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Abstract

Classical Pitowsky correlation polytopes are reviewed with particular emphasis
on the Minkowski-Weyl representation theorem. The inequalities representing the
faces of polytopes are Boole’s “conditions of possible experience.” Many of these
inequalities have been discussed in the context of Bell’s inequalities. We introduce
CddIF, a Mathematica package created as an interface between Mathematica and
the ����� program by Komei Fukuda, which represents a highly efficient method to
solve the hull problem for general classical correlation polytopes.
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1 Boole-Bell Type Inequalities And Their Geometric
Representation

In the middle of the 19th century the English mathematician George Boole formulated
a theory of ”conditions of possible experience” [1, 2, 3, 4, 5]. These conditions are re-
lated to relative frequencies of logically connected events and are expressed by certain
equations or inequalities. More recently, similar equations for a particular setup which
are relevant in the quantum mechanical context have been discussed by Clauser and
Horne and others [6, 7, 8]. Pitowsky has given a geometrical interpretation in terms of
correlation polytopes [9, 4, 10, 5].

1.1 Simple urn model
Consider an urn containing some balls of different colors and styles: Each ball can be
described by two properties, let us say ”yellow” and ”wooden”, so each ball can have
the property ”yellow” or the property ”wooden”, but it can also have both ”yellow and
wooden”. The state of the urn can be given by the probabilities to draw a ball with one
of these properties: p1 is the proportion of yellow balls in the urn, p2 the proportion of
wooden ones and p12 denotes the proportion of yellow and wooden balls. If there are
enough balls in the urn these proportions are in fact the probabilities to get a ball with
the special property by drawing. Clearly the inequalities

0 � p12 � p2 � 1 and 0 � p12 � p1 � 1 (1)

are fulfilled by the proportions and so p1, p2 and p12 can be seen as probabilities of
two events and their joint event only if these inequalities are satisfied. Simply by taking
some appropriate numbers (p1 = 0.6, p2=0.72 and p12=0.32) we can see, that equations
(1) are not sufficient. If we take the probability to draw a ball which is either yellow
or wooden (p1 + p2 - p12) into consideration, a new inequality can be found that is not
satisfied by the numbers chosen:

0 � p1 � p2 � p12 � 1 (2)

It can be shown that the inequalities (1) and (2) are necessary and sufficient for the
numbers p1, p2 and p12 to represent probabilities of two events and their joint [4].

1.2 Geometrical interpretation
Itamar Pitowsky [9, 4, 10, 5] has suggested a geometric interpretation. Consider the
truth table 1 of the above urn model, in which a1 and a2 represent the statements that
“the ball drawn from the urn is yellow,” “the ball drawn from the urn is wooden,” and
in which a12 represent the statement that “the ball drawn from the urn is yellow and
wooden.” The third “component bit” of the vector is a function of the first components.
Actually, the function is a multiplication, since we are dealing with the classical logical
“and” operation here. Let us take the set of all numbers (p1, p2, p12) satisfying the
inequalities stated above as a set of vectors in a three-dimensional real space. This

3



a1 a2 a12
0 0 0
1 0 0
0 1 0
1 1 1

Table 1: Truth table for two propositions a1 � a2 and their joint proposition a12 � a1 	 a2

amounts to interpreting the rows of the truth table as vectors; the entries of the rows
being the vector components. This procedure yields a closed convex polytope with
vertices (0,0,0), (1,0,0), (0,1,0) and (1,1,1) (cf. Figure 1). The extreme points (vertices)
can be interpreted as follows:
(0,0,0) is a case where no yellow and no wooden balls are in the urn at all,
(1,0,0) is representing the configuration that all balls are yellow and no one is wooden.
(0,1,0) is representing the configuration that all balls are wooden and no one is yellow.
(1,1,1) is a case with only yellow and at the same time wooden balls.

(0,0,0)

(1,0,0)

(0,1,0)

(1,1,1)

Figure 1: Polytope associtated with the urn model

1.3 Minkowski-Weyl representation theorem
The Minkowski-Weyl representation theorem (e.g., [11, p. 29]) states that compact
convex sets are “spanned” by their extreme points; and furthermore that the represen-
tation of this polytope by the inequalities corresponding to the planes of their faces is
an equivalent one.

Stated differently, every convex polytope in an Euclidean space has a dual descrip-
tion: either as the convex hull of its vertices (V-representation), or as the intersection of
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a finite number of half-spaces, each one given by a linear inequality (H-representation)
This equivalence is known as the Weyl-Minkowski theorem.

The problem to obtain all inequalities from the vertices of a convex polytope is
known as the hull problem. One solution strategy is the Double Description Method
[12] which we shall use but not review here.

1.4 From vertices to inequalities
For the above simple urn model, the inequalities are rather intuitive and can be easily
obtained by guessing. This is impossible in the general case involving more events and
more joint probabilities thereof. In order to obtain the relevant inequalities—Boole’s
“conditions of possible experience”—we have to find a hopefully constructive way to
derive them.

Recall that a vector is an element of the polytope if and only if it can be represented
as a certain bounded convex combination, i.e., a bounded linear span, of the vertices.
More precisely, let us denote the convex hull conv 
 K � of a finite set of points K ��
x1 ������ xn ��� Rd by

conv 
 K � � �
λ1xi ��������� λnxn ��� n � 1 � λi � 0 � n

∑
i � 1

λi � 1 �  (3)

In the probabilistic context, the coefficients λi are interpreted as the probability that the
event represented by the extreme point xi occurs, whereby K represents the complete
set of all atoms of a Boolean algebra. The geometric interpretation of K is the set of all
extreme points of the correlation polytope.

In summary, the connection between the convex hull of the extreme points of a
correlation polytope and the inequalities representing its faces is guaranteed by the
Minkowski-Weyl representation theorem. A constructive solution of the corresponding
hull problem exists (but is NP-hard [10]).

For the special urn model introduced above this means that any three numbers (p1,
p2 and p12) must fulfill an equation dictated by Kolmogorov’s probability axioms [13]:
 p1 � p2 � p12 � � λ1 
 0 � 0 � 0 � � λ2 
 0 � 1 � 0 � � λ3 
 1 � 0 � 0 � � λ4 
 1 � 1 � 1 � � 
 λ2 � λ4 � λ3 � λ4 � λ4 � 

(4)
It is important to realize that these logical possibilities are exhaustive. By definition,
there cannot be any other classical case which is not already included in the above
possibilities 
 0 � 0 � 0 � � 
 1 � 0 � 0 � � 
 0 � 1 � 0 � � 
 1 � 1 � 1 � . Indeed, if one or more cases would be
omitted, the corresponding polytope would not be optimal; i.e., it would be embed-
ded in the optimal one. Therefore, any “state” of a physical system represented by a
probability distribution has to satisfy the constraint

λ1 � λ2 � λ3 � λ4 � 1  (5)

The four extreme cases λi � 1 � λ j � 0 for i � �
1 � 2 � 3 � 4 � and j �� i just correspond to

the vertices spanning the classical correlation polytope as the convex sum (3).
A generalization to arbitrary configurations is straightforward. To solve the hull

problem for more general cases, an efficient algorithm has to be used. There are some
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algorithms to solve this problem, but they run in exponential time in the number of
events, thus it can be solved only for small enough cases to get a solution in conceivable
time.

1.5 From inequalities to vertices
Conversely, a vector is an element of the convex polytope if and only if its coordinates
satisfy a set of linear inequalities which represent the supporting hyper-planes of that
polytope. The problem to find the extreme points (vertices) of the polytope from the
set of inequalities is dual to the hull problem considered above.

