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Abstract

Invariant manifolds of equilibria and periodic orbits are key objects that organize the

behavior of a dynamical system both locally and globally. In slow-fast systems, that is,

systems with sets of variables that evolve on two di�erent time scales, there also exist

so-called slow manifolds, along which the ow is very slow compared with the rest of the

dynamics. Slow-fast systems are often found in various applications, including models for

nerve conduction, physiological models, chemical models, ecological models and climate

models, and slow manifolds play an important role for the overall dynamics. In particular,

slow manifolds are known to organize the number of small oscillations of what are known

as mixed-mode oscillations (MMOs). For slow-fast systems in R3 with two slow and one

fast variables, slow manifolds are surfaces that can be either attracting or repelling, and

intersections of two slow manifolds of di�erent types are known as canard orbits. In

addition, slow manifolds are locally invariant objects that may interact with invariant

manifolds of equilibrium and periodic orbits, which are globally invariant objects. Such

interactions may produce complicated dynamics about which only little is known from a

few examples in the literature.

This thesis focuses on such interactions in a slow-fast system with one fast and two slow

variables. We present a numerical approach that allows for the systematic detection of

canard orbits and intersections between other manifolds. The aim is to understand the

consequences of the interaction between a global invariant manifold and a slow manifold

for the overall dynamics in a slow-fast system. Specially, we study the generic situation

of a quadratic tangency between the unstable manifold of a saddle-focus equilibrium and

a repelling slow manifold. This scenario occurs in a system where the corresponding

equilibrium undergoes a so-called supercritical singular Hopf bifurcation. We compute

these manifolds as families of orbits segments with a two-point boundary value problem

setup and track their intersections, referred to as connecting canard orbits, as a param-

eter is varied. We describe the local and global properties of the manifolds, as well as
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iv Abstract

the role of their interaction as an organizer of large-amplitude oscillations in the dynamics.

In particular, we �nd and describe recurrent dynamics in the form of MMOs, which can

be continued in parameters to Shilnikov homoclinic bifurcations. We detect and identify

two such Shilnikov orbits and describe their interactions with the MMOs. Furthermore,

we study the overall dynamics organized by these global orbits. This involves the study

of the invariant manifolds of a saddle periodic orbit to reveal di�erent sources of recurrent

dynamics, including the existence of a chaotic attractor.
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1
Introduction

In many areas of application one encounters behavior that is characterized by dynamics

with slow and fast episodes; well-known examples are chemical reactions, non-harmonic

oscillations, spiking and bursting [18, 53, 54, 57, 71]. Their mathematical description

leads to vector-�eld models, called slow-fast systems, that have state variables separated

into groups that evolve on di�erent time scales. In the simplest case there is one group of

slow and one group of fast variables, with a small positive parameter determining the ratio

between the two time scales. In slow-fast systems it is common to see dynamics that are

a mixture of periods of slow and fast evolution, such as relaxation oscillations where in-

tervals of relatively slow motion are interspersed with fast jumps [94]. Geometric singular

perturbation theory [2, 16, 32, 33, 55, 67], introduced by Fenichel in the late 1970s, ex-

ploits this splitting of time scales by constructing actual trajectories from concatenations

of slow and fast segments that exist in the respective limits of the slow and fast dynamics.

This approach has been very successful in explaining complex oscillations when there is a

single slow variable [5, 44, 53, 72]. More recently, there has been a lot of interest in under-

standing the dynamics of systems with two slow variables [11, 16, 39, 41, 46, 66, 71, 92, 95].

Key objects here are attracting and repelling slow manifolds, which are surfaces in phase

space that govern the slow motion of trajectories of a slow-fast system. Their existence

is guaranteed by Fenichel theory [32, 33, 55], provided the condition known as normal
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2 Introduction

hyperbolicity is satis�ed. These types of manifolds are formally introduced in Chapter 2.

It is known that among the relevant geometric objects in the context of classic dynamical

systems theory we �nd equilibrium points, periodic orbits, their corresponding invariant

manifolds and, when they exist, orbits connecting these objects. These invariant objects

provide the skeleton for understanding how the phase space is organized. A crucial ques-

tion here is how changes in system parameters may a�ect the topological con�guration

of phase space locally and globally. Bifurcation theory of dynamical systems has devel-

oped tools to approach these questions, and it has proven very successful in providing a

deeper understanding of many di�erent real-life phenomena [49, 56, 84, 85, 91, 97]. We

refer to local bifurcations when a perturbation in parameters leads to changes of stability

of equilibrium points and/or periodic orbits; these bifurcations produce local topologi-

cal changes, where local here means in a neighborhood of the object of which stability

changes. On the other hand, global bifurcations refer to interactions between invariant

manifolds of equilibria and/or periodic orbits. They occur when parameters vary and

produce global topological changes that a�ect the overall dynamics; well known examples

are homoclinic and heteroclinic bifurcations [43, 50, 51, 68, 78, 90].

Together with equilibria, periodic orbits and their corresponding invariant manifolds, slow

manifolds organize the dynamics and the slow-fast nature of a slow-fast system globally.

All the natural questions from classic dynamical systems theory about the local and global

con�guration of phase space mentioned above are still valid for slow-fast systems, yet the

existence of di�erent time scales gives rise to new questions in the slow-fast context. In

this thesis, we study the interaction between di�erent types of manifolds, speci�cally,

those between global invariant manifolds and slow manifolds. Our goal is to explore how

the classic theory of dynamical systems interacts with the theory of slow-fast systems. To

this end, we study how slow manifolds interact with global invariant manifolds, and what

local and global consequences ensue for the overall dynamics.

We are particularly interested in three-dimensional slow-fast systems with one fast and

two slow variables. In this setup, the corresponding slow manifolds are two-dimensional

surfaces and determining their geometry in R3 may be quite challenging. Such systems

are known to exhibit mixed-mode oscillations (MMOs), which are orbits of a vector �eld

characterized by an alternation of both small and large-amplitude oscillations (SAOs and

LAOs, respectively). MMOs were �rst discovered in the Belousov-Zhabotinskii reaction

[52, 86], and since then have been found in a broad range of chemical, ecological and
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Figure 1.1: The time series of the y-coordinate of a mixed-mode oscillation of system (2.11) with
MMO signature 17 .

biological systems [14, 16, 31, 37, 48, 69, 79, 93]. Figure 1.1 shows an example of an

MMO. It corresponds to an orbit of system (2.11), introduced in Chapter 2, for parame-

ter values at which the global dynamics is organized by the interaction between a global

invariant manifold and a slow manifold; more details can be found in Chapter 5. The

time series of the y-coordinate in Fig. 1.1 shows that the orbit has seven SAOs followed

by one LAO. Formally speaking, there is no agreed criterion for the distinction between

what is considered a large and what is considered a small amplitude. However, as long

as the separation between large and small is clear one can speak of MMOs. In general,

an MMO features at least two distinct amplitudes; when L1 LAOs are followed by s1

SAOs, L2 LAOs, s2 SAOs, and so on, we will refer to the sequence Ls1
1 L

s2
2 : : : as the MMO

signature. The MMO regime shown in Fig. 1.1 is periodic and exhibits 1 LAO followed

by 7 SAOs in each period; hence, it has signature 17. MMOs may be periodic, aperiodic,

or even chaotic; see [16].

