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Abstract

A real is computable if it is the limit of a computable, increasing, computably converging sequence
of rationals. Omitting the restriction that the sequence converges computably we arrive at the notion
of computably enumerable (c.e.) real, that is, the limit of a computable, increasing, converging
sequence of rationals. A real is random if its binary expansion is a random sequence (equivalently,
if its expansion in base b ≥ 2 is random). The aim of this paper is to review some recent results on
computable, c.e. and random reals. In particular, we will present a complete characterization of the
class of c.e. and random reals in terms of halting probabilities of universal Chaitin machines, and we
will show that every c.e. and random real is the halting probability of some Solovay machine, that is,
a universal Chaitin machine for which ZFC (if sound) cannot determine more than its initial block
of 1 bits. A few open problems will be also discussed.

1 Notation and Background

We will use notation that is standard in computability theory and algorithmic information theory; we will
assume familiarity with Turing machine computations, computable and computably enumerable (c.e.)
sets (see, for example, Soare [48] or Odifreddi [40]) and elementary algorithmic information theory (see,
for example, Calude [7]).

By N,Q,R we denote the set of nonnegative integers (natural numbers), rationals and reals, respec-
tively. If f and g are natural number functions, the formula f(n) ≤ g(n) + O(1) means that there is a
constant c > 0 with f(n) ≤ g(n) + c, for all n.

Let Σ = {0, 1} denote the binary alphabet. Let Σ∗ be the set of (finite) binary strings, and Σω the set
of infinite binary sequences. The length of a string x is denoted by |x|; λ is the empty string. Let < be the
quasi-lexicographical order on Σ∗ induced by 0 < 1, that is, λ < 0 < 1 < 00 < 01 < 10 < 11 < 000 < · · ·
and let stringn (n ≥ 0) be the nth string under this ordering. The concatenation of the strings s and t
will be denoted by s � t. If j is one of 0 or 1, the string of length 1 whose sole component is j will be
denoted by 〈j〉. A string s is a prefix of a string t (s ⊆ t) if t = s � r, for some r ∈ Σ∗. A subset A of
Σ∗ is prefix-free if whenever s and t are in A and s ⊆ t, then s = t.

For a sequence x = x0x1 · · ·xn · · · ∈ Σω and an integer number n ≥ 1, x(n) denotes the initial
segment of length n of x and xi denotes the ith digit of x, i.e. x(n) = x0x1 · · ·xn−1 ∈ Σ∗. Lower case
letters k, l, m, n will denote nonnegative integers, and s, t, x, y, z strings. By x,y, · · · we denote infinite
sequences from Σω; finally, we reserve α, β, γ, ω,Ω for reals. Capital letters are used to denote subsets
of Σ∗. We fix a standard computable bijective (pairing) function 〈, 〉 defined on N × Σ∗ with values in
Σ∗. For a set A ⊆ Σ∗ let Ak = {x | 〈k, x〉 ∈ A}.

Next we move to the probabilistic part. Consider the following experiment: Pick, at random using
the Lebesgue measure on [0, 1], a real α in the unit interval and note that the probability that some
initial prefix of the binary expansion of α lies in the prefix-free set A is the real number:

ΩA =
∑
s∈A

2−|s|. (1)

More formally, for A ⊆ Σ∗, AΣω denotes the set of sequences having a prefix in A, {wx | w ∈
A, x ∈ Σω}. The sets AΣω are the open sets in the natural topology on Σω. Computably enumerable



(c.e.) open sets are sets of the form AΣω, where A ⊆ Σ∗ is c.e. Let µ denote the usual product measure
on Σω, given by µ({w}Σω) = 2−|w|, for w ∈ Σ∗. For a measurable set C of infinite sequences, µ(C) is
the probability that x ∈ C when x is chosen by a random experiment in which an independent toss of a
fair coin is used to decide whether xn = 1. If A is prefix-free, then µ(AΣω) =

∑
w∈A 2−|w| = ΩA.

Following Solovay [49, 50] we say that C is a Chaitin machine (self-delimiting Turing machine),
shortly, a machine, if C is a Turing machine processing binary strings such that its program set (domain)

PROGC = {x ∈ Σ∗ | C(x) halts}

is an instantaneous code, i.e. a prefix-free set of strings. Sometimes we will write C(x) < ∞ when C
halts on x and C(x) = ∞ in the opposite case. Clearly, PROGC is c.e.; conversely, every prefix-free
c.e. set of strings is the domain of some machine.

The program-size complexity of the string x ∈ Σ∗ (relatively to C) is HC(x) = min{|y| | y ∈
Σ∗, C(y) = x}, where min ∅ =∞.

Theorem 1 (Invariance Theorem) We can effectively construct a machine U (called universal) such
that for every machine C, HU (x) ≤ HC(x) + O(1).

Note that PROGU is c.e. but not computable.
The following extension due to Chaitin [21] (see Calude and Grozea [15] for a short proof) of Kraft’s

inequality is very useful in constructing machines satisfying certain properties:

Theorem 2 (Kraft–Chaitin) Given a c.e. list of “requirements” 〈ni, si〉 (si ∈ Σ∗, ni ∈ N, i ≥ 0) such
that

∑
i 2−ni ≤ 1, we can effectively construct a machine C and a computable one-to-one enumeration

x0, x1, x2, . . . of strings xi of length ni such that C(xi) = si, for all i and C(x) =∞ if x �∈ {xi | i ∈ N}.1

2 Computable and Uncomputable Reals

The complexity of real numbers is a central topic in classical computability theory (see Turing [54],
Rice [44], Calude [6], Soare [48], Odifreddi [40], Bridges [5]), computable analysis (see Martin-Löf
[39], Weihrauch [56], Pour–El and Richards [43], Ko [35], Bridges [4]), algorithmic information the-
ory (see Chaitin [24, 26, 27], Martin-Löf [37], Calude [7]) and information based complexity (see Traub,
Wasilkowski, and Woźniakowski [53]).

