Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
Laterality and Interhemispheric Transfer in Schizophrenia

Kylie J. Barnett

2004

Research Centre for Cognitive Neuroscience,
Department of Psychology,
Auckland University

A thesis presented to the University of Auckland in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)
Abstract

There is a plethora of research describing dysfunction of a single hemisphere (usually the left) in schizophrenia, while there is less evidence to suggest right-hemisphere dysfunction. There is also much evidence to suggest that individuals with schizophrenia have difficulties integrating information between the two cerebral hemispheres or transferring information between the hemispheres. The aim of this thesis was to investigate lateralized and interhemispheric information processing in males with predominantly negative-symptom schizophrenia. This thesis employs behavioural (i.e. computer-based reaction-time tasks), neuropsychological (i.e. the line-bisection task) and electrophysiological (i.e. electroencephalogram) measures to assess laterality and interhemispheric processing in schizophrenia relative to matched controls. In Experiment 1, the Poffenberger (1912) paradigm was used to compare the difference between “crossed” (stimuli and motor response areas are contralateral) and “uncrossed” (stimuli and motor response areas are ipsilateral) conditions to estimate interhemispheric transfer time. Simple reaction time (RT) was recorded to stimuli presented unilaterally or bilaterally in participants who responded using either the left or right hand. While the results provide no evidence for differences between the groups in information transfer or integration between the hemispheres, the schizophrenia group was significantly slower to respond to LVF stimuli, suggesting right-hemisphere dysfunction. In Experiment 2, bilateral gain was assessed using a lexical-decision task where word or non-word judgments were made to letter strings presented in the LVF, RVF, or BVF. The schizophrenia group showed normal lateralization of language to the left hemisphere, but unlike controls who showed a bilateral gain (decrease in RT), they were actually disadvantaged when two stimuli
were presented simultaneously to both hemispheres. In Experiment 3, the line-
bisection task (see Appendix A) was used to estimate right-hemisphere visuospatial
processing. The schizophrenia group showed a rightward bias under certain
conditions, for example when lines were positioned on the right side of the page,
when the right hand was used, and when a right-to-left scan was adopted suggesting a
deficit in the transfer of visuospatial information. In Experiment 4, interhemispheric
transfer was investigated using 128-channel EEG as a direct measure. Evoked
potentials (EPs) were obtained while participants performed the Poffenberger task.
The N160 was measured from homologous occipital sites to assess transfer latency in
milliseconds. While controls had faster information transfer from the right
hemisphere to the left hemisphere, this asymmetry of transfer was absent in the
schizophrenia group who had similar transfer speeds in both directions, i.e. ‘symmetry
of transfer’. Similarly, in Experiment 5, the schizophrenia group failed to show faster
transfer of linguistic information (words and non-words) from the right hemisphere to
the left. In both EEG tasks the schizophrenia group showed a concomitant decrease
in the amplitude of the N160 that was marked over the right hemisphere. This
suggests that right-hemisphere dysfunction, rather than callosal dysfunction may
better explain interhemispheric deficits in schizophrenia. Results are discussed with
reference to Miller’s (1996) hypothesis regarding differences in cerebral hemispheric
specialization and axonal conduction delays. These findings suggest that right-
hemisphere dysfunction may be associated with negative symptoms in males with
schizophrenia.
Acknowledgements

Firstly I would like to thank my supervisors Dr Ian Kirk and Professor Michael Corballis for their brilliant supervision, unrelenting support and good humour throughout the research and writing of this thesis. Special thanks also go to Professor Robert Miller for his support and helpful comments and Dr Tony Fernando for his supply of participants. Much thanks also goes to the many participants who were subjected to various computer-based experiments, neuropsychological tests and a good few hours under EEG nets.

I would like to thank the following organisations that provided the financial support and travel grants to make this thesis possible:

- New Zealand Federation of Graduate Women – The University of Auckland
- The Schizophrenia Fellowship of New Zealand
- The Neurological Foundation of New Zealand
- The Royal Society of New Zealand
- Graduate Research Fund – The University of Auckland
- Research Centre for Cognitive Neuroscience – The University of Auckland
- The Vivian Smith Advanced Studies Institute of the International Neuropsychological Society

Finally thanks to my family who never thought it would end! (David, Jan, Nicola, Jenna and new Kyan) … and of course the best bunch of Cognitive Neuroscientists in the world – Suzi Q, Scooter, all those Matts, Dr Kirkensteins bride, Dr Aguilera, Dr Hamster and bride, Branka, Tom Konjaleftski, Markus, Mel, Guki, young Nick, Karen T, Snipes, Phillipo, Suresh, Paul, Dr Milne, Tom D, Antje, Tony, Lynette – and my many other friends who have put up with me all this time (esp Katherine, Alia, Destin, Corrie, Andréa, Katy-did and the rest of the Blenheimer gang).
Table of Contents

Abstract ... i
Acknowledgements ... iii
Table of Contents ... iv
List of Tables .. vii
List of Figures .. viii

