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Abstract

Whenever a structure with a particularly interesting computability-theoretic

property is found, it is natural to ask whether similar examples can be found

within well-known classes of algebraic structures, such as groups, rings, lattices,

and so forth. One way to give positive answers to this question is to adapt the

original proof to the new setting. However, this can be an unnecessary duplication

of effort, and lacks generality. Another method is to code the original structure

into a structure in the given class in a way that is effective enough to preserve

the property in which we are interested. In this paper, we show how to transfer a
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number of computability-theoretic properties from directed graphs to structures

in the following classes: symmetric, irreflexive graphs; partial orderings; lattices;

rings (with zero-divisors); integral domains of arbitrary characteristic; commuta-

tive semigroups; and 2-step nilpotent groups. This allows us to show that several

theorems about degree spectra of relations on computable structures, nonpreser-

vation of computable categoricity, and degree spectra of structures remain true

when we restrict our attention to structures in any of the classes on this list. The

codings we present are general enough to be viewed as establishing that the theo-

ries mentioned above are computably complete in the sense that, for a wide range

of computability-theoretic nonstructure type properties, if there are any examples

of structures with such properties then there are such examples that are models

of each of these theories.

1 Introduction

With the formalization of the notions of algorithm and computable function in the first

half of the twentieth century, and the subsequent development of computability theory,

there has been increasing interest in recent decades in investigating the effective con-

tent of mathematics. In this paper, we are concerned with the connection between two

branches of this effective mathematics program: computable model theory and com-

putable algebra. We assume the reader is familiar with basic concepts of computability

theory, model theory, and algebra; standard references are [40], [21], and [28], respec-

tively.

One of the main concerns of computable model theory is the study of computability-

theoretic properties of countable structures. We will always assume we are working with

computable languages. We will denote the domain of a structure A by |A|. (We will

not always use calligraphic letters for structures, so A may denote a different structure,

usually one isomorphic to A.) Let us for the moment focus on computable structures.

1.1 Definition. A structure A is computable if both |A| and the atomic diagram of

(A, a)a∈|A| are computable. If, in addition, the n-quantifier diagram of (A, a)a∈|A| is

computable then A is n-decidable, while if the full first-order diagram of (A, a)a∈|A| is

computable then A is decidable.

An isomorphism from a structure M to a computable structure is called a computable

presentation of M. We often abuse terminology and refer to the image of a computable
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presentation as a computable presentation. If M has a computable presentation then

it is computably presentable.

Whenever a structure with a particularly interesting computability-theoretic proper-

ty is found, it is natural to ask whether similar examples can be found within well-known

classes of algebraic structures, such as groups, rings, lattices, and so forth. As an ex-

ample, let us consider the computable dimension of computable structures, which is a

special case of the following definition. (Here and below, degree means Turing degree.)

1.2 Definition. Given a degree d, the d-computable dimension of a computably pre-

sentable structure M is the number of computable presentations of M up to d-com-

putable isomorphism. If M has d-computable dimension 1 then it is d-computably

categorical.

For an ordinal α, 0α-computably categorical structures are usually called ∆0
α+1-

categorical structures. An equivalent definition of ∆0
β-categoricity, which also works for

limit ordinals β, is that a computably presentable structure is ∆0
β-categorical if any two

of its computable presentations are isomorphic via a ∆0
β isomorphism.

It is easy to construct computable structures with computable dimension 1 or ω.

Indeed, most familiar structures, and even all members of many familiar classes of

structures, have computable dimension 1 or ω. For example, Nurtazin [34] showed that

all decidable structures fall into this category. Goncharov [8] later extended this result

to 1-decidable structures, and there have been several other well-known algebraic classes

of structures for which similar results have been proved.

1.3 Theorem (Goncharov; Goncharov and Dzgoev; Metakides and Nerode;

Nurtazin; LaRoche; Remmel). All structures in each of the following classes have

computable dimension 1 or ω: algebraically closed fields, real closed fields, Abelian group-

s, linear orderings, Boolean algebras, and ∆0
2-categorical structures.

The result for algebraically closed and real closed fields is implied by the results

in [34]; the result for algebraically closed fields was also independently proved in [32].

The result for Abelian groups appears in [10], that for linear orderings independently

in [13] and [37], and that for ∆0
2-categorical structures in [11]. The result for Boolean

algebras appears in full in [12], though it is implicit in earlier work of Goncharov and,

independently, in [29].

In most cases, these results were proved via structure theorems, that is, theorems

that connect computability-theoretic properties of structures in the relevant classes to
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their structural properties. For example, a linear ordering with finitely many pairs of

adjacent elements is computably categorical, while one with infinitely many such pairs

has infinite computable dimension. The methods in this paper can be seen as the

development of a nonstructure theory for computable model theory, in the same sense

that, for instance, the study of Borel completeness provides such a theory for descriptive

set theory. We will comment on this further below.

In light of results such as those mentioned above, an important question early in the

development of computable model theory was whether there exist computable structures

with finite computable dimension greater than 1. This question was answered positively

by Goncharov [9].

1.4 Theorem (Goncharov). For each n > 0 there is a computable structure with

computable dimension n.

Further investigation led to examples of computable structures with finite com-

putable dimension greater than 1 in several classes of algebraic structures. In each

case, the proof consisted of coding families of computably enumerable (c.e.) sets with

a finite number of computable enumerations (up to a suitable notion of computable

equivalence of enumerations) in a sufficiently effective way.

1.5 Theorem (Goncharov; Goncharov, Molokov, and Romanovskii; Kudi-

nov). For each n > 0 there are structures with computable dimension n in each of the

following classes: graphs, lattices, partial orderings, 2-step nilpotent groups, and integral

domains.

The results for partial orderings and (implicitly) graphs appear in [9], and the result

for lattices is an easy consequence of the results in that paper. The result for 2-step

nilpotent groups (which improves a result in [10]) appears in [15], and that for integral

domains in [27].

We now turn to the other computability-theoretic properties of structures with which

this paper is concerned, and give examples of the kinds of results we would like to show

remain true when we restrict our attention to certain classes of algebraic structures. For

more thorough treatments of these and related results, see [24] or the articles in [6].

One way to understand the differences between noncomputably isomorphic com-

putable presentations of a structure M is to compare (from a computability-theoretic

point of view) the images in these presentations of additional relations on the domain

of M, that is, relations that are not the interpretation in M of relation symbols in the
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language of M. The study of relations on computable structures began with the work

of Ash and Nerode [2], who were concerned with relations that maintain some degree of

effectiveness in different computable presentations of a structure.

1.6 Definition. Let U be a relation on the domain of a computable structure A and

let C be a class of relations. We say that U is intrinsically C on A if the image of U in

any computable presentation of A is in C.

A different way to approach the study of relations on computable structures, intro-

duced by Harizanov and Millar, is to look at the degrees of the images of a relation in

different computable presentations of a structure.

1.7 Definition. Let U be a relation on the domain of a computable structure A. The

degree spectrum of U on A, which is denoted by DgSpA(U), is the set of degrees of the

images of U in all computable presentations of A.

It is easy to give examples of relations on computable structures whose degree spec-

tra are singletons or infinite. Harizanov [16] was the first to give an example of an

intrinsically ∆0
2 relation with a two-element degree spectrum that includes 0. This was

improved by Khoussainov and Shore [23] as follows.

1.8 Theorem (Khoussainov and Shore). For each n > 0 there exists an intrinsically

c.e. relation U on the domain of a computable structure A of computable dimension n

such that DgSpA(U) consists of n distinct c.e. degrees, including 0.

The n = 2 case of the above theorem is also due to Goncharov and Khoussainov [14].

The following result was also proved in [23].

1.9 Theorem (Khoussainov and Shore). For each computable partial ordering P

there exists an intrinsically c.e. relation U on the domain of a computable structure A

such that (DgSpA(U), 6T) ∼= P. If P has a least element then we can pick A and U so

that 0 ∈ DgSpA(U).

Later, Hirschfeldt [18] and Khoussainov and Shore [25] independently obtained the

following strengthenings of the previous two theorems.

1.10 Theorem (Hirschfeldt; Khoussainov and Shore). Let a0, . . . , an−1 be c.e.

degrees. There exists an intrinsically c.e. relation U on the domain of a computable

structure A of computable dimension n such that DgSpA(U) = {a0, . . . , an−1}.
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1.11 Theorem (Hirschfeldt). Let {Ai}i∈ω be a uniformly c.e. collection of c.e. sets.

There exists an intrinsically c.e. relation U on the domain of a computable structure A

such that DgSpA(U) = {deg(Ai) : i ∈ ω}.

A related issue is the question of what happens to the computable dimension of

a computably categorical structure when it is expanded by finitely many constants.

Millar [33] showed that, with a relatively small additional amount of decidability, com-

putable categoricity is preserved under expansion by finitely many constants.

1.12 Theorem (Millar). If A is computably categorical and 1-decidable then any ex-

pansion of A by finitely many constants remains computably categorical.

However, preservation of categoricity does not hold in general, as was shown by

Cholak, Goncharov, Khoussainov, and Shore [4].

1.13 Theorem (Cholak, Goncharov, Khoussainov, and Shore). For each k > 0

there exist a computably categorical structure A and an a ∈ |A| such that (A, a) has

computable dimension k.

In fact, as shown by Hirschfeldt, Khoussainov, and Shore [19], not even finiteness of

computable dimensionality is always preserved under expansion by a constant.

1.14 Theorem (Hirschfeldt, Khoussainov, and Shore). There are a computably

categorical structure A and an a ∈ |A| such that (A, a) has computable dimension ω.

Another important topic in computable model theory is studying the complexity of

the isomorphisms between different computable presentations of a structure. We say

that a computable structure is strictly ∆0
α-categorical if it is ∆0

α-categorical but not

∆0
β-categorical for any β < α. The following result was proved by Ash in [1].

1.15 Theorem (Ash). For each computable limit ordinal δ (including δ = 0) and each

n ∈ ω, there is a strictly ∆0
δ+2n-categorical well-ordering.

The work of computable model theory is not restricted to computable structures, of

course. When a countable structure is not computably presentable, it is of interest to

find out just how far from being computably presentable it is. One way to measure this

is to look at the degrees of presentations of the structure.
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1.16 Definition. Let d be a degree. A structure A with computable domain is d-

computable if the atomic diagram of (A, a)a∈|A| is d-computable. The degree of A, de-

noted by deg(A), is the least degree d (which always exists) such that A is d-computable.

An isomorphism from a structure M to a (d-computable) structure with computable

domain is called a (d-computable) presentation of M. We often abuse terminology and

refer to the image of a (d-computable) presentation as a (d-computable) presentation.

In particular, when we refer to the degree of a presentation, we always mean the degree of

the image, rather than that of the isomorphism. If M has a d-computable presentation

then it is d-computably presentable.

A countable structure M is relatively computably categorical if any two presentations

M,M ′ of M are isomorphic via a (deg(M) ∨ deg(M ′))-computable isomorphism.

Every countable structure is isomorphic to a structure with computable domain.

Therefore, whenever we mention a countable structure we assume that it has computable

domain, so that it may be thought of as a presentation of itself.

1.17 Definition. The degree spectrum of a countable structure A, which is denoted by

DgSp(A), is the set of degrees of presentations of A.

As shown by Knight [26], in all nontrivial cases, the degree spectrum of a countable

structure is closed upwards.

1.18 Definition. A countable structure A is trivial if for some finite set S of elements

of |A|, every permutation of |A| that keeps the elements of S fixed is an automorphism

of A.

1.19 Theorem (Knight). If A is a nontrivial countable structure then DgSp(A) is

closed upwards.

Trivial structures are not very interesting from the point of view of computable model

theory, and obviously cannot occur within certain classes of structures, such as rings of

characteristic 0. Thus we will restrict our attention to nontrivial structures.

Any set that is computable in every nonzero degree is in fact computable, but as

shown independently by Slaman [39] and Wehner [41], the analogous fact is not true of

structures.

1.20 Theorem (Slaman; Wehner). There is a structure A that has presentations of

every degree except 0. (In other words, DgSp(A) = D − {0}, where D is the set of all

degrees.)
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In the original proofs of Theorems 1.8–1.11, 1.13, and 1.14, the structures in question

were directed graphs, and the relations mentioned in Theorems 1.8–1.11 were unary.

The structures in the proofs of Theorem 1.20 had more complicated signatures, but

could easily be modified to be directed graphs (for instance, by the method outlined

in Appendix A). It is natural to ask, in the spirit of what was done for structures of

finite computable dimension, for which theories these theorems remain true if we require

that A be a model of the given theory. Our main result gives a partial answer to this

question.

The following condition on a theory T is clearly sufficient for the theorems mentioned

in the previous paragraph, as well as other similar results, to remain true when we restrict

our attention to models of T .

1.21 Definition. A theory T is complete with respect to degree spectra of nontrivial

structures, effective dimensions, expansion by constants, and degree spectra of relations

if for every nontrivial countable graph G there is a nontrivial A � T with the following

properties.

1. DgSp(A) = DgSp(G).

2. If G is computably presentable then the following hold.

(a) For any degree d, A has the same d-computable dimension as G.

(b) If x ∈ |G| then there exists an a ∈ |A| such that (A, a) has the same com-

putable dimension as (G, x).

(c) If S ⊆ |G| then there exists a U ⊆ |A| such that DgSpA(U) = DgSpG(S) and

if S is intrinsically c.e. then so is U .

The terminology adopted in Definition 1.21 suggests that a theory satisfying this

definition should still satisfy it if “every nontrivial countable graph G” is replaced by

“every nontrivial countable structure G”. This is indeed the case, since it is not hard

to code a countable structure into a countable graph in a highly effective way. We give

such a coding in Appendix A.

We can now state our main result.

1.22 Theorem. Let T be any of the following theories: symmetric, irreflexive graphs;

partial orderings; lattices; rings (with zero-divisors); integral domains of arbitrary char-

acteristic; commutative semigroups; and 2-step nilpotent groups. Then T is complete
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with respect to degree spectra of nontrivial structures, effective dimensions, expansion by

constants, and degree spectra of relations. In particular, Theorems 1.8–1.11, 1.13–1.15,

and 1.20 remain true if we require that A � T . Furthermore, Theorems 1.8–1.11 remain

true if we also require that U be a submodel of A.