An important class of reals is certainly the set of computable reals. In order to define them we
introduce the notions of computable sequence of rationals and computable convergence rate. A sequence
(ai) of rationals ai is called computable if there is a Turing machine which, given a binary name for
a nonnegative integer n, computes a name for the rational an, with respect to a standard notation
of rationals. A sequence (αi) of reals αi is said to converge computably if it converges and there is a
computable function g : N→ N such that |αi − limk→∞ αk| ≤ 2−j , for all i, j with i ≥ g(j).

A real α is called computable if there exists a computable sequence of rationals which converges
computably to α.

Theorem 3 Let α be a real in the unit interval. Then, the following statements are equivalent:

1. The real α is computable.

2. There exists a computable sequence (an) of rationals with |α− an| ≤ 2−n, for all n.

3. There exists a computable function f : N→ {0, 1} such that α =
∑∞

i=0 f(i)2−i.

4. The set {q ∈ Q | q < α} is computable.

1Notice that ΩC =
∑

i
2−ni .
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The equivalences of 1., 2. and 3. and the implication 3. ⇒ 4. are uniform, but the implication 4. ⇒
3. is not uniform.

For example, all algebraic numbers, log2 3, π, the Euler number e are computable; actually, all real
numbers commonly used in numerical analysis and natural sciences are computable. Of course, not all
real numbers are computable (in fact, most reals are not computable).2

Given a computable sequence (ai) of rationals which converges computably to a computable real α,
and given a computable function g : N→ N as in the definition above, by computing ag(n) one obtains
a rational approximation of α with precision 2−n. By considering an appropriately chosen computable
subsequence of the sequence (ai) one can speed up the convergence to a great extent.

On the other hand there are also computable sequences of rationals which converge to uncomputable
reals. These sequences must converge noncomputably, i.e. very slowly. The first example of an uncom-
putable limit of a computable sequence of rationals has been given by Specker [51].3

It is well-known that there are reals which can be approximated by a computable, converging sequence
of rationals, but not with a computable convergence rate. For example, if h is an injective, total
computable function which enumerates a c.e. set of nonnegative integers which is not computable, then
the sum ∞∑

k=0

2−h(k) (2)

is the limit of the computable sequence of partial sums (
∑n

k=0 2−h(k))n, but it is not a computable real
(Specker’s construction [51]). A very interesting special class of numbers of this form are the Chaitin Ω
numbers which will be later introduced and discussed.

We continue with a simple but intriguing example. Let timeU (stringi) be the running time of the
computation U(stringi)4, and define the real number

ΥU =
∑

i

2−i/timeU (stringi). (3)

At the first glanced the analogy between (2) and (3) suggests that ΥU is uncomputable because it
is essentially defined in terms of an uncomputable set, PROGU . This intuition is false: the real ΥU

is computable. Indeed, we can construct an algorithm computing, for every positive integer n, the nth
digit of ΥU . The idea is simple: only the terms 2−i/timeU (stringi) for which timeU (stringi) = ∞ do
produce perturbations in (3) because at every finite step of the computation they appear to be nonzero
when, in fact, they are zero! The solution is to run all nonstopping programs stringi enough time such
that their cumulative contribution is too small to affect the nth digit of ΥU .

The following results from Calude and Hertlinger [16] summarize some basic facts about computable,
converging sequences of rationals, which may converge computably or noncomputably.

Proposition 4 Let h : N → N be an injective, total computable function and define the sequence (an)
of rationals by an =

∑n
m=0 2−h(m). The sequence (2−h(n)) is a computable sequence of rationals which

converges always to zero, and the sequence (an) is an increasing, computable, converging sequence of
rationals.

Proposition 5 Let h : N → N be an injective, total computable function and an =
∑n

m=0 2−h(m).
Then, the following conditions are equivalent:

(a) The range h(N) of h is a computable set.

(b) The sequence (2−h(n)) converges computably.

(c) The sequence (an) converges computably.
2It is an open question whether there is any “natural phenomenon” leading to an uncomputable real number.
3Such numbers play an important role, for example in the construction of a continuous but uncomputable solution for

the wave equation even if the initial conditions are continuous and computable, see Pour-El and Richards [43].
4Note that timeU (stringi) is a positive integer in case stringi ∈ PROGU , and timeU (stringi) = ∞, in the opposite

case.
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(d) The limit of the sequence (an) is a computable real.

We say that a sequence (ai) of reals with limit α converges monotonically if there exists a constant
c > 0 such that for all i and all j ≥ i, c · |α− ai| ≥ |α− aj |.

For example, any converging and monotonic, i.e. either nondecreasing (e.g. an =
∑n

m=0 2−h(m)) or
nonincreasing sequence of reals converges monotonically: one can take the constant c = 1.

Proposition 6 Every computable sequence of rationals which converges monotonically to a computable
real converges computably.

Remark The converse of Proposition 6 is not true as the following example shows. The sequence (ai)
defined by ai = 2−i if i is even and ai = 2−2i if i is odd converges computably to zero, but it does not
converge monotonically.

Lemma 7 Let (an) be a computable sequence of rationals which converges computably, and let (bn) be
a computable sequence of rationals which converges noncomputably. Then (an + bn) is a computable
sequence of rationals which converges noncomputably to the sum of the limits of (an) and (bn).

Theorem 8 For every computable real α there is a computable sequence (an) of rationals which converges
to α, but which does not converge computably.

Theorem 8 states that we can approximate every computable real noncomputably, that is, very slowly.
Thus, the fact, that a computable sequence of rationals converges noncomputably, does not imply that the
limit is uncomputable. Furthermore we ask whether, given a computable sequence of rationals, one can
decide whether its limit is computable or not, and also, whether it converges computably or not. The
answer to both these questions is negative.

