Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognize the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.
Tissue Oxygenation and Wound Healing in Vascular Surgery

Nathaniel Chiang (1027950)

Abstract
Are there simple adjuncts that can be applied in patients with peripheral vascular disease that could enhance wound healing and tissue oxygenation? Two large-scale clinical studies were conducted with the aims of targeting two stages of care, namely (i) perioperative treatments to enhance peripheral oxygenation by influencing oxygen delivery via chemical and thermal vasodilation (high-dose oxygen, a prostacyclin analogue, and extended active warming) during bypass surgery to the lower limbs, and (ii) topical negative therapy (TNP) dressings for high-risk foot wounds, such as following debridement or minor amputations in the diabetic foot. These therapies have been shown to be of benefit in other clinical settings, such as abdominal surgery and to treat abdominal wounds. How these adjuncts would help in patients with vascular disease is unknown.

Mechanisms underlying the potential effects of these treatments on wound healing were assessed biochemically by quantifying hydroxyproline (a surrogate marker of collagen), growth factors, cytokines, and their respective mRNAs. Healing rates were determined by changes in wound volume over time using an innovative stereophotographic device (FastScan™). Tissue oxygenation was measured using hyperspectral technology (OxyVu™). The reliability and feasibility of using these devices was tested in clinical studies.

Measurements obtained using these innovative instruments yielded excellent inter-operator and intra-operator reliability and correlated well with other methods of measurement, thus showing promise for assessment of tissue oxygenation and wound healing in clinical settings. No benefits were demonstrated in 71 patients with regard to surgical wound healing or tissue oxygenation in bypass surgery by perioperative adjunctive treatment. OxyVu identified increased tissue oxygenation in the foot in the acute phase following bypass surgery, validating its clinical use. In acute foot wounds treated with TNP, there was no significant difference in wound volume reduction at 2 weeks when compared with traditional dressings (44.2% for TNP versus 20.9% for the control; p=0.15). However, there was a trend towards an enhanced healing rate, and maximum wound depth was significantly less than that achieved using traditional dressings (36.0% for TNP versus 17.6% for the control; p=0.03). Given that no differences were found in hydroxyproline levels, growth factors, or tissue oxygenation, the benefits of TNP might involve more than merely enhanced production of granulation tissue, possibly involving mechanical (macrostrain) effects.
Preface

This thesis was a seven-year project, including two years of full-time research and 5 years part-time. For three of the five part-time years, I was working full-time as a trainee in vascular surgery, completing professional examinations and furthering my knowledge in areas outside of the thesis. This project was based in the vascular surgery unit at Waikato Hospital (Hamilton, New Zealand) where there was a strong emphasis on research but without an established department or academic support. In fact, this was the first PhD thesis undertaken in that unit. This in itself had its merits but also a number of challenges that contributed to some setbacks during this research.

Mr Thodur Vasudevan was my co-supervisor in the unit, with whom I had most of the discussions relating to establishing the project. He did not meet the requirements of the university to be the main supervisor and nor did the other members of the surgical unit. The main supervisor was Professor Jamie Sleigh, a member of the Waikato Medical Research Foundation and a widely respected Professor of Anaesthesiology with a consistent research output and experience in supervision of students undertaking higher degrees. I was always drawn to the well-established surgical research unit at Auckland Hospital, University of Auckland, headed by Professor John Windsor and Associate Professor Lindsay Plank. I wanted guidance and a point of contact at such a unit, and it was an honour that Associate Professor Plank agreed to provide such support as a co-supervisor.

One of my personal highlights were supervising six summer studentship projects over three years, one of which saw the student win a number of accolades and secure scholarships to fund her elective. I also took pride in securing the various grants and scholarships that funded the first hyperspectral transcutaneous oxygenation measurement system (OxyVu™) to be used outside the US where it was developed. The most notable setbacks in this thesis were the inability to complete patient recruitment and the failure to complete analyses of mRNA for growth factors and cytokines. Despite spending 6 months in the laboratory purifying the tissue samples, meaningful results could not be obtained due to inadequate sampling.

My utmost gratitude is extended to all who supported and funded the study, in particular the University of Auckland, Waikato Medical Research Foundation, Health Research Council, and Royal Australasian College of Surgeons.
Project ownership and contributions
Apart from the initial concept provided by Mr Thodur Vasudevan to study tissue oxygenation and wound healing following perioperative supplemental oxygen during infra-inguinal bypass, the design and completion of the project were my own work. Assistance was required in the validation studies, whereby medical students were employed as part of their summer studentships to determine the inter-operator reliability of the devices. I conducted the laboratory work, including the biochemical analyses of hydroxyproline and growth factors, under supervision. Statistical analysis of the data and the thesis writing were completed by myself. The thesis was professionally edited by Susan Albrecht prior to submission.

Achievements

<table>
<thead>
<tr>
<th>DATE</th>
<th>TITLE OF PRESENTATION</th>
<th>MEETINGS</th>
<th>PRIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct ’09</td>
<td>Validation of OxyVu (preliminary data)</td>
<td>ANZSVS 2009</td>
<td></td>
</tr>
<tr>
<td>Feb ’10</td>
<td>Validation of Silhouette and FastScan</td>
<td>NZVS 2010</td>
<td>Best presentation</td>
</tr>
<tr>
<td>Sep ’10</td>
<td>Validation of Silhouette and FastScan</td>
<td>ANZSVS 2010</td>
<td></td>
</tr>
<tr>
<td>Aug ’13</td>
<td>WOIOW study</td>
<td>RACS Surgery 2013</td>
<td>Finalists for Louis Barnett Prize</td>
</tr>
<tr>
<td>Oct ’13</td>
<td>WOIOW study</td>
<td>ANZSVS 2013</td>
<td></td>
</tr>
<tr>
<td>Oct ’13</td>
<td>Validation of OxyVu</td>
<td>ANZSVS 2013</td>
<td>Best poster</td>
</tr>
<tr>
<td>Oct ’13</td>
<td>Setting standards for TCOM</td>
<td>ANZSVS 2013</td>
<td></td>
</tr>
<tr>
<td>Oct ’15</td>
<td>TNP study</td>
<td>ANZSVS 2015</td>
<td></td>
</tr>
<tr>
<td>Time frame</td>
<td>PHD PROGRESS</td>
<td>MILESTONE</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>2008: Year 1 (part-time)
Lecturer in Surgery (UoA)</td>
<td>Concept and research design
Literature search</td>
<td>PhD Registration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seek funding for full-time PhD and consumables (OxyVu™ and TCOM)</td>
<td>Faculty Research Development Fund ($45,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Braemar Charitable Trust Research Grant ($5,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bayer Health Care Fund ($5,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Purchased OxyVu and TCOM</td>
<td></td>
</tr>
<tr>
<td>2009: Year 2 (part-time)
Clinical research training fellowship (HRC)</td>
<td>Start validation of OxyVu
Start WOIOW Study</td>
<td>Waikato Medical Research Foundation Grant ($10,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department Grant-in-Aid ($12,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBRF Fund Allocation ($5220.80)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postgraduate Student Fund ($1,000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PReSS Fund ($2,750)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Purchased FASTScan and Silhouette</td>
<td></td>
</tr>
<tr>
<td>2010: Year 3 (full-time)
Clinical research training fellowship (HRC)</td>
<td>Start validation of FASTScan™ and Silhouette™
Start TNP study</td>
<td>PBRF Fund Allocation ($5004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waikato Medical Research Foundation Grant ($4996)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PReSS Fund ($2,750)</td>
<td></td>
</tr>
<tr>
<td>2011: Year 4 (full-time)</td>
<td>Complete patient recruitment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RACS Eric Bishop Scholarship

Biochemical analysis (hydroxyproline, growth factors and mRNA)

Data analysis

Thesis writing

PBRF Fund Allocation ($5004)

Waikato Medical Research Foundation Grant ($4996)

PReSS Fund ($2,750)

Postgraduate Student Fund ($1,500)

2012-2016: Years 5–8 (part-time), 5% research/95% full-time employment

Presentations in continental and national conferences (e.g., RACS: surgery, ANZSVS, NZVS).