Notice that, by Theorem 1.3, this result cannot be extended from partial orderings

to linear orderings, from lattices to Boolean algebras, or from commutative semigroups

and 2-step nilpotent groups to Abelian groups. A natural open question is what is the

situation for fields. It is not even known whether there exist fields of finite computable

dimension greater than 1. Of course, some of the theorems mentioned in our main result

do not involve finite computable dimension, and thus could in principle still hold for some

of the classes mentioned in Theorem 1.3. For instance, in the case of linear orderings,

Hirschfeldt [17] has shown that Theorem 1.8 does not hold, but whether Theorem 1.20

holds is still an open question (see [5] for a discussion of this question).

The rest of this paper is dedicated to the proof of Theorem 1.22. Most of the cases are

handled by coding graphs with the desired properties into models of the given theories

in a way that is effective enough to preserve these properties. This approach is much

simpler and more general than attempting to adapt the original proofs of the relevant

theorems. Furthermore, our codings are sufficiently effective to make similar results

that might be proved for graphs in the future carry over to the classes of structures

mentioned in Theorem 1.22 without additional work.

As mentioned above, our results fit into a framework that has become importan-

t in several areas of mathematical logic and theoretical computer science, namely the

study of dichotomies between structure theory, represented here by results such as The-

orem 1.3, and nonstructure theorems, the latter often proved by coding structures that

are known to be “as complicated as possible” into the particular structures being stud-

ied. In model theory, interpretations of various kinds have long been used to transfer

model-theoretic properties from classes of structures in which they are easy to deter-

mine to other classes in which they are less obvious. One example is Mekler [31]. In

descriptive set theory, the study of Borel reducibilities and Borel completeness has re-

ceived much attention in recent years, for example in Friedman and Stanley [7], Hjorth

and Kechris [20], and Camerlo and Gao [3]. A recent survey is Kechris [22]. Another

example of the use of codings to show that certain phenomena that can occur in general

already occur in what would seem to be a much more restricted setting is the work of

Peretyat’kin [35] on finitely axiomatizable theories, which touches on both classical and
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computable model theory. Probably best-known of all, of course, is the use of highly

effective reducibilities in complexity theory to show that certain problems are complete

for various complexity classes, which is modeled on the use of reducibilities to prove

index set results in computability theory.

In all the examples mentioned above, uncovering the correct notions of reducibility

is essential. In Sections 2 and 4, we present sufficient conditions for a coding of a graph

into a structure to be effective enough for our purposes. These conditions will be useful

in all cases except that of nilpotent groups, in which, instead of coding graphs, we code

rings into nilpotent groups. Even in this case, the properties of the coding that must be

verified are very similar to those in our general conditions.

Section 3 deals with undirected graphs, partial orderings, and lattices, Section 4 with

rings, Section 5 with integral domains and commutative semigroups, and Section 6 with

2-step nilpotent groups.

2 A Sufficient Condition

In this section, we give a sufficient condition for a coding of a graph into a structure to

be effective enough for our purposes. This condition is far from being the most general

one we could give, but it is sufficient for our needs. It corresponds to an especially

effective version of interpretations of theories (in the standard model-theoretic sense) in

which equality is interpreted as equality. In Section 4, we will present a generalization

of this condition which corresponds to interpretations in which equality is interpreted as

an equivalence relation. (See chapter 5 of [21] for more on interpretations of theories.)

We begin with a few definitions.

2.1 Definition. A relation U on a structure M is invariant if for every automorphism

f : M ∼= M we have f(U) = U .

2.2 Definition. Let d be a degree. A d-computable defining family for a structure M

is a d-computable set of existential formulas ϕ0(~a, x), ϕ1(~a, x), . . . such that ~a is a tuple

of elements of |M|, each x ∈ |M| satisfies some ϕi, and no two elements of |M| satisfy

the same ϕi.

Because we will be dealing with arbitrary presentations, rather than only computable

ones, we will need to consider the relativized version of the notion of intrinsic computabil-

ity.
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2.3 Definition. A relation U on the domain of a structure A is relatively intrinsically

computable if for every presentation f : A ∼= A, the image f(U) is computable in deg(A).

Now let G be a nontrivial, countable directed graph with edge relation E and let A

be a countable structure. Assume that there exist relatively intrinsically computable,

invariant relations D(x) and R(x, y) on the domain of A and a map G 7→ AG from the

set of presentations of G to the set of presentations of A with the following properties.

(We will use the notation D(AG) instead of DAG to emphasize that we think of D(AG)

as a subset of |AG|.)

(P0) For every presentation G of G, the structure AG is deg(G)-computable.

(P1) For every presentation G of G there is a deg(G)-computable map gG : D(AG)
1–1
−−→
onto

|G| such that RAG(x, y) ⇔ EG(gG(x), gG(y)) for every x, y ∈ D(AG).

(P2) If f : D(A)
1–1
−−→
onto

D(A) is such that R(x, y) ⇔ R(f(x), f(y)) then f can be

extended to an automorphism of A.

(P3) For every presentation G of G there exists a deg(G)-computable defining fam-

ily for (AG, b)b∈D(AG), that is, a deg(G)-computable set of existential formulas

ϕ0(~a,~b0, x), ϕ1(~a,~b1, x), . . . such that ~a is a tuple of elements of |AG|, each ~bi is a

tuple of elements of D(AG), each x ∈ |AG| satisfies some ϕi, and no two elements

of |AG| satisfy the same ϕi.

We wish to show that the following hold.

1. DgSp(A) = DgSp(G).

2. If G is computably presentable then

(a) for any degree d, A has the same d-computable dimension as G;

(b) if x ∈ |G| then there exists an a ∈ D(A) such that (A, a) has the same

computable dimension as (G, x); and

(c) if S ⊆ |G| then there exists a U ⊆ D(A) such that DgSpA(U) = DgSpG(S)

and if S is intrinsically c.e. then so is U .

Remark. We will use condition (P3) only for computable presentations, but all our

examples below satisfy (P3) as stated, and this fact could be useful for future results.
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We begin with a series of lemmas.

2.4 Lemma. Let A and G be computable presentations of A and G, respectively, and

let f : A ∼= AG. Then f is deg(f � D(A))-computable.

Proof. It is enough to show that f−1 is deg(f � D(A))-computable. Given x ∈ |AG|,

find an i ∈ ω such that AG � ϕi(~a,~bi, x), where ϕi(~a,~bi, x) is as in (P3). By definition,

x is the only element of |AG| that satisfies ϕi. Thus there exists a unique y ∈ |A| such

that A � ϕi(f
−1(~a), f−1(~bi), y), and f−1(x) = y. Since both AG and A are computable,

f−1 is deg(f � D(A))-computable.

2.5 Lemma. Let A and G be computable presentations of A and G, respectively. Suppose

that there exists a map f : D(A)
1–1

−−→
onto

D(AG) such that RA(x, y) ⇔ RAG(f(x), f(y))

for each x, y ∈ D(A). Then f can be extended to a deg(f)-computable isomorphism

f̂ : A ∼= AG.

Proof. Since A and AG are both presentations of A, there exists an isomorphism h : A ∼=

AG. Let k = h � D(A). Then c = f◦k−1 is a one-to-one map from D(AG) onto itself such

that RAG(x, y) ⇔ RAG(c(x), c(y)) for each x, y ∈ D(AG). So, by (P2), c can be extended

to ĉ : AG
∼= AG. Now let f̂ = ĉ ◦ h. Then f̂ : A ∼= AG and f̂ � D(A) = f ◦ k−1 ◦ k = f .

Lemma 2.4 implies that f̂ is deg(f)-computable.

2.6 Lemma. If G and G′ are computable presentations of G and h : G ∼= G′ is an

isomorphism then there exists a deg(h)-computable isomorphism f̂ : AG
∼= AG′ such

that f̂ � D(AG) = g−1
G′ ◦ h ◦ gG.

Proof. Let f : D(AG)
1–1
−−→
onto

D(AG′) be defined by f = g−1
G′ ◦ h ◦ gG. Clearly, f

is deg(h)-computable. Furthermore, for each x, y ∈ D(AG) we have RAG(x, y) ⇔

EG(gG(x), gG(y)) ⇔ EG′

((h ◦ gG)(x), (h ◦ gG)(y)) ⇔ RAG′ (f(x), f(y)). So, by Lem-

ma 2.5, there exists a deg(h)-computable isomorphism f̂ : AG
∼= AG′ extending f .

For any presentation A of A, let G̃A be the graph whose domain is D(A), with an

edge between x and y if and only if RA(x, y). Clearly, there exist a deg(A)-computable

map hA and a deg(A)-computable graph GA such that hA : G̃A → GA is a deg(A)-

computable presentation of G̃A. If A is computable then we take GA = G̃A and let

hA be the identity. In any case, it is easy to check that GA is a deg(A)-computable

presentation of G.
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2.7 Lemma. If A and A′ are computable presentations of A and f : A ∼= A′ is an

isomorphism then f � D(A) is a deg(f)-computable isomorphism from GA to GA′.

Proof. We have EGA(x, y) ⇔ RA(x, y) ⇔ RA′

(f(x), f(y)) ⇔ EGA′ (f(x), f(y)). Since

|GA| = D(A) and |GA′ | = D(A′), it follows that f � D(A) is an isomorphism from GA

to GA′ .

2.8 Lemma. If G is a computable presentation of G then gG is a computable isomor-

phism from GAG
to G.

Proof. If x, y ∈ |GAG
| then EGAG (x, y) ⇔ RAG(x, y) ⇔ EG(gG(x), gG(y)). Thus gG is a

computable isomorphism from GAG
to G.

2.9 Lemma. If A is a computable presentation of A then there exists a computable

isomorphism f : A ∼= AGA
such that f � D(A) = g−1

GA
◦ hA.

Proof. The map g−1
GA

◦ hA is computable, and for each x, y ∈ D(A) we have RA(x, y) ⇔

EGA(x, y) ⇔ RAGA ((g−1
GA

◦ hA)(x), (g−1
GA

◦ hA)(y)). So, by Lemma 2.5, g−1
GA

◦ hA can be

extended to a computable isomorphism from A to AGA
.

We are now ready to show that 1 and 2.a–c above hold.

2.10 Proposition. DgSp(A) = DgSp(G).

Proof. First note that, since G is nontrivial, (P1) implies that A is nontrivial. For any

presentation G of G, (P0) implies that deg(AG) 6 deg(G), so, by Theorem 1.19, there

is a presentation A of A such that deg(A) = deg(G). Thus DgSp(G) ⊆ DgSp(A).

On the other hand, for any presentation A of A, it follows from the definition of GA

that deg(GA) 6 deg(A), so, by Theorem 1.19, there is a presentation G of G such that

deg(G) = deg(A). Thus DgSp(A) ⊆ DgSp(G).

Now assume that G is computably presentable.

2.11 Proposition. For any degree d, A has the same d-computable dimension as G.

Proof. Let G and G′ be computable presentations of G that are not d-computably

isomorphic. By Lemma 2.8, GAG
and GAG′

are not d-computably isomorphic. Thus,

by Lemma 2.7, AG and AG′ are not d-computably isomorphic. So the d-computable

dimension of A is greater than or equal to that of G.
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Now let A and A′ be computable presentations of A that are not computably i-

somorphic. By Lemma 2.9, AGA
and AGA′

are not d-computably isomorphic. Thus,

by Lemma 2.6, GA and GA′ are not d-computably isomorphic. So the d-computable

dimension of G is greater than or equal to that of A.

2.12 Proposition. Let x ∈ |G|. There exists an a ∈ D(A) such that (A, a) has the

same computable dimension as (G, x).

Proof. Let f : G ∼= G be a computable presentation of G, let h : A ∼= AG be an

isomorphism, and let a = (h−1 ◦ g−1
G ◦ f)(x). By Lemma 2.6, for every computable

presentation f ′ : G ∼= G′ of G there exists an isomorphism k : A ∼= AG′ such that

a = (k−1 ◦ g−1
G′ ◦ f ′)(x). The rest of the proof is similar to the proof of Proposition 2.11.

Let (G, xG) and (G′, xG′

) be computable presentations of (G, x) that are not com-

putably isomorphic. By Lemma 2.8, (GAG
, g−1

G (xG)) and (GAG′
, g−1

G′ (xG′

)) are not com-

putably isomorphic. Thus, by Lemma 2.7, (AG, g−1
G (xG)) and (AG′ , g−1

G′ (xG′

)) are not

computably isomorphic. So the computable dimension of (A, a) is greater than or equal

to that of (G, x).

Now let (A, aA) and (A′, aA′

) be computable presentations of (A, a) that are not

computably isomorphic. By Lemma 2.9, (AGA
, g−1

GA
(aA)) and (AGA′

, g−1
GA′

(aA′

)) are not

computably isomorphic. Thus, by Lemma 2.6, (GA, aA) and (GA′ , aA′

) are not com-

putably isomorphic. So the computable dimension of (G, x) is greater than or equal to

that of (A, a).

2.13 Proposition. Let S ⊆ |G|. There exists a U ⊆ D(A) such that DgSpA(U) =

DgSpG(S) and if S is intrinsically c.e. then so is U .

Proof. Let f : G ∼= G be a computable presentation of G, let h : A ∼= AG be an

isomorphism, and let U = (h−1 ◦ g−1
G ◦ f)(S).

Let f ′ : G ∼= G′ be a computable presentation of G. By Lemma 2.6, there exists an

isomorphism k : A ∼= AG′ such that U = (k−1 ◦ g−1
G′ ◦ f ′)(S). Since gG′ is computable,

deg(f ′(S)) = deg(k(U)) ∈ DgSpA(U). So DgSpG(S) ⊆ DgSpA(U).