1.6 Quantum mechanical context
In the quantum mechanical case the elementary irreducible events are clicks in particle
detectors and the probabilities have to be calculated using the formalism of quantum
mechanics. It is by no means trivial that these probabilities satisfy Eq. (5), in particular
if one realizes that quantum Hilbert lattices are nonboolean and have an infinite number
of atoms. As it turns out, Boole’s “conditions of possible experience” are violated if
one considers probabilities associated with complementary events, thereby assuming
counterfactuality. (This is a development and a generalization Boole could have hardly
forseen!)

y

x

y

x

ab
���� � ! �! �

Figure 2: Experimental setting to test the violation of Boole - Bell type inequalities

As an example we take a source that produces pairs of spin- 1
2 particles in a singlet-

state ( "ψ # � 1$
2

�"&% '(# � "�' %(#�� ). The particles fly apart along the z axis and after the

particles have separated, measurements on spin components along one out of two di-
rections are made. If, for simplicity, the measurements are made in the x-y plane
perpendicular to the trajectory of the particles, the direction of the measurement can
be given by angles measured from the vertical x axis (α1 and α2 on the one side, β1
and β2 on the other side). On each side the measurement angle is chosen randomly
for each pair of incoming particles and each measurement can yield two results - in h̄

2
units: “+1” for spin up and “-1” for spin down (cf. Figure 2).

Deploying this configuration we get probabilities to find a particle measured along
the axis specified by the angles α1, α2, β1 and β2 either in spin up or in spin down state
denoted as pa1, pa2, pb1, pb2 - and we also take the joint event of finding a particle on
one side at the angle α1 (α2) in a specific spin state and the other particle on the other
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side along the vector β1 (β2) in a specific spin state, denoted as pa1b1, pa2b1, pa1b2 and
pa2b2. To construct the convex polytope to this experiment we build up a truth table
of all possible events using a “1” as “spin up is detected along the specific axis” and a
“0” as “spin down is detected along the specific axis” (table 2). The rows of this table

α1 α2 β1 β1 α1β1 α1β2 α2β1 α2β2
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0
0 1 1 0 0 0 1 0
1 1 1 0 1 0 1 0
0 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1
1 1 0 1 0 1 0 1
0 0 1 1 0 0 0 0
1 0 1 1 1 1 0 0
0 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1

Table 2: Truth table for four propositions

are then identified with the vertices of the convex polytope. By using the Minkowski-
Weyl theorem and by solving the hull problem, the vertices determine the hyper-planes
confining the polytope, i.e. the inequalities which the probabilities have to satisfy. As
a result the following inequalities are gained:

0 � paibi � pai � 1 � 0 � paibi � pbi � 1 i � 1 � 2
pai � pbi � paibi � 1 i � 1 � 2 (6)� 1 � pa1b1 � pa1b2 � pa2b2 � pa2b1 � pa1 � pb2 � 0� 1 � pa2b1 � pa2b2 � pa1b2 � pa1b1 � pa2 � pb2 � 0� 1 � pa1b2 � pa1b1 � pa2b1 � pa2b2 � pa1 � pb1 � 0� 1 � pa2b2 � pa2b1 � pa1b1 � pa1b2 � pa2 � pb1 � 0

(7)

The last four inequalities are known as Clauser-Horne inequalities. As noticed
above the probabilities have to be seen in a quantum mechanical context. If we consider
the singlet state of spin- 1

2 particles "ψ # � 1$
2

�"�% '(# � ")'*%(#�� it is well known that the

probability to find the particles both either in spin up or in spin down states is given
by P +�+,
 θ � � P -�-,
 θ � � 1

2 sin2 
 θ . 2 � - where θ is the angle between the measurement
directions. The single event probability is clearly pi � 1

2 . By choosing

a1 �/� π
3

a2 � b1 � π
3

b2 � π
3

(8)
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as measurement directions, we get for p � 
 pa1 � pa2 � pb1 � pb2 � pa1b1 � pa2b1 � pa1b2 � pa2b2 � :
p � 
 1

2 � 12 � 12 � 12 � 38 � 38 � 0 � 38 � (9)

and one of the inequalities found in (7) is violated:

pa1b1 � pa1b2 � pa2b2 � pa2b1 � pa1 � pb2 � 3
8 � 3

8 � 3
8 � 0 � 1

2 � 1
2 � 1

8 0 0 (10)

The generalization is straightforward. Violations of certain inequalities involving
classical probabilisties—Boole’s “conditions of possible experience” [2]—also appear
in higher dimensions in configurations containing more particles and/or more measure-
ment directions. We shall consider more examples below.

2 Installation

2.1 Mathematica
All functions described in the following section can be found in the Mathematica-
package cddif.m. In general this package has to be loaded into the current Mathematica-
kernel by the command 1�13254,687)9�7,: �;���*<�=?>A@ 2�BDC,E�EGFIHKJML , short description and usage
of the functions is available by entering N32PO =)Q)R � 7 < : R*S 2 .

To guarantee a proper run of all functions it is necessary (and hopefully sufficient)
that C,E�E is located in any directory listed in the PATH-variable (usually /bin, /usr/bin,
/usr/local/bin, . . . )1 or in the current working directory, which can be shown by evalu-
ating TUF�VXWYC�ZX[ V�\^]`_ or changed using the function a(W Z�TUF�VDWYCIZX[ V(\b] directory String _ .
If one likes to avoid the frequent use of this function one can append this command to
the package-file cddif.m before the line c dXEe]P_ so that on each loading of the package
the directory is set automatically to a personal working directory.

2.2 cddC,E�E is a C++ (ANSI C) implementation of the Double Description Method [12] by
Komei Fukuda[14]. It generates all vertices (i.e. extreme points) and extreme rays of
a general convex polyhedron given by a system of linear inequalities. Conversely, it
solves the hull problem by generating a system of linear inequalities given all vertices.

At this point we refer to the documentation of the program for the installation of theC,E�E - package, in particular to the file cdd.readme included in the package and to the
online documentation at http://www.ifor.math.ethz.ch/˜fukuda/cddman/cddman.html.C,E�E is available for free and one can download it from the homepage of Komei
Fukuda[14] (http://www.ifor.math.ethz.ch/˜fukuda/cdd home/cdd.html), where one can
also find a manual to the usage of C,E�E , especially descriptions to the format of the
input- and output-files and to options that can be passed to C,E(E .

1for setting environment variables look at the manual of set or env
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2.3 Installation on Windows-platforms
Currently a version of C,E(E executable on Windows platforms can be down-
loaded from http://tph.tuwien.ac.at/˜svozil/cdd/cdd.exe (a different compilation is at
http://www.wis.kuleuven.ac.be/wis/algebra/kathleen/files/cdd061.exe).
On Windows-systems Mathematica must be able to find CIE�E in a directory listed in the
PATH-variable or in the current working directory, too. To set the PATH-variable in
Windows 2000/NT go to the “control panel” and click on the “system properties”, then
click “advanced” and there is a place where the variable PATH is specified. Here one
can add the path to C,E�E (separated by a semicolon). In WindowsME one needs to go ex-
ecute “msconfig” to get to the System Configuration Utility - in “Environment” one can
edit the PATH-variable and for Windows98/95 one must edit the file “autoexec.bat” to
get the path set.
Finally it can be necessary to rename the C,E�E - executable file (e.g. from cdd061.exe) to
cdd.exe. The CddIF-Package uses cdd as default command to run C,E�E , using the func-
tion a�W ZDf(E�E�fILGEb] cmd String _ one can change this behavior. Like already stated above
one can also add this commandline to the package-file cddif.m just before the c(dDEe]P_ -
statement to change the default command automatically when loading the package.

3 Description Of Functions
In this section all functions of the CddIF - package are listed. For each function the
syntax including the necessary parameters (if parameters are optional, it has an “ opt: ”
as prefix), a description and an example is given.