Chapter 1: What is Schizophrenia? .. 1
1.1 General Prevalence Rates ... 1
1.2 New Zealand Prevalence Rates ... 1
1.3 Course ... 2
1.4 The Symptoms of Schizophrenia ... 3
1.4.1 DSMIV .. 3
1.4.2 Positive and Negative Symptoms ... 3
1.4.3 Hallucinations and Delusions ... 4
1.5 Variables Influencing Schizophrenia ... 5
1.5.1 Age of Onset .. 5
1.5.2 Gender .. 5
1.6 What is the Cause of Schizophrenia? .. 6
1.6.1 The Neurodevelopmental Hypothesis of Schizophrenia 6
1.6.2 Genetics ... 7
1.6.3 The Evolutionary Hypothesis of Schizophrenia 8
1.6.4 Neurotransmitters .. 8
1.7 Structural Brain Differences in Schizophrenia 9
1.7.1 General Differences .. 9
1.7.2 The Temporal Lobes and Schizophrenia .. 10
1.7.3 Differences in Structural and Functional Asymmetry: Left hemisphere 11
1.7.4 Differences in Structural and Functional Asymmetry: Right hemisphere 13
1.7.5 The Corpus Callosum and Schizophrenia ... 14
1.8 Handedness ... 15
1.9 Integration Theories .. 16
1.9.1 General Behavioural Findings ... 16
1.9.2 Interhemispheric Integration of Information 17
1.9.3 Interhemispheric Transfer of Information (IHT) 19
1.10 Electrophysiological Differences in Schizophrenia 20
1.10.1 The Use of EEG in Psychiatry .. 20
1.10.2 EEG General Findings in Schizophrenia ... 20
1.10.3 EEG and Event Related Potentials in Schizophrenia 22
1.10.4 P50 ... 24
1.10.5 N100 ... 24
1.10.6 P300 ... 25
1.10.7 N400 ... 25
1.10.8 P600 ... 26
1.10.9 Medication and EEG ... 26
1.11 Schizophrenia and Language ... 27
1.12 Aims of this thesis ... 29
List of Tables

Chapter 4

Table 1: Mean percent deviation scores (in %) and standard deviations for visual line bisection as a function of group, hand used, and scan direction. Negative values indicate deviation to the left; positive values indicate deviation to the right…………………………………………………………………………………………75

Chapter 5

Table 1: Mean and SD CUDs in RT for each hand to stimuli presented in the LVF, RVF and BVF for each group………………………………………………………86

Chapter 6

Table 1: Accuracy: Mean and SD accuracy for each word type in each visual field for all (content, function, pseudohomophone, pronounceable non-word) in each visual field (LVF, BVF, RVF). …………………………………………………………104

Table 2: RT: Mean and SD RTs for each word type (content, function, pseudohomophone, pronounceable non-word) for all participants…………105

Table 3: Amplitude (μV): Amplitude data for each group at electrodes of interest (n=8) for the N160 component. Data shown for each visual field (LVF, RVF, BVF) for all word conditions. Statistics in bold, significant group differences, P = <.025. ………………………………………………………………………112

Table 4: Amplitude (μV): Statistical differences between groups at electrodes of interest (n=8) for the N160 component. t values and significance (2-tailed, Bonferroni correction factor .05/2) are shown for data at each electrode for each condition. Statistics in bold P = <.025……………………………………113

Table 5: Amplitude (μV): Amplitude data for each group at electrodes of interest (n=8) for the N160 component. Data shown for each visual field (LVF, RVF, BVF) for all word conditions (word LVF, RVF, BVF, non-word LVF, RVF, BVF). Statistics in bold, significant group differences, P = <.025………114
List of Figures

Chapter 2

Figure 1: Mean RTs (+ 1 SE) for stimuli presented to the LVF, BVF and RVF for each group………………………………………………………………………………………………40
Figure 2: Redundancy gain: Plots using the right and left hand for both groups over 18 response bins…………………………………………………………………42
Figure 3: Redundancy gain: Plots for schizophrenia participants using each hand over 18 response bins……………………………………………………..…43-44

Chapter 3

Figure 1: Mean accuracy for words (content and function) and non-words (pseudohomophones and non-pseudohomophones) in each visual field (RVF, BVF and LVF) for all subjects…………………………………………………………….57
Figure 2: Mean latency responses for all stimuli for each visual field (RVF, BVF and LVF) for each group…………………………………………………………….58
Figure 3: Mean latency responses for words (content and function) and non-words (pseudohomophones and non-pseudohomophones) for each visual field (RVF, BVF and LVF) for all participants……………………………………………60

Chapter 4

Figure 1: Mean deviation (in %) and SEs from true centre in line-bisection according to position on page (left, centre, right) for each group ……………………….74

Chapter 5

Figure 1: Mean directional asymmetry of N160 transfer speed in each direction for each group…………………………………………………………………………………87
Figure 2: Grand average N160 ERPs at O1 (left hemisphere) and O2 (right hemisphere) after LVF and RVF stimulation for each group…………………………………………………………………..88-89
Figure 3: LVF presentation. T-map plotting location of electrodes with smaller amplitude in schizophrenia…………………………………………………………..90

Chapter 6

Figure 1: IHTT directional asymmetry for words and non-words for each group. Error bars show one SE of the mean……………………………………………….107
Figure 2: Grand average N160 ERPs (PO3, PO4) in the left and right hemisphere after LVF presentation for the schizophrenia and control group………………..108
Figure 2: Grand average N160 ERPs (PO3, PO4) in the left and right hemisphere after LVF presentation for the schizophrenia and control group………………..109