M2 by (M2 �M1)(a) = M2(a)�M1(a), for all

a 2 A. (Note that when M1 is not included in M2, the di�erence is not de�ned).

A rewriting rule such as

a! a : : : b;

is called a heating rule and denoted as r�>0 ; it is intended to contribute to the stirring

solution. It breaks up a complex molecule into smaller ones: ions. On the other hand, a

rule such as

a : : : c! b;

is called a cooling rule and denoted as r�<0 ; it rebuilds molecules from smaller ones. In this

paper, reversible reactions, i.e., S *) T , are not considered. We shall not formally introduce

the re�nement of ions and molecules though we use re�nement informally to help intuition

(on both types of rules we refer to [3]).

A multiset rewriting rule (we also use to say, evolution rule) over a set A of objects is a

pair (M1;M2), of elements in A# (which can be represented as a rewriting rule w1 ! w2,

for two strings w1; w2 2 A� such that Mw1
= M1 and Mw2

= M2). We use to represent

such a rule in the form M1 !M2.

An abstract rewriting system on multisets (in short, an ARMS) is a pair

� = (A;R)

where:

1. A is a set of objects;

2. R is a �nite set of multiset evolution rules over A;

With respect to an ARMS �, we can de�ne over A# a relation: (=)): for M;M 0
2 A#

we write M =)M 0 i�

M 0 = (M � (M1 [: : : [Mk)) [(M 0

1 [: : : [M 0

k;)

for some Mi ! M 0

i 2 R; 1 � i � k; k � 1, and there is no rule Ms ! M 0

s 2 R such that

Ms � (M � (M1 [: : : [Mk)); at most one of the multisets Mi; 1 � i � k, may be empty.

With respect to an ARMS � = (A;R) we can de�ne various types of multisets:

{ A multiset M 2 A# is dead if there

is no M 0
2 A# such that M =) M 0 (this is equivalent to the fact that there is no

rule M1 !M2 2 R such that M1 �M).

{ A multiset M 2 A# is initial if there is no M 0
2 A# such that M 0 =)M .

2.1 How ARMS works

In this example, we assume that a will be inputted on each rewriting step, the maximal

multiset size is 4 and the initial state is given by fa; a; f; ag. The set of the rewriting rules,

Ru1 is fr1; r2; r3; r4g, where each rule is described by the following:

aaa ! b : r1; b ! a : r2; b ! c : r3; a ! bb : r4:

In this example, we assume that rules are selected as following the order fr4) r1) r3)

r2g. Then, each rule is applied in the following way. First, r4 is applied. Next, as steps 2

and 3, r1 and r3 are applied, respectively. Finally, as step4, r2 is applied.

faafag � a (the left hand side of r4)

.... can not input a and can not apply r4,

faafag � aaa (the left hand side of r1)

.... can not input a but can apply r1
fbag

Figure 1: Example of rewriting steps of ARMS

Figure 1 illustrates two rewriting steps of the calculation from the initial state.

In the �rst step, since the base number of the multiset is 4, the system can not input

a. On the left hand side of r4, a is included in faafag, however, it can not use r4. If a is

replaced with bb, the base number of the multiset becomes 5 and it exceeds the maximal

multiset size, 4.

In the next step, the system can not input a, however, r1 can apply to the multiset and

faafag is rewritten into fbag. Because if aaa is replaced with b, the base number of the

multiset does not exceed the maximal multiset size (Figure 1).

In step 3, ARMS inputs a to the multiset and transforms it to fc; a; ag with r3.

Step3 : fc; a; ag:

In step 4, the system inputs a, but r2 can not apply to it. Thus fc; a; ag becomes fc; a; a; ag.

Step4 : fc; a; a; ag:

Typical Examples In this paragraph, we shall present two examples. Let us assume a

set of rewriting rule Ru1 and a maximal multiset size is 4. The �rst example is a case where

ARMS generates two cycles. This example has the following rule order:
�
r4) r3) r2) r4) r1) r2) r1) r3) r4g;

whose state transition is shown in Figure 2. After 8 steps, the system forms two cycles,

whose periods are of 3 steps.

0. ffg

1. fa; fg

2. fa; a; fg

3. fa; a; a; fg

4. fb; fg "

5. fa; b; fg a cycle

8. fa; a; a; fg #

9. fb; fg "

10. fa; b; fg a cycle

11. fa; a; a; fg #

12. fb; fg

Figure 2: Example of a system that generates cycles

The next example is a case where ARMS terminates. Although ARMS applies the same

rules, the obtained result is completely di�erent (Figure 3). This example has the following

rule order: �
r4) r1) r2) r4) r3) r1) r2g:

The state transition is shown in Figure 3:

3 Experimental results of the simulation of ARMS

We simulated ARMS with various di�erent setups; in this paper we shall discuss two of

them as follows:

� Simple setup

� Brusselator model.

Through these experiments, we con�rmed that the system is capable of generating complex

patterns.

0. ffg

1. fa; fg

2. fa; a; fg

3. fa; a; a; fg

4. fb; fg

5. fa; b; fg

6. fa; a; b; fg

7. fa; a; c; fg.

Figure 3: Example of a system that halts

3.1 A simulation with A simple setup

Computational experiments were made under the following initial conditions:

1. only �ve symbols fa; b; c; d; eg were used to describe THE rewriting rules,

2. fag was the only input symbol,

3. the maximal multiset size was 10,

4. six rules were used for rewriting steps, and

5. two important parameters, namely the frequency of inputs and randomness of rule

application, were given for each simulation, where the former four conditions were

�xed and two parameters in the last condition were set to variables.

Although these are clearly very simple settings, the experiments led to the following two

interesting results. The �rst one showed the emergence of a cycle even under simple initial

conditions, compared with Kau�man's network model [7] or Fontana's �-calculus [2], which

both need large-scale computation to generate cyclic structures from a given system. The

second result showed the complex behavior of cycles. Fusion of several cycles and period-

doubling were observed easily, when randomness in the input was introduced. Figure 3.1

shows a system undergoing period-doubling. (For more details, the reader should refer to

Suzuki and Tanaka [18]).

3.2 The Brusselator model of ARMS

In order to con�rm that ARMS works as an abstract chemical system, we performed an

experiment implementing the Brusselator model [12] within ARMS. The Brusselator is a

well-known mathematical model of chemical oscillations of the Belousov-Zabotinsky reac-

tion [6] (see Figure 5.)

We can view the abstract chemical reaction equations as rewriting rules, as Figure 6

shows:

In this simulation, the reaction rate corresponds to the frequency of rule application. If

r1 has the highest reaction rate, then r1 is applied at the highest frequency.

Simulation of the Brusselator model Let us examine the relationship between the

frequency of rule application (reaction rate) and the concentration X and Y in the multiset.

The concentration of X and Y in the multiset is indicated by the number of X and Y present

in the multiset.

0

50

100

150

200

0 20 40 60 80 100

No.

Length of Cycles

Figure 4: Example of period-doubling

A
k1
! X

B + X
k2
! Y + D

2X + Y
k3
! 3X

X
k4
! E .

Figure 5: Abstract chemical model of the Brusselator.

As to the initial condition, we assume that the maximal multiset size is equal to 5000

and the initial state of the multiset is an empty multiset. We assume that the system makes

inputs A and B continually. Hence this model can be regarded as a continuously-fed stirred

tank reactor (CSTR).

In this simulation, we con�rmed that oscillations between the number of X and Y in

the multiset emerged. Furthermore, we discovered three types of oscillations as follows: (1)

quasi-stable oscillations (Figure 8), (2) unstable oscillations (Figure 9) and (3) divergence

and convergence (Figure 7). For further details of this simulation, see [19].

4 Modeling an ecological system by using ARMS

A phenomenon that plants respond to herbivore feeding activities by producing volatiles

that in turn attract carnivores enemies of the herbivores has been reported recently[1, 9].

These volatiles are not the mere result of mechanical damage, but are produced by the plant

as a speci�c response to herbivore damage.

In mathematical ecological studies concerning with the system, one notable study is

that of, Sabelis and de Jong(1996)[15] who reported that, when herbivore-induced volatiles

pro�table for plants, the kinds of the volatiles become polymorphic within species. They

use game theory and show that ESS corresponds to the case when each species of plant

produces the volatiles in polymorphic way.

In order to investigate the population dynamics of the tritrophic systems, we introduce

an abstract rewriting system on multisets, Abstract Rewriting System on Multisets (ARMS).

A �! X : r1
B X �! Y D : r2

X X Y �! X X X : r3
X �! E : r4:

Figure 6: Rewriting rules for the Brusselator model.

0

20

40

60

80

100

0 50 100 150 200 250 300

No.

Step

The number of X
The number of Y

Figure 7: Example of convergence

In ARMS model, we regarded a tritrophic interaction mediated by herbivore-induced

plant volatiles that attract carnivorous natural enemies of herbivores as chemical reactions

of four reagents (plants, herbivores, carnivores and volatiles). The intensity of interactions

between individuals corresponded to reaction speed in the ARMS model. We compared the

case where plants produce herbivore-induced volatiles vs. the case where they do not with

the model. Further, by changing the reaction speed, we found that there was a case where

herbivore-induced volatiles that attract carnivores resulted in the population increase of the

herbivores. In ARMS, a reaction rate is realized as the frequency of applying a rule.

Implementing the system by using ARMS We assume the symbol \a" as a leaf, \b" as

a herbivore, \d" as a carnivorous and \c" as a certain density of herbivore-induced volatiles

that attract carnivores, respectively. Furthermore, we add \e" as an \empty state" in order

to introduce \death state." A plant is de�ned implicitly as the certain number of leaves.

Evolution rule R1 is de�ned as follows;

a
k1
! aa r1 (increasing leaves);

ab
k2
! bbc r2 (a herbivore eats a leaf);

dbc
k3
! dd r3 (a carnivou catches herbivore);

d
k4
! e r4 (the death of a carnivous);

b
k5
! e r5 (the death of a herbivore):

k1:::k5 denotes reaction rate that correspond to the frequency of rule application. For

example, when k4 = 0:1 and k5 = 0.2 then r5 will be applied twice as much as r4. k2 is

0

50

100

150

200

0 2000 4000 6000 8000 10000

No.

Step

The number of X
The number of Y

Figure 8: Example of (quasi) stable oscillation

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000

No.

Step

The number of X
The number of Y

Figure 9: Example of unstable oscillation

de�ned according to the state of multiset. It is de�ned as follows;

k2 =
M(b)

M (a) +M (b) +M (c) +M (d) +M (e)
:

The r1 corresponds to sprout and growth of a plant, r2 to the case when a herbivore eats a

leaf and the leaf generates volatiles, r3 to a carnivorous catches herbivore, r4 to the death of

a carnivorous and r5 to the death of a herbivore, respectively. The r2 denotes the case when

there exists a leaf (a), a herbivore eats the leaf and breeds there (b). Then the leaf produces

volatiles compound (c) that will attract carnivorous. r3 denotes the case when there is a

herbivore (b) with the volatiles (c), a carnivorous \d" is attracted by it and catches the

herbivore and breed there (dd). The breeding rate of carnivorous is expressed as changing

the number of right hand side of ds, such as dbc
k2
! dddd :

By using this model, we compared the case when leaves generate volatiles to does not.

The evolution rules of the system without volatiles R2 is de�ned as follows;

a
k6
! aa k6 (increasing leaves);

ab
k7
! bb k7 (a herbivore eats a leaf);

db
k8
! dd k8 (a carnivou catches herbivore);

d
k9
! e k9 (the death of a carnivorous);

b
k10
! e k10 (the death of a herbivore):

We set reaction rates of k1, k4, k5, k6, k9 and k10 as 0.5, 0.1, 0.1, 0.5, 0.1 and 0.1,

respectively.

Throughout the simulation, we discovered that herbivores could keep their population

for at least 1000 generations in the system where the infested leaves generated the volatiles,

whereas the herbivores were exterminated by the carnivores in around 100 generations in

the system where leaves did not do so. In our model, the carnivores that use the volatiles

to �nd the herbivores are not able to �nd their victims in a plant from which the volatiles

were emitted under the detectable level for carnivores. This is probably the reason why the

herbivores survived in the system where leaves generated the carnivore attractant.