3.1 CddFormatf�E�E gX[ V,LUh*Zi] vertices, opt: options _
vertices (List): List of m vertices in n dimensions of the form� �

x11 j x12 j J(J�J j x1n �kj � x21 j J�J�J j x2n �kj J�J�J j � xm1 j xm2 j J�J(J j xmn �*�
options (List): Options to C,E�E (e. g. adjacency, nondegenerate, minindex,...) - see doc-

umentation to CIE�E (http://www.ifor.math.ethz.ch/ fukuda/cddman/cddman.html)

Description: A list of vertices, which can be determined for example byl V(m�Z(n l h*oYp(Wq] ..., IncludeVars r False _ , are converted to a format recognized by C,E�E .
Additionally options to C,E�E can be declared.

Example:sPtYuAv&w f(E�E(gX[ VILUh Zb](x)x 1,0,0 y , x 0,1,0 y , x 1,1,1 y)y�_z�{�| uAv&w �8}Y~ VDW*�DVXWY�,W*dDZXh ZGF,[,d�oYW �GF)d j ��� j��Kj F)dDZDW �XW V �kj�D� j � j���j��Y�kj ��� j���j � j��Y�?j ��� j � j � j � �kjW*dXE �
9



3.2 ToCddExtFilel [(f(E�E(c���Z(gUF*p(W�] file, vertices, opt: options _ orl [(f(E�E(c���Z(gUF*p(W�] file, particles, measurements, opt: options _
file (String): Filename for output of H-representation (“.ext”-suffix is automatically ap-

pended)

vertices (List): List of m vertices in n dimensions of the form� �
x11 j x12 j J(J�J j x1n �kj � x21 j J�J�J j x2n �kj J�J�J j � xm1 j xm2 j J�J(J j xmn �*�

options (List): Options to C,E�E (e. g. adjacency, nondegenerate, minindex,...) - see doc-
umentation to CIE�E (http://www.ifor.math.ethz.ch/ fukuda/cddman/cddman.html)

particles (Integer): Number of particles

measurements (Integer): Number of possible measurements to each particle (equivalent
to number of detection angles)

Description: Creates a file with “.ext”-extension that contains the data of the given
configuration to use in C,E�E . Eighter a list of vertices of the considered correlation
polytop or the number of particles used and the possible measurements to each can be
handed over. In the latter case the list of vertices is generated automatically.

Example:sPtYuAv&w l [(f�E�E(c(��Z�gUF*p W�] “test”,2,3 _z�{�| uAv&w ZDWY�IZeJ�W*��Z
writes the file “test.ext” to the current working directory, containing the vertices
of the 2-particles 3-measurements configuration.

3.3 TruthTablel V(m�Z(n l h*oYp(Wq] particles, measurements, opt: options _
particles (Integer): Number of particles

measurements (Integer): Number of possible measurements to each particle (equivalent
to number of detection angles)

opt: options: The only possible option is �)dUC p,mDEDW } h V���� l V(mYWDB,gXhDpX�*W . If�)dUC p,mDEDW } h V���� l V(mYW is defined, the function includes a list of variables be-
longing to the given configuration as titles of the columns and output will be
made in �Xh Z(VUF���gX[*V,L , otherwise a list containing all vertices is returned. De-
fault is �)dUC*p,mXEDW } h VG��� l V mYW .
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Description: Creates a truth table of the given configuration, containing all vertices
of the corresponding correlation polytopes. For generating this table all possible single
events are rated eighter 0 or 1 (i. e. true or false) and the joint events are evaluated
using the logical AND operation.

Example:sPtYuAv&w l V(mDZ(n l h*o�p(Wq] 2,2 _z�{�| uAv&w
a1 a2 b1 b2 a1b1 a1b2 a2b1 a2b2
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0
0 1 1 0 0 0 1 0
1 1 1 0 1 0 1 0
0 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1
1 1 0 1 0 1 0 1
0 0 1 1 0 0 0 0
1 0 1 1 1 1 0 0
0 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1

3.4 RunCdd� m�dDf�E�Ei] file _
file (String): File handed over to CIE�E as command parameter (automatically extended

with “ext.”-suffix.

Description: � m(dXf�E�Ei] ... _ executes CIE�E (with file as parameter) and returns the
corresponding H-representation, which can be used in various other functions like� p([*ZU�)dYW(�*mYhDpYF�ZGF,WY��] . . . _ or �DW Z } F,[DpY�)dXW(� mYhDpXF�ZGF,WD��] . . . _ .
Using this function one has to pay attention to the potentially long runtime in cal-
culating the faces (i. e. the inequalities) of the correlation polytope. It can be more
beneficial to use

l [ f�E�E(c��(Z�gUF*p(W�] file,... _ to create a “.ext”-file, followed by execut-
ing CIE�E outside of Mathematica (eventually on a faster computer) to convert the date to
H-representation stored in an “.ine”-file. Afterwards one can read in this file utilizing� W�h EG�)dD� � W*�i] file _
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Example:sPtYuAv&w � m�dXf�E�Ei] “test” _z�{�| uAv&w �*� � ~ VXW*��VXWY�*W*d�ZXh ZUF�[*d �kj � oYW*�GF8d �Uj ���(� ��j �)� j VDW�h(p �Uj ��� j���j ~ � j J(J�J J �?j J�J(J(J j � W,dXE � � ,
whereas 2-particles 3-measurement configuration is taken into consideration
here.

3.5 ShowVRepa*nY[,� } � W*� ] particles, measurements _
particles (Integer): Number of particles

measurements (Integer): Number of possible measurements to each particle (equivalent
to number of detection angles)

Description: Shows the V-representation of a given configuration.

Example:sPtYuAv&w a,nY[*� } � W*� ] 2,2 _z�{�| uAv&w �8}Y~ VDW*�DVXWY�,W*dDZXh ZGF,[,doYW �UF)d j�D��� j�¡¢j F)d�ZXW �XW V �?j�D� j���j���j���j���j£�¢j��¢j£��j��Y�?j �D� j � j£�¢j£��j���j���j���j���j£�X�?j�D� j���j � j���j���j£�¢j��¢j£��j��Y�kj ��� j � j � j���j£�¢j£��j���j���j��Y�kj�D� j���j���j � j���j£�¢j��¢j£��j��Y�kj ��� j � j���j � j£�¢j � j���j���j��Y�kj�D� j���j � j � j���j£�¢j��¢j � j��Y�kj ��� j � j � j � j£�¢j � j���j � j��Y�kj�D� j���j���j���j � j£�¢j��¢j£��j��Y�kj ��� j � j���j���j � j£��j � j���j��Y�kj�D� j���j � j���j � j£�¢j��¢j£��j � �kj ��� j � j � j���j � j£��j � j���j � �kj�D� j���j���j � j � j£�¢j��¢j£��j��Y�kj ��� j � j���j � j � j � j � j���j��Y�kj�D� j���j � j � j � j£�¢j��¢j � j � �kj ��� j � j � j � j � j � j � j � j � �kjW*dXE �
3.6 ConvToHRepfD[*d�¤ l [ � � W*�i] particles, measurements, opt: file, opt: options _ orfD[*d�¤ l [ � � W*�i] vertices, opt: file, opt: options _
particles (Integer): Number of particles

measurements (Integer): Number of possible measurements to each particle (equivalent
to number of detection angles)

vertices (List): List of m vertices in n dimensions of the form� �
x11 j x12 j J(J�J j x1n �kj � x21 j J�J�J j x2n �kj J�J�J j � xm1 j xm2 j J�J(J j xmn �*�
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file (String): Filename that is used for the conversion from a “.ext”-file to a “.ine”-file
which is equivalent to a conversion from V-representation to H-representation.
Default is “tmp”.

options (List): Options to C,E�E (e. g. adjacency, nondegenerate, minindex,...) - see doc-
umentation to C,E(E (http://www.ifor.math.ethz.ch/ fukuda/cddman/cddman.html)

Description: This function converts a given configuration (n particles, m measure-
ments) or a given list of vertices from V-representation into a H-representation. As
above in (3.4) the potentially long calculation time has to be taken into consideration,
depending on the complexity of the problem.

Example:sPtYuAv&w f�[*dD¤ l [*� � W*�i] 2,3,”2 3” _z�{�| uAv&w �*� � ~ VXW*��VXWY�*W*d�ZXh ZUF�[*d �kj � oYW*�GF8d �Uj ���(� ��j ��� j VXW(hDp �kj �I� j��j J�J�J � J�J(J j � W*dXE �*� ,
wheras in this case the files “2 3.ext” (created by Mathematica containing the
data for C,E�E ) and “2 3.ine” (created by C,E�E as result of the calculation) are
generated in the current working directory.

3.7 ReadInHRep� W�h EG�)dD� � W*�i] file _
file (String): ”.ine” - file containing the H-representation which is to be read in.

Description: Reads the H-representation from a given “.ine”-file for further use in
various functions like �DW Z } FI[DpY�)dYW � mYhDpYF)ZGF,WY��] . . . _ or

� p [ ZU�)dYW � mYhDpYF)ZUF,WY��] . . . _ .

Example:sPtYuAv&w � W�h(EG�)d�� � W*�i] “2 3” _z�{�| uAv&w �*�
H-representation � , � begin � , � 684, 16,real � , � 2, 0,... � ..., � end �*�

3.8 GetInequFromHRep�DW ZG�)dYW(� m�g�VX[�L�� � W*�q] hrep _
hrep (List): H-representation yielded for example from the function

� W�h(EG�8dD� � W*�b] . . . _
or fD[*dD¤ l [ � � W,� ] . . . _ .

Description: Returns the inequalities from a given H-representation as a list. To
make the list more readable one can apply �)dXW(� m l [ � W�h(E¥] . . . _ on it.
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Example:sPtYuAv&w ��W ZU�)dYW � mDg�VX[)L�� � WI�b]PfD[,dD¤ l [ � � W*�i] 2,1 _�_z�{�| uAv&w �*� h ��~ h � o ��¦ o � j � �?j �,~ h �§¦ h � o � j¨�Y�kj � h � o ��~ o � j��X�?j�,~ h � o � j¨�Y�*�
3.9 InequToRead�)dYW � m l [ � W�h(E¥] inequalities _
inequalites (List): List of inequalities yielded from �DW ZG�)dYW(� m�g�VX[�L�� � W*�q] . . . _
Description: Makes the list of inequalities yielded from �DW*ZU�)dYW(�*mDg�VX[�LY� � W*�q] . . . _
more readable.

Example:sPtYuAv&w �8dYW(� m l [ � W�h(Eq]P�DW ZU�8dYW(� mDg(VX[�L�� � W*�q]PfD[*dD¤ l [ � � W,�i] 2,1 _©_K_z�{�| uAv&w a1 � a1b1 � b1 � 1� a1 � a1b1 � 0
a1b1 � b1 � 0� a1b1 � 0

3.10 GetViolInequalities�DW Z } F,[DpY�8dYW(� mYh�pYF�ZGFIWX��] hrep, angles, functions, inequ-nr, violation _ or�DW Z } F,[DpY�8dYW(� mYh�pYF�ZGFIWX��] file, angles, functions, inequ-nr, violation, opt: options _
hrep (List): H-representation yielded for example from the function

� W�h(EG�8dD� � W*�b] . . . _
or fD[*dD¤ l [ � � W,� ] . . . _ .

file (String): File containing the demanded H-representation in CIE�E format.

angles (List): List of measurement angles for each particle, whereas the dimension of
the list must represent the configuration. If one chooses the configuration “2
particles - 2 measurements” the list must have the dimension ] � j � _ , in this case
the particles a and b are measured each along two axis given by the angles a1,
a2, b1 and b2, so this parameter has the form

�*�
a1 j a2 ��j � b1 j b2 �*� J

functions (Symbol): Functions to calculate the quantum mechanical probability of the
events. Considering for example two spin- 1

2 particles in a singlett state, the prob-
ability to find the particles both either in spin “up” or both in spin “down” states
is given by P +�+,
 θ � φ � � P -�-�
 θ � φ � � 1

2 sin2 ª�« θ ¬ φ 
2 ® , where θ and φ are the measure-

ment angles of the particles.
In defining these functions one has to notice, that for all possible events (sin-
gle events, two-particle-events,. . . ) an apropriate function definition has to exist,
each taking a list as parameter (e.g.

� VX[,o¯] � � j \ � _�° 1
2 a�F)d¯]I±�� ~ \U²*B � _ 2).
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inequ-nr (List): Range of rows in H-representation used for checking violated inequal-
ities. Specifying this can be useful, if many inequalities have to be evaluated.
The form of the parameter is

� L3F)d j LUh � � oder ³Yp(p .

violation (Real): Only inequalities are printed out, that are violated more than this pa-
rameter. Default value is 0.

opt: options: Options can be
� VUF)dDZY´ImDZµ� l V(mYWDB,gXhDpX�*W , which specifies, if the in-

equalities are printed out during evaluation or not.

Description: �DW*Z } F,[DpX�)dYW(� mXhDpYF�Z�F,WX�¶] . . . _ calculates the discrepancy of inequal-
ities using the given probability functions and therefore the quantum mechanical vio-
lation for a distinct adjustment (i. e. special angles) of the detectors and returns all
violated inequalities.

Example:sPtYuAv&w ��W Z } F,[�pY�)dYW(�*mYhDpYF8ZUF,WX��]PfD[,dD¤ l [ � � W*�i] 2,2 _ ,
�*�

- π
6 ,0 � , � 0, π

6 � � ,Prob _z�{�| uAv&w ± ~ h � o �8¦ h � o � ¦ h �D~ h � o �)~ h � o �(¦ o � � � 9
8 ²

The probability for the single event of measuring one particle in spin “up” or
spin “down” at any angle is given by

� VD[*o¯] � � � _�° 1
2 and the probability of the

joint event has been calculated by
� VD[*o¯] � � j \ � _�° 1

2 a�F)d^],±�� ~ \U²,B � _ 2.

3.11 PlotInequalities� p([*ZU�)dYW(�*mYhDpYF�ZGF,WY��] hrep, range, angles, functions, opt: options _ or� p([*ZU�)dYW(�*mYhDpYF�ZGF,WY��] file, range, angles, functions, inequ-nr, violation, opt: options _
hrep (List): H-representation yielded for example from the function

� W�h(EG�8dD� � W*�b] . . . _
or fD[*dD¤ l [ � � W,� ] . . . _ .

file (String): File containing the demanded H-representation in CIE�E format.

range (List): Parameter specifying the range for the variable x, which is plotted on
the horizontal axis. It has the form

�
x , xmin , xmax � (see Mathematica function� p([ Z�] . . . _ )

angles (List): List of measurement angles for each particle, whereas the dimension of
the list must represent the configuration. If one chooses the configuration “2
particles - 2 measurements” the list must have the dimension ] � j � _ , in this case
the particles a and b are measured each along two axis given by the angles a1,
a2, b1 and b2, so this parameter has the form

�*�
a1 j a2 ��j � b1 j b2 �*� J

functions (Symbol): Functions to calculate the quantum mechanical probability of the
events. Considering for example two spin- 1

2 particles in a singlett state, the prob-
ability to find the particles both either in spin “up” or both in spin “down” states
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is given by P +�+,
 θ � φ � � P -�-�
 θ � φ � � 1
2 sin2 ª « θ ¬ φ 

2 ® , where θ and φ are the measure-
ment angles of the particles.
In defining these functions one has to notice, that for all possible events (sin-
gle events, two-particle-events,. . . ) an apropriate function definition has to exist,
each taking a list as parameter (e.g.