Now let k : A ∼= A be a computable presentation of A. We claim that there exists

an isomorphism m : G ∼= GA such that S = (m−1 ◦ k)(U). Indeed, let f , G, and h

be as above. Then S = (f−1 ◦ gG ◦ h)(U), so if we let m = k ◦ h−1 ◦ g−1
G ◦ f then

(m−1 ◦ k)(U) = (f−1 ◦ gG ◦ h ◦ k−1 ◦ k)(U) = (f−1 ◦ gG ◦ h)(U) = S. Furthermore,

it is not hard to check that m : G ∼= GA. This establishes our claim, which implies

14



that deg(k(U)) = deg(m(S)) ∈ DgSpG(S) and that if m(S) is c.e. then so is k(U). So

DgSpA(U) ⊆ DgSpG(S), and if S is intrinsically c.e. then so is U .

We conclude from the previous four propositions that, given a theory T , if for every

nontrivial, countable directed graph G we can find A � T and relations D and R

satisfying properties (P0)–(P3), then T is complete with respect to degree spectra of

nontrivial structures, effective dimensions, expansion by constants, and degree spectra

of relations. But it is not actually necessary that we be able to code every nontrivial

countable graph into a model of T , as long as we can code enough such graphs.

2.14 Proposition. Let T be a theory and let C be a theory of directed graphs that

is complete with respect to degree spectra of nontrivial structures, effective dimensions,

expansion by constants, and degree spectra of relations. If for every nontrivial countable

G � C we can find A � T and relatively intrinsically computable, invariant relations D

and R satisfying properties (P0)–(P3) then T is complete with respect to degree spectra

of nontrivial structures, effective dimensions, expansion by constants, and degree spectra

of relations.

3 Simple Codings

Coding symmetric, irreflexive graphs into structures is usually easier than coding ar-

bitrary directed graphs. Thus we begin this section by showing that the theory of

symmetric, irreflexive graphs is complete with respect to degree spectra of nontrivial

structures, effective dimensions, expansion by constants, and degree spectra of relation-

s. We then show how to apply this result to partial orderings and lattices.

3.1 Undirected Graphs

Let G be a countably infinite directed graph with edge relation E. The deg(G)-

computably presentable symmetric, irreflexive graph HG = (|HG|, F ) is defined as fol-

lows. (Recall that it makes sense to talk of deg(G) because we think of any countable

structure as a presentation of itself.)

1. |HG| = {a, â, b} ∪ {ci, di, ei : i ∈ |G|}.

2. F (x, y) holds only in the following cases.
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(a) F (a, â) and F (â, a).

(b) For all i ∈ |G|,

i. F (a, ci) and F (ci, a),

ii. F (b, ei) and F (ei, b),

iii. F (ci, di) and F (di, ci),

iv. F (di, ei) and F (ei, di).

(c) If E(i, j) then F (ci, ej) and F (ej, ci).

As an example, Figure 1 shows a portion of the graph HG in the case in which

E(0, 1), E(1, 0), E(1, 2), E(2, 2), ¬E(0, 0), ¬E(0, 2), ¬E(1, 1), ¬E(2, 0), and ¬E(2, 1).

On the left is HG itself; on the right is a picture highlighting the edges (and missing

edges) that are used to code E: edges that code positive facts about E are pictured as

solid lines, missing edges that code negative facts about E are pictured as dotted lines,

and all other edges are pictured as dashed lines.
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Figure 1: A portion of HG

Let a, â, b, and ci be as in the definition of HG and define

D(x) = {x ∈ |HG| : x 6= â ∧ F (a, x)} = {ci : i ∈ |G|}

and

R(x, y) = {(x, y) : D(x) ∧ D(y) ∧ ∃d, e(F (b, e) ∧ F (y, d) ∧ F (d, e) ∧ F (x, e))}.
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Clearly, D is relatively intrinsically computable, and so is R, since, for x, y ∈ D(HG),

∃d, e(F (b, e) ∧ F (y, d) ∧ F (d, e) ∧ F (x, e)) ⇔

¬∃d, e(F (b, e) ∧ F (y, d) ∧ F (d, e) ∧ ¬F (x, e)).

To see that D and R are invariant, it is enough to notice that x = a is the only element

of HG that satisfies the formula

∃∞y(F (x, y)) ∧ ∃z(F (x, z) ∧ ∀w(F (w, z) → w = x)),

x = â is the only element of HG that satisfies

F (x, a) ∧ ∀y(F (x, y) → y = a),

and x = b is the only element of HG that satisfies

∃∞y(F (x, y)) ∧ ¬F (a, x) ∧ ¬∃z(F (a, z) ∧ F (x, z)).

Fix a deg(G)-computable presentation of HG for which the map gG : ci 7→ i is

deg(G)-computable and identify HG with this presentation.

Let G′ be a presentation of G. The deg(G′)-computable symmetric, irreflexive graph

HG′ and the deg(G′)-computable map gG′ are defined in an analogous way.

Clearly, HG′
∼= HG, so HG′ is a deg(G′)-computable presentation of HG. Further-

more, it is easy to check that D(HG′) = dom(gG′) and RHG′ (x, y) ⇔ EG′

(gG′(x), gG′(y)).

If f : D(HG)
1–1
−−→
onto

D(HG) is such that R(x, y) ⇔ R(f(x), f(y)) then we can extend

f as follows. Let a, â, b, di, and ei be as in the definition of HG. Let f(a) = a, f(â) = â,

f(b) = b, f(di) = d(gG◦f)(ci), and f(ei) = e(gG◦f)(ci). It can be easily verified that this

extended map is an automorphism of HG.

Finally, let a, â, and b be as in the definition of HG and consider the deg(G)-

computable set of formulas

{x = a, x = â, x = b} ∪ {x = c : c ∈ D(HG)}∪

{x 6= a ∧ F (c, x) ∧ ¬F (b, x) : c ∈ D(HG)}∪

{F (b, x) ∧ ∃d(F (c, d) ∧ F (d, x)) : c ∈ D(HG)}.

Clearly, every x ∈ |HG| satisfies some formula in this set, with no two elements satisfying

the same formula, so this set is a deg(G)-computable defining family for (HG, z)z∈D(HG).
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For any presentation G′ of G, a deg(G′)-computable defining family for (HG′ , z)z∈D(HG′ )

can be defined in an analogous way.

Theorem 1.22 in the case of symmetric, irreflexive graphs now follows from Proposi-

tion 2.14.

3.1 Theorem. The theory of symmetric, irreflexive graphs is complete with respect

to degree spectra of nontrivial structures, effective dimensions, expansion by constants,

and degree spectra of relations. In particular, Theorems 1.8–1.11, 1.13–1.15, and 1.20

remain true if we require that A be a symmetric, irreflexive graph.

Thus we may take the theory C in Proposition 2.14 to be the theory of symmetric,

irreflexive graphs.

3.2 Partial Orderings

Let G be a symmetric, irreflexive, countably infinite computable graph with edge relation

E. The deg(G)-computably presentable partial ordering PG = (|PG|,≺) is defined as

follows.

1. |PG| = {a, b} ∪ {ci : i ∈ |G|} ∪ {di,j : i < j ∧ i, j ∈ |G|}.

2. The relation ≺ is the smallest transitive relation on |PG| satisfying the following

conditions.

(a) a ≺ ci ≺ b for all i ∈ |G|.

(b) If i < j and E(i, j) then di,j ≺ ci, cj.

(c) If i, j ∈ |G|, i < j, and ¬E(i, j), then ci, cj ≺ di,j .

As an example, Figure 2 shows a portion of the partial ordering PG in the case in

which E(0, 1), E(1, 2), and ¬E(0, 2). An arrow from x to y represents the fact that

x ≺ y. The solid arrows represent facts used to code E.

Let a, b, and ci be as in the definition of PG and define

D(x) = {x ∈ |PG| : a ≺ x ≺ b} = {ci : i ∈ |G|}

and

R(x, y) = {(x, y) : x 6= y ∧ D(x) ∧ D(y) ∧ ∃z 6= a(z ≺ x, y)}.
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Figure 2: A portion of PG

Clearly, D is relatively intrinsically computable and invariant, and so is R, since

∃z 6= a(z ≺ x, y) ⇔ ¬∃z 6= b(x, y ≺ z).

(Invariance follows from the fact that a is the only element of PG with infinitely many

elements above it and b is the only element of PG with infinitely many elements below

it.)

Fix a deg(G)-computable presentation of PG for which the map gG : ci 7→ i is

deg(G)-computable and identify PG with this presentation.

Let G′ be a presentation of G. The deg(G′)-computable partial ordering PG′ and the

deg(G′)-computable map gG′ are defined in an analogous way.

Clearly, PG′
∼= PG, so PG′ is a deg(G′)-computable presentation of PG. Furthermore,

it is easy to check that D(PG′) = dom(gG′) and RPG′ (x, y) ⇔ EG′

(gG′(x), gG′(y)).

If f : D(PG)
1–1
−−→
onto

D(PG) is such that R(x, y) ⇔ R(f(x), f(y)) then we can extend f

as follows. Let a, b, and di,j be as in the definition of PG. Let f(a) = a, f(b) = b, and

f(di,j) =





d(gG◦f)(ci),(gG◦f)(cj) if (gG ◦ f)(ci) < (gG ◦ f)(cj),

d(gG◦f)(cj),(gG◦f)(ci) otherwise.

It can be easily verified that this extended map is an automorphism of PG.

Finally, let a and b be as in the definition of PG and consider the deg(G)-computable

set of formulas

{x = a, x = b} ∪ {x = c : c ∈ D(PG)}∪

{((x ≺ c, c′) ∨ (c, c′ ≺ x)) ∧ x 6= a ∧ x 6= b : c 6= c′ ∧ c, c′ ∈ D(PG)}.

Clearly, every x ∈ |PG′ | satisfies some formula in this set, with no two elements satisfying

the same formula, so this set is a deg(G)-computable defining family for (PG, z)z∈D(PG).
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For any presentation G′ of G, a deg(G′)-computable defining family for (PG′ , z)z∈D(PG′ )

can be defined in an analogous way.

Theorem 1.22 in the case of partial orderings now follows from Proposition 2.14, with

the theory C mentioned in that proposition being the theory of symmetric, irreflexive

graphs.

3.2 Theorem. The theory of partial orderings is complete with respect to degree spectra

of nontrivial structures, effective dimensions, expansion by constants, and degree spectra

of relations. In particular, Theorems 1.8–1.11, 1.13–1.15, and 1.20 remain true if we

require that A be a partial ordering.

3.3 Lattices

Let G be a symmetric, irreflexive, countably infinite graph with edge relation E. We may

assume that G has at least one node that is not connected to any other node, since the

theory of graphs with this property is clearly complete with respect to degree spectra of

nontrivial structures, effective dimensions, expansion by constants, and degree spectra

of relations.

The deg(G)-computably presentable lattice LG = (|LG|, f, g) is the unique lattice

satisfying the following conditions.

1. |LG| = {a, b, k} ∪ {ci,mi : i ∈ |G|} ∪ {di,j : i < j ∧ E(i, j)}.

2. For all x, y ∈ |LG|, if x 6= y then x g y = a and x f y = b, except as required to

satisfy the following conditions.

(a) If i < j and E(i, j) then ci g cj = di,j .

(b) If i ∈ |G| then k g ci = mi.

As an example, Figure 3 shows a portion of the lattice LG in the case in which

E(0, 1), E(1, 2), and ¬E(0, 2). To simplify the picture, we omit the top element a and

the bottom element b of the lattice. The coding of E is done on the left side of the

picture, where d0,1 and d1,2 are.

Remark. It is interesting to note that LG has height 4. Clearly, any lattice of height less

than 4 is relatively computably categorical.
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Figure 3: A portion of LG

Let a, b, k, and ci be as in the definition of LG and define

D(x) = {x ∈ |LG| : (k g x 6= a) ∧ (k g x 6= x)} = {ci : i ∈ |G|}

and

R(x, y) = {(x, y) : (x 6= y) ∧ D(x) ∧ D(y) ∧ (x g y 6= a)}.

Clearly, D and R are relatively intrinsically computable. To see that they are also

invariant, it is enough to notice that, because of our assumption that G has an isolated

node, k is the only element of LG whose join with any level-2 element of LG is not a.

Fix a deg(G)-computable presentation of LG for which the map gG : ci 7→ i is

deg(G)-computable and identify LG with this presentation.

Let G′ be a presentation of G. The deg(G′)-computable lattice LG′ and the deg(G′)-

computable map gG′ are defined in an analogous way.

Clearly, LG′
∼= LG, so LG′ is a deg(G′)-computable presentation of LG. Furthermore,

it is easy to check that D(LG′) = dom(gG′) and RLG′ (x, y) ⇔ EG′

(gG′(x), gG′(y)).

If f : D(LG)
1–1
−−→
onto

D(LG) is such that R(x, y) ⇔ R(f(x), f(y)) then we can extend f

as follows. Let a, b, k, mi, and di,j be as in the definition of LG. Let f(a) = a, f(b) = b,

f(k) = k, f(mi) = m(gG◦f)(ci), and

f(di,j) =





d(gG◦f)(ci),(gG◦f)(cj) if (gG ◦ f)(ci) < (gG ◦ f)(cj),

d(gG◦f)(cj),(gG◦f)(ci) otherwise.

It can be easily verified that this extended map is an automorphism of LG.

Finally, let a, b, and k be as in the definition of LG and consider the deg(G)-

computable set of formulas

{x = a, x = b, x = k} ∪ {x = c : c ∈ D(LG)}∪

{c g c′ = x : (c, c′) ∈ RLG} ∪ {k g c = x : c ∈ D(LG)}.
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Clearly, every x ∈ |LG| satisfies some formula in this set, with no two elements satisfying

the same formula, so this set is a deg(G)-computable defining family for (LG, z)z∈D(LG).

For any presentation G′ of G, a deg(G′)-computable defining family for (LG′ , z)z∈D(LG′ )

can be defined in an analogous way.