We will use the following notation: a number i is called a Gödel number of a computable sequence
of rationals (an) if an = νQ(ϕi(n)), for all n, where ϕ is a total standard numbering of the partial com-
putable number functions and νQ is a standard bijection between N and Q (see, for example, Weihrauch
[56]). We say that it is impossible to decide whether the elements in a certain set A of computable
sequences of rationals have a certain property, if there is no algorithm which, given a Gödel number of
an element of the set A, decides whether this element has the property or not.

Theorem 9 It is impossible to decide whether:

• a converging, increasing, computable sequence of rationals converges computably,

• a converging, increasing, computable sequence of rationals converges to a computable real or to an
uncomputable real,

• a computable sequence of rationals which converges noncomputably converges to a computable real
or to an uncomputable real.

Theorem 8 and Theorem 9 tell us that a computable sequence of rationals which converges noncom-
putably may converge to a computable or an uncomputable real, and that it is impossible to decide
whether the limit is computable or uncomputable. Is there still a difference between the rate of con-
vergence of a computable sequence of rationals with computable limit and the rate of convergence of a
computable sequence of rationals with uncomputable limit? We shall see later that this is indeed the
case.
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3 Random Reals

In this section we will introduce and study random reals in the unit interval. Reals will be written in
binary, so we start by looking at random binary sequences.

I am convinced that the vast majority of my readers, and in fact the vast majority of scientists
and even nonscientists, are convinced that they know what ‘random’ is. A toss of a coin is
random; so is a mutation, and so is the emission of an alpha particle.. . . Simple, isn’t it?
said Kac in [34].

Well, no! Kac knew very well that randomness could be called many things, but not simple, and in
fact his essay shows that randomness is complicated, and it can be described in more than one way, even
by mathematicians and scientists. According to B. Efron (cited in Kolata [36])

There have been heroic efforts to understand randomness. Randomness is not an easy concept
to define.

Books on probability theory do not even attempt to define it.

It’s like the concept of a point in geometry books.

Beltrami [2] remarked:

The subject of probability begins by assuming that some mechanism of uncertainty is at work
giving rise to what is called randomness, but it is not necessary to distinguish between chance
that occurs because of some hidden order that may exist and chance that is the result of blind
lawlessness. This mechanism, figuratively speaking, churns out a succession of events, each
individually unpredictable, or it conspires to produce an unforeseeable outcome each time a
large ensemble of possibilities is sampled.

In an extreme sense there is no such notion as “true randomness”. Indeed, any sequence has some
kind of regularity; for example, van der Waerden discovered a “universal” nontrivial property shared by
all sequences:

Theorem 10 In every binary sequence at least one of the two symbols must occur in arithmetical pro-
gressions of every length.

The proof of van der Waerden’s result (and of similar ones) is nonconstructive. To be more precise,
there is no algorithm which will tell in a finite amount of time which alternative is true: 0 occurs in
arithmetical progressions of every length or 1 occurs in arithmetical progressions of every length.

A possible approach to define random sequences is to isolate the set of all sequences having “all verifi-
able” properties that from the point of view of classical probability theory are satisfied with “probability
one” with respect to µ.

A property P of sequences x ∈ Σω is true almost everywhere in the sense of µ in case the set of
sequences not having the property P is a null set. The main example of such a property, The Law of
Large Numbers, was discovered by Borel. For every sequence x = x1x2 . . . xm . . . ∈ {0, 1}ω and natural
number n ≥ 1 put Sn(x) = x1 + x2 + · · · + xn. Then, the limit of Sn/n, when n → ∞, exists almost
everywhere in the sense of µ and has the value 1/2. It is clear that a sequence satisfying a property
false almost everywhere with respect to µ is very “particular”. Accordingly, it is tempting to try to say
that a sequence x is “random” iff it satisfies every property true almost everywhere with respect to µ.
Unfortunately, we may define for every sequence x the property Px as following: y satisfies Px iff for
every n ≥ 1 there exists a natural m ≥ n such that xm �= ym. Every Px is an asymptotic property which
is true almost everywhere with respect to µ and x does not have property Px. Accordingly, no sequence
can verify all properties true almost everywhere with respect to µ. The above definition is vacuous!

However, there is a way to overcome the above difficulty: We consider not all asymptotic properties
true almost everywhere with respect to µ, but only a sequence of such properties. So, the important
question becomes:
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What sequences of properties should be considered?

Clearly, the “larger” the chosen sequence of properties is, the “more random” will be the sequences
satisfying that sequence of properties. We would like to define a notion of randomness such that at least
the following properties are satisfied: typicality, that is, regular outcome of a random event is unlikely,
and chaoticity, i.e. no simple law should be capable to produce a random event.

Martin-Löf [38, 37] defined random sequences by means of statistical tests. A Martin-Löf test is
a c.e. set A ⊂ Σ∗ such that µ(AiΣω) ≤ 2−i, for all natural i. The set

⋂
i≥0(AiΣω) is the set of all

sequences which do not pass the randomness test A. With this apparatus we can say that a sequence x
is Martin-Löf random if for every Martin-Löf test A, x /∈

⋂
i≥0(AiΣω).

Martin-Löf [38] proved the existence of a universal Martin-Löf test, a test W with the property
that for every Martin-Löf test A there is a constant c such that An ⊆Wn+c, for all n. So, Martin-Löf ’s
definition can be rephrased as: A sequence x is Martin-Löf random iff x passes a universal Martin-Löf
test. This result captures “typicality”: for each Martin-Löf test A, the set

⋂
i≥0(AiΣω) is constructively

null, so

Theorem 11 Constructively, with probability one (in the sense of µ), every sequence is Martin-Löf-
random.

Hence, from the probabilistic point of view, the set of random sequences is large. However, from
a topological point of view5 the situation is completely different (cf. Calude and Chiţescu [12]) as
Martin-Löf random sequences form a small set:

Theorem 12 The set of Martin-Löf random sequences is constructively a first Baire category set.