The phenomenon of MMOs is strongly associated with the existence of multiple time

scales. There are several studies providing mechanisms that give rise to the SAOs within

MMOs [16, 17, 18, 19, 40, 46, 95], including passage near special points in phase space

called folded singularities and oscillations arising from a so-called singular Hopf bifurca-

tion. However, very little is known about how the LAOs are created. We want to address

this question in this thesis, and study mechanisms that make a global return available

to the dynamics and, thus, generate LAOs. We found that one such mechanism is due

to interactions between global invariant manifolds and slow manifolds. To show this, we

consider a three-dimensional slow-fast vector �eld with two slow and one fast variables,

which will be introduced as system (2.11) in Chapter 2. This system is near a singular

Hopf bifurcation, it has a saddle-focus equilibrium point and an attracting periodic orbit,

and we study the interaction between a repelling slow manifold and the unstable manifold

of this saddle-focus equilibrium. In the model (2.11) these manifolds are two-dimensional
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surfaces and their intersections create special orbits that we call connecting canard orbits.

As we will show in Chapter 5, these are global objects responsible for the appearance of

complicated slow-fast recurrent dynamics.

Besides their interactions with global invariant manifolds, two slow manifolds of di�erent

type may also interact with each other. In particular, in our slow-fast setup with one fast

and two slow variables, slow manifolds are surfaces in the three-dimensional phase space

that can be either attracting or repelling under the dynamics. In R3 the intersections

of an attracting slow manifold with a repelling slow manifold are generic, and give rise

to canard orbits. The literature about canard orbits in R3 is extensive; see for instance

[4, 10, 28, 46, 63, 65, 92, 95] and Chapter 2, where we discuss some of their properties.

Rather than a purely theoretical object, canard orbits are often found in applications. For

example, they have been studied for explaining the organization of SAOs within MMOs

appearing in many applied models [11, 15, 27, 83, 96]. It is therefore extremely important

to have methods that allow the detection of such canard orbits, as well as the connecting

canard orbits mentioned earlier.

In this thesis we take advantage of some of the theoretical and numerical results related

to slow manifolds and canard orbits in R3 and approach this problem from a numerical

point of view. Two-dimensional slow manifolds and global invariant manifolds can be

computed reliably with recently developed numerical methods [35, 44, 47, 60, 61]. The

computations in this thesis are based on the continuation of solutions to suitably formu-

lated two-point boundary value problems, which are implemented and solved with the

package AUTO [26]. One of the bene�ts of this approach is that it gives reliable results

even in the presence of the extreme sensitivity with respect to initial conditions, which is

an important feature of slow-fast systems. Our setup allows us to calculate slow manifolds

away from the singular limit when the ratio of time scales is not necessarily very small.

Moreover, we are able to extend slow manifolds past regions containing points where

normal hyperbolicity is lost. We take advantage of the exibility of this computational

technique to calculate the respective manifolds themselves, as well as their intersection

sets with suitable two-dimensional cross sections.

Furthermore, in this thesis we compute the intersections between the di�erent types of

manifolds (that is, orbits connecting the respective manifolds). To this end, we implement

a Lin’s method approach [70]. It relies on the computation of the manifolds of interest up

to a suitable codimention-one cross section and it has been used in di�erent contexts to
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detect connecting orbits, such as heteroclinic and homoclinic connections [36, 62, 74]. The

underlying idea is to represent the sought-after connecting orbit as a solution to a two-

point boundary value problem over a �nite-time interval by imposing boundary conditions.

This ensures that the two end points lie in corresponding sets used for parameterizing the

respective manifolds as families of orbit segments. Lin’s method is a way of de�ning

suitable test functions that can be monitored; their zeros indicate that a connecting orbit

has been found. In this thesis, we think of both canard and connecting canard orbits as

orbits connecting di�erent types of objects. Particularly, for the detection of canard orbits,

we develop a more exible version of Lin’s method that allows the systematic detection of

all the canard orbits near a folded node singularity. This constitutes an improvement over

the current inspection-correction based methods for �nding canard orbits. Lin’s method

also proves to be the key to the detection of the connecting canard orbits studied in

Chapter 5.

1.1 Motivation and goals

One motivation of this thesis lies in the e�cient detection and continuation of orbit seg-

ments that form intersections between di�erent types of manifolds in slow-fast systems.

Particularly, we extend the list of existing applications of Lin’s method by presenting a

novel and versatile implementation that allows the systematic detection of canard orbits.

In addition, we implement Lin’s method for the detection of connections between global

invariant manifolds and slow manifolds, which allows us to determine their moments of

tangency.

Armed with these advanced computational tools, we explore sources of recurrent dynamics

in slow-fast systems. Our focus is on system (2.11), introduced in Chapter 2, which fea-

tures a complicated slow-fast dynamics and it has been an active focus of research over the

last years. For instance, the study [16] shows that there are parameter regimes for which

an equilibrium of (2.11) involved in a singular Hopf bifurcation has a two-dimensional

unstable manifold. The authors of [16] identify a tangency between the global invariant

manifold and a repelling slow manifold; see also [40] and [46], where a di�erent model

is used. The tangency was obtained locally by computing selected backward trajectories

of the repelling slow manifold and forward trajectories of the invariant manifold up to

a suitable two-dimensional section; this phenomenon is associated with SAOs and was

far from being completely understood. In part, the consequences of these tangencies re-

mained unclear. Motivated by these previous works we present a detailed study of the
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local and, more importantly, of the global implications of such a tangency. We compute

the respective slow manifold and invariant manifold as global surfaces in phase space in

order to gain a better understanding on how this tangency unfolds and organizes the

overall dynamics.

In some regions of parameter space, system (2.11) encompasses the Koper model for an

idealized chemical reaction, which was introduced by Koper and Gaspard in [58, 59]. The

Koper model showed evidence of having a Shilnikov homoclinic bifurcation involving slow

and fast motion, but Koper and Gaspard’s attempts for �nding such a homoclinic orbit

were unsuccessful. Later on, the study in [45] found a Shilnikov homomoclinic orbit in

the Koper model by �rst �nding it in (2.11) and then bringing it to the parameter region

where (2.11) reduces to the Koper model. We �nd evidence of an overall global structure

that includes Shilnikov homoclinic orbits and chaotic dynamics as a consequence of the

existence of recurrent dynamics in (2.11). This type of dynamics is associated with MMOs

created in interactions between the manifolds mentioned above. Therefore, we set out to

investigate how the MMO structure can evolve into regimes with homoclinic orbits and

what new types of dynamics can appear from there.

The main goals of this thesis can be summarized as follows:

• to present a numerical method for the systematic detection of all canard orbits near

a folded node in R3.

• to present an implementation of Lin’s method for the detection of orbits arising as

the intersection of global invariant manifolds and slow manifolds in slow-fast systems

in R3.

• to study the complete unfolding of a tangency between the unstable manifold of

a saddle-focus equilibrium and a repelling slow manifold in (2.11), after a singular

Hopf bifurcation.

• to study the global e�ect of the interaction between the manifolds mentioned above

for the dynamics of system (2.11), in particular, the role of their interactions in the

creation and organization of MMOs.

• to study the evolution of MMOs in system (2.11) as system parameters vary.

• to study the existence of Shilnikov homoclinic bifurcations and their role for orga-

nizing the slow-fast dynamics of (2.11).
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1.2 Outline of the thesis

This thesis is organized as follows. In Chapter 2 we present the necessary background

on slow-fast systems with one fast and two slow variables. We discuss the main concepts

and results from the theory of slow-fast systems called Geometric Singular Perturbation

Theory, and provide the corresponding references for further reading. We formally intro-

duce slow manifolds, canard orbits and system (2.11).

In Chapter 3 we discuss the numerical techniques used in this thesis for the computation of

invariant manifolds of equilibrium points and periodic orbits, as well as for slow manifolds.