This result suggests the possibility that herbivores induce the volatiles for their survival.

This may be true in the tritrophic system consisting of plants, two-spotted spider mites

(Tetranychus urticae) and predatory mites (Phytoseiulus persimilis) (Dicke et al. 1998).

Two-spotted spider mite is a tiny (ca. 0.6 mm) herbivore. However, due to their rapid pop-

ulation increase on a plant, they tend to overexploit the plant. A kidney bean leaf infested by

the spider mites started emitting volatiles that attract predatory mites P. persimilis (Maeda

et al. 1998). Once in the prey colony, P. persimilis overexploit the spider mites. However,

the volatiles were induced only after the spider mites increased over certain number per leaf

(ca. more than 100-300 females per small plant) (Maeda et al. in prep) and there will be

a time lag between the emission of the volatiles and the visitation by the predatory mites.

Thus, the spider mites of the next generation that disperse from the current patch before

the plant start emitting the volatiles can be free from the predator. Such spider mites will

establish a new colony nearby. At the same time, the original colony may be exterminated

by the predators. This cycle may be one of the defense strategies of the two-spotted spi-

der mites against the predatory mites that search for them with the volatiles, and may be

applicable for the prediction of the model. We will test this in the future experiments [?].

5 Arti�cial Cell System

A membrane is an important structure for living systems. It distinguishes \self" from its

environment and hierarchical structures inside the system (like cells, organs and so on) are

composed by membranes. Membranes change their structure dynamically and constitute a

system. We are interested in their dynamical structure in terms of computation.

A membrane is composed of \chemical compounds (denoted by symbols)" which are

generated through chemical reactions in the cell. In each cell there is some chemical com-

pounds and these chemical compounds interact with each other according to the rewriting

rule (reaction rules).

Based on the principles outlined above, we develop an \Arti�cial Cell System"(ACS). It

consists of a multiset of symbols, a set of rewriting rules (reaction rules) and membranes.

ACS consists of an abstract chemical system, \Abstract Rewriting System on MultiSets

(ARMS)" that is a multiset transform system,[19]. It consists of a multiset of symbols

and a set of rewriting rules. Although not many alife researches have tackled this topic

previously [10], [11], the focus of these researches is on the formation of a membrane. The

aim of this study is to investigate the role of membrane in terms computation, thus we do

not treat its formation. In this section, we introduce the basic structural ingredients of

ARMS, membrane structures and how ACS works.

5.1 The membrane structure (MS)

To describe the membrane and its structure in ARMS, we �rst de�ne the language MS over

the alphabet f[;]g whose strings are recurrently de�ned as follows:

1. [;] 2 MS

2. if �1; :::; �n 2MS, n � 1, then [�1; :::; �n] 2MS;

3. there is nothing else in MS.

The most outer membraneM0 corresponds to a container such as a test tube or reactor and

it never dissolves.

Consider now the following relation on MS: for x; y 2 MS we write x � y if and only

if we can write the two strings in the form x = [1:::[2:::]2[3:::]3:::]1; y = [1:::[3:::]3[2:::]2:::] ,

i.e., if and only if two pairs of parentheses which are not contained in one other can be

interchanged, together with their contents. We also denote by � the reexive and transitive

closures of the relation �. This is clearly an equivalence relation. We denote byMS the set

of equivalence classes of MS with respect to this relation. The elements of MS are called

membrane structures.

It is easy to see that the parentheses [,] appearing in a membrane structure are matching

correctly in the usual sense. Conversely, any string of correctly matching pairs of parentheses

[,], with a matching pair at the ends, corresponds to a membrane structure.

Each matching pair of parentheses [,] appearing in a membrane structure is called a

membrane. The number of membranes in a membrane structure � is called the degree of

� and is denoted by deg(�). The external membrane of a membrane structure � is called

the vessel; membrane of �. When a membrane which appears in � 2 MS has the form []

and no other membranes appear inside the two parentheses then it is called an elementary

membrane.

5.2 ACS and ACSE

We will de�ne two types of ACS;

1. ACS and

2. ACS with an Elementary membrane (ACSE).

ACSE is di�erent only in the way of dissolving and dividing from ACS.

5.3 Descriptions of ACS

A transition ACS is a construct

� = (A; �;M1; :::;Mn; R;MC; �; �);

where:

1. A is a set of objects;

2. � is a membrane structure (it can be changed throughout a computation);

3. M1; :::;Mn; are multisets associated with the regions 1,2, ... n of �;

4. R is a �nite set of multiset evolution rules over A.

5. MC is a set of membrane compounds;

6. � is the threshold value of dissolving a membrane;

7. � is the threshold value of dividing a membrane;

� is a membrane structure of degree n, n � 1, with the membranes labeled in a one-to-one

manner, for instance, with the numbers from 1 to n. In this way, also the regions of � are

identi�ed by the numbers from 1 to n.

Rewriting rules are applied in following manner:

1. The same rules are applied to every membrane. There are no rules speci�c to a

membrane.

2. All the rules are applied in parallel. In every step, all the rules are applied to all

objects in every membrane that can be applied. If there are more than two rules that

can apply to an object then one rule is selected randomly.

3. If a membrane dissolves, then all the objects in its region are left free in the region

immediately above it.

4. All objects and membranes not speci�ed in a rule and which do not evolve are passed

unchanged to the next step.

Rewriting rule R is a �nite set of multiset rewriting rules over A. Both the left and the

right side of a rule are obtained by sampling with replacement of symbols. A set of reaction

rules is constructed as the overall permutation of both sides of the rules.

Input and Output Chemical compounds are supported from outside of the system to

M0 and some compounds are exhausted from M0. All chemical compounds are transformed

among cells, a randomly selected chemical compound is transformed into the membrane just

above or below it. Although a membrane does not allow speci�city of transport across the

membrane, a cell can control its chemical environment by chemical reaction.

5.3.1 Dissolving and dividing a membrane of ACS

A membrane is composed of a "membrane compound" which is in fact a symbol. To main-

tain a membrane, it needs to have a certain minimal volume. A membrane disappears if

the volume of membrane compounds decreases below the needed volume to maintain the

membrane. Dissolving the membrane is de�ned as follows:

[ha; :::[ib; :::]i]h ! [ha; b; :::]h;

where the ellipsis f:::g illustrates chemical compounds inside the membrane. Dissolving

takes place when
jwijMC

jMij
< �

where � is a threshold value for dissolving the membrane. All chemical compounds in its

region are then set free and they are merged into the region immediately above it.

On the other hand, when the volume of membrane compounds increases to a certain

extent, then a membrane is divided. Dividing a membrane is realized by dividing it in mul-

tisets random sizes. The frequency at which a membrane is divided is decided in proportion

to its size. As the size of a multiset becomes larger, the cell is divided more frequently.

Technically, this is de�ned as follows;

[ha; b; :::]h ! [ha; :::[ib; :::]i]h

Dividing takes place when
jwhjMC

jMhj
> �

where � is a threshold for dividing the membrane. All chemical compounds in its region are

then set free and they are separated randomly by new membranes.

5.4 Description of ACSE

ACSE is di�erent only in the way of dividing and dissolving cells from ACS. Dissolving the

membrane is de�ned as follows:

[ha; b; :::]h ! [0a; b; :::;]0

Dissolving takes place when
jwhjMC

jMh

< �

where � is a threshold value for dissolving the membrane. All chemical compounds in its

region are then set free and they are merged into the region of M0.

Dividing is de�ned as follows;

[ha; b; :::]h ! [ha; :::]h[ib; :::]i:

Dividing takes place when
jwhjMC

jMhj
> �;

where � is a threshold for dividing the membrane. All chemical compounds in its region are

then set free and they are separated randomly in the old and new membranes. Hence, in

ACSE, a structured cell such as [a; b[c; [d; e]]] does not appear.

A Cell like Chemoton Because the components of a membrane diminish with the lapse

of a certain time, a cell has to generate the components to maintain the membrane through

chemical reactions in the cell in ACS and ACSE. Hence, all survived cells in ACS and ACSE

become cells like a chemoton[5]. We con�rmed this through simulations.

Evolution of Cells When a cell grows and the cell exceeds the threshold value for di-

viding, it divides into parts of random sizes. This can be seen as a kind of mutation. If a

divided cell does not have any membrane compounds, it must disappear soon.

Furthermore, to maintain the membrane through chemical reactions inside the cell can

be seen as natural selection. If cells can not maintain the membrane compounds, it must

disappear soon.

Thus, both dividing membranes and dissolving membranes produce evolutionary dynam-

ics. These correspondences are summarized into;

Natural Selection Dissolving a membrane,

Mutation Dividing a cell into parts of

random size.

6 Behavior of ACSE and ACS

We will show some experimental results of ACSE and ACS in this section.

6.0.1 ACSE

The evolution of elementary cells can be regarded as an approximate model of the chemical

evolution in the origin of life.

The following ACSE was simulated;

� = (A = fa; b; cg; � = f [;]0; :::[;]100gM0 = f[a10; b10; c10]100g; R;MC = fbg; � =

0:4; � = 0:2);

where:

1. R, the length of the left- or right-hand-side of a rule is between one and three. Both

sides of the rules are obtained by sampling with replacement of the three symbols a,

b and c;

2. Membrane structures are assumed to be (� = f[1]1:::[100]100g).

Through the simulation we discovered that the strength of a membrane a�ects the behav-

ior of cells. The strength of a membrane is de�ned as the frequency of decreasing membrane

compounds.

When a membrane is strong When a membrane is strong, the most stable cell consists

of only one membrane, cells of this type become \ mother" cells and they produce \daughter"

cells.

In order to display a state of a cell we transform the state of a cell to a number by using

the transformation function; f (M(a);M (b);M(c)) = 102�M (a)+101�M(b)+100�M (c):

For example, the state fa; a; b; c; cg is transformed into 102 � 2 + 101 � 1 + 100 � 2 = 212:

The �gure 2 illustrates the evolution of cells when a membrane is strong. The cells that

are close to the horizontal axis are mother cells. Some daughter cells depart from the group

and evolve di�erent types of cells, even though almost all cells are in the group. In this case,

dissolving a membrane compound takes place per 100 steps.

0

100000

200000

300000

400000

500000

600000

0 20 40 60 80 100 120 140 160 180 200

S
ta

te
s

of
 c

el
ls

Steps

A cell

Figure 10: When a membrane is strong. The lines illustrate the regions where cells exist

and points correspond to the state of cells.

The �gure 3 is focused to the mother cells. At �rst there are about ten groups, and some

of them become extinct: after 200 steps there remain about four groups.

0

200

400

600

800

1000

0 50 100 150 200

T
he

 s
ta

te
 o

f a
 c

el
l

Steps

the state of a cell

Figure 11: Evolution of mother cells. The points correspond to cells.

When a membrane is weak Figure 4 illustrates the case when a membrane is weak, a

membrane dissolves every 3 steps. In this case, the system can not form a group of mother

cells such as in the previous case. Since the group of cells drifts to more stable cells, the

cells grow larger. Even if a large cell divides into parts of random sizes, the probability of

including enough membrane compounds to maintain its membrane are larger than a small

cell.

0

100000

200000

300000

400000

500000

600000

0 20 40 60 80 100 120 140 160 180 200

S
ta

te
s

of
 c

el
ls

Steps

A cell

Figure 12: When a membrane is weak

We believe that this behaviors of evolution is similar to the evolution of viruses [20].

The settings of this simulation are so rough, however, that the possibility remains open that

chemical evolution in origin of life is similar to virus evolution. This will be addressed in

future research.

7 Genetic ACS (GACS)

Since a rewriting rule promotes a reaction, it can be regarded as an enzyme. Here we extend

ACS with evolutionary mechanism We called the system Genetic ACS (GACS).

