Libraries and Learning Services

University of Auckland Research Repository, ResearchSpace

Version

This is the Accepted Manuscript version of the following article. This version is defined in the NISO recommended practice RP-8-2008
http://www.niso.org/publications/rp/

Suggested Reference

Liew, L. P. P., Pearce, A. N., Kaiser, M., \& Copp, B. R. (2013). Bio-inspired dimerisation of prenylated quinones directed towards the synthesis of the meroterpenoid natural products, the scabellones. European Journal of Medicinal Chemistry, 69, 22-31. doi:10.1016/j.ejmech.2013.07.055

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher.

This manuscript version is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License.

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

Synthesis and in vitro and in vivo evaluation of antimalarial polyamines

Lydia P. P. Liew ${ }^{\text {a }}$, A. Norrie Pearce ${ }^{\text {a }}$, Marcel Kaiser ${ }^{\text {b,c }}$, Brent R. Copp ${ }^{\text {a,* }}$
${ }^{a}$ School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
${ }^{b}$ Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, CH-4002 Basel, Switzerland
${ }^{c}$ University of Basel, CH-4003 Basel, Switzerland

Keywords:
Malaria
Polyamine
Natural product
New orthidine F analogues

* Corresponding author. Tel.: +64 9923 8284; fax: +64 9373 7422. E-mail address:
b.copp@auckland.ac.nz (B.R. Copp).

We recently reported that 1,14-diphenylacetamide derivatives of spermine exhibit potent nM in vitro growth inhibition properties of Plasmodium falciparum. In an effort to expand the structureactivity relationship of this compound class towards malaria, we have prepared and biologically tested a library that includes benzamide and 3-phenylpropanamide 'capping acid' groups, and polyamines that include spermine (PA3-4-3) and chain extended analogues PA3-8-3 and PA3-12-3. 2-Hydroxy and 2,5-dimethoxy analogues were typically found to exhibit the most potent activity towards the dual drug resistant strain K1 of P. falciparum with IC 50's 's in the range of $1.3-9.5 \mathrm{nM}$, and selectivity indices (SI) of 42300 to 4880 . In vivo evaluation of three analogues against P. berghei was undertaken, with one demonstrating a modest 27.9% reduction in parasitaemia.

1. Introduction

Historically, natural products have acted as either a rich source of human therapeutics or as templates from which therapeutics are developed [1]. In the specific case of malaria, the plant natural product quinine (Cinchona sp.) spawned the development of chloroquine, primaquine and mefloquine [2] while investigation of the active principals of the Chinese plant (Artemisia annua) led ultimately to the introduction of artemisinin and related semi-synthetic antimalarials [2,3]. While chloroquine and artemisinin-type endoperoxides continue to be used in the front-line treatment of malaria, the increased incidence of resistance [4] prompts the need to develop new mode-of-action antimalarials. The marine environment is proving to be a useful reservoir from which to discover new chemical scaffolds possessing antimalarial properties [5-8].

As part of our ongoing search for new antimalarial lead compounds [9], we recently reported the discovery and preliminary assessment of structure-antimalarial activity for the polyamine marine natural product orthidine $\mathrm{F}(\mathbf{1})$ and new synthesized structural analogues [10,11]. The study evaluated the influence on biological activity of a variety of phenylacetic acid 'capping acids' as well as the effect of variation, to smaller fragments, of the polyamine core. Two analogues, 2-hydroxyphenylacetamide 2 and 2,5-dimethoxyphenylacetamide 3 , were found to exhibit significantly more pronounced activity towards P. falciparum, with $\mathrm{IC}_{50} 8.6 \mathrm{nM}$ and 19 nM respectively, than orthidine F (1) ($\mathrm{IC}_{50} 890 \mathrm{nM}$). In addition, like $\mathbf{1}$ (L6 IC $\mathrm{L}_{50}>120 \mu \mathrm{M}$), both 2 and 3 were found to be relatively non-toxic towards the L6 rat myoblast cell line, with IC ${ }_{50}$'s of > 130 $\mu \mathrm{M}$ and $88 \mu \mathrm{M}$ respectively [10].

Fig. 1. Lead antimalarial polyamine structures.
In continuation of our interest in this class of antimalarial agent, we now report the synthesis of a new library of polyamine diamides that explore further polyamine fragments and alternative 'capping acids'. All analogues were evaluated for antimalarial activity against the K1 dual drug resistant strain of P. falciparum and for cytotoxicity towards the non-malignant L6 rat myoblast cell
line. Three analogues were also tested for their in vivo antimalarial activity against Plasmodium berghei in mice.

2. Chemistry

Using similar methodology previously reported by us for the preparation of sperminephenylacetamide analogues [10,11], reaction of spermine with three benzoic acid derivatives (benzoic acid, 2-hydrobenzoic acid and 2,5-dimethoxybenzoic acid) and four 3-phenylpropanoic acid derivatives (3-phenylpropanoic acid, 3-(2-hydroxyphenyl)propanoic acid, 3-(2,5dimethoxyphenyl)propanoic acid and 3-(3,4-dimethoxyphenyl)propanoic acid) using PyBOP as the coupling agent afforded, after chromatographic purification, analogues 4-10 in yields of $47 \%, 28 \%$, $59 \%, 92 \%, 84 \%, 14 \%$ and 72%, respectively (Figure 2).

$4 R_{1}=R_{2}=H$
$5 R_{1}=O H^{\prime} R_{2}=H$
$6 R_{1}=R_{2}=O M e$

$7 R_{1}=R_{2}=R_{3}=R_{4}=H$
$8 R_{1}=O H^{\prime} R_{2}=R_{3}=R_{4}=$
$9 \mathrm{R}_{1}=\mathrm{R}_{4}=$ ome, $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
$10 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{H}^{\prime} \mathrm{R}_{2}{ }^{2} \mathrm{R}_{3}=\mathrm{OM}$

Fig. 2. Benzamide and 3-phenylpropanamide analogues of spermine.
We next sought to explore the influence of polyamines of extended length on antimalarial activity with the preparation of spermine analogues bearing longer central hydrocarbon chains. The tertbutylcarbamate protected octane-1,8-bis(3-aminopropyl) polyamine $\mathbf{1 4}$ required for the preparation of analogues $\mathbf{1 5} \mathbf{- 2 0}$ was synthesised by a modification of previously reported methods [12,13]. Reaction of 1,8-diaminooctane (11) with two equivalents of acrylonitrile (to give 12), followed by Boc protection (13) and reduction (Ni-Al alloy) gave the desired bis-tert-butoxylcarbamate protected tetraamine 14 (Scheme 1). Subsequent reaction of 14 with phenylacetic acid, 2hydrophenylacetic acid and 2,5-dimethoxyphenylacetic acid, again using PyBOP as a coupling
agent, afforded Boc protected diamides 15-17 in yields of 75%, 55% and 64% respectively. Removal of the Boc groups with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave tetraamine-diamides $\mathbf{1 8} \mathbf{- 2 0}$ as TFA salts.

Scheme 1. Preparation of polyamines 15-20. Reagents and conditions: (i) acrylonitrile, EtOH, N_{2}, reflux, 3h. (ii) di-tert-butyl dicarbonate, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~N}_{2}, 22.5 \mathrm{~h}$. (iii) $\mathrm{LiOH}, 10 \% \mathrm{Pd} / \mathrm{C}, 50 \% \mathrm{Ni}-$ Al alloy, $\mathrm{H}_{2}, 50^{\circ} \mathrm{C}, 21 \mathrm{~h}$. (iv) carboxylic acid (2 equiv), PyBOP, DMF, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{~N}_{2}, 23 \mathrm{~h}$. (v) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA, $\mathrm{N}_{2}, 2 \mathrm{~h}$.

The preparation of a further set of chain extended polyamine analogues made use of the previously reported Boc protected dodecane-1,12-(3-aminopropyl) tetraamine 21 [12,13] (Scheme 2). Using our general PyBOP-mediated amide coupling reaction methodology, reaction of 21 with three benzoic acids (benzoic acid, 2-hydroxybenzoic acid, and 2,5-dimethoxybenzoic acid), five phenylacetic acids (phenylacetic acid, 2-hydroxyphenylacetic acid, 2-methoxyphenylacetic acid, 4methoxyphenylacetic acid and 2,5-dimethoxyphenylacetic acid) and four 3-phenylpropanoic acids (3-phenylpropanoic acid, 3-(2-hydroxyphenyl)propanoic acid, 3-(2,5-dimethoxyphenyl)propanoic acid and 3-(3,4-dimethoxyphenyl)propanoic acid) gave Boc protected analogues 22-33. Subsequent removal of the Boc groups with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave tetraamine-diamides $\mathbf{3 4 - 4 5}$ as TFA salts.

> 21
> $22 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}^{\prime} \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=0$
> $23 \mathrm{R}_{1}=\mathrm{OH}^{\prime} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}^{\prime} \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=0$
> $24 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OMe}^{\prime} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}^{\prime} \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=0$
> $25 R_{1}=R_{2}=R_{3}=R_{4}=H^{\prime} R_{5}={ }_{B O C}, n=1$
> $26 \mathrm{R}_{1}=\mathrm{OH}^{\prime} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}^{\prime} \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=1$
> $27 \mathrm{R}_{1}=$ OMe, $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}^{\prime} \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=1$
> $28 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{H}^{\prime} \mathrm{R}_{3}=$ OMe $, \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=1$
> $29 \mathrm{R}_{1}=\mathrm{R}_{4}=$ OMe, $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}^{\prime} \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=1$
> $30 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}^{\prime} \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=2$
> $31 \mathrm{R}_{1}=\mathrm{OH}^{\prime} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}^{\prime} \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=2$
> $32 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}^{\prime} \mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=2$
> $33 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{H}^{\prime} \mathrm{R}_{2}=\mathrm{R}_{3}=$ OMe $\mathrm{R}_{5}=\mathrm{BOC}, \mathrm{n}=2$
> $34 R_{1}=R_{2}=R_{3}={ }_{R_{4}} \stackrel{\| i i}{{ }^{i i}} R_{5}=H^{\prime} n=0$
> $35 \mathrm{R}_{1}=\mathrm{OH}^{\prime} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{H}^{\prime} \mathrm{n}=0$
> $36 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OM}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{5}=\mathrm{H}^{\prime} \mathrm{n}=0$
> $37 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{H}^{\prime} \mathrm{n}=1$
> $38 \mathrm{R}_{1}=\mathrm{OH}^{\prime} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{H}^{\prime} \mathrm{n}=1$
> $39 \mathrm{R}_{1}=$ OMe, $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{H}^{\prime} \mathrm{n}=1$
> $40 R_{1}=R_{2}=R_{4}=R_{5}=H^{\prime} R_{3}=$ OMe,$n=1$
> $41 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OM}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{5}=\mathrm{H}^{\prime} \mathrm{n}=1$
> $42 R_{1}=R_{2}=R_{3}=R_{4}=R_{5}=H^{\prime} n=2$
> $43 \mathrm{R}_{1}=\mathrm{OH}^{\prime} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{H}^{\prime} \mathrm{n}=2$
> $44 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OMD}^{\prime} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{5}=\mathrm{H}^{\prime} \mathrm{n}=2$
> $45 R_{1}=R_{4}=R_{5}=H^{\prime} R_{2}=R_{3}=$ OMe, $n=2$

Scheme 2. Preparation of polyamine analogues 22-45. Reagents and conditions: (i) carboxylic acid (2 equiv), PyBOP, $\mathrm{DMF}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{~N}_{2}$, 23 h. (ii) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{TFA}, \mathrm{N}_{2}, 2 \mathrm{~h}$.

3. Biological results and discussion

3.1. In vitro antimalarial activity

The resultant library of polyamine analogues were evaluated for the ability to inhibit the growth of Plasmodium falciparum (strain K1, IEF stage), and in order to establish selectivity indices, the cytotoxicity of compounds towards the rat skeletal myoblast cell line L6 were also determined. Summaries of these assay results are presented in Table 1. Of the spermine analogues evaluated, benzamides 4-6 (entries 1-3) were either less active or equipotent to our original natural product lead compound [10] while 3-phenylpropanamides 7-10 (entries 4-7) were typically more active. Of particular note was the potency ($\mathrm{Pf} \mathrm{IC}_{50} 6.1 \mathrm{nM}$) and selectivity (SI 16230) of the 2,5dimethoxyphenylacetamide 9 (entry 6). Evaluation of analogues bearing a longer PA3-8-3 [14] polyamine chain identified that Boc-protected derivatives 15-17, whilst being modestly active towards P. falciparum, exhibited markedly enhanced levels of cytotoxicity (entries 8-10), while the corresponding de-Boc analogues 18-20 exhibited good to potent levels of antimalarial activity, with negligible cytotoxicity (entries 11-13). A similar observation was made for the PA3-12-3 [14] library of analogues, in that Boc protected benzamides (22-24), phenylacetamides (25-29) and 3phenylpropanamides (30-33) exhibited only modest antimalarial activity combined with enhanced cytotoxicity (entries 14-25). Removal of the Boc protecting group led to no change in Pf activity or selectivity for benzamide analogues 34-36 (entries 26-28), while de-protected phenylacetamide and 3-phenylpropanamide analogues 37-45 typically were as active or more potent towards Pf and exhibited similar or less potent cytotoxicity (entries 29-37). The pronounced anti-Pf activity of 2hydroxy ($8,19,38,43$) and 2,5-dimethoxy (9,20) phenylacetamide and phenylpropanamide analogues is noteworthy.

3.2. In vivo antimalarial evaluation

Three analogues, 2-hydroxyphenylacetamido-spermine 2, 2-hydroxyphenylpropanamido-spermine 8 and phenylacetamido-PA383 18 were selected for preliminary in vivo evaluation in Plasmodium berghei infected mice. Preliminary ip acute toxicity of the three test compounds was determined to be $150 \mathrm{mg} / \mathrm{kg}$ (2) and $100 \mathrm{mg} / \mathrm{kg}$ (18) whereas $\mathbf{8}$ showed no toxicity up to the highest test dose of $150 \mathrm{mg} / \mathrm{kg}$. Using a standard test protocol [15], repeated ip doses of $50(\mathrm{mg} / \mathrm{kg}) /$ day (for 8) or 20 ($\mathrm{mg} / \mathrm{kg}$)/day (for 18) for four days failed to demonstrate any antimalarial efficacy and no increase in mean survival time was observed. Repeated $30(\mathrm{mg} / \mathrm{kg}) /$ day ip dosing of 2 did lead to a 27.9% reduction in parasitaemia, but again, no increase in mean survival time was observed.