First thesis submission

PReSS Fund ($2,750)

Other supports

ORGANISATION

Waikato District Health Board

University of Auckland

University of Waikato

Atrium™

TYPE OF SUPPORT

Full support from Anaesthetic and Surgical Departments

Access to Ilomedin®, Bair Hugger™, VAC®, traditional dressings, sutures and surgical instruments.

Support in laboratory work with hydroxyproline and growth factor analyses.

Support in laboratory work with mRNA analyses at the Department of Molecular Genetics.

Free supply of ePTFE tubes

Declaration of interests

This research project was sponsored by independent organisations. There were no conflicts of interest with HyperMed Inc (developer of the OxyVu™), Intermed® (manufacturer of VAC®) or ARANZ (manufacturer of the FastScan™ and Silhouette Mobile™). The devices were purchased or leased using independent research funds.
Acknowledgements

 Supervisor:
Prof Jamie Sleigh

 Co-Supervisors:
Mr. Thodur Vasudevan
Associate Professor Lindsay Plank

 Advisors:
Dr. Christina Buchanan (Department of Molecular Medicine and Pathology, University of Auckland)
Dr. Ray Cursons (Department of Molecular Genetics, University of Waikato)
Dr. Sofian Tijono (Department of Medical Sciences, University of Auckland)
Susan Albrecht (Professional editing)

 Others:
Waikato District Health Board
Health Research Council
Royal Australasian College of Surgery
Faculty of Health and Medical Sciences, University of Auckland
ARANZ Medical Sciences
Braemar Charitable Trust
Atrium®
Prof John Windsor
Mr. Scott Aitken
Dr. Isabel Wright
Dr. Melanie Hwang
Dr. Anna Kang
Dr. Tim Hill
Dr. Ashwini Pondicherry
Dr. Simone Oldham
Table of contents

Abstract ... ii
Preface ... iii
Project ownership and contributions .. iv
Achievements .. iv
Time frame .. v
Other supports ... vi
Declaration of interests ... vi
Acknowledgements .. vii
Table of contents ... viii
List of Tables and Figures ... xiv
Tables ... xiv
Figures ... xvii
Glossary ... xxii

1. Background .. 1
 1.1 Wound healing process .. 1
 1.2 Evaluation of wound healing .. 7
 Collagen ... 7
 Hydroxyproline ... 8
 Growth factors and cytokines .. 10
 1.3 Factors influencing wound healing ... 13
 1.4 Role of oxygen in wound healing .. 15
 1.5 Perioperative adjunctive treatments ... 19
 Perioperative supplemental oxygen ... 19
 Extended perioperative warming ... 19
9. Appendices ... 188
 A.1 Definitions ... 188
 A.1.1 Risk factors ... 188
 A.1.2 Rutherford and Fontaine classifications ... 189
 A.1.3 V-POSSUM ... 190
 A.2 Consent forms .. 191
 A.2.1 Validation of OxyVu™ ... 191
 A.2.2 WOIOW study ... 192
 A.2.3 Validation of FastScan™ and Silhouette Mobile™ .. 193
 A.2.4 Wound healing and tissue oxygenation in TNP therapy .. 194
 A.3 Study information sample (from WOIOW study) .. 195
 A.3.1 Patient information sheet ... 195
 A.3.2 For the control group ... 199
 A.3.3 For the oxygen group ... 205
 A.3.4 For the Ilomedin® group ... 211
 A.3.5 For the temperature group ... 217
 A.4 Data collection sheet sample (from WOIOW study) ... 223
 A.5 Post-operative Ilomedin® protocol .. 228
 A.6 Additional tables from results: Validation of OxyVu™ ... 230
 A.6.1 Correlation between OxyVu and TCOM of the diseased limb ... 230
 A.6.2 Correlation between OxyVu and TCOM of the contralateral limb and chest 231
 A.6.3 ANOVA to determine confounding factors that affect OxyVu™ ... 232
 A.6.4 Correlation between hyperspectral oxygenation and haemoglobin ... 233
 A.7 Additional results from the WOIOW study ... 237
 A.7.1 P-values for hydroxyproline and growth factors in treatment arms versus the control group 237
A.8 Additional results: Wound healing and tissue oxygenation in TNP therapy238
A.8.1. Summary of kurtosis and skewness values on variables238
10 Determining time duration for TCOM electrodes to reach equilibrium239

Background ...239
Aim ...239
Methods ..239
Results ..240
 Changes in measurements over time ...241
Discussion ..244
Conclusion ...245
References ...246
List of Tables and Figures

Tables

Table 1. 1. Summary of clinical studies on topical negative pressure therapy and wound dimension assessment. ... 60

Table 3. 1. Interventions received in each study arm. .. 73
Table 3. 2. Code for relevant primers. ... 95

Table 4. 1. Summary of ICC values and 95% CIs for OxyVu™ measurements. 108
Table 4. 2. Summary of mean differences in OxyVu™ measurements between two operators. .. 109
Table 4. 3. Summary of mean differences of OxyVu™ measurements in each comparison. .. 110
Table 4. 4. Summary of CV and 95% CI for OxyVu™ measurements. 111
Table 4. 5. Basic demographics of participants. .. 112
Table 4. 6. Summary of skewness and kurtosis for all continuous variables. 114
Table 4. 7. Summary of OxyVu™ findings in vascular patients. 115
Table 4. 8 Summary of OxyVu™ findings in terms of BPI in vascular patients. 115
Table 4. 9. Summary of OxyVu™ findings in volunteers. .. 116
Table 4. 10. Summary of OxyVu™ findings in terms of BPI in volunteers. 116
Table 4. 11. Hyperspectral readings at the chest. ... 117
Table 4. 12. Summary of OxyVu™ findings with regard to RPI in vascular patients 118
Table 4. 13. Correlation between RPI and BPI describing correlation coefficients and p-values. .. 118
Table 4. 14. Spearman’s rank correlation coefficients and p-values comparing OxyVu™ readings for the diseased limb with severity of peripheral vascular disease 121
Table 4. 15. Spearman’s rank correlation coefficients and p-values comparing OxyVu™ readings of the contralateral limb with severity of peripheral vascular disease 122
Table 4. 16. Summary of Pearson’s correlation coefficients and p-values comparing skin temperature with OxyVu™ measurements of the diseased limb. 122
Table 4. 17. Descriptive summary of ABI in the diseased and contralateral limb according to severity of vascular disease using the Simplified Severity Score 123
Table 4. 18. Summary of Spearman’s rank correlation coefficients and p-values when comparing ABI with severity of peripheral vascular disease. .. 124
Table 4. 19. Summary of Pearson’s correlation coefficients and p-values when comparing the ABI of the diseased limb with OxyVu™ readings. .. 124
Table 4. 20. Descriptive summary of TCOM readings of the diseased limb according to severity of peripheral vascular disease using the Simplified Severity Score. ... 125
Table 4. 21. Summary of Spearman’s rank correlation coefficients and p-values when comparing transcutaneous oxygenation measurement readings for the diseased limb with the severity of peripheral vascular disease using the Simplified Severity Score. .. 125
Table 4. 22. Summary of transcutaneous oxygenation measurement findings for reference points according to severity of peripheral vascular disease using the SSS. .. 126
Table 4. 23. Summary of Pearson’s correlation coefficients and p-values when comparing transcutaneous oxygenation measurement readings for the diseased limb with OxyVu™ readings. .. 126
Table 4. 24. Summary of p-values from linear regression investigating how race, gender, and age affected OxyVu™ findings. .. 127