We describe the di�erent techniques for �nding initial orbits satisfying the corresponding

boundary value problems, which is the �rst task that one faces in the computation of slow

manifolds. We briey present the di�erent setups and provide the respective references.

Chapter 4 deals with the detection via Lin’s method of the di�erent types of connecting

orbits we study in this thesis. First, we describe the numerical setup for the detection

of connecting canard orbits as the intersection between a global invariant manifold and

a slow manifold in (2.11). We also discuss how we use it for detecting a tangency be-

tween the corresponding manifolds, which is crucial for determining the overall dynamics

studied in Chapter 5. The second part of the chapter is dedicated to our method for

the systematic detection of all the canard orbits near a folded node. Here, we describe

the general setup and then show with two examples how the implementation works: the

normal form for a folded node [95] and the Koper model [57, 58].

Chapter 5 is dedicated to the study of the two-dimensional unstable manifold of a saddle-

focus equilibrium and the repelling slow manifold of system (2.11), after a singular Hopf

bifurcation. We analyze the consequences for the dynamics of their interaction, from

both a local and a global point of view. We �nd that the repelling slow manifold wraps

around the one-dimensional stable manifold of the equilibrium in backward time. In the

parameter regime that we consider, the unstable manifold of the equilibrium accumulates

in forward time on, and is bounded by, the attracting periodic orbit that is born after the

singular Hopf bifurcation. As soon as the unstable manifold of the equilibrium interacts

with, that is, becomes tangent to, the repelling slow manifold, it is forced to make large

excursions in phase space before accumulating on the periodic attractor. As a conse-

quence, the unstable manifold of the equilibrium scrolls around the periodic orbit and
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returns back to near itself as it comes close to the stable manifold of the equilibrium. We

show that this return creates secondary intersections between the repelling slow manifold

and the unstable manifold of the equilibrium. Furthermore, this global interaction gives

rise to a one-parameter family of periodic MMOs that are linked with the attracting pe-

riodic orbit. These new MMO periodic orbits are not part of the family of periodic orbits

created at the singular Hopf bifurcation.

In Chapter 6 we identify Shilnikov homoclinic orbits as an organizing center for the dy-

namics of (2.11). We �rst �nd parameter regimes where the Shilnikov homoclinic orbit is

likely to exist by continuing the family of MMO periodic orbits from Chapter 5 to high

periods. We then calculate the nearby Shilnikov homoclinic orbits via Lin’s method. As

we will see, the Shilnikov homoclinic orbits are a huge source of complex dynamics. In

particular, the periodic orbit from Chapter 5 is linked with the Shilnikov homoclinic orbit

and, in this parameter regime, it is of saddle type. This means that its two-dimensional

stable and unstable manifolds may interact with the manifolds of the equilibrium point,

as well as with slow manifolds. We �nd homoclinic orbits to this saddle periodic orbit,

as well as connections from the saddle equilibrium point to the saddle periodic orbit. We

also give evidence for the existence of a chaotic attractor.

We conclude this thesis in Chapter 7 with an overall summary and some �nal remarks,

as well as a brief discussion of some directions for future research.



2
Background on Slow-Fast Systems

In this chapter we review the necessary background and relevant results for slow-fast

systems. Even though most of the theory and the results are true for systems in Rm+n

with m slow and n fast variables, in this chapter and throughout this thesis we focus on

slow-fast systems in R3 with two slow and one fast variables; further details can be found

in, for example, [2, 16, 32, 33, 55, 67].

2.1 Geometric singular perturbation theory in R3

We consider a slow-fast vector �eld of the form

" _x = f(x; y; z; �);

_y = g1(x; y; z; �);

_z = g2(x; y; z; �);

(2.1)

where f , g1 and g2 are smooth functions and � 2 Rk is a vector of parameters. Here,

0 < " � 1 represents the ratio of time scales, so that the variable x 2 R is fast and the

variables y; z 2 R are slow. In this thesis we only encounter the case that f , g1 and g2

9
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do not depend on ". System (2.1) evolves on the slow time scale � , so that the dot in

system (2.1) represents di�erentiation with respect to time on the slow time scale. One

can rewrite system (2.1) with respect to the fast time scale via a time rescaling by " to

obtain
x0 = f(x; y; z; �);

y0 = "g1(x; y; z; �);

z0 = "g2(x; y; z; �);

(2.2)

where the prime denotes the derivative with respect to time on the fast time scale t. Note

that the two systems (2.1) and (2.2) are equivalent as long as " 6= 0. We refer to any of

such systems with 0 < "� 1 as a singularly perturbed system.

Solutions of slow-fast systems can be thought of as a concatenation of slow motion with

fast segments. It is then natural to consider the slow and fast epochs separately. Consid-

ering system (2.1) for " = 0 gives the reduced system

0 = f(x; y; z; �);

_y = g1(x; y; z; �);

_z = g2(x; y; z; �);

(2.3)

for the limiting slow motion. It is a di�erential-algebraic equation (DAE), also known as

the slow ow. On the other hand, fast segments of solutions of (2.1) are approximated by

solutions of the fast subsystem or layer equations

x0 = f(x; y; z; �);

y0 = 0;

z0 = 0;

(2.4)

which is a family of di�erential equations on the fast time scale, obtained as the singular

limit of (2.2) for " = 0. Here the x0-equation depends on y and z, which are now param-

eters.

One of the goals of Geometric Singular Perturbation Theory (GSPT), developed by

Fenichel in the late 1970s [32, 33] is to analyze the full system (2.1), or its equivalent

system (2.2), for 0 < "� 1 by studying both systems (2.3) and (2.4). GSPT has the con-

siderable advantage that one reduces the dimension of the full system, and that in (2.3)

both variables evolve on the same time scale.



2.2 The critical manifold 11

2.2 The critical manifold

The algebraic constraint given by the �rst equation of (2.3) de�nes the two-dimensional

critical manifold

S := f(x; y; z) 2 R3 : f(x; y; z; �) = 0g;

which is the nullcline of the fast variable x. The critical manifold S represents the switch

between slow and fast motion: in the respective singular limits, the dynamics is slow on

S and fast o� S. Note that the critical manifold S is a manifold of equilibria for the fast

subsystem (2.4). In fact, all equilibria of the overall slow-fast system lie on S, because

they are necessarily also equilibria of the fast subsystem. It is possible that S may have

singularities [64]; however, we assume that S is smooth unless otherwise stated.

The properties of the critical manifold S come from the fast subsystem. Accordingly, we

say that a subset N � S is normally hyperbolic if all its points are hyperbolic equilibria

of (2.4). In other words, N � S is normally hyperbolic if, for all p 2 N , the Jacobian

Dxf(p; �) has no eigenvalues with zero real part. Since system (2.1) has a single fast

variable, the normal hyperbolicity is reduced to fx(p; �) 6= 0; hence, system (2.4) implies

that the critical manifold S may have parts that are either attracting or repelling. More

precisely, the attracting sheet is

Sa := S \ ffx(x; y; z; �) < 0g;

and the repelling sheet is

Sr := S \ ffx(x; y; z; �) > 0g:

Sheets Sa and Sr of S may meet at fold curves that are de�ned by

F := S \ ffx(x; y; z; �) = 0g:

Normal hyperbolicity of S in (2.1) then occurs away from the set F . Figure 2.1 shows an

example of a critical manifold. The attracting sheet Sa is red and the repelling sheet Sr

is blue. The fold curve F is represented by the black curve. The arrowed lines correspond

to fast �bers, that is, solutions of the fast subsystem; the arrows indicate the direction of

the fast ow.
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Sa

Sr

F

x

y
z

Figure 2.1: Example of a critical manifold for a system of the form (2.1). The attracting sheet Sa
(red) and the repelling sheet Sr (blue) meet at the fold curve F (black curve). The arrows indicate the
direction of the flow along fast fibers.