� VX[,o¯] � � j \ � _�° 1
2 a�F)d¯]I±�� ~ \U²*B � _ 2).

inequ-nr (List): Range of rows in H-representation used for checking violated inequal-
ities. Specifying this can be useful, if many inequalities have to be evaluated.
The form of the parameter is

� L3F)d j LUh � � oder ³Yp(p .

violation (Real): Only inequalities are printed out, that are violated more than this pa-
rameter. Default value is 0.

opt: options: Options for the Mathematica- function
� p([ Z�] . . . _ can be handed over.

Description: This function yields a plot of (violated) inequalities, whereas the func-
tion plotted is f 
 x � � p 
 x � � b derived from the inequalites of the form p 
 x �?� b (p 
 x � is
a linear combination of functions to calculate the probabilities of (joint) events, depen-
dent on one variable). Consequently the degree of violation is represented as a positive
value of f 
 x � .

Take for example the case “2 particles and 2 measurement directions”, where the
inequality � pa1b1 � pa1b2 � pa2 � pa2b1 � pa2b2 � pb1 � 1

appears. The probability for the single event of measuring one particle in spin “up” or
spin “down” at any angle is given by

pa1 
 x � � pa2 
 x � � pb1 
 x � � pb2 
 x � � 1
2

and the probability of the joint event can be calculated by

pa1b1 
 x � y � � pa2b1 
 x � y � � pa1b1 
 x � y � � pa2b2 
 x � y � � 1
2

sin ª 
 x � y ��. 2 ® 2 
If we define the measurement angles by

a1 �/� π
3 � x a2 � b1 � 0 b2 � 2 · π

the inequality can be written as

1 � 1
2

sin
1
2

 � π

3 � x � � sinx
2 � 1

2
sin

1
2

 � π

3 � x ��� 1

The left side is dependent on x (p 
 x � � 1 � 1
2 sin 1

2 
 � π
3 � x � � sinx

2 � 1
2 sin 1

2 
 � π
3 � x � )

and b � 1. The function to be plotted is f 
 x � � p 
 x � � b, thus

f 
 x � � 1 � 1
2

sin
1
2

 � π

3 � x � � sinx
2 � 1

2
sin

1
2

 � π

3 � x � � 1
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Example:sPtYuAv&w � p([ ZU�)dXW(� mYhDpXF�ZUF,WD��]PfD[,dD¤ l [ � � W*�i] 2,2 _ ,
�
x,0,π � , � � - π

3 �`� x,0 � , � 0,2x �*� ,Prob _z�{�| uAv&w
0.5 1 1.5 2 2.5 3
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-0.8

-0.6

-0.4

-0.2

The functions to calculate the probabilities have been defined as
� VX[*o¯] � � � _K¸�° 1

2
for a single event and

� VX[*o¯] � � j \ � _¹¸�° 1
2 aYF)d¯],±�� ~ \U²*B � _ 2 for two-particle

events.

3.12 ContPlotInequalitiesfD[*d�Z � p([ ZG�)dYW(� mXhDpYF)ZGFIWY��] hrep, rangex, rangey, angles, func, ineq-
nr, violation, opt: options _ orfD[*d�Z � p([ ZG�)dYW(� mXhDpYF)ZGFIWY��] file, rangex, rangey, angles, func, ineq-
nr, violation, opt: options _
hrep (List): H-representation yielded for example from the function

� W�h(EG�8dD� � W*�b] . . . _
or fD[*dD¤ l [ � � W,� ] . . . _ .

rangex (List): Parameter specifying the range for the variable x, which is plotted on
the horizontal axis. It has the form

�
x , xmin , xmax � (see Mathematica function� p([ Z�] . . . _ )

rangex (List): Parameter specifying the range for the variable y, which is plotted on
the vertical axis. It has the form

�
y , ymin , ymax � (see Mathematica function� p([ Z�] . . . _ )

angles (List): List of measurement angles for each particle, whereas the dimension of
the list must represent the configuration. If one chooses the configuration “2
particles - 2 measurements” the list must have the dimension ] � j � _ , in this case
the particles a and b are measured each along two axis given by the angles a1,
a2, b1 and b2, so this parameter has the form

�*�
a1 j a2 ��j � b1 j b2 �*� J
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functions (Symbol): Functions to calculate the quantum mechanical probability of the
events. Considering for example two spin- 1

2 particles in a singlett state, the prob-
ability to find the particles both either in spin “up” or both in spin “down” states
is given by P +�+,
 θ � φ � � P -�-�
 θ � φ � � 1

2 sin2 ª « θ ¬ φ 
2 ® , where θ and φ are the measure-

ment angles of the particles.
In defining these functions one has to notice, that for all possible events (sin-
gle events, two-particle-events,. . . ) an apropriate function definition has to exist,
each taking a list as parameter (e.g.

� VX[,o¯] � � j \ � _�° 1
2 a�F)d¯]I±�� ~ \U²*B � _ 2).

inequ-nr (List): Range of rows in H-representation used for checking violated inequal-
ities. Specifying this can be useful, if many inequalities have to be evaluated.
The form of the parameter is

� L3F)d j LUh � � oder ³Yp(p .

violation (Real): Only inequalities are printed out, that are violated more than this pa-
rameter. Default value is 0.

opt: options: Options for the Mathematica-function
� p([ Z ] . . . _ can be handed over.

Description: Like the function
� p [ ZU�)dYW � mYhDpYF)ZUF,WY��] . . . _fD[*d�Z � p([ ZG�)dYW(� mXhDpYF)ZGFIWY��] . . . _ yields a graphical representation of the viola-

tion of Boole-Bell type inequalities, but in this case the functions are dependant on
two variables: f 
 x � y � � p 
 x � y � � b derived from p 
 x � y �K� b, where p 
 x � y � is a linear
combination of functions to calculate the probability for single or joint events. Like
in the description of the

� p [ ZU�)dYW � mYhDpYF)ZUF,WX��] . . . _ -function we take the “2 particles
- 2 measurement directions”, the only difference is the selection of the measurement
angles:

a1 � x a2 � b1 � 0 b2 � y

Thus the function f 
 x � y � is now given by

f 
 x � y � � 1 � 1
2

sin
x
2 � 1

2
sin

x � y
2 � 1

2
sin

y
2 � 1

and can be plotted as contour plots. A higher level of violation is represented by a
darker contour layer.

Example:sPtYuAv&w f�[*dDZ � p [ ZU�)dYW � mYhDpDF�ZUFIWX�¶]Pf�[*dD¤ l [*� � W*�i] 2,2 _ ,
�
x,0,π � , � y,0,π � , �,� x,0 � , � 0,y � � ,Prob,All _z�{�| uAv&w
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The functions to calculate the probabilities have been defined as
� VX[*o¯] � � � _K¸�° 1

2
for a single event and

� VX[*o¯] � � j \ � _¹¸�° 1
2 aYF)d¯],±�� ~ \U²*B � _ 2 for two-particle

events.

3.13 Cddf�E�E ] values, opt: command _
values (List): Data handed over to C,E(E in an input-file. Each element of the list must

be a string and represents a row in the output-file.

opt: command (String): Command to be executed on the generated output-file (de-
fault is “cdd” - the default value can be changed utilizing the functiona�W ZDf�E(E�fILGEb] newcommand String _ ). Here one can specify for example “cddf”
or “cddr”.

Description: Simple Interface to run C,E(E in Mathematica. The current version can-
not distinguish, whether C,E�E has produced correct output or not, so one has to pay
attention while using this function.

Example:sPtYuAv&w f(E�E�](x “H-Representation”,“begin”,“6 4 real”,“2 -1 0 0”,“2 0 -1 0”,“-1 1 0 0”,“-1 0 1
0”,“-1 0 0 1”,“4 -1 -1 0”,“end” y;_z�{�| uAv&w �*�

“*”, “cdd:”, “Double”, “Description”, “Method”, “C-Code:Version”,
“0.61b”, “(November”, 29, “1997)” � , � “*”, “Copyright”, “(C)”, 1996, “Komei”,
“Fukuda,”, “fukuda@ifor.math.ethz.ch” � , � “*Input”, “File:tmp.ine”, “(”, 6, “x”,
“4)” � , � “*HyperplaneOrder:”, “LexMin” � , � “*Degeneracy”, “preknowledge”,
“for”, “computation:”, “None”, “(possible”, “degeneracy)” � , � “*Vertex/Ray”,
“enumeration”, “is”, “chosen.” � , � “*Computation”, “completed”, “at”,
“Iteration”, 6. � , � “*Computation”, “starts”, “at”, “Thu”, “Mar”, 22, “18:48:36”,
2001 � , � “*”, “terminates”, “at”, “Thu”, “Mar”, 22, “18:48:36”, 2001 � ,
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�
“*Total”, “processor”, “time”, “=”, 0, “seconds” � , � “*”, “=”, 0, “hour”, 0,

“min”, 0, “sec” � , � “*FINAL”, “RESULT:” � , � “*Number”, “of”, “Vertices”,
“=”, 4, “Rays”, “=”, 1 � , � “V-representation” � , � “begin” � , � 5, 4, “real” � , � 1, 2,
1, 1 � , � 1, 1, 1, 1 � , � 1, 1, 2, 1 � , � 1, 2, 2, 1 � , � 0, 0, 0, 1 � , � “end” � , � “hull” �*�

4 Examples
These following two examples are originally solved in a paper by Pitowsky and Svozil
[15]. The associated Mathematica - notebooks are “3 2.nb” (three particles - 2 mea-
surement directions) and “2 3.nb” (two particles and three measurement directions)

4.1 Three particles and two measurement directions
In this configuration three particles (a, b and c) are measured in detectors which can be
switched between two angles each. Consequently there are six different propositions
for single particle events: a1, a2, b1, b2, c1, c2, supposing that a1 is the detection (i. e.
the click in a counter) of the particle a in the detector set along the axis specified by
the first angle for particle a, b2 the detection of particle b at the second angle for this
particle, and so on . . . (cf. Figure 3). If we also take two and three particle events into

y

x

y

x

y

x

c

b a

º » º ¼

½(¾ ½D¿ À�ÁÀPÂ
Figure 3: Setting for ”2 particles - 3 angles”

account (for example the event a2c1 means a click in the counter for particle a at the
second angle AND a click in the counter for particle c at the first angle), there are 26
different events:
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a1, a2, b1, b2, c1, c2, a1b1, a1b2, a2b1, a2b2, a1c1, a1c2, a2c1, a2c2, b1c1, b1c2, b2c1,
b2, c2,a1b1c1, a1b1c2, a1b2c1, a1b2c2, a2b1c1, a2b1c2, a2b2c1, a2b2c2

4.2 Violations of inequalities
The truth table for this configuration can be obtained utilizing the functionl V(m�Z(n l h*oYp(Wq] 3,2 _ 2, executing fD[*d�¤ l [ � � W*�i] 3,2 _ yielded the appropriate H-
representation, but this would last quite long, due to the complexity of the correla-
tion polytope for this setting (there are 53856 hyper-planes limiting the polytope).
Because of this fact trying to read in the H-representation created by C,E�E (using� W�h EG�)dD� � W*�i] . . . _ ) could also result in memory resource problems by Mathematica.
To avoid this symptoms it is suggested to export the list of vertices and apply C,E�E out-
side of Mathematica to the file containing the list of vertices (V-representation). This
can be done by invoking

l [(f�E(E(c���Z�gGF*p(W�] “3 2”,3,2 _ , which creates a file “3 2.ext”.
This file can be handed over to C,E�E as parameter to get the file “3 2.ine” comprising
the H-representation of the correlation polytope (Command: “cdd 3 2.ext”).
Now the search for violated inequalities can begin using the function�DW Z } F,[DpY�8dYW(� mYh�pYF�ZGFIWX��] . . . _ :
May be accepted that the functions to calculate the quantum probabilities of the
(joint) events (

� VX[*o ) have been defined by
� VX[,o¯] � � � _¹¸�° 1

2 ,
� VX[,o¯] � � j \ � _¹¸�° 1

4 and� VX[,o¯] � � j \ j�Ã � _K¸�° 1
8 ·¹
 1 � Sin ª x � y � z ® � , where x, y and z are the angles used for

detection of each particle,�DW Z } F,[DpY�8dYW(� mYh�pYF�ZGFIWY�¶] “3 2.ine”,
�*�

0, π
2 � , � 0, π

2 � , � 0, π
2 �*� ,Prob,All,0.4 _

yields: �*�
-3 h � +2 h � o � + h � o � C � -4 h � o � C � +3 h � o � -3 h � o � C � -h � o � C � + h � C � +3 h � C � +2 h � o � -2 h � o � C � - h � o � C � -

2 h � o � + h � o � C � +3 h � o � C � + h � C � - h � C � -2 o � +o � C � +2 o � C � + o � C � -2 o � C � - C � � 0,0.5 � ,�
-2 h � +2 h � o � + h � o � C � -4 h � o � C � +2 h � o � -2 h � o � C � -h � o � C � + h � C � +2 h � C � +3 h � o � -3 h � o � C � - h � o � C � -

2 h � o � + h � o � C � +3 h � o � C � + h � C � -2 h � C � -3 o � +o � C � +3 o � C � + o � C � - o � C � - C � � 0,0.5 � ,�
-2 h � + h � o � + h � o � C � -4 h � o � C � +2 h � o � -3 h � o � C � -h � o � C � +2 h � C � +2 h � C � +2 h � o � -3 h � o � C � -h � o � C � - h � o � + h � o � C � +2 h � o � C � + h � C � - h � C � -

2 o � +2 o � C � +2 o � C � + o � C � - o � C � -2 C � � 0,0.5 � ,�
-2 h � +2 h � o � + h � o � C � -4 h � o � C � +2 h � o � -3 h � o � C � -h � o � C � +3 h � C � +2 h � o � -3 h � o � C � - h � o � C � -

2 h � o � + h � o � C � +2 h � o � C � + h � C � -2 o � +2 o � C � +
2due to lack of space not listed here, but it can be found in the Mathematica- notebook 3 2.nb
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2 o � C � + o � C � - o � C � - C � - C � � 0,0.5 � ,�
- h � + h � o � + h � o � C � -4 h � o � C � + h � o � -3 h � o � C � -h � o � C � + h � C � +2 h � C � + h � + h � o � -2 h � o � C � -h � o � C � -2 h � o � + h � o � C � +3 h � o � C � - h � C � - o � +o � C � +2 o � C � + o � + o � C � -2 o � C � - C � � 1,1.5 � ,�
- h � +2 h � o � - h � o � C � -3 h � o � C � + h � o � -4 h � o � C � +h � o � C � +3 h � C � + h � + h � o � -2 h � o � C � - h � o � C � -

2 h � o � + h � o � C � +3 h � o � C � - h � C � -2 o � +2 o � C � +
2 o � C � + o � +2 o � C � -3 o � C � -2 C � + C � � 1,1.5 � ,�

-2 h � +2 h � o � - h � o � C � -3 h � o � C � + h � o � -2 h � o � C � -h � o � C � +2 h � C � +2 h � C � + h � + h � o � -4 h � o � C � +h � o � C � -2 h � o � + h � o � C � +3 h � o � C � +2 h � C � -3 h � C � -o � +3 o � C � + o � - o � C � -2 C � + C � � 1,1.5 ��
. . . � . . . �

4.3 Graphical representation
Using

� p [ ZU�)dYW � mYhDpYF)ZUF,WY��] . . . _ a graph can be created showing the violation of
inequalities dependent on one variable. Defining the probability functions as above,
executing� p [ ZU�)dYW � mYhDpYF)ZUF,WY��] “3 2.ine”, x x,0,π y , x)x 0,x y , x 0,x y , x 0,x y ,Prob, x 10000,20000 y ,0.4 _
yields the following plot (cf. Figure 4), whereas the corresponding H-representation
has to be stored in the file “3 2.ine”,

�
10000,20000 � indicates the range of row num-

bers taken for calculating the graph and � J � is the minimal degree of violation to
include the inequality in the graph:

0.5 1 1.5 2 2.5 3

-1.25

-1

-0.75

-0.5

-0.25

0.25

0.5

Figure 4: PlotInequalities[“3 2.ine”,
�
x,0,π � , � � 0,x � , � 0,x � , � 0,x � ,Prob,

�
10000,20000 � ,0.4]

To display inequalities dependent on two variables the functionfD[*d�Z � p([ ZG�)dYW(� mXhDpYF)ZGFIWY��] . . . _ is provided. This function shows the violation
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as a contour plot, a more violated set of detection angles results in a darker region in
the plot.fD[*d�Z � p([ ZG�)dYW(� mXhDpYF)ZGFIWY��] “3 2.ine”, x x,0,π y , x x,0,π y , x)x 0,x y , x 0,y y , x x,y y)y ,Prob, x 10000,20000 y ,0.4 _
returns fD[,dDZX[*mDV��(VXh*��nUF(C�� -objects, which can be displayed for example by executinga,nY[*�Ä]P�(VXh*�(nkF(C��I³(V�VXh \�] � h V(ZUF�ZUF,[,d ] cont, 3 ](]Dx*Å Æ�ÇIyDÆ`È*É�ÉX_�_�_e_¹_ÊB�B l h*o�p(W gD[ V,L
(see figure 5).
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a2b1c1 - 3 a2b1c2 - a2b2 + 3 a2b2c1 - a2b2c2 -

a2c1 + a2c2 - b1 + 2 b1c2 - 2 b2 + 2 b2c2 - c2\

<= 0

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

-a1 - 3 a1b1c1 + a1b1c2 + 3 a1b2 - a1b2c1 -

4 a1b2c2 + 2 a1c1 + a1c2 - a2 + a2b1 +

a2b1c1 - 3 a2b1c2 + 2 a2b2c1 - a2b2c2 - a2c1 +

2 a2c2 + b1c1 - 2 b2 + 3 b2c2 - c1 - c2 <= 0
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2 b2c2 - c1 + c2 <= 1
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Figure 5: ContPlotInequalities[“3 2.ine”,
�
x,0,π � , � x,0,π � , �,� 0,x � , � 0,y � , � x,y �*� ,Prob,

�
10000,20000 � ,0.4]

Show[GraphicsArray[Partition[cont,3][[
�
1,2 � ,All]] // TableForm

4.4 Two particles and three measurement directions
In the case of two particles (a and b) with three properties (whereas the properties are
three different angles of the detectors for each particle denoted by a1, a2, a3, b1, b2, b3
- see figure 6) 15 different events can be found:
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�
a1, a2, a3, b1, b2, b3, c1, c2, c3, a1b1, a1b2, a1b3, a2b1, a2b2, a2b3, a3b1, a3b2, a3b3 �

y

x

ab

y

x

Ë�ÌË�Í ËPÎ Ï Ì
Ï Í

Ï Î
Figure 6: Setting for ”2 particles - 3 angles”

4.5 Violations of inequalities
Using

l V(m�Z(n l h*oYp(W¥] 2,3 _ all vertices of the corresponding correlation polytope can be
found - we get a dimension of 15 and 64 vertices as result (table 3).Ð�Ñ Ð�Ò Ð�Ó Ô&Ñ Ô�Ò Ô�Ó Ð�ÑMÔ&Ñ Ð�Ñ5Ô�Ò Ð�ÑMÔ�Ó Ð�ÒÕÔ&Ñ Ð�ÒÕÔÖÒ Ð�ÒÕÔ�Ó Ð�ÓÕÔ&Ñ Ð�ÓÕÔÖÒ Ð�ÓÕÔ�Ó

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 1 0 0 1 0 0
1 1 1 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 0 0 0 0 0 1 0
0 1 1 0 1 0 0 0 0 0 1 0 0 1 0
1 1 1 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 1 1 0 0 0 0
1 1 0 1 1 0 1 1 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 1 1 0
1 0 1 1 1 0 1 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 0 0 1 1 0 1 1 0
1 1 1 1 1 0 1 1 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
1 0 1 0 0 1 0 0 1 0 0 0 0 0 1
0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
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Ð�Ñ Ð�Ò Ð�Ó Ô&Ñ Ô�Ò Ô�Ó Ð�ÑMÔ&Ñ Ð�Ñ5Ô�Ò Ð�ÑMÔ�Ó Ð�ÒÕÔ&Ñ Ð�ÒÕÔÖÒ Ð�ÒÕÔ�Ó Ð�ÓÕÔ&Ñ Ð�ÓÕÔÖÒ Ð�ÓÕÔ�Ó
1 1 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 1 0 1 0 0 0
1 1 0 1 0 1 1 0 1 1 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 1 0 1
1 0 1 1 0 1 1 0 1 0 0 0 1 0 1
0 1 1 1 0 1 0 0 0 1 0 1 1 0 1
1 1 1 1 0 1 1 0 1 1 0 1 1 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 1 1 0 0 0
1 1 0 0 1 1 0 1 1 0 1 1 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 1 1
1 0 1 0 1 1 0 1 1 0 0 0 0 1 1
0 1 1 0 1 1 0 0 0 0 1 1 0 1 1
1 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 1 1 1 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 1 1 1
1 0 1 1 1 1 1 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3: Truth table for 6 propositions

Executing nDVDW*�X°�fD[,dD¤ l [ � � W*�q] 2,3 _ a H-representation of the polytope described
by the truth table above can be created. This results in 684 hyper-planes respectively
684 inequalities from the 64 vertices limiting the polytope:�*� � ~ VXW*�DVXWX�*W*dDZXh*ZUF,[,d �kj � oYW �UF8d �?j �I��� �Kj �)� j VDW�hDp �kj��� j£�¢j ~ � j � j ~�� j£�¢j ~G� j � j ~G� j��¢j � j � j � j ~G� j ~G� j � �kj��� j ~ � j���j � j ~�� j£�¢j ~G� j � j � j � j � j ~G� j���j ~G� j ~G� j � �kj� J�J�J �kj��� j ~�� j���j£�¢j ~�� j£�¢j£��j � j���j���j���j���j£�¢j£��j���j��Y�kj� W*dXE �kj �8× [*dXHGF)�(mDVXh,ZUF,[,d j � j � � �
All inequalities can be displayed by�DW ZU�)dXW(� mDg�VD[�L�� � WI�¥] hrep _¹B�BØ�)dYW(� m l [ � W�h E
The result of this operation isÙ Ð�ÑMÔ&ÑeÚ¶Ð�ÑMÔ�Ò¯Ú¶ÒÛÐ�Ò Ù Ð�ÒÕÔ�Ñ Ù Ð�Ò`Ô�Ò Ù Ð�ÒÕÔ�Ó Ù Ð�Ó¯Ú¶Ð�ÓÕÔ&ÑeÚ¶Ð�ÓÕÔ�Ò Ù Ð�ÓÕÔÖÓ�Ú^Ô&Ñ¯Ú¯Ô�ÓYÜeÒÒ�Ð�Ñ Ù Ð�Ñ5Ô&Ñ Ù Ð�ÑMÔ�Ò Ù Ð�ÑMÔ�Ó Ù Ð�ÒÕÔ�ÑeÚ�Ð�Ò`Ô�Ò Ù Ð�Ó�ÚÛÐ�Ó`Ô&Ñ^ÚÛÐ�ÓÕÔ�Ò Ù Ð�ÓÕÔ�Ó�Ú¯Ô&ÑeÚ�Ô�ÓYÜeÒÐ�Ñ Ù Ð�ÑMÔ�Ñ Ù Ð�ÑMÔ�Ó Ù Ð�ÒÕÔ&ÑeÚ¶Ð�ÒÕÔ�Ò�Ú�Ð�ÒÕÔÖÓ Ù Ð�ÓÛÚÛÐ�ÓÕÔ�Ñ^Ú�Ð�ÓÕÔ�Ò Ù Ð�ÓÕÔ�Ó¯Ú�Ô&Ñ Ù Ô�ÒYÜ¯ÑÝ�Ý�ÝÝ�Ý�ÝÐ�Ñ Ù Ð�ÑMÔ�ÑeÚ¯Ô&ÑDÜ¯Ñ
Using
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�DW Z } F,[DpY�8dYW(� mYh�pYF�ZGFIWX��] hrep,
�*�

0, 2π
3 , 4π

3 � , � � 0, 2π
3 , 4π

3 � � ,Prob,All _KB�B l h*oYp(W gX[ VIL
all inequalities can be displayed that are violated at the specific angles a1 � b1 �
0, a2 � b2 � 2π

3 and a3 � b3 � 4π
3 taking the functions

� VD[*o¯] � � � _¹¸�° 1
2 and� VX[,o¯] � � j \ � _¹¸P° Sin ª x ¬ y

2 ® . 2 to calculate the quantum probabilities, which is equiv-
alent to the probability to find two spin- 1

2 particles in a singlet state ( "ψ # � 1$
2

�"�% '# � "�' %(#�� ) both either in spin “up” or both in spin “down”.Ù Ð�Ñ Ù Ð�ÑMÔ&ÑeÚ¶Ð�ÑMÔ�Ò¯Ú¶Ð�ÑMÔ�Ó Ù Ð�ÒÛÚ�Ð�ÒÕÔ�ÑeÚ�Ð�Ò`Ô�Ó¯Ú�Ð�ÓÕÔ&ÑeÚ¶Ð�ÓÕÔ�Ò Ù Ð�ÓÕÔ�Ó Ù Ô&Ñ Ù Ô�ÒDÜ�Þ 1

4Ù Ð�Ñ Ù Ð�ÑMÔ&ÑeÚ¶Ð�ÑMÔ�Ò¯Ú¶Ð�ÑMÔ�ÓÛÚÛÐ�ÒÕÔ�Ñ Ù Ð�Ò`Ô�Ò�Ú¶Ð�ÒÕÔ�Ó Ù Ð�Ó¯Ú¶Ð�ÓÕÔ&ÑeÚ¶Ð�ÓÕÔ�Ò Ù Ô&Ñ Ù Ô�ÓDÜ�Þ 1
4Ù Ð�ÑeÚ�Ð�ÑMÔ�Ò¯Ú¶Ð�ÑMÔ�Ó Ù Ð�Ò�Ú¶Ð�ÒÕÔ&Ñ Ù Ð�ÒÕÔÖÒ¯Ú�Ð�Ò`Ô�Ó¯Ú�Ð�ÓÕÔ&ÑeÚ¶Ð�ÓÕÔ�Ò Ù Ð�ÓÕÔ�Ó Ù Ô&Ñ Ù Ô�ÒDÜ�Þ 1
4Ù Ð�ÑMÔ&ÑeÚ¶Ð�ÑMÔ�Ò�Ú�Ð�ÑMÔÖÓ Ù Ð�ÒÛÚÛÐ�ÒÕÔ�Ñ Ù Ð�Ò`Ô�Ò�Ú¶Ð�ÒÕÔ�Ó Ù Ð�Ó¯Ú¶Ð�ÓÕÔ&ÑeÚ¶Ð�ÓÕÔ�Ò Ù Ô�Ò Ù Ô�ÓDÜ�Þ 1
4Ù Ð�ÑeÚ�Ð�ÑMÔ�Ò¯Ú¶Ð�ÑMÔ�Ó¯Ú¶Ð�ÒÕÔ&Ñ Ù Ð�ÒÕÔÖÒ�ÚÛÐ�Ò`Ô�Ó Ù Ð�Ó¯Ú�Ð�ÓÕÔ&ÑeÚ¶Ð�ÓÕÔ�Ò Ù Ð�ÓÕÔ�Ó Ù Ô&Ñ Ù Ô�ÓDÜ�Þ 1
4Ù Ð�ÑMÔ&ÑeÚ¶Ð�ÑMÔ�Ò�Ú�Ð�ÑMÔÖÓ Ù Ð�ÒÛÚÛÐ�ÒÕÔ�Ñ^ÚÛÐ�Ò`Ô�Ó Ù Ð�Ó¯Ú�Ð�ÓÕÔ&ÑeÚ¶Ð�ÓÕÔ�Ò Ù Ð�ÓÕÔ�Ó Ù Ô�Ò Ù Ô�ÓDÜ�Þ 1
4Ù Ð�Ñ^Ú¶Ð�ÑMÔ�Ò�Ú�Ð�ÑMÔÖÓ Ù Ð�Ò`Ô�Ò¯Ú�Ð�ÒÕÔ�Ó Ù Ô�ÓXÜ�Þ 1
8Ù Ð�ÑMÔ&Ñ¯ÚÛÐ�ÑMÔÖÓ Ù Ð�ÒÛÚ�Ð�Ò`Ô&ÑeÚ�Ð�ÒÕÔ�Ó Ù Ô�ÓXÜ�Þ 1
8Ù Ð�ÑMÔ&Ñ¯ÚÛÐ�ÑMÔÖÒ Ù Ð�ÓÛÚ�Ð�Ó`Ô&ÑeÚ�Ð�ÓÕÔ�Ò Ù Ô�ÒXÜ�Þ 1
8Ù Ð�Ñ^Ú¶Ð�ÑMÔ�Ò�Ú�Ð�ÑMÔÖÓ¯Ú�Ð�Ó`Ô�Ò Ù Ð�ÓÕÔ�Ó Ù Ô�ÒXÜ�Þ 1
8Ð�ÒÕÔ&Ñ Ù Ð�ÒÕÔÖÒ Ù Ð�ÓÛÚÛÐ�ÓÕÔ�Ñ^Ú�Ð�ÓÕÔ�Ò Ù Ô&Ñ Ü©Þ 1
8Ù Ð�Ò�Ú¶Ð�ÒÕÔ&Ñ^Ú�Ð�ÒÕÔÖÓ¯Ú�Ð�Ó`Ô&Ñ Ù Ð�ÓÕÔ�Ó Ù Ô&Ñ�Ü�Þ 1
8

4.6 Graphical representation
Like in the configuration “three particles and two angles” described above a graphical
representation can be generated either dependent on one or dependent on two variables.
On the one hand side by using� p([ ZG�)dYW(� mXhDpYF�ZUFIWY�¶] hrep,

�
x,0,π � , �*� 0,x, 4π

3 � , �*� 0,x, 4π
3 �*� ,Prob _

we get a plot of all violated inequalities (cf. Figure 7),

0.5 1 1.5 2 2.5 3

-2

-1.5

-1

-0.5

Figure 7: PlotInequalities[hrep,
�
x,0,π � , � � 0,x, 4π

3 � , �*� 0,x, 4π
3 �*� ,Prob]

on the other hand side contour plots of all inequalities violated for example more than
0.2 can be generated by executing
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C*[*d�ZD°�fD[*d�Z � p([ ZG�)dYW �*mXhDpDF�ZUFIWX�¶] hrep,
�
x,0,π � , � y,0,π � , � � 0,x,y � , �*� 0,x,y �,� ,Prob,All,0.2 _

To display the outcome of the calculation entering a,nY[*�ØB(ßØC*[*dDZ results in Contour-
Plots of the following form (cf. Figure 8):
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Figure 8: ContPlotInequalities[hrep,
�
x,0,π � , � y,0,π � , �*� 0,x,y � , �,� 0,x,y �*� ,Prob,All,0.2]

Show /@ %
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