Table 5. 1. Basic demographics of study participants. ... 132
Table 5. 2. Operative findings in the participants. .. 133
Table 5. 3. Influence of supplemental oxygen and active warming on arterial oxygenation and core temperature. .. 134
Table 5. 4. Mean (SD) hydroxyproline and growth factor levels in tissue samples from each group. ... 136
Table 5. 5. Summary of statistically significant changes in OxyVu™ readings at the foot in the treatment arms versus the control group. .. 144
Table 5. 6. Summary of postoperative complications... 144
Table 5. 7. Patency, limb salvage, and mortality rates in the four groups.. 145

Table 6. 1. Intra-operator and inter-operator reliability of Silhouette Mobile™ 149
Table 6. 2. Intra-operator and inter-operator reliability of FastScan™ .. 149
Table 6. 3. Depth and volume measurements using Silhouette Mobile™ compared with those from computed tomography. ... 150
Table 6.4. Summary of Pearson’s correlation coefficients when comparing measurements for Silhouette Mobile™, FastScan™, and computed tomography. ... 154

Table 7.1. Basic patient demographic and clinical characteristics. ... 156
Table 7.2. Summary of wound dimensions at day 0. ... 157
Table 7.3. Summary of absolute and relative reduction in wound dimensions between the two treatment groups. .. 158
Table 7.4. Wound dimensions at day 0 for wounds at the toe and those at forefoot/heel. 159
Table 7.5. Absolute and relative reductions in wound dimension between wounds at the toes and those at the forefoot and heel. ... 159
Table 7.6. Summary of mean OHP findings at baseline and percentage increase at 14 days for the TNP group and the control group. ... 160
Table 7.7. Mean TGF-β findings at baseline and mean percentage increase at 14 days for the TNP group and the control group. ... 161
Table 7.8. OxyVu™ findings at baseline and mean percentage increase at 14 days in the TNP group and the control group. ... 162
Table 7.9. Comparison of OxyVu™ findings at baseline and day 14, showing mean differences and their p-values. .. 162
Table 7.10. Comparison of survival analysis outcome between TNP group and control group. ... 163

Table 9.1. Descriptive summary for HT-Sum and haemoglobin... 233
Table 9.2. Summary of unstandardised coefficients and p-values using linear regression to identify confounding factors for Hb and HT-Sum. .. 234

Table 10.1. Basic demographics of the three groups of patients ... 240
Figures
Figure 1.1. Initial stages of the wound healing process. .. 1
Figure 1.2. Role of neutrophils in the inflammatory phase. ... 3
Figure 1.3. Role of macrophages in the inflammatory phase. .. 3
Figure 1.4. Later stages of the wound healing process. .. 6
Figure 1.5. Accumulation of hydroxyproline in polytetrafluoroethylene tubing in normal human subjects. ... 9
Figure 1.6. Oxygen, the substrate for collagen synthesis. .. 17
Figure 1.7. Structural comparison of iloprost and prostacyclin. 20
Figure 1.8. Effects of critical limb ischaemia on the microcirculation 21
Figure 1.9. Effects of iloprost on the microcirculation. .. 21
Figure 1.10. Effect of prostaglandin I₂ (iloprost) on vascular smooth muscle 23
Figure 1.11. Prognosis of patients with peripheral vascular disease. 27
Figure 1.12. Two-year prognosis following below-knee amputation. 28
Figure 1.13. Trans-Atlantic Inter-Society Consensus classification of femoral-popliteal lesions. .. 29
Figure 1.14. Proposed electrode behaviour during equilibrium. 38
Figure 1.15. A schematic diagram demonstrating how a transcutaneous oximetry measurement electrode works. .. 39
Figure 1.16. Photograph of the OxyVu-2™ system. ... 41
Figure 1.17. Diagram illustrating how the OxyVu™ works. .. 42
Figure 1.18. OxyVu™ using different wavelengths to detect specific chromophores. 44
Figure 1.19. Graph demonstrating the chromophores of oxyhaemoglobin and deoxyhaemoglobin ... 44
Figure 1.20. Example of an OxyVu™ reading. ... 45
Figure 1.21. Application of VAC® foam ... 56
Figure 1.22. Effects of topical negative pressure therapy ... 57
Figure 1.23. Image of the Silhouette Mobile™ ... 66
Figure 1.24. Image of the FastScan™ .. 66

Figure 3.1. Illustration of implanting and explanting the PTFE tubing from the surgical wound ... 77
Figure 3.2. Location of the ePTFE implant and sites where oxygenation was measured using OxyVu™ ... 79
Figure 3.3. ePTFE tube hydrolysed in 6 M HCl, OHP solute in microtube, and ePTFE tube following hydrolysis. .. 87
Figure 3.4. Photograph of the SpeedVac®. .. 87
Figure 3.5. Example of the 96-microwell plate containing standards and samples prior to spectrometry ... 89
Figure 3.6. An example of a Nanodrop® report for an RNA sample from one of the study participants ... 93
Figure 3.7. An example of gel electrophoresis following reverse transcriptase polymerase chain reaction of a sample from four study participants. ... 96
Figure 3.8. Example of an OxyVu™ reading .. 98
Figure 3.9. Operating the OxyVu™ .. 98
Figure 3.10. Image of transcutaneous oxygenation measurement monitor 100
Figure 3.11. Measurement of ankle-brachial pressure index 102
Figure 3.12. Image explaining measurement of the ankle-brachial pressure index 102
Figure 3.13. Example of wound dimension analysis using the FastScan Volumator 103
Figure 3.14. Image of Silhouette Mobile™ .. 104

Figure 4.1 Scatter plot showing the variation in HT-Oxy measurements between two operators ... 106
Figure 4.2. Scatter plot showing the variation in HT-Deoxy measurements between two operators ... 107
Figure 4.3. Scatter plot showing the variation in HT-Sat measurements between two operators ... 107
Figure 4.4. Scatter plot showing the variation in skin temperature measurements between two operators ... 108
Figure 4.5. Bland-Altman (scatter) plot for HT-Oxy measured by two operators 109
Figure 4.6. Error bar graph showing the mean ± 95% CI of HTCOM readings in the lower limb of individual A and B ... 110
Figure 4.7. Error bar graph showing the mean ± 95% CI for skin temperature in the lower limb of individual A and B ... 111
Figure 4. 8. Bar chart showing the distribution of the study population according to severity of peripheral vascular disease. 113
Figure 4. 9. Boxplot of TcpCO2 of the diseased limb of all patients including the outlier. ... 113
Figure 4. 10. Bar chart showing the number of patients who had chest OxyVu™ measurements according to Rutherford classification. 117
Figure 4. 11. Bar chart showing how OxyVu™ measurements for the diseased limb varied according to Rutherford classification. 119
Figure 4. 12. Bar chart showing how the bilateral perfusion index of the diseased limb varied according to Rutherford classification. 120
Figure 4. 13. Bar chart showing how OxyVu™ readings in the diseased limb vary according to severity of peripheral vascular disease. 120
Figure 4. 14. Bar chart showing how the bilateral perfusion index of the diseased limb varied according to the severity of peripheral vascular disease. 121
Figure 4. 15. Scatter plot of the ankle-brachial pressure index in the diseased and contralateral limb according to the Simplified Severity Score. 123
Figure 4. 16. Oxygen-haemoglobin dissociation curve. 128
Figure 4. 17. Scatter plot with an S-curve showing the association between HT-Sat and TcpO2. 129