4. Conclusions

A series of diamido-polyamine derivatives have been identified that exhibit potent in vitro activity against P. falciparum. In addition to a range of different 'capping acids', different lengths of polyamine chains and the presence (or absence) of mid-chain nitrogen substitution were investigated for their effects on the growth inhibition of P. falciparum. While mid-chain Boc derivatives were typically found to have enhanced cytotoxicity, 2-hydroxy-substituted phenylacetamide or 3-phenylpropanamide polyamine analogues were found to be particularly potent antimalarials. In vitro activity did not translate to in vivo efficacy however, suggesting elements of poor pharmacokinetics are associated with this current set of compounds. Further work is needed to identify analogues that can exhibit in vivo activity - research towards this goal is currently ongoing.

5. Experimental

5.1. General Experimental.

Mass spectra were recorded on a Bruker micrOTOF Q II mass spectrometer. Infrared spectra were run as dry films on an ATR crystal and acquired with a Perkin Elmer Spectrum One Fourier Transform infrared spectrometer with a Universal ATR Sampling Accessory. Melting points were obtained on an Electrothermal melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR (300.13 or 400.13 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.47 or 100.62 MHz) spectra were run on a Bruker Avance 300 MHz or a Bruker DRX 400 MHz spectrometer. Chemical shifts are expressed in parts per million (ppm) relative to TMS in $\mathrm{CDCl}_{3}{ }^{1} \mathrm{H}$ NMR and to deuterated solvent in ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6} : 2.50 ppm , $\mathrm{CD}_{3} \mathrm{OD}: 3.31 \mathrm{ppm}$) and to deuterated solvent signals in ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}: 77.16 \mathrm{ppm}$, DMSO- d_{6} : $\left.39.52 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}: 49.00 \mathrm{ppm}\right)$. Complete assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances was based on interpretation of standard 2D NMR data. Pressurized (flash) column chromatography was performed on Kieselgel 60 0.063-0.200 mesh (Merck) silica gel or $\mathrm{C}_{8} / \mathrm{C}_{18} / \mathrm{CN} / \mathrm{LH}-20$ solid supports. Analytical thin layer chromatography (TLC) was carried out on 0.2 mm thick plates of Kieselgel F_{254} (Merck). Analytical reversed phase HPLC analyses were run on either a Waters 600 HPLC photodiode array system or a Dionex UltiMate 3000 with diode array detection using a C8 column (Grace Platinum $3 \mu \mathrm{~m}$, $33 \times 7 \mathrm{~mm}$ Rocket) eluting with a linear gradient of $\mathrm{H}_{2} \mathrm{O}(+0.05 \%$ TFA) to MeCN over 13.5 min at $2 \mathrm{~mL} / \mathrm{min}$ with monitoring at 278 nm . Reactions were heated by immersion in oil or by use of DrySyn ${ }^{\mathrm{TM}}$ MULTI reaction block kit while the temperature was taken from a thermometer touching the bottom of the pyrex bath. Polyamine 21 was prepared using literature methods [12,13].

5.2. Synthesis of diamides 4-10

5.2.1. General procedure A: Amide bond formation.

To a solution of carboxylic acid (2.05 equiv.), diamine (1 equiv.), and PyBOP (2.05 equiv.) in DMF (1 mL) was added $E t_{3} \mathrm{~N}$ (3 equiv.). The reaction mixture was allowed to stir under N_{2} at room temperature for 23 h . The solution was dried in vacuo and the crude reaction product purified by C_{8} reversed-phase column chromatography ($20-30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($+0.05 \% \mathrm{TFA}$)) to afford the target diamide as the bis-trifluoroacetate salt or by silica gel column chromatography to afford the target diamide as the free base.

5.2.2. N^{1}, N^{4}-Bis(3-benzamidopropyl)butane-1,4-diaminium 2,2,2-trifluoroacetate (4).

Using general procedure A, benzoic acid ($100 \mathrm{mg}, 0.82 \mathrm{mmol}$), spermine ($83 \mathrm{mg}, 0.41$ mmol), PyBOP ($426 \mathrm{mg}, 0.82 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(340 \mu \mathrm{~L}, 2.46 \mathrm{mmol})$ afforded 4 as a white solid ($124 \mathrm{mg}, 47 \%$ yield). Mp $150^{\circ} \mathrm{C}$; $\mathrm{R}_{f}\left(20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.22$; IR $v_{\text {max }}$ (ATR) 3289, 3069, 2851, 1668, 1638, 1130, $719 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$) $\delta 8.65(1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}, \mathrm{NH}-8), 8.60$ ($2 \mathrm{H}, \mathrm{br}$ s, $\mathrm{NH}_{2}-12$), $7.87-7.84$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-6$), $7.56-7.52$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 7.49-7.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 3 and H-5), 3.34 ($2 \mathrm{H}, \mathrm{td}, J=6.5,5.8 \mathrm{~Hz}, \mathrm{H}_{2}-9$), $2.94\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-11\right.$ and $\mathrm{H}_{2}-13$), 1.86 ($2 \mathrm{H}, \mathrm{tt}, J=$ $6.5,6.5 \mathrm{~Hz}, \mathrm{H}_{2}-10$), 1.63 (2H, br s, $\mathrm{H}_{2}-14$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$) $\delta 166.6$ (C-7), 134.2 (C-1), 131.3 (C-4), 128.3 (C-3 and C-5), 127.2 (C-2 and C-6), 46.1 (C-13), 44.8 (C-11), 36.3 (C-9), 26.1 (C-10), 22.7 (C-14); (+)-HRESIMS m/z $411.2744[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{2}, 411.2755$); Purity $97 \% t_{\mathrm{R}}=5.91 \mathrm{~min}$.

5.2.3. N^{1}, N^{4}-Bis(3-(2-hydroxybenzamido)propyl)butane-1,4-diaminium 2,2,2-trifluoroacetate (5).

Using general procedure A, 2-hydroxybenzoic acid ($100 \mathrm{mg}, 0.72 \mathrm{mmol}$), spermine (73 mg , 0.36 mmol), PyBOP ($396 \mathrm{mg}, 0.76 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(105 \mu \mathrm{~L}, 0.76 \mathrm{mmol}$) afforded 5 as a clear colorless gum ($68 \mathrm{mg}, 28 \%$ yield). $\mathrm{R}_{f}\left(20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.17$; IR $v_{\text {max }}$ (ATR) 3347, 2989, 2844, 1674, 1638, 1596, 1201, 1133, $722 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta 12.51(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-2)$, $8.96(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{NH}-8), 8.67\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}-12\right), 7.84(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, \mathrm{H}-6), 7.40$ (1H, ddd, $J=7.9,7.9,1.6 \mathrm{~Hz}, \mathrm{H}-4), 6.92-6.86(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-5), 3.37(2 \mathrm{H}, \mathrm{td}, J=6.6,5.9 \mathrm{~Hz}$, $\left.\mathrm{H}_{2}-9\right), 2.94\left(4 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{H}_{2}-11$ and $\left.\mathrm{H}_{2}-13\right)$, 1.88 ($2 \mathrm{H}, \mathrm{tt}, J=6.6,6.6 \mathrm{~Hz}, \mathrm{H}_{2}-10$), 1.63 (2 H , br s, $\mathrm{H}_{2}-14$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta 169.2(\mathrm{C}-7), 159.9(\mathrm{C}-2), 133.7(\mathrm{C}-4), 127.8(\mathrm{C}-6), 118.6(\mathrm{C}-5)$, 117.4 (C-3), 115.3 (C-1), 46.1 (C-13), 44.7 (C-11), 36.2 (C-9), 25.8 (C-10), 22.7 (C-14); (+)HRESIMS $\mathrm{m} / \mathrm{z} 443.2642[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}, 443.2653$); Purity $99 \% t_{\mathrm{R}}=5.18 \mathrm{~min}$.

5.2.4. $\quad N^{1}, N^{4}$-Bis(3-(2,5-dimethoxybenzamido)propyl)butane-1,4-diaminium 2,2,2-trifluoroacetate

 (6).Using general procedure A, 2,5-dimethoxybenzoic acid (100 mg, 0.55 mmol), spermine (56 $\mathrm{mg}, 0.27 \mathrm{mmol})$, PyBOP ($322 \mathrm{mg}, 0.62 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(228 \mu \mathrm{~L}, 1.65 \mathrm{mmol})$ afforded $\mathbf{6}$ as a clear colorless gum ($123 \mathrm{mg}, 59 \%$ yield). $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.43$; IR $v_{\text {max }}$ (ATR) 3374, 2951, 2839, 1672, 1494, 1175, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$) $\delta 8.61$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}-12$), 8.40 ($1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}, \mathrm{NH}-8$), 7.28 ($1 \mathrm{H}, \mathrm{d}, ~ J=3.0 \mathrm{~Hz}, \mathrm{H}-6$), $7.09-7.03$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-4$), 3.83 (3 H , s, OMe-16), 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-15$), $3.35\left(2 \mathrm{H}, \mathrm{td}, J=6.5,6.1 \mathrm{~Hz}, \mathrm{H}_{2}-9\right), 2.94\left(4 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{H}_{2}-11$ and $\mathrm{H}_{2}-13$), $1.85\left(2 \mathrm{H}, \mathrm{tt}, J=6.5,6.5 \mathrm{~Hz}, \mathrm{H}_{2}-10\right), 1.64\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-14\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }^{2}, 100$ $\mathrm{MHz}) \delta 165.3(\mathrm{C}-7), 153.0(\mathrm{C}-5), 151.1(\mathrm{C}-2), 123.5(\mathrm{C}-1), 117.5(\mathrm{C}-4), 115.2(\mathrm{C}-6), 113.5(\mathrm{C}-3)$, 56.4 (C-16), 55.5 (C-15), 46.1 (C-13), 44.7 (C-11), 36.3 (C-9), 26.1 (C-10), 22.8 (C-14); (+)HRESIMS $\mathrm{m} / \mathrm{z} 531.3179[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{6}, 531.3177$); Purity $99 \% t_{\mathrm{R}}=5.27 \mathrm{~min}$.

Using general procedure A, 3-phenylpropanoic acid ($120 \mathrm{mg}, 0.80 \mathrm{mmol}$), spermine (81 mg , 0.40 mmol), PyBOP ($437 \mathrm{mg}, 0.84 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(332 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$) afforded 7 as a pale yellow gum ($255 \mathrm{mg}, 92 \%$ yield). $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.44$; IR $v_{\text {max }}$ (ATR) 3260, 3030, 2834, 1666, 1639, 1201, 1141, 839, $722 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}, 400 \mathrm{MHz}$) $\delta 8.64-8.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{2}{ }^{-}\right.$ 14), 8.06 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{NH}-10$), $7.29-7.25$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$, and $\mathrm{H}-5$), $7.19-7.15$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-4$, and H-6), $3.11\left(2 \mathrm{H}, \mathrm{td}, J=6.7,5.9 \mathrm{~Hz}, \mathrm{H}_{2}-11\right)$, $2.87\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-15\right), 2.84-2.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right.$, and $\left.\mathrm{H}_{2}-13\right), 2.40\left(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.69\left(2 \mathrm{H}, \mathrm{tt}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{2}-12\right), 1.61\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-16\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta 172.0$ (C-9), 141.2 (C-1), 128.3 (C-2, C-6), 128.2 (C-3, and C-5), 126.0 (C-4), 46.1/46.0 (C-15), 44.6/44.5 (C-13), 36.9/36.8 (C-8), 35.6/35.4 (C-11), 31.0 (C-7), 26.1 (C-12), 22.7 (C-16); (+)-HRESIMS m/z $467.3371[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{2}, 467.3381$); Purity $99 \% t_{\mathrm{R}}=4.81 \mathrm{~min}$.
5.2.6. $\quad N^{1}, N^{4}$-Bis(3-(3-(2-hydroxyphenyl)propanamido)propyl)butane-1,4-diaminium 2,2,2trifluoroacetate (8).

Using general procedure A, 3-(2-hydroxyphenyl)propanoic acid (100 mg, 0.60 mmol), spermine ($61 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\operatorname{PyBOP}(344 \mathrm{mg}, 0.66 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(500 \mu \mathrm{~L}, 3.61 \mathrm{mmol})$ afforded 8 as a clear colorless gum ($183 \mathrm{mg}, 84 \%$ yield). $\mathrm{R}_{f}\left(50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.36$; IR $v_{\text {max }}$ (ATR) 3283, 3075, 2835, 1671, 1635, 1456, 1199, 1131, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta 9.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 8.62\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}-14\right), 8.04(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{NH}-10), 7.03(1 \mathrm{H}, \mathrm{dd}, J=$ $7.6,1.6 \mathrm{~Hz}, \mathrm{H}-6), 6.99(1 \mathrm{H}, \mathrm{ddd}, J=7.6,7.6,1.6 \mathrm{~Hz}, \mathrm{H}-4), 6.78(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, \mathrm{H}-3), 6.69$ (1 H , ddd, $J=7.6,7.6,1.0, \mathrm{H}-5$), 3.11 ($2 \mathrm{H}, \mathrm{td}, J=6.6,6.0 \mathrm{~Hz}, \mathrm{H}_{2}-11$), 2.89 ($2 \mathrm{H}, \mathrm{br}$ s, H2-15), 2.83 (2H, br s, H2-13), 2.74 ($2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{2}-7$), 2.36 ($2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{2}-8$), 1.70 ($2 \mathrm{H}, \mathrm{tt}, J=6.6$, $\left.6.6 \mathrm{~Hz}, \mathrm{H}_{2}-12\right), 1.62\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-16\right)$) ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$) $\delta 172.6$ (C-9), 155.1 (C-2), 129.6 (C-6), 127.3 (C-1), 127.0 (C-4), 118.9 (C-5), 115.0 (C-3), 46.1 (C-15), 44.6 (C-13), 35.6 (C11), 35.3 (C-8), 26.1 (C-12), 25.8 (C-7), 22.7 (C-16); (+)-HRESIMS m/z 499.3264 [M+H] (calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{4}, 499.3279$); Purity $99 \% t_{\mathrm{R}}=4.01 \mathrm{~min}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data were in agreement with the literature values [16].
5.2.7. $\quad N^{1}, N^{4}$-Bis(3-(3-(2,5-dimethoxyphenyl)propanamido)propyl)butane-1,4-diaminium 2,2,2trifluoroacetate (9).