Since, for any computable presentation L of LG, the sublattice of L generated by

any subset S of D(L) has the same degree as S, and is c.e. if S is c.e., Theorem 1.22

in the case of lattices now follows from Proposition 2.14, with the theory C mentioned

in that proposition being the theory of symmetric, irreflexive graphs with at least one

isolated node.

3.3 Theorem. The theory of lattices is complete with respect to degree spectra of non-

trivial structures, effective dimensions, expansion by constants, and degree spectra of

relations. In particular, Theorems 1.8–1.11, 1.13–1.15, and 1.20 remain true if we re-

quire that A be a lattice. Furthermore, Theorems 1.8–1.11 remain true if we also require

that U be a sublattice of A.

4 A Weaker Sufficient Condition and Its Applica-

tion to Rings

In this section we give a strengthening of Proposition 2.14 which will be used in the

next section, as well as an example of its application to rings. If Q is an equivalence

relation on a set D then by a set of Q-representatives we mean a set of elements of D

containing exactly one member of each Q-equivalence class.

4.1 Proposition. Let T be a theory and let C be a theory of directed graphs that is

complete with respect to degree spectra of nontrivial structures, effective dimensions, ex-

pansion by constants, and degree spectra of relations. Suppose that for every nontrivial

countable G � C we can find an A � T ; relatively intrinsically computable, invari-

ant relations D(x), Q(x, y), and R(x, y) on |A|; and a map G 7→ AG from the set of

presentations of G to the set of presentations of A with the following properties.

(P0) For every presentation G of G, the structure AG is deg(G)-computable.

(P1 ′) For every presentation G of G there is a deg(G)-computable map gG : D(AG)
onto

−−→

|G| such that, for all x, y ∈ D(AG), we have RAG(x, y) ⇔ EG(gG(x), gG(y)) and
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QAG(x, y) ⇔ (gG(x) = gG(y)). (Note that this implies that Q is an equivalence

relation and that if Q(x, x′) and Q(y, y′) then R(x, y) ⇔ R(x′, y′).)

(P2 ′) For every pair S, S ′ of sets of Q-representatives, if f : S
1–1

−−→
onto

S ′ is such that

R(x, y) ⇔ R(f(x), f(y)) for every x, y ∈ S then f can be extended to an auto-

morphism of A.

(P3 ′) If G is a presentation of G and S is a deg(G)-computable set of QAG-represen-

tatives then there exists a deg(G)-computable defining family for (AG, a)a∈S.

Then T is complete with respect to degree spectra of nontrivial structures, effective di-

mensions, expansion by constants, and degree spectra of relations. Furthermore, in each

of Theorems 1.8–1.11 with the extra requirement that A � T , the relation U can be

chosen so that U ⊆ D(A) and Q(x, y) ⇒ (U(x) ⇔ U(y)).

Proof. It is enough to show that if the nontrivial countable graph G � C and the model

A � T satisfy (P0) and (P1′)–(P3′) then Propositions 2.10–2.13 hold of G and A and,

in Proposition 2.13, U can be chosen so that Q(x, y) ⇒ (U(x) ⇔ U(y)). The argument

is similar to what was done in Section 2, so we present only the necessary changes. We

begin with two remarks.

4.2 Remark. If G is a presentation of G and S is a set of QAG-representatives then

gG � S is one-to-one.

4.3 Remark. If S and S ′ are sets of Q-representatives and f : S
1–1
−−→
onto

S ′ is such that

Q(x, f(x)) for every x ∈ S then (P1′) implies that R(x, y) ⇔ R(f(x), f(y)) for every

x, y ∈ S, so that, by (P2′), f can be extended to an automorphism of A.

We now need new versions of Lemmas 2.4 and 2.5.

4.4 Lemma. Let A and G be computable presentations of A and G, respectively, let S

be a computable set of QA-representatives, and let f : A ∼= AG. Then f is deg(f � S)-

computable.

4.5 Lemma. Let A and G be computable presentations of A and G, respectively. Let

S be a computable set of QA-representatives and let S ′ be a computable set of QAG-

representatives. Suppose that there exists a map f : S
1–1

−−→
onto

S ′ such that RA(x, y) ⇔

RAG(f(x), f(y)) for each x, y ∈ S. Then f can be extended to a deg(f)-computable

isomorphism f̂ : A ∼= AG.
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The proof of Lemma 4.4 is the same as that of Lemma 2.4, using (P3′) in place of

(P3). The proof of Lemma 4.5 is essentially the same as that of Lemma 2.5, with D(A)

replaced by S and D(AG) by S ′, and using (P2′) in place of (P2) and Lemma 4.4 in place

of Lemma 2.4. The only other change is that the isomorphism h : A ∼= AG must be such

that h(S) = S ′. The existence of such an isomorphism is an immediate consequence of

Remark 4.3.

We now need a few definitions. Let A be a presentation of A. Let

D̂(A) = {x ∈ D(A) : y < x ⇒ ¬QA(x, y)},

where < is the natural ordering on ω. Notice that D̂(A) is a deg(A)-computable set of

QA-representatives. Let G̃A be the graph whose domain is D̂(A), with an edge between

x and y if and only if RA(x, y). Clearly, there exist a deg(A)-computable map hA

and a deg(A)-computable graph GA such that hA : G̃A → GA is a deg(A)-computable

presentation of G̃A. If A is computable then we take GA = G̃A and let hA be the identity.

For any presentation G of G, let ĝG = gG � D̂(AG). Note that, by Remark 4.2, ĝG is

one-to-one and hence invertible.

The following are the new versions of Lemmas 2.6–2.9.

4.6 Lemma. If G and G′ are computable presentations of G and h : G ∼= G′ is an

isomorphism then there exists a deg(h)-computable isomorphism f̂ : AG
∼= AG′ such

that f̂ � D̂(AG) = ĝ−1
G′ ◦ h ◦ ĝG.

4.7 Lemma. If A and A′ are computable presentations of A and f : A ∼= A′ is an

isomorphism then there exists a map h : f(D̂(A))
1–1

−−→
onto

D̂(A′) such that h ◦ (f � D̂(A))

is a deg(f)-computable isomorphism from GA to GA′.

4.8 Lemma. If G is a computable presentation of G then ĝG is a computable isomor-

phism from GAG
to G.

4.9 Lemma. If A is a computable presentation of A then there exists a computable

isomorphism f : A ∼= AGA
such that f � D̂(A) = ĝ−1

GA
◦ hA.

In most cases, the proofs of these lemmas are essentially the same as those of the cor-

responding lemmas in Section 2, with a few obvious modifications. The only exception

is Lemma 4.7, which can be proved as follows. For x ∈ f(D̂(A)), let h(x) be the u-

nique y ∈ D̂(A′) such that QA′

(x, y). Then EGA(x, y) ⇔ RA(x, y) ⇔ RA′

(f(x), f(y)) ⇔

RA′

((h ◦ f)(x), (h ◦ f)(y)) ⇔ EGA′ ((h ◦ f)(x), (h ◦ f)(y)). Thus h ◦ (f � D̂(A)) is a

deg(f)-computable isomorphism from GA to GA′ .
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We can now prove Propositions 2.10–2.13 in much the same way as before, using

Lemmas 4.6–4.9 in place of Lemmas 2.6–2.9. The other necessary changes to the proofs

of these propositions are described below.

No other changes to the proofs of Propositions 2.10 and 2.11 are needed.

In establishing Proposition 2.12, the proof that the computable dimension of (A, a)

is at least the same as that of (G, x) is as before, with gG and gG′ replaced by ĝG and

ĝG′ , respectively.

For the other direction, if (B, aB) and (B′, aB′

) are computable presentations of

(A, a) that are not computably isomorphic then, by Lemma 4.5, there exist computable

presentations (A, aA) and (A′, aA′

) of (A, a) such that (A, aA) is computably isomorphic

to (B, aB), (A′, aA′

) is computably isomorphic to (B′, aB′

), aA ∈ D̂(A), and aA′

∈

D̂(A′). Now the proof proceeds as before, with gGA
and gGA′

replaced by ĝGA
and ĝGA′

,

respectively.

For the proof of Proposition 2.13, let f , G, and h be as in that proof and redefine

U = {x ∈ D : ∃y[Q(x, y)∧y ∈ (h−1◦ ĝ−1
G ◦f)(S)]}. Notice that this definition guarantees

that Q(x, y) ⇒ (U(x) ⇔ U(y)).

Now, by Lemma 4.6, for every computable presentation f ′ : G ∼= G′ of G there exists

an isomorphism k : A ∼= AG′ such that

k(U) = {x ∈ D(AG′) : ∃y[QAG′ (x, y) ∧ y ∈ (ĝ−1
G′ ◦ f ′)(S)]} =

{x ∈ D(AG′) : ¬∃y[QAG′ (x, y) ∧ y ∈ (ĝ−1
G′ ◦ f ′)(|G| − S)]},

which implies that DgSpG(S) ⊆ DgSpA(U).

On the other hand, for every computable presentation k : A ∼= A of A, Remark 4.3

implies that there exists an automorphism p : A ∼= A such that (p ◦ h−1)(D̂(AG)) =

k−1(D̂(A)). It is not hard to check that m = k◦p◦h−1◦ ĝ−1
G ◦f is an isomorphism from G

to GA, and that m(S) = k(U � k−1(D̂(A))). This implies that DgSpA(U) ⊆ DgSpG(S)

and that if S is intrinsically c.e. then so is U .

We now give a relatively simple example of the application of Proposition 4.1 to

rings, via a coding based on one due to Rabin and Scott [36].

Let G be a symmetric, irreflexive, countably infinite graph with edge relation E. We

may assume that there exist x, y, z ∈ G such that E(x, y), E(x, z), and E(y, z), since the

theory of graphs with this property is clearly complete with respect to degree spectra of

nontrivial structures, effective dimensions, expansion by constants, and degree spectra

of relations.
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To simplify our notation, we will assume without loss of generality that |G| = ω.

(We can do this because every infinite d-computable structure is computably isomorphic

to a d-computable structure with domain ω.) The deg(G)-computably presentable ring

AG is defined as follows.

1. AG is generated by elements a, b, d, e, and ci, i ∈ ω.

2. Multiplication is commutative.

3. AG has characteristic 0.

4. a2 = b2 = ab = ad = bd = ae = be = 0, e2 = a, and de = d3 = b.

5. For all i ∈ ω, c2
i = a, aci = bci = dci = 0, and eci = b.

6. For all i, j ∈ ω, if E(i, j) then cicj = b. (Notice that if E(i, j) then i 6= j.)

7. For all i, j ∈ ω, if i 6= j and ¬E(i, j) then cicj = 0.

It is easy to check that AG satisfies the ring axioms, using the fact that each of its

elements is of the form

n0 + n1a + n2b + n3d + n4d
2 + n5e +

p∑

i=0

ni+6ci, (4.1)

where p ∈ ω and n0, . . . , np+6 ∈ Z.

Let a, b, d, and e be as in the definition of AG and define

D(x) = {x ∈ |AG| : x2 = a ∧ dx = 0 ∧ ex = b},

R(x, y) = {(x, y) : D(x) ∧ D(y) ∧ xy = b},

and

Q(x, y) = {(x, y) : D(x) ∧ D(y) ∧ xy = a}.

Clearly, D, R, and Q are relatively intrinsically computable. We claim they are also

invariant. To see this, fix an automorphism f of AG. Let P = {x ∈ |AG| : x4 = 0} and

P 2 = {y ∈ |AG| : ∃x ∈ P (x2 = y)}.
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Let x be of the form (4.1). Since x4 is a sum of n4
0 and terms involving a, b, d, e, or

some ci, it follows that if x ∈ P then n0 = 0. Conversely, if n0 = 0 then

x2 =

(
n2

5 +

p∑

i=0

n2
i+6

)
a + 2

(
n3n4 + n3n5+

n5

p∑

i=0

ni+6 +

p∑

i=0

(
∑{

j 6 p : EG′

(i, j)
}

ni+6nj+6

))
b + n2

3d
2, (4.2)

and hence x4 = 0, so x ∈ P if and only if n0 = 0. It will be clear from this fact that all

the elements that we consider below are in P .

We will need to consider several elements with square equal to a. It follows easily

from (4.2) that these are all of one of the forms n1a+n2b+n4d
2±ci or n1a+n2b+n4d

2±e.

Note in particular that this means that if x2 = a then x3 = 0.

Equation (4.2) also shows that every element of P 2 is of the form ka + lb + md2,

where k,m ∈ ω and l ∈ Z. Furthermore, if x ∈ P then x3 = n3
3b, so f(b) = lb for some

l ∈ Z. This is only possible if l = ±1. Since every element of P 2 can be expressed as a

sum of nonnegative integer multiples of a and d2 and an integer multiple of b, and P 2 is

invariant, it follows that every element of P 2 can be expressed as a sum of nonnegative

integer multiples of f(a) and f(d2) and an integer multiple of f(b) = ±b. In particular,

a and d2 can be so expressed. This means that if we write f(a) = ka + lb + md2 then

k, m 6 1.

We will now show that f(a) = a. Let x be any element of the form (4.1) such that

x2 = f(a) = ka + lb + md2, where k,m 6 1. As mentioned above, for any y ∈ |AG|,

if y2 = a then y3 = 0, so it must be the case that x3 = 0. Now, k = n2
5 +

∑p

i=0 n2
i+6,

l = 2(n3n4 +n3n5 +n5

∑p

i=0 ni+6 +
∑p

i=0

∑
j6p:EG′

(i,j) ni+6nj+6), and m = n2
3. So if k = 0

then ni+6 = 0 for all i 6 p, which means that if at least one of l and m is nonzero then

n3 6= 0, and hence x3 6= 0. If k = 1 then either n5 = ±1 and ni+6 = 0 for all i 6 p; or

n5 = 0, ni+6 = ±1 for some i 6 m, and nj+6 = 0 for all j 6= i. Again, if at least one

of l and m is nonzero then n3 6= 0, and hence x3 6= 0. Since x3 = 0, this means that

l = m = 0, which implies that k = 1. In other words, f(a) = a.