Solovay [49] proposed another measure-theoretic definition of random sequences aiming to capture
typicality: a sequence x is Solovay random if for every c.e. set A ⊂ Σ∗ such that

∑
i≥1 µ(AiΣω) < ∞,

there exists a natural N such that for all i > N, x /∈ AiΣω.

“Chaoticity” appears in the following two complexity-theoretic definitions (see Chaitin [21]): an in-
finite sequence x is Chaitin–Schnorr random if there is a constant c such that H(x(n)) > n − c, for
every integer n > 0, and, apparently the stronger definition, an infinite sequence x is Chaitin random if
limn→∞H(x(n))− n =∞.

Finally, we present Hertling and Weihrauch topological approach to define randomness [32]. A ran-
domness space is a triple (X, B, µ), where X is a topological space, B : N→ 2X is a total numbering of
a subbase of the topology of X, and µ is a measure defined on the σ-algebra generated by the topology
of X.6 Let (Wn) be a sequence of open subsets of X; a sequence (Vn) of open subsets of X is called
W–computable if there is a c.e. set A ⊆ N such that Vn =

⋃
π(n,i)∈A Wi for all n ∈ N.7 Next we define

W ′
i = W ′(i) =

⋂
j∈D(1+i)

Wj , for all i ∈ N, where D : N → {E | E ⊆ N is finite} is the computable
bijection defined by D−1(E) =

∑
i∈E 2i. Note that if B is a numbering of a subbase of a topology,

then B′ is a numbering of a base of the same topology. A randomness test on X is a B′–computable
sequence (Wn) of open sets with µ(Wn) ≤ 2−n, for all n ∈ N. We say that an element x ∈ X is called
Hertling–Weihrauch random if x �∈

⋂
n∈N Wn, for every randomness test (Wn) on X.

Consider now the canonical topology on Σω and the numbering B of a subbase (in fact a base) of
the topology is given by Bi = {stringi}Σω. The general definition applies, so we get: A sequence is
Hertling–Weihrauch random if it is random in the space (Σω, B, µ).

All the above approaches lead to the same class of sequences:

5As mentioned before, Σ comes equipped with the discrete topology and Σω is endowed with the product topology.
6Recall that a subbase of a topology is a set β of open sets such that the sets

⋂
W∈E

W , for finite, nonempty sets E ⊆ β

form a basis of the topology.
7The function π(n, i) is a computable bijection, for example, π(n, i) = (n + i)(n + i + 1)/2 + i.
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Theorem 13 Let x ∈ Σω. The following statements are equivalent:

1. The sequence x is Martin-Löf random.

2. The sequence x is Chaitin random.

3. The sequence x is Chaitin–Schnorr random.

4. The sequence x is Solovay random.

5. The sequence x is Hertling–Weihrauch random.

In what follows we will simply call “random” a sequence satisfying one of the above equivalent
conditions. Theorem 13 motivates the following “randomness hypothesis” formulated in Calude [8]:

A sequence is “algorithmically random” if it satisfies one of the equivalent conditions in
Theorem 13.

Various arguments supporting this hypothesis, e.g. random sequences are Borel absolutely normal,8

have been analyzed in the literature, e.g. Calude [7]. Here is recent argument due to Fouché [30]: if
X ⊆ Σω is a measure one Σ0

1 set, then it contains at least one random sequence. In particular, if X is
Π0

1 set which contains some random sequence, then it has nonzero measure. So, if a Π0
1 event is reflected

in some random sequence, then the event must be probabilistically significant.

We are now in the position to define random reals in the unit interval: A real α is random if its
binary expansion x (i.e. α = 0.x) is random. The choice of the binary base does not play any role, cf.
Calude and Jürgensen [18], Hertling and Weihrauch [32], Staiger [52]: randomness is a property of reals
not of names of reals.

Let us make a short digression concerning the above result. Note first that normality is not base
invariant; even the weaker property of disjunctivity (a sequence is disjunctive in case any string appears
in the sequence) is not base invariant (cf. Hertling [31]). Following von Mises [55] consider an arbitrary
sequence x = x1x2 . . . xn . . . over the alphabet Σ = {0, 1} and define a new sequence y = y1y2 . . . yn . . .,
over the alphabet Γ = {0, 1, 2}, by

y1 = x1, yn = xn−1 + xn, n ≥ 2.

Then, y is not random, even if x is a random sequence. The motivation is simple: the strings 02 and 20
never appear in y. (Actually, there are many other strings which do not appear in y.)

A seemingly minor change in the above example makes a major change. For x = x1x2 · · · with
x1, x2, . . . ∈ {0, 1} define y = y1y2 · · · with y1, y2, . . . ∈ {0, 1} by

yi =
{

x1, if i = 1,
xi−1 ⊕ xi, if i > 1.

It is not difficult to prove that y is random provided x is random.

It is immediate that no random real is computable.9 Theorem 10 shows that every (random) sequence
has some kind of regularity. Is this phenomenon symmetric, i.e. is there any trace of computability in
random reals?

8Every string appears in a random sequence with the probability 2−n, where n is the length of the string.
9Bailey and Crandall [1] discussed a hypothesis which implies the normality of many natural real numbers, e.g. π, e. A

different approach was discussed in Pincus and Singer [42] and Pincus and Kalman [41]; see also Casti [20] and Beltrami
[2].
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4 C.E. Reals

Following Soare [47], a real α is called c.e. if there is a computable, increasing sequence of rationals which
converges (not necessarily computably) to α. We will start with several characterizations of c.e. reals (cf.
Calude, Hertling, Khoussainov, Wang [17]).

Recall that if A ⊆ Σ∗ is prefix-free, then, due to Kraft’s inequality, the real number ΩA =
∑

x∈A 2−|x|

lies in the interval [0, 1]. For a set X ⊆ N we define the number

2−X−1 =
∑
n∈X

2−n−1.