2.3 The slow ow and folded singularities

The fast dynamics of (2.1) is well understood by analyzing the one-dimensional sys-

tem (2.4); its solutions are one-dimensional fast �bers that are attracted to or repelled

from S, where points on F usually correspond to saddle-node bifurcations when we con-

sider the slow variables as parameters. On the other hand, the slow dynamics deserves

a more detailed analysis. Since the reduced system (2.3) is restricted to its critical man-

ifold, one can use the normal hyperbolicity of S away from fold curves and apply the

Implicit Function Theorem to describe S locally as a graph x = �(y; z) and, thus, obtain

a two-dimensional system projected onto the plane of slow variables

_y = g1(�(y; z); y; z; �);

_z = g2(�(y; z); y; z; �):
(2.5)
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Unfortunately, S is not a graph over the slow variables near F . Alternatively, to study

the dynamics on S, one can choose, say, x and z as the de�ning variables and use the

constraint f = 0 and the equations for _y and _z in (2.3) to obtain the system

�fx _x = fyg1 + fzg2;

_z = g2:
(2.6)

For the example shown in Fig. 2.1, this formulation holds for all of S, though the system

is singular at fold curves. System (2.6) can be desingularized by rescaling time by the

factor �fx. This way, one obtains

_x = fyg1 + fzg2;

_z = �fxg2;
(2.7)

which allows the extension of (2.6) to fold curves. System (2.7) reverses the ow on the

repelling sheet Sr. Generically along a fold curve, trajectories of (2.3) approach F in

either forward or backward time on both the attracting and repelling sheets Sa and Sr

of S. Singularities of the desingularized system (2.7) lie on F and are known as folded

singularities. At such points trajectories of the slow ow (2.3) pass from Sa to Sr. A

point q 2 F is a folded singularity if

fy(q; �)g1(q; �) + fz(q; �)g2(q; �) = 0: (2.8)

The stability of a folded singularity q comes from the analysis of q as a singularity of

(2.7). Let �1 and �2 denote the eigenvalues of the Jacobian matrix of the desingularized

system (2.7) at q. We call q a

• folded saddle, if �1�2 < 0 and �1; �2 2 R.

• folded node, if �1�2 > 0 and �1; �2 2 R.

• folded focus, if �1; �2 2 C with Im(�1;2) 6= 0; in this case �1 = �2.

Note that folded singularities are not singularities of the full system (2.1), and they are

only de�ned for the desingularized system (2.7).

Folded singularities can undergo bifurcations, so that one can also have degenerate folded

singularities. Important in this thesis are folded saddle-node singularities, which are

saddle-node bifurcations in the reduced ow (involving folded singularities). One can

distinguish two types of folded saddle-node singularities [66], depending on the relative
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position of the fold curve and the center manifold W c(q) corresponding to the zero eigen-

value of the folded saddle-node singularity q. We speak of a folded saddle-node of type I if

W c(q) is tangent to the fold curve F . In this case a folded saddle and a folded node collide

as in a classic saddle-node bifurcation, and this involves slow variables only. On the other

hand, in a folded saddle-node of type II the center manifold W c(q) is transverse to F ;

this involves both slow and fast variables and corresponds to a transcritical bifurcation of

a folded singularity with an actual singularity of the full system (2.1). In the latter case,

the equilibrium of (2.1) undergoes a singular Hopf bifurcation at a distance O(") from the

folded saddle-node of type II in parameter space [40]; see section 2.5.

2.4 Slow manifolds and canard orbits

Now that we have a good impression of the situation for " = 0, we can activate " and

combine the dynamics of (2.3) and (2.4) to understand the full system (2.1) or its equiv-

alent version (2.2) for " > 0. The dynamics far from the critical manifold S is nearly

one dimensional, but what about the dynamics near S? For 0 < "� 1, Fenichel Theory

[32, 33, 55] guarantees in the full system (2.1) the existence of attracting and repelling

smooth slow manifolds Sa" and Sr" that are O(") away from Sa and Sr where these are

normally hyperbolic, that is, away from fold curves. Trajectories of system (2.1) with

" > 0 are attracted to Sa" and repelled from Sr" in forward time at fast exponential rates;

trajectories that lie on a slow manifold remain slow for O(1) time on the slow time scale.

Slow manifolds are not unique, but the distance between a pair of slow manifolds of the

same type is O(exp(�K
"
)) for some K > 0. This is one of the main results of GSPT,

summarized in the following theorem [32, 33]:

Theorem 2.4.1 (Fenichel). Suppose N = N0 is a compact normally hyperbolic submani-

fold (possibly with boundary) of the critical manifold S of (2.1) and that f; g1; g2 2 Cr; 1 �
r <1. Then, for " > 0 su�ciently small, the following hold:

i. There exists a locally invariant manifold N" di�eomorphic to N0. Local invariance

means that N" can have boundaries through which trajectories enter or leave.

ii. The manifold N" has a Hausdor� distance of O(") from N0.

iii. The ow on N" converges to the slow ow as "! 0.

iv. The manifold N" is Cr-smooth.
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v. The manifold N" is normally hyperbolic and has the same stability properties (at-

tracting, repelling or saddle type) with respect to the fast variables as N0.

vi. The manifold N" is usually not unique. In regions that remain at a �xed distance

from the boundary of N", all manifolds satisfying (i)-(v) lie at a Hausdor� distance

O(exp(�K
"
)) from each other for some K > 0, where K is O(1).

Slow manifolds can be extended in forward and backward time by the ow; however,

their behavior is not controlled by the singular limits (2.3) and (2.4). In particular, one

can extend slow manifolds close to folded singularities, where Fenichel theory does not

apply and slow manifolds are no longer approximations of the corresponding sheets of the

critical manifold; in fact, attracting and repelling slow manifolds may exhibit complex

oscillations in a neighborhood of a folded node and start interacting.

In our slow-fast setup with two slow and one fast variables, slow manifolds are two dimen-

sional surfaces. Their intersections give rise to canard orbits, which are special trajectories

of (2.1) that ‘connect’ an attracting and a repelling sheet of the critical manifold. In par-

ticular, canard orbits remain on Sr" for O(1) time on the slow time scale, in contrast

to most trajectories of (2.1), which jump at folds along fast �bers. Canard orbits are

generic objects in R3. They divide domains with large relaxation oscillations from do-

mains with small-amplitude oscillations (SAOs) and their existence is closely related to

the phenomenon of mixed-mode oscillations (MMOs) [16, 86].

Canard orbits in R3 have been classi�ed and analyzed in [4, 11, 92, 95] by using GSPT

and blow-up techniques. In particular, folded nodes are associated with the existence of

canard orbits. Generically, for a folded node q one has an inequality of the form j�sj > j�wj
for the eigenvalues. The corresponding eigendirections ~s and ~w are referred to as the

strong and weak singular canards, respectively. The ratio � := �w
�s
< 1 between the weak

and the strong eigenvalues of q determines the number of secondary (maximal) canard

orbits that arise as additional transverse intersections between Sa" and Sr" for 0 < "� 1.