Using general procedure A, 3-(2,5-dimethoxyphenyl)propanoic acid (100 mg, 0.48 mmol), spermine ($35 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\operatorname{PyBOP}(300 \mathrm{mg}, 0.58 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(198 \mu \mathrm{~L}, 1.43 \mathrm{mmol})$ afforded 9 as a clear colorless gum ($28 \mathrm{mg}, 14 \%$ yield). $\mathrm{R}_{f}\left(20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.44$; IR $v_{\text {max }}$ (ATR) 3279, 2949, 2836, 1673, 1500, 1224, 1200, 1026, $719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta 8.63\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}-14\right), 8.04(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{NH}-10), 6.86-6.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 6.74-6.71(2 \mathrm{H}$, m, H-4 and H-6), 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-17$), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-18$), 3.11 ($2 \mathrm{H}, \mathrm{td}, J=6.6,5.9 \mathrm{~Hz}, \mathrm{H}_{2}-$ 11), 2.89 ($2 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}_{2}-15$), 2.84 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-13$), 2.74 ($2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{2}-7$), 2.34 ($2 \mathrm{H}, \mathrm{t}, J=7.4$ $\mathrm{Hz}, \mathrm{H}_{2}-8$), 1.71 ($2 \mathrm{H}, \mathrm{tt}, J=6.6,6.6 \mathrm{~Hz}, \mathrm{H}_{2}-12$), 1.62 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-16$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 100$ $\mathrm{MHz}) \delta 172.1$ (C-9), 153.0 (C-5), 151.2 (C-2), 130.1 (C-1), 115.8 (C-6), 111.5 (C-3), 111.1 (C-4), 55.7 (C-17), 55.3 (C-18), 46.1 (C-15), 44.6 (C-13), 35.6 (C-11), 35.2 (C-8), 26.1 (C-12), 25.8 (C-7), 22.7 (C-16); (+)-HRESIMS m/z $587.3787[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{6}, 587.3803$); Purity $99 \% t_{\mathrm{R}}$ $=5.55 \mathrm{~min}$.
5.2.8. $\quad N^{1}, N^{4}$-Bis(3-(3-(3,4-dimethoxyphenyl)propanamido)propyl)butane-1,4-diaminium 2,2,2trifluoroacetate (10).

Using general procedure A, 3-(3,4-dimethoxyphenyl)propanoic acid ($113 \mathrm{mg}, 0.54 \mathrm{mmol}$), spermine ($52 \mathrm{mg}, 0.26 \mathrm{mmol}$), PyBOP ($268 \mathrm{mg}, 0.51 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(198 \mu \mathrm{~L}, 1.43 \mathrm{mmol})$ afforded $\mathbf{1 0}$ as a pale yellow gum ($150 \mathrm{mg}, 72 \%$ yield). $\mathrm{R}_{f}\left(20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.21$; IR $v_{\text {max }}$ (ATR) 3358, 2944, 2840, 1672, 1515, 1136, 1024, 838, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) δ 8.56 ($2 \mathrm{H}, \mathrm{br}$ s, $\mathrm{NH}_{2}-14$), $8.04(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{NH}-10), 6.83(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-5), 6.79(1 \mathrm{H}, \mathrm{d}$, $J=1.9 \mathrm{~Hz}, \mathrm{H}-2), 6.69(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, \mathrm{H}-6), 3.72$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-17$), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-18$), 3.11 ($2 \mathrm{H}, \mathrm{td}, J=6.6,5.9 \mathrm{~Hz}, \mathrm{H}_{2}-11$), 2.87 (2 H , br s, $\mathrm{H}_{2}-15$), 2.80 ($2 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}_{2}-13$), 2.75 ($2 \mathrm{H}, \mathrm{t}, J=$ $7.7 \mathrm{~Hz}, \mathrm{H}_{2}-7$), $2.37\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.69\left(2 \mathrm{H}, \mathrm{tt}, J=6.6 \mathrm{~Hz}, \mathrm{H}_{2}-12\right)$, 1.61 (2 H , br s, H2-16); ${ }^{13} \mathrm{C}$ NMR (DMSO-d $6,100 \mathrm{MHz}$) $\delta 172.1$ (C-9), 148.6 (C-3), 147.1 (C-4), 133.7 (C-1), 119.9 (C-6), 112.1 (C-2), 111.9 (C-5), 55.5 (C-18), 55.4 (C-17), 46.1 (C-15), 44.6 (C-13), 37.2 (C-8), 35.5 (C11), 30.7 (C-7), 26.1 (C-12), 22.7 (C-16); (+)-HRESIMS m/z $587.3771[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{6}, 587.3803$); Purity $99 \% t_{\mathrm{R}}=4.41 \mathrm{~min}$.

5.3. Synthesis of diamides $\mathbf{1 5 - 1 7}$

5.3.1. 3,3'-(Octane-1,8-diylbis(azanediyl))dipropanenitrile (12).

To a solution of 1,8-diaminooctane (11) ($100 \mathrm{mg}, 0.69 \mathrm{mmol}$) in EtOH (2 mL) was added acrylonitrile ($92 \mu \mathrm{~L}, 1.39 \mathrm{mmol}$). The reaction mixture was purged with N_{2} and heated to reflux for 3 h . The crude product was concentrated in vacuo and purified by $\mathrm{Et}_{3} \mathrm{~N}$-deactivated silica gel column chromatography ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and reversed-phase cyanopropyl column chromatography ($25 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (TFA)) to give 12 as a white solid ($117 \mathrm{mg}, 38 \%$ yield). Mp $143^{\circ} \mathrm{C} ; \mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.85$; IR $\nu_{\text {max }}(\mathrm{ATR}) 3091,2940,2863,2258,1663,1462,1416$, 1195, 1162, 1122, $719 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$) $\delta 9.02$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}-4$), 3.26 ($2 \mathrm{H}, \mathrm{t}, J$ $\left.=7.0 \mathrm{~Hz}, \mathrm{H}_{2}-2\right), 2.95-2.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-3\right.$ and $\left.\mathrm{H}_{2}-5\right), 1.59-1.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-6\right), 1.27\left(4 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H}_{2}-7\right.$ and $\mathrm{H}_{2}-8$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$) $\delta 117.8$ (C-1), 46.7 (C-5), 42.0 (C-2), 28.2 (C-8), 25.8 (C-7), 25.3 (C-6), 14.4 (C-3); (+)-HRESIMS m/z $251.2236[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{4}, 251.2230$).

5.3.2. Di-tert-butyl octane-1,8-diylbis((2-cyanoethyl)carbamate) (13).

To a solution of $\mathbf{1 2}$ ($190 \mathrm{mg}, 0.76 \mathrm{mmol}$) and di-tert-butyl dicarbonate ($414 \mathrm{mg}, 1.90 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(420 \mu \mathrm{~L}, 3.04 \mathrm{mmol})$. The reaction mixture was allowed to stir under N_{2} at room temperature for 22.5 h . After this time, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added to the reaction mixture, the organic phase separated and dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed in vacuo to give the desired product 13 as a light yellow oil ($321 \mathrm{mg}, 94 \%$ yield) which was used in the following step without further purification. $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.79$; $\mathrm{IR} v_{\max }(\mathrm{ATR}) 2976,2930,2858,2249$, 1686, 1413, 1366, 1154, $773 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.46\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{2}-3\right)$, 3.25 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}_{2}-5$), $2.62\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-2\right), 1.54-1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-6\right), 1.49\left(9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-11\right)$, 1.30-1.27 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7$ and $\mathrm{H}_{2}-8$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 155.4:154.6 (C-9), 118.5:117.9 (C-1), 80.3 (C-10), 48.7:47.9 (C-5), 44.0:43.6 (C-3), 29.4 (C-8), 28.9 (C-6), 28.5 (C-11), 26.8 (C-7), 17.7:17.1 (C-2); (+)-HRESIMS m/z 473.3089 [M+Na] (calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{NaO}_{4}, 473.3098$).

5.3.3. Di-tert-butyl octane-1,8-diylbis((3-aminopropyl)carbamate) (14).

To a solution of 13 ($379 \mathrm{mg}, 0.84 \mathrm{mmol}$) in dioxane $/ \mathrm{H}_{2} \mathrm{O}(4: 1,30 \mathrm{~mL})$ was added LiOH ($141 \mathrm{mg}, 3.36 \mathrm{mmol}$), $10 \% \mathrm{Pd} / \mathrm{C}(450 \mathrm{mg}, 0.42 \mathrm{mmol}$), and 50% nickel-aluminium alloy (790 mg , 6.73 mmol). The reaction mixture was heated to $50^{\circ} \mathrm{C}$ and allowed to stir overnight (21 h) under H_{2} atmosphere. After cooling to room temperature, a solution of $1 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$ was added to the reaction mixture and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic fractions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed in vacuo to give the desired product 14 as a pale yellow oil ($272 \mathrm{mg}, 71 \%$ yield). $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.23$; IR $v_{\max }$ (ATR) 3367, 2973,

2928, 2857, 1683, 1416, 1364, 1158, $771 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 3.14(2 \mathrm{H}, \mathrm{t}, J=$ $6.6 \mathrm{~Hz}, \mathrm{H}_{2}-3$), $3.08\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{2}-5\right), 2.48-2.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-1\right), 1.53-1.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-2\right)$, 1.44-1.43 (2H, m, H2-6), 1.38 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-11$), 1.25 (2 H , br m, $\mathrm{H}_{2}-8$), $1.22-1.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 100 \mathrm{MHz}\right) \delta 154.7$ (C-9), 78.0 (C-10), 46.3 (C-5), 44.2:43.8 (C-3), 39.1 (C-1), 32.5:31.8 (C-2), 28.7 (C-8), 28.1 (C-11), 27.9 (C-6), 26.2 (C-7); (+)-HRESIMS m/z 459.3891 $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{4}, 459.3905$).

5.3.4. Di-tert-butyl octane-1,8-diylbis((3-(2-phenylacetamido)propyl)carbamate) (15).

Using general procedure A, reaction of phenylacetic acid ($59 \mathrm{mg}, 0.44 \mathrm{mmol}$), $\mathbf{1 4}$ (100 mg , $0.22 \mathrm{mmol})$, PyBOP ($284 \mathrm{mg}, 0.55 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(181 \mu \mathrm{~L}, 1.31 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{1 5}$ as clear colorless gum ($114 \mathrm{mg}, 75 \%$ yield). $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.77$; IR $v_{\text {max }}$ (ATR) 3292, 2974, 2929, 2857, 1687, 1647, 415, 1154, 721, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 7.35-7.26$ (5 H , m, H-2, H-3, H-4, H-5 and H-6), 6.70 ($1 \mathrm{H}, \mathrm{br}$ s, NH-9), 3.55 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), 3.18-3.17 (4H, m, H2-10 and $\mathrm{H}_{2}-12$), 3.06 ($2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{2}-14$), 1.61-1.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-11$), 1.49-1.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-15$), $1.41\left(9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-20\right), 1.26-1.22\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-16\right.$ and $\left.\mathrm{H}_{2}-17\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.2$ (C-8), 156.6 (C-18), 135.4 (C-1), 129.5 (C-2 and C-6), 128.9 (C-3 and C-5), 127.2 (C-4), 79.6 (C19), 47.1 (C-14), 44.2 (C-7), 43.4 (C-12), 36.0 (C-10), 29.5 (C-17), 28.5 (C-15 and C-20), 27.8 (C11), 26.9 (C-16); (+)-HRESIMS $m / z 695.4725[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{40} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{O}_{6}, 695.4742$); Purity $95 \% t_{\mathrm{R}}=7.44 \mathrm{~min}$.

5.3.5. Di-tert-butyl octane-1,8-diylbis((3-(2-(2-hydroxyphenyl)acetamido)propyl) carbamate) (16).

Using general procedure A, reaction of 2-hydroxyphenylacetic acid ($40 \mathrm{mg}, 0.26 \mathrm{mmol}$), $\mathbf{1 4}$ ($60 \mathrm{mg}, 0.13 \mathrm{mmol}$), PyBOP ($170 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(109 \mu \mathrm{~L}, 0.78 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 16 as a yellow gum ($52 \mathrm{mg}, 55 \%$ yield). $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.49$; IR $v_{\text {max }}$ (ATR) 3287, 2973, 2930, 1689, 1651, 1420, 1159, $753 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 10.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.53(1 \mathrm{H}$, br s, NH-9), 7.16 (1H, ddd, $J=7.5,7.5,1.7 \mathrm{~Hz}, \mathrm{H}-4), 7.06$ (1H, br d, $J=7.5 \mathrm{~Hz}, \mathrm{H}-6), 6.95$ (1H, dd, $J=7.5,1.1 \mathrm{~Hz}, \mathrm{H}-3$), 6.81 ($1 \mathrm{H}, ~ d d d, ~ J=7.5,1.1 \mathrm{~Hz}, \mathrm{H}-5$), 3.56 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), 3.24-3.17 (4H, $\mathrm{m}, \mathrm{H}_{2}-10$ and $\mathrm{H}_{2}-12$), 3.09 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}_{2}-14$), 1.63 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-11$), $1.47-1.41$ (11 H , br m, $\mathrm{H}_{2}-15$ and $3 \mathrm{H}_{3}-20$), 1.27-1.24 (4H, br m, $\mathrm{H}_{2}-16$ and $\mathrm{H}_{2}-17$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.4$ (C-8), 156.9 (C-18), 156.4 (C-2), 130.7 (C-6), 129.0 (C-4), 122.2 (C-1), 120.2 (C-5), 118.0 (C-3), 80.1 (C-19), 47.2 (C-14), 43.4 (C-12), 41.3 (C-7), 36.1 (C-10), 29.4 (C-17), 28.5 (C-15 and C-20), 27.5 (C-11), 26.9 (C-16); (+)-HRESIMS m/z $727.4622[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{40} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{O}_{8}, 727.4640$).
5.3.6. Di-tert-butyl octane-1,8-diylbis((3-(2-(2,5-dimethoxyphenyl)acetamido)propyl)carbamate) (17).