This number also lies in the interval [0, 1]. If we disregard all finite sets X, which lead to rational numbers
2−X−1, we get a bijection X �→ 2−X−1 between the class of infinite subsets of N and the real numbers in
the interval (0, 1]. If 0.y is the binary expansion of a real α with infinitely many ones, then α = 2−Xα−1

where Xα = {i | yi = 1}. Clearly, if Xα is c.e., then the number 2−Xα−1 is c.e., but the converse is not
true as the Chaitin Ω numbers show.10 We characterize c.e. reals α in terms of prefix-free c.e. sets of
strings and in terms of the sets Xα.

Theorem 14 Let α be a real in (0, 1]. The following conditions are equivalent:

1. The number α is c.e.

2. There is a computable, nondecreasing sequence of rationals (an) which converges to α.

3. The set {p ∈ Q | p < α} of rationals less than α is c.e.

4. There is an infinite prefix-free c.e. set A ⊆ Σ∗ with α = ΩA.

5. There is an infinite prefix-free computable set A ⊆ Σ∗ with α = ΩA.

6. There is a total computable function f : N2 → {0, 1} such that

(a) If for some k, n we have f(k, n) = 1 and f(k, n+1) = 0 then there is an l < k with f(l, n) = 0
and f(l, n + 1) = 1.

(b) We have: k ∈ Xα ⇐⇒ limn→∞ f(k, n) = 1.

Note the importance of the type of representation used to define c.e. reals, especially compare con-
ditions 3. in Theorem 3 and Theorem 14, and conditions 4. and 5. in Theorem 14. Note also that
according to condition 6. in Theorem 14, in the process of approximation of α the nth bit may oscillate
from 0 to 1 and 1 to 0 but no more than 2n times. In this respect, Downey and LaForte [28] proved the
following interesting result:

Theorem 15 There exists an uncomputable c.e. real α such that every prefix-free set A such that α = ΩA

is computable.

5 C.E. and Random Reals

We are now ready to answer in the affirmative, following Chaitin [21], the question posed at the end of
Section 3.

Theorem 16 If U is universal machine, then ΩU is random.

If C is a machine, then ΩC represents its halting probability. When C = U , a universal machine,
then its halting probability ΩU is called a Chaitin Ω real, shortly, Ω real.

10See Theorem 16.
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6 Approximating C.E. Reals

In order to compare the information contents of c.e. reals, Solovay [49] has introduced the domination
relation. The real α is said to dominate the real β if there are a partial computable function f : Q o→ Q
and a constant c > 0 with the property that if p is a rational number less than α, then f(p) is (defined
and) less than β, and it satisfies the inequality

c(α− p) ≥ β − f(p) .

In this case we write α ≥dom β or β ≤dom α.
Roughly speaking, a real α dominates a real β if from any good approximation to α from below (say,

from a rational number p < α with α− p < 2−n) one can effectively obtain a good approximation to β
from below (a rational number f(p) < β with β − f(p) < 2−n+constant). For c.e. reals this can also be
expressed as follows.

Lemma 17 A c.e. real α dominates a c.e. real β iff there are computable, increasing (or nondecreasing)
sequences (ai) and (bi) of rationals and a constant c with limn→∞ an = α, limn→∞ bn = β, and c(α −
an) ≥ β − bn, for all n.

Lemma 18 Let α, β and γ be c.e. reals. Then the following conditions hold:

1. The relation ≥dom is reflexive and transitive.

2. For every α, β one has α + β ≥dom α.

3. If γ ≥dom α and γ ≥dom β, then γ ≥dom α + β.

4. For every nonnegative α and positive β one has α · β ≥dom α.

5. If α and β are nonnegative, and γ ≥dom α and γ ≥dom β, then γ ≥dom α · β.

Remark Every random real α can be written as

α = α′ + α′′, (4)

where α′, α′′ are nonrandom. Furthermore, α′ · α′′ is random.

Open Question: Can we take α, α′, α′′ c.e.?

The following result states that no computable sequence (ai) of rationals which converges to a com-
putable real can dominate a computable sequence of rationals converging to an uncomputable real.
Hence, although we can have slow computable approximation of computable reals, we cannot slow it
down arbitrarily.

Theorem 19 Let (an) be a computable sequence of rationals converging to a computable real α, and let
(bn) be a computable sequence of rationals converging to an uncomputable real β. Then, for every c > 0
there are infinitely many i such that

|β − bi| > c · |α− ai| .

Lemma 20 For every c ∈ N there is a positive integer Nc such that for every n ∈ N and all strings
x, y ∈ Σn with |0.x− 0.y| ≤ c · 2−n we have

|H(y)−H(x)| ≤ Nc.

Up to now we have considered arbitrary converging and computable sequences (ai) and (bi) and
have explicitly formulated two gaps with respect to the convergence rates, one from computable to
uncomputable reals, and one from nonrandom to random reals. Both results were based on the inequality
|β − bi| > c · |α− ai| holding for infinitely many i. While we had some doubts whether in this case one
can really claim that (bi) converges slower than (ai), we shall see now that these doubts can be cast

9



aside if we compare only monotonically converging sequences with computable limit and monotonically
converging sequences with random limit: then we can replace the quantifier “for infinitely many i” by
the quantifier “for almost all i”. Certainly in this case it is justified to say that (bi) converges slower
than (ai).

Lemma 21 Let (bi) be a computable sequence of rationals which converges to a random real β. Then
for every d > 0 and almost all i we have

|β − bi| > 2d−i .

The next result was proved in Calude and Hertling [16].

