
 

Libraries and Learning Services 
 

University of Auckland Research 
Repository, ResearchSpace 
 

Version 

This is the Author’s Original version (preprint) of the following article. This 
version is defined in the NISO recommended practice RP-8-2008 
http://www.niso.org/publications/rp/ 

 

Suggested Reference 

Hinder, O., & Mason, A. J. (2017). A novel integer programing formulation for 
scheduling with family setup times on a single machine to minimize maximum 
lateness. European Journal of Operational Research, 262(2), 411-423. 
doi:10.1016/j.ejor.2017.03.003 

 

Copyright 

Items in ResearchSpace are protected by copyright, with all rights reserved, 
unless otherwise indicated. Previously published items are made available in 
accordance with the copyright policy of the publisher. 

For more information, see General copyright, Publisher copyright, Sherpa 
Romeo. 

 

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1016/j.ejor.2017.03.003
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.elsevier.com/about/company-information/policies/sharing
http://www.sherpa.ac.uk/romeo/issn/0377-2217/
http://www.sherpa.ac.uk/romeo/issn/0377-2217/


A novel integer programming formulation for scheduling

with family setup times on a single machine to minimize

maximum lateness
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Abstract

This paper focuses on the problem of scheduling n jobs with family setup
times on a single machine with the objective of minimizing the maximum
lateness. To solve this problem we develop a novel ordered-batch integer
programming formulation. The formulation utilizes two properties of optimal
solutions. Firstly, we observe that there is a restricted set of batches that we
need to consider to find the optimal solution. Secondly, we know the order
in which batches should be processed if they occur in an optimal solution.

Using branch and bound, our integer program finds optimal schedules
for significantly larger problem instances than are reported in the literature.
In contrast to existing algorithms, our formulation is strongest for problem
instances with many families and large setup times. For example, we are
able to find optimal solutions to problems with 1080 jobs and 270 families.
We attribute this improvement to our linear programming relaxation being
tighter than existing bounds for these cases.

To explain this performance, we analyze the theoretical tightness of this
formulation. We show that if the number of jobs in each family is bounded
then the gap between a heuristic rounding and the lower bound produced by
the linear programming increases at most sub-linearly with the number of
jobs. This improves on prior approximation algorithms that only guarantee
optimality gaps that grow linearly with the number of jobs.
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1. Introduction

It is well-known that in many factories it is quicker to process jobs in
batches that share a setup time (Ahn and Hyun (1990), Jin et al. (2009),
Potts and Wassenhove (1992)). Scheduling in these factories is complicated,
because the goal is rarely to process orders as quickly as possible, but instead
managers seek schedules that meet their order deadlines. In particular, mak-
ing batches too large causes pressing orders to miss their due dates, while
small batches result in many setups, causing delays in production. Good
scheduling is therefore important to the efficient operation of a factory.

We consider the problem of scheduling jobs on a single machine to min-
imize maximum lateness. Each job belongs to a family. A family setup is
required between any pair of consecutive jobs if they belong to different fam-
ilies. The time required for this setup depends on the family of the next job,
and is assumed to be independent of the previous family. Any schedule can
be decomposed into a sequence of batches, where a batch is a maximal set
of jobs from one family that are processed consecutively following a family
setup.

We are interested in solving this problem to optimality, and so this paper
begins by reviewing previous exact algorithms used to tackle this NP-hard
(Bruno and Downey, 1978) problem. One successful approach is based on a
lower bound we term the ordered-job bound. Next, the paper discusses two
key properties of optimal solutions known in the literature, and uses these to
formulate a new ‘ordered-batch’ integer programming model. The integer re-
quirements of this model are relaxed to form the ordered-batch linear program
which can be solved to give our ordered-batch bound. To theoretically jus-
tify this relaxation, we show that the gap between the ordered-batch bound
and the optimal schedule grows at most sub-linearly in the problem size.
Following this, we empirically evaluate our integer program against other
approaches. Our formulation outperforms a more traditional time-indexed
integer program. Moreover, for problems with many families or large setup
times our new ordered-batch bound is superior to the ordered-job bound, and
our approach can solve huge instances of these problems.
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2. Literature review

In general, machine scheduling problems with setups are difficult to solve;
see Allahverdi et al. (1999), Allahverdi et al. (2008) and Allahverdi (2015)
for a survey of such problems. The special class of family setups introduces
additional ‘batch’ problem structure that can be exploited. (See Potts and
Kovalyov (2000) for a review of batch scheduling.) However, such problems
are challenging even in the simplest case of just a single machine. For exam-
ple, Mason and Anderson (1991), Crauwels et al. (1998) and Dunstall et al.
(2000) consider the family setup problem on a single machine with a weighted
completion time objective, and develop enumerative approaches that can op-
timally solve problems with up to 70 jobs. Motivated by a problem arising in
a Chinese factory, Jin et al. (2009) consider a single machine problem similar
to ours but with sequence dependent family setups. Because their problems
have several hundred jobs and many families, they are hard to solve opti-
mally and so their work focuses on a Tabu search approach. Schutten et al.
(1996) consider a similar single machine problem with release dates and due
dates for which they develop a customised branch and bound algorithm; they
solve problems with up to 50 jobs. In an example of more theoretical work,
Grundel et al. (2013) also consider the single machine problem with family
set-ups, but generalise the objective to one where jobs in a family share a
common cost function that depends linearly on the job’s completion time.

Our problem of minimizing maximum lateness with family setup times on
a single-machine problem was shown to be NP-hard by Bruno and Downey
(1978) and strongly NP-hard by Cheng et al. (2003). To solve problems
where the number of families is small, Ghosh and Gupta (1997) wrote a
dynamic programming algorithm which runs in O(nF ) time, where n is the
total number of jobs and F the total number of families. This allows the
problem to be solved in polynomial time for a fixed number of families.

The problem becomes significantly harder as the number of families is
increased, and so alternative approaches such as branch and bound have
been proposed for this problem. Both Hariri and Potts (1997) and Baker
and Magazine (2000) have presented branch and bound algorithms. The
essential idea of Hariri and Potts (1997) is that a lower bound can be created
by ignoring all the setups, except for those associated with the first job in
each family; then the minimum maximum lateness schedule can be found by
ordering the jobs by earliest due date. We will refer to this lower bound as
the ordered-job bound and contrast it with our bound, which we will label
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the ordered-batch bound. The ordered-job bound can be computed quickly,
but may not be tight, particularly if the problem consists of many families
or setups are large. Baker and Magazine (2000) apply a similar approach
but using partial schedules to create their lower bounds. While their lower
bound may be slightly faster to compute, it is weaker than the Hariri and
Potts ordered-job bound. These two papers used different computers and test
examples, so it is difficult to make reliable comparisons of the solution times.
Nonetheless, the results of Baker and Magazine (2000) do not give reason
to believe that these two approaches have large differences in performance.
Hariri and Potts create instances with up to 60 jobs, most of which they can
solve within 100 seconds. These tests will form the basis of the evaluation of
our own integer program in Section 9.

Much of the work in machine scheduling, such as that discussed above,
focuses on the use of problem-specific lower bounds as part of customised
branch and bound schemes. Our interest is in developing an effective integer
programming approach. The use of mixed integer programming (MIP) for
scheduling (‘MIP-scheduling’) has a number of advantages. Perhaps most
importantly, the use of MIP models allows problems to be solved by com-
mercial or open-source software packages, such as Gurobi (Gurobi, 2015),
CPLEX (CPLEX, 2015), and CBC (COIN-OR CBC, 2015), without writing
customised computer code. Furthermore, users of such models benefit from
continual reductions in run times as a result of ongoing research and software
improvements.

Since Wagner (1959) presented the first MIP-scheduling model in 1959,
there have been an increasing number of MIP formulations for scheduling
problems. Blazewicz et al. (1991) provide an early survey of MIP formu-
lations for scheduling, with more recent surveys including Queyranne and
Schulz (1994) and Keha et al. (2009). Li and Yang (2009) survey MIP mod-
els for parallel machines, while Pan (1997) present and compare five MIP
models for job-shop and flow-shop problems. Crauwels et al. (2010) evaluate
six MIP formulations for a single machine problem in which they seek to
minimise the job tardiness sum. They find that problems with up to 40 or
50 jobs can be solved using the CPLEX solver (CPLEX, 2015), but larger
problems require more specialised algorithms. They conclude that “system-
atic studies of [MIP model] effectiveness have been lacking” and “this subject
warrants deeper investigation.” Our work is a step in this direction.

If a problem becomes too large or complex to solve to optimality, then it
is useful to have bounds on the quality of solutions found using heuristics.
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The linear programming (LP) relaxations of MIP models can provide such
bounds. However, it is well-known that the quality of the LP bound depends
on the form and structure of the MIP formulation, with naive formulations
often giving poor bounds. For example, Keha et al. (2009) present results for
a single machine problem showing that problems that can be solved within
41 seconds using a ‘time-indexed’ formulation still have a bound gap of over
60% after one hour’s computation using a ‘completion time’ formulation.