Figure 5. 1. Flow diagram showing patient recruitment. 130
Figure 5. 2. Change in core temperature over time with active warming in the preoperative period. 134
Figure 5. 3. Changes in HT-Sat at the surgical wound site over time. 137
Figure 5. 4. Changes in HT-Sum at the surgical wound site over time. 138
Figure 5. 5. Changes in HT-Sum BPI of the diseased foot over time. 139
Figure 5. 6. Changes in HT-Sat BPI of the diseased foot over time. 140
Figure 5. 7. Changes in ABI of the diseased limb over time. 141
Figure 5. 8. Changes in TcpO2 BPI of the diseased foot over time. 142
Figure 5. 9. Changes in TcpCO2 BPI of the diseased foot over time. 142
Figure 5. 10. Changed in ABI of the contralateral limb over time. 143

Figure 6. 1. Image from Silhouette Mobile™ of several lower limb diabetic ulcers. 147
Figure 6. 2. Image from Silhouette Mobile™ of an infected surgical wound on a lower limb. .. 147

Figure 6. 3. Image from FastScan™ of an infected surgical wound on a lower limb. Blue stylus points outline the wound boundary.. 148

Figure 6. 4. Image from Silhouette Mobile™ of an open foot wound following digital amputation... 148

Figure 6. 5. Image from FastScan™ of an open foot wound following digital amputation. ... 148

Figure 6. 6. Bland-Altman plot showing the difference in volume measurements between Silhouette Mobile™ and computed tomography. .. 151

Figure 6. 7. Bland-Altman plot showing the difference in depth measurements between Silhouette Mobile™ and computed tomography. .. 152

Figure 6. 8. Bland-Altman plot showing the difference in volume measurements between FastScan™ and computed tomography ... 152

Figure 6. 9. Bland-Altman plot showing the difference in depth measurements between FastScan™ and computed tomography ... 153

Figure 7. 1. Flow diagram detailing the recruitment process ... 155

Figure 7. 2. Error bar graph showing the mean ± 95% CI of the relative reduction of various wound dimensions between the two groups. ... 157

Figure 7. 3. Kaplan-Meier curve showing wound failure-free survival between the two groups. ... 163

Figure 8. 1. Error bar graph showing the mean ± 95% CI of TcpO₂ and TcpCO₂ of the diseased limb subdivided according to the severity of peripheral vascular disease ... 167

Figure 8. 2. Image from Silhouette Mobile™ showing a small ulcer on the dorsal surface of the toe. .. 176

Figure 8. 3. Image from Silhouette Mobile™ showing a small ulcer on the lateral dorsal surface of the foot. .. 176

Figure 8. 4. Image from Silhouette Mobile™ showing an open wound on an above-knee amputation stump. ... 177

Figure 8. 5. Wound report using SM from one of the participants showing variation in volume over time .. 180
Figure 9.1. Rutherford and Fontaine classifications for peripheral vascular disease. 189
Figure 9.2. Physiological score for V-POSSUM. ... 190
Figure 9.3. Operative score for V-POSSUM ... 190
Figure 9.4. Bar chart showing the variation in HT-Sum and haemoglobin according to severity of peripheral vascular disease using the Simplified Severity Score. 233
Figure 9.5. ROC curve to determine if HT-Sum of the contralateral limb would be an accurate tool to diagnose haemoglobin. .. 236

Figure 10.1. Bar chart showing the total number of measurements per set of readings.... 240
Figure 10.2. Line graph showing mean variation in TcpO₂ and TcpCO₂ over time. 241
Figure 10.3. Line graph showing proportional change in TcpO₂ over time.................... 242
Figure 10.4. Line graph showing proportional change in TcpCO₂ over time. 242
Figure 10.5. Line graph showing the proportional change in TcpO₂ in subgroups over time. ... 243
Figure 10.6. Line graph showing the proportional change in TcpCO₂ in subgroups over time. ... 243
Figure 10.7. Line graph showing the proportional change in TcpO₂ and TcpCO₂ over time in the 16 diseased limbs of patients with PVD. ... 244
Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>></td>
<td>More than</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>µ</td>
<td>Micron (10^{-6})</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Abdominal aortic aneurysm</td>
</tr>
<tr>
<td>ABI</td>
<td>Ankle-brachial index</td>
</tr>
<tr>
<td>ACS</td>
<td>Acute coronary syndrome</td>
</tr>
<tr>
<td>AK</td>
<td>Above knee</td>
</tr>
<tr>
<td>AKA</td>
<td>Above-knee amputation</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ANZSVS</td>
<td>Australia and New Zealand Society of Vascular Surgery</td>
</tr>
<tr>
<td>ASVS</td>
<td>Asian Society of Vascular Surgery</td>
</tr>
<tr>
<td>AT</td>
<td>Anterior Tibial</td>
</tr>
<tr>
<td>ATM</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>AU</td>
<td>Artificial unit</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>AV</td>
<td>Arteriovenous</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Unstandardised coefficient</td>
</tr>
<tr>
<td>BK</td>
<td>Below knee</td>
</tr>
<tr>
<td>BKA</td>
<td>Below-knee amputation</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>BPG</td>
<td>Bypass graft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPI</td>
<td>Bilateral perfusion index</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CABG</td>
<td>Coronary artery bypass graft</td>
</tr>
<tr>
<td>CBF</td>
<td>Cutaneous blood flow</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CEA</td>
<td>Carotid endarterectomy</td>
</tr>
<tr>
<td>CFA</td>
<td>Common femoral artery</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CLI</td>
<td>Critical limb ischaemia</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>CTA</td>
<td>Computed tomography angiogram</td>
</tr>
<tr>
<td>CTGF</td>
<td>Connective tissue growth factor</td>
</tr>
<tr>
<td>CTO</td>
<td>Chronic total occlusion</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CVA</td>
<td>Cerebrovascular accident</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deoxy</td>
<td>Deoxyhaemoglobin</td>
</tr>
<tr>
<td>DFU</td>
<td>Diabetic foot ulcers</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DSA</td>
<td>Digital subtraction angiogram</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EDCF</td>
<td>Endothelium-derived constricting factor</td>
</tr>
<tr>
<td>EDHF</td>
<td>Endothelium-derived hyperpolarising factor</td>
</tr>
<tr>
<td>EDRF</td>
<td>Endothelium-derived relaxing factor</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>eGFR</td>
<td>Estimated glomerular filtration rate</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>ESRF</td>
<td>End-stage renal failure</td>
</tr>
<tr>
<td>ESVS</td>
<td>European Society for Vascular Surgery</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>Iron</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>FiO₂</td>
<td>Inspired oxygen concentration</td>
</tr>
<tr>
<td>FS</td>
<td>FastScan™</td>
</tr>
<tr>
<td>GITC</td>
<td>Guanidine thiocyanate</td>
</tr>
<tr>
<td>GSV</td>
<td>Great saphenous vein</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>HbA₁c</td>
<td>Glycated haemoglobin</td>
</tr>
<tr>
<td>HBOT</td>
<td>Hyperbaric oxygen therapy</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HIF-1</td>
<td>Hypoxia-inducible factor 1</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
</tr>
<tr>
<td>HTcOM™</td>
<td>Hyperspectral transcutaneous oxygenation measurement</td>
</tr>
<tr>
<td>HT-Deoxy</td>
<td>Deoxyhaemoglobin concentration measured by OxyVu™</td>
</tr>
<tr>
<td>HTML</td>
<td>HyperText Markup Language</td>
</tr>
<tr>
<td>HT-Oxy</td>
<td>Oxyhaemoglobin concentration measured by OxyVu™</td>
</tr>
<tr>
<td>HT-Sat</td>
<td>Oxyhaemoglobin saturation measured by OxyVu™</td>
</tr>
<tr>
<td>HT-Sum</td>
<td>Sum of Oxy- and deoxy-haemoglobin</td>
</tr>
<tr>
<td>IC</td>
<td>Intermittent claudication</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intercellular adhesion molecule-1</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ICC</td>
<td>Intraclass correlation coefficient</td>
</tr>
<tr>
<td>ICG</td>
<td>Indocyanine green</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth factor 1</td>
</tr>
<tr>
<td>IHD</td>
<td>Ischaemic heart disease</td>
</tr>
<tr>
<td>IIB</td>
<td>Infra-inguinal bypass</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible NO synthase</td>
</tr>
<tr>
<td>IP-10</td>
<td>Interferon-inducible protein</td>
</tr>
<tr>
<td>IPA</td>
<td>Isopropanol (isopropyl-alcohol)</td>
</tr>
<tr>
<td>MQ</td>
<td>Milli-Q™ (water)</td>
</tr>
<tr>
<td>MRA</td>
<td>Magnetic resonance angiogram</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate-oxidase</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute of Health and Clinical Excellence guidelines</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NSAIDS</td>
<td>Non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte chemotactic protein-1</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mmHg</td>
<td>mm of mercury (pressure)</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinase</td>
</tr>
<tr>
<td>OHP</td>
<td>Hydroxyproline</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>OS</td>
<td>Operative score</td>
</tr>
<tr>
<td>Oxy</td>
<td>Oxyhaemoglobin</td>
</tr>
</tbody>
</table>
\(P-Q \)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAI</td>
<td>Plasminogen activator inhibitor</td>
</tr>
<tr>
<td>PAOD</td>
<td>Peripheral arterial occlusive disease</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal digital assistant</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet-derived growth factors</td>
</tr>
<tr>
<td>PFA</td>
<td>Profunda artery</td>
</tr>
<tr>
<td>PGI(_2)</td>
<td>Prostacyclin (I_2)</td>
</tr>
<tr>
<td>pH</td>
<td>Measurement of acidity and basicity</td>
</tr>
<tr>
<td>PO(_2)</td>
<td>Partial pressure of inspired oxygen</td>
</tr>
<tr>
<td>Pop</td>
<td>Popliteal</td>
</tr>
<tr>
<td>PS</td>
<td>Physiological score</td>
</tr>
<tr>
<td>PT</td>
<td>Posterior tibial</td>
</tr>
<tr>
<td>PTA</td>
<td>Percutaneous transluminal angioplasty</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>PVA</td>
<td>Polyvinyl alcohol foam</td>
</tr>
<tr>
<td>PVD</td>
<td>Peripheral vascular disease</td>
</tr>
</tbody>
</table>