This is summarized in the following theorem [92, 95]:
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Theorem 2.4.2 (Canards in R3). For the slow-fast system (2.1) with " > 0 su�ciently

small, the following hold:

i. There are no maximal canards generated by a folded focus.

ii. For a folded saddle the two singular canards ~s; ~w perturb to maximal canards s

and w.

iii. For a folded node, let � = �w
�s
< 1. The singular canard ~s (strong canard) always

perturbs to a maximal canard w. If ��1 =2 N, then the singular canard ~w (weak

canard) also perturbs to a maximal canard w. We call s and w the primary

canards.

iv. For a folded node, suppose k > 0 is an integer such that 2k+ 1 < ��1 < 2k+ 3 and

��1 6= 2(k+ 1). Then, in addition to s and w, there are k other maximal canards,

which we call secondary canards.

v. The primary weak canard of a folded node undergoes a transcritical bifurcation for

odd ��1 2 N and a pitchfork bifurcation for even ��1 2 N.

We close this section with the following theorem, which deals with small oscillations of

canard orbits near a folded node; see also [92, 95]:

Theorem 2.4.3 (Small oscillations) For a folded node with eigenvalues �s < �w < 0,

� = �w
�s

, and m 2 N such that 2m + 1 < ��1 < 2m + 3, assume ��1 6= 2m + 2 and " > 0

su�ciently small " > 0. Then following holds:

i. The primary strong canard s twists once around the primary weak canard w.

ii. The k-th secondary canard k, where k = 1; : : : ;m twists 2k + 1 times around the

primary weak canard w.

iii. These rotations have amplitudes O(") and occur within O(
p
") distance of the folded

node.

Here a twist corresponds to a rotation of 180�, so the number of small oscillations of the

k-th secondary canard orbit near a folded node is 2k+1
2

. These canard orbits bound regions

on Sa" where orbits have the same number of small oscillations. These so-called sectors of

rotation organise the SAOs in certain types MMOs.
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2.5 Singular Hopf bifurcation

A Hopf bifurcation [43, 68] is a well-known bifurcation of codimension one that is char-

acterized by an equilibrium with a pair of complex-conjugate eigenvalues crossing the

imaginary axis with non-zero speed. As a consequence of this change of stability, a family

of periodic orbits is born whose amplitude grows in a square-root fashion with respect to

the parameter distance from the bifurcation. On the other hand, a singular Hopf bifurca-

tion [9, 16, 40, 46] is characterized by a rapid growth in the amplitude of the emanating

periodic orbit due to the imaginary part of the eigenvalues that cross the imaginary axis

growing without bound as " ! 0. It occurs in slow-fast systems with one fast variable

and at least two slow variables, such as (2.1). This feature is associated with the slow-fast

nature of the system, and the fact that both the fast and slow variables are involved in

the bifurcation. To be more precise, the imaginary parts of the eigenvalues involved in

the singular Hopf bifurcation are O( 1p
"
).

The author of [9] gives generic conditions for an equilibrium point of (2.1) to undergo a

singular Hopf bifurcation. Among them, we highlight the following:

(H1) Dxf = 0,

(H2) DyfDxg1 +DzfDxg2 < 0, and

(H3) Dxxf 6= 0,

where the derivatives are evaluated at the equilibrium point. These conditions are related

to the existence of a pair of complex conjugate eigenvalues with singular imaginary part

and the fact that the equilibrium point does not lie in a fold curve. Geometrically, what

occurs is that an actual equilibrium of the full system (2.1) collides with a folded singular-

ity when it crosses a fold curve of the critical manifold S, becoming a folded saddle-node

of type II [71]. Then, the equilibrium crosses transversally the fold curve and undergoes

a singular Hopf bifurcation extremely close to the fold curve as a single parameter is varied.

The conditions (H1){(H3) are used in [9] for the construction of a normal form model for

a singular Hopf bifurcation. Guckenheimer [40, 46] introduced a ‘geometric’ model that
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can also be considered as a normal form for a singular Hopf bifurcation; it is given by

" _x = y � x2;

_y = z � x;
_z = �� � ax� by � cz;

(2.9)

with a; b; c; � 2 R. The equilibrium that undergoes a singular Hopf bifurcation crosses

the fold curve of the critical manifold at the origin as � varies near zero; the bifurcation

occurs at a value of � that is O("). After an "-dependent scaling in variables, parameters

and time, (2.9) can be written as

x0 = y � x2;

y0 = z � x;
z0 = �� � Ax�By � Cz;

(2.10)

where the new parameters A;B;C; � 2 R. Note the absence of " in (2.10), which provides

a zoom of the neighborhood of the folded singularity of interest; in [40, 46], system (2.10)

is called the system of �rst approximation and it is used for studying unfoldings of a

singular Hopf bifurcation. Some authors have studied a modi�ed version of (2.9) without

the term �by in the third equation, because it is of higher order in " after the scaling.

However, it has been proven that this term is important since it is contained in the �rst

Lyapunov coe�cient of the Hopf bifurcation, so it is necessary for the unfolding [40].

In Chapters 5 and 6 we consider a slightly modi�ed version of (2.9), also introduced by

Guckenheimer [16, 40, 46], given by the system of di�erential equations

" _x = y � x2 � x3;

_y = z � x;
_z = �� � ax� by � cz;

(2.11)

with a; b; c; � 2 R and 0 < "� 1. System (2.11), which encompasses the Koper model of

an idealized chemical reaction [57, 58], has an additional cubic term in the �rst equation.

This modi�cation does not change the structure of the singular bifurcation but makes it

richer: by adding the cubic term the critical manifold becomes S-shaped, which gives rise

to a global return mechanism that is able to produce MMOs [16]. System (2.11) therefore

exhibits MMOs for which the SAOs are organized by a singular Hopf bifurcation.
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Figure 2.2: One-parameter bifurcation diagram of system (2.11) for � 2 (�0:6; 1:4). Panels (b1) and
(c1) show enlargements of panel (a) near the singular Hopf bifurcations. The corresponding panels (b2)
and (c2) show the projections on the (x; y)-plane of a selection of periodic orbits, as indicated by the
numbered crosses in panels (b1) and (c1), respectively.

Figure 2.2(a) shows a one-parameter bifurcation diagram of (2.11) for a = 0:008870,

b = �0:5045, c = 1:17, " = 0:01 and � 2 (�0:6; 1:4); these parameter values are taken

from [16]. Here, the variable x is plotted on the vertical axis with the parameter � on

the horizontal axis. The black curve represents equilibria of (2.11). The upper and lower

branches correspond to saddle equilibria with one unstable eigenvalue and two stable

real ones. These branches collide with the middle branch in saddle-node bifurcations for

� = �LSN � �0:416 and � = �RSN � 1:277, respectively. The middle branch corresponds to

points p = p(�) := (x� ; x
2
� + x3

� ; x�), where x� is the root nearest to 0 of the equation

� + (a+ c)x� + bx2
� + bx3

� = 0;
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for � 2 (�LSN; �
R
SN). The equilibrium p is unstable for �LH � � � �RH , where �LH �

�8:587 � 10�5 and � = �RH � 0:8607 are supercritical singular Hopf bifurcation points.

Both singular Hopf bifurcations give rise to the same family of periodic orbits �� of (2.11).

The green curve in Fig. 2.2(a) shows the maximum value of the x-coordinate of �� for

� 2 (�LH ; �
R
H ). After the singular Hopf bifurcation at � = �LH , as � increases, there is a

very small interval where the amplitude of �� grows in a square-root fashion, as is to

be expected near a Hopf bifurcation [68]. The amplitude then grows extremely rapidly,

a phenomenon that is known as a canard explosion, until it reaches a plateau that cor-

responds to relaxation oscillations. The same phenomenon occurs near � = �RH when �

decreases; see panels (b1) and (c1) of Fig. 2.2. The stable periodic orbit �� that emanates

from the supercritical singular Hopf bifurcation becomes unstable in a period-doubling

bifurcation and becomes stable again after another period-doubling bifurcation; the sta-

bility of �� does not change during the relaxation oscillations. The numbered crosses

on the curve of periodic orbits in panels (b1) and (c1) correspond to the periodic orbits

displayed in panels (b2) and (c2), respectively; here, the periodic orbits are shown pro-

jected onto the (x; y)-plane together with (the projection of) the x-nullcline (thick gray

curve). These panels, hence, show the rapid growth of the periodic orbit during the two

canard explosions, which characteristically involves slow segments that follow the central

repelling slow manifold.

For � 2 (�LH ; �
R
H ), the saddle-focus p has one stable real eigenvalue and a pair of unstable

complex-conjugate eigenvalues. The Stable Manifold Theorem [43, 76] implies that p

has a one-dimensional stable manifold W s(p) and a two-dimensional unstable manifold

W u(p), which are formally de�ned in Chapter 3. The interaction of these manifolds, more

particularly of W u(p) with the repelling slow manifold Sr" is the main topic of Chapter 5.



3
Numerical Setup: Boundary Value

Problem Formulations

In this chapter we discuss the numerical setup used for the computation of the stable

and unstable manifolds of an equilibrium point or a saddle periodic orbit, as well as

the slow manifolds considered in this thesis. We approximate these manifolds via the

continuation of solutions to a two-point boundary value problem implemented in the

package AUTO [20, 26]. We also track intersection sets of manifolds with a suitable

codimension-one cross section. In contrast to shooting methods, the continuation rou-

tines of AUTO use orthogonal collocation with piecewise polynomials [3, 13], and the size

of the pseudo-arclength continuation step is determined from the entire orbit segment.

This computational approach copes very well with sensitive systems, in particular the

slow-fast systems we study for this thesis; see [30, 35, 44, 47, 60, 61] for more background

information. Once the data is generated in AUTO we export it into MATLAB, where we

process it to render manifolds as surfaces and produce the �gures.

In the boundary value problem formulations we describe here, instead of a slow-fast system

of the form (2.1), we consider its equivalent version (2.2) written in the fast time scale,

21
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which contains the ratio of time scales " as part of the right-hand side of the equation.

As standard in AUTO, we rescale time and write system (2.2) in the form

u0 = TF (u; �): (3.1)

Here, u = (ux; uy; uz) 2 R3, F : R3 � Rk ! R3 is the right-hand side of (2.2) and � 2 Rk

is its vector of parameters. Importantly, u : [0; 1] ! R3 so that any orbit segment is

parametrized over the unit interval [0; 1]; the actual integration time T is considered as

a separate parameter. The function u is a unique solution of (3.1) if suitable boundary

conditions are imposed at one or both end points u(0) and u(1). Therefore, the manifolds

we compute are de�ned in terms of the conditions one imposes upon u(0) and u(1) of each

orbit segment. This is done in such a way that the part of the surfaces under consideration

is foliated by orbit segments that satisfy the given boundary value problem.

3.1 Computation of stable and unstable manifolds

For the parameter regimes studied in Chapters 5 and 6, the equilibrium point p of (2.11) is

a saddle-focus with one real stable eigenvalue �s and a pair of complex conjugate unstable

eigenvalues �u and �u. According to the Stable Manifold Theorem [43, 76], the equilibrium

p has a one-dimensional stable manifold W s(p) and a two-dimensional unstable manifold

W u(p), which are de�ned as

W s(p) := fq 2 R3 : ’t(q)! p when t!1g;
W u(p) := fq 2 R3 : ’t(q)! p when t! �1g;

(3.2)

where ’t denotes the ow induced by the vector �eld. The sets W s(p) and W u(p) are im-

mersed manifolds that are as smooth as the vector �eld and tangent at p to the associated

stable and unstable linear eigenspaces Es(p) and Eu(p), respectively.

3.1.1 Computation of W s(p)

The easiest computation we perform here is that of the one-dimensional stable manifold

W s(p) of p. To calculate W s(p), we consider an orbit segment u(t) that is a solution

to (3.1) with the boundary condition

u(0) = p+ �sws; (3.3)
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where ws denotes the stable eigenvector of p, which spans Es(p). To guarantee that the

orbit segment is a good approximation of W s(p), one choses u(0) to be near p; here, we set

�s = 10�5. Note that this de�nes a one-parameter family of orbit segments parameterized

by T ; in other words, continuation in T < 0 solves the initial value problem for the

initial condition given by (3.3). It is also possible to impose a further boundary condition

at the end point u(1) of the orbit; see [60]. Speci�cally, we let u(1) be free, monitor

its coordinates during the continuation in T and and stop the computation when the

condition

u(1) 2 � (3.4)

is satis�ed for some chosen two-dimensional section � � R3; this is done by checking,

e.g., its z-coordinate uz(1), as a user-de�ned point in AUTO. In this way, one obtains

the intersection point of W s(p) with a chosen section �. Note that a one-dimensional

(un)stable manifold of any saddle equilibrium point, not necessarily a saddle-focus, can

be computed in the same way.

3.1.2 Computation of W u(p)

The two-dimensional unstable manifold W u(p) is an important object of study in Chap-

ters 5 and 6. In contrast to W s(p), the computation of a two-dimensional invariant

manifold requires one to de�ne a suitable representation by a one-parameter family of

orbit segments. How this is done best depends on the type of the hyperbolic saddle equi-

librium, namely on whether its eigenvalues are real or complex conjugate. The end point

u(0) of the orbit segment has to lie in the linear unstable eigenspace Eu(p), at a su�ciently

small distance from p. One then needs to identify what is know as a fundamental domain,

which is a �nite curve segment parameterized by a single parameter � 2 [0; 1), such that

points on it are all in one-to-one correspondence to the orbits on the invariant manifold;

see [60] for details. What makes the di�erence between real and complex eigenvalues in

the computation of W s(p) is how one de�nes the fundamental domain. For the case of

real eigenvalues, the fundamental domain is given by a small circle or ellipse in Eu(p)

near p; see [60].

Here we describe the case of a saddle-focus, which is the topological type of the equilib-

rium point p of (2.11) in Chapters 5 and 6. When the unstable eigenvalues are complex

conjugate, the end point u(0) lies in a fundamental domain of W u(p) that can be written

in the form

u(0) = (1� �)wu0 + �wu1 ; (3.5)
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with � 2 [0; 1). Here, the two points wu0 and wu1 in R3 are chosen in the following way.

We consider

wu0 = p+ �uwu; (3.6)

where wu 2 Eu(p) is a normalized vector from the two-dimensional unstable eigenspace

of the linearzation matrix at p, which can be obtained as a unit generalised eigenvector

of p, and �u > 0 is small and �xed; we set �u = 10�5 here. The point wu1 is de�ned as

the �rst return in the same direction of the orbit starting from wu0 to the local section

through p spanned by wu and the stable eigenvector ws of p.

There are many di�erent ways to impose conditions on u(1), so that W u(p) is uniquely

de�ned as a one-parameter family of orbit segments. Throughout Chapters 5 and 6, we

compute W u(p) for di�erent parameter values up to two sections � = �1 and � = �3.

This is done by �xing uy(1) and uz(1), accordingly. This allows us to compute the inter-

section sets cW1 � �1 and �+
13(cW1) � �3 in Chapter 5; here, we exploit the exibility of

our method and also compute the return �+
11(cW1) of cW1 to �1 and �+

13(cW1) of cW1 to �3,

which is done by �xing the same condition of the end point u(1), after allowing orbits to

perform one or several global excursions.