We will now show that f(b) = b. Take i0, i1, and i2 such that E(i0, i1), E(i0, i2),

and E(i1, i2). For each j 6 2, the fact that c2
ij

= a implies that f(cij) is of one of the

forms nj,1a + nj,2b + nj,4d
2 + εjci′j

or nj,1a + nj,2b + nj,4d
2 + εje, where εj = ±1. The

second case cannot happen for two different j, k 6 2, since then f(cij)f(cik) = ±a 6=

±b = f(b) = f(cijcik). So we can assume without loss of generality that f(cij) is of the
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form nj,1a + nj,2b + nj,4d
2 + εjci′j

for j = 0, 1. Now, ci0ci1 = ci0ci2 = ci1ci2 , so we must

have f(ci0)f(ci1) = f(ci0)f(ci2) = f(ci1)f(ci2), which implies that ε0 = ε1 = ε2. This

means that f(b) = f(ci0)f(ci1) = ci′0
ci′1

. Since f(b) = ±b and ci′0
ci′1

6= −b, it follows that

f(b) = b.

We will now show that D, R, and Q are invariant. As in the case of a, if we write

f(d2) = ka + lb + md2 then k, m 6 1. But, since f(a) = a and f(b) = b, it follows that

k must equal 0, since otherwise we could not express d2 as a sum of nonnegative integer

multiples of f(a) and f(d2) and an integer multiple of f(b). This implies that m = 1.

If x2 = d2 + lb then x is of the form n1a + n2b ± d + n4d
2, so f(d) is of this form. But

f(d)3 = b, so f(d) is of the form n1a + n2b + d + n4d
2. From this fact it follows easily

that f(d)x = dx for all x ∈ |AG| such that x2 = a. Furthermore, e2 = a and de = b, so

f(e) must be of the form n1a+n2b+n4d
2 + e, from which it follows that f(e)x = ex for

all x ∈ |AG| such that x2 = a. This is enough to show that D, R, and Q are invariant.

Fix a deg(G)-computable presentation of AG for which the map gG that sends ma +

nb + ci to i, for each m,n ∈ Z and i ∈ ω, is deg(G)-computable, and identify AG with

this presentation.

Let G′ be a presentation of G. The deg(G′)-computable ring AG′ and the deg(G′)-

computable map gG′ are defined in an analogous way.

Clearly, AG′
∼= AG, so AG′ is a deg(G′)-computable presentation of AG. We claim

that D(AG′) = dom(gG′), RAG′ (x, y) ⇔ EG′

(gG′(x), gG′(y)), and QAG′ (x, y) ⇔ gG′(x) =

gG′(y).

To avoid notational confusion, we verify this claim for G; the proof for G′ is anal-

ogous. Let a, b, d, e, and ci be as in the definition of AG. It is easy to check that

dom(gG) ⊆ D(AG). Now let x ∈ D(AG). As mentioned above, the fact that x2 = a

implies that x is of one of the forms n1a + n2b + n4d
2 ± ci or n1a + n2b + n4d

2 ± e.

The second case cannot happen, because e(n1a + n2b + n4d
2 ± e) = ±e2 = ±a 6= b, so

x = n1a + n2b + n4d
2 ± ci. Since d(n1a + n2b + n4d

2 ± ci) = n4b, it follows that n4 = 0.

Since ex = b, it follows that x = n1a + n2b + ci. This shows that D(AG) = dom(gG).

Now suppose that x, y ∈ D(AG). Then, as we have seen in the previous paragraph,

for some i, j ∈ ω and m, n, m′, n′ ∈ Z, we have x = ma + nb + ci and y = m′a + n′ + cj,

and hence xy = cicj. Thus RAG(x, y) ⇔ xy = b ⇔ E(gG(x), gG(y)) and QAG(x, y) ⇔

xy = a ⇔ i = j ⇔ gG(x) = gG(y).

To apply Proposition 4.1, we are left with showing that properties (P2′) and (P3′)

in the statement of that proposition are satisfied.
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Let S and S ′ be sets of Q-representatives and let f : S
1–1
−−→
onto

S ′ be such that R(x, y) ⇔

R(f(x), f(y)). We can extend f as follows. Let a, b, d, e, and ci be as in the definition of

AG. Clearly, S = {m0a+n0b+c0,m1a+n1b+c1, . . .} for some m0, m1, . . . , n0, n1, . . . ∈ Z,

so given x ∈ |AG|, we have x = k0 + k1a + k2b + k3d + k4d
2 + k5e +

∑p

i=0 ki+6si for some

p ∈ ω, k0, . . . , kp+6 ∈ Z, and s0, . . . , sp ∈ S. Let

f(x) = k0 + k1a + k2b + k3d + k4d
2 + k5e +

p∑

i=0

ki+6f(si).

It can be easily verified that this extended map is an automorphism of AG.

Finally, given a deg(G)-computable set S of QAG-representatives, let a, b, d, and e

be as in the definition of AG and let t0, t1, . . . be a deg(G)-computable list of all terms

generated by applying addition and multiplication to a, b, d, e, 1, −1, and the elements

of S. Consider the deg(G)-computable set of formulas {x = ti : i ∈ ω}. Every x ∈ |AG|

satisfies some formula in this set, with no two elements satisfying the same formula, so

this set is a deg(G)-computable defining family for (AG, z)z∈D(AG). For any presentation

G′ of G, a deg(G′)-computable defining family for (AG′ , z)z∈D(AG′ ) can be defined in an

analogous way.

It is straightforward to check that, for any computable presentation A of AG, if U is

a subset of D(A) such that Q(x, y) ⇒ (U(x) ⇔ U(y)) then the subring of A generated

by U has the same degree as U , and is c.e. if U is c.e.. Thus Theorem 1.22 in the case

of rings of characteristic 0 follows from Proposition 4.1, with the theory C mentioned

in that proposition being the theory of symmetric, irreflexive graphs containing at least

one triangle.

4.10 Theorem. The theory of rings of characteristic 0 is complete with respect to degree

spectra of nontrivial structures, effective dimensions, expansion by constants, and degree

spectra of relations. In particular, Theorems 1.8–1.11, 1.13–1.15, and 1.20 remain true

if we require that A be a ring of characteristic 0. Furthermore, Theorems 1.8–1.11

remain true if we also require that U be a subring of A.

5 Integral Domains and Commutative Semigroups

In this section we present a coding of a graph into an integral domain inspired by

Kudinov’s coding [27] of a family of c.e. sets into an integral domain of characteristic 0,

and show how this leads to a proof of Theorem 1.22 in the case of integral domains of
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arbitrary characteristic. Because our coding will not make use of the additive structure

of the domain, we will simultaneously handle the case of commutative semigroups.

Let p be either 0 or a prime. We adopt the convention that Z0 = Z. If p = 0 then

let F = Q; otherwise, let F = Zp. Let I be the set of invertible elements of Zp. Note

that I is finite.

The graphs constructed in Subsection 3.1 have the following property: for every

finite set of nodes S there exist nodes x, y /∈ S that are connected by an edge. Thus the

theory of such graphs is complete with respect to degree spectra of nontrivial structures,

effective dimensions, expansion by constants, and degree spectra of relations.

Let G be a symmetric, irreflexive, countably infinite graph with edge relation E,

having the property mentioned in the previous paragraph. As in the previous section,

we assume without loss of generality that |G| = ω.

The deg(G)-computably presentable integral domain AG is defined to be

Zp [xi : i ∈ ω]

[
y

xixj

: E(i, j)

] [
z

xixj

: ¬E(i, j)

] [
y

xn
i

: i, n ∈ ω

]
.

Note that, since G is irreflexive, z
x2

i

is included as a generator for each i ∈ ω.

It is easy to see that AG is deg(G)-computably presentable. In fact, if we fix a

computable presentation P of the ring F(xi : i ∈ ω)[y, z] then AG has an obvious

deg(G)-computable presentation induced from that of P . (Just take as the domain of

this presentation a deg(G)-computable copy of the set of all elements of P that can be

generated from the generators of AG.) In what follows, we will identify AG with this

presentation. We will also assume that we have chosen P so that the map gG : axi 7→ i,

a ∈ I, is deg(G)-computable.

Let G′ be a presentation of G. The deg(G′)-computable integral domain AG′ and

the deg(G′)-computable map gG′ are defined in an analogous way. Clearly, AG′
∼= AG.

Let y and z be as in the definition of AG and define

D(x) = {x ∈ |AG| : x /∈ I ∧ ∃r(x2r = z)},

Q(x, x′) = {(x, ax) : D(x) ∧ a ∈ I},

and

R(x, x′) = {(x, x′) : D(x) ∧ D(x′) ∧ ¬Q(x, x′) ∧ ∃r(rxx′ = y)}.

We will show that D, Q, and R are relatively intrinsically computable and invariant,

and satisfy properties (P1′)–(P3′) in the statement of Proposition 4.1.
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Since AG is a subring of F(xi : i ∈ ω)[y, z], it makes sense to talk of the degree in

y or z (in the algebraic sense) of an element r of AG. We will denote these by degy(r)

and degz(r), respectively. Let

Gen = {±1} ∪ {xi : i ∈ ω} ∪

{
y

xixj

: E(i, j)

}
∪

{
z

xixj

: ¬E(i, j)

}
∪

{
y

xn
i

: i, n ∈ ω

}
.

It will be useful to think of elements of AG as sums of products of elements of Gen. (Of

course, such representations are not unique, but this will not matter for our purposes.)

Whenever we mention another ring B, such as Zp[xi,
1
xi

: i ∈ ω][y, z] or Zp[xi : i ∈ ω],

for example, we will think of AG as a subring of B or of B as a subring of AG, as

appropriate. The relationships between such rings should be clear. For instance, if

degy(r) = degz(r) = 0 then r can be expressed as a sum of products of the generators

xi, i ∈ ω, so that r is in the subring Zp[xi : i ∈ ω] of AG. In this case, it makes sense to

talk of the degree in xi of r, denoted by degxi
(r), for any i ∈ ω. We will make frequent

use of these and similar facts. One ring that will be mentioned often is

M = Zp

[
xi,

1

xi

: i ∈ ω

]
[y, z].

5.1 Lemma. The only invertible elements of AG are the elements of I.

Proof. If rs = 1 then degy(r) = degz(r) = 0, and hence r ∈ Zp[xi : i ∈ ω]. Clearly, the

only invertible elements of Zp[xi : i ∈ ω] are the invertible elements of Zp.

5.2 Lemma. Let r, s ∈ |AG|. Suppose that r2s = z and r /∈ I. Then r = axi for some

i ∈ ω and a ∈ I.

Proof. Clearly, degy(r) = degz(r) = 0. Since r /∈ I, it must be the case that r = xir0+r1

for some i ∈ ω, r0 ∈ Zp[xk : k ∈ ω], r0 6= 0, and r1 ∈ Zp[xk : k 6= i].

Now, degy(s) = 0 and degz(s) = 1, so that, working in M , we can write s =
z
x2

i

s0 + z
xi

s1 + s2, where s0 ∈ Zp[xj : j 6= i], s1 ∈ Zp[xj,
1
xj

: j 6= i], and s2 ∈ Zp[xj : j ∈

ω][ 1
xj

: j 6= i][z].

We first show that r1 = 0. Assume for a contradiction that r1 6= 0. It is easy to

check that

x2
i z = x2

i r
2s = zr2

1s0 + xi(2zr0r1s0 + zr2
1s1) + x2

i t

for some t ∈ Zp[xj : j ∈ ω][ 1
xj

: j 6= i][z], and hence that zr2
1s0 = xiu for some

u ∈ Zp[xj : j ∈ ω][ 1
xj

: j 6= i][z]. Since degxi
(zr2

1s0) = 0, it must be the case that s0 = 0.
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Now xi(zr
2
1s1) = x2

i (z − t). Since degxi
(zr2

1s1) = 0, it follows from this fact that s1 = 0.

But then s2 6= 0 and

x2
i r

2
0s2 = (xir0 + r1)

2s2 − (2xir0r1 + r2
1)s2 = z − (2xir0r1 + r2

1)s2.

Since now

degxi
(x2

i r
2
0s2) = 2 degxi

(r0) + degxi
(s2) + 2 >

degxi
(r0) + degxi

(s2) + 1 > degxi
(z − (2xir0r1 + r2

1)s2),

this is a contradiction. So in fact r1 = 0, and hence r = xir0.

We now show that r0 ∈ I. We have

x2
i r

2
0s2 = x2

i r
2
0s − (r2

0s0z + xir
2
0s1z) = z − (r2

0s0z + xir
2
0s1z).

Since s2 6= 0 implies that

degxi
(x2

i r
2
0s2) = 2 degxi

(r0) + degxi
(s2) + 2 >

2 degxi
(r0) + 1 > degxi

(z − (r2
0s0z + xir

2
0s1z)),

it must be the case that s2 = 0. Now xir
2
0s1z = z − r2

0s0z. Since s1 6= 0 implies that

degxi
(xir

2
0s1z) = 2 degxi

(r0) + 1 > 2 degxi
(r0) > degxi

(z − r2
0s0z),

it must be the case that s1 = 0. Thus s = z
x2

i

s0. So z = x2
i r

2
0

z
x2

i

s0 = r2
0s0z, and hence

r0 ∈ I.

5.3 Corollary. If we let G′ be a presentation of G and let x′
i be the image of xi in AG′

then D(AG′) = {ax′
i : i ∈ ω ∧ a ∈ I}. Furthermore, D and Q are relatively intrinsically

computable.

Proof. The first statement follows immediately from Lemma 5.2; we prove the second.

It is enough to show that D is relatively intrinsically computable.

Let A be a presentation of AG. We want to show that D(A) is deg(A)-computable.

Abusing notation, we refer to the images of y and z in A as y and z, respectively. Let

D̂(A) be as in Section 4. Since I is finite and x ∈ D(A) ⇔ ∃a ∈ I(ax ∈ D̂(A)), it is

enough to show that D̂(A) is deg(A)-computable.