There is ongoing theoretical research into the properties of MIP-scheduling
models and the development of stronger formulations through techniques
such as cutting planes and valid inequalities. See, for example, the pio-
neering paper of Balas (1985) and the surveys by Queyranne (1993) and
Queyranne and Schulz (1994). Some authors, such as Bigras et al. (2008)
and van den Akker et al. (2000), have used Dantzig-Wolfe MIP reformula-
tions to improve the strength of their models. MIP-models are also being used
in the development of approximation algorithms; Savelsbergh et al. (2005),
for example, evaluate different formulations of the single machine weighted-
completion-time problem with release dates as part of LP-based heuristics
and approximation algorithms, while Afrati et al. (1999) develop polynomial
time approximation schemes for minimizing the average weighted completion
time sum with release dates on multiple machines.

Our ordered-batch formulation differs from previous MIP scheduling work
we have seen in that we first enumerate batches, and then use known opti-
mality results to impose an ordering on these batches. This ordering is then
exploited as a core component of the MIP model formulation. This enumer-
ation of columns has similarities to column generation and Dantzig-Wolfe
reformulation, and thus we can consider our approach to be part of this
family of methods for developing stronger formulations. However, our for-
mulation depends on the existence of a known optimal ordering for these
batches, which is a feature not commonly found in column generation work.

3. Problem definition

We use the notation of Potts and Kovalyov (2000) and Webster and Baker
(1995) to define a problem instance. Let there be F families, where each
family f ∈ {1, ..., F} has nf jobs denoted (1, f), (2, f), ..., (nf , f). Each job
(k, f) has an associated due date d(k,f) and processing time p(k,f) > 0. Each
family f has an associated family setup of duration sf ≥ 0 which needs to
be performed before processing some job (i, f) if the previous job is from
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another family (or job (i, f) is the very first job in the schedule). As we
discuss shortly, jobs in the same family must be ordered by earliest due date
(EDD), and all jobs in a family can be assumed to have distinct due dates.
Therefore, we assume the indices of the jobs in each family are ordered by
ascending due date, i.e. d(k,f) < d(k+1,f) ∀ f = 1, 2, ..., F, k = 1, 2, ..., nf − 1.

4. Preprocessing

Hariri and Potts (1997) show that jobs from the same family can often be
merged to reduce the problem size. In particular, if p(i+1,f) ≥ d(i+1,f) − d(i,f)

then we can replace jobs (i, f) and (i + 1, f) with a new single job with
processing time p(i,f)+p(i+1,f) and due date min {d(i+1,f), p(i+1,f) + d(i,f)}. For
the first job in each family it is only necessary that p(2,f) +sf ≥ d(2,f)−d(1,f).
These two rules can be applied repeatedly until no further jobs can be merged.
After this pre-processing step, all the jobs in a family have distinct due dates.
We assume all our problem instances have been preprocessed in this way.

5. Optimal solution properties

There are several well known properties of optimal solutions that we use
in our formulations.

Lemma 1. (Monma and Potts, 1989) There exists some optimal solution in
which the jobs from each family are processed in order of earliest due date
(EDD).

Thus, if we define a batch as a set of jobs from one family that are pro-
cessed consecutively, then by Lemma 1 there exists an optimal solution that
consists of a sequence of batches each of which contains jobs sequenced in
EDD order. These EDD-batches will form the core of our integer program-
ming formulations. Because our jobs are indexed in EDD order, we can use
(i, j, f) to denote the batch in which jobs (i, f), (i+1, f), ..., (j, f) from family
f are processed consecutively following a setup of duration sf . We enumer-
ate all batches (i, j, f), f = 1, 2, ..., F , i = 1, 2, ..., nf , j = i, i + 1, ..., nf to
give a set of B batches {(ib, jb, fb), b = 1, 2, ..., B} where ib, jb and fb define
the first job index, last job index and family of batch b, respectively. Let
Bf = {b ∈ {1, ..., B} : fb = f} be the set of batches in family f .

Just as we ordered our jobs by earliest due date within each family, we
assume the B batches are ordered by their ‘effective due dates’ in accordance
with the following definition and lemma.
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Definition 1. The effective due date δb of a batch b defined by (ib, jb, fb), is:

δb = min
ib≤k≤jb

δb,k

where:

δb,k = d(k,fb) +

jb∑
q=k+1

p(q,fb)

Lemma 2. (Webster and Baker, 1995) There exists an optimal schedule
which consists of a sequence of batches ordered by effective due date.

Thus, we assume our batches are numbered so that δ1 ≤ δ2 ≤ ... ≤ δB
(with ties broken arbitrarily). We use the following definition and corollary
to define the lateness Lb of a batch as the maximum lateness of its jobs.

Definition 2. The total processing time ρb of a batch b, including the setup
time sfb, is ρb = sfb +

∑jb
k=ib

p(k,fb).

Corollary 1. (Webster and Baker, 1995) If the processing of a batch b begins
at time tb, then the ‘lateness’ Lb of batch b, i.e. the maximum lateness over
the jobs in batch b, is given by Lb = tb + ρb − δb

6. Ordered Batch Integer Programming (OBIP) formulation

Assume we have enumerated all B batches and sorted them by their
effective due dates. We can now form our ‘ordered batch’ integer program by
introducing a binary variable xb, b = 1, 2, ..., B for each batch, where xb = 1
if batch b is used in a solution and xb = 0 otherwise. Because we know
the order in which batches will be sequenced, the finish time of any batch b
that is used in our solution can now be calculated as

∑b
r=1 ρrxr. Our integer

program uses this finish time and the effective due date δb of each batch b
to impose a lower bound on another variable, L̂max, which then gives the
maximum lateness that we minimise. Our ‘ordered batch IP’ (OBIP) model
comprises of the following expressions (1)-(6):
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OBIP: min L̂max (1)

s.t.
∑

b∈Bf :ib≤k≤jb

xb = 1 ∀ f ∈ {1, 2, ..., F}, k ∈ {1, 2, ..., nf}

(2)

b∑
r=1

ρrxr − (δb−1(1− xb) + δbxb) ≤ L̂max ∀ b ∈ {1, 2, ..., B}

(3)

L̂max ∈ R (4)

xb ∈ {0, 1} ∀ b ∈ {1, 2, ..., B}
(5)

b−1∑
r=1

ρrxr + ρb − δb ≤ L̂max ∀ b ∈ {1, 2, ..., B} : ib = jb = 1

(6)

If we replace constraint (5) with 0 ≤ xb ≤ 1 then we call this the ‘ordered
batch LP’ (OBLP).

Constraint (2) in our model ensures that each job occurs exactly once
in the solution. As we will show shortly, constraints (3) guarantee that
the maximum lateness, L̂max, is no less than the latenesses of all batches
b ∈ {1, 2, ..., B} : xb = 1 used in the solution. Note that to define (3) for
b = 1 we put δ0 = δ1. Constraint (5) ensures the solution corresponds to a
selection of batches. Finally, as we will show, (6) is a valid inequality used
to strengthen the formulation.

Next, we show that we have a correct formulation. Let x = (x1, x2, ..., xB) ∈
G denote a set of xb variables that satisfy constraints (2) and (5), where G is
the set of all possible such solutions. Clearly, there is a one-to-one mapping
between x ∈ G and a feasible schedule satisfying Lemmas 1 and 2, and thus
our formulation allows an optimal schedule to be represented. We now show
that the calculation of the objective L̂max in OBIP is correct for any x ∈ G,
and thus OBIP correctly solves our problem.

Definition 3. Let Lb(x) denote the lateness of batch b under some schedule

defined by x ∈ G, and let L
(3)
b (x), b = 1, 2, ..., B be the values of the left hand

sides of constraint (3) evaluated at x.
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Lemma 3. Given some schedule defined by x ∈ G, then for all b : xb = 1,
L

(3)
b (x) = Lb(x).

Proof. This immediately follows from Corollary 1 by setting tb =
∑b−1

r=1 ρrxr.

We now prove the following lemma which is needed for the x1 = 0 case
we consider in Lemma 5.

Lemma 4. Consider a batch b with ib = jb = 1 i.e. a batch consisting of the
first job (1, fb) in family fb. This batch b has the smallest index in family fb;
i.e. b = min(Bfb).

Proof. Consider any batch a ∈ Bfb \ {b}. Recall from Definition 1 that
δb = d(1,fb) and δa = minia≤k≤ja δa,k. If k = 1 then ja > 1 and therefore δa,1 ≥
d(1,fb) + p(2,fb) > d(1,fb) because processing times are positive. If k > 1, δa,k ≥
d(k,fb) > d(1,fb) because due dates are strictly increasing after preprocessing.
Therefore δa > δb.