7.1 Descriptions of GACS

A transition in GACS is a construct

� = (A; �;M1; :::;Mn; R; �; �);

where:

1. A is a set of objects;

2. � is a membrane structure (it can be changed throughout a computation);

3. M1; :::;Mn; are multisets associated with the regions 1,2, ... n of �;

4. R is a �nite set of multiset evolution rules over A.

5. � is the threshold of dissolving membrane;

6. � is the threshold of dividing membrane.

The way of applying rewriting rules, the way of dissolving and dividing and input and output

are the same as ACS and ACSE.

7.1.1 An enzyme

We denote a set of reaction rules as follows;

a b c

a xaa xab xac
b xba xbb xbc
c xca xcb xcc,

where xij means the number of compounds i which are transformed from j. For example,

2ab means a rewriting rule, b! a; a. We call the table a transformation table.

Transmission of an enzyme When a membrane is divided, the enzyme which is inside

the membrane is copied and passed down to a new divided cell. At that time, a point

mutation occurs only in the copied enzyme and it is passed down to the new cell. The

enzyme remain in the old membrane as well as the new one. Point mutations occur every

time a membrane divides. When a membrane is dissolved the enzyme which is inside the

membrane loses its activity. A point mutation is a rewriting of the number of xij . Thus, it

changes the number of transforming compounds to i. We assumed xij 2 f0; 1; 2g. In ACS

and ACSE the system have only one rewriting rule, however, in GACS, each membrane has

a set of rules.

7.2 An experimental result of a GACS

We will show experimental results of GACS. At �rst, the following GACS was simulated;

� = (A = fa; b; cg; � = f6 0gM0 = fa10; b10; c10g; R;MC = fcg; � = 0:4; � = 0:2);

where the transformation table (R) is set as follows in the initial states;

a b c

a 0aa 0ab 1ac
b 1ba 0bb 0bc
c 0ca 1cb 0cc.

The productivity of membrane compounds p is de�ned as the ratio of the total number

of non-membrane compounds to be produced to the total number of membrane compounds

to be produced;

p =
�
j=b
j=axcj

�i=bj=a�
j=c
j=axi;j

;

When p = 0 the enzyme does not produce any membrane compounds, when p = 1, it

produces the same number of membrane compounds to the non- membrane compounds,

and when p > 1, it produces more membrane compounds than non-membrane compounds.

Figure 9 illustrates the time series of productivity, where the vertical axis illustrates the

productivity, the horizontal axis illustrates the steps and each dot is an enzyme. It shows

that at �rst almost enzymes evolve to p > 1. However, after 100 steps, the productivity of

the enzymes decrease.

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

P
ro

du
ct

iv
ity

 o
f m

em
br

an
e

co
m

po
un

ds

Steps

productivity

Figure 13: Productivity of enzymes.

After 100 steps, both the number of cells and the sizes of cells increase exponentially.

Furthermore, the structure of cells becomes complicated. Figure 10 illustrates the correlation

between the number of cells, the size of cells and the number of steps, where each dot

corresponds to a cell.

Figure 11 illustrates the internal nodes of the whole system. If we regard M0 as the root

and other cells as internal nodes and leaves, we can regard the whole system as a tree. In

order to indicate the complexity of the tree, we use the number of internal nodes in the

tree. Figure 11 illustrates that the number of internal nodes increases exponentially, after

150 steps.

It is interesting that when a cell grows into a hierarchical cell, the enzyme evolves to a

low productivity one.

0

200000

400000

600000

800000

1e+06

0 50 100 150 200

T
he

 s
ta

te
 o

f a
 c

el
l

Steps

The state of a cell

Figure 14: State transition of the system

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

T
he

 n
um

be
r

of
 in

te
rn

al
 n

od
es

Steps

An internal node

Figure 15: Internal nodes of the cell

The reason of this behavior can be considered as follows; the enzyme whose productiv-

ity is high always su�ers from mutations, because it promotes membrane division thus it

generates more mutations than low productivity ones. If every cell is an elementary cell, an

enzyme have to keep producing membrane compounds at a high rate. However, when the

cell forms structure, it is not necessary one with high productivity, because, in a structured

cell, if an inside cell dissolves, the cell that includes the dissolved cell obtains its membrane

compounds.

Therefore, during evolution of a cell into a structured cell, the cell needs a high produc-

tivity enzyme. However, once it evolves a structured cell, high productivity enzymes are

weeded out. This is the role of membranes in terms of computation.

7.3 Genetic Programming by using GACS

We attempted to generate a program by using a GACS. In the GACS, a program corresponds

to an enzyme, thus we breed an enzyme which can solve a particular problem. We apply

it to a simple problem doubling; calculate the double value of the number of a and b then

show the result as the number of c (c = 2(a + b)).

Description of GACS

A GACS is de�ned as follows;

A transition GACS is a construct

� = (A = fa; b; cg; � = f[1]1:::[100]100g;M0 = f[a2; b2; c0]100g; R): In the initial state, all

transformation tables R are

a b c

a 0aa 0ab 1ac
b 1ba 0bb 0bc
c 0ca 1cb 0cc,

and one hundred of elementary cells are assumed insideM0. No compounds are transformed

among cells and no input and output are assumed. Although we performed simulation by

using di�erent type of cells in the initial state, the experimental results are same, thus we

will address only when each cell is [a2; b2; c0] in the initial state.

Dissolving and dividing a membrane The way of dissolving and dividing are the same

as in ACSE. After n rewriting steps, if the number of c is smaller than 7, the membrane is

dissolved and the enzyme inside it loses its activity, for example,

[ha
3; b5; c8]h[ia

4; b5; c1]i ! [ha
3; b5; c8]h:

In the above example, the number of c inside the membrane i is smaller than 7, so the

membrane is dissolved.

After n rewriting steps, if the number of c is larger than 9, the membrane is divided and

a point mutation takes place in its enzyme. Furthermore, a new enzyme is passed down to

a new cell. When a cell divided, the inside multiset of the divided cell and its parent cell

are set to fa2; b2; c0g again, so they try to solve the problem again. The results in:

[ha
3; b5; c10]h ! [ha

2; b2; c0]h[ia
2; b2; c0]i

In the example, because the number of c inside the membrane h is larger than 9, the

membrane h is divided and a new membrane i emerges. Then compounds which are inside

both membranes i and h are set to fa2; b2; c0g. In this GACS, cells continue to solve the

problem.

The �tness of the GACS The �tness of an enzyme is de�ned as the number of steps to

reach the solution. By using this �tness, good enzymes are there that can solve the problem

within a smaller number of steps than the others are selected.

7.3.1 Experimental result

At �rst, all enzymes are set to,

a ! b,

b ! c,

c ! a.

After 5000 rewriting steps, the enzymes that reach the solution within 8 steps are se-

lected;

a ! a; c,

b ! a; b; c; c,

c ! c; c;

a ! a; b; c; c,

b ! a; b; c; c,

c ! c; c;

a ! a; c; c,

b ! b,

c ! c; c.

For each rule, one hundred of elementary cells that are [a2; b2; c0] are set again and

calculations performed again. Next, the enzymes that can solve the problem within 5 steps

are selected. Then, there remains only one enzyme;

a ! a; c; c,

b ! c; c,

c ! c; c.

it is a solution of this simulation. In fact a solution of this problem is

a ! c; c,

b ! c; c,

c ! c;

Thus the survived enzyme evolved to a similar enzyme in the solution.

By using this method, we have attempted to treat the system as an arti�cial living system

of computation. In the future we plan to create a GACS as an arti�cial living system of

computation that can solve more complicated problems. In such a system, in order to obtain

the result, we observe their output (behaviors) and change the condition, do not stop their

computations. In other words, we steer them in the right direction by using the selection

and mutation, and lead them to our settled goal. Although GACS may not �t to make

optimizer, we believe this method can apply to design arti�cial living things such as robots.

8 Conclusion

For the past, theoretical computer science has not been caused much attention in Life

science. However, genome science is based on a huge strings of A,G,C,T and ALife study

is based on computer science, from which we can predict that theoretical computer science

will bring breakthroughs in Life science in the near future.

Acknowledgment

The authors would like to express many thanks to Dr. Gheorghe P�aun for his useful com-

ments, discussions and mathematical re�nements. This research is supported by Grants-in

Aid for Scienti�c Research No.11837005 from the Ministry of Education, Science and Culture

in Japan and Inoue Foundation for Science.

References

[1] Dicke, M., Takabayashi, J., Shutte, C.,Krips, O. E. Behavioural ecology of plant-

carnivore interactions: variation in response of phytoseiid mites to herbivore-induced

plant volatiles. Experimental and Applied Acarology 22: 595-601, 1997

[2] Fontana, W. and L.W. Buss, The arrival of the �ttest: Toward a theory of biological

organization. Bulletin of Mathematical Biology 56: 1{64. 1994.

[3] Berry, G. and G. Boudol, The chemical abstract machine. Theoretical Computer Science

96: 217{248. 1992.

[4] Epstain, C. and R.Butow, Microarray technology -enhanced versatillity, persistent chal-

laenge, Curr. Opin. Biotech, 11, 36-41, 2000

[5] G�anti, T., Organization of chemical reactions into dividing and metabolizing units: the

chemotons. Biosystems 7: 189{195. 1975.

[6] Field, R. J. and M. Burger. 1985. Oscillations and Traveling Waves in Chemical Systems.

John Wiley and Sons.

[7] Kau�uman, S., The Origins of Order, Oxford Univ. Press, 1993.

[8] Langton, C., Arti�cial Life, Arti�cial Life, pp1-47, Addison-Wewley, 1988.

[9] Maeda, T., Takabayashi, J.,Yano, S. and Takafuji, A. Factors a�ecting the resident

time of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) in a prey patch

Applied Entomology and Zoology 33: 573-576, 1998

[10] McMullin, B. and F. Varela, Rediscovering Computational Autopoiesis, ECAL'97.

1997.

[11] Mirazo, K., A. Moreno, F. Moran, et. al., Designing a Simulation Model of a Self-

Maintaining Cellular System ECAL'97. 1997.

[12] Nicolis, G. and I. Prigogine. Exploring Complexity, An Introduction. San Francisco:

Freeman and Company. 1989.

[13] P�aun, G., Computing with Membranes, Turku Center for Computer Science TUCS

Technical Report No. 208 (submitted, also on http://www.tucs.�). 1998.

[14] P�aun, G., P Systems with Active Membranes: Attacking NP Complete Problems,

Center for Discrete Mathematics and Theoretical Computer Science CDMTCS-102 (also

on http://www.cs.auckland.ac.nz/CDMTCS). 1999.

[15] Sabelis, M. W., and M.,C.M. de Jong, 1988. Should all plants recruit bodyguards?

Conditions for a polymorphic ESS synomone production in plants Oikos, 53 247-252,

[16] Smogyl, R, et.al., Cluster Analysis and data visualization of largescale gene expression

data, Pasi�c Symposium on Biocomputing,3,42-53,1999.

[17] Suzuki, Y. and H. Tanaka. Order parameter for a Symbolic Chemical System, Arti�cial

Life VI:130-139, MIT press. 1998.

[18] Suzuki, Y. and H. Tanaka. 1998. Symbolic chemical system based on abstract rewriting

system and its behavior pattern. Journal of Arti�cial Life and Robotics. In press.

[19] Suzuki, Y. S., Tsumoto and H. Tanaka. Analysis of Cycles in Symbolic Chemical

System based on Abstract Rewriting System on Multisets, Arti�cial Life V: 522-528.

MIT press. 1996.

[20] Tanaka, H., F. Ren, S. Ogishima, Evolutionary Analysis of Virus Based on Inhomoge-

neous Markov Model, ISMB'99, p 148, 1999.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 286 - 295.

Mathematics of Multisets

Apostolos Syropoulos
Department of Civil Engineering
Democritus University of Thrace
GR-671 00 Xanthi, GREECE

email: apostolo@obelix.ee.duth.gr

Abstract

This paper is an attempt to summarize most things that are related to multi-
set theory. We begin by describing multisets and the operations between them.
We continue with a categorical approach to multisets. Next, we present fuzzy
multisets and their operations. Finally, we present partially ordered multisets.