In Section 5.2.2 we compute the entire surface W u(p) to see how it accumulates on the

stable periodic orbit �� , among other global features. To this end, instead of imposing a

condition on u(1), we compute W u(p) as orbit segments with a �xed maximal arclength

L = Lmax, where

L = T

Z 1

0

kF (u(s); �)k ds: (3.7)

This works very well; see e.g. Figures 5.5(a) and (b), where we set di�erent values for

Lmax depending on its overall shape and size. The computation of W u(p) in Fig. 5.5(c) is

more challenging; here, some orbit segments track a repelling slow manifold Sr" and spend

a very long time near a connecting canard orbit. For calculating W u(p) in this case we

impose the condition

(T � Tmax)(L� Lmax) = �: (3.8)

Here � is a small �xed parameter, Tmax is a �xed maximal integration time and Lmax is

a �xed maximum allowed arclenght as before; here, we set � = 10�3. In this way, when

the integration time T of an orbit segment reaches Tmax, the arclength L decreases and

vice versa, so that the computation can proceed past obstructions of �nite L, such as the

connecting canard orbits �1 and �2; see [25] for the general idea and also Chapter 5.
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3.1.3 Computation of W s(��) and W u(��)

For the parameter values in Chapter 6 system (2.11) has a saddle periodic orbit �� , which

has two-dimensional stable and unstable manifolds W s(��) and W u(��); the manifolds

W s(��) and W u(��) are de�ned in a similar way as those for an equilibrium in (3.2).

The computation of these manifolds is also done with a similar setup to the one used

for the computation of W u(p), but instead of the vector wu 2 Eu(p) one needs, for

r 2 �� , the vectors ws(r) and wu(r) de�ned as follows. At each point r 2 �� there is a

well-de�ned stable and unstable linear eigendirection spanned by the unit vector ws(r)

and wu(r), respectively, corresponding to the eigenvalue of the Poincar�e map at r with

modulus less or greater than 1, respectively; the families of vectors fws(r) : r 2 ��g and

fwu(r) : r 2 ��g form the stable and unstable eigenbundle Es(��) and Eu(��) of �� ,

respectively. By extending system (3.1) in AUTO, one obtains a discretized version of

these eigenbundles. For r 2 �� �xed, one computes W u(��) by de�ning, as in (3.6),

wu0 = r + �uwu(r) (3.9)

with �u small. Similarly, one can de�ne

ws0 = r + �sws(r) (3.10)

for the computation of W s(��), with �s small; see [29] for more details.

Intersection sets of these manifolds with suitable cross-sections can be computed in the

same way as for two-dimensional manifolds of equilibria; see Chapter 6.

3.2 Computation of slow manifolds

We follow the approach in [16, 17, 19, 60] and compute a slow manifold as a family of

orbit segments that is parameterized by the position of one end point on a suitable line

segment L on the critical manfold. For the other end point, one can use any of the con-

ditions described in Section 3.1.2. Throughout this thesis, we compute slow manifolds

up to a suitable codimension-one section � that depends on the speci�c problem, and

determine their intersection sets in �.
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For an attracting slow manifold Sa" , the orbit segments representing it are solutions to the

boundary value problem

u0(t) = TF (u(t); �);

u(0) 2 L � Sa;

u(1) 2 �;

(3.11)

where the line L lies on the attracting sheet Sa of the critical manifold S, such that it

is parallel to and su�ciently away from a fold curve F of interest. Solutions to (3.11)

provide an accurate approximation of Sa" , since Fenichel theory [32, 33, 55, 67] ensures for

" > 0 the existence of slow manifolds as O(") perturbations of the corresponding sheets of

the critical manifold away from fold curves; see Chapter 2. In other words, we compute

Sa" as the ‘unstable manifold’ of the line segment L � Sa. The end point ua(1) of an

orbit segment that satis�es (3.11) lies on � and traces out (a curve in) the intersection

set Sa" \ �, which is the di�eomorphic image of L in � under the ow. The line L and,

hence, the entire family of orbit segments is parameterized by a single parameter.

For the computation of a repelling slow manifold Sr" we employ the same boundary value

problem setup (3.11), where now the line segment L lies on the repelling sheet Sr of the

critical manifold. Note that the direction of the ow along orbit segments is reversed.

Alternatively, one can interchange the conditions for u(0) and u(1). Hence, the total

integration time T is negative.

3.2.1 Finding an initial orbit segment

Finding a ‘good’ initial orbit segment that satis�es the boundary value problem (3.11),

which is to be continued along L to compute the corresponding slow manifold, is more

challenging than for the computation of invariant manifolds. In [17], slow manifolds are

computed for a normal form model where the initial orbit comes from an explicit solu-

tion. However, this is not possible in general. For the computation of slow manifolds in

Chapter 4, where the section � contains a folded node, we follow [16, 17] and compute

an initial orbit on Sa" by two homotopy steps as follows. Starting with the trivial solution

of (3.11) u � p0 (where p0 is the folded node) with T = 0, we continue u(0) along the fold

curve by setting L = F and keeping the condition u(1) 2 � until u(0) is far enough from

p0; here, � is chosen such that it contains p0. We then continue u(0) on the attracting

sheet of the critical manifold until u(0) 2 L again, keeping the condition u(1) 2 �; the

same procedure applies for the computation of an initial orbit on Sr" .
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For the computation of Sr" in Chapter 5 we do not study its dynamics near a folded node

and we initially compute Sr" up to a section � = �1, which is transverse to the repelling

sheet Sr of the critical manifold of (2.11). Here, we want to compute a part of Sr" that

follows Sr all the way up to a fold curve. We also use homotopy steps for �nding an

initial orbit, where we start with a solution of (3.11) with u(0) = u(1) 2 Sr \ �1; then,

we continue the point u(0) along Sr away from �1 and keep the condition u(1) 2 �1. The

orbit segments on Sr" are computed in backward time, and a fold in the integration time

T corresponds to a trajectory that follows Sr for the longest time. We choose this orbit

segment as the initial solution of (3.11). The value of uy(0) is then used to de�ne the

line segment L on Sr. Once we have a part of Sr" from L to �1, we can continue solu-

tions to (3.11) and free u(1) to detect their intersections with sections �2 and �3. We can

also free u(0) and compute secondary backward intersections of Sr" with �1; see Chapter 5.

Overall, we can compute reliable representations of stable and unstable manifolds of

equilibrium points and saddle periodic orbits, as well as attracting and repelling slow

manifolds. We can also trace out their intersection sets with suitable codimension-one

sections. On top of this, there may exist intersections between these manifolds. We

can use our boundary value problem setup to �nd and then continue such intersecting

trajectories, and this is the topic of the next chapter.
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4
Lin’s Method Approach for Detecting

Connecting Orbits in Slow-Fast
Systems

The existence of connecting orbits in a system such as (2.1) may be responsible for signif-

icant changes of the global dynamics; including the appearance of chaotic dynamics; see

[43, 68, 77, 90]. The main examples in support of this statement come from the theory

of homoclinic and heteroclinic bifurcations, where connecting orbits arise as intersections

of stable and unstable manifolds of a single saddle object or between two di�erent saddle

objects. It is then crucial for theory and applications to �nd and follow connecting orbits

in system parameters.

Due to the global nature of connecting orbits, �nding these special orbits requires the use

of advanced numerical methods [6, 7, 12, 21, 22, 23, 24]. In this context, Lin’s method

[70] appears as an analytical theory that can be used to detect connecting orbits and

analyze the recurrent dynamics near them. The underlying idea is that, for any value

of the system parameters, there are two (or even more) well-de�ned orbit segments from

29



30 Lin’s Method Approach for Detecting Connecting Orbits

one of the saddle objects to a suitable section � and from � to the other saddle object;

these orbit segments do not meet in �, but their di�erence in � lies in a d-dimensional

subspace called the Lin space. From a computational perspective, these orbit segments

are solutions to two-point boundary value problems and their end points on the Lin space

give rise to d well-de�ned test functions called the Lin gaps. The connecting orbit is

found numerically by closing each of the Lin gaps one by one via continuation runs of the

overall underlying multiple-segment boundary value problem. This has proven to be very

successful for the detection and continuation of homoclinic and heteroclinic connections;

see [36, 62, 74] as examples. For a di�erent approach based on homotopy methods, see

[23, 24].

In this chapter we present a Lin’s method approach in a di�erent context, where we �nd

the connecting canard orbits near a singular Hopf bifurcation studied in Chapter 5, as

well as canard orbits near a folded node. Both cases correspond to slow-fast systems in

R3 with one fast and two slow variables, such as (2.1), which implies that the section � is

two dimensional and the dimension of the Lin space is d = 1. In this context, we consider

these special orbits as connecting orbits arising from the intersection of di�erent types of

manifolds, which includes slow manifolds in this case. Speci�cally, Section 4.1 deals with

the detection and continuation of connecting canard orbits, while Section 4.2 is dedicated

to the detection of canard orbits. We describe the numerical setup for each case.

4.1 Lin’s method approach for detecting connecting

canard orbits

The existence of connecting canard orbits is crucial for the global return mechanism

and the recurrent dynamics described in Chapter 5. A connecting canard orbit arises

in system (2.11) as an intersection of the unstable manifold W u(p) of a saddle-focus

equilibrium p with a repelling slow manifold Sr" . We implement a Lin’s method approach

to detect such connecting canard orbits. As usual, we calculate W u(p) and Sr" via the

continuation of a two-point boundary value problem setup with the package AUTO [20,

26] by using the methods described in Chapter 3. The manifolds are then computed

as families of orbit segments that are solutions of their corresponding boundary value

problems described in Section 3.1.2 and Section 3.2 of Chapter 3, up to a section �.
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4.1.1 Numerical setup

The unstable manifold W u(p) intersects � several times; see Chapter 5. For the detection

of a connecting canard orbit we initially consider only the �rst intersection of W u(p) with

�, denoted by cW1. We also consider the intersection set

bSr" := Sr" \ �:

Both intersection sets can be obtained by computing, up to �, a family of orbit segments

on W u(p) and Sr" , respectively. The orbit segments ur on Sr" are solution of the boundary

value problem

u0r(t) = TF (ur(t); �);

ur(1) 2 Lr � Sr;

ur(0) 2 �;

(4.1)

where the line Lr is chosen as described in Chapter 3. An initial orbit segment that

satis�es the boundary value problem (4.1) can be found with the homotopy steps, which

is also described in Chapter 3.

The orbit segments um on W u(p) are solutions of the boundary value problem

u0m(t) = TF (um(t); �);

um(0) 2 D;

um(1) 2 �;

(4.2)

where the set D represents the one-dimensional fundamental domain in the linear unsta-

ble eigenspace Eu(p) close to p, as described in Section 3.1.2.

The main idea of Lin’s method is to combine the two boundary value problems (4.1) and

(4.2) together as a new multi-segment boundary value problem for the two families of

orbit segments ur and um. The missing ingredient is the de�nition of the Lin space Z

in �, which de�nes the Lin gap �. To de�ne Z we consider two points, pr 2 bSr" and

pm 2 cW1. We choose them as the end points pr := ur(0) and pm := um(1) of the �rst two

orbit segments that we compute, one obtained during the homotopy steps for ur and the

other forming an initial orbit on W u(p). We then use pr and pm to de�ne the unit vector

vZ :=
pm � pr
kpm � prk

2 �;



32 Lin’s Method Approach for Detecting Connecting Orbits

as well as its normal unit vector nZ 2 �, with nZ ? vZ . The vector vZ spans the Lin

space, that is,

Z := spanfvZg:

Note that Z is de�ned by the initial choices for pr and pm. The genericity conditions

for Z require that the Lin space Z is transverse to the intersection curves bSr" and cW1,

which are unknown at the beginning of the calculation. Nevertheless, Z will generically

be transverse to both bSr" and cW1.

Once the vectors vZ and nZ are de�ned, we consider the family of solutions to the boundary

value problems (4.1) and (4.2) with the additional boundary conditions

(um(1)� ur(0)) � nZ = 0; (4.3)

vZ � (um(1)� ur(0)) = �: (4.4)

The boundary condition (4.3) ensures that the end points um(1) and ur(0) lie along the

Lin space Z during the continuation of the overall boundary value problem, and (4.4)

de�nes the signed Lin gap �. The boundary value problem (4.1){(4.4) is well de�ned and

the test function � depends on a single internal parameter, which can be thought of as

identifying the end point ur(1) 2 Lr or, alternatively, um(0) 2 D. Here, T and � are

free parameters that move as the end points of the corresponding orbit segments move

along Lr and D. Again, once chosen, vZ and nZ remain �xed during the continuation

of (4.1){(4.4). Continuing this boundary value problem and monitoring � allows us to

detect a connecting canard orbit automatically as � = 0.

Fig. 4.1 is an illustration of the Lin’s method setup for �nding the connecting canard

orbit �1 of system (2.11) for � = 0:00712; compare Fig. 5.4. Panel (a) shows a global

view, where a part of W u(p) and a part of Sr" are computed up to � := �1 � fy = 0:03g.
Orbit segments on Sr" are solutions of (4.1), where Sr is the repelling middle sheet of the

critical manifold S of (2.11); the orbit segments on W u(p) are solutions to the two-point

boundary value problem (4.2). Highlighted are the two initial orbit segments ur and um

on Sr" and W u(p), respectively, that de�ne pr and pm and, hence, the Lin space Z and the

Lin gap �. Fig. 4.1(b) shows the situation when � = 0, meaning that the Lin gap is closed

and the concatenation of um and ur forms the connecting canard orbit �1, shown in gold.

Note that the second connecting canard orbit �2 shown in Chapter 5 can be obtained as

a second zero of the Lin gap � with exactly the same setup and in the same continuation

run. The same approach can be applied for �nding secondary and further intersections

between W u(p) and Sr" , this time considering further intersections of W u(p) with � that
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Figure 4.1: Illustration of Lin’s method applied to system (2.11) with � = 0:00712. Panel (a) shows
a general view of Sr" (blue) and Wu(p) (red) computed up to section �1, including the orbits ur (blue)
and um (red), on Sr" and Wu(p) respectively; their end points pr and pm in �1 define the Lin gap � along
the Lin space Z in �1. Panel (b) shows the Lin gap � closed, so that the connecting canard orbit �1 (gold)
is detected.

come from orbit segments on W u(p) with a global return; see Chapter 5.

4.1.2 Detecting a tangency as a fold point

Once a connecting canard orbit is found, we consider the connecting canard orbit as a

single orbit segment that can be continued in a single system parameter as a solution

of (4.1){(4.4) with � = 0 �xed; here, one end point of that single orbit lies on the

fundamental domain of W u(p) and the other end point lies on Lr. Note that we can still

track the intersection points ur(0) = um(1) 2 �1. Fig. 4.2(a) shows the x-coordinate of the

intersection point of the connecting canard orbit with �1, as a function of the parameter

� of system (2.11). For su�ciently large � in panel (a), there exist two connecting canard

orbits �1 and �2 that correspond to the upper and lower branches of the curve, shown

in gold and brown, respectively. For these �-values, the intersection between W u(p) and

Sr" is transverse; see Fig. 5.4 as a reference. The two branches join at a fold point at
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