Lemma 5. Given some schedule defined by x ∈ G, then for all b : xb = 0,
then L

(3)
b (x) ≤ Lmax(x) holds.

Proof. Let us assume that in solution x, there is some batch b′ that is the last
batch to have been scheduled before batch b. That is we assume x = (x1,
x2, ..., xb′ , 0, 0, ..., 0, xb, xb+1, ..., xB) with b′ < b, xb′ = 1, xb = 0. (We
will consider the case where no such b′ exists shortly.) From Lemma 3,

Lb′(x) = L
(3)
b′ (x), hence:

Lmax(x) ≥ Lb′(x) = L
(3)
b′ (x) =

b′∑
r=1

ρrxr − δb′ ≥
b∑

r=1

ρrxr − δb−1 = L
(3)
b (x)

where the inequality follows because δb′ ≤ δb−1 and
∑b

r=b′+1 ρrxr = 0.
Next consider the other case when there exists no such b′. In this case

L
(3)
b (x) = −δb−1 ≤ −δ1. Now by the previous lemma, batch b = 1 only

contains one job so −δ1 = −d(1,f1) ≤ Lmax(x).

Theorem 1. For any fixed x ∈ G, the minimal L̂max that satisfies constraints
(3) correctly measures the maximum lateness of the associated schedule.
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Proof. Lemma 3 implies maxb=1,...,B:xb=1 L
(3)
b (x) = Lmax(x) and Lemma 5 im-

plies maxb=1,...,B:xb=0 L
(3)
b (x) ≤ Lmax(x). Hence maxb=1,...,B L

(3)
b (x) = Lmax(x).

Since L̂max is minimal, L̂max = maxb=1,...,B L
(3)
b (x) = Lmax(x).

Lemma 6. Equation (6) is a valid inequality, i.e. L
(6)
b (x) ≤ Lmax(x), where

L
(6)
b (x) is the value of the left hand side of (6) evaluated at x.

Proof. A batch b with ib = jb = 1 consists of the single job (1, fb). Job (1, fb)
is either completed in batch b at time

∑b−1
r=1 ρbxb + ρb, or, by Lemma 4, in

a later batch b′ > b. Therefore, this job must have a lateness of at least∑b−1
r=1 ρbxb + ρb − δb = L

(6)
b (x).

The next result justifies the OBIP formulation.

Corollary 2. The optimal solution of OBIP finds a schedule that minimizes
the maximum lateness.

Proof. Observe that Theorem 1 and Lemma 6 imply that OBIP finds the
optimal schedule x such that x ∈ G. Furthermore, Lemma 1 and 2 imply
that G contains an optimal schedule for the original problem.

7. Worst case performance guarantees for the OBLP

In this section, we provide theoretical justification of our OBIP formula-
tion, by arguing that the associated linear program relaxation, termed OBLP,
is tight. We take an optimal fractional solution to the OBLP and randomly
round it to produce a feasible schedule. The maximum lateness associated
with this feasible schedule is, with high probability, not much worse than the
linear program objective. More specifically, if the number of jobs in each fam-
ily is bounded, the gap between the maximum lateness of the linear program

solution and the rounded schedule is O
(√

n log(n)
)

, where n =
∑F

f=1 nf is

the total number of jobs. This is better than prior worst-case performance
results that give optimality gaps of O(n). We also show that if there is no
bound on the number of jobs in each family, it is still possible to modify

this technique to give LP rounding that is within O
(
n2/3

√
log(n)

)
of the

optimal maximum lateness.
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7.1. Comparison with performance guarantees of previous algorithms

Prior work for worst-case performance guarantees makes the following
statement:

LHmax ≤ (1 + ε)L∗max (7)

for some constant ε > 0, where LHmax is the maximum lateness of a heuristic
schedule, and L∗max is the maximum lateness of an optimal schedule. There
have been several papers exploring approximation algorithms for this prob-
lem. For example, Zdrza lka (1995) gives an algorithm that runs in O(n2)
with ε = 1/2 and Hariri and Potts (1997) gives an algorithm that runs in
O(n log(n)) with ε = 2/3. The result that gives the smallest ε is a polynomial
time approximation scheme (PTAS) from Woeginger (1998). A PTAS is a
family of algorithms that for a fixed ε gives a polynomial time algorithm.
However, the required time grows exponentially in 1/ε. To acquire these re-
sults these papers assume that all due dates are non-positive. However, this
assumption seems unnatural. Instead of examining this ratio, we will the
consider the gap LHmax − L∗max. In Theorem 4 we show that if setup and pro-
cessing times are bounded then the gap grows sub-linearly with the number
of jobs:

LHmax ≤ L∗max +O
(
n2/3

√
log(n)

)
If we revert to the assumption that due dates are non-positive then L∗max ≥

npav, where pav is the average job processing time. This implies that:

LHmax

L∗max

≤ 1 +O
(
n−1/3

√
log(n)

)
Hence

LHmax

L∗max

→ 1 as n→∞

which is equivalent to ε→ 0 in Equation (7) as n→∞.

7.2. Approximation results with only two jobs in each family

We first analyse the case of two jobs in each family. To make the mathe-
matics easier, this section uses a simplified version of the OBLP formulation.
We remove constraints (3) and (6) and replace them with the following in-
equality:
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b∑
r=1

ρrxr − δb ≤ L̂max ∀ b ∈ {1, 2, ..., B} (8)

This gives a linear program that we term the Simplified OBLP formu-
lation (SOBLP). It is trivial to see this makes the formulation weaker since
δb−1 ≤ δb−1(1−xb)+δbxb ≤ δb for 0 ≤ xb ≤ 1. Therefore any tightness results
that apply to SOBLP will also apply to OBLP.

Let zf be one if the two jobs in family f are processed in the same batch
or zero if they are processed in different batches. Formally, zf = xbboth

f
, where

in batch bboth
f both jobs in the family f are processed in the same batch; i.e.

bboth
f ∈ Bf , ibboth

f
= 1 and jbboth

f
= 2. We also let batches bfirst

f and blast
f be

those batches in which the first job and last job are processed separately, i.e.
ibfirst
f

= jbfirst
f

= 1 and iblast
f

= jblast
f

= 2. This allows us to re-write the SOBLP
as:

min L̂max (9)

s.t. L̂max ≥ Lb ∀ b ∈ {1, 2, ..., B} (10)

Lb =
F∑
f=1

(γf,bzf + ηf,b(1− zf ))− δb ∀ b ∈ {1, 2, ..., B} (11)

0 ≤ zf ≤ 1 ∀ f ∈ {1, 2, ..., F} (12)

where we define γf,b and ηf,b as follows:

γf,b = I(bboth
f ≤ b)ρbboth

ηf,b = I(bfirst
f ≤ b)ρbfirst

f
+ I(blast

f ≤ b)ρblast
f

where I(h) = 1 if h is true, and I(h) = 0 otherwise.
Now consider some fractional solution to this new LP which we denote

by zLP
f , LLP

b , L̂LP
max. We apply the following rounding procedure to convert

each fractional zLP
f value into an integer equivalent denoted by Zf as fol-

lows: with probability zLP
f set Zf = 1 otherwise set Zf = 0. Observe that

{Z1, Z2, ..., ZF} produces a feasible schedule since Zf ∈ {0, 1}. Furthermore,
this procedure creates random variables LR

b ,

LR
b =

F∑
f=1

((γf,bZf + ηf,b(1− Zf )))− δb,
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that describe the lateness of the batches, and a random variable LR
max =

maxb∈{1,...,B} L
R
b that is the maximum lateness of the rounded solution. We

let pmax denote the maximum processing time of any job and smax denote the
maximum setup time of any family i.e. p(i,f) ≤ pmax and sf ≤ smax. Using
this terminology the next lemma shows that the lateness of each batch in the
rounded solution LR

b is, with high probability, not much worse than LLP
b :

Lemma 7. If there are two jobs in each family, then with probability at most
1
B2 :

LR
b ≥ LLP

b + 2(smax + pmax)
√
F log(B)

Proof. Recall the concentration inequality of Hoeffding (1963) states that:

P

(
T∑
t=1

Wt ≥ E

[
T∑
t=1

Wt

]
+ ε

)
≤ e

− 2ε2

T (u−l)2

where Wt are independent random variables with l ≤ Wt ≤ u.
Applying this to LR

b by putting LR
b =

∑F
f=1Wf,b + δb where Wf,b =

γf,bZf + ηf,b(1− Zf ) gives:

P (LR
b ≥ E[LR

b ] + ε) ≤ e
− 2ε2

F (2(smax+pmax))2

since 0 ≤ Wf,b ≤ 2(smax + pmax).

Setting ε = 2(smax + pmax)
√
F log(B) gives

P (LR
b ≥ E[LR

b ] + 2(smax + pmax)
√
F log(B)) ≤ e−2 log(B) =

1

B2

The result follows because E[Zf ] = zLP
f and therefore E[LR

b ] = LLP
b .

Theorem 2. If there are two jobs in each family, then with probability at
least 1− 1

3F
:

LR
max ≤ LLP

max + 2(smax + pmax)
√
F log(3F )

Proof. Because LLP
b ≤ LLP

max ∀ b = 1, 2, ..., B, Lemma 7 gives P (LR
b ≥ κ) ≤ 1

B2

where we have κ = LLP
max + 2(smax + pmax)

√
F log(B). Considering all B

batches, and using the union equality, we have

P
(
LR

1 ≥ κ ∪ LR
2 ≥ κ ∪ ... ∪ LR

B ≥ κ
)
≤ B

1

B2
=

1

B
The result then follows by noting B = 3F .

Since L∗max ≤ LR
max, Theorem 2 automatically makes a statement about

the tightness of the OBLP.
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7.3. Rounding fractional solutions with two or more jobs in each family

The rounding and analysis becomes more challenging when there are more
than two jobs. As before, we want to round the fractional solution associated
with each family independently so that we can once again apply the Hoeffding
concentration inequality to the sum of random variables. To do this we
introduce the concept of an f -schedule which is a feasible set of batches for
a particular family.

Definition 4. The set of batches π ⊆ Bf is an f -schedule if for each k =
1, ..., nf the job (k, f) is contained in exactly one batch b ∈ π.

Consider the previous definition. If we choose one f -schedule πf for each
family f then the set of batches π1∪π2∪· · ·∪πF (ordered by earliest effective
due date) yields a feasible schedule. Next, consider the following probability
distribution over f -schedules for each family f :

P(Ωf ,ωf )(Πf = π) =

{
ωf,π if π ∈ Ωf

0 otherwise

where Ωf is a set of f -schedules for family f , Πf is a random variables giving
the f -schedule chosen for family f , and the vector ωf has elements ωf,π > 0,
π ∈ Ωf each of which give the probability that f -schedule π ∈ Ωf is chosen.
This distribution allows us to define a random variable:

XR
b = I(b ∈ Πf )

where XR
b = 1 if batch b ∈ Bf is in the randomly chosen schedule, and

XR
b = 0 otherwise. We can then, based on the SOBLP, define a random

variable for the maximum lateness of each batch in this random rounding:

LR
b =

b∑
r=1

ρrX
R
r − δb

Ideally, we would want the rounding to be similar, in expectation, to the
original SOBLP solution i.e. E[LR

b ] = LLP
b . Definition 5 gives a condition

when this is true.

Definition 5. (Ωf , ωf ) covers (x, f) if:∑
π∈Ωf

I(b ∈ π)ωf,π = xb ∀ b ∈ Bf
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If (Ωf , ωf ) covers (x, f) for all f ∈ F then E[XR
b ] = xb hence E[LR

b ] =
LLP
b . This property is critical to the proof of Theorem 3.

Lemma 8. For any family f and solution x to the SOBLP we can construct
an (Ωf , ωf ) that covers (x, f) in O(|Bf |2nf ) time.

We leave the proof of this lemma to Section A.1. Here we sketch our
algorithm (Algorithm A.1) for constructing an (Ωf , ωf ) that covers (x, f).

Initially we start with Ωf = ∅ and x̂ = x.
At each iteration we find an f -schedule π such that b ∈ π only if x̂b > 0.

We add this f -schedule π to Ωf with ωf,π = minb∈π x̂b. We then subtract this
new f -schedule from the solution x̂ by x̂b ← x̂b − I(b ∈ π)ωf,π. We repeat
this process until x̂ = 0 at which point we have an (Ωf , ωf ) that covers (x, f).

We next present several algorithms and associated results based on the
(Ωf , ωf ) we construct.

7.4. Approximation results when the length of each family is bounded

In Appendix A.2 we present a rounding algorithm, Algorithm A.3, which
uses (Ωf , ωf ) to create an integer solution. We now give approximation re-
sults for this algorithm in terms of the processing ‘length’ τf of a family,
where τf is the maximum time a family could take to be processed in a
schedule:

τf =

nf∑
k=1

(
sf + p(k,f)

)
Theorem 3. With probability at least 1− 1

B
:

LR
max ≤ LLP

max +

√√√√log(B)
F∑
f=1

τ 2
f

where LR
max is the maximum lateness of the schedule generated by Algo-

rithm A.3.

We leave this proof to Appendix A.2, but note that it is similar to the
proof of Lemma 7 and Theorem 2.
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If we put τmax = maxf=1,...,F τf , then we have
∑F

f=1 τ
2
f ≤ τmax

∑F
f=1 τf ≤

τmax(pmax + smax)n. Noting also that B ≤ n2 ⇒ log(B) ≤ 2 log(n), we get

LR
max ≤ LLP

max +
√

2 log(n)τmax(pmax + smax)n

If there at most m jobs in each family then

LR
max ≤ LLP

max + (pmax + smax)
√

2 log(n)nm (13)

These results show that when there are many job families, each with a small
number of jobs, the SOBLP relaxation will be relatively tight; i.e. the bound
gap will grow with O(

√
n log(n)) for constant m.

7.5. Approximation result with an arbitrary number of jobs in each family

We would like the bound gap to grow sub-linearly with n without requir-
ing any assumptions on the size of the families. In Appendix 4 we present
another rounding approach, Algorithm A.4, that generates solutions with this
property. Theorem 4 shows that the difference between the optimal sched-
ule to the original problem L∗max and the heuristic maximum lateness L′Rmax

generated by Algorithm A.4 grows sub-linearly with the number of jobs, i.e.

O
(
n2/3

√
log(n)

)
. Note that unlike our previous results, this result depends

on the optimal integer objective value L∗max and therefore does not make a
statement about the strength of the lower bound generated by the OBLP.

Theorem 4. With probability at least 1− 1
B

:

L′
R
max ≤ L∗max + n2/3(1 +

√
2 log(n))(smax + pmax)

where L′Rmax is the maximum lateness of the schedule generated by Algo-
rithm A.4.

The proof of this result is given in Section A.3; here we sketch the general
idea. The previous result, Theorem 3, requires the size of the families, i.e.
m, to grow very slowly. To avoid the problem of large families we create
a new artificial problem, where we split up families. In particular, we split
the families evenly (maintaining the EDD order of jobs) until nf ≤ n1/3.
This process requires at most n2/3 additional families. This makes the gap
between the optimal schedule to the artificial problem, L′∗max, and original
problem L∗max at most smaxn

2/3. We can use Theorem 3 to bound the gap
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between the artificial optimum schedule L′∗max and the random rounding of
the artificial SOBLP optimal solution L′Rmax. Adding the two gaps together
yields Theorem 4.

In the next sections, we focus on demonstrating the practical value of our
new model in solving benchmark problems.

8. A Compact Ordered Batch Integer Programming (COBIP) for-
mulation

Consider again our OBIP model. The number of constraints given by
(3) increases linearly with B, and thus (3) typically creates many rows in
OBIP which can make the problem difficult to solve. We show next that we
can consider a ‘compact ordered batch IP’ (COBIP) that typically has fewer
rows.

Suppose some consecutive batches a, a+1, ..., c−1, c in our batch ordering
belong to the same family, i.e. fa = fa+1 = ... = fc−1 = fc. Including more
than one of these batches in the solution would result in an unnecessary setup,
and so an optimal solution cannot contain more than one of these batches.
This observation allows us to replace (3) by the following constraints.

c∑
r=a

xr ≤ 1 ∀ a, c : 1 ≤ a < c ≤ B : fa = fa+1 = ... = fc (14)

c∑
r=1

ρrxr +
c∑

r=a

(δa−1 − δr)xr − δa−1 ≤ L̂max

∀ a, c : 1 ≤ a ≤ c ≤ B : fa = fa+1 = ... = fc (15)

Constraint (14) enforces our observation above. Consider next constraint
(15). To show this is valid in this new formulation, we first note that for any
solution with xa+1 = xa+2 = ... = xc = 0, constraint (15) is equivalent to
(3) for b = a, and constraint (14) is redundant, giving us the original OBIP
formulation. Assuming our solution satisfies (14), the only other possibility
is one of xa+1, xa+2, ..., xc has value 1. Letting xb = 1 denote this non-zero
variable, then in this case the left hand side of constraint (15) simplifies to∑b

r=1 ρrxr−δb, which is the lateness Lb(x) of batch b as required for a correct
formulation.

We do not need all the constraints given by (15), but instead note that
(15) simultaneously specifies a correct lower bound on L̂max for all batches a,
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a+ 1, ..., c. Thus, we can minimise the number of constraints in COBIP by
always choosing a and c so that the number of consecutive batches (c− a) is
maximal. Constructing our new constraints in this way results in c − a + 1
rows from OBIP being replaced by 2 rows in COBIP for each (a, c) : a > c
pair. Note that we do not include constraint (14) for any (a, c) pair with
a = c, because the resulting constraint is always satisfied. Furthermore,
we observe that (2) dominates (14) if batches a, a + 1, ..., c share at least
one job in common, and so (14) will often be removed by the solver during
pre-processing.

If we included all these constraints given by (15) this formulation would
be tighter because (3) is a special case of (15). However, by always choosing
a and c so that the number of consecutive batches (c − a) is maximal, the
new formulation may be either weaker or stronger. However, as we see in
Section 9.2 changing from OBIP to COBIP had a negligible impact on the
root node linear programming objective value.

9. Computational results

In this section we evaluate the performance of our integer programming
models. As we discuss shortly, our compact ordered-batch approach (COBIP)
outperformed both our original ordered-batch approach (OBIP) and a time-
indexed formulation (TIBIP) we tested (see Section 9.2), and so our focus
is on a detailed evaluation of COBIP’s performance. We do this primar-
ily by comparing it against the results reported by Hariri and Potts for their
branch and bound algorithm. (We would expect comparisons with Baker and
Magazine’s algorithm to yield similar conclusions because of the similarity
of the two approaches.) We find that we are able to solve significantly larger
problems, and that our integer program is particularly effective when there
are many families or large setups. However, we recognise that hardware im-
provements make time-based comparisons difficult, and so we also compare
the underlying ordered-job bounds produced using the Hariri and Potts ap-
proach with our ordered-batch bounds. We show that our bounds are usually
tighter. We then briefly consider how our integer program reacts to variation
in the due date spread. We find that our ordered-batch bound appears to be
consistently tight, whereas the ordered-job bound does poorly for small due
date spreads but is exceptionally tight when the due date spread becomes
very large.
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9.1. Methods

Our experimental testing follows the methodology used by Hariri and
Potts. We implement the following approach, described in Hariri and Potts
(1997), to generate 3375 random problem instances to solve. (Baker and
Magazine (2000) also present test problems, but these are more restricted
in that they assume the same setup time for all families. However, Baker
and Magazine raise some issues with the Hariri and Potts data set which
we address later in this section.) Each problem generated belongs to one
of 45 different classes, where each class has a given number of families F ∈
{2, 4, 6, 8, 10}, a given total number of jobs n ∈ {60, 90, 120}, and either
‘small’, ‘medium’ or ‘large’ setup times. Although Hariri and Potts tested
with problems with up to n = 60 jobs, we are able to easily solve larger
problems, and so have doubled the maximum number of jobs we consider.

We generated 75 problem instances in each class as follows. The fam-
ily setup times sf were generated from one of three different uniform inte-
ger distributions: [1, 20] (Small), [1, 100] (Medium), and [101, 200] (Large).
Common random numbers were used to ensure problems differing only in
their setup times were otherwise identical. For a problem with n jobs, the
number of jobs in each family, nf , was either dn/F e or bn/F c such that∑F

f=1 nf = n. Processing times of jobs were generated from a uniform distri-
bution of random integers in the range [1, 100]. The 75 test instances in each
class comprised 5 test problems for each of 15 different due date ‘spreads’,
calculated as follows. The due dates for each job is were sampled from a uni-
form integer distribution in the range [0, rP ], where P =

∑F
f=1

∑nf
k=1 p(k,f)

is the total processing time of the jobs, and r gives a specified due date
spread. The 15 r values used were given by calculating r = d − c for each
c ∈ {0.0, 0.2, 0.4, 0.6, 0.8}, d ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, c < d. (Baker and
Magazine (2000) note that this calculation is biased towards small r values
in that a particular value r, r ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, is considered 6 − 5r
times. This somewhat unusual choice allows comparison with Hariri and
Potts’s work where they use a range [cP, dP ] for the due dates, but incorpo-
rates the observation of Baker and Magazine (2000) that the absolute due
dates do not matter, but only their range.)

The 3375 test problems (75 instances in each of 45 classes) were solved
by Gurobi (Gurobi, 2015) to optimality (i.e. with ‘MIPGap=0’) on an Intel
Xeon W3530 2.80GHz processor with 12.0 GB of RAM, using a time limit
of 100 seconds for each instance. Solve times and the number of branch
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and bound nodes were recorded for each instance (with values of 100s being
recorded if Gurobi reached this time limit), and averages computed using
these values.

9.2. Comparing different integer programming formulations

We started our experiments by comparing the compact ordered-batch for-
mulation (COBIP) with the original (OBIP) formulation. Tests using the
3375 test instances showed that the total number of constraints given by
(14) and (15) in our compact formulation was 16.2% less, on average, than
the number given by (3) in the original formulation. Changing from OBIP
to COBIP had a negligible impact on the root node linear programming ob-
jective value (giving an increase of just 0.1% on average), with over 96%
of instances having a COBIP root node objective value within ±1% of the
OBIP value, and the rest being within approximately ±25%. There was no
obvious trend in this root node difference with problem difficulty. Despite
the general similarity in root node values, the compact formulation reduced
the average solution time by 14%, a result which we attribute primarily to
there being fewer constraints in COBIP.

Having determined that COBIP outperformed OBIP, we next compared
this compact ordered-batch formulation with a more traditional time-indexed
(TIBIP) formulation. Such formulations can often outperform alternative
approaches (e.g. see Keha et al. (2009)). For the sake of completeness, we
develop such a model here so that we can compare its performance with our
ordered-batch formulation. The full model is detailed in Appendix B.

The number of constraints in a time-indexed formulation can be very
large, and so for our initial tests, we artificially reduced the number of time
steps by a factor of 20 by scaling the job durations to be integer values
between 1 and 5 inclusive, instead of between 1 and 100 as we used in our
other tests. The set-up times and due dates were similarly scaled. We also
considered just the smaller problem instances with n = 60. As before, we
used a time limit of 100s.

Over the 1125 test problems, we found that the TIBIP run times for
these simplified instances were on average almost 2000 times longer than
those of COBIP, and never less than 27 times longer. (To avoid division
by small values, this data was calculated using the 639 problem instances
which had COBIP solve times greater than 0.01s.) This run time difference
can perhaps be explained by TIBIP having on average more than 270 times
as many columns and 8 times as many rows as COBIP. However, we also
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found that TIBIP had a root node linear programming relaxation value that,
on average, was only 61% of the corresponding COBIP value, and thus the
COBIP model is inherently stronger on average. (This is not true for all
problem instances, with the TIBIP root node value varying from just 12% of
the COBIP value to up to 20% larger than the COBIP value.) Given these
poor initial results on these simplified problems, we chose to focus on the
COBIP formulation for the rest of our analysis.

9.3. Comparing COBIP with prior work

Table 1 below shows the experimental results from our COBIP testing
broken down by problem class. (This table contains similar information to
that presented in Table 1 of Hariri and Potts (1997).) Each row is identified
by a number of jobs n and number of families F , and gives average results for
the 75 problems generated and solved for each of the small (S), medium (M)
and large (L) setup sizes. The n̄′ column shows the average number of jobs
left in the problem after merging jobs during pre-processing (see Section 4),
while the ‘rows’ and ‘cols’ columns show the average number of rows and
columns in our COBIP formulation. (These values do not vary with the
size of setups, and so these are averages over the 75 problems generated for
each (n, F ) pair.) The detailed results given for each setup size include the
average solution time, the number of nodes required by Gurobi during the
branch and bound process, and the number of problems that could not be
solved to proven optimality within the 100s time limit.
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Table 1: Computational results for Hariri and Potts test problems
Problem Size COBIP

Formulation
Size

Average computation
time (secs.)

Average number of
branch-and-bound

nodes

Unsolved
problems (out

of 75)
n F n̄′ rows cols Sm Med Lrg Sm Med Lrg Sm Med Lrg

60 2 9.5 41.6 51.9 0.11 0.09 0.04 1 26 5 0 0 0
4 24.2 133.2 118.7 0.43 0.49 0.32 176 233 94 0 0 0
6 32.4 155.8 125.8 0.39 0.37 0.19 118 221 70 0 0 0
8 38.4 167.1 126.4 0.35 0.25 0.16 261 136 45 0 0 0

10 42.2 169.7 121.6 0.18 0.19 0.11 52 99 35 0 0 0

90 2 12.8 76.9 100.8 0.60 1.05 0.34 170 110 19 0 0 0
4 34.5 250.5 237.3 4.66 6.93 2.96 1251 2287 949 0 1 0
6 48.7 308.8 269.7 3.25 4.90 1.52 1262 1744 570 0 0 0
8 57.4 318.9 263.0 3.17 2.84 1.19 1681 2086 530 0 0 0

10 63.6 320.5 253.8 1.51 1.85 0.82 554 1244 390 0 0 0

120 2 16.1 124.1 168.4 2.89 5.75 2.65 249 321 215 0 1 0
4 46.2 428.0 420.3 17.22 19.55 14.64 1859 1374 1811 9 12 5
6 64.0 500.9 454.3 22.11 20.43 12.78 3745 3014 3349 9 9 2
8 76.7 522.4 452.1 18.87 17.98 9.30 4402 5291 4383 9 4 0

10 84.4 512.8 429.0 10.76 10.49 4.33 3935 4162 2338 0 1 0
Note: Sm= small setup times; Med = medium setup times; Lrg = large setup times.

We note that, as expected, problems with more jobs (after pre-processing)
result in larger COBIP formulations and, other things being equal, take
longer to solve. The integer programs are not unduly large by modern stan-
dards, and most are solved to provable optimality within 100 seconds.

Comparing our results with those reported by Hariri and Potts, we note
that we can solve all the problems with 60 jobs (the largest size they con-
sidered) within 100 seconds. In contrast, Hariri and Potts report that their
algorithm failed to solve 114 instances of their 60-job problems. In particular,
Hariri and Potts report that their hardest problem class – 60 jobs, 10 families
and large setups – took an average of 34.38 seconds, with 20 problems being
stopped after the 100 second time limit. We are able to solve all problems of
this class within the time limit with an average solve time of 0.11 seconds.
While much of this speedup can be attributed to improvements in processing
power, we argue below that the stronger bounds we use are also a significant
contributing factor.

We find that problems with a small or large number of families seem to be
easiest to solve using our formulation. We note that preprocessing reduces
the number of jobs in the problem to a greater extent when the number
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of families is small, and thus we are not surprised that problems with a
small number of families are easier to solve. This helps explains why both
Baker and Magazine (2000) and Hariri and Potts (1997) also report good
performance on problems with few families. However, our solution times are
also smaller for larger numbers of families. This is in contrast to the results
given by Hariri and Potts and Baker and Magazine who reported that their
runs times kept increasing as F increased.

To help explain why the performance of our new algorithm is less depen-
dent on F , consider Table 2 which compares the performance of our bound
with the Hariri and Potts bound, as follows. For each problem instance,
we recorded the best integer solution objective value L∗max found by Gurobi
within 100 seconds, the ordered-job bound L̃max produced using the proce-
dure outlined by Hariri and Potts (1997), and the ordered-batch bound L̂max

generated by solving the linear programming relaxation of COBIP. These
were used to calculate the ordered-job bound gap gOJ = L∗max − L̃max and
the ordered-batch bound gap gOB = L∗max − L̂max for each problem instance.
These values were then averaged over the 75 instances of each problem class
to give average values ḡOJ and ḡOB. (Note that we have reported L̄∗max for
the sake of completeness, but we observe that L∗max for any instance can be
changed arbitrarily by simply adding a constant to all the due dates. Fur-
thermore, because L∗max is essentially arbitrary, and indeed can be positive,
negative or zero, we have calculated absolute bound gaps rather than the
relative bound gaps sometimes given.) The average bound gaps were then
used to calculate the average bound gap ratio φ = ḡOJ/ḡOB. A value of φ > 1
(or φ < 1) indicates that our new ordered-batch bound L̂max gives a better
(or worse) gap than the ordered-job bound L̃max.
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Table 2: Average objective values and bound gaps for Hariri and Potts test problems
Average objective value

L̄∗max

Average
ordered-job bound

gap ḡOJ

Average
ordered-batch

bound gap ḡOB

Average bound
gap ratio

φ = ḡOJ/ḡOB

n F Sm Med Lrg Sm Med Lrg Sm Med Lrg Sm Med Lrg
60 2 1700.7 1853.9 2085.1 12.6 42.1 85.7 13.9 31.5 45.0 0.91 1.33 1.90

4 1716.3 1972.5 2504.4 27.9 96.5 230.6 14.6 34.1 63.3 1.90 2.83 3.64
6 1743.9 2078.2 2846.9 36.8 125.7 277.1 13.2 33.8 63.4 2.80 3.72 4.37
8 1804.8 2197.2 3175.1 46.0 133.8 310.3 11.5 28.1 56.7 4.00 4.77 5.47

10 1814.8 2328.2 3518.1 41.7 147.9 335.6 10.8 29.7 57.4 3.87 4.99 5.84

90 2 2531.4 2635.1 2933.6 13.7 58.4 113.0 29.0 39.8 58.9 0.47 1.47 1.92
4 2547.2 2798.4 3361.3 32.3 124.4 285.6 18.6 47.0 87.3 1.73 2.65 3.27
6 2597.2 2941.0 3809.0 42.7 155.1 384.5 15.8 44.0 92.1 2.70 3.52 4.17
8 2628.0 3096.7 4083.9 54.9 194.9 441.2 14.7 43.2 83.1 3.74 4.51 5.31

10 2615.9 3213.4 4461.3 53.8 202.0 468.9 12.4 35.5 78.6 4.32 5.70 5.97

120 2 3337.9 3482.1 3749.0 16.3 65.5 133.5 26.7 46.8 76.8 0.61 1.40 1.74
4 3382.4 3670.4 4243.6 38.7 150.8 331.0 22.4 60.6 103.1 1.73 2.49 3.21
6 3474.9 3774.9 4666.3 55.3 183.5 454.1 20.8 53.0 110.2 2.66 3.46 4.12
8 3466.4 3901.1 5063.1 64.5 221.6 559.3 17.2 48.8 107.7 3.75 4.54 5.19

10 3434.6 3994.3 5427.0 68.9 231.9 602.3 14.9 43.5 95.5 4.63 5.33 6.31
Note: Sm= small setup times; Med = medium setup times; Lrg = large setup times.

This table shows different trends for the two bounds as the number of
families F is changed. We see that the ordered-job gap ḡOJ typically increases
as F increases, but our new ordered-batch gap ḡOB shows little dependency
on F . We also observe that although both bounds get worse as setup times
increase, the relative improvement φ offered by our new bound increases with
increasing setup times. This results in our new bound being much tighter
for large F and large setups, with the resulting gap being up to φ = 6.31
times smaller on average (see n = 120, F = 10, Large setups). In fact,
the ordered-batch bound seems stronger in all cases except when there are
small setup times and only two families, in which case the ordered-job bound
does better. This is not unexpected as the ordered-job bound will give the
optimal solution if the number of families is one or the setup times are zero.
Therefore as we converge on this simple case we expect the ordered-job bound
to become tighter.

The difference in the strength of the bounds is reflected in the node counts
shown in Table 1. For example, Hariri and Potts report an average node count
of 17463 for their 60-job instances. In contrast, our integer program needs
to explore, on average, only 105 nodes for our 60-job instances. Our tighter
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ordered-batch bound, combined with Gurobi’s efficient heuristics, enables us
to explore less of the branch and bound tree to find the optimal solution and
prove its optimality.

Consider the speed at which the bounds can be computed. The ordered-
batch bound requires solving a linear program with O(

∑F
f=1 n

2
f ) rows and

columns. Consequently, this relaxation will typically be slower to evalu-
ate than both Baker and Magazine’s bound, which only takes O(n) calcula-
tions, and the more expensive Hariri and Potts ordered-job bound that takes
O(n log(n)). In particular, the ordered-batch bound will be slow to evaluate
when there is a large number of jobs and a small number of families. So
although our ordered-batch bound provides a tighter bound in many cases, it
may be more expensive to compute.

As we commented earlier, the random instance generation approach of
Hariri and Potts that we used above is biased towards small due date spreads.
(We note that it gave an average r of just 0.466.) However, Baker and
Magazine (2000) suggest that problems become hardest as r increases to
between 10 and 20. Thus, to test our approach on these instances, we cre-
ated a second set of test problems using the following method, as detailed
by Baker and Magazine. Processing times of jobs are generated from the
uniform integer distribution [1, 99] and due dates are generated from the
uniform distribution [0, rP ]. Unlike Hariri and Potts, instead of grouping
these problem sizes by setup times, Baker and Magazine fix the setup time
for each family f such that sf = 100 ∀f and vary the due date spread
r ∈ {0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 8.0, 16.0}. We initially considered the three
problem sizes used by Baker and Magazine, namely, F = 3, nf = 12 ∀f ;
F = 4, nf = 8 ∀f ; and F = 5, nf = 6 ∀f . As they did, we solved 25 random
instances for each combination of F , nf and r, but found that these all gave
average solution times of less than 0.25 seconds, which we considered too
small for useful analysis. We instead considered a larger F = 10, nf = 10 ∀f
problem. Solving 25 random instances of this problem for each value of r
generated the solution times shown in Table 3. This table also shows the two
average bounds gaps ḡOJ and ḡOB and their ratios for these problems.

25



Table 3: Experimental results when the due date spread r is varied for 25 random instances
of a F = 10, nf = 10 problem with sf = 100

Due rate range r 0.4 0.6 0.8 1.0 2.0 4.0 8.0 16.0
Solution time (seconds) 0.695 1.999 4.626 13.865 12.975 0.367 0.095 0.070
Mean objective value L̄∗max 4350.5 3630.3 2856.8 2274.1 544.7 36.7 -253.9 -660.3
Mean ordered-job bound gap ḡOJ 344.96 592.52 766.96 962.08 129.84 0.36 0.20 0.00
Mean ordered-batch bound gap ḡOB 75.36 85.09 96.79 113.58 83.30 59.48 24.51 12.21
Bound gap ratio φ = ḡOJ/ḡOB 4.58 6.96 7.92 8.47 1.56 0.01 0.01 0.00

Table 3 shows that the most difficult due date spread for our integer
program occurs when r = 1.0 or r = 2.0. (This is smaller than the r =
10 or r = 20 values Baker and Magazine suggest are most difficult, but
see our comments below.) We believe small due date spreads are easier to
solve because the pre-processing (see Section 4) aggregates more jobs when
d(i+1,f)−d(i,f) is small. On the other hand, when the due date spread becomes
very large the problem becomes easy (and the bound gap small) because (i)
the variation in due date values exceeds the variation in completion times,
(ii) L∗max only depends on the completion time of the job with the smallest
due date, and (iii) any solution starting with this job will be optimal. Indeed,
we see that the average absolute gap for the ordered-batch bound is highest
when r = 1.0 at 114, and that this bound gap shrinks for both low and high
values of r. This explains much of the variation in run times seen for these
problems.

Table 3 shows that the ordered-job bound performs much better than our
ordered-batch bound for large r. However, as discussed, these problems are
quickly solved using our IP. For the problems we find hardest (i.e. r = 1.0),
our bound is much tighter, suggesting our approach would be superior.

9.4. A large scale experiment

We conducted one final experiment. The purpose of this experiment was
to demonstrate that our integer program is capable of solving huge instances
when there are many families but few jobs in each family. Processing times
of jobs are generated from the uniform integer distribution [1, 100] and due
dates are generated from the uniform distribution [0, rP ] with r = 1.0 (being
the most difficult case in Table 3). We fix the setup time to be sf = 100.
Three different problem sizes are generated, all with n = 1080 jobs: F =
540, nf = 2 ∀f ; F = 360, nf = 3 ∀f ; and F = 270, nf = 4 ∀f . For
each combination we generate and solve one random instance to provable
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optimality. The computation times, integer program size, optimal objective
and bound gaps are recorded in Table 4 below.

Table 4: Solve times for three very large problems with 1080 jobs, sf = 100 and r = 1.0

ordered-batch ordered-job
Solution Optimal bound gap bound gap

Problem time (s) rows cols L∗max gOB gOJ

F = 540, nf = 2 4.76 3227 1613 58210 13 3967
F = 360, nf = 3 70.04 3533 2134 43259 31 6800
F = 270, nf = 4 114.14 4001 2689 36973 56 9607

The results in this table illustrate that our integer program performs very
well when the number of job, nf , in the family f is very small. For example,
with two jobs in each family and 540 families we can solve the problem in just
4.76 seconds. The results from Hariri and Potts and Baker and Magazine
and the bound gaps shown in this table suggest such a problem would be
very difficult to solve using their algorithms.

The theory presented in Section 7.4 predicts the ordered-batch bound will
be tight when the number of jobs in each family is small. However, the theory
does not predict the tiny bound gaps we observe. For example, when F = 540
and nf = 2 we can use (13) to compute a worst-case bound gap of 16, 190
which is much larger than the observed bound gap of 13. Therefore, it seems
more theoretical analysis is needed to explain the exceptional performance
of the ordered-batch bound.

10. Conclusions

We have developed a novel integer program for the single machine schedul-
ing problem with family setups. This integer program exploits known order-
based properties of optimal solutions to produce a strong formulation that
outperforms the more traditional time-indexed model we tested. Our new
model produces bounds that, for problems with large setup times or many
families, are significantly tighter than those used in existing branch and
bound algorithms. Furthermore, we have developed theory to explain why
this bound is so tight. As a consequence of this tighter bound, we are able to
find optimal solutions for significantly larger problems than have been solved
to date. Furthermore, because we use a standard integer programming ap-
proach, we are able to exploit continuing advances in integer programming
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solvers while providing users with an off-the-shelf alternative to programming
their own customised branch and bound code.
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A. Proofs for Section 7

A.1. Proof of Lemma 8

In this subsection, we show for any family f and solution x to the OBLP
we can construct a set of f -schedules Ωf and weights ωf,π on each f -schedule π
such that (Ωf , ωf ) covers (x, f). This construction is done by Algorithm A.1.
Note that π-constructor(p, S) is defined in Algorithm A.2.

Algorithm A.1 (Ωf , ωf )-constructor

1: function (Ωf , ωf )-constructor(family f , solution x to OBLP)
2: Ωf ← ∅
3: x̂← x
4: repeat
5: S ← {b ∈ Bf : x̂b > 0}
6: Let p = arg minb∈S x̂b
7: π ← π-constructor(p, S)
8: ωf,π ← x̂p
9: x̂b ← (x̂b − I(b ∈ π)ωf,π)

10: Ωf ← Ωf ∪ {π}
11: until S = ∅
12: return Ωf , ωf
13: end function

Lemma A.1. At each iteration of Algorithm A.1 the following equations
hold:

(i) x̂b = xb −
∑

π∈Ωf
I(b ∈ π)ωf,π, ∀b ∈ Bf

(ii)
∑

b∈Bf :ib≤k≤jb x̂b = 1−
∑

π∈Ωf
ωf,π, ∀k ∈ {1, ..., nf}

Proof. (i) holds by applying induction to line 9 of Algorithm A.1. (ii) holds by
summing both sides of (i) over b ∈ Bf : ib ≤ k ≤ jb and simplifying the right
hand side using the fact that

∑
b∈Bf :ib≤k≤jb xb = 1 from Constraint 2 in the

OBLP and
∑

b∈Bf :ib≤k≤jb I(b ∈ π) = 1 from Definition 4 of a f -schedule.
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Algorithm A.2 π-constructor

function π-constructor(batch p, set of batches S)
π ← {p}
while jπ < nf do

find some q ∈ S s.t. jq = iπ + 1
π ← π ∪ {q}

end while
while iπ > 1 do

find some q ∈ S s.t. iq = jπ + 1
π ← π ∪ {q}

end while
return π

end function

Before we prove the validity of Algorithm A.2 in Lemma A.2 we intro-
duce the concept of a partial f -schedule in Definition 6. We can think of
Algorithm A.2 as at each iteration expanding a partial f -schedule π until it
is a complete f -schedule i.e. iπ = 1, jπ = nf .

Definition 6. We say that π ⊆ Bf is a partial f -schedule if for each job
k = iπ, ..., jπ the job k is contained in exactly one batch b ∈ π.

Lemma A.2. Given input from Algorithm A.1, Algorithm A.2 terminates
in at most nf iterations with an f -schedule π.

Proof. Consider the partial schedule π at a given iteration of Algorithm A.2.
In this proof, we show if jπ < nf then there exists some x̂b > 0 such that
jπ + 1 = ib. We can then add this b to π and continue the algorithm.

Let u ∈ π be the batch such that ju = jπ. Let θ =
∑

b∈Bf :ib≤k≤jb x̂b, from

Lemma A.1 part (ii) we know that θ =
∑

b∈Bf :ib≤k≤jb x̂b = 1−
∑

π∈Ωf
ωf,π.
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Using k = jπ yields:

θ =
∑

b∈Bf :ib≤jπ≤jb

x̂b

=
∑

b∈Bf :jb=jπ

x̂b +
∑

b∈Bf :ib≤jπ<jb

x̂b

=
∑

b∈Bf :jb=jπ

x̂b +
∑

b∈Bf :ib<jπ+1≤jb

x̂b

≥ x̂u +
∑

b∈Bf :ib<jπ+1≤jb

x̂b

Re-arranging: ∑
b∈Bf :ib<jπ+1≤jb

x̂b ≤ θ − x̂u (A.1)

Using k = jπ + 1 yields:

θ =
∑

b∈Bf :ib≤jπ+1≤jb

x̂b =
∑

b∈Bf :jπ+1=ib

x̂b +
∑

b∈Bf :ib<jπ+1≤jb

x̂b

≤
∑

b∈Bf :jπ+1=ib

x̂b + θ − x̂u

where the last line comes from applying (A.1). Now, finally:

0 < x̂u ≤
∑

b∈Bf :jπ+1=ib

x̂b

Therefore there exists some x̂b > 0 such that jπ + 1 = ib.
By a symmetrical argument if iπ > 1 then there exists some x̂b > 0 such

that iπ − 1 = jb.