1 Introduction

Many fields of modern mathematics have been emerged by violating a basic principle
of a given theory only because useful structures could be defined this way. For
example, modern non-Euclidean geometries have been emerged by assuming that
the Parallel Axiom1 does not hold. Similarly, multisets2 [Knu81, MW85, Yag86]
have been defined by assuming that for a given set A an element x occurs a finite
number of times. From a practical point of view multisets are very useful structures,
since many phenomena related to computer science can be described with them.

There are three methods to define a set and we are recalling them now, since
they will be heavily used in the rest of the text:

i) A set is defined by naming all its members (the list method). This method can
be used only for finite sets. Set A, whose members are a1, a2, . . . , an is usually
written as

A = {a1, a2, . . . , an}.

ii) A set is defined by a property satisfied by its members (the rule method). A
common notation expressing this method is

A = {x|P (x)},

where the symbol | denotes the phrase “such that”, and P (x) designates a
proposition of the form “x has the property P .”

1Which can be stated as follows: Given a point P not incident with line m, there is exactly one
line incident with P and parallel to m.

2Multisets are also known as “bags”, but many consider this term too vulgar. . .

iii) A set is defined by a function, usually called the characteristic function, that
declares which elements of X are members of the set and which are not. Set
A is defined by its characteristic function, χA, as follows:

χA(x) =
{

1, if x ∈ A
0, if x �∈ A

In what follows we present the definition of multisets and the basic operations
between multisets. Then, we proceed with a categorical approach to multisets by
defining categories of multisets. Next, we present fuzzy multisets and their opera-
tions. We finish by presenting pomsets and their basic operations.

2 Multisets and their Operations

Ordinary sets are composed of pairwise different elements, i.e., no two elements are
the same. If we relax this condition, i.e., if we allow multiple but finite occurrences of
any element, we get a generalization of the notion of a set which is called a multiset.
A multiset over some set D can be viewed as a function f : D → N, where N is the
set of non-negative integers. Formally, a multiset can be defined as follows:

Definition 2.1 Let D be a set. A multiset over D is just a pair 〈D, f〉, where D is
a set and f : D → N is a function.

The previous definition is the characteristic function definition method for multisets.

Remark 2.1 Any ordinary set A is actually a multiset 〈A,χA〉, where χA is its
characteristic function.

Since, multisets are sets with multiple but finite occurrences of any element, one
can define a multiset by employing the list method. In what follows we will employ
the most suitable definition method for each case we encounter.

An important notion in set theory is the notion of a subset. Moreover, for
ordinary sets there are certain operations one can perform between sets, such as set
intersection, union, etc. We proceed with the definitions of the notion of the subset
of multiset and the operations between multisets.

Definition 2.2 Suppose that A = 〈A, f〉 is a multiset, then the subset B of A is
called the support of A if for every x such that f(x) > 0 this implies that x ∈ B,
and for every x such that f(x) = 0 this implies that x �∈ B.

It is clear that the characteristic function of B can be specified as:

χB(x) = min(f(x), 1).

Example 2.1 Given the multiset A = {a, a, a, b, c, c}, then its support is the set
{a, b, c}.

Definition 2.3 Assume that A = 〈A, f〉 and B = 〈A, g〉 are two multisets, we say
that A is a sub-multiset of B, denoted A ⊆ B if for all a ∈ A

f(a) ≤ g(a).

A is called a proper sub-multiset of B, denoted A ⊂ B, if in addition for some a ∈ A

f(a) < g(a).

Obviously, it follows that for any two multisets A = B iff A ⊆ B and B ⊆ A.

Definition 2.4 Let A = 〈A, f〉 be a multiset, then A is the empty multiset if for
all a ∈ A, f(x) = 0.

Definition 2.5 Suppose that A = 〈A, f〉 is a multiset, then its cardinality, denoted
card(A), is defined as

card(A) =
∑
a∈A

f(a).

Assume that A is a set, then PA is the set of all multisets which have A as their
support set. Moreover, A is the smallest multiset in PA in the sense that if B ∈ PA,
then

card(B) ≥ card(A).

We are now turning our attention to the operations between multisets. We define,
in this order, the sum, the removal, the union and the intersection of two multisets.

Definition 2.6 Suppose that A = 〈A, f〉 and B = 〈A, g〉 are two multisets, then
their sum, denoted A� B, is the multiset C = 〈A,h〉, where for all a ∈ A:

h(a) = f(a) + g(a).

It can be easily shown that the multiset sum operation has the following properties:

i) Commutative: A � B = B � B;

ii) Associative: (A � B) � C = A� (B � C);

iii) There exists a multiset, the null multiset ∅, such that A � ∅ = A.

It is important to note that there exists no inverse and multiset sum is not indepo-
tent.

Definition 2.7 Suppose that A = 〈A, f〉 and B = 〈A, g〉 are two multisets, then
the removal of multiset B from A, denoted A�B, is the multiset C = 〈A,h〉, where
for all a ∈ A:

h(a) = max
(
f(a)− g(a), 0

)
.

Definition 2.8 Suppose that A = 〈A, f〉 and B = 〈A, g〉 are two multisets, then
their union, denoted A∪ B, is the multiset C = 〈A,h〉, where for all a ∈ A:

h(a) = max
(
f(a), g(a)

)
.

Definition 2.9 Suppose that A = 〈A, f〉 and B = 〈A, g〉 are two multisets, then
their intersection, denoted A ∩ B, is the multiset C = 〈A,h〉, where for all a ∈ A:

h(a) = min
(
f(a), g(a)

)
.

The following properties can be easily established as holding for union, intersection
and sum of multisets:

i) Commutativity:

A∪ B = B ∪ A
A∩ B = B ∩ A;

ii) Associativity:

A∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C;

iii) Idempotency:

A ∪A = A
A ∩A = A;

iv) Distributivity:

A∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);

v)

A� (B ∪ C) = (A � B) ∪ (A � C)
A� (B ∩ C) = (A � B) ∩ (A � C);

vi)

A ∩ (A � B) = A
A ∪ (A � B) = A� B;

vii)
A � B = (A ∪ B) � (A ∩ B).

Let A = 〈X, f〉 be a multiset and B ⊆ X. We are interested in forming the
multiset C = 〈X, g〉, where

g(x) = f(x) if x ∈ B
g(x) = 0 if x �∈ B

or, in other words, g(x) = f(x) · χB(x).
A closely related problem is that of forming a multiset by removing all the

elements from A which are in the set B. That is, we are interested in forming the
multiset D = 〈X,h〉, where

h(x) = 0 if x ∈ B
h(x) = f(x) if x �∈ B

which can be expressed compactly as follows:

h(x) = f(x) · (1− χB(x)),∀x ∈ B.

However, one may note that 1− χB(x) is the characteristic function of the comple-
ment set of B, denoted B̄. So, the previous equation becomes

h(x) = f(x) · χB̄(x),∀x ∈ B.

thus
E = A� B̄.

We shall call the operation A � B multi-intersection. In general, it holds that if
A = 〈X,χA〉, A ⊆ X, and B is a set, then A�B = A∩B. Moreover, the following
properties do hold:

A�X = A

A� ∅ = ∅
(A1 ∩ A2)�B = (A1 �B) ∩ (A2 �B)
(A1 ∪ A2)�B = (A1 �B) ∪ (A2 �B)

3 Categorical Models of Multisets

This section assumes that the reader is familiar with the basics of Category Theory.
Readers not familiar with Category Theory should consult any good book on the
subject such as [BW99, McL98, vO95].

Let C be a category. A functor E : Cop → Set is called a presheaf on C.
Thus a presheaf on C is a contravariant functor. The presheaves on C with natural
transformations as arrows form a category denoted Psh(C). Presheaves are used to
categorically define multisets:

Definition 3.1 Let A be a set treated as a discrete category. A functor F : A →
Set is a multiset of elements of A. If a ∈ A, the set F (a) denotes the multiplicity
to which a occurs in A.

In [Tay89] Paul Taylor gives the following somehow more general definition:

Definition 3.2 Let A be a set. A multiset of A is an assignment of an abstract set
Xa (its multiplicity) to each element a ∈ A. Abstractly, a multiset is represented
by a multiplicity function X : A → Set or by a display x : X = (

⋃
a∈A Xa) → A.

Hence a finite multiset may be written as an unordered list (with repetition) whose
term are from A.

Based on this definition, we can define the category of multisets of A as follows:

Definition 3.3 Psh(A) denotes the category of multisets of A. There are three
ways of seeing its arrows: (α) as an A-indexed family of functions fa : Xa → Ya;
(β) as a natural transformation f : X → Y between functors A ⇒ Set, or (γ) as
functions f : X → Y such that y ◦ f = x.

Arrows between multisets in the category Psh(A) are “color-preserving” function.
One problem that remains is the definition of a category of all possible multisets.

Definition 3.4 MSet is a big category whose objects are pairs (A,Psh(A)). An
arrow from (A,Psh(A)) to (B,Psh(B)) is a pair (F,α) where F is a functor from
A to B and α is functor from Psh(A) to Psh(B).

Another definition of the category of all possible multisets due to Ieke Moerdijk
[Moe00] is the following one:

Definition 3.5 MSet2 is a big category whose objects are pairs (A,P), where A
is a set treated as a discrete category and P a presheaf on A. Given two objects
(A,P) and (B,Q) an arrow between them is a pair (F ,F), where F : A → B is a
functor and F : P → Q is presheaf map. Moreover, P = Q ◦ F .

4 Fuzzy Multisets

Fuzzy set theory has been introduced as a means to deal with vagueness in math-
ematics. The theory is well-established and we will not get into the trouble of
presenting it. We just note that fuzzy set theory was an attempt to develop a for-
mal apparatus to involve a partial membership in a set, mainly to arm people in the
modeling of empirical objects and facts. In other words, fuzzy set theory is, sort to
say, a generalization of the notion of set membership.

Definition 4.1 Suppose that X is a set, any function A : X → I, where I = [0, 1],
is called a fuzzy subset of X. Function A is usually called the membership function
of the fuzzy subset A.

Fuzzy multisets have been introduced by Yager [Yag86] and have been studied
by Miyamoto [Miy96, Miy99] and others. A fuzzy multiset of some set X is just a
multiset of X × I. We are now defining summation of fuzzy multisets:

Definition 4.2 Assume that A = 〈X × I, f〉 and B = 〈X × I, g〉 are two fuzzy
multisets, then their sum, denoted A�B, is the fuzzy multiset C = 〈X× I, h〉, where
for all (x, µx) ∈ X × I:

h(x, µx) = f(x, µx) + g(x, µx).

As in the case of crisp3 multisets there is more that one way to define a fuzzy mul-
tiset. In order to define the basic operation between fuzzy multisets we define fuzzy
multisets by the list method. Let A = {(xi, µi)}i=1,..,p be a fuzzy multiset, then we
can write the same set as A = {{µ11, . . . , µ1
1}/x1, . . . , {µn, . . . , µn
n}/xn}. Note
that {µ11, . . . , µ1
1} is actually a multiset of I. Next, we rearrange the multisets
{µ11, . . . , µ1
1} so all elements appear in decreasing order. Finally, we need to add
zeroes so that the length of all multisets {µ11, . . . , µ1
1} is the same. This represen-
tation is called the graded sequence. To make things clear we give an example:

Example 4.1 Let

A = {(a, 0.2), (b, 0.5), (b, 0.1),
(a, 0.2), (a, 0.3), (d, 0.7)}

be a fuzzy multiset, then its graded sequence follows:

A = {{0.3, 0.2, 0.2}/a, {0.5, 0.1, 0}/b,
{0.7, 0, 0}/d}

In case we want to perform certain operations on two or more fuzzy multisets,
all multisets {µ11, . . . , µ1
1} must have the same length. Moreover, even if one
fuzzy multiset does not contain an element c we must add an entry of the form
{0, 0, . . . , 0︸ ︷︷ ︸

p times

/c}, where p is the length of all other multisets. We are now giving the

definitions of the various operations between fuzzy multisets:

Definition 4.3 Assume that A = {{µ1p, . . . , µ11}/x1, . . . , {µnp, . . . , µn1}/xn} and
B = {{µ′

1p, . . . , µ
′
11}/x1, . . . , {µ′

np, . . . , µ
′
n1}/xn} are two fuzzy multisets, then

i) A ⊆ B iff for every xi, µij ≤ µ′
ij, j = 1, . . . , p.

ii) A = B iff for every xi, µij = µ′
ij, j = 1, . . . , p.

iii) C = A∪B, where C = {{µ′′
1p, . . . , µ

′′
11}/x1, . . . , {µ′′

np, . . . , µ
′′
n1}/xn} iff for every

xi, µ′′
ij = max(µ′

ij, µij), j = 1, . . . , p.

iv) C = A∩B, where C = {{µ′′
1p, . . . , µ

′′
11}/x1, . . . , {µ′′

np, . . . , µ
′′
n1}/xn} iff for every

xi, µ′′
ij = min(µ′

ij , µij), j = 1, . . . , p.

In case functions max and min are replaced by a t-norm t and a t-conorm s re-
spectively, we obtain the definitions for ∩t and ∪s, respectively. The union and
intersection of arbitrary fuzzy multisets A, B, and C satisfy the following laws:

3In fuzzy set theory the term crisp is used to characterize anything that is non-fuzzy.

i) Commutative law.

A ∪ B = B ∪A
A ∩ B = B ∩A

ii) Associative law.

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

iii) Distributive law.

(A ∪ B) ∩ C = (A ∩ B) ∪ (A ∩ C)
(A ∩ B) ∪ C = (A ∪ B) ∩ (A ∪ C)

Next, we define the α-cut for fuzzy multisets. We first recall what the α-cut of
an ordinary fuzzy set is:

Definition 4.4 Let U be a set, let C be a partially ordered set and let A : U → C.
For α ∈ C, the α-cut of A, is A−1(↑ α) = {u ∈ U : A(u) ≥ α}. The subset of U will
be denoted by Aα.

We proceed with the definition of the α-cut of a fuzzy multiset:

Definition 4.5 Assume that A = 〈X× I, f〉 is a fuzzy multiset, and that α ∈ (0, 1],
then Aα = 〈X, f ′〉, i.e., the α-cut of A, is a multiset such that

f ′(x) =
∑

µx≥α

f(x, µx).

Consequently, the α-cut of a fuzzy multiset is just a multiset.
Given a fuzzy multiset A = 〈X × I, h〉 and function f : X → Y we can define

two images:

f [A] = �x∈A{f(x)}
f(A) =

⋃
x∈A

{f(x)}

Note that in case the fuzzy multiset is just a fuzzy subset, the second images corre-
sponds to the extension principle of fuzzy set theory.

5 Partially Ordered Multisets

Partially ordered multisets (or just pomsets) have been used by Pratt [Pra86] as a
means to model concurrency. In this model a process is a set of pomsets. Here we will
only present the definition of a pomset and the basic operations between pomsets.
The reader interested in learning more on their use on modeling concurrency is
refereed to Pratt’s paper. The following definition of pomset is due to Gischer[Gis84]
and is copied verbatim from Pratt’s paper:

Definition 5.1 A labeled partial order (lpo) is a 4-tuple (V,Σ,≤, µ) consisting of

i) a vertex set V , typically modeling events;

ii) an alphabet Σ (for symbol set), typically modeling actions such as the arrival
of integer 3 at port Q;

iii) a partial order ≤ on V , with e ≤ f typically being interpreted as event e
necessarily preceding event f in time; and

iv) a labeling function µ : V → Σ assigning symbols to vertices, each labeled
event representing an occurrence of the action labeling it, with the same action
possibly having multiply occurrences, that is, µ need not be injective.

A pomset is then the isomorphism class of an lpo, denoted [V,Σ,≤, µ].

Now we are ready to define the basic operations between pomsets:

Definition 5.2 Assume that p = [V,Σ,≤, µ] and p′ = [V ′,Σ′,≤′, µ′] are two pom-
sets, then:

i) their concurrence p||p′ is the pomset [V ∪ V ′,Σ ∪Σ′,≤ ∪ ≤′, µ ∪ µ′], where V
and V ′ are assumed to be disjoint;

ii) their concatenation p; p′ is as for concurrence except that instead of ≤ ∪ ≤′

the partial order is taken to be ≤ ∪ ≤′ ∪(V × V ′); and

iii) their orthocurrence p× p′ is the pomset [V × V ′,Σ× Σ′,≤ × ≤′, µ× µ′].

References

[BW99] Michael Barr and Charles Wells. Category Theory for Computing Science.
Les Publication CRM, Montréal, third edition, 1999.

[Gis84] J. Gischer. Partial Orders and the Axiomatic Theory of Shuffle. PhD
thesis, Computer Science Dept., Stanford University, 1984.

[Knu81] Donald E. Knuth. The Art of Computer Programming, volume 2: Seminu-
merical Algorithms. Addisson-Wesley, 1981.

[McL98] Saunders McLane. Category Theory for the Working Mathematician.
Springer-Verlag, New York, second edition, 1998.

[Miy96] Sadaaki Miyamoto. Fuzzy multisets and application to rough approxima-
tion of fuzzy sets. In Proceedings of the Fourth International Workshop on
Rough Sets Fuzzy Sets, and Machine Discovery (RSFD’96), pages 255–260,
1996.

[Miy99] Sadaaki Miyamoto. Two images and two cuts in fuzzy multisets. In Proc.
of the 8th International Fuzzy Systems Association World Congress (IF-
SA’99), pages 1047–1051, 1999.

[Moe00] Ieke Moerdijk. Personal communication, 2000.

[MW85] Z. Manna and R. Waldinger. The Logical Basis for Computer Program-
ming, volume 1 Deductive Reasoning. Addison-Wesley, Reading, Mas-
sachusetts, 1985.

[Pra86] Vaughan Pratt. Modellin Concurrenct with Partial Orders. Int. J. of
Parallel Programming, 15(1):33–71, 1986.

[Tay89] P. Taylor. Quantitative domains, groupoids and linear logic. In D. Pitt,
D. Rydeheard, P. Dybjer, A. Pitt, and A. Poigné, editors, Category Theory
and Computer Science, volume 389 of Lecture Notes in Computer Science.
Springer-Verlag, 1989.

[vO95] Jaap van Oosten. Basic Category Theory. Technical Report LS-95-1,
BRICS, January 1995.

[Yag86] Ronald R. Yager. On the theory of bags. Int. J. General Systems, 13:23–37,
1986.

Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 296 - 311.

Using Membrane Features in P Systems�

C. Zandron, C. Ferretti, G. Mauri

DISCO - Universit�a di Milano-Bicocca - Italy

Abstract

In the basic variant of P systems, membranes are used as separators and as

channels of communication. Other variants, introduced to obtain more \realis-

tic" models, consider membranes with di�erent features: membranes of variable

thickness, electrically charged membranes and active membranes (membranes

can be divided in two or more membranes). These features are not only useful

to obtain \realistic" models: we show how we can use them to get simpler and

faster models.

1 Introduction

The P systems were recently introduced in [6] as a class of distributed parallel

computing devices of a biochemical type.

The basic model consists of a membrane structure composed by several cell-

membranes, hierarchically embedded in a main membrane called the skin mem-

brane. The membranes delimit regions and can contain objects. The objects evolve

according to given evolution rules associated with the regions. A rule can modify the

objects and send them outside the membrane or to an inner membrane. Moreover,

the membranes can be dissolved. When a membrane is dissolved, all the objects

in this membrane remain free in the membrane placed immediately outside, while

the evolution rules of the dissolved membrane are lost. The skin membrane is never

dissolved.

The evolution rules are applied in a maximally parallel manner: at each step, all

the objects which can evolve should evolve. A computation device is obtained: we

start from an initial con�guration and we let the system evolve. A computation halts

when no further rule can be applied. The objects in a speci�ed output membrane

are the result of the computation.

In this basic variant, the membranes are used only as separators of objects and

as channels of communication. In [7] and [8] new features are introduced:

� Membranes of variable thickness: membranes can be made thicker or

thinner (also dissolved as said before). Initially, all membranes have thickness

1. If a membrane has thickness 2, then no object can pass through it.

�This work has been supported by the Italian Ministry of University (MURST), under project

\Unconventional Computational Models: Syntactic and Combinatorial Methods".

� Membranes with electrical charges: electrical charges are associated to

membranes and to objects: they can be marked with \positive" (+), \neg-

ative" (�) or \neutral" (0). The charge de�ne the communication of the

objects: an object marked with + (respectively �) will enter a membrane

marked with � (respectively +), nondeterministically chosen from the set of

membranes adjacent to the region where the object is produced. The neutral

objects are not introduced in an inner membrane. Thus, the evolution rules

do not specify the label of the membrane where the object will be sent, but

they only associate a charge to every object involved in the application of the

rule itself.

� Active membranes: the membranes can not only be dissolved, but they

can multiply by division. We consider here division rules for elementary mem-

branes only, i.e. membranes not containing other membranes (in [8] one con-

siders division for non-elementary membranes too). Starting from a membrane

we get two (or more) membranes, each with the same objects and rules of the

original membrane.

Other variants are considered in [1], [6], [9] and [10].

In this paper we show how to use the previous features to get simpler and faster

models of P systems. In particular we show how to:

� Use variable thickness to simulate priority in (Rewriting) P Systems.

� Use electrical charges to simplify membrane structures in (Rewriting) P sys-

tems.

� Use membrane division for elementary membranes to execute fast computa-

tions.

2 P systems and Rewriting P systems

We give a very short de�nition of P system; details and examples can be found in

[5], [6] and [7]. We refer to [13] for elements of Formal Language Theory.

A membrane structure is a construct consisting of several membranes placed in

a unique membrane; this unique membrane is called skin membrane. We identify

a membrane structure with a string of correctly matching parentheses, placed in a

unique pair of matching parentheses; each pair of matching parentheses corresponds

to a membrane.

A membrane identi�es a region, delimited by it and the membrane immediately

inside it. If in the regions we place multi sets of objects from a speci�ed �nite set

V , we get a super-cell.

A super-cell system (or P system) is a super-cell provided with evolution rules

for its objects and with a designated output membrane.

Such a system of degree n; n � 1, is a construct

� = (V; �;M1; : : : ;Mn; (R1; �1); : : : ; (Rn; �n); i0)

where:

� V is an alphabet

� � is a membrane structure consisting of n membranes (labeled with 1; :::; n)

� Mi; 1 � i � n are multi sets over V associated with the regions 1; 2; :::;m of �;

� Ri; 1 � i � n are �nite sets of evolution rules associated with the regions

1; 2; :::;m of �; �i is a partial order relation over Ri, 1 � i � m, specifying a

priority relation among rules of Ri. The rules are of the form u! v where u is

a symbol of V and v = v
0

or v = v
0

Æ. v
0

is a string over (V �fhere; outg)[(V �

finj j1 � j � mg) and Æ is a special symbol not in V. When we apply a rule

containing the symbol Æ, the membrane where the rule is applied is dissolved.

The rules of that membrane are deleted and the objects remain free in the

membrane placed immediatly outside. The skin membrane is never dissolved.

� i0 is the output membrane. If we don't specify the output membrane, we

consider as output the objects sent out from the skin membrane in the order

of their expelling from the system (this variant was introduced in [9]).

We consider here not only P systems but Rewriting P Systems (RP Systems) too. In

such systems, objects can be described by �nite strings over a given �nite alphabet.

The evolution of an object will correspond to a transformation of the strings. Con-

sequently, the evolution rules are given as rewriting rules. We only use context-free

rewriting rules.

We describe now three variants of P systems, which consider membranes with

di�erent features:

� Membranes of variable thickness: the rules are of the form u ! v(tar)

where u is a symbol of V and v = v
0

or v = v
0

Æ or v = v
0

� . v
0

is a string over

V , while Æ; � are special symbols not in V . tar 2 fhere; out; inmg; 1 � m � n

represents the target membrane, i.e. the membrane where the string produced

with this rule will go.