\(S \)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Surface area</td>
</tr>
<tr>
<td>Sat</td>
<td>Saturation</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SFA</td>
<td>Superficial femoral artery</td>
</tr>
<tr>
<td>SM</td>
<td>Silhouette Mobile™</td>
</tr>
<tr>
<td>SSI</td>
<td>Surgical site infection</td>
</tr>
<tr>
<td>SSS</td>
<td>Simplified severity score</td>
</tr>
<tr>
<td>SVS</td>
<td>Society of Vascular Surgery</td>
</tr>
</tbody>
</table>

\(T \)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASC</td>
<td>Trans-Atlantic Inter-Society Consensus Document on Management of Peripheral Arterial Disease</td>
</tr>
<tr>
<td>TCOM</td>
<td>Transcutaneous oxygenation measurement</td>
</tr>
<tr>
<td>TcpO(_2)</td>
<td>Transcutaneous partial pressure of oxygen</td>
</tr>
<tr>
<td>TcpCO(_2)</td>
<td>Transcutaneous partial pressure of carbon dioxide</td>
</tr>
<tr>
<td>TGF-(\alpha)</td>
<td>Transforming growth factor-(\alpha)</td>
</tr>
<tr>
<td>TGF-(\beta)</td>
<td>Transforming growth factor-(\beta)</td>
</tr>
</tbody>
</table>
TIA
- Transient ischaemic attack

TIMP
- Tissue inhibitors of metalloproteinase

TNF-α
- Tumor necrosis factor-α

TNP
- Topical negative pressure

t-PA
- Tissue plasminogen activator

TPT
- Tibial peroneal trunk

U
- **USS** Ultrasound
- **UV** Ultraviolet

V-Z
- **VAC®** Vacuum Assisted Closure
- **VEGF** Vascular endothelial growth factor
- **Vol** Volume
- **V-POSSUM** Vascular-physiological and operative severity score for the enumeration of mortality and morbidity
- **VSGBI** Vascular Society of Great Britain and Ireland
- **WIfi** Wound, Ischemia, and foot Infection (classification)
- **WOIOW** Effects of perioperative Warming, Oxygen and Ilomedin (PGI2) on Oxygenation and Wound Healing in infra-inguinal bypass surgery
1. Background

1.1 Wound healing process

Wound healing is an intricate cascade that includes collagen formation, angiogenesis, and production of epithelial tissue, and is dependent on both physiology and the environment. It is commonly described in four stages that overlap in time. The key phase of wound healing in terms of collagen deposition is the first 3 days, where accumulation of growth factors and cell proliferation dictate the potential for wound healing.\(^1\)\(^2\)

Figure 1.1. Initial stages of the wound healing process. **Abbreviations:** IL-1, interleukin-1; TNF, tumor necrosis factor; TGF, transforming growth factor; PF4, platelet factor 4.

Coagulation phase

Immediately following acute tissue injury, the surrounding platelets aggregate, resulting in haemostasis. A thrombus is formed, composed of cross-linked fibrin and extracellular matrix (ECM) proteins such as fibronectin\(^3\)\(^-\)\(^5\) (Figure 1.1). This clot acts as a scaffold for inflammatory cells and mediators, and provides a barrier against micro-organisms.\(^6\) Cytokines and growth factors, such as platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-\(\beta\)), and fibroblast growth factor (FGF), are released from degranulated platelets, surrounding monocytes, and macrophages.\(^7\) These factors have chemotactic effects on proliferation and migration of endothelial cells.\(^8\)\(^-\)\(^10\)
Inflammatory phase

The inflammatory phase typically commences 6 hours following injury and is characterised by chemotactic migration of neutrophils, macrophages, monocytes, lymphocytes, and fibroblasts stimulated by growth factors and cytokines, such as PDGF, tumor necrosis factor (TNF)-α, interleukin (IL)-1, and TGF-β released into the exposed wound.\(^1\)\(^2\) Synthesis of these cytokines by the above cells further enhances chemotaxis in an autocrine manner.\(^3\) Endogenous prostaglandins released from endothelial cells cause vasodilation and intensify the chemotactic process.\(^8\)

The wound is initially dominated by neutrophils, with lymphocytes appearing after 24 hours (Figure 1.2). By 48 hours, there is a high concentration of lymphocytes, monocytes, macrophages, and a few fibroblasts. While macrophages and monocytes are usually attracted by cytokines, migration can also be stimulated by hypoxia, lactate, fibronectin, collagen, elastin, foreign body reaction, and endothelial integrins.\(^4\) Monocytes at the wound site differentiate into macrophages at around 48–96 hours, when fibronectin binds to the surface.\(^5\)

Activation of macrophages is an important step in transition into the proliferative phase (Figure 1.3). Macrophages mediate:

- angiogenesis by synthesising VEGF, FGF, and TNF-α
- fibroplasia by synthesising TGF-β, EGF, PDGF, IL-1, and TNF-α
- epithelial regeneration by synthesising PDGF
- synthesis of nitric oxide (NO) via activation of inducible NO synthase by IL-1 and TNF-α.\(^6\)

Neutrophils clear invading bacteria and cleanse the wound of cellular debris by releasing proteases to break down the damaged ECM, thus laying the foundation for wound healing.\(^7\)

Proteases are grouped by their preferred target, i.e., proteins, amino acids, or metal ions. Serine proteases, such as elastase, have broad activity, whereas metalloproteinase specifically digests collagen. The matrix in non-wounded tissue is protected by protease inhibitors.\(^8\) Neutrophils also generate reactive oxygen free radicals through the myeloperoxidase pathway. These product combine with chlorine to sterilize the wound.\(^8\)
Neutrophils eventually undergo apoptosis and are replaced by macrophages, which phagocytose the dead neutrophils. Macrophages, like neutrophils, digest pathogenic organisms and debris by phagocytosis. They also kill pathogens by generating NO. Inducible NO synthase from macrophages is stimulated by TNF-α and IL-1 to synthesise NO, which reacts with peroxide ion oxygen radicals to yield toxic peroxynitrite and hydroxyl radicals.¹⁹

Figure 1.2. Role of neutrophils in the inflammatory phase. Abbreviation: ECM, extracellular matrix

Figure 1.3. Role of macrophages in the inflammatory phase. Abbreviations: ECM, extracellular matrix; EGF, epidermal growth factor; IL-1, interleukin-1; MMP, matrix metalloproteinase; PDGF, platelet-derived growth factor; TGF-β, transforming growth factor-beta; TNF-α, tumor necrosis factor-alpha; VEGF, vascular endothelial growth factor
At the end of the inflammatory phase, neutrophils, platelets, and leucocytes trigger lipoxygenases to synthesise lipid mediators, i.e., lipoxins (LXA4 and LXB4). Lipoxins are the stop signal for inflammation and neutrophil infiltration.20

Proliferative phase

Accumulation of growth factors and cytokines leads to the proliferative phase occurring between days 4 and 14. This is characterised by deposition of granulation tissue composed of macrophages, myofibroblasts, and fibroblasts in the ECM.14

Initially, epithelial cells at the skin edges are stimulated by EGF and TGF-α to start proliferating and re-establish a protective barrier against fluid loss and further bacterial invasion.21 22 Migration, proliferation, and eventual differentiation of keratinocytes in the epidermis is triggered by keratinocyte growth factor-1, keratinocyte growth factor-2, and IL-6 produced by fibroblasts, which in turn are upregulated by IL-1 and TNF-α.23 24

Fibroblasts and endothelial cells are the key proliferating cells in this phase. Fibroblasts around the wound are known as wound fibroblasts. Their main actions are stimulated by PDGF and EGF (Figure 1.4). These actions include:8 9 14

- Amplification of PDGF expression by autocrine and paracrine signalling
- Formation of a provisional matrix as early as day 3, comprising mainly type III collagen, which is a temporary and weaker collagen. Hyaluronic acid, glycosaminoglycans, and fibronectin provide low impedance for cell motility and serve as the scaffold.25
- Synthesis of type I collagen after day 5, stimulated by TGF-β1, a permanent and stronger collagen providing tensile strength.
- Attracting fibroblasts with a contractile phenotype from the periphery and transforming them into myofibroblasts (smooth muscle cells) in the presence of TGF-β1. These elongate and increase wound contraction. Fibroblasts also release chemokines that result in synthesis, migration, and proliferation of ECM proteins.
• Decreasing the release of proteases, increasing tissue inhibitors of metalloproteinase, and increasing production of cell adhesion proteins, which in turn increases production of ECM.¹⁹

Angiogenesis and nerve sprouting occur simultaneously around the wound edge. Angiogenic cytokines, namely VEGF, FGF, and TGF-β, interact with endothelial cells, angiopoietin, and the ECM. This starts the process of angiogenesis, typically on day 2.²⁶⁻²⁷ VEGF is secreted predominantly by keratinocytes at the wound edge, but also by macrophages, fibroblasts, platelets, and endothelial cells.²⁸ NO produced by endothelial NO synthase in response to hypoxia stimulates further production of VEGF. The increased concentrations of NO also protect the tissue from the toxic effects of ischaemia and reperfusion injury and cause vasodilation.²⁹

Granulation tissue matures with ongoing synthesis and catabolism of collagen. While wound hypoxia stimulates certain aspects of the complex wound healing process, oxygen is important for migration and replication of cells, such as macrophages and fibroblasts, and their synthesis of growth factors. The role of oxygen in wound healing is discussed later.

Interferon-inducible protein is the stop signal for this phase, inhibiting fibroblast motility and thereby limiting recruitment of fibroblasts. It also has a negative mitogenic effect on fibroblasts.³⁰

Remodelling phase

The remodelling phase continues for up to 2 years, during which the cellular composition of the wound bed and the ECM undergoes continuous change. The thinner type III collagen is replaced by thicker type I collagen. The new collagen is aligned in a more orderly pattern with the fibrils orientating parallel to the lines of tension, giving optimum isometric tensile strength.³¹ This is controlled by matrix metalloproteinase (MMP) induced by IL-1, TNF-α, FGF-2, EGF, and PDGF. Fibronectin is also removed from the ECM. Fibroblasts continue to convert to myofibroblasts. Collagen bundles grow in size and numbers, and proteoglycans are deposited, making the tissue resilient to tension.
An increased rate of collagen synthesis may be observed as early as 24 hours, and increases exponentially after day 5, reaching a maximum at approximately 6–14 days. The rate of collagen synthesis remains elevated for more than 10 weeks. The tensile strength, in contrast, increases sharply after 7–14 days, reaches 40% of the strength of intact tissue after one month, and plateaus after 13 weeks. Tensile strength rarely exceeds 80% a year after injury.

Figure 1.4. Later stages of the wound healing process. **Abbreviations:** ECM, extracellular matrix; EGF, epidermal growth factor; IP-10, interferon-inducible protein; MMP, matrix metalloproteinase; PDGF, platelet-derived growth factor; TGF-β1, transforming growth factor-beta1
1.2 Evaluation of wound healing

Measuring the tensile strength of a human wound would be unjustifiable and unethical, so in vitro and in vivo tissue models, such as organ cultures of human skin and a rabbit model of ear chamber wounds, respectively, have been used to assess wound tensile strength, even though they are not a genuine reflection of human biological activity.

1. Collagen is a key ingredient of wound granulation tissue, and wound tensile strength is directly proportional to the amount of collagen deposition in primary closed wounds.13 Quantifying collagen deposition is hence a surrogate marker of wound healing.

2. Studying concentrations of growth factors and cytokines in the wound would also provide an indirect insight into the wound maturation profile.

Collagen

Collagen is the most abundant protein in the body, and comprises more than a third of the total amount of protein therein. It is present in the skin, bones, tendons, and other connective tissues. Collagen fibrils are arranged in different ways depending on the biological function of specific tissues. In tendons, fibres are arranged in parallel to yield strength without stretch, whereas in skin the interlacing network laid out in sheets provides multiple dimensions of strength. Most collagen contains about 35% glycine and 11% alanine. Collagen is distinctive in containing about 12% proline and 9% hydroxyproline (OHP). Hydroxyproline is more prominent in types III and IV collagen than in types I and II collagen. Type I collagen is highly prevalent in normal uninjured skin (80%–90%) when compared with type III collagen (20%), which is typically found in acute wounds. Type III collagen runs in reticular fibres and provides no significant increase in wound tensile strength. It is produced by mesenchymal cells and can be detected in an acute wound within 1–2 days, during which time there is no type I collagen.

The secondary structure of the polypeptide chains of collagen is a triple helix. Collagen molecules comprise more than nine different α-chains when pro-collagen is synthesised. The pre-peptides are proteolytically cleaved from pro-α-chains. The proline and lysine residues of the molecule are hydroxylated in the cisternae of the rough endoplasmic reticulum by three different enzymes (prolyl 4-hydroxylase, prolyl 3-hydroxylase, and lysyl hydroxylase), all of
which require oxygen, iron (Fe$^{2+}$), α-ketoglutarate, and ascorbate. The products, hydroxylsine and hydroxyproline, are nearly 100% specific to collagen.

The hydroxylsine residues undergo glycosylation catalysed by two specific transferases and Mn$^{2+}$. The pro-α-chains then fold into a triple helix. This requires 4-hydroxylation of the proline and interchain disulfide bonding between the C-terminal propeptides. The helix is stabilised by the hydroxyl group of the 4-hydroxyproline, whereas hydroxylsine is essential for formation of crosslinks later in the process. The helical structure prevents further interaction with enzymes.

Soluble tropocollagen is transported out of the rough endoplasmic reticulum through the Golgi apparatus before secretion from the cell. The quantity of proline synthesised determines the rate of collagen synthesis. The production of proline is enhanced by its precursors ornithine, glutamate, glutamine, and arginine.

The N-terminal and C-terminal propeptides are cleaved extracellularly by proteases. This process leads to assembly of the chains and formation of fibrils. Lysine and hydroxylsine residues undergo oxidative deamination by lysyl oxidase, which requires oxygen and copper. This leads to formation of aldehydes, which form the crosslinks within collagen fibrils, providing stability. Lysyl hydroxylase and lysyl oxidase regulate collagen cross-linking.34,35

Hydroxyproline

Hydroxyproline (C$_5$H$_9$O$_3$N) is a non-essential amino acid confined exclusively to collagen, connective tissue selenoproteins, and elastin. It is therefore the most reliable surrogate marker of wound healing.36,37 The hydroxyproline content in granulation tissue can be quantified using spectrophotometry or high performance liquid chromatography.38

Laboratory analysis of hydroxyproline

Various artificial in vivo models have been developed for implantation in subcutaneous tissue to harvest wound fluid and granulation tissue containing collagen. The Schilling-Hunt mesh chamber was the earliest model. However, its size limits its use in humans. The Cellstick® model constructed by Viljanto is a miniature silicon wound drain housing a small viscose cellulose sponge to entrap inflammatory cells and wound fluid.37 A modification of this model
by Diegelmann used a 1 mm wide and 2.5 cm long polyvinyl alcohol implant (PVA) surrounded by a perforated silicone tube.22

The expanded polytetrafluoroethylene (ePTFE) model introduced by Goodson and Hunt in 1982 used a 1 mm thin Gore-Tex® tube model (30 µm pore size).39 It was easy to insert and remove at specific intervals, such as 5 to 14 days, and had a lumen allowing topical application of drugs or sampling of wound fluid. It was also soft enough to allow sectioning for analyses. Implantation was minimally invasive, with less of a foreign body reaction. Tissue deposition was similar to that of normally organised granulation tissue and findings were reproducible.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{hydroxyproline accrual}
\caption{Accumulation of hydroxyproline in polytetrafluoroethylene tubing in normal human subjects. (Source Goodson et al, 198239)}
\end{figure}

More than 60 published wound healing studies have successfully used larger ePTFE tubes (diameter 2.4 mm; pore size 90–120 µm) with hydrophilic properties to maximize permeability and harvest more of the collagen deposited de novo for histological assessment of granulation tissues and study of collagen synthesis.40

The median rate of hydroxyproline deposition on ePTFE in humans was 88% higher on day 10 when compared with day 5. (Figure 1.5) Matrix deposition and cellularity were higher on the outer part of the tube than inside the lumen and were lowest within the wall of the tube. The median quantity of hydroxyproline was 12% higher in the middle of the implant than at the ends.40 Healthy tissue wounds have less collagen and wound breaking strength than localised tissue trauma wounds, which are characterised by more inflammation and local ischaemia.
Inter-ePTFE variability was 1.25, such that the amount of hydroxyproline was typically 25% higher in one of the two ePTFEs evaluated. Intra-ePTFE variability in repeated measurements of the same tube was 88% ($\rho=0.88$). The content of hydroxyproline in the ePTFE model and that in the modified PVA model designed by Diegelmann correlated significantly, although the former accumulated 2.5 times more hydroxyproline.40 The ePTFE model was found to be safe, with only one wound infection reported as a result of the implant in a study of 85 patients.40

Growth factors and cytokines

These are small secreted proteins that exert effects on immune and other cells. Key growth factors and cytokines are discussed.

Platelet-derived growth factors

Upon injury, degranulated platelets release PDGF via a paracrine mechanism. PDGF is a major player in wound healing and was the first growth factor shown to be chemotactic. Moreover, PDGF enhances proliferation of fibroblasts and production of ECM. It stimulates fibroblasts to contract collagen and induces a myofibroblast phenotype. Non-healing skin ulcers, a history of diabetes, ageing skin, and glucocorticoid administration (in a rodent model) are associated with reduced PDGF levels.9,41,42 PDGF is the first growth factor approved for the treatment of human ulcers.

Transforming growth factor-β

TGF-β regulates cell proliferation, cell differentiation, and other cellular functions. The TGF-β superfamily plays an integral part in development and in the repair process. It also plays a role in immunity, cancer, heart disease, diabetes, and Marfan syndrome.43 The three TGF-β isoforms (TGF-β1, TGF-β2, and TGF-β3) are amongst the most studied molecules in wound healing.

TGF-β isoforms stimulate formation of granulation tissue and re-epithelialisation by enhancing angiogenesis, proliferation of fibroblasts, differentiation of myofibroblasts, and matrix deposition.44-46 Exogenous TGF-β increases both the rate of healing and the strength of the healed wound.45 Paradoxically, TGF-β also has an inhibitory role, acting as a negative regulator of re-epithelialisation and inducing expression of integrins for migration of keratinocytes.47,48
The three TGF-β isoforms have distinct and overlapping functions. TGF-β1 and TGF-β2 are detected early in wound repair, whereas expression of TGF-β3 is seen at later stages. Following injury, platelets release a large quantity of TGF-β1 for chemotaxis, which stimulates their infiltration into inflammatory cells.\(^9\) As well as active TGF-βs, latent forms are also produced and delivered within the wound matrix, allowing their sustained and continued release.\(^9\) It is not clear whether the effect of TGF-β3 is to increase the dermal matrix or to antagonise the effect of other TGF-β isoforms and inhibit scarring.\(^50\) TGF-β1 plays a crucial role in inhibition of scarring, and acts in a paracrine fashion to increase expression of mRNA for type I collagen and hydroxyproline.\(^51\) Deficiency of TGF-β1 results in a severe inflammatory wound response, decreased re-epithelialisation, and less deposition of collagen. Overexpression of TGF-β1 and TGF-β2 is found in keloid tissue and keloid-derived fibroblasts.\(^52\)\(^53\)

Fibroblast growth factors

Fibroblast growth factors comprise more than 22 structurally related polypeptides. They stimulate proliferation of various cells of mesodermal, ectoderm, and endoderm origin. They also regulate migration and differentiation of target cells, and some FGFs are cytoprotective and support cell survival.\(^54\) FGF1, FGF2, and FGF7 affect wound healing.

FGF2, like FGF1, stimulates angiogenesis and the mitogenic effects of fibroblasts and keratinocytes. Reduced FGF2 at the wound site causes reduction in cellularity and vascularisation, along with a 25%–35% reduction in collagen by day 7 of wound healing, causing slowing of the rate of re-epithelialisation and reduced deposition of collagen.\(^9\)\(^55\) FGF receptor signalling is critical in wound repair; its absence or malfunction can cause epidermal atrophy, dermal thickening, and a 90% reduction in keratinocytes.\(^9\)

Vascular endothelial growth factor

The VEGF family includes six members, namely VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placental growth factor (PLGF). These bind to three different transmembrane tyrosine kinase receptors.

VEGF-A is a major regulator of vasculogenesis and angiogenesis during development and is also a regulator of wound healing.\(^56\) Expression of the VEGF-A gene is upregulated by
keratinocytes and macrophages following injury to the dermis.57,58 Its receptors, VEGFR-1 and VEGFR-2, are found on blood vessels in granulation tissue, so VEGF-A induces wound angiogenesis in a paracrine manner.59,60

Reduced functioning of VEGF-A is associated with wound healing defects, reduction in wound angiogenesis, fluid accumulation, and formation of granulation tissue.51,62 Furthermore, application of VEGF-A or VEGF-A-overexpressing fibroblasts accelerates healing of ischaemic wounds.63,64

VEGF-C, VEGF-D, and VEGF-3 are responsible for lymphangiogenesis, including formation of lymphatic vessels in skin wounds.65 PLGF is a regulator of angiogenesis and is expressed by keratinocytes and endothelial cells in capillaries. Interestingly, synergy exists between VEGF-A and PLGF, indicating that both growth factors are important for angiogenesis.66

\textit{Tumor necrosis factor-\alpha}

Along with other pro-inflammatory cytokines (IL-1\textalpha, IL-1\beta, and IL-6), TNF-\alpha influences various wound repair processes, including stimulation of keratinocytes, proliferation of fibroblasts, chemotaxis, synthesis and breakdown of ECM protein, and regulation of the immune response.9 These cytokines are strongly upregulated during the inflammatory phase of healing and are released by polymorphonuclear leucocytes and macrophages.67,68 Wound healing is accelerated in TNF receptor p55-deficient mice, with increased expression of TGF-\beta1, VEGF, VEGFR-1, VEGFR-2, and connective tissue growth factor at the wound site and reduced expression of mRNA for adhesion molecules and cytokines.69

\textit{Interleukin-8}

IL-8 is expressed in acute wounds within 4 hours of injury, peaks at around 72 hours, and declines by day 4.70 It is a major chemo-attractant for neutrophils, stimulating inflammation and inhibiting contraction of collagen by fibroblasts. High levels of IL-8 are associated with impaired or delayed wound repair.71,72 IL-8 is released to a lesser degree in foetal tissue. The resulting reduction in the inflammatory response may contribute to scarless wound repair.73
1.3 Factors influencing wound healing

The potential for wound healing is governed by many extrinsic and intrinsic factors that can be compromised in patients with vascular disease.

Tissue oxygenation, perfusion and anaemia

The role of oxygen in wound healing is discussed in the next section. Dehydration has been shown to affect subcutaneous oxygen tension and severely impair deposition of collagen. Low haematocrit does not correlate with reduced tissue perfusion or deposition of collagen, provided there is no compromise in peripheral perfusion that may compensate for anaemia.

Diabetes

Diabetes reduces the tensile strength of animal wounds and affects tissue oxygenation. However, the effect of the disease on collagen deposition is unclear. No difference in collagen content was found comparing patients with well-controlled type 1 diabetes and healthy controls. Patients with type 1 diabetes has less accumulated collagen in wounds than patients with type 2 diabetes, and collagen production in the latter group was not different from that in healthy volunteers. Impaired neutrophil function and a proportionally higher ratio of type III collagen to total collagen due to an inverse relationship between the rate of glycosylation of collagen and the activity of collagenases and proteases might have been responsible for reduced wound strength in a diabetic animal model despite the lack of a difference in collagen deposition.

Smoking

Active smoking reduces tissue perfusion and increases wound complications. Rates of hydroxyproline accumulation and wound contraction in smokers are nearly half those in non-smokers.

Renal disease

Hydroxyproline accumulates at a slow rate in patients with uraemic syndrome. This may be because of less deposition of granulation tissue rather than a specific impairment of collagen synthesis.
Ageing

Ageing is associated with upregulation of MMP-2 and MMP-9 in wounds, an increase in collagenase activity, and decreased concentrations of TGF-β1, TGF-β2, PDGF and other crucial growth factors. This results in less collagen formation and a reduction in the effects of the inflammatory cascade, thereby affecting angiogenesis, the response of fibroblasts, and production of DNA content.

Preoperative debility and immune status

The duration of illness before appendectomy correlates inversely with collagen deposition, and patients who undergo appendectomy in the acute setting have 20% less collagen accumulation at the wound site than those undergoing delayed cholecystectomy in the elective setting. Blood transfusions impair immune function and reduce anastomotic strength in colorectal surgery, enhancing the risk of anastomotic leakage.

Patient with postoperative septic complications produce less hydroxyproline than those with a normal postoperative course. Infection impairs tissue repair by prolonging the inflammatory phase of healing, inhibiting leukocyte function, and hindering formation of granulation tissue. Successful healing correlates with bacterial counts of <10^5 organisms/gram of tissue.

Nutrition

Malnutrition and hypoproteinaemia cause decreases in wound tensile strength and collagen deposition, probably because of reduced prolyl hydroxylase activity in the skin. Intravenous nutrition accelerates deposition of collagen in poorly nourished surgical patients.

Anti-inflammatory drugs and corticosteroids

Corticosteroids and non-steroidal anti-inflammatory drugs reduce collagen synthesis, wound tensile strength, and DNA synthesis, including for TGF-β and insulin-like growth factor-1 (IGF-1). A single 30 mg/kg dose of glucocorticoids 90 minutes prior to surgery does not affect collagen deposition.

Sex

Women produce at least 50% more collagen than men.
1.4 Role of oxygen in wound healing

In 1969, Hunt et al pioneered research on the role of oxygen in wound healing in humans. These authors determined that oxygen is vital for formation of granulation tissue via aerobic metabolism and that oxygen acts as a co-factor for hydroxylation of proline and lysine during synthesis of collagen.\(^9\) They also concluded that wound tensile strength is directly proportional to the partial pressure of oxygen in wound tissue.\(^2\)\(^9\)

Nonetheless, tissue hypoxia during the proliferative phase initiates the release of growth factors and cytokines, such as TGF-β, VEGF, TNF-α, and endothelin-1.\(^10\)\(^-\)\(^11\) This hypoxic state facilitates angiogenesis and continues until angiogenesis is complete, when blood supply is restored at the end of the proliferative phase.\(^2\)\(^\)\(^2\)\(^-\)\(^4\) Lactate also controls the synthesis of collagen mRNA and hydroxylation of the lysine and proline residues of pro-collagen.\(^10\)

Oxygen and inflammation

Oxygen is the substrate for production of reactive oxygen species (ROS) in the inflammatory phase. ROS are produced by neutrophils and macrophages via nicotinamide adenine dinucleotide phosphate oxidase-linked oxygenase.\(^10\) This key enzyme requires oxygen to work optimally. The half-maximal activity (\(K_m\)) of ROS production is 45–80 mmHg of oxygen, with maximal production at 300 mmHg.\(^10\)\(^\)\(^7\) Production of ROS and reactive ions, including leucocyte-derived superoxide ions and hydrogen peroxide, is a process known as the “respiratory burst”.\(^10\)\(^9\)\(^10\) Oxygen concentration is directly proportional to oxygen consumption by neutrophils during the respiratory burst.\(^10\)\(^7\) Hypoxia stimulates initial production of ROS, and oxygen is required to sustain it. Conversely, chronic hypoxia inhibits the process.\(^11\)

Low concentrations of ROS act as a cellular messenger to stimulate release of growth factors, neutrophil chemotