
CDMTCS
Research
Report
Series

Workshop on Truths and
Proofs

D. S. Bridges, C. S. Calude,
F. Kroon (Eds.)
Christchurch University
University of Auckland
New Zealand

CDMTCS-165
November 2001

Centre for Discrete Mathematics and
Theoretical Computer Science



The Centre for Discrete Mathematics and Theoretical Computer Science
and The Department of Philosophy

WORKSHOP ON TRUTHS AND PROOFS
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The Workshop is part of the Australasian Association of Philosophy (New Zealand Division) Annual
Conference to be held in Auckland, New Zealand on 2-7 December 2001.

The Workshop consists of seven talks and one roundtable discussion. The programme, including the
abstracts of talks, follows.



Programme

Friday: 7 December 2001.
Morning Session: Room 421, 55 Anzac Ave.

10.00am–10.15am: Opening

SESSION I Chair: Koji Tanaka

10.15am-11.00am: Philip Catton. Proofs, Harmony, Meaning and Truth

Abstract: Suppose that we were to illustrate Michael Dummett’s view of meaning and truth in
mathematics by comparing assertions of mathematics with assertions of physics. To produce a good
understanding, with respect to physics, of the doctrine about meaning that Dummett spells out with
respect to mathematics, we would need to say things about physics that are, from the vantage point of
philosophers of physics, roughly fifty years out of date, that is, utterly beyond the pale by now because
of the advancement over recent decades of our philosophical understanding of physics. This raises doubts
in my mind about Dummett’s view, and the doubts that it raises seem to me well directed towards an
alternative to that view. Yet the alternative is not one that I think has been canvassed by philosophers of
mathematics. It seems to me therefore that the philosophy of mathematics could usefully learn something
from the philosophy of physics. And if that is so then, via the link between mathematics and meaning
established inter alii by Dummett, we might find the lessons we learn about mathematics pertinent to
our general views about meaning and truth.

Proceeding in this way I shall take a step away from Dummett, but not so large a step as to dispel
altogether the vestiges of verificationism that there are in his position or therefore so large as to land
me in the realist camp. If I am not mistaken, the notions of meaning and truth could remain epistemic
and yet possess qualities conspicuously different from those that either Dummett or his holist antagonist
Quine bring into view.

According to a raw verificationist outlook on physics, a theory of physics, insofar as it is meaningful
and true, accurately predicts what we observe. Contemporary philosophy of physics corrects this view at
least to the extent of replacing ’accurately predicts’ by ’concertedly harmonises’ and ’what we observe’ by
’phenomena’. A theory of physics insofar as it is meaningful and true concertedly harmonises phenomena.
A phenomenon is as far different from what we might observe as concerted harmonisation is from mere
accuracy of prediction, and the differences are very similar. Phenomena have a richness far and away
beyond what can be brought under simple observation, yet phenomena also possess robust consilience
features which remark a kind of harmony in what they draw together.

Proofs promote rational harmony in a science; such harmony is impossible without proofs. Thus the
epistemology of physics invites attention to the nexus of proofs, harmony, meaning and truth. I indicate
why I think that the same nexus is important for the philosophy of mathematics, and indeed for the
general understanding of meaning and truth.

11.00am–11.15am: Coffee break

11.15am–12.00pm: Bill Barton. Truth, Tautology, or Just Being Sensible? Some Reflections Deriving
from Wittgenstein’s Ideas about Mathematical Talk

Abstract: The last forty years has seen increasing interest in mathematics as a cultural phenomenon.
However standard positions in the philosophy of mathematics are at odds with such a view. If math-
ematics has a claim to any absolute or universal standard of rationality or truth, then mathematics
cannot simply be a form of cultural expression.
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This paper will discuss the shift in philosophical orientation which is required by a cultural view
of mathematics, and the consequences for notions of truth and rationality. Wittgenstein’s explorations
of mathematical talk will be used to explore ideas of truth and proof with respect to some elementary
mathematical examples.

12.15pm–1.30pm: Lunch, Room 514, Fisher International Building, 18 Waterloo Quadrant

Friday: 7 December 2001.
Early Afternoon Session: Room 611, Fisher International Building

SESSION II Chair: Douglas Bridges

2.00pm–2.45pm: Tien D. Kieu. Quantum Principles and Mathematical Computability

Abstract: The limits of mathematical computability have been set solely by mathematical logic and
reasoning until now. Here we propose a quantum mechanical “algorithm” for one of the insoluble prob-
lems of mathematics, the Hilbert’s tenth and equivalently the Turing halting problem. The algorithm, as
it stands, has its limit as it cannot solve non-computable problems of other classes different than that of
Turing’s. But it provides an interesting and new perspective on computability. If for some fundamental
physical principles or unsatisfiable requirements of physical resources (constrained by the total energy
and lifetime of the universe) the algorithm cannot be carried out, then this new perspective is still very
interesting as it will set the limits of mathematical computability by physics. Information, we can argue,
is physical after all.

2.45pm–3.00pm: Coffee break

3.00pm-3.45pm: Cristian S. Calude, Elena Calude. Passages of Proof

Abstract: Classically, there are two equivalent ways to look at the mathematical notion of proof:
a) as a finite sequence of sentences strictly obeying some axioms and inference rules, b) as a specific
type of computation. Indeed, from a proof given as a sequence of sentences one can easily construct
a machine producing that sequence as the result of some finite computation and, conversely, giving a
machine computing a proof we can just print all sentences produced during the computation and arrange
them in a sequence. A proof is an explicit sequence of reasoning steps that can be inspected at leisure;
in theory, if followed with care, such a sequence either reveals a gap or mistake, or can convince a skeptic
of its conclusion, in which case the theorem is considered proven.

This equivalence has stimulated the construction of programs which perform like artificial mathe-
maticians. From proving simple theorems of Euclidean geometry to the proof of the four-color theorem,
these “theorem provers” have been very successful. Of course, this was a good reason for sparking lots of
controversies. Artificial mathematicians are far less ingenious and subtle than human mathematicians,
but they surpass their human counterparts by being infinitely more patient and diligent. What about
making errors? Are human mathematicians less prone to errors? This is a difficult question which
requires more attention.

If a conventional proof is replaced by a “quantum computational proof” (or a proof produced as a
result of a molecular experiment), then the conversion from a computation to a sequence of sentences
may be impossible, e.g., due to the size of the computation. For example, a quantum machine could be
used to create some proof that relied on quantum interference among all the computations going on in
superposition. The quantum machine would say “your conjecture is true”, but there will be no way to
exhibit all trajectories followed by the quantum machine in reaching that conclusion. In other words,
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the quantum machine has the ability to check a proof, but it may fail to reveal any “trace” of how it did
it. Even worse, any attempt to watch the inner working of the quantum machine (e.g. by “looking” at
any information concerning the state of the on going proof) may compromise for ever the proof itself!

These facts may not affect the essence of mathematical objects and constructions (which have an
autonomous reality quite independent of the physical reality), but they seem to have an impact of
how we learn/understand mathematics (which is thorough the physical world). Indeed, our glimpses
of mathematics seem to be “revealed” through physical objects, i.e. human brains, silicon computers,
quantum Turing machines, etc., hence, according to Deutsch (1985), they have to obey not only the
axioms and the inference rules of the theory, but the laws of physics as well.

Friday: 7 December 2001.
Late Afternoon Session: Room 611, Fisher International Building

SESSION III Chair: Fred Kroon

4.15pm–6.15pm: Roundtable discussion with wine and cheese: Recent Work in Church-Turing Thesis

Saturday: 8 December 2001.
Morning Session: Room 246, Computer Science

SESSION IV Chair: Tien Kieu

10.00qm-10.45pm: Douglas Bridges. Random Rambles in Constructivism

Abstract: Beginning with two problematic classical existence proofs, I will introduce Brouwer’s in-
tuitionism and its associated proof principles (encapsulated in Heyting’s axioms of intuitionistic logic).
This will lead to a discussion of omniscience principles, Brouwerian examples, and the constructive re-
formulation of classical theorems. I will try wherever possible to bring out some of the unusual, not to
say peculiar, aspects of constructive proofs. In particular, I will look closely at Ishihara’s tricks, which
use the method of ‘flagging alternatives’ to prove remarkably strong constructive results that are simple
classical consequences of the law of excluded middle. The talk will conclude with some general remarks
about constructive mathematics, especially in connection with choice.

10.45am–11.00pm: Coffee break

11.00am–11.45pm: Dave McIntyre. A High-level Language for Topological Proofs

Abstract: For several years now, Stephen Watson of York University, Canada, has been advocating
what he calls a “high-level language” for proofs and constructions in topology. The name is an analogy
to the development of high-level computing languages, which relieve the user from low-level details such
as buffers and memory allocation and allow them to issue high-level commands.

Probably the most familiar and widespread aspect of this project is the use of elementary submodels
which has become (at least in topology) a relatively standard part of the language. Many older proofs
involve ”closing off” arguments, in which an object is constructed inductively, adding new elements one
at a time with special care taken to ensure that, on the one hand, enough elements are included to
ensure a certain property of the final object, and on the other hand, because only one element is added
at each stage the size of the final object is not too large. In many cases, such a construction can be
considerably simplified by taking a small elementary submodel M of the universe V of all sets, and
taking our final object to be M ∩ Y for some set Y . All of the careful balancing of putting just the
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right number of elements into the object is simply taken care of by the Löwenheim–Skolem Theorem,
ensuring the existence of M , allowing the reader to ignore the details and focus on a higher-level idea of
the proof.

Perhaps less familiar is the use of resolutions, a general technique for building more complex topo-
logical spaces out of simpler ones. The goal here is to build a body of theorems ensuring that if the
simpler spaces have certain properties then the new space will have certain properties: thus the writer
can simply appeal to these theorems and the reader is spared the details of a particular instance of a
general result.

More recent work involves the use of scheduled relativisation, and finite hulls. The first of these is a
high-level language for direct limits, inverse limits and other constructions using transfinite induction,
while the second is an extension of the ideas used in elementary submodels.

Finally, he has been advocating a drive towards a style inspired by advice for good computer program-
ming style. A well-written program contains a number of routines, each of which has strong functional
cohesion (doing only one thing well) and loose coupling (small, direct, visible and flexible relations to
other routines). Similarly, a well-written proof should consist of a number of lemmas, each of which has
non-trivial content, but which represents only one step in the proof.

In this talk, I will present some of these ideas.

11.45am–12.30pm: Neil Leslie. Treating Elimination Rules as Self-Justifying

Abstract: In ’Investigations Into Logical Deduction’ Gerhard Gentzen wrote:

The introductions represent, as it were, the ‘definitions’ of the symbols concerned, and the
eliminations are no more, in the final analysis, than the consequences of these definitions.

This remark has formed the basis of an argument for proof-theoretical justifications of the logical
laws, an argument which has been developed by Dag Prawitz, Per Martin-Löf, and Michael Dummett.
We turn this argument on its head, and show, using rather simple means, that we might as well take the
elimination rules as defining the meanings of the logical laws.

12.30pm–12.45pm: Closing

12.45pm–2.00pm: Lunch, Computer Science Common Room
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