If a rule contains the special symbol Æ and the membrane where this rule is ap-

plied has thickness 1, then that membrane is dissolved and it is no longer recre-

ated; the objects in the membrane become objects of the membrane placed

immediately outside, while the rules of the dissolved membrane are removed.

If the membrane has thickness 2, this symbol reduces the thickness to 1. If a

rule contains the special symbol � the thickness of the membrane where this

rule is applied is increased; the thickness of a membrane of thickness 2 is not

further increased. If a membrane has thickness 2, then no object can pass

through it. If both the symbols Æ and � are introduced in the same region,

the corresponding membrane preserves its thickness.

The communication of objects has priority on the actions of Æ and � ; if at the

same step an object has to pass through a membrane and a rule changes the

thickness of that membrane, then we �rst transmit the object and after that

we change the thickness.

� Membranes with electrical charges: � is a membrane structure consisting

of n membranes; each membrane is marked with one of the symbols +;�; 0.

The rules are of the form

(u! v(p))

where u is a symbol of V and v = v
0

or v = v
0

Æ. v
0

is a string over V , Æ is a

special symbol not in V and p 2 fhere; out;+;�g.

A rule can marks the object with +;� , out, here. If a rule marks a string with

here (or if the mark is omitted), it means that the string obtained after the

rule is applied will remain in the same region where the rule is applied. If the

mark is out, the string will be sent to the region placed immediately outside.

If the string is marked with + (or �), it will be sent through a membrane

marked with � (respectively +) and adjacent to the region where the rule is

applied.

� Active (and electrically charged) membranes: A P system with active

membranes is a construct � = (V; T;H; �;w1; : : : ; wm; R) where:

{ m � 1

{ V is an alphabet

{ T � V is the terminal alphabet

{ H is a �nite set of labels for membranes

{ � is a membrane structure consisting of m membranes, labeled (not nec-

essarily in a one-to-one manner) with elements of H; all membranes in �

are supposed to be neutral

{ w1; : : : ; wm are strings over V , describing the multisets of objects placed

in the m regions of �

{ R is a �nite set of developmental rules, of the following forms:

1. Type (a): [ha ! v]�
h
, for h 2 H; a 2 V; v 2 V �; � 2 f+;�; 0g (object

evolution rules),

2. Type (b): a[h]
�1

h
! [hb]

�2

h
, where a; b 2 V; h 2 H; �1; �2 2 f+;�; 0g (an

object is introduced in membrane h),

3. Type (c): [ha]
�1

h
! [h]

�2

h
b, for h 2 H; �1; �2 2 f+;�; 0g; a; b 2 V (an

object is sent out from membrane h),

4. Type (d): [ha]
�

h
! b, for h 2 H; � 2 f+;�; 0g; a; b 2 V (membrane h is

dissolved),

5. Type (e): [ha]
�1

h
! [hb]

�2

h
[hc]

�3

h
, for h 2 H; �1; �2; �3 2 f+;�; 0g; a; b; c 2

V (division rules for elementary membranes)

6. Type (f): [h0 [h1]
�1

h1
:::[hk]

�1

hk
[hk+1]

�2

hk+1
:::[hn]

�2

hn
]�0
h0
!

[h0 [h1]
�3

h1
:::[hk]

�3

hk
]�5
h0
[h0 [hk+1]

�4

hk+1
:::[hn]

�4

hn
]�6
h0
,

for k � 1; n > k; hi 2 H; 0 � i � n; and �0; :::; �6 2 f+;�; 0g with

f�1; �2g = f+;�g (division rules for non-elementary membranes)

The rules are applied following the principles in [8]. When a membrane is

divided by a rule of type (e) or (f), then the content of this membrane is

reproduced unchanged in the new copies we get.

In the next chapters we will need the notion of matrix grammar, too. Such a

grammar is a construct G = (N;T; S;M;C), where N , T are disjoint alphabets,

S 2 N , M is a �nite set of sequences of the form (A1 ! x1; :::; An ! xn), n � 1,

of context-free rules over N [T (with Ai 2 N;xi 2 (N [T)�, in all cases), and

C is a set of occurrences of rules in M (N is the nonterminal alphabet, T is the

terminal alphabet, S is the axiom, while the elements of M are called matrices).

For w; z 2 (N [T)� we write w) z if there is a matrix (A1 ! x1; :::; An ! xn) in

M and the strings wi 2 (N [T)�; 1 � i � n+ 1, such that w = w1; z = wn+1, and,

for all 1 � i � n, either wi = w
0

i
Aiw

00

i
; wi+1 = w

00

i
xiw

00

i
, for some w

0

i
; w

00

i
2 (N [T)�,

or wi = w
i+1; Ai does not appear in wi, and the rule Ai ! xi appears in C (the

rules of a matrix are applied in order, possibly skipping the rules in C if they cannot

be applied; we say that these rules are applied in the appearance checking mode.)

If C = ; then the grammar is said to be without appearance checking (and C is

no longer mentioned). We denote by)� the reexive and transitive closure of the

relation). The language generated by G is de�ned by L(G) = fw 2 T �jS)� wg.

The family of languages of this form is denoted by MATac. When we use only

grammars without appearance checking, then the obtained family is denoted by

MAT .

A matrix grammar G = (N;T; S;M;C) is said to be in the binary normal form

if N = N1 [N2 [fS; yg, with these three sets mutually disjoint, and the matrices

in M are of one of the following forms:

1. (S ! XA), with X 2 N1; A 2 N2,

2. (X ! Y;A! x), with X;Y 2 N1; A 2 N2; x 2 (N2 [T)
�,

3. (X ! Y;A! y), with X;Y 2 N1; A 2 N2,

4. (X ! �;A! x), with X 2 N1; A 2 N2, and x 2 T
�.

Moreover, there is only one matrix of type 1 and C consists exactly of all rules

A ! y appearing in matrices of type 3. One sees that y is a trap-symbol; once

introduced, it is never removed. A matrix of type 4 is used only once, at the last

step of a derivation (clearly, matrices of forms 2 and 3 cannot be used at the last

step of a derivation). According to Lemma 1.3.7 in [6], for each matrix grammar

there is an equivalent matrix grammar in the binary normal form.

We denote by CF and RE the families of context-free and recursively enumerable

languages respectively. It is known that CF � MAT � MATac = RE. Further

details about Matrix grammars can be found in [2] and in [13]. Moreover, in [3] it

is shown that the one-letter languages in MAT are regular.

3 Using variable thickness to simulate priority

It is known (see, for ex., [6]) that Rewriting P systems which made use of priority

on the evolution rules are able to generate every Recursively Enumerable language.

Neverless, the priority relation among evolution rules is a feature of a formal lan-

guage inspiration, which does not seem a \realistic" one.

In the next proof, we prove that if we use the feature that modi�es the thickness

of a membrane, we are able to generate every RE language with RP systems that

do not make use of priority. In fact, by modifying the thickness of the membrane

we are able to simulate, in the correct order, the productions of a generic matrix

grammar with appearance checking.

With RP (nPri; Æ; �), we denote the family of languages generated by Rewriting

P systems without priority on the evolution rules and which made use of variable

thickness (i.e. both Æ and � operations).

Theorem 1 RP (nPri; Æ; �) = RE

Proof The inclusion RP (nPri; Æ; �) � RE follows directly from the Church-

Turing thesis. We prove here the opposite inclusion. Consider a matrix grammar

with appearance checking G = (N;T; S; P; F) in binary normal form. We assume

the matrices of the types 2, 3 and 4 labeled in a one-to-one manner; we label with

m1; :::;mk0 the matrices of type 2, with mk0+1; : : : ;mk
00 the matrices of type 3 and

with m
k
00

+1
; : : : ;mk the matrices of type 4 (0 � k

0

< k; 1 � k
00

� k).

We show how to construct a Rewriting P System (of degree k + 2) without

priority but with variable thickness that generates the same language of G:

� = (V; �;M1;M2; : : : ;Mk+1;Mk+2; R1; R2; : : : ; Rk+1; Rk+2;Mk+2)

where

� V = N1 [N2 [fE; y; F; F
0

; F2; F3; F4g [T [fX
0

;X2;X3jX 2 N1g

� � = [0[k+1[1]1[2]2] : : : [k]k]k+1]0

� Mk+1 = fXAEjS ! XArule of thematrix of type 1g [fFg

� M0 = ;

� Mh = y; for 1 � h � k

� Ri(1 � i � k0) = fA! xÆ(out)jmi : (X ! Y;A! x) type 2matrix;

x 2 (N2 [T)
�
g [fF

0

! F�(out)g

� Rj(k
0 < j � k

00

) = fY
0

! Y2�g [fF
0

! F2�g [fY2 ! Y3g [fF2 ! F3�g[

[fA! yjmj : (X ! Y;A! y) type 3matrixg [fF3 ! F4Æg[

[fY3 ! Y (out)g [fF4 ! F (out)g

� Rh(k
00

< h � k) = fA! x2�(out)jmh : (X ! x1; A! x2) type 4matrix;

x1; x2 2 T
�
g [fF

0

! F�(out)g

� Rk+1 = fX ! Y (inw)jmw : (X ! Y;A! x) type 2matrix; x 2 (N2 [T)
�
g[

[fX ! Y
0

(inw)jmw : (X ! Y;A! y) type 3matrixg[

[fX ! x1(inw)jmw : (X ! x1; A! x2) type 4matrix; x1; x2 2 T
�
g[

[fE ! �(out)g [fF ! �g [fF ! F
0

(inr); 1 � r � kg [fy ! yg

� R0 = f�! �j� 2 V � Tg

The most external membrane (M0) is the output one. This membrane contains

a membrane (Mk+1) used to control the simulation of the matrices. Inside this

membrane there are k membranes, one for every matrix of the matrix grammar we

have to simulate.

Consider the strings XwE (initially we have XAE) and F in membrane Mk+1

with w 2 (N2 [T)
�. On the string F we can apply the following rules:

� F ! �. This eliminates the string F .

� F ! F
0

(inr), with 1 � r � k. These rules send the string F
0

in a membrane

corresponding to a matrix of the matrix grammar system.

On the string XwE we can apply one of the following rules:

� E ! �(out). This rule eliminates the symbol E from the string and it sends

the obtained string in membrane 0, the output one.

� X ! Y (inw), where w is a label of a membrane associated with a type 2

matrix. These rules simulate the �rst production of a type 2 matrix and they

send the string to the corresponding membrane.

� X ! Y
0

(inw), where w is a label of a membrane associated with a type 3

matrix. These rules simulate the �rst production of a type 3 matrix and they

send the string to the corresponding membrane.

� X ! x1(inw), where w is a label of a membrane associated with a type 4

matrix. These rules simulate the �rst production of a type 4 matrix and they

send the string to the corresponding membrane.

Consider what happens if we simulate the �rst production of a matrix on the string

XwE and we send the obtained string in the corresponding membrane i (1 � i � k),

and, at the same time, a rule F ! F
0

(inj) with j 6= i or a rule F ! � on F .

The string obtained from XwE is sent ALONE in membrane i.

If the membrane i is a membrane that simulates a type 2 matrix, we send in

that membrane a string of the form Y wE. If this string contains the corresponding

symbol A 2 N2 we have to apply the rule A! xÆ(out). The membrane is dissolved,

thus the string y, present in the membrane, reaches the membrane k + 1 where we

have the rule y ! y: the computation will never stops. If the string Y wE doesn't

contain a symbol A 2 N2, the string cannot further evolve and, as we will see, no

string can reach the output membrane.

If the membrane i is used to simulate a type 4 matrix, the situation is similar.

The only di�erence is in the string we send: it is of the form x1wE, where x1 2 T
�.

Finally, if i corresponds to a type 3 matrix, we send in the membrane a string of

the form Y
0

wE. We can either apply a rule Y
0

! Y2Æ, which dissolves the membrane

and, consequently, sends the string y in membrane k + 1, or, if the string contains

the corresponding symbol A 2 N2, we can apply the rule A! y that introduces the

trap symbol y into the string. In both cases, the computation will never halts or no

string will reach the output membrane.