Scholium 22 Let (ai) be a computable sequence of rationals which converges computably to a computable
real α, and let (bi) be a computable sequence of rationals which converges monotonically to a random
real β. Then for every c > 0 there exists a d > 0 such that for all i ≥ d

|β − bi| > c · |α− ai| . (5)

Corollary 23 Let (ai) be a computable sequence of rationals which converges monotonically to a com-
putable real α, and let (bi) be a computable sequence of rationals which converges monotonically to a
random real β. Then for every c > 0 there exists a d > 0 such that for all i ≥ d

|β − bi| > c · |α− ai| . (6)

We conclude this section with a result by Solovay [49] on the relationship between the domination
relation and the program-size complexity.

Theorem 24 Let x,y ∈ Σω be two infinite binary sequences such that both 0.x and 0.y are c.e. reals
and 0.x ≥dom 0.y. Then

H(y(n)) ≤ H(x(n)) + O(1).

The converse implication in Theorem 24 is false (see Solovay [49], Calude and Coles [13]). A stronger
version was proved in Calude and Coles [14]:

Theorem 25 There is an uncomputable c.e. real 0.x such that H(xn) ≤ H(stringn) + O(1).

7 A Characterization of C.E. Random Reals

This section is devoted to a first characterization of c.e. random reals.

7.1 More About Domination

We consider now a relation between c.e. sets which is very close, but not equivalent, to the domination
relation. Let A, B be infinite, prefix-free c.e. sets. Following Calude, Hertling, Khoussainov, Wang [17],
we say that the set A strongly simulates the set B (write B ≤ss A) if there is a partial computable
function f : Σ∗ o→ Σ∗ which satisfies the following three conditions: 1) A = dom(f), 2) B = f(A), 3)
|x| ≤ |f(x)|+ O(1), for all x ∈ A. Note that ≤ss is reflexive and transitive.

Lemma 26 If A, B are infinite prefix-free c.e. sets and B ≤ss A, then ΩB ≤dom ΩA.

The following partial converse of Lemma 26 ([17]) is very important.11

11In [17] one proves the existence of two infinite prefix-free c.e. sets A and B such that µ(AΣω) = µ(BΣω) = 1 but
A �≤ss B and B �≤ss A.
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Theorem 27 Let α be a c.e. real, and B be an infinite prefix-free c.e. set. If ΩB ≤dom α, then there is
an infinite prefix-free c.e. set A ⊂ Σ∗ such that α = ΩA and B ≤ss A.

Remark Recently Downey, Hirschfeldt and Nies [29] have obtained the following algebraic characteri-
zation of domination:

α ≤dom β iff there exist an integer c > 0 and a c.e. real γ such that β = γ + α
c .

7.2 Ω Reals Are Ω-Like

Following Solovay [49] we say that a computable increasing, and converging sequence (ai) of rationals
is universal if for every computable, increasing and converging sequence (bi) of rationals there exists a
number c > 0 such that c(α−an) ≥ β−bn, for all n, where α = limn→∞ an and β = limn→∞ bn. Solovay
called a real Ω-like if it is the limit of a universal computable, increasing sequence of rationals.

In Calude, Hertling, Khoussainov, Wang [17] one proves the following:

Theorem 28 Let U be a universal machine. Every computable, increasing sequence of rationals con-
verging to ΩU is universal.

7.3 Ω-like Reals Are Ω Reals

First we note that

Lemma 29 Any Ω-like real dominates every c.e. real.

The next theorem was proved in Calude, Hertling, Khoussainov, Wang [17].

Theorem 30 Every Ω-like real α is an Ω real, i.e. there exists a universal machine U such that α = ΩU .

In view of Lemma 29 and Theorem 30 we get:12

Theorem 31 Let α be a c.e. real. The following statements are equivalent:

1. There exists a universal computable, increasing sequence of rationals converging to α.

2. Every computable, increasing sequence of rationals with limit α is universal.

3. The real α dominates every c.e. real.

7.4 Every C.E. Random Real Is Ω-like

Theorem 13 can be rephrased directly for reals as follows: A real α is random iff for every Martin-Löf
test A, α /∈

⋂
i≥0 Ai. In the context of reals, a Martin-Löf test A is a uniformly c.e. sequence of c.e. open

sets (An) of the space Σω such that µ(An) ≤ 2−n. The following two important results were proved by
Slaman [45, 46].

Lemma 32 Let (an), (bn) be two computable, increasing sequences of rationals converging to α and β,
respectively. One of the following two conditions hold:

A) There is a Martin-Löf test A such that α ∈
⋂

i≥0 Ai.

B) There is a rational constant c > 0 such that c(α− ai) ≥ β − bi, for all i.

Theorem 33 Every c.e. random real is Ω-like.
12The equivalence of the statements 1 and 3 comes from Chaitin [22].
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The following theorem summarizes the characterization of c.e. and random reals:

Theorem 34 Let α ∈ (0, 1). The following conditions are equivalent:

1. The real α is c.e. and random.

2. For some universal machine U , α = ΩU .

3. The real α is Ω–like.

4. Every computable, increasing sequence of rationals with limit α is universal.

In [46] Slaman proved the following result answering an open problem in [17]:

Theorem 35 The measure of any section An of a universal Martin-Löf test A, µ(AnΣω), is Ω–like,
hence c.e. and random.

8 Properties of C.E. Random Reals

C.e. random reals are dense in the unit interval. They have many other interesting properties.

Proposition 36 The sum of a random c.e. real and a c.e. real is a random c.e. real. The product of a
positive random r.e real with a positive c.e. real is a random c.e. real.

Corollary 37 The class of random c.e. reals is closed under addition. The class of positive random
c.e. reals is closed under multiplication.

The last Corollary contrasts with the fact that addition and multiplication do not preserve random-
ness. For example, if α is a random number, then 1 − α is random as well, but α + (1 − α) = 1 is not
random.

For two reals α and β, α =dom β denotes the conjunction α ≥dom β and β ≥dom α. For a real α, let
[α] = {β ∈ R | α =dom β}; Rr.e. = {[α] | α is an c.e. real}.
Theorem 38 The structure 〈Rr.e.;≤dom〉 is an upper semilattice. It has a least element which is the
=dom-equivalence class containing exactly all computable real numbers.