Lemma A.3. After at most |Bf | outer iterations Algorithm A.1 terminates
with an (Ωf , ωf ) that covers (x, f).

Proof. Consider S ← {b ∈ Bf : x̂b > 0}. At each iteration the batch
p = arg minb∈S x̂b must be removed from the set S, hence the set size must
decrease by at least one. It immediately follows that after at most |S| ≤ |Bf |
iterations the algorithm terminates.

Since the algorithm terminates with x̂b = 0 for all b ∈ Bf from Lemma A.1
part (i) it follows that xb =

∑
π∈Ωf

I(b ∈ π)ωf,π and therefore that (Ωf , ωf )

covers (x, f).
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The next Lemma follows from Lemma A.2 and Lemma A.3.

Lemma 8. For any family f and solution x to the SOBLP we can construct
an (Ωf , ωf ) that covers (x, f) in O(|Bf |2nf ) time.

Proof. From Lemma A.2 that Algorithm A.2 takes at most nf iterations and
each iteration requires at most O(|Bf |) time. Therefore Algorithm A.2 re-
quires at most O(nf |Bf |) time. Furthermore from Lemma A.3, Algorithm A.1
makes at most |Bf | calls to Algorithm A.2. Hence the total time required for
Algorithm A.1 is O(|Bf |2nf ).

A.2. Proof of Theorem 3

Before we prove Lemma A.4 we need to clarify how we randomly round
solutions, i.e. how XR

b and LR
b are generated. Algorithm A.3 describes how

we take a fractional solution to our LP and round it to a ‘nearby’ integer
solution.

Algorithm A.3 An algorithm that randomly rounds a solution to OBLP

function random-rounder(solution x)
for each family f do

(Ωf , ωf )← Ωf -constructor( f , x )
Πf ∼ P(Ωf ,ωf )

end for
for each batch b do

XR
b ← I(b ∈ Πf )

LR
b ←

∑b
r=1 ρrX

R
r − δb

end for
return XR

b , L
R
b

end function

Because (Ωf , ωf ) covers (x, f) we know that xb = E[XR
b ] which implies

LLP
b = E[LR

b ]. We are now ready to prove Lemma A.4.

Lemma A.4. With probability at most 1
B2 :

LR
b ≥ LLP

b +

√√√√log (B)
F∑
f=1

τ 2
f

where LR
b is the maximum lateness of batch b in a schedule generated by

Algorithm A.3.
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Proof. Consider the random variable:

WR
b,f =

∑
r∈Bf :r≤b

ρrX
R
r

We can write the maximum lateness of the batch b in our random rounding
as:

LR
b =

∑
f∈F

WR
b,f − δb

Since WR
b,1, ...,W

R
b,F are independent for fixed b, we can apply Hoeffding’s

inequality (Hoeffding, 1963) to LR
b using the fact that 0 ≤ WR

f,b ≤ τf yielding:

P (LR
b ≥ E[LR

b ] + ε) ≤ e
− 2ε2∑F

f=1
τ2
f

Setting ε =
√

log (B)
∑F

f=1 τ
2
f and LLP

b = E[LR
b ] it follows that:

P

LR
b ≥ LLP

b +

√√√√log (B)
F∑
f=1

τ 2
f

 ≤ e−2 log (B) =
1

B2

Theorem 3. With probability at least 1− 1
B

:

LR
max ≤ LLP

max +

√√√√log(B)
F∑
f=1

τ 2
f

where LR
max is the maximum lateness of the schedule generated by Algo-

rithm A.3.

Proof. Follows by applying a union bound to Lemma A.4.

A.3. Proof of Theorem 4

Before we can prove Theorem 4, we need to formalize how we compute
our heuristic schedule x′R; this is given by Algorithm A.4.

36



Algorithm A.4 Algorithm for computing the schedule x′R

P ′ ← problem-splitter(P)
xLP ←solve SOBLP for P ′

x′R ← random-rounder(xLP)

Algorithm A.5 takes an instance of a minimizing maximum lateness with
family setup times on a single-machine problem and divides the families to
produce a new instance P ′ with at most n1/3 jobs in each family.

Algorithm A.5 Algorithm for splitting large families into many smaller
families

function problem-splitter(Problem P)
construct a new (empty) problem instance P ′

q ← 1
for each family f in the original problem P do

σf ←
⌈ nf
n1/3

⌉
. number of splits of family f

ηf ←
⌊
nf
σf

⌋
. maximum number of jobs in each new family

for r = 1 to σf do
Consider the jobs (r− 1)ηf + 1, (r− 1)ηf + 2, . . . ,min {rηf , nf}
Add these jobs to a new family q in the new instance P ′

q ← q + 1
end for

end for
return P ′ . return new problem instance

end function

Lemma A.5. The new instance P ′ produced by Algorithm A.5 has n′q ≤ n1/3

for all q ∈ {1, ..., F ′} and L′∗max ≤ L∗max + smaxn
2/3

Proof. To show n′q ≤ n1/3 consider n′q ≤ ηf =
⌊

nf
dnf/n1/3e

⌋
≤
⌊

nf
nf/n1/3

⌋
≤ n1/3.

Consider any schedule for P . Using the same ordering of the jobs we can
construct an identical schedule for P ′ except for at most F ′ − F additional
setups. Therefore L′∗max ≤ L∗max + smax(F ′−F ). We show that F ′−F ≤ n2/3

by observing that F ′ − F ≤
∑F

f=1 (σf − 1) ≤
∑F

f=1 nf/n
1/3 = n2/3.

Theorem 4. With probability at least 1− 1
B

:

L′
R
max ≤ L∗max + n2/3(1 +

√
2 log(n))(smax + pmax)
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where L′Rmax is the maximum lateness of the schedule generated by Algo-
rithm A.4.

Proof. Now by Theorem 3 with probability at least 1− 1
B

:

L′
R
max ≤ L′

∗
max +

√√√√log (n2)
F∑
f=1

τ 2
f

≤ L′
∗
max + (smax + pmax)

√√√√2 log(n)
F∑
f=1

n2
f

≤ L′
∗
max + (smax + pmax)

√√√√2 log(n)n1/3

F∑
f=1

nf

= L′
∗
max + (smax + pmax)

√
2 log(n)n4/3

= L′
∗
max + (smax + pmax)n2/3

√
2 log(n)

Since L′∗max ≤ L∗max + smaxn
2/3 it follows that:

L′
R
max ≤ L∗max + (smax + pmax)n2/3(

√
2 log(n) + 1)

B. Time Indexed Model

This section describes a time indexed formulation for this problem.
We start by discretising time into time periods 1, 2, ..., T , where we put

T =
∑F

f=1

∑nf
k=1(sf + p(k,f)) to ensure an optimal solution exists in which all

jobs are processed by time T . As before, we assume that we have enumer-
ated all possible B batches, and for each batch (ib, jb, fb), b = 1, 2, ..., B we
introduce binary variables xb,t, t = 1, 2, ..., T − ρb + 1 where ρb is the total
processing time of batch b. We then let xb,t = 1 if batch b starts in period
t, and zero otherwise. Note that if xb,t = 1, then this batch will occupy the
machine in periods t, t+1, ..., t+ρb−1, and will have a batch lateness given
by t+ ρb − δb. These variables allow us to formulate our time-indexed batch
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integer program (TIBIP) as follows:

TIBIP: min L̂max (B.1)

s.t. (t+ ρb − δb)xb,t ≤ L̂max ∀ b ∈ {1, ..., B}, t ∈ {1, 2, ..., T − ρb + 1}
(B.2)∑

b:ib≤k≤jb,fb=f

T−ρb+1∑
t=1

xb,t = 1 ∀ f ∈ {1, ..., F}, k ∈ {1, 2, ..., nf}

(B.3)

B∑
b=1

∑
t:t≤s≤t+ρb−1

xb,t ≤ 1 ∀ s ∈ {1, 2, 3, ..., T}

(B.4)

xb,t ∈ {0, 1} ∀ b ∈ {1, 2, ..., B}, t ∈ {1, 2, ..., T}
(B.5)

L̂max ∈ R (B.6)

Constraint (B.2) calculates L̂max for the solution, while (B.3) ensures each
job appears in exactly one batch and (B.4) ensures only one batch is being
processed during each time period. The rest of the formulation ensures the
solution is a set of batches with minimal maximum lateness.

39