The only way to correctly simulate a matrix is to apply, at the same time, the

rules that send in the same membrane the strings obtained from XwE and F .

To simulate a type 2 matrix we have to apply a rule X ! Y (ini) on XwE and

a rule F ! F
0

(ini) on F . In this way, we get the strings Y wE and F
0

. Then these

strings are sent to membrane i.

In membrane i, we have to apply the rule F
0

! F� on F
0

and the rule A !

xÆ(out) on Y wE; in this way we send back in membrane k + 1 the strings F and

Y w1xw2E (with w1Aw2 = w). The thickness of the membrane remains unchanged

(one rule uses the symbol Æ while the other rule uses the symbol �). Thus, we have

correctly simulated the productions of a type 2 matrix on XwE (and the thickness

of membrane i is still 1); we can proceed with the simulation of another matrix.

Note that if the symbol A is not present in XwE, this string can never leave the

membrane, thus it cannot reach the output membrane.

To simulate a type 4 matrix, the process is quite similar. The only di�erence is

that we have to apply a rule X ! x1(ini) on XwE, where i is a label of a membrane

used to simulate a type 4 matrix and x1 is a terminal string.

The process of simulating a type 3 matrix is quite di�erent. To simulate the

productions of such a matrix we have to apply a rule X ! Y
0

(ini) on XwE and

the rule F ! F
0

(ini) on F . We get the strings Y
0

wE and F
0

and these strings are

sent to membrane i. Here, we have a 4 step process:

Step 1 (we control if the string Y
0

wE is arrived alone).

On Y
0

wE we can apply either the rule Y
0

! Y2Æ or the rule A ! y (if Y
0

wE

contains the symbolA). At the same time, on F
0

we have to apply the rule F
0

! F2� .

If we apply the rule A ! y on Y
0

wE, we introduce the trap symbol y into the

string; even if the string will reaches the output membrane, the computation will

never halts. Otherwise, we get the strings Y2wE and F2. The thickness of the

membrane remains unchanged (one rule uses the symbol Æ while the other uses the

symbol �).

Step 2 (we increment the thickness of membrane).

On the string of the form Y2wE we can apply either the rule A! y or the rule

Y2 ! Y3. At the same time, on F2 we have to apply the rule F2 ! F3� .

If we apply the rule A ! y on Y2wE, the considerations of the previous step

are still valid. Otherwise, we get the strings Y3wE and F3. The thickness of the

membrane is now 2, due to the symbol � in the rule F2 ! F3� .

Step 3 (we execute the appearance checking on the string Y3wE).

On the string of the form Y3wE we can apply only the rule A! y (if the string

contains the symbol A). We cannot apply the rule Y3 ! Y �(out) because the

thickness of the membrane is 2, thus the string cannot pass through the membrane.

At the same time, on F3 we have to apply the rule F3 ! F4Æ.

Consequently, if a symbol A is present in Y3wE, we have to apply the rule A! y

that introduces the trap symbol. If A is not present, no rule can be applied on this

string. The thickness of the membrane return to 1, due to the symbol Æ in F3 ! F4Æ.

Step 4 (we conclude the simulation of a type 3 matrix).

The thickness of the membrane is now 1, so, on the string of the form Y3wE,

we can apply the rule Y3 ! Y Æ. At the same time, on F4 we have to apply the rule

F4 ! F� .

The thickness of the membrane remains unchanged. We send back in membrane

k+1 the string F and a string of the form Y wE in which we have correctly simulated

a type 3 matrix. We can start the simulation of another matrix.

We conclude this proof by illustrating the use of the rules E ! �(out) and

F ! �.

If we apply the rule F ! � on F and, at the same time, a rule that simulates the

�rst production of a matrix on XwE, we delete the string F and we send the other

string to a membrane labelled with a number between 1 and k. As we previously

shown, if this second string is sent alone to a membrane with a label between 1 and

k, the computation will never halts.

If we apply the rule E ! �(out) on a string of the form XwE, we send a string

of the form Xw to the output membrane. The computation will never stops due to

the rule X ! X in that membrane. The same is true if we apply such a rule to a

string of the form wE in which w contains non terminal symbols.

Thus, consider a string of the form vE in which v is a terminal string (we can

obtain such a string after the simulation of a type 4 matrix). If we apply the rule

E ! �(out) on vE we send the terminal string v in the output membrane; no other

rule is applied on this string.

In membrane k + 1 we can apply on F one of the rules F ! F
0

(ini) or the rule

F ! �. If we apply a rule F ! F
0

(ini) we send in membrane i a string F
0

. On

this string we have to apply the rule F
0

! F�(out) (if i is a label of a membrane

that simulates a type 2 or type 4 matrix) or the rules F
0

! F2�; F2 ! F3�; F3 !

F4Æ; F4 ! F�(out) (if i is a label of a membrane that simulates a type 3 matrix).

As one can see, in both cases we send back in membrane k+1 the string F and the

thickness of the membrane i becomes 2.

On F we can apply now the rule F ! � or one of the rules F ! F
0

(inj), with

j 6= i, because the membrane i has thickness 2. If we apply one of the rules of the

second type, we get the same string F in membrane k + 1 and another membrane

becomes of thickness 2.

It's easy to see that, after a while, all the membranes with a label between 1

and k become of thickness 2. So, if we still do not have applied the rule F ! �, we

have to apply it. The string F disappear and the computation stops.

In the output membrane we get exactly the strings of terminal symbols generated

by the grammar G, that is L(G) = L(�). }

Informally, the key concept in the previous proof is the collaboration between the

string XwE and the string F . The computation can correctly terminate only when

the two strings follow the same path between the membranes structure. If both

strings use the same membrane at the same time, the computation can correctly

proceed. Otherwise a membrane will be dissolved and a string y will reach the

control membrane where the computation will proceed forever. For the same reason,

the deletion of the string F cannot be done before sending the other string to the

output membrane.

The diÆcult in simulating the production of a matrix grammar with appearance

checking lies in the type 3 matrix: we have to apply the productions that introduce

the trap symbol only if there are certain symbols in the string; otherwise these

productions do not have to be applied. This can be easily controlled using priorities,

but it seems diÆcult to get the same result without priorities. Nevertheless, by

modifying the thickness of the membranes, we are able to simulate priority, as

illustrated in the proof.

4 Using electrical charges to simplify membrane struc-

ture

Another feature in membrane systems which does not seem of a natural inspiration

is relative to the communication of objects through membranes: the rules have to

specify the label of the membrane where the objects have to be sent after the appli-

cation of the rule itself. A less restrictive feature consider, as previously described,

electrical charges associated with both the objects and the membranes.

We show now that this feature, introduced with the goal of obtaining more

realistic systems, can be useful under di�erent aspects. For example, it allows us to

simplify the structure of the membrane systems: in fact, the communication of the

strings can be controlled with few general rules, because we do not have to specify

the precise label of the membrane where the strings have to go (as in the models

presented in [6]), but only the subset of membranes we are interested in: positive or

negative ones (of course, we have to control that the objects do not reach \wrong"

membranes). We can, in this way, de�ne P systems with a limited number of rules

per membrane and with a membrane structure of limited depth.

We illustrate this in the following, using Rewriting P system with priority. With

RP�(Pri; nÆ) we denote the family of languages generated by Rewriting P systems

with electrical charges which use priority on evolution rules and which do not use

the operation which allows to dissolve the membranes.

De�nition A RP system is in double 2 normal form if it is of depth 2 and in

each membrane we have 2 rewriting rules.

Theorem 2 Every RE language can be generated by a P system RP�(Pri; nÆ)

in double 2 normal form.

Proof Consider a matrix grammar with appearance checkingG = (N;T; S; P; F)

in the normal form previously described. We assume the matrices labeled in a one-to-

one manner. Withm1; : : : ;mk1
we label the matrices of type 2, withmk1+1; : : : ;mk2

we label the matrices of type 3 and withmk3+1; : : : ;mk we label the matrices of type

4. Moreover, we label the symbols in N with N1; : : : ; Nh.

We show how to construct a Rewriting Super Cell system of depth 2 with 2

rewriting rules in each membrane that generates the same language of G:

� = (V; �;M0;M1; : : : Mk; : : : ;Mk+h;Mk+h+1; (R1; �1); : : : ; (Rk+h+1; �k+h+1); 0)

where

� V = N1 [N2 [fZ;Z
0

; Z
00

g [fCij1 � i � hg [T ,

� � = [0[1]
+
1 :::[k]

+

k
[k+1]

�

k+1
:::[k+h+1]

�

k+h+1
]0

� M0 = fZ
0

ZXAjS ! XA is the rule of a matrix of type 1g

� M1; :::;Mk+h+1 are empty

� R0 = fr0;1 : z ! �(�)g [fr0;2 : Z
0

! Z
0

(�)g

� R� = fr�;1 : X ! ZY g [fr�;2 : A! X(out)g; 1 � � � k1, (type 2 matrices)

� R� = fr�;1 : A ! Ag [fr�;2 : X ! ZY (out)g; k1 + 1 � � � k2, (type 3

matrices)

� R = fr;1 : X ! x1C1g [fr;2 : A ! x(out)g; k2 + 1 � � k, (type 4

matrices)

� R = fr ;1 : Ni ! Nig [fr ;2 : Ci ! Ci+1(out)g; k + 1 � � k + h;

1 � i � h; = i+ k

� Rh+k+1 = frh+k+1;1 : Z
0

! �g [frh+k+1;2 : Z
00

! �(out)g

� �i : ri;1 > ri;2; for every i; 0 � i � h+ k + 1

In other words, we place into the skin membrane several membranes with positive

charge, one for each matrix in G; each membrane simulates the productions of a

matrix in G. Moreover, we place into the skin membrane several membranes with

negative charge, one for every nonterminal symbol in G plus one used to stop the

computation; these membranes are used to be sure that the generated strings do

not contain non terminal symbols.

Consider the string Z
0

ZHw in membrane 0 with w 2 (N2 [T)
� and H 2 N1

(initially we have Z
0

ZXA). We have to apply the production Z ! �(�) and we get

the string Z
0

Xw. This string is sent to a membrane of positive charge, in which we

simulate the productions of a type 2, 3 or 4 matrix.

Membrane simulating a type 2 matrix: If the string is sent to a membrane cor-

responding to a type 2 matrix, we have to apply a rule of the form X ! ZY

(which simulates the �rst production of the type 2 matrix) and a rule of the form

A ! x(out) (which simulates the second production of a type 2 matrix). The �rst

production of a matrix of type 2 in the binary normal form cannot be of the form

X ! X, as one can see from the description of the normal form in [2]. Thus, if

H 6= X (i.e. the string contains the symbolX) we have to apply this rule and we can

do it only one time (the string cannot evolve forever in this membrane due to a rule

X ! X). Otherwise, we cannot apply this rule, and the symbol Z is not reinserted

in the string. Either if we have applied the previous rule or if H 6= X, we have to

apply the rule A ! x(out). If the symbol A is not in w, the string cannot further

evolve and it will not reach the output membrane; otherwise the obtained string is

sent back in the skin membrane. As said before, if the production X ! ZY have

not been applied, we have now a string of the form Z
0

Hw
0

, i.e. a string without the

symbol Z in it. Thus, in the skin membrane we have to apply the rule Z
0

! Z
0

(+),

which sends the string in a membrane with negative charge. It easy to see that

there is no membrane that sends back the string in the skin membrane (the string

does not contains the symbol Z
00

nor a symbol Ci). The computation can correctly

proceed only if the membrane correctly simulates the corresponding type 2 matrix.

In fact, if we apply the production X ! ZY and if the symbol A is in w, we can

apply the rule A! x(out), that sends back in membrane 0 the string Z
0

ZY w
0

, that

is ready to simulate another matrix.

Membrane simulating a type 3 matrix If the string Z
0

Hw is sent to a membrane

of type 3, we have to apply the rules A! A and X ! ZY . We have the following

possibilities: if the string contains the symbol A, we have to apply forever the

production A! A (due to the priority), thus the computation will never stop and

no string will be produced. If the symbol A is not in the string, we can apply the

other production X ! ZY (out). If H 6= X the string cannot further evolve and it

will remain in this membrane, otherwise we correctly simulate a type 3 matrix and

the string is sent back in membrane 0 where we can start the simulation of another

matrix.

Membrane simulating a type 4 matrix If the string Z
0

Hw is sent to a membrane

of type 4, we have to apply the rules X ! C1x1 and A! x(out). If the string does

not contain the symbol A, it will remain in the membrane forever. If the string

contains the symbol A but it doesn't contain the symbol X, we can apply the rule

A! x(out). The obtained string doesn't contain the symbol Z nor the symbol C1.

As we have seen before for the type 2 matrix, this string will reach a membrane with

negative charge but it will never exit from that, thus no string will be generated

in this way. The matrix will be correctly simulated only if H = X and the string

contains the symbol A. In this case, we �rst apply the rule X ! C1x1 and then the

rule A! x(out). In the skin membrane we get a string of the form Z
0

C1w.

Thus, we are able to simulate the productions of every type of matrix in the

correct order. When the string reaches a membrane that corresponds to a type 4

matrix, the phase of simulating the production of the matrices has to be ended,

and we have to control that the obtained string does not contain non terminal

symbols. This is done with the negative charged membranes. Consider a string

of the form Z
0

C1w in membrane 0. Obviously, the production Z ! � cannot be

applied, because the string does not contain the symbol Z. Thus, we have to apply

the rule Z
0

! Z
0

(+). The obtained string Z
0

C1w is sent to a membrane with

negative charge. There is only one membrane with a production that involved C1:

the membrane used to control the presence of the non terminal N1, that is the

membrane k+1; it contains the productions N1 ! N1 and C1 ! C2(out) . If the

string reaches a di�erent membrane, it cannot further evolve and no string reaches

the output membrane. Otherwise, we can test the presence of the non terminal

N1 in the string: if N1 is in the string, we have to apply forever the production

N1 ! N1, otherwise we can apply the production C1 ! C2(out) and we send back

in membrane 0 the string Z
0

C2w. Here we can apply again the rule Z
0

! Z
0

(+) to

send the string in a membrane with negative charge.

Now, the \correct" one is the membrane that tests the presence of the non

terminal symbol N2. If the string reaches another membrane, it will be blocked. If

it reaches the membrane k+2 and the string contains the symbolN2 the computation

will never halt. Otherwise we get in membrane 0 the string Z
0

C3w. The computation

proceeds in this way until we test all non terminal symbols, using the sequence

C1; C2; : : : ; Ch. In the membrane that controls the presence of the h-th non terminal

symbol (the last one) we have the production Ch ! Z
00

(out) (Z
00

tell us that we

have checked the presence of all non terminal symbols). The string is sent back in

membrane 0 where we have to apply again the rule Z
0

! Z
0

(+). The string Z
0

Z
00

w

is sent to a membrane with negative charge. If it reaches membrane k + h + 1 we

apply the rules Z
0

! � and Z
00

! �(out) that sends back in membrane 0 (the output

one) the terminal string w; otherwise the string will be blocked in one of the other

membrane with negative charge.

Thus, in the output membrane we get exactly the strings of terminal symbols

generated by G, that is L(G) = L(�). }

Informally, the communication of the strings (from the skin membrane to the

other membranes) is accomplished using two general rules, because we do not have

to specify the label of the membrane where we send the string: with one rule we start

the simulation of a matrix, while with the other rule we stop the simulation and we

start the phase in which we control if the string is a terminal one. We can control

if a string reaches a \wrong" membrane using the rules in the same membrane, as

we've shown in the proof.

Note that the proof presented here does not show how to build a system in

double 2 normal form starting from a generic RP systems with priority (in a direct

way). Of course, given a RP system, we can build an equivalent type 0 grammar,

from this we can build the equivalent matrix grammar with appearance checking

and �nally we can obtain an equivalent RP system in the normal form.

5 Using membrane division to solve NP complete prob-

lems in polynomial time with P systems

Could we use P systems to solve complex problems in an eÆcient way? In [8] one

considers a variant of P systems in which a membrane can be divided in two mem-

branes; each new membrane contains the same objects and rules of the starting

membrane. In [4] one considers the division of a membrane in an arbitrary �nite

number of membranes. In [8] and [4] it is shown how to solve in linear time (with re-

spect to the input length) two well known NP Complete problems, Satis�ability and

Hamiltonian Path, using P systems with active membranes. The systems in these

papers use division for elementary membranes and for non elementary membranes

(i.e. membranes with one or more membranes inside).

We show now that division for elementary membranes suÆce to build P systems

able to solve complex problems in an eÆcient way. In particular, we show how to

build a P system, with division for elementary membranes only (called P Systems

with Elementary Active Membranes), able to solve the SAT problem in linear time.

Theorem 3: The SAT problem can be solved in linear time (with respect to

the number of variables and the number of clauses) by a P system with elementary

active membranes.

Proof : Consider a boolean expression in conjunctive normal form

� = C1 ^ C2 ^ ::: ^ Cm

for some m � 1, with

Ci = yi;1 _ yi;2 _ ::: _ yi;pi

where pi � 1, and yi;j 2 fxk;:xkj1 � k � ng, for each 1 � i � m; 1 � j � pi.

We build the P system

� = (V; T;H; �; !0; !1; R)

where

� V = fai; ti; fij1 � i � ng [frij1 � i � mg [fWij1 � i � m+ 1g[

[ftg [fZij0 � i � ng

� T = ftg

� H = f0; 1g

� � = [0[1]
0
1]
0
0

� !0 = �

� !1 = a1a2:::anZ0

while the set R contains the following rules:

1. [ai]
0
1 ! [ti]

0
1[fi]

0
1; 1 � i � n

We substitute one variable ai in membrane 1 with two variables ti and fi. The

membrane is divided in two membranes (the charge remains neutral for both mem-

branes). In n steps we get all 2n truth assignments for the n variables; each truth

assignment is in a membrane labelled with 1.

2. [Zk ! Zk+1]
0
1; 0 � k � n� 2

3. [Zn�1 ! ZnW1]
0
1

4. [Zn]
0
1 ! []+1 �

We count n steps, the time needed to produce all the truth assignments. The step

n�1 introduces the symbol W1 used in the next steps, while the step n changes the

charge of the membranes labelled with 1.

5. [ti ! rh1 :::rhj]
+
1 ; 1 � i � n; 1 � hj � m and xi is in the clauses h1; :::; hj

6. [fi ! rh1 :::rhj]
+
1 ; 1 � i � n; 1 � hj � m and :xi is in the clauses h1; :::; hj

In one step, each symbol ti is replaced with some symbols rhj , indicating the clauses

satis�ed if we set xi = true; each symbol fi is replaced with some symbols, indicating

the clauses satis�ed if we set xi = false (i.e. :xi = true).

After this step, we start the \VERIFY STEPS": we have to verify if there is at

least one membrane, labelled with 1, in which we get all symbols r1; r2; :::; rm (at

least one symbol ri for every i). In fact, this means that there is a truth assignment

satisfying all the clauses.

7. [r1]
+
1 ! []�1 r1

We �rst verify the presence of the symbol r1 in membranes labelled with 1. Every

membrane containing r1 (i.e. every membrane with a truth assignment satisfying

the �rst clause) sends this symbol outside (in membrane 0) and changes its charge

from + to �. The membranes not containing this symbol cannot further proceed

their computation.

8. r1[]
�

1 ! [r0]
+
1

9. [ri ! ri�1]
�

1 ; 1 � i � m

10. [Wi !Wi+1]
�

1 ; 1 � i � m

The membranes with negative charge can continue the computation. They increase

the index of the symbols Wi (the counters the satis�ed clauses) and decrease the

index of the symbols ri. The symbols r1 in membrane 0 are sent back (as r0) to the

negative charged membranes labelled with 1, to change their charge from � to +.

After applying the rules of type 8, 9, and 10 (in parallel) we can re-apply the

rules of type 7 followed again by the application of the rules of type 8, 9 and 10.

In 2m steps we verify the existence of a membrane containing all symbols ri. It's

easy to see that if a membrane does not contain a symbol ri, the computation in

that membrane halts in less than 2m steps. As a consequence, that membrane

will not contain the symbol Wm+1. The membranes containing this symbol are the

membranes containing all symbols ri when the VERIFY STEPS started, i.e. the

membranes with a truth assignment satisfying all the clauses.

11. [Wm+1]
+
1 ! []+1 t

If a membrane labelled with 1 executes all 2m verify steps, it contains the symbol

Wm+1. Thus we send out to membrane 0 the symbol t, indicating that there is a

truth assignment satisfying all the clauses.

12. [t]00 ! []+0 t

A symbol t is sent outside membrane 0 and the charge of this membrane is changed

from 0 to +. No further computation is possible. Thus, we have to look at the

output of membrane 0 after n+2m+5 steps. If we get the symbol t, it means that

there is a truth assignment satisfying �; otherwise, the formula is not satis�able. �

6 Conclusions

In papers like [7], [8] and [9], is pointed out the importance of consider variants of

P systems which use features of biochemical inspiration, to obtain more \realistic"

systems which can be implemented either in biochemical media or in electronic

media.

We've presented here some results, to underline the fact that a feature of bio-

chemical inspiration can be useful not only to replace other features of di�erent

inspiration (for example, of a formal language inspiration, like priority over evo-

lution rules). These features can be used to obtain simpler and faster models too.

We've illustrated this, by showing that variable thickness can be used to replace pri-

ority, while electrical charges can be used to obtain systems with a simple membrane

structure (systems of depth two with two rules per membrane). Moreover, we've

shown how to build P systems able to solve the Satis�ability problem (a well known

NP complete problem) in linear time, using division for elementary membranes only.

References

[1] J. Dassow, Gh. Paun, On the power of membrane computing, J. Univ. Com-

puter Sci., 5, 2 (1999), 33-49.

[2] J. Dassow, Gh. Paun, Regulated Rewriting in Formal Language Theory,

Springer-Verlag, Berlin, 1989.

[3] D. Hauschildt, M. Jantzen, Petri nets algorithms in the theory of matrix gram-

mars, Acta Informatica, 31 (1994), 719-728.

[4] S. N. Krishna, R. Rama, A variant of P systems with active membranes: Solving

NP-complete problems, Romanian J. of Information Science and Technology,

2, 4 (1999).

[5] Gh Paun, Computing with membranes. An introduction, Bulletin of the

EATCS, 67 (Febr. 1999), 139-152.

[6] Gh. Paun, Computing with membranes, submitted, 1998 (see also TUCS Re-

search Report No 208, November 1998 http://www.tucs.�).

[7] Gh. Paun, Computing with membranes - a variant: P systems with polarized

membranes, Auckland Univ., CDMTCS Report No. 098, 1999.

[8] Gh. Paun, P systems with active membranes: attacking NP complete problems,

submitted 1999 (see also CDMTCS Research report No. 102, 1999, Auckland

Univ., New Zeland, www.cs.auckland.ac.nz/CDMTCS)

[9] Gh. Paun, G.. Rozenberg, A. Salomaa, Membrane computing with external

output, submitted, 1999 (see also TUCS Research Report No. 218, December

1998, http://www.tucs.�).

[10] Gh. Paun, S. Yu, On synchronization in P systems, submitted, 1999 (see also

CS Department TR No 539, Univ. of Western Ontario, London, Ontario, 1999,

www.csd.uwo.ca/faculty/syu/TR539.html).

[11] Gh. Paun, T. Yokomori, Membrane computing based on splicing, proc. of 5th

DIMACS Workshop on DNA Based Computers, 1999, 213-227.

[12] I. Petre, A normal form for P systems, Bulletin of EATCS, 67 (Febr. 1999),

165-172.

[13] G. Rozenberg, A. Salomaa, eds. , Handbook of Formal Languages, Springer-

Verlag, Heidelberg, 1997.