Theorem 34 proves that 〈Rr.e.;≤dom〉 also has a greatest element, which is the equivalence class
containing exactly all Chaitin Ω numbers.

Theorem 39 Given the first n bits of ΩU one can decide whether U(x) halts or not on an arbitrary
program x of length at most n.

Remark The first 10,000 bits of ΩU include a tremendous amount of mathematical knowledge. In
Bennett’s words [3]:

[Ω] embodies an enormous amount of wisdom in a very small space ... inasmuch as its first
few thousands digits, which could be written on a small piece of paper, contain the answers
to more mathematical questions than could be written down in the entire universe.

Throughout history mystics and philosophers have sought a compact key to universal wisdom,
a finite formula or text which, when known and understood, would provide the answer to every
question. The use of the Bible, the Koran and the I Ching for divination and the tradition of
the secret books of Hermes Trismegistus, and the medieval Jewish Cabala exemplify this belief
or hope. Such sources of universal wisdom are traditionally protected from casual use by being
hard to find, hard to understand when found, and dangerous to use, tending to answer more
questions and deeper ones than the searcher wishes to ask. The esoteric book is, like God,
simple yet undescribable. It is omniscient, and transforms all who know it . . .Omega is in
many senses a cabalistic number. It can be known of, but not known, through human reason.
To know it in detail, one would have to accept its uncomputable digit sequence on faith, like
words of a sacred text.
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It is worth noting that even if we get, by some kind of miracle, the first 10,000 digits of ΩU , the
task of solving the problems whose answers are embodied in these bits is computable but unrealistically
difficult: the time it takes to find all halting programs of length less than n from 0.Ω0Ω2 . . .Ωn−1 grows
faster than any computable function of n.

We finish this section with a proof showing that c.e. random reals are wtt-complete, but not tt-
complete (cf. Calude and Nies [19]). We need some more notation. For a set A ⊂ Σ∗ we denote by χA

the characteristic function of A. Denote by Wx the domain of ϕx, where (ϕx) is a Gödel numbering of
all partial computable string functions. We say that A is Turing reducible to B, and we write A ≤T B,
if there is an oracle Turing machine ϕB

w such that ϕB
w(x) = χA(x). We say that A is weak truth-table

reducible to B, and we write A ≤wtt B, if A ≤T B via a Turing reduction which on input x only queries
strings of length less than g(x), where g : Σ∗ → N is a fixed computable function. We say that A is
truth-table reducible to B, and we write A ≤tt B, if there is a computable sequence of Boolean functions
{Fx}x∈Σ∗ , Fx : Σrx+1 → Σ, such that for all x, we have χA(x) = Fx(χB(0)χB(1) · · ·χB(rx)).13 Let
K = {x ∈ Σ∗ | ϕx(x) < ∞}; a c.e. set A is tt(wtt)-complete if K ≤tt A (K ≤wtt A). See Soare [48] or
Odifreddi [40] for more details.

Theorem 40 The set H = {(x, n) | x ∈ Σ∗, n ∈ N, H(x) ≤ n} is wtt-complete.

Theorem 41 The set H is wtt-reducible to ΩU .

The following result belongs to Juedes, Lathrop, and Lutz [33] (we follow the direct proof in Calude
and Nies [19]).

Theorem 42 If K ≤tt x, then x is not random.

9 Solovay Machines and Incompleteness

According to Theorem 34, c.e. random reals can be coded by universal machines through their halting
probabilities. How “good” or “bad” are these names? In [21] (see also [22, 26]), Chaitin proved the
following:

Theorem 43 Assume that ZFC14 is arithmetically sound.15 Then, for every universal machine U ,
ZFC can determine the value of only finitely many bits of ΩU .

In fact one can give a bound on the number of bits of ΩU which ZFC can determine; this bound can
be explicitly formulated, but it is not effective, in the sense that it’s not computable. For example, in
[26] Chaitin described, in a dialect of Lisp, a universal machine U and a theory T , and proved that U
can determine the value of at most H(T ) + 15, 328 bits of ΩU ; H(T ) is the program-size complexity of
the theory T , an uncomputable number.

Fix a universal machine U and consider all statements of the form

“The nth binary digit of the expansion of ΩU is k”, (7)

for all n ≥ 0, k = 0, 1. How many theorems of the form (7) can ZFC prove? More precisely, is there
a bound on the set of non-negative integers n such that ZFC proves a theorem of the form (7)? From
Theorem 43 we deduce that ZFC can prove only finitely many (true) statements of the form (7). This
is Chaitin strongest information-theoretic version of Gödel’s incompleteness (see [26, 27]):

Theorem 44 If ZFC is arithmetically sound and U is a universal machine, then almost all true state-
ments of the form (7) are unprovable in ZFC.

13Note that in contrast with tt-reductions, a wtt-reduction may diverge.
14Zermelo set theory with choice.
15That is, any theorem of arithmetic proved by ZFC is true.
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Again, a bound can be explicitly found, but not effectively computed.

Of course, for every c.e. random real α we can construct a universal machine U such that α = ΩU and
ZFC is able to determine finitely (but as many as we want) bits of ΩU . By tuning the construction of the
universal machine, Solovay [50] went into the opposite direction and obtained a dramatic improvement
of Theorem 43:

Theorem 45 We can effectively construct a universal machine U such that ZFC, if arithmetically
sound, cannot determine any single bit of ΩU .

Solovay [50] proved a sharper version of Theorem 45 by replacing ZFC with a computably axiom-
atizable 1-consistent theory. Theorem 43 holds true for any universal machine U (it’s easy to see that
the finite set of (true) statements of the form (7) which can be proven in ZFC can be arbitrarily large)
while Theorem 45 constructs a specific U .

A machine U for which PA16 can prove its universality and ZFC cannot determine more than
the initial block of 1 bits of the binary expansion of its halting probability, ΩU , will be called Solovay
machine.17 In view of Theorem 34 and Theorem 45, we may ask the question: Which c.e. random reals
are halting probabilities of Solovay machines? Following Calude [10] we prove:

Theorem 46 Assume that ZFC is arithmetically sound. Then, every c.e. random real is the halting
probability of a Solovay machine.

For example, if α ∈ (3/4, 7/8) is c.e. and random, then in the worst case ZFC can determine its first
two bits (11), but no more.

Corollary 47 Assume that ZFC is arithmetically sound. Then, every c.e. random real α ∈ (0, 1/2) is
the halting probability of a Solovay machine which cannot determine any single bit of α. No c.e. random
real α ∈ (1/2, 1) has the above property.

Gödel Incompleteness Theorem is constructive, but the proof of Theorem 44 appears to be non-
constructive. Is it possible to get a constructive variant of Theorem 44? The answer is affirmative and
here is a possible variant:

Theorem 48 If ZFC is arithmetically sound and U is a Solovay machine, then the statement “the 0th

bit of the binary expansion of ΩU is 0” is true but unprovable in ZFC.

In fact, one can effectively construct arbitrarily many examples of true and unprovable statements
of the form (7), where U is a Solovay machine.

Consider a partial computable function ψ (depending upon two variables, a non-negative integer and
a string) such that:

• for every non-negative integer n, the partial function ψn(s) = ψ(n, s) is a machine, and

• for every ϕn with a prefix-free domain we have ψn(s) = ϕn(s), for all non-negative integers n and
all strings s.

Denote by Dn the domain of ψn and put Ωn = ΩDn
. The time relativized versions of Dn and Ωn are

defined in the usual way. Let Dn[t] be the set of all elements of Dn which have appeared by time t and
let Ωn[t] = ΩDn[t], the approximation of Ωn computable at time t. The following facts follow directly:

1. Given n and t we can effectively compute the finite set Dn[t] and the rational number Ωn[t].

2. The sequence (Ωn[t]) increases monotonically to Ωn.

Proposition 49 Let U be a universal machine, ΩU = 0.ω0ω1 . . ., and let s = s0s1 . . . sm be a binary
string. Then, we can effectively construct a universal machine W such that ΩW = 0.s0s1 . . . smω0ω1 . . ..

16PA means Peano Arithmetic.
17Of course, U depends on ZFC.
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9.1 C.E. Random Reals Are Halting Probabilities of Solovay Machines

We fix an interpretation of Peano Arithmetic (PA) in ZFC. Each sentence of the language of PA has
a translation into a sentence of the language of ZFC, determined by the interpretation of PA in ZFC.
A “sentence of arithmetic” indicates a sentence of the language of ZFC that is the translation of some
sentence of PA. We shall assume that ZFC is arithmetically sound, that is, any sentence of arithmetic
which is a theorem of ZFC is true (in the standard model of PA).18

A dyadic rational is a rational number of the form r/2s, where r and s are integers and s ≥ 0; for
example, Ωn[t] is a dyadic rational. If x is a real number which is not a dyadic rational, then x has a
unique binary expansion. We start numbering the digits of the binary expansion of a real α with the 0th

digit: α = 0.α0α1 . . .

Every statement of the form

“The nth binary digit of the expansion of Ωl is k”, (8)

for all n, l ≥ 0, k = 0, 1, can easily be formalized in PA. Moreover, if ψl is a machine which PA can
prove universal and ZFC proves the assertion (8), then this assertion is true.

Theorem 50 Assume ZFC is arithmetically sound. Let i ≥ 0 and consider the c.e. random real

α = 0.α0α1 . . . αi−1αiαi+1 . . . , where α0 = α1 = . . . αi−1 = 1, αi = 0.

Then, we can effectively construct a universal machine, U (depending upon ZFC and α), such that
the following three conditions are satisfied:

a) PA proves the universality of U .

b) ZFC can determine at most i initial bits of ΩU .

c) α = ΩU .

If we set i = 0 in Theorem 50, then we get Corollary 47. Indeed, every c.e. random real in the interval
(0, 1/2) has its 0th digit 0, so it can be represented as the halting probability of a Solovay machine for
which ZFC cannot determine any single bit. However, if α is c.e. and random, but α > 1/2, then ZFC
can determine the 0th bit of α which is 1.

9.2 Information-Theoretic Incompleteness

Theorem 48 follows directly from Corollary 47. Indeed, start with a universal machine U and effectively
construct a Solovay machine U ′ such that ΩU ′ = 1

2 · ΩU . Then, ΩU ′ is less than 1/2, so its 0th bit is 0,
but ZFC cannot prove this fact!

We can now use Chaitin’s Theorem [23]

Theorem 51 Given a universal Chaitin machine U one can effectively construct an exponential
Diophantine equation P (n, x, y1, y2, . . . , ym) = 0 such that for every natural fixed k the equation
P (k, x, y1, y2, . . . , ym) = 0 has an infinity of solutions iff the kth bit of ΩU is 1.

to effectively construct an exponential Diophantine equation which has only finitely many solutions, but
this fact cannot be proven in ZFC.

In fact, for every binary string s = s1s2 . . . sn use Proposition 49 to effectively construct a Solovay
machine U such that the binary expansion of ΩU has the string 〈0〉� s1s2 . . . sn as prefix. Consequently,
the following statements

“The 0th binary digit of the expansion of ΩU is 0”,

18The metatheory is ZFC itself, that is, “we know” that PA itself is arithmetically sound.
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“The 1th binary digit of the expansion of ΩU is s1”,

“The 2th binary digit of the expansion of ΩU is s2”,

...

“The (n + 1)th binary digit of the expansion of ΩU is sn”,

are true but unprovable in ZFC.
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