Using general procedure A, reaction of 2,5-dimethoxyphenylacetic acid ($86 \mathrm{mg}, 0.44$ $\mathrm{mmol}), 14(100 \mathrm{mg}, 0.22 \mathrm{mmol})$, $\mathbf{P y B O P}(284 \mathrm{mg}, 0.55 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(181 \mu \mathrm{~L}, 1.31 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 17 as a clear colorless gum (114 mg, 64% yield). $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.59$; IR $v_{\text {max }}$ (ATR) 3310, 2973, 2930, 2856, 1685, 1501, 1225, 1157, 1048, $715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ MHz) $\delta 6.83-6.76$ (3H, m, H-3, H-4 and H-6), 6.67 (1 H , br s, NH-9), 3.81 (3H, s, OMe-22), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-21$), 3.52 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), 3.15 (4 H , br s, $\mathrm{H}_{2}-10$ and $\mathrm{H}_{2}-12$), 3.05 ($2 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}_{2}-14$), 1.59 ($2 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}_{2}-11$), 1.49-1.44 (2H, m, $\mathrm{H}_{2}-15$), 1.41 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-20$), 1.26-1.21 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-16$ and $\mathrm{H}_{2}-$ 17); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.2(\mathrm{C}-8), 156.2(\mathrm{C}-18), 153.7(\mathrm{C}-5), 151.6(\mathrm{C}-2), 124.9(\mathrm{C}-$ 1), 117.0 (C-6), 113.2 (C-4), 111.7 (C-3), 79.3 (C-19), 56.1 (C-22), 55.7 (C-21), 47.1 (C-14), 44.7:43.4 (C-12), 39.0 (C-7), 37.3:36.0 (C-10), 29.4 (C-17), 28.6 (C-15), 28.4 (C-20), 28.0 (C-11),
26.9 (C-16); (+)-HRESIMS m/z $815.5179[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{44} \mathrm{H}_{71} \mathrm{~N}_{4} \mathrm{O}_{10}, 815.5165$); Purity 95\% $t_{\mathrm{R}}=7.56 \mathrm{~min}$.

5.4. Synthesis of diamides 18-20

5.4.1. General procedure B: Removal of Boc protecting group.

A solution of tert-butyl-carbamate derivative in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and TFA (0.2 mL) was stirred at room temperature under N_{2} for 2 h , then dried in vacuo to afford the deprotected analogue. In some cases the product required no further purification, while in other cases, purification was achieved by C_{18} reversed-phase column chromatography eluting with $0-50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(+0.05 \%$ TFA).

5.4.2. N^{1}, N^{8}-Bis(3-(2-phenylacetamido)propyl)octane-1,8-diaminium 2,2,2-trifluoroacetate (18).

Using general procedure B , reaction of $15(35.0 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA ($200 \mu \mathrm{~L}$) and subsequent purification by C_{8} reversed-phase column chromatography (50% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (TFA)) afforded 18 as a clear pale yellow gum (40.0 mg , quantitative yield). R_{f} (20% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) 0.83 ; IR $v_{\text {max }}$ (ATR) 3285, 2938, 2860, 1673, 1556, 1201, 1178, 1132, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}, 400 \mathrm{MHz}$) $\delta 8.52$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}-13$), $8.27(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{NH}-9)$, 7.31-7.19 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and $\mathrm{H}-6$), 3.41 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), 3.12 ($2 \mathrm{H}, \mathrm{td}, J=6.7,5.9 \mathrm{~Hz}, \mathrm{H}_{2}-10$), 2.87-2.79 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-12$ and $\mathrm{H}_{2}-14$), 1.72 ($2 \mathrm{H}, \mathrm{tt}, J=6.7,6.7 \mathrm{~Hz}, \mathrm{H}_{2}-11$), 1.53 (2 H , br tt, $J=6.9$, $\left.6.9 \mathrm{~Hz}, \mathrm{H}_{2}-15\right), 1.26\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-16\right.$ and $\left.\mathrm{H}_{2}-17\right)$; ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$) $\delta 170.7$ (C-8), 136.3 (C-1), 128.9 (C-2 and C-6), 128.2 (C-3 and C-5), 126.4 (C-4), 46.7 (C-14), 44.5 (C-12), 42.3 (C-7), 35.8 (C-10), 28.3 (C-17), 26.0 (C-11), 25.8 (C-16), 25.4 (C-15); (+)-HRESIMS m/z 495.3696 $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{2}, 495.3694\right)$.
5.4.3. $\quad N^{1}, N^{8}$-Bis(3-(2-(2-hydroxyphenyl)acetamido)propyl)octane-1,8-diaminium 2,2,2trifluoroacetate (19).

Using general procedure B , reaction of $\mathbf{1 6}(22 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(200 \mu \mathrm{~L})$ and subsequent purification by C_{8} reversed-phase column chromatography (50% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (TFA)) afforded 19 as a clear pale yellow gum ($21 \mathrm{mg}, 92 \%$ yield). R_{f} (20% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) 0.62 ; IR $\nu_{\text {max }}$ (ATR) 3326, 2943, 2863, 1779, 1672, 1459, 1137, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right) \delta 9.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 8.50\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}-13\right), 8.14(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{NH}-$ 9), 7.08-7.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H-6), 6.80 ($1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-3$), 6.72 (1 H , ddd, $J=7.4,7.4,0.6$ $\mathrm{Hz}, \mathrm{H}-5), 3.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7\right), 3.14$ ($2 \mathrm{H}, \mathrm{td}, J=6.7,6.0 \mathrm{~Hz}, \mathrm{H}_{2}-10$), $2.91-2.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-12\right.$ and $\mathrm{H}_{2}-$ 14), 1.73 (2H, tt, $J=6.7,6.7 \mathrm{~Hz}, \mathrm{H}_{2}-11$), 1.53 ($2 \mathrm{H}, \mathrm{br} \mathrm{tt}, J=6.7,6.7 \mathrm{~Hz}, \mathrm{H}_{2}-15$), 1.25 ($4 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}_{2}-$ 16 and $\mathrm{H}_{2}-17$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100 \mathrm{MHz}$) $\delta 171.6$ (C-8), 155.5 (C-2), 130.7 (C-6), 127.7 (C4), 122.6 (C-1), 118.9 (C-5), 115.2 (C-3), 46.8 (C-14), 44.5 (C-12), 37.2 (C-7), 35.8 (C-10), 28.3 (C-17), 26.0 (C-11), 25.8 (C-16), 25.4 (C-15); (+)-HRESIMS m/z $527.3585[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{4}, 527.3592$); Purity $95 \% t_{\mathrm{R}}=4.93 \mathrm{~min}$.
5.4.4. $\quad N^{1}, N^{8}$-Bis(3-(2-(2,5-dimethoxyphenyl)acetamido)propyl)octane-1,8-diaminium 2,2,2trifluoroacetate (20).

Using general procedure B , reaction of $\mathbf{1 7}(53 \mathrm{mg}, 0.065 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(200 \mu \mathrm{~L})$ and subsequent purification by C_{8} reversed-phase column chromatography (50% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (TFA)) afforded 20 as a clear colorless gum (48 mg , 88% yield). R_{f} (20% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) 0.55 ; IR $v_{\text {max }}(\mathrm{ATR}) 2940,2839,1775,1645,1502,1135,1045,798,704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.51\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}-13\right), 7.99(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{NH}-9), 6.88-6.86$
($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 6.78-6.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-6$), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-19$), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-18$), 3.37 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), $3.13\left(2 \mathrm{H}, \mathrm{td}, J=6.7,6.0 \mathrm{~Hz}, \mathrm{H}_{2}-10\right), 2.89-2.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-12\right.$ and $\left.\mathrm{H}_{2}-14\right), 1.73(2 \mathrm{H}$, $\left.\mathrm{tt}, J=6.7,6.7 \mathrm{~Hz}, \mathrm{H}_{2}-11\right), 1.55-1.50\left(2 \mathrm{H}, \mathrm{m}, J=7.3,7.3 \mathrm{~Hz}, \mathrm{H}_{2}-15\right), 1.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-16\right.$ and $\mathrm{H}_{2}-$ 17); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right) \delta 170.6$ (C-8), 152.9 (C-5), 151.4 (C-2), 125.4 (C-1), 117.1 (C-6), 111.8 (C-4), 111.6 (C-3), 55.9 (C-19), 55.3 (C-18), 46.7 (C-14), 44.5 (C-12), 36.8 (C-7), 35.7 (C-10), 28.3 (C-17), 26.1 (C-11), 25.8 (C-16), 25.4 (C-15); (+)-HRESIMS m/z $615.4089[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{6}, 615.4116$); Purity $99 \% t_{\mathrm{R}}=5.74 \mathrm{~min}$.

5.5. Synthesis of diamides 22-33

5.5.1. Di- tert-Butyl dodecane-1,12-diylbis(3-benzamidopropylcarbamate) (22).

Using general procedure A, reaction of benzoic acid ($31 \mathrm{mg}, 0.25 \mathrm{mmol}$), 21 [12,13] (50 $\mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($131 \mathrm{mg}, 0.25 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(54 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$) yielded a crude product that was purified by silica gel column chromatography ($1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 22 ($39 \mathrm{mg}, 54 \%$ yield) as a colorless oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.33$; IR $v_{\text {max }}$ (ATR) 3326, 2926, 2854, 1666, 1644, 1538, 1365, 1302, 1156, $731 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.92-7.86$ (3H, m, H-2, H-4 and NH-8), 7.49-7.40 (3H, m, H-3, H-5 and H-6), 3.43 ($2 \mathrm{H}, \mathrm{dt}, J=5.9,5.8 \mathrm{~Hz}, \mathrm{H}_{2}-9$), $3.37-3.33$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-11$), 3.14 ($2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{2}-13$), 1.77-1.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10$), 1.55-1.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-14$), 1.47 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-21$), 1.27 ($8 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}_{2}-15, \mathrm{H}_{2}-16, \mathrm{H}_{2}-17$ and $\mathrm{H}_{2}-18$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 167.2(\mathrm{C}-7), 157.0(\mathrm{C}-19), 134.8(\mathrm{C}-1), 131.3(\mathrm{C}-6), 128.6$, (C-3 and C-5), 127.2 (C-2 and C-4), 79.9 (C-20), 47.1 (C-13), 43.3 (C-11), 35.9 (C-9), 29.7, 29.7, 29.5 (C-16, C-17 and C-18), 28.7 (C-14), 28.6 (C-21), 27.8 (C-10), 27.0 (C-15); (+)-HRESIMS m/z 723.5039 $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{6}, 723.5055$); Purity $99 \% t_{\mathrm{R}}=7.96 \mathrm{~min}$.

5.5.2. Di-tert-Butyl dodecane-1,12-diylbis(3-(2-hydoxybenzamido)propylcarbamate) (23).

Using general procedure A, reaction of 2-hydroxybenzoic acid ($35 \mathrm{mg}, 0.25 \mathrm{mmol}$), 21 [12,13] ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($131 \mathrm{mg}, 0.25 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(54 \mu \mathrm{~L}, 0.39 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 23 ($25 \mathrm{mg}, 34 \%$ yield) as a colorless oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.60$; IR $v_{\text {max }}$ (ATR) 3331, 2925, 2854, 1665, 1643, 1541, 1479, 1303, 1232, 1157, $754 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 12.74$ (1H, br s, OH-22), 8.36 ($1 \mathrm{H}, \mathrm{br}$ s, NH-8), 7.64 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-6$), 7.37 (1 H , ddd, $J=8.3$, $7.8,1.4 \mathrm{~Hz}, \mathrm{H}-4), 6.96$ ($1 \mathrm{H}, \mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, \mathrm{H}-3$), 6.87 (1 H , ddd, $J=8.3,7.8,1.4 \mathrm{~Hz}, \mathrm{H}-5$), $3.45-3.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-9\right), 3.36\left(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{H}_{2}-11\right), 3.15\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{2}-13\right), 1.77-1.70$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10$), 1.57-1.45 (2H, m, H2-14), 1.49 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-21$), 1.28 ($8 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}_{2}-15$, $\mathrm{H}_{2}-16, \mathrm{H}_{2}-$ 17 and $\left.\mathrm{H}_{2}-18\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.1(\mathrm{C}-7), 161.8(\mathrm{C}-2), 157.3(\mathrm{C}-19), 133.9(\mathrm{C}-4)$, 126.2 (C-6), 118.8 (C-5), 118.4 (C-3), 114.8 (C-1), 80.2 (C-20), 47.3 (C-13), 43.2 (C-11), 35.2 (C9), 29.7, 29.7, 29.5 (C-16, C-17 and C-18), 28.7 (C-14), 28.6 (C-21), 27.7 (C-10), 27.0 (C-15); (+)HRESIMS m/z 777.4746 [M+Na] (calcd for $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{NaO}_{8}$, 777.4773); Purity $99 \% t_{\mathrm{R}}=8.10 \mathrm{~min}$.
5.5.3. Di-tert-Butyl dodecane-1,12-diylbis(3-(2,5-dimethoxybenzamide)propylcarbamate) (24).

Using general procedure A, reaction of 2,5-dimethoxybenzoic acid ($46 \mathrm{mg}, 0.25 \mathrm{mmol}$), 21 [12,13] ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($131 \mathrm{mg}, 0.25 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(54 \mu \mathrm{~L}, 0.39 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography $\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 24 ($55 \mathrm{mg}, 65 \%$ yield) as a colorless oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.32$; IR $v_{\text {max }}$ (ATR) 3365, 2926, 2854, 1683, 1651, 1493, 1154, 1044, $731 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}-\mathrm{C}}$ 8), 7.76 ($1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{H}-6$), $6.98(1 \mathrm{H}, \mathrm{dd}, J=8.9,3.2 \mathrm{~Hz}, \mathrm{H}-4), 6.90(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-3)$, 3.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-22$), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-23$), $3.48-3.40$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-9$), 3.33-3.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-11$), 3.19-3.11 (2H, m, H2-13), 1.84-1.75 (2H, m, H2-10), 1.55-1.47 (2H, m, H2-14), 1.46 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-$
21), 1.26 (8 H , br s, $\mathrm{H}_{2}-15, \mathrm{H}_{2}-16, \mathrm{H}_{2}-17$ and $\mathrm{H}_{2}-18$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 165.2$ (C-7), 156.3 (C-19), 153.8 (C-5), 152.2 (C-2), 122.4 (C-1), 119.2 (C-4), 115.6 (C-6), 112.9 (C-3), 79.2 (C20), 56.4 (C-22), 55.9 (C-23), 47.2 (C-13), 43.9 (C-11), 36.6 (C-9), 29.7, 29.7, 29.5 (C-16, C-17 and $\mathrm{C}-18$), 28.7 (C-14), 28.6 (C-21), 28.2 (C-10), 27.0 (C-15); (+)-HRESIMS m/z 843.5503 $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{46} \mathrm{H}_{75} \mathrm{~N}_{4} \mathrm{O}_{10}, 843.5478$); Purity $97 \% t_{\mathrm{R}}=8.19 \mathrm{~min}$.