Clearly, D̂(A) is deg(A)-c.e., and hence so is the set

GenA = D̂(A) ∪
{

r ∈ |A| : ∃x, x′ ∈ D̂(A)(∃n ∈ ω(xx′r = y ∨ xx′r = z ∨ xnr = y))
}

.
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Given x ∈ |A|, we can write x as a sum of products of elements of GenA, and hence

deg(A)-computably determine degy(x) and degz(x). If it is not the case that degy(x) =

degz(x) = 0 then x /∈ D̂(A). Otherwise, x is a polynomial over the elements of D̂(A)

with coefficients in Zp, and checking whether a polynomial over a linearly independent

deg(A)-c.e. set is an element of that set can be done deg(A)-computably.

5.4 Lemma. If i 6= j and ¬E(i, j) then there is no r ∈ |AG| such that rxixj = y.

Similarly, if E(i, j) then there is no r ∈ |AG| such that rxixj = z.

Proof. The proofs of both statements are similar; we prove the first.

Assume for a contradiction that, for some i 6= j ∈ ω and r ∈ |AG|, we have ¬E(i, j)

and xixjr = y. We work in the ring M . Since degy(r) = 1 and degz(r) = 0, thinking of

r as a sum of products of elements of Gen, we see that we can write r = y

xi
r0 + y

xj
r1 +r2,

where r0 ∈ Zp[xk : k 6= i][ 1
xk

: k 6= j], r1 ∈ Zp[xk : k 6= j][ 1
xk

: k 6= i], and r2 ∈ Zp[xk : k ∈

ω][ 1
xk

: k 6= i, j][y].

Let n ∈ ω be such that xn
i r0, x

n
j r2 ∈ Zp[xk : k ∈ ω][ 1

xk
: k 6= i, j]. Then

(xixj)
n+1r2 = (xixj)

ny − (xn
i x

n+1
j r0y + xn+1

i xn
j r1y).

Since degxi
(xn

i x
n+1
j r0y), degxj

(xn+1
i xn

j r1y), and degxi
((xixj)

ny) are all less than or equal

to n, and r2 ∈ Zp[xk : k ∈ ω][ 1
xk

: k 6= i, j][y], it must be the case that r2 = 0.

Now

(xixj)
ny = xn

i x
n+1
j r0y + xn+1

i xn
j r1y.

But

r0 6= 0 ⇒ degxi
(xn

i x
n+1
j r0y) 6 n ∧ degxj

(xn
i x

n+1
j r0y) > n

and

r1 6= 0 ⇒ degxi
(xn+1

i xn
j r1y) > n ∧ degxj

(xn+1
i xn

j r1y) 6 n.

Since we cannot have r0 = r1 = 0, this means that at least one of degxi
(xn

i x
n+1
j r0y +

xn+1
i xn

j r1y) and degxj
(xn

i x
n+1
j r0y + xn+1

i xn
j r1y) is greater than n. But degxi

((xixj)
ny) =

degxj
((xixj)

ny) = n, so this is a contradiction.

5.5 Corollary. We have

R = {(x, x̂) : D(x) ∧ D(x̂) ∧ ¬Q(x, x̂) ∧ ∃r(rxx̂ = y)} =

{(x, x̂) : D(x) ∧ D(x̂) ∧ ¬∃r(rxx̂ = z)},
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and hence R is relatively intrinsically computable. Furthermore, if we let G′ be a pre-

sentation of G and let x′
i be the image of xi in AG′ then

RAG′ = {(ax′
i, bx

′
j) : EG′

(i, j) ∧ a, b ∈ I}.

We now need to show that D, Q, and R are invariant. Fix an automorphism f :

AG
∼= AG. We will show that f(D) = D, f(Q) = Q, and f(R) = R.

5.6 Lemma. Suppose that i ∈ ω and f(xi) = rs for some r, s ∈ |AG|. Then either

r ∈ I or s ∈ I.

Proof. Since f(I) = I and xi = f−1(r)f−1(s), it is enough to show that if xi = r′s′

for some r′, s′ ∈ |AG| then either r′ ∈ I or s′ ∈ I. But this follows easily from the

fact that if xi = r′s′ then degy(r
′) = degz(r

′) = degy(s
′) = degz(s

′) = 0, so that

r′, s′ ∈ Zp[xj : j ∈ ω].

5.7 Lemma. We have f(D) = D, which implies that f(Q) = Q.

Proof. It is enough to show that f(D) ⊆ D. Since f is an arbitrary automorphism of

AG, the same proof will show that f−1(D) ⊆ D, and hence that D ⊆ f(D).

Let i ∈ ω. Let n = degy(f(y)) and let r = f( y

xn+1
i

). Then f(xi)
n+1r = f(y), and

hence n = degy(f(y)) > degy(f(xi)
n+1) = (n + 1) degy(f(xi)). Thus it must be the case

that degy(f(xi)) = 0. A similar argument shows that degz(f(xi)) = 0. Since f(xi) /∈ I,

this means that f(xi) = xjs0 + s1 for some j ∈ ω, s0 ∈ Zp[xl : l ∈ ω], s0 6= 0, and

s1 ∈ Zp[xl : l 6= j].

Let k be such that xk
j f(y) ∈ Zp[xl : l ∈ ω][ 1

xl
: l 6= j][y, z] and let n = degxj

(xk
j f(y))+

1. For some r ∈ |AG|, we have xk
j f(xi)

nr = xk
j f(y). Working in M , we can write

r =
1

xk+1
j

r0 +
1

xk
j

r1 + · · · + rk+1,

where r0 ∈ Zp[xl : l 6= j][ 1
xl

: l ∈ ω][y, z], r1, . . . , rk ∈ Zp[xl,
1
xl

: l 6= j][y, z], and

rk+1 ∈ Zp[xl : l ∈ ω][ 1
xl

: l 6= j][y, z].

Now

xk
j (xjs0 + s1)

nrk+1 = xk
j (xjs0 + s1)

nr − xk
j (xjs0 + s1)

n(r − rk+1) =

xk
j f(y) −

(
xk

j (xjs0 + s1)
n

(
1

xk+1
j

r0 +
1

xk
j

r1 + · · · +
1

xj

rk

))
.
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But it is easy to check that if rk+1 6= 0 then

degxj
(xk

j (xjs0+s1)
nrk+1) = n degxj

(s0)+degxj
(rk+1)+k+n > n degxj

(s0)+k+n−1 >

degxj

(
xk

j f(y) −

(
xk

j (xjs0 + s1)
n

(
1

xk+1
j

r0 +
1

xk
j

r1 + · · · +
1

xj

rk

)))
.

It follows that rk+1 = 0.

It is not hard to see that we may now repeat the above argument with k in place of

k + 1 (assuming k > 0). Proceeding in this fashion, we see that r1 = · · · = rk+1 = 0.

So

sn
1r0

xj

= xk
j (xjs0 + s1)

n 1

xk+1
j

r0 − xk
j ((xjs0 + s1)

n − sn
1 )

1

xk+1
j

r0 =

xk
j f(y) − ((xjs0 + s1)

n − sn
1 )

1

xj

r0.

But sn
1r0 ∈ Zp[xl : l 6= j][ 1

xl
: l ∈ ω][y, z], which implies that either sn

1r0 = 0 or
sn
1 r0

xj
/∈ Zp[xl : l ∈ ω][ 1

xl
: l 6= j][y, z]. Since

xk
j f(y) − ((xjs0 + s1)

n − sn
1 )

1

xj

r0 ∈ Zp[xl : l ∈ ω]

[
1

xl

: l 6= j

]
[y, z],

it must be the case that sn
1r0 = 0. Since r 6= 0, we conclude that s1 = 0.

Thus f(xi) = s0xj. By Lemma 5.6, s0 ∈ I.

5.8 Corollary. f(Zp[xi : i ∈ ω]) = Zp[xi : i ∈ ω].

5.9 Lemma. Let r ∈ |AG| be such that r 6= 0, degy(r) = 0, and degz(r) 6 n. For all

i ∈ ω, we have x2n+1
i r /∈ Zp[xj,

1
xj

: j 6= i][y, z].

Proof. We work in the ring M . Let i ∈ ω. We think of r as a sum of products of

elements of Gen. Each term t in this sum can be written as zm

x2m
i

s, where m 6 n and

s ∈ Zp[xj : j ∈ ω][ 1
xj

: j 6= i]. So x2n+1
i t = xiu for some u ∈ Zp[xj : j ∈ ω][ 1

xj
: j 6= i][z].

Thus x2n+1
i r = xiv for some v ∈ Zp[xj : j ∈ ω][ 1

xj
: j 6= i][z], and hence x2n+1

i r /∈

Zp[xj,
1
xj

: j 6= i][y, z].

5.10 Lemma. degy(f(y)) = 1 and degz(f(y)) = 0.

Proof. Let i ∈ ω be such that f(y) ∈ Zp[xj,
1
xj

: j 6= i][y, z]. Working in M , we can

write f(y) = ys0 + s1, where s0 ∈ |M |, s1 ∈ |AG|, and degy(s1) = 0. Let n = degz(s1).
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By Lemma 5.7, there exists an r ∈ |AG| such that x2n+1
i r = f(y) = ys0 + s1.

We can write r = yr0 + r1, where r0 ∈ |M |, r1 ∈ |AG|, and degy(r1) = 0. Now

x2n+1
i r1 = s1. Since degz(r1) = degz(s1) = n, it follows from Lemma 5.9 that either

r1 = 0 or s1 /∈ Zp[xj,
1
xj

: j 6= i][y, z]. But the latter possibility would imply that

f(y) /∈ Zp[xj,
1
xj

: j 6= i][y, z], contradicting our choice of i. So r1 = 0, and hence s1 = 0.

Thus f(y) = ys0. A similar argument shows that degy(f
−1(y)) > 1. We now need

to show that degy(s0) = degz(s0) = 0.

Let t ∈ Zp[xj : j ∈ ω] be such that ts0 ∈ Zp[xj : j ∈ ω][y, z]. Then

f−1(t)y = f−1(tf(y)) = f−1(ts0y) = f−1(ts0)f
−1(y).

By Corollary 5.8, f−1(t) ∈ Zp[xj : j ∈ ω], which means that degy(f
−1(t)y) = 1 and

degz(f
−1(t)y) = 0. Since degy(f

−1(y)) > 1, this means that f−1(ts0) ∈ Zp[xj : j ∈ ω].

By Corollary 5.8, ts0 ∈ Zp[xj : j ∈ ω]. So degy(s0) = degz(s0) = 0.

5.11 Lemma. f(y) = ty for some t ∈ |AG|.

Proof. Let i, j, i′, j′ ∈ ω be such that i 6= j, f(xi′) = axi and f(xj′) = bxj for some

a, b ∈ I, f(y) ∈ Zp[xk,
1
xk

: k 6= i, j][y, z], and E(i′, j ′). Such numbers exist by Lemma 5.7

and the assumption about G that we made at the beginning of this section.

Let r = f( aby

x′

ix
′

j
). Then xixjr = f(y). By Lemma 5.10, degy(f(y)) = 1 and

degz(f(y)) = 0, and hence degy(r) = 1 and degz(r) = 0. Working in M and think-

ing of r as a sum of products of elements of Gen, we see that we can write

r = yr0 +
y

xi

r1 +
y

xj

r2 +
y

xixj

r3 + r4,

where r0 ∈ Zp[xk : k ∈ ω][ 1
xk

: k 6= i, j], r1 ∈ Zp[xk : k 6= i][ 1
xk

: k 6= j], r2 ∈ Zp[xk : k 6=

j][ 1
xk

: k 6= i], and r3, r4 ∈ Zp[xk : k 6= i, j].

Let n ∈ ω be such that xn
i r1, x

n
j r2 ∈ Zp[xk : k ∈ ω][ 1

xk
: k 6= i, j]. Then

(xixj)
n+1r0y + (xixj)

n+1r4 = (xixj)
nf(y) − (xn

i x
n+1
j r1y + xn+1

i xn
j r2y + (xixj)

nr3y).

Now, degxi
(xn

i x
n+1
j r1y), degxj

(xn+1
i xn

j r2y), degxi
((xixj)

nr3y), and degxi
((xixj)

nf(y)) are

all less than or equal to n. Furthermore, r0, r4 ∈ Zp[xk : k ∈ ω][ 1
xk

: k 6= i, j] and

degy((xixj)
n+1r4) = 0. So it must be the case that r0 = r4 = 0.

Now

(xixj)
nf(y) − (xixj)

nr3y = xn
i x

n+1
j r1y + xn+1

i xn
j r2y.
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But

r1 6= 0 ⇒ degxi
(xn

i x
n+1
j r1y) 6 n ∧ degxj

(xn
i x

n+1
j r1y) > n

and

r2 6= 0 ⇒ degxi
(xn+1

i xn
j r2y) > n ∧ degxj

(xn+1
i xn

j r2y) 6 n,

which means that either r1 = r2 = 0 or at least one of degxi
(xn

i x
n+1
j r1y + xn+1

i xn
j r2y)

and degxj
(xn

i x
n+1
j r1y + xn+1

i xn
j r2y) is greater than n. Since

degxi
((xixj)

nf(y) − (xixj)
nr3y), degxj

((xixj)
nf(y) − (xixj)

nr3y) 6 n,

it must be the case that r1 = r2 = 0. Thus f(y) = xixj
y

xixj
r3 = yr3. Since r3 ∈ |AG|,

we are done.

5.12 Corollary. If ∃r(xixjr = y) then ∃r(xixjr = f(y)).

5.13 Lemma. f(R) = R.

Proof. It is enough to show that R ⊆ f(R). Since f is an arbitrary automorphism of

AG, the same proof will show that R ⊆ f−1(R), and hence that f(R) ⊆ R.

By Corollaries 5.5 and 5.12, R(xi, xj) ⇒ ∃r(xixjr = y) ⇒ ∃r(xixjr = f(y)) ⇒

R(f(xi), f(xj)).

Since f is an arbitrary automorphism of AG, Lemmas 5.7 and 5.13 imply the following

result.

5.14 Lemma. The relations D, Q, and R are invariant.

To apply Proposition 4.1, we are left with showing that properties (P2′) and (P3′)

in the statement of that proposition are satisfied.

5.15 Lemma. For every pair S, S ′ of sets of Q-representatives, if f : S
1–1

−−→
onto

S ′ is

such that R(x, y) ⇔ R(f(x), f(y)) for every x, y ∈ S then f can be extended to an

automorphism of AG.

Proof. Let y, z, and xi be as in the definition of AG. A set of Q-representatives contains

one element of the form axi, a ∈ I, for each i ∈ ω, and it contains no other elements.

So there exist sequences a0, a1, . . . ∈ I and b0, b1, . . . ∈ I such that S = {a0x0, a1x1, . . .}

and S ′ = {b0x0, b1x1, . . .}. Thus, for some permutation π of ω, f : aixi 7→ bπ(i)xπ(i).

Now R(xi, xj) ⇔ R(xπ(i), xπ(j)) for all i, j ∈ ω. So it is clear from what we have

previously done that the map xi 7→ xπ(i) can be extended to an automorphism of AG.
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Thus it is enough to show that the map aixi 7→ bπ(i)xi, or equivalently, the map h : xi 7→
bπ(i)

ai
xi, can be extended to an automorphism of AG. But h can clearly be extended to an

automorphism of F(xi : i ∈ ω)[y, z] that fixes y and z. Since
bπ(i)

ai
∈ I, this automorphism

restricts to an automorphism of AG.

5.16 Lemma. For every presentation G′ of G and every deg(G′)-computable set S of

QAG′ -representatives, there exists a deg(G′)-computable defining family for (AG′ , a)a∈S.

Proof. We let S be a deg(G)-computable set of QAG-representatives and construct a

deg(G)-computable defining family for (AG, a)a∈S. An analogous construction can be

performed for G′.

Let y, z, and xi be as in the definition of AG. As mentioned in the proof of the

previous lemma, S = {a0x0, a1x1, . . .} for some sequence a0, a1, . . . ∈ I. Let si = aixi

and consider the sets

Gen′ = {±1} ∪ {si : i ∈ ω} ∪

{
y

sisj

: E(i, j)

}
∪

{
z

sisj

: ¬E(i, j)

}
∪

{
y

sn
i

: i, n ∈ ω

}

and

Gen′
k = {±1} ∪ {si : i 6 k} ∪

{
y

sisj

: E(i, j) ∧ i, j 6 k

}
∪

{
z

sisj

: ¬E(i, j) ∧ i, j 6 k

}
∪

{
y

sn
i

: i, n 6 k

}
.

For each i, j, n ∈ ω, let the formula ϕi,j,n over the language of rings with additional

constants y, z, s0, s1, . . . be defined by

ϕi,j,n =





sisjui,j = y ∧ sn
i vi,n = y if E(i, j),

sisjui,j = z ∧ sn
i vi,n = y if ¬E(i, j).

(Here ui,j and vi,n are the free variables of ϕi,j,n.) For each sum t of products of elements

of Gen′, let t′ be the result of substituting all occurrences of y

sisj
or z

sisj
in t by ui,j , and

all occurrences of y

sn
i

by vi,n. Let k be the least number such that t is a sum of products

of elements of Gen′
k and let t̂ be the formula

∃u0,0, v0,0, . . . , u0,k, v0,k, . . . , uk,0, vk,0, . . . , uk,k, vk,k

(
t′ ∧

∧

i,j,n6k

ϕi,j,n

)
.

Let t0, t1, . . . be a deg(G)-computable list of all sums of products of elements of Gen′.

Since each si is a product of xi with an element of I, each element of AG is equal to ti

for some i ∈ ω. It follows easily that {t̂i : i ∈ ω} is a defining family for (AG, a)a∈S.
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Lemmas 5.3, 5.14, 5.15, and 5.16 and Corollary 5.5 are enough to enable us to apply

Proposition 4.1. It is straightforward to check that, for any computable presentation A

of AG, if U is a subset of D(A) such that Q(x, y) ⇒ (U(x) ⇔ U(y)) then the subring

of A generated by U has the same degree as U , and is c.e. if U is c.e.. This establishes

Theorem 1.22 in the case of integral domains of arbitrary characteristic.

5.17 Theorem. Let p be either 0 or a prime. The theory of integral domains of char-

acteristic p is complete with respect to degree spectra of nontrivial structures, effective

dimensions, expansion by constants, and degree spectra of relations. In particular, The-

orems 1.8–1.11, 1.13–1.15, and 1.20 remain true if we require that A be an integral

domains of characteristic p. Furthermore, Theorems 1.8–1.11 remain true if we also

require that U be a subring of A.

Now consider the commutative semigroup generated (multiplicatively) by the ele-

ments of Gen. Let

D(x) = {x ∈ |AG| : ∃r(x2r = z)},

Q(x, x′) = {(x, x) : D(x)},

and

R(x, x′) = {(x, x′) : D(x) ∧ D(x′) ∧ x 6= x′ ∧ ∃r(rxx′ = y)}.

It is not hard to check that Proposition 4.1 applies in this case, with essentially the

same proof as above. (Though, of course, many of the details could be simplified in this

case.) This establishes Theorem 1.22 in the case of commutative semigroups.

5.18 Theorem. The theory of commutative semigroups is complete with respect to de-

gree spectra of nontrivial structures, effective dimensions, expansion by constants, and

degree spectra of relations. In particular, Theorems 1.8–1.11, 1.13–1.15, and 1.20 remain

true if we require that A be a commutative semigroup. Furthermore, Theorems 1.8–1.11

remain true if we also require that U be a subsemigroup of A.

6 Nilpotent Groups

In this section, we prove Theorem 1.22 in the case of 2-step nilpotent groups. Much

of the proof consists of verifying the effectiveness of a coding of rings into groups due

to Mal’cev [30]. Combined with the results of Section 5, this will enable us to provide
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analogs of Lemmas 2.6–2.9, which can then be used to establish analogs of Proposition-

s 2.10–2.13.

We recall the following definitions from the theory of groups.

6.1 Definition. Let G be a group. The center of G is the set {x ∈ |G| : ∀y ∈ |G|(xy =

yx)}. The commutator [x, y] of x, y ∈ |G| is the element xyx−1y−1. The group G is

2-step nilpotent if [x, y] is in the center of G for every pair of elements x, y ∈ |G|. (A

group is 1-step nilpotent if and only if it is Abelian. For the more general definition of

n-step nilpotent groups, see any standard textbook on group theory, such as [38].)

Let R = (|R|, +, ·, 0, 1) be a countably infinite ring with unit of characteristic p > 2.

The deg(R)-computably presentable group GR is defined to be the set of all triples

(a, b, c), a, b, c ∈ |R|, with multiplication given by the formula

(a, b, c)(x, y, z) = (a + x, b + y, b · x + c + z).

It is easy to check that this multiplication is associative, that the triple e = (0, 0, 0)

is the identity element for it, and that (a, b, c)−1 = (−a,−b, b · a − c). Note that the

center of GR consists of all elements of the form (0, 0, c).

Fix a deg(R)-computable presentation of GR for which the map gR : (0, 0, c) 7→ c is

deg(R)-computable and identify GR with this presentation. For any presentation R′ of

R, the deg(R′)-computable group GR′ and the deg(R′)-computable map gR′ are defined

in an analogous way.

Remark. The above definition also works for nonassociative rings. When R is associa-

tive, GR can be represented as the group of upper triangular 3 × 3 matrices via the

isomorphism

(a, b, c) 7→




1 b c

0 1 a

0 0 1


 ,

a, b, c ∈ |R|, in which form GR is known as the Heisenberg group of R.

We begin by establishing an analog of Lemma 2.6. Let the relation D on |GR| be

defined by

D(x) ⇔ x is in the center of GR.

6.2 Lemma. If h : R ∼= R′ is an isomorphism then there exists a deg(h)-computable

isomorphism f : GR
∼= GR′ such that f � D(GR) = g−1

R′ ◦ h ◦ gR.
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Proof. It is easy to check that f((a, b, c)) = (h(a), h(b), h(c)) is the desired isomorphism.

Let us now consider the following properties of an expanded group (G, a1, a2), intro-

duced in [30].

(G1) G is 2-step nilpotent.

(G2) The subsets

Ci = {x ∈ |G| : xai = aix}, i = 1, 2,

are Abelian subgroups of G.

(G3) The intersection of C1 and C2 is exactly the center Z of G.

(G4) For each pair z1, z2 ∈ Z there exists an h(z1, z2) ∈ |G| such that

[a1, h(z1, z2)] = z1 and [a2, h(z1, z2)] = z2.

(G5) There exist isomorphisms fi : Z ∼= Ci, i = 1, 2, such that f1([a2, a1]) = a1,

f2([a2, a1]) = a−1
2 , and [a2, f1(z)] = [a1, f2(z)] = z for all z ∈ Z.

Let

a1 = (1, 0, 0) ∈ |GR|,

a2 = (0, 1, 0) ∈ |GR|.

6.3 Lemma. (GR, a1, a2) satisfies (G1)–(G4).

Proof. Let Z be the center of GR and let Ci = {x ∈ |GR| : xai = aix}, i = 1, 2.

Direct computation shows that C1 consists of all triples of the form (a, 0, c), C2 consists

of all triples of the form (0, b, c), and Z consists of all triples of the form (0, 0, c), so GR

satisfies (G3).

Since

(a, b, c)(x, y, z)(a, b, c)−1(x, y, z)−1 = (0, 0, b · x − y · a) ∈ Z,

GR satisfies (G1).

It can be easily checked that for all a, b, c, x, y, z ∈ |R| we have (a, 0, c)(x, 0, y) =

(x, 0, y)(a, 0, c) and (0, b, c)(0, y, z) = (0, y, z)(0, b, c), so GR satisfies (G2).

Finally, letting h((0, 0, c), (0, 0, c′)) = (c′,−c, 0), we see that GR satisfies (G4).
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6.4 Lemma. Let m : GR → G be an isomorphism and let b1 = m(a1) and b2 = m(a2).

Then (G, b1, b2) satisfies (G1)–(G5). Moreover, the functions f1 and f2 in (G5) can be

chosen to be deg(G)-computable.

Proof. It is easy to check that, since (GR, a1, a2) satisfies (G1)–(G4), so does (G, b1, b2).

Let Z be the center of G and let Ci = {x ∈ |G| : xbi = bix}, i = 1, 2. To prove that

a deg(G)-computable isomorphism f1 as in (G5) exists, we first note that the mapping

λ : C1 → Z defined by λ(x) = [b2, x] is a homomorphism of C1 onto Z. Indeed,

[b2, xy] = b2xyb−1
2 y−1x−1 = b2xb−1

2 b2yb−1
2 y−1x−1 = b2xb−1

2 [b2, y]x−1 = [b2, x][b2, y],

since [b2, y] ∈ Z, and λ is onto because of (G4).

Now, any element of Z is equal to m((0, 0, c)) for some c ∈ |R|, and the fact that

R has characteristic p implies that (0, 0, c)p = (0, 0, pc) = (0, 0, 0) for every c ∈ |R|. So

Z is an Abelian group satisfying the identity xp = e, and can thus be thought of as

a vector space over Zp via kz = zk, k ∈ Zp. Since Zp is finite, there exists a deg(G)-

computable basis {zi : i ∈ ω} for Z as a vector space with z0 = [b2, b1]. Furthermore,

the set {ci : i ∈ ω} of elements of C1 such that λ(ci) = zi is also deg(G)-computable.

Note that c0 = b1.

Given z ∈ Z, there is a unique way to express z as
∏n

i=1 zki

i with 0 < k1, . . . , kn < p.

Define f1(z) =
∏n

i=1 cki

i . Then

b2f1(z)b−1
2 f1(z)−1 = [b2, f1(z)] = λ(f1(z)) = λ

(
n∏

i=1

cki

i

)
=

n∏

i=1

zki

i = z.

Furthermore, f1([b2, b1]) = f1(z0) = c0 = b1.

A deg(G)-computable isomorphism f2 as in (G5) can be constructed in a similar

way.

Let the relations P and M on |GR| be defined by

P (x, y, z) ⇔ xy = z

and

M(x, y, z) ⇔ ∃w,w′([a1, w] = x ∧ [a2, w
′] = y ∧ [a2, w] = [a1, w

′] = e ∧ [w′, w] = z).

As we will see, P and M code + and ·, respectively.
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6.5 Lemma. Let G be a computable presentation of GR. Let m : GR → G be an

isomorphism and let b1 = m(a1) and b2 = m(a2). Suppose that x1, x2, y1, y2 ∈ |G| are

such that [bi, xj] = [bi, yj] for i, j ∈ {1, 2}. Then [x1, x2] = [y1, y2].

Proof. Let C1, C2, and Z be as in the proof of Lemma 6.4.

For i, j ∈ {1, 2}, the fact that [bi, xj] = [bi, yj] implies that bix
−1
j yj = x−1

j yjbi. So

x−1
j yj ∈ C1 ∩ C2 = Z for j = 1, 2. Thus we have

x1x2x
−1
1 x−1

2 = y1y
−1
1 x1y2y

−1
2 x2x

−1
1 x−1

2 = y1y2y
−1
1 x1x

−1
1 y−1

2 x2x
−1
2 = y1y2y

−1
1 y−1

2 .

6.6 Lemma. The relations D, M , and P are relatively intrinsically computable. The

relations D and P are invariant, while M is mapped to itself by any automorphism of

GR that fixes a1 and a2. Let R′ be a presentation of R. Then D(GR′) = dom(gR′), and

for x, y, z ∈ D(GR′),

PGR′ (x, y, z) ⇔ (gR′(x) + gR′(y) = gR′(z))

and

MGR′ (x, y, z) ⇔ (gR′(x) · gR′(y) = gR′(z)).

Proof. The relations D and P are algebraic, and hence invariant, while M is algebraic

over {a1, a2}, and hence is mapped to itself by any automorphism of GR that fixes a1

and a2.