5.5.4. Di-tert-Butyl dodecane-1,12-diylbis(3-(2-phenylacetamido))propylcarbamate (25).

Using general procedure A, reaction of phenylacetic acid ($31 \mathrm{mg}, 0.23 \mathrm{mmol}$), 21 [12,13] ($53 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($118 \mathrm{mg}, 0.23 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(58 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography $\left(1.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 25 ($27 \mathrm{mg}, 35 \%$ yield) as a cloudy colorless oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.33$; IR $v_{\text {max }}$ (ATR) 3298, 2925, 2854,1548, 1365, 1154, $726 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35-7.27$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-$ 3, H-4, H-5 and H-6), 6.72 ($1 \mathrm{H}, \mathrm{br}$ s, NH-9), 3.55 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), $3.22-3.14$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10$ and $\mathrm{H}_{2}-$ 12), 3.06 ($2 \mathrm{H}, \mathrm{t}, J=7.1,7.1 \mathrm{~Hz}, \mathrm{H}_{2}-14$), $1.63-1.57$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-11$), $1.49-1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-15\right), 1.41$ ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-22$), 1.27-1.19 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-16$), 1.20 (6 H , br s, $\mathrm{H}_{2}-17, \mathrm{H}_{2}-18$ and $\mathrm{H}_{2}-19$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.2(\mathrm{C}-8), 156.4(\mathrm{C}-20), 135.3(\mathrm{C}-1), 129.5(\mathrm{C}-2$ and $\mathrm{C}-6), 128.9$ (C-3 and C-5), 127.1 (C-4), 79.6 (C-21), 47.1 (C-14), 44.0 (C-7), 43.3 (C-12), 35.9 (C-10), 29.7, 29.6, 29.5 (C-17, C-18 and C-19), 28.5 (C-22), 28.5 (C-15), 27.8 (C-11), 27.0 (C-16); (+)-HRESIMS m/z $751.5356[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{44} \mathrm{H}_{71} \mathrm{~N}_{4} \mathrm{O}_{6}, 751.5368$); Purity $97 \% t_{\mathrm{R}}=7.94 \mathrm{~min}$.
5.5.5. Di-tert-Butyl dodecane-1,12-diylbis(3-(2-(2-hydroxyphenyl)acetamido)propylcarbamate) (26).

Using general procedure A, reaction of 2-hydroxyphenylacetic acid ($34 \mathrm{mg}, 0.22 \mathrm{mmol}$), $\mathbf{2 1}$ [12,13] ($52 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($116 \mathrm{mg}, 0.22 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(56 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography $\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $26\left(17 \mathrm{mg}, 21 \%\right.$ yield) as a pale yellow cloudy oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.31$; IR $v_{\text {max }}$ (ATR) 3287, 2928, 2854, 1685, 1647, 1456, 1418, 1147, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 10.18$ (1 H , br s, OH-2), 7.53 (1 H , br s, NH-9), 7.17 ($1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.8,1.3 \mathrm{~Hz}, \mathrm{H}-4$), 7.06 ($1 \mathrm{H}, \mathrm{d}, J=$ $7.4 \mathrm{~Hz}, \mathrm{H}-6), 6.96(1 \mathrm{H}$, dd, $J=8.0,1.1 \mathrm{~Hz}, \mathrm{H}-3), 6.82(1 \mathrm{H}, \mathrm{ddd}, J=7.8,7.4,1.1 \mathrm{~Hz}, \mathrm{H}-5), 3.57$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), 3.27-3.19 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10$ and $\mathrm{H}_{2}-12$), 3.09 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}_{2}-14$), 1.66-1.60 (2 H , $\mathrm{m}, \mathrm{H}_{2}-11$), 1.53-1.47 (2H, m, $\mathrm{H}_{2}-15$), 1.46 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-22$), 1.26 ($8 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-16, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18$ and $\left.\mathrm{H}_{2}-19\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.5(\mathrm{C}-8), 157.0(\mathrm{C}-20), 156.6(\mathrm{C}-2), 130.7$ (C-6), 129.1 (C-4), 122.3 (C-1), 120.3 (C-5), 118.2 (C-3), 80.2 (C-21), 47.3 (C-14), 43.3 (C-12), 41.5 (C-7), 36.1 (C-10), 29.7, 29.7, 29.5 (C-17, C-18 and C-19), 28.6 (C-22 and C-16), 27.5 (C-11), 27.0 (C-15); (+)-HRESIMS $\mathrm{m} / \mathrm{z} 783.5258[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{44} \mathrm{H}_{71} \mathrm{~N}_{4} \mathrm{O}_{8}, 783.5266$); Purity $96 \% t_{\mathrm{R}}=7.60 \mathrm{~min}$.
5.5.6. Di-tert-Butyl dodecane-1,12-diylbis(3-(2-(2-methoxyphenyl)acetamido)propylcarbamate) (27).

Using general procedure A, reaction of 2-methoxyphenylacetic acid ($36 \mathrm{mg}, 0.21 \mathrm{mmol}$), 21 [12,13] ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($111 \mathrm{mg}, 0.21 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(54 \mu \mathrm{~L}, 0.39 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 27 (42 mg, 53% yield) as a colorless cloudy oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.36$; IR $v_{\text {max }}$ (ATR) 3302, 2926, 2854, 1674, 1653, 1465, 1365, 1245, 1155, $732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.26-$ 7.22 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H-6), 6.95-6.88 (2H, m, H-3 and H-5), 6.63 ($1 \mathrm{H}, \mathrm{br}$ s, NH-9), 3.85 ($3 \mathrm{H}, \mathrm{s}$, OMe-23), 3.55 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), 3.19-3.11 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10$ and $\mathrm{H}_{2}-12$), 3.08-3.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-14$), 1.631.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-11$), 1.48-1.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-15$), 1.41 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-22$), 1.25 ($6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18$ and $\left.\mathrm{H}_{2}-19\right), 1.24-1.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-16\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.4(\mathrm{C}-8), 157.4(\mathrm{C}-2)$, 156.3 (C-20), 131.3 (C-6), 128.6 (C-4), 124.0 (C-1), 120.9 (C-5), 110.7 (C-3), 79.3 (C-21), 55.3 (C-
23), 47.1 (C-14), 43.5 (C-12), 38.8 (C-7), 36.1 (C-10), 29.7, 29.7, 29.5 (C-17, C-18 and C-19), 28.7 (C-15), 28.5 (C-22), 28.0 (C-11), 27.0 (C-16); (+)-HRESIMS m/z $811.5590[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{46} \mathrm{H}_{75} \mathrm{~N}_{4} \mathrm{O}_{8}, 811.5579$); Purity $99 \% t_{\mathrm{R}}=8.05 \mathrm{~min}$.

5.5.7. Di-tert-Butyl dodecane-1,12-diylbis(3-(2-(4-methoxyphenyl)acetamido)propylcarbamate) (28).

Using general procedure A , reaction of 4-methoxyphenylacetic acid ($42 \mathrm{mg}, 0.25 \mathrm{mmol}$), 21 [12,13] ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($131 \mathrm{mg}, 0.25 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(54 \mu \mathrm{~L}, 0.39 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography $\left(2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 28 ($45 \mathrm{mg}, 52 \%$ yield) as a colorless cloudy oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) 0.31 ; IR $v_{\max }$ (ATR) 3306, 2927, 2854, 1652, 1511, 1418, 1365, 1245, 1155, $730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.20$ ($2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-2$ and H-6), 6.86 ($2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-3$ and H-5), 6.68 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}-9$), 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-23$), 3.49 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), $3.21-3.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10\right.$ and $\mathrm{H}_{2}-12$), 3.06 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $\mathrm{H}_{2}-14$), 1.63-1.56 (2H, m, H2-11), 1.49-1.44 (2H, m, H2-15), 1.41 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-22$), 1.25 (8 H , br s, $\mathrm{H}_{2}-16, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18$ and $\left.\mathrm{H}_{2}-19\right)$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) $\delta 171.6$ (C-8), 158.8 (C-4), 156.5 (C-20), 130.6 (C-2 and C-6), 127.5 (C-1), 114.3 (C-3 and C-5), 79.5 (C-21), 47.1 (C-14), 43.4 (C12), 43.2 (C-7), 35.9 (C-10), 29.7, 29.7, 29.5 (C-17, C-18 and C-19), 28.6 (C-15), 28.5 (C-22), 27.8 (C-11), 27.0 (C-16); (+)-HRESIMS m/z $811.5571[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{46} \mathrm{H}_{75} \mathrm{~N}_{4} \mathrm{O}_{8}, 811.5579$); Purity $98 \% t_{\mathrm{R}}=7.94 \mathrm{~min}$.
5.5.8. Di-tert-Butyl dodecane-1,12-diylbis(3-(2-(2,5-dimethoxyphenyl)acetamido)propylcarbamate) (29).

Using general procedure A, reaction of 2,5-dimethoxyphenylacetic acid ($42 \mathrm{mg}, 0.21$ mmol), 21 [12,13] ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($111 \mathrm{mg}, 0.21 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(54 \mu \mathrm{~L}, 0.39$ mmol) yielded a crude product that was purified by silica gel column chromatography (2% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $29\left(47 \mathrm{mg}, 56 \%\right.$ yield) as a colorless cloudy oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 0.38 ; IR $v_{\max }$ (ATR) 3309, 2926, 2854, 1675, 1652, 1417, 1224, 1156, 1048, $715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.83(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{H}-6), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3), 6.77(1 \mathrm{H}, \mathrm{dd}, J=$ $8.8,2.7 \mathrm{~Hz}, \mathrm{H}-4), 6.66$ (1 H , br s, NH-9), 3.81 (3H, s, OMe-24), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-23$), 3.52 ($2 \mathrm{H}, \mathrm{s}$, $\mathrm{H}_{2}-7$), 3.18-3.13 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10$ and $\mathrm{H}_{2}-12$), 3.09-3.02 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-14$), 1.63-1.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-11$), 1.47-1.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-15$), 1.41 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-22$), 1.25 ($8 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}_{2}-16, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18$ and $\mathrm{H}_{2}-19$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.2(\mathrm{C}-8), 156.2(\mathrm{C}-20), 153.8(\mathrm{C}-5), 151.6(\mathrm{C}-2), 125.0(\mathrm{C}-1)$, 117.1 (C-6), 113.2 (C-4), 111.8 (C-3), 79.3 (C-21), 56.1 (C-24), 55.8 (C-23), 47.2 (C-14), 43.5 (C12), 38.0 (C-7), 36.1 (C-10), 29.7, 29.7, 29.5 (C-17, C-18 and C-19), 28.7 (C-15), 28.5 (C-22), 28.0 (C-11), 27.0 (C-16); (+)-HRESIMS m/z $871.5760[M+H]^{+}$(calcd for $\mathrm{C}_{48} \mathrm{H}_{79} \mathrm{~N}_{4} \mathrm{O}_{10}, 871.5791$); Purity $96 \% t_{\mathrm{R}}=8.05 \mathrm{~min}$.
5.5.9. Di-tert-Butyl dodecane-1,12-diylbis(3-(3-phenylpropanamido)propylcarbamate) (30).

Using general procedure A, reaction of 3-phenylpropionic acid ($38 \mathrm{mg}, 0.25 \mathrm{mmol}$), 21 [12,13] ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($131 \mathrm{mg}, 0.25 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(54 \mu \mathrm{~L}, 0.39 \mathrm{mmol})$ yielded a crude product that was purified by silica gel column chromatography ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield $30(48 \mathrm{mg}, 63 \%)$ as a colorless oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.41$; IR $v_{\text {max }}$ (ATR) 3298, 2925, 2854, 1651, 1545, 1477, 1454, 1365, 1158, $732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.28-7.17$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 2, H-3, H-4, H-5 and H-6), 6.82 ($1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}-10$), $3.21-3.13$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-11$ and $\mathrm{H}_{2}-13$), 3.08 (2 H , $\left.\mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H}_{2}-15\right), 2.97\left(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{H}_{2}-7\right), 2.49\left(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.61-1.54(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}_{2}-12$), $1.51-1.46$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-16$), 1.44 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-23$), 1.27 ($8 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18, \mathrm{H}_{2}-19$ and $\left.\mathrm{H}_{2}-20\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 172.5$ (C-9), 156.6 (C-21), 141.1 (C-1), 128.7, 128.5, 128.5, 128.4, 126.1 (C-2, C-3, C-4, C-5 and C-6), 79.6 (C-22), 47.1 (C-15), 43.2 (C-13), 38.6 (C-8), 35.6
(C-11), 31.8 (C-7), 29.7, 29.6, 29.4 (C-18, C-19 and C-20), 28.5 (C-23), 28.5 (C-16), 27.7 (C-12), 26.9 (C-17); (+)-HRESIMS m/z 779.5643 [M+H] (calcd for $\mathrm{C}_{46} \mathrm{H}_{75} \mathrm{~N}_{4} \mathrm{O}_{6}, 779.5681$); Purity $96 \% t_{\mathrm{R}}$ $=8.13 \mathrm{~min}$.
5.5.10. Di-tert-Butyl dodecane-1,12-diylbis(3-(3-(2-hydroxyphenyl)propanamido)propylcarbamate) (31).

Using general procedure A, reaction of 3-(2-hydroxyphenyl)propanoic acid ($40 \mathrm{mg}, 0.24$ mmol), 21 [12,13] ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($156 \mathrm{mg}, 0.30 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(55 \mu \mathrm{~L}, 0.40$ mmol) yielded a crude product that was purified by silica gel column chromatography (2% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $31\left(20 \mathrm{mg}, 25 \%\right.$ yield) as a colorless oil. $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.85$; IR $v_{\text {max }}$ (ATR) 3289, 2927, 2855, 1651, 1456, 1419, 1365, 1245, 1153, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 7.14(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}-24), 7.10(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, \mathrm{H}-6), 7.07(1 \mathrm{H}, \mathrm{ddd}, J=7.9,7.9$, $1.6 \mathrm{~Hz}, \mathrm{H}-4), 6.90$ ($1 \mathrm{H}, \mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, \mathrm{H}-3$), 6.82 ($1 \mathrm{H}, \mathrm{ddd}, J=7.9,7.4,1.1 \mathrm{~Hz}, \mathrm{H}-5$), 5.74 ($1 \mathrm{H}, \mathrm{br}$ s, NH-10), $3.21-3.13$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-11$ and $\mathrm{H}_{2}-13$), 3.06 ($2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{2}-15$), 2.91 ($2 \mathrm{H}, \mathrm{t}$, $J=5.7 \mathrm{~Hz}, \mathrm{H}_{2}-7$), $2.64\left(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.61-1.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-12\right), 1.50-1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-\right.$ 16), 1.45 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-23$), 1.26 ($8 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}_{2}-17, \mathrm{H}_{2}-18, \mathrm{H}_{2}-19$ and $\mathrm{H}_{2}-20$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100$ MHz) $\delta 174.2$ (C-9), 156.8 (C-21), 155.2 (C-2), 130.7 (C-4), 128.3 (C-1), 128.0 (C-6), 120.3 (C-5), 117.8 (C-3), 80.0 (C-22), 47.2 (C-15), 43.5 (C-13), 37.5 (C-8), 36.2 (C-11), 29.7, 29.6, 29.5 (C-18, $\mathrm{C}-19$ and $\mathrm{C}-20$), 28.6 (C-16), 28.6 (C-23), 27.4 (C-12), 24.7 (C-7), 27.0 (C-17); (-)-HRESIMS m/z $809.5427[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{46} \mathrm{H}_{73} \mathrm{~N}_{4} \mathrm{O}_{8}, 809.5434$); Purity $96 \% t_{\mathrm{R}}=7.64 \mathrm{~min}$.
5.5.11. Di-tert-Butyl
dimethoxyphenyl)propanamido)propylcarbamate) (32).

Using general procedure A, reaction of 3-(2,5-dimethoxyphenyl)propanoic acid (63 mg , 0.30 mmol), 21 [12,13] ($51 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\operatorname{PyBOP}(156 \mathrm{mg}, 0.30 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(111 \mu \mathrm{~L}, 0.80$ mmol) yielded a crude product that was purified by silica gel column chromatography (2% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield 32 ($53 \mathrm{mg}, 59 \%$) as a colorless oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.76$; IR $v_{\text {max }}$ (ATR) 3298, 2926, 2854, 1690, 1672, 1646, 1499, 1417, 1222, 1156, 1049, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.77-6.74(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-6$ and NH-10), $6.69(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.9 \mathrm{~Hz}, \mathrm{H}-4)$, $3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-24), 3.74(1 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-25)$, $3.21-3.14\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-11\right.$ and $\left.\mathrm{H}_{2}-13\right)$, 3.11-3.06 (2 H , $\mathrm{m}, \mathrm{H}_{2}-15$), 2.92 ($2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{2}-7$), $2.47\left(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.62-1.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-12\right)$, 1.52-1.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-16$), 1.44 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-23$), 1.26 (8 H , br s, $\mathrm{H}_{2}-17, \mathrm{H}_{2}-18, \mathrm{H}_{2}-19$ and $\mathrm{H}_{2}-20$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 172.7$ (C-9), 156.7 (C-21), 153.6 (C-5), 151.8 (C-2), 130.6 (C-1), 116.3 (C-6), 111.8 (C-4), 111.4 (C-3), 79.6 (C-22), 56.0 (C-24), 55.8 (C-25), 47.1 (C-15), 43.3 (C13), 37.0 (C-8), 35.7 (C-11), 29.7, 29.6, 29.5 (C-18, C-19 and C-20), 28.5 (C-23), 28.5 (C-16), 27.8 (C-12), 27.1 (C-7), 27.0 (C-17); (+)-HRESIMS m/z $921.5889[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{50} \mathrm{H}_{82} \mathrm{~N}_{4} \mathrm{NaO}_{10}$, 921.5923); Purity $97 \% t_{R}=8.13$ min.
5.5.12. Di-tert-Butyl dimethoxyphenyl)propanamido)propylcarbamate) (33).

Using general procedure A, reaction of 3-(3,4-dimethoxyphenyl)propionic acid ($53 \mathrm{mg}, 0.25$ mmol), 21 [12,13] ($50 \mathrm{mg}, 0.10 \mathrm{mmol}$), PyBOP ($131 \mathrm{mg}, 0.25 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(54 \mu \mathrm{~L}, 0.39$ mmol) yielded a crude product that was purified by silica gel column chromatography (2% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 33 (46 mg , 51% yield) as a colorless oil. $\mathrm{R}_{f}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.33$; IR $v_{\text {max }}$ (ATR) 3311, 2926, 2854, 1650, 1514, 1417, 1235, 1155, 1028, $764 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 6.82(1 \mathrm{H}, \mathrm{br}$ s, NH-10), 6.79-6.73 (3H, m, H-2, H-5 and H-6), 3.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-24$), 3.84 (3H, s, OMe-25), 3.21-3.13 (4H, m, H2-11 and $\mathrm{H}_{2}-13$), 3.11-3.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-15$), 2.92 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.6 \mathrm{~Hz}, \mathrm{H}_{2}-7\right), 2.47\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.61-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-12\right), 1.52-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-16\right)$,
1.44 ($9 \mathrm{H}, \mathrm{s}, 3 \mathrm{H}_{3}-23$), 1.26 (8 H , br s, $\mathrm{H}_{2}-17, \mathrm{H}_{2}-18, \mathrm{H}_{2}-19$ and $\mathrm{H}_{2}-20$); ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 172.3$ (C-9), 156.7 (C-21), 148.9 (C-3), 147.4 (C-4), 133.8 (C-1), 120.3 (C-6), 111.8 (C-2), 111.4 (C-5), 79.6 (C-22), 56.0 (C-24), 55.9 (C-25), 47.0 (C-15), 43.1 (C-13), 38.9 (C-8), 35.5 (C-11), 31.5 (C-7), 29.7, 29.6, 29.4, 26.9 (C-17, C-18, C-19 and C-20), 28.6 (C-16), 28.5 (C-23), 27.7 (C-12);
$(+)$-HRESIMS m/z $899.6076[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{50} \mathrm{H}_{83} \mathrm{~N}_{4} \mathrm{O}_{10}, 899.6104$); Purity $99 \% t_{\mathrm{R}}=7.95 \mathrm{~min}$.

5.6. Synthesis of diamides 34-45

5.6.1. N^{1}, N^{12}-Bis(3-benzamidopropyl)dodecane-1,12-diaminium 2,2,2-trifluoroacetate (34).

Using general procedure B , reaction of $22(23 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(0.2 \mathrm{~mL})$ afforded 34 as a colorless oil ($19 \mathrm{mg}, 80 \%$ yield) which required no further purification. R_{f} ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) 0.84 ; IR $v_{\text {max }}$ (ATR) 3314, 2928, 2855, 1671, 1634, 1542, 1312, 1199, 1136, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.85(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 7.55(1 \mathrm{H}$, dddd, $J=8.2,8.2,1.4,1.4 \mathrm{~Hz}, \mathrm{H}-4$), 7.47 (2 H , ddd, $J=8.2,7.8,1.4 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5$), 3.51 ($2 \mathrm{H}, \mathrm{t}$, $\left.J=6.5 \mathrm{~Hz}, \mathrm{H}_{2}-9\right), 3.05\left(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{2}-11\right), 3.00\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{2}-13\right), 1.99(2 \mathrm{H}, \mathrm{tt}, J=$ $\left.7.1,6.5 \mathrm{~Hz}, \mathrm{H}_{2}-10\right)$, $1.70\left(2 \mathrm{H}, \mathrm{tt}, J=7.7,7.3 \mathrm{~Hz}, \mathrm{H}_{2}-14\right), 1.40-1.33\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-15, \mathrm{H}_{2}-16, \mathrm{H}_{2}-17\right.$ and $\mathrm{H}_{2}-18$); ${ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{OD}, 100 \mathrm{MHz}$) $\delta 171.1$ (C-7), $135.0(\mathrm{C}-1), 133.0(\mathrm{C}-4), 129.6$ (C-3 and C-5), 128.3 (C-2 and C-6), 49.0 (C-13), 46.4 (C-11), 37.5 (C-9), 30.6, 30.5, 30.2 (C-16, C-17 and C-18), 27.8 (C-10), 27.5 (C-15), 27.3 (C-14); (+)-HRESIMS m/z $523.3990[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{2}, 523.4007$); Purity $99 \% t_{\mathrm{R}}=6.67 \mathrm{~min}$.
5.6.2. N^{1}, N^{12}-Bis(3-(2-hydroxybenzamido)propyl)dodecane-1,12-diaminium 2,2,2-trifluoroacetate (35).

Using general procedure B , reaction of $\mathbf{2 3}(20 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA (0.2 mL) followed by purification by C_{18} reversed-phase column chromatography ($50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($+0.05 \%$ TFA)) afforded 35 as a colorless oil ($19 \mathrm{mg}, 92 \%$ yield). $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.36$; IR $v_{\text {max }}(A T R) 3315,2929,2856,1670,1634,1547,1200,1133,722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 400$ $\mathrm{MHz}) \delta 7.77$ ($1 \mathrm{H}, \mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{H}-6$), 7.39 (1 H , ddd, $J=7.4,7.4,1.5 \mathrm{~Hz}, \mathrm{H}-4$), $6.93-6.87$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and H-5), 3.53 ($2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{2}-9$), 3.06 ($2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{2}-11$), $3.00(2 \mathrm{H}, \mathrm{t}, J$ $\left.=7.7 \mathrm{~Hz}, \mathrm{H}_{2}-13\right), 2.00\left(2 \mathrm{H}, \mathrm{tt}, J=7.2,6.5 \mathrm{~Hz}, \mathrm{H}_{2}-10\right), 1.70\left(2 \mathrm{H}, \mathrm{tt}, J=7.7,7.7 \mathrm{~Hz}, \mathrm{H}_{2}-14\right), 1.43-$ $1.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-15\right)$, $1.33\left(6 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{H}_{2}-16, \mathrm{H}_{2}-17$ and $\left.\mathrm{H}_{2}-18\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta$ 171.7 (C-7), 160.9 (C-2), 135.0 (C-4), 129.2 (C-6), 120.2 (C-5), 118.4 (C-3), 116.9 (C-1), 49.2 (C13), 46.4 (C-11), 37.0 (C-9), 30.6, 30.5, 30.2 (C-16, C-17 and C-18), 27.7 (C-10), 27.5 (C-15), 27.3 (C-14); (+)-HRESIMS m/z 555.3873 [M+H] (calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{4}, 555.3910$); Purity $99 \% t_{\mathrm{R}}=$ 6.91 min .
5.6.3. $\quad N^{1}, N^{12}$-Bis(3-(2,5-dimethoxybenzamido)propyl)dodecane-1,12-diaminium 2,2,2trifluoroacetate (36).

Using general procedure B , reaction of $24(38.0 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA (0.2 mL) followed by purification by C_{18} reversed-phase column chromatography (50% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($+0.05 \%$ TFA)) afforded 36 as a colorless oil ($34.0 \mathrm{mg}, 87 \%$ yield). R_{f} (10% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.82$; $\mathrm{IR} v_{\max }(\mathrm{ATR}) 3375,2930,2856,1674,1640,1494,1200,1174,721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$) $\delta 7.48(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-6), 7.10-7.05$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-4$), 3.92 (3H, s, OMe-19), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-20$), $3.54\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{2}-9\right)$, 3.05 ($2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{2}-$ 11), $3.00\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{2}-13\right), 1.99\left(2 \mathrm{H}, \mathrm{tt}, J=7.2,6.5 \mathrm{~Hz}, \mathrm{H}_{2}-10\right), 1.70(2 \mathrm{H}, \mathrm{tt}, J=7.7,7.2$ $\mathrm{Hz}, \mathrm{H}_{2}-14$), $1.45-1.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-15\right), 1.32\left(6 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{H}_{2}-16, \mathrm{H}_{2}-17$ and $\left.\mathrm{H}_{2}-18\right)$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, 100 MHz) $\delta 169.0(\mathrm{C}-7), 155.1(\mathrm{C}-5), 153.3(\mathrm{C}-2), 123.0(\mathrm{C}-1), 119.7(\mathrm{C}-4), 116.8(\mathrm{C}-6), 114.2$ (C3), 56.9 (C-19), 56.2 (C-20), 49.2 (C-13), 46.3 (C-11), 37.3 (C-9), 30.6, 30.5, 30.2 (C-16, C-17 and

C-18), 27.7 (C-10), 27.5 (C-15), 27.3 (C-14); (+)-HRESIMS m/z $643.4394[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{6}, 643.4435$); Purity $99 \% t_{\mathrm{R}}=6.92 \mathrm{~min}$.
5.6.4. $\quad N^{1}, N^{12}$-Bis(3-(2-phenylacetamido)propyl)dodecane-1,12-diaminium 2,2,2-trifluoroacetate (37).

Using general procedure B , reaction of $25(22 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(0.2 \mathrm{~mL})$ afforded $37\left(22 \mathrm{mg}, 96 \%\right.$ yield) as a colorless oil which required no further purification. R_{f} $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.35$; IR $v_{\max }$ (ATR) 3273, 2929, 2856, 1643, 1554, 1435, 1136, $720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.33-7.29(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-5$ and $\mathrm{H}-6), 7.28-7.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$, $3.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7\right), 3.30\left(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-10\right), 2.91-2.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-12\right.$ and $\left.\mathrm{H}_{2}-14\right), 1.85(2 \mathrm{H}$, $\left.\mathrm{tt}, J=6.9,6.9 \mathrm{~Hz}, \mathrm{H}_{2}-11\right), 1.62\left(2 \mathrm{H}, \mathrm{tt}, J=7.4,7.1 \mathrm{~Hz}, \mathrm{H}_{2}-15\right), 1.30\left(8 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{H}_{2}-16, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18$ and $\left.\mathrm{H}_{2}-19\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 175.4(\mathrm{C}-8), 136.9(\mathrm{C}-1), 130.1$ (C-2 and C-6), 129.7 (C-3 and C-5), 128.1 (C-4), 49.3 (C-14), 46.1 (C-12), 43.8 (C-7), 36.9 (C-10), 30.6 (C-17, C-18 and C-19), 27.6 (C-11), 27.5 (C-16), 27.2 (C-15); (+)-HRESIMS m/z $551.4286[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{2}, 551.4325$); Purity $99 \% t_{\mathrm{R}}=6.48 \mathrm{~min}$.
5.6.5. $\quad N^{1}, N^{12}$-Bis(3-(2-(2-hydroxyphenyl)acetamido)propyl)dodecan-1,12-diaminium 2,2,2trifluoroacetate (38).

Using general procedure B , reaction of $26(20 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(0.2 \mathrm{~mL})$ afforded 38 as a colorless oil ($20 \mathrm{mg}, 96 \%$ yield) which required no further purification. R_{f} $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.34$; IR $v_{\text {max }}(\mathrm{ATR}) 3090,2929,2856,1670,1642,1457,1200,1178,1134$, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.14(1 \mathrm{H}, \mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, \mathrm{H}-6), 7.09(1 \mathrm{H}, \mathrm{dd}, J=7.7$, $1.8 \mathrm{~Hz}, \mathrm{H}-4), 6.82-6.79$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-5$), $3.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7\right), 3.32\left(2 \mathrm{H}\right.$, obsc. $\left.\mathrm{H}_{2}-10\right), 2.96(2 \mathrm{H}$, $\left.\mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-12\right), 2.88\left(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{2}-14\right), 1.85\left(2 \mathrm{H}, \mathrm{tt}, J=6.9,6.6 \mathrm{~Hz}, \mathrm{H}_{2}-11\right), 1.62(2 \mathrm{H}$, $\left.\mathrm{tt}, J=7.4,7.0 \mathrm{~Hz}, \mathrm{H}_{2}-15\right), 1.32\left(8 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-16, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18\right.$ and $\left.\mathrm{H}_{2}-19\right)$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100$ MHz) $\delta 176.2$ (C-8), 156.7 (C-2), 132.3 (C-6), 129.6 (C-4), $123.2(\mathrm{C}-1), 120.8(\mathrm{C}-5), 116.2(\mathrm{C}-3)$, 49.2 (C-14), 45.9 (C-12), 39.1 (C-7), 36.6 (C-10), 30.6, 30.5, 30.2 (C-17, C-18 and C-19), 27.6 (C11), 27.5 (C-16), 27.2 (C-15); (+)-HRESIMS m/z $583.4190[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{4}$, 583.4223); Purity $99 \% t_{R}=5.70 \mathrm{~min}$.
5.6.6. $\quad N^{1}, N^{12}$-Bis(3-(2-(2-methoxyphenyl)acetamido)propyl)dodecane-1,12-diaminium 2,2,2trifluoroacetate (39).

Using general procedure B, reaction of $27(20 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(0.2 \mathrm{~mL})$ afforded 39 as a colorless oil ($20 \mathrm{mg}, 90 \%$ yield) which required no further purification. R_{f} ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) 0.33 ; IR $v_{\text {max }}(\mathrm{ATR}) 3284,3071,2927,2852,1663,1634,1492,1247,1198$, $1143,720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.65(1 \mathrm{H}, \mathrm{ddd}, J=8.2,8.2,1.5 \mathrm{~Hz}, \mathrm{H}-4), 7.20(1 \mathrm{H}$, dd, $J=7.4,1.4 \mathrm{~Hz}, \mathrm{H}-6), 6.97(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-3), 6.92(1 \mathrm{H}, \mathrm{ddd}, J=8.2,7.4,1.4 \mathrm{~Hz}, \mathrm{H}-5)$, 3.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-20$), 3.54 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), $3.29\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{2}-10\right), 2.94(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\mathrm{H}_{2}-12$), $2.88\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{2}-14\right), 1.85\left(2 \mathrm{H}, \mathrm{tt}, J=7.0,6.7 \mathrm{~Hz}, \mathrm{H}_{2}-11\right), 1.60(2 \mathrm{H}, \mathrm{tt}, J=7.7$, $\left.6.7 \mathrm{~Hz}, \mathrm{H}_{2}-15\right), 1.31\left(8 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{H}_{2}-16, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18$ and $\left.\mathrm{H}_{2}-19\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta$ 175.7 (C-8). 159.0 (C-2), 132.2 (C-6), 129.8 (C-4), 124.9 (C-1), 121.8 (C-5), 111.7 (C-3), 55.9 (C20), 48.9 (C-14), 46.0 (C-12), 38.6 (C-7), 36.8 (C-10), 30.6, 30.5, 30.2 (C-17, C-18 and C-19), 27.7 (C-11), 27.5 (C-16), 27.2 (C-15); (+)-HRESIMS m/z $611.4506[M+H]^{+}$(calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{4}$, 611.4531); Purity $99 \% t_{R}=6.98$ min.
5.6.7. $\quad N^{1}, N^{12}$-Bis(3-(2-(4-methoxyphenyl)acetamido)propyl)dodecane-1,12-diaminium 2,2,2trifluoroacetate (40).

Using general procedure B , reaction of $28(20.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA (0.2 mL) afforded 40 as a colorless oil ($20.0 \mathrm{mg}, 96 \%$ yield) which required no further purification. $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.54$; IR $v_{\text {max }}$ (ATR) 3284, 2929, 2855, 1673, 1638, 1514, 1199, 1138, 1032, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.21(2 \mathrm{H}, \mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, \mathrm{H}-2$ and $\mathrm{H}-6), 6.87(2 \mathrm{H}, \mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5)$, 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-20$), $3.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7\right.$), 3.29 ($2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{2}-10$), $2.90-2.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-12\right.$ and $\left.\mathrm{H}_{2}-14\right), 1.84\left(2 \mathrm{H}, \mathrm{tt}, J=6.5,6.5 \mathrm{~Hz}, \mathrm{H}_{2}-\right.$ 11), $1.65-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-15\right), 1.33\left(8 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{H}_{2}-16, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18$ and $\left.\mathrm{H}_{2}-19\right)$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, $100 \mathrm{MHz}) \delta 175.8$ (C-8), 160.3 (C-4), 131.1 (C-2 and C-6), 128.8 (C-1), 115.1 (C-3 and C-5), 55.7 (C-20), 49.1 (C-14), 46.1 (C-12), 42.9 (C-7), 36.9 (C-10), 30.6, 30.5, 30.2 (C-17, C-18 and C-19), 27.6 (C-11), 27.5 (C-16), 27.2 (C-15); (+)-HRESIMS m/z $611.4495[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{4}$, 611.4531); Purity $98 \% t_{R}=6.38 \mathrm{~min}$.
5.6.8. $\quad N^{1}, N^{12}$-Bis(3-(2-(2,5-dimethoxyphenyl)acetamido)propyl)dodecane-1,12-diaminium 2,2,2trifluoroacetate (41).

Using general procedure B , reaction of $29(38 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(0.2 \mathrm{~mL})$ afforded 41 as a colorless oil ($28 \mathrm{mg}, 71 \%$ yield) which required no further purification. R_{f} $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.55$; IR $v_{\max }(\mathrm{ATR}) 3290,2930,2855,1671,1650,1501,1226,1199,1174$, 1024, $719 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 6.89(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-3), 6.82-6.78$ (2H, m, H-4 and H-6), 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-20$), 3.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-21$) 3.51 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-7$), 3.30 (2 H , obsc. $\mathrm{H}_{2}-$ 10), $2.94\left(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{2}-12\right), 2.88\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{2}-14\right), 1.85(2 \mathrm{H}, \mathrm{tt}, J=7.1,6.8 \mathrm{~Hz}$, $\mathrm{H}_{2}-11$), 1.62 ($2 \mathrm{H}, \mathrm{tt}, J=7.7,7.1 \mathrm{~Hz}, \mathrm{H}_{2}-15$), $1.31\left(8 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2}-16, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18\right.$ and $\left.\mathrm{H}_{2}-19\right)$; ${ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 175.5$ (C-8), 155.1 (C-5), 153.1 (C-2), 125.9 (C-1), 118.6 (C-6), 113.8 (C-4), 112.7 (C-3), 56.5 (C-20), 56.1 (C-21), 49.3 (C-14), 45.9 (C-12), 38.7 (C-7), 36.7 (C-10), 30.6, 30.5, 30.2 (C-17, C-18 and C-19), 27.7 (C-11), 27.5, (C-16), 27.2 (C-15); (+)-HRESIMS m/z $671.4716[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{38} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{O}_{6}, 671.4748$); Purity $99 \% t_{\mathrm{R}}=6.30 \mathrm{~min}$.
5.6.9. N^{1}, N^{12}-Bis(3-(3-phenylpropanamido)propyl)dodecane-1,12-diaminium 2,2,2-trifluoroacetate (42).

Using general procedure B, reaction of $30(31 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(0.2 \mathrm{~mL})$ afforded 42 as a colorless oil ($31 \mathrm{mg}, 97 \%$ yield) which required no further purification. R_{f} $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.53$; IR $v_{\text {max }}(\mathrm{ATR}) 3290,2928,2856,1671,1646,1200,1174,1138,721$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$) $\delta 7.29-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and $\mathrm{H}-6), 3.24$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=6.6 \mathrm{~Hz}, \mathrm{H}_{2}-11\right), 2.93\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2}-7\right), 2.86\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}_{2}-15\right), 2.75(2 \mathrm{H}, \mathrm{t}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{H}_{2}-13\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.77\left(2 \mathrm{H}, \mathrm{tt}, J=7.0,6.6 \mathrm{~Hz}, \mathrm{H}_{2}-12\right), 1.66(2 \mathrm{H}, \mathrm{tt}, J=7.6$, $7.3 \mathrm{~Hz}, \mathrm{H}_{2}-16$), 1.41-1.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-17$), $1.35\left(6 \mathrm{H}\right.$, br s, $\mathrm{H}_{2}-18, \mathrm{H}_{2}-19$ and $\left.\mathrm{H}_{2}-20\right)$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$) $\delta 176.3$ (C-9), 142.0 (C-1), 129.5, 129.4, 127.3 (C-2 to C-6), 49.1 (C-15), 46.0 (C-13), 38.3 (C-8), 36.6 (C-11), 32.6 (C-7), 30.6, 30.5, 30.2 (C-18, C-19 and C-20), 27.6 (C-12), 27.5 (C-17), 27.3 (C-16); (+)-HRESIMS m/z $579.4597[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{2}, 579.4633$); Purity $99 \% t_{\mathrm{R}}=6.67 \mathrm{~min}$.
5.6.10. $\quad N^{1}, N^{12}$-Bis(3-(3-(2-hydroxyphenyl)propanamido)propyl)dodecane-1,12-diaminium 2,2,2trifluoroacetate (43).

Using general procedure B , reaction of $31(14 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(0.2 \mathrm{~mL})$ followed by purification by C_{18} reversed-phase column chromatography ($50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (TFA)) afforded 43 as a colorless oil ($10 \mathrm{mg}, 90 \%$ yield). $\mathrm{R}_{\mathrm{f}}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.46$; $\mathrm{IR} v_{\text {max }}$ (ATR) 3302, 2931, 2857, 1671, 1441, 1182, 1135, $724 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.07$ ($1 \mathrm{H}, \mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}, \mathrm{H}-6), 7.02(1 \mathrm{H}, \mathrm{ddd}, J=7.8,7.8,1.5 \mathrm{~Hz}, \mathrm{H}-4), 6.77-6.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-5), 3.25\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{2}-11\right), 2.93-2.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right.$ and $\left.\mathrm{H}_{2}-15\right), 2.79(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$,
$\left.\mathrm{H}_{2}-13\right), 2.56\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.78$ (2H, tt, $J=7.2,6.5 \mathrm{~Hz}, \mathrm{H}_{2}-12$), 1.66 (2H, tt, $J=7.2,6.4$ $\left.\mathrm{Hz}, \mathrm{H}_{2}-16\right)$, $1.38\left(8 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{H}_{2}-17, \mathrm{H}_{2}-18, \mathrm{H}_{2}-19$ and $\left.\mathrm{H}_{2}-20\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 177.2$ (C-9), 156.5 (C-2), 131.1 (C-6), 128.6 (C-4), 128.1 (C-1), 120.5 (C-5), 116.1 (C-3), 49.2 (C-15), 46.0 (C-13), 36.8 (C-8), 36.6 (C-11), 30.6, 30.5, 30.2 (C-18, C-19 and C-20), 27.7 (C-12), 27.5 (C7), 27.5 (C-17), 27.3 (C-16); (+)-HRESIMS m/z $611.4501[M+H]^{+}$(calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{4}$, 611.4531); Purity $98 \% t_{\mathrm{R}}=6.84 \mathrm{~min}$.
5.6.11. $\quad N^{1}, N^{12}$-Bis(3-(3-(2,5-dimethoxyphenyl)propanamido)propyl)dodecane-1,12-diaminium 2,2,2-trifluoroacetate (44).

Using general procedure B , reaction of $32(25 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(0.2 \mathrm{~mL})$ afforded 44 as a colorless oil (18 mg , 95% yield) which required no further purification. R_{f} ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) 0.75 ; IR $\nu_{\text {max }}(\mathrm{ATR}) 3285,2931,2855,1672,1650,1500,1200,1127,720$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 6.84(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-3), 6.75-6.72(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-$ 6), 3.78 (3H, s, OMe-21), 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-22$), 3.24 ($2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{2}-15$), 2.91-2.86 ($4 \mathrm{H}, \mathrm{m}$, $\mathrm{H}_{2}-7$ and $\mathrm{H}_{2}-11$), $2.81\left(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{2}-13\right), 2.52\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.78(2 \mathrm{H}, \mathrm{tt}, J=7.1$, $\left.6.5 \mathrm{~Hz}, \mathrm{H}_{2}-12\right), 1.67\left(2 \mathrm{H}, \mathrm{tt}, J=7.4,7.1 \mathrm{~Hz}, \mathrm{H}_{2}-16\right), 1.42-1.30\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-17, \mathrm{H}_{2}-18, \mathrm{H}_{2}-19\right.$ and $\left.\mathrm{H}_{2}-20\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 176.8$ (C-9), 154.9 (C-5), $153.2(\mathrm{C}-2), 131.1$ (C-1), 117.7 (C-6), 112.5 (C-4), 112.4 (C-3), 49.2 (C-15), 46.0 (C-13), 36.7 (C-8), 36.6 (C-11), 30.6, 30.5, 30.2 (C-18, C-19 and C-20), 27.7 (C-7), 27.7 (C-12), 27.5 (C-17), 27.3 (C-16); (+)-HRESIMS m/z $699.5001[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{40} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{6}$, 699.5055); Purity $99 \% t_{\mathrm{R}}=6.26 \mathrm{~min}$.
5.6.12. $\quad N^{1}, N^{12}$-Bis(3-(3-(3,4-dimethoxyphenyl)propanamido)propyl)dodecane-1,12-diaminium 2,2,2-trifluoroacetate (45).

Using general procedure B , reaction of $33(34 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with TFA $(0.2 \mathrm{~mL})$ followed by purification by C_{18} reversed-phase column chromatography ($50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (TFA)) afforded 45 as a colorless oil ($31 \mathrm{mg}, 88 \%$ yield). $\mathrm{R}_{f}\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.68$; IR $v_{\text {max }}$ (ATR) 3291, 2930, 2856, 1673, 1648, 1515, 1200, 1177, $721 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta$ $6.86(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-5), 6.83(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{H}-2), 6.76(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, \mathrm{H}-6)$, 3.84 (3H, s, OMe-21), 3.79 (3H, s, OMe-22), 3.24 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{2}-11$), 2.89-2.83 (4H, m, H27 and $\left.\mathrm{H}_{2}-15\right), 2.76\left(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{2}-13\right), 2.53\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{2}-8\right), 1.78(2 \mathrm{H}, \mathrm{tt}, J=7.1$, $\left.6.5 \mathrm{~Hz}, \mathrm{H}_{2}-12\right), 1.65\left(2 \mathrm{H}, \mathrm{tt}, J=7.1,7.0 \mathrm{~Hz}, \mathrm{H}_{2}-16\right), 1.34\left(8 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{H}_{2}-17, \mathrm{H}_{2}-18, \mathrm{H}_{2}-19$ and $\mathrm{H}_{2}-$ 20); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 176.7(\mathrm{C}-9), 150.4$ (C-3), $149.0(\mathrm{C}-4), 134.9(\mathrm{C}-1), 121.7(\mathrm{C}-$ 6), 113.7 (C-2), 113.3 (C-5), 56.6 (C-22), 56.5 (C-21), 49.0 (C-15), 46.0 (C-13), 38.5 (C-8), 36.7 (C-11), 32.2 (C-7), 30.6, 30.5, 30.2 (C-18, C-19 and C-20), 27.8 (C-12), 27.5 (C-17), 27.3 (C-16); $(+)-H R E S I M S ~ m / z ~ 699.5020[M+H]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{40} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{6}, 699.5055\right)$; Purity $99 \% t_{\mathrm{R}}=6.51 \mathrm{~min}$.

5.7. Biology Assays

5.7.1. In vitro Assays

In vitro anti-P. falciparum testing used the K1 (chloroquine and pyrimethamine resistant) strain, at the erythrocytic stage, with chloroquine as the positive control (IC $_{50}$ of $0.20 \mu \mathrm{M}(0.065$ $\mu \mathrm{g} / \mathrm{mL})$). Cytotoxicity assessment used the L6 rat skeletal myoblast cell line, with positive control
podophyllotoxin (IC_{50} of $0.01 \mu \mathrm{M}(0.004 \mu \mathrm{~g} / \mathrm{mL})$). The cytotoxicity of chloroquine against L 6 cells is $\mathrm{IC}_{50} 72 \mu \mathrm{M}(37.3 \mu \mathrm{~g} / \mathrm{mL})$. Protocols for these assays have been reported elsewhere [5].

5.7.2 In vivo Antimalarial Efficacy Studies

In vivo antimalarial activity was assessed as previously described [15]. Groups of three female NMRI mice (20-22 g) were intravenously infected with 2×10^{7} parasitized erythrocytes on day 0 with GFP-transfected P. berghei strain ANKA [17]. Compounds were formulated in 100% DMSO, diluted 10 -fold in distilled water and administered intraperitoneally in a volume of 10 ml kg^{-1} on four consecutive days (4, 24, 48 and 72 h post infection). Parasitemia was determined on day 4 post infection (24 h after last treatment) by FACS analysis. Activity was calculated as the difference between the mean per cent parasitaemia for the control ($\mathrm{n}=5$ mice) and treated groups expressed as a per cent relative to the control group. The survival of the animals was usually monitored up to 30 days, but in the current study all mice were euthanized after the determination of parasitaemia due to inactivity. A compound was considered curative if the animal survived to day 30 after infection with no detectable parasites. All protocols and procedures used in the current study were reviewed and approved by the local veterinary authorities of the Canton Basel-Stadt.

Acknowledgments

We acknowledge funding from the University of Auckland (FDRF 3626196 and Biopharma Thematic Research Initiative) and thank M. Cal, and S. Sax (Swiss TPH) for assistance with parasitic assays, Dr C. J. Janse (Leiden University) for providing the GFP transfected P. berghei strain, Dr M. Schmitz for assistance with NMR data acquisition, and Ms. R. Imatdieva for MS data.

Supplementary Data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/. These data include copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and MOL files of the most important compounds described in this article.

References

[1] D. J. Newman, G. M. Cragg, J. Nat. Prod. 75 (2012) 311-335.
[2] V. Kumar, A. Mahajan, K. Chibale, Bioorg. Med. Chem. 17 (2009) 2236-2275.
[3] E. Hsu, Br. J. Clin. Pharmacol. 61 (2006) 666-670.
[4] A. M. Dondorp, S. Yeung, L. White, C. Nguon, N. P. J. Day, D. Socheat, L. von Seidlein, Nature Rev. Microbiol. 8 (2010) 272-280.
[5] I. Orhan, B. Şener, M. Kaiser, R. Brun, D. Tasdemir, Mar. Drugs 8 (2010) 47-58.
[6] K. R.Watts, K. Tenney, P. Crews, Curr. Opin. Biotechnol. 21 (2010) 808-818.
[7] C. R. Nogueira, L. M. X. Lopes, Molecules 16 (2011) 2146-2190.
[8] E. Fattorusso, O. Taglialatela-Scafarti, Mar. Drugs 7 (2009) 130-152.
[9] (a) S. T. McCracken, M. Kaiser, H. I. Boshoff, P. D. W. Boyd, B. R. Copp, Bioorg. Med. Chem. 20 (2012) 1482-1493;
(b) S. T. S Chan, A. N. Pearce, A. H. Januario, M. J. Page, M. Kaiser, R. J. McLaughlin, J. L. Harper, V. L. Webb, D. Barker, B. R. Copp, J. Org. Chem. 76 (2011) 9151-9156;
(c) S. T. S. Chan, A. N. Pearce, M. J. Page, M. Kaiser, B. R. Copp, J. Nat. Prod. 74 (2011) 19721979;
(d) R. Finlayson, A. N. Pearce, M. J. Page, M. Kaiser, M.-L. Bourguet-Kondracki, J. L. Harper, V. L. Webb, B. R. Copp, J. Nat. Prod. 74 (2011) 888-892;
(e) J. Wang, M.-L. Bourguet-Kondracki, A. Longeon, J. Dubois, A. Valentin, B. R. Copp, Bioorg. Med. Chem. Lett. 21 (2011) 1261-1264.
[10] L. P. P. Liew, M. Kaiser, B. R. Copp, Bioorg Med Chem Lett 23 (2013) 452-454.
[11] A. N. Pearce, E. W. Chia, M. V. Berridge, E. W. Maas, M. J. Page, J. L. Harper, V. L. Webb, B. R. Copp, Tetrahedron 64 (2008) 5748-5755.
[12] B. Klenke, I. H. Gilbert, J. Org. Chem. 66 (2001) 2480-2483.
[13] B. Klenke, M. Stewart, M. P. Barrett, R. Brun, I. H. Gilbert, J. Med. Chem. 44 (2001) 34403452.
[14] S. Bienz, P. Bisegger, A. Guggisberg, M. Hesse, Nat. Prod. Rep. 22 (2005) 647-658.
[15] W. Peters, Chemotherapy, and drug resistance in malaria, Academic Press, Inc.: New York, 1 (1987) 145-273.
[16] K. Popaj, A. Guggisberg, M. Hesse, Hel. Chim. Acta 84 (2001) 797-816.
[17] B. Franke-Fayard, H. Trueman, J. Ramesar, J. Mendoza, M. van der Keur, R. van der Linden, R. E. Sinden, A. P. Waters, C. J. Janse, Mol. Biochem. Parasitol. 137 (2004) 23-33.

Fig. 1. Lead antimalarial polyamine structures.

Fig. 2. Benzamide and 3-phenylpropanamide analogues of spermine.

Scheme 1. Preparation of polyamines 15-20. Reagents and conditions: (i) acrylonitrile, EtOH, N_{2}, reflux, 3h. (ii) di-tert-butyl dicarbonate, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~N}_{2}, 22.5$ h. (iii) LiOH, 10\% Pd/C, $50 \% \mathrm{Ni}$ Al alloy, $\mathrm{H}_{2}, 50^{\circ} \mathrm{C}$, 21 h . (iv) carboxylic acid (2 equiv), PyBOP, DMF, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{~N}_{2}, 23 \mathrm{~h}$. (v) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, TFA, $\mathrm{N}_{2}, 2 \mathrm{~h}$.

Scheme 2. Preparation of polyamine analogues 22-45. Reagents and conditions: (i) carboxylic acid (2 equiv), PyBOP, DMF, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{~N}_{2}, 23 \mathrm{~h}$. (ii) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{TFA}, \mathrm{N}_{2}, 2$ h.

$$
\begin{aligned}
& 1 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{R}_{3}=\mathrm{OH} \text { (orthidine F) } \\
& 2 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H} \\
& 3 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}
\end{aligned}
$$

$$
6 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OMe}
$$

$7 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$
$8 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$
$9 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
$10 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OMe}$
$11 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
i
$12 \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}, \mathrm{R}_{2}=\mathrm{H}$
$13 \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CN}, \mathrm{R}_{2}=\mathrm{Boc}$
iii
$14 \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}, \mathrm{R}_{2}=\mathrm{Boc}$
$16 R_{1}=O H, R_{2}=H, R_{3}=B o c$
$17 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OMe}, \mathrm{R}_{3}=\mathrm{Boc}$
$\downarrow v$
$18 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
$19 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
$20 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OMe}, \mathrm{R}_{3}=\mathrm{H}$

21

$22 R_{1}=R_{2}=R_{3}=R_{4}=H, R_{5}=B o c, n=0$
$23 R_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{Boc}, \mathrm{n}=0$
$24 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{Boc}, \mathrm{n}=0$
$25 R_{1}=R_{2}=R_{3}=R_{4}=H, R_{5}=B o c, n=1$
$26 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{Boc}, \mathrm{n}=1$
$27 \mathrm{R}_{1}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{Boc}, \mathrm{n}=1$
$28 R_{1}=R_{2}=R_{4}=H, R_{3}=O M e, R_{5}=B o c, n=1$
$29 R_{1}=R_{4}=O M e, R_{2}=R_{3}=H, R_{5}=B o c, n=1$
$30 R_{1}=R_{2}=R_{3}=R_{4}=H, R_{5}=B o c, n=2$
$31 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{Boc}, \mathrm{n}=2$
$32 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{Boc}, \mathrm{n}=2$
$33 R_{1}=R_{4}=H, R_{2}=R_{3}=O M e, R_{5}=B o c, n=2$
${ }^{i i}$
$34 R_{1}=R_{2}=R_{3}=R_{4}=R_{5}=H, n=0$
$35 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{H}, \mathrm{n}=0$
$36 R_{1}=R_{4}=O M e, R_{2}=R_{3}=R_{5}=H, n=0$
$37 R_{1}=R_{2}=R_{3}=R_{4}=R_{5}=H, n=1$
$38 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{H}, \mathrm{n}=1$
$39 R_{1}=O M e, R_{2}=R_{3}=R_{4}=R_{5}=H, n=1$
$40 R_{1}=R_{2}=R_{4}=R_{5}=H, R_{3}=O M e, n=1$
$41 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{5}=\mathrm{H}, \mathrm{n}=1$
$42 R_{1}=R_{2}=R_{3}=R_{4}=R_{5}=H, n=2$
$43 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{H}, \mathrm{n}=2$
$44 \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{5}=\mathrm{H}, \mathrm{n}=2$
$45 R_{1}=R_{4}=R_{5}=H, R_{2}=R_{3}=O M e, n=2$

Table 1
Polyamine analogues and their antimalarial and cytotoxic biological activities ($\mu \mathrm{M}$)

entry	No.	P. falc. ${ }^{\text {a }}$	L6 ${ }^{\text {b }}$	SI ${ }^{\text {c }}$	entry	No.	P. falc. ${ }^{\text {a }}$	L6 ${ }^{\text {b }}$	$\mathrm{SI}^{\text {c }}$
	1	0.89	>120	>134	19	27	0.46	2.7	5.9
1	4	0.45	89	200	20	28	0.21	4.7	22
2	5	1.9	83	44	21	29	0.16	2.2	14
3	6	0.93	75	81	22	30	0.24	4.0	17
4	7	0.10	91	910	23	31	0.13	3.6	28
5	8	0.015	86	5700	24	32	0.18	2.3	13
6	9	0.0061	99	16230	25	33	0.066	2.5	38
7	10	0.46	73	160	26	34	0.16	6.9	43
8	15	0.47	8.6	18	27	35	0.38	2.5	6.6
9	16	0.73	16	22	28	36	0.39	2.2	5.6
10	17	0.048	1.9	40	29	37	0.16	22	138
11	18	0.015	74	4933	30	38	0.0086	42	4880
12	19	0.0013	55	42300	31	39	0.078	21	269
13	20	0.012	61	5083	32	40	0.200	19	95
14	22	0.16	8.3	52	33	41	0.19	23	121
15	23	0.50	93	186	34	42	0.073	6.9	95
16	24	0.18	1.8	10	35	43	0.0095	62	6530
17	25	0.26	8.2	32	36	44	0.11	6.5	59
18	26	0.17	10	59	37	45	0.071	57	803

${ }^{\text {a }}$ Plasmodium falciparum. $\mathrm{IC}_{50}(\mu \mathrm{M})$.
${ }^{\mathrm{b}}$ L6 rat skeletal myoblast cell line. $\mathrm{IC}_{50}(\mu \mathrm{M})$.
${ }^{\text {c }}$ Selectivity index (SI) $=\mathrm{IC}_{50} \mathrm{~L} 6 / \mathrm{IC}_{50} P f$.
All data is the mean value from duplicate assays