The relation P is obviously relatively intrinsically computable, and the fact that

every presentation of GR satisfies (G3) implies that so is D. It is also obvious that for

each x, y ∈ D(GR′) there is at most one z such that PGR′ (x, y, z).

Let b1, b2 ∈ |GR′ | be defined by b1 = (1, 0, 0), b2 = (0, 1, 0). By Lemma 6.5,

∃w,w′([b1, w] = x ∧ [b2, w
′] = y ∧ [b2, w] = [b1, w

′] = e ∧ [w′, w] = z) ⇔

∀w,w′(([b1, w] = x ∧ [b2, w
′] = y ∧ [b2, w] = [b1, w

′] = e) → [w′, w] = z).

This implies that M is relatively intrinsically computable. It also implies that for each

x, y ∈ D(GR′) there is at most one z such that MGR′ (x, y, z).

Now let r, s ∈ |R′|. We are left with showing that PGR′ ((0, 0, r), (0, 0, s), (0, 0, r + s))

and MGR′ ((0, 0, r), (0, 0, s), (0, 0, r · s)).
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By the definition of multiplication in GR′ , we have (0, 0, r)(0, 0, s) = (0, 0, r + s), so

indeed PGR′ ((0, 0, r), (0, 0, s), (0, 0, r + s)).

Let w = (0,−r, 0) and w′ = (s, 0, 0). Direct computation shows that [b1, w] =

(0, 0, r), [b2, w
′] = (0, 0, s), [b2, w] = [b1, w

′] = e, and [w′, w] = (0, 0, r · s), which implies

that MGR′ ((0, 0, r), (0, 0, s), (0, 0, r · s)).

For any presentation G of GR, let R̃G be the ring whose domain is D(G), with

addition defined by x + y = z ⇔ PG(x, y, z) and multiplication defined by x · y = z ⇔

MG(x, y, z). Clearly, there exist a deg(G)-computable map hG and a deg(G)-computable

ring RG such that hG : R̃G → RG is a deg(G)-computable presentation of R̃G. If G is

computable then we take RG = R̃G and let hG be the identity. In any case, Lemma 6.6

implies that RG is a deg(G)-computable presentation of R.

The following lemma, which is an analog of Lemma 2.8, can be easily checked.

6.7 Lemma. Let R′ be a computable presentation of R. Then gR′ is a computable

isomorphism from RGR′
to R′.

We now establish an analog of Lemma 2.9.

6.8 Lemma. Let G be a computable presentation of GR. Then G is computably iso-

morphic to GRG
via a map whose restriction to D(G) is equal to g−1

RG
◦ hG.

Proof. Let f1 and f2 be computable functions as in (G5). On pages 225–226 of [30],

property (G5) is used to show that the mapping

z = (z1, z2, z3) 7→ τ(z) = f1(h
−1
G (z1))f2(h

−1
G (z2))

−1h−1
G (z3)

is an isomorphism from GRG
to G. (Of course, in [30] hG is not present, since there it is

not important that RG have computable domain.) Since f1, f2, and h−1
G are computable,

so is τ . Finally, if x ∈ D(G) then τ−1(x) = (0, 0, hG(x)) = (g−1
RG

◦ hG)(x).

We now come to the analog of Lemma 2.7. The fact that M is not invariant creates

a difficulty, but this can be remedied by showing that, for any computable presentation

G of GR and any automorphism h of G, there exists a computable automorphism g of

G such that g(aG
i ) = h(aG

i ) for i = 1, 2. (See Lemma 6.14. The situation is similar to

what we encountered in Section 4 in connection with Lemma 4.7.)

All the results obtained so far in this section are true for any ring R with unit of

characteristic p. To prove the statement in the previous paragraph we need to impose

the following additional conditions on R.
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1. R is an integral domain.

2. The only invertible elements of R are 1, . . . , p − 1.

Note that, by Lemma 5.1, the integral domains of characteristic p constructed in Sec-

tion 5 satisfy Condition 2. Since the result we wish to prove is of interest only in the

case in which R is computably presentable, we will assume for the remainder of this

argument that R is computable.

Let h : GR
∼= GR be an automorphism. Let b1 = (a, b, c), b2 = (a′, b′, c′) ∈ |GR| be

such that h(ai) = bi, i = 1, 2.

Let r = a·b′−b·a′. Note that r 6= 0, since h((0, 0, 1)) = h([a1, a2]) = [b1, b2] = (0, 0, r).

Let R̃ = R
[

1
r

]
. Since we are assuming that R is computable, we can take R̃ to be a

computable ring. We think of GR as a subgroup of GR̃.

Let g : GR̃ → GR̃ be defined by

g((x, y, z)) =

(
a · x + a′ · y , b · x + b′ · y , b · a′x · y +

p + 1

2
· a · b · (x2 − x)+

p + 1

2
· a′ · b′ · (y2 − y) + c · x + c′ · y + (a · b′ − b · a′) · z

)
.

6.9 Lemma. The function g is a computable automorphism of GR̃ such that g(ai) = bi,

i = 1, 2.

Proof. It is clear that g is computable and that g((1, 0, 0)) = (a, b, c) and g((0, 1, 0)) =

(a′, b′, c′).

Let (x, y, z), (x′, y′, z′) ∈ |GR̃|. Straightforward but tedious expansion and matching

of terms shows that g((x, y, z)(x′, y′, z′)) = g((x, y, z))g((x′, y′, z′)). (Recall that p+1 = 1

in R̃.)

We now need to show that g is surjective and injective. To show that g is surjective,

pick an arbitrary element (x, y, z) of GR̃. Let d0 = (1
r
· b′ · x,−1

r
· b · x, 0) and d1 =

(−1
r
· a′ · y, 1

r
· a · y, 0). It is straightforward to check that, for some z0, z1 ∈ |R̃|, we have

g(d0) = (x, 0, z0) and g(d1) = (0, y, z1). Let d2 = (0, 0, 1
r
· (z − z0 − z1)). Then g(d2) =

(0, 0, z − z0 − z1), and hence g(d0d1d2) = (x, 0, z0)(0, y, z1)(0, 0, z − z0 − z1) = (x, y, z).

To see that g is injective, suppose that g((x, y, z)) = (0, 0, 0). Then a · x + a′ · y =

b · x + b′ · y = 0. Thus, working in the field of fractions of R̃, we have a′

a
· y = b′

b
· y, so

that, unless y = 0, we have r = a · b′ − b · a′ = 0, which is a contradiction. So y = 0,

which implies that x = 0. Now g((x, y, z)) = (0, 0, r · z), so that r · z = 0, which implies

that z = 0.
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6.10 Lemma. Let f : GR → GR̃ be a group homomorphism such that f(ai) = ai,

i = 1, 2. Let u, v, w ∈ D(GR) be such that MG
R̃(f(u), f(v), f(w)). Then MGR(u, v, w).

Proof. There exists a w′ ∈ D(GR) such that MGR(u, v, w′), and it is clear from the

definition of M that MG
R̃(f(u), f(v), f(w′)). But this means that f(w′) = f(w), so

w′ = w.

6.11 Lemma. R = R̃.

Proof. It is enough to show that r is invertible in R. Let s and t be such that

h((0, 0, s)) = (0, 0, 1) and h((0, 0, t)) = (0, 0, r2). Recall that h((0, 0, 1)) = (0, 0, r).

Let i : GR → GR̃ be the inclusion map and define f = g−1 ◦ i ◦ h. Now f is a group

homomorphism from GR into GR̃.

It is easy to check that f(a1) = a1, f(a2) = a2, f((0, 0, 1)) = (0, 0, 1), f((0, 0, s)) =

(0, 0, 1
r
), and f((0, 0, t)) = (0, 0, r). Since MG

R̃((0, 0, 1
r
), (0, 0, r), (0, 0, 1)), it follows from

Lemma 6.10 that MGR((0, 0, s), (0, 0, t), (0, 0, 1)), so that s · t = 1.

Thus s is invertible in R. By our assumption on R, this means that s = k for some

1 6 k 6 p − 1. Let n < p be such that kn = 1 mod p. It follows that (0, 0, r) =

h((0, 0, 1)) = h((0, 0, k)n) = (h((0, 0, k)))n = (0, 0, 1)n = (0, 0, n), so r is invertible in

R.

The above argument obviously holds for any computable presentation R′ of R in

place of R. With R′ = RG, the following lemma follows from Lemma 6.8.

6.12 Lemma. Let G be a computable presentation of GR and let h be an automorphism

of G. There exists a computable automorphism g of G such that g(aG
i ) = h(aG

i ), i = 1, 2.

6.13 Corollary. If G and G′ are computable presentations of GR and f : G ∼= G′ is

an isomorphism then there exists an automorphism g of G′ such that g ◦ f is a deg(f)-

computable isomorphism and (g ◦ f)(MG) = MG′

.

Proof. Since G and G′ are presentations of GR and f is an isomorphism, there is an

automorphism h of G′ such that (h ◦ f)(aG
i ) = aG′

i for i = 1, 2. By Lemma 6.12, there

is a computable automorphism g of G′ such that (g ◦ f)(aG
i ) = aG′

i for i = 1, 2. By

Lemma 6.6, (g ◦ f)(MG) = MG′

.

The following analog of Lemma 2.7 follows easily from Corollary 6.13.
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6.14 Lemma. If G and G′ are computable presentations of GR and f : G ∼= G′ is an

isomorphism then there exists an automorphism g of G′ such that (g ◦ f) � D(G) is a

deg(f)-computable isomorphism from RG to RG′.

Using Lemmas 6.2, 6.14, 6.7, and 6.8 in place of Lemmas 2.6, 2.7, 2.8, and 2.9,

respectively, we can establish the following result by essentially the same arguments as

were used in the proofs of Propositions 2.10–2.13.

6.15 Proposition. Let R = (|R|, +, ·, 0, 1) be a countably infinite integral domain of

characteristic p > 2 whose only invertible elements are 1, . . . , p−1. Let GR be the group

whose domain is the set of all triples (a, b, c), a, b, c ∈ |R|, and whose group operation is

given by the formula

(a, b, c)(x, y, z) = (a + x, b + y, b · x + c + z).

Then DgSp(GR) = DgSp(R), and if R is computably presentable then the following hold.

1. For any degree d, GR has the same d-computable dimension as R.

2. Let x ∈ |R|. There exists an a ∈ D(GR) such that (GR, a) has the same computable

dimension as (R, x).

3. Let S be a subring of R. There exists a subgroup U of GR such that DgSpGR
(U) =

DgSpR(S) and if S is intrinsically c.e. then so is U .

(The fact that U can be taken to be a subgroup in part 3 of Proposition 6.15 follows

from the fact that if S is a subring of R then g−1
R (S) is a subgroup of GR.)

It follows from Proposition 6.15 and the results of Section 5 that Theorem 1.22 holds

in the case of 2-step nilpotent groups.

6.16 Theorem. The theory of 2-step nilpotent groups is complete with respect to degree

spectra of nontrivial structures, effective dimensions, expansion by constants, and degree

spectra of relations. In particular, Theorems 1.8–1.11, 1.13–1.15, and 1.20 remain true

if we require that A be a 2-step nilpotent group. Furthermore, Theorems 1.8–1.11 remain

true if we also require that U be a subgroup of A.
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A The Universality of Directed Graphs

In this appendix, we justify the terminology adopted in Definition 1.21 by giving a

sufficiently effective coding of a given countable structure into a countable graph, thus

showing that if a theory satisfies Definition 1.21 then it still satisfies it if “every nontrivial

countable graph G” is replaced by “every nontrivial countable structure G”.

Let A be a nontrivial countable structure in a computable language with (possibly

finitely many) constants c0, c1, . . ., function symbols f0, f1, . . ., and relation symbols

R0, R1, . . .. Let ki be the arity of fi and let li be the arity of Ri.

The nontrivial directed graph G consists of the following nodes and edges.

1. A node x with an edge from x to itself.

2. A node xi for each i ∈ |A|, with an edge from x to each xi.

3. For each constant ci, a cycle of length 4i + 2 with an edge from xj to one of the

elements of this cycle, where j = cAi .

4. For each function fi and each tuple (j0, . . . , jki−1) ∈ |A|, a cycle O of length 4i+3;

a chain of elements y0, . . . , yki
, where y0 is an element of O, with an edge from yn

to yn+1 for each n < ki; an edge from xjn
to yn for each n < ki; and an edge from

yki
to xj, where j = fA

i (j0, . . . , jki−1).

5. For each relation Ri and each tuple (j0, . . . , jli−1) ∈ |A| such that RA
i (j0, . . . , jli−1)

holds, a cycle O of length 4i + 4; a chain of elements y0, . . . , yli−1, where y0 is an

element of O, with an edge from yn to yn+1 for each n < li − 1; and an edge from

xjn
to yn for each n < li.

6. For each relation Ri and each tuple (j0, . . . , jli−1) ∈ |A| such that RA
i (j0, . . . , jli−1)

does not hold, a cycle O of length 4i + 5; a chain of elements y0, . . . , yli−1, where

y0 is an element of O, with an edge from yn to yn+1 for each n < li − 1; and an

edge from xjn
to yn for each n < li.

As an example, Figure 4 shows a portion of G in the case in which the language of

A has one constant c0, one unary function symbol f0, and one binary relation symbol

R0; cA0 = 0; fA
0 (0) = 0; fA

0 (1) = 0; and the only ordered pairs of numbers less than 2 of

which RA
0 holds are (0, 0) and (1, 0). The expressions under each cycle show which fact

is being coded by that cycle and its connections.
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Figure 4: A portion of G

It is not hard to check, using methods similar to those of Section 2, that G has the

following properties.

1. DgSp(G) = DgSp(A).

2. If A is computably presentable then the following hold.

(a) For any degree d, G has the same d-computable dimension as A.

(b) if a ∈ |A| then there exists an x ∈ |G| such that (G, x) has the same com-

putable dimension as (A, a).

(c) if S ⊆ |A| then there exists a U ⊆ |G| such that DgSpG(U) = DgSpA(S) and

if S is intrinsically c.e. then so is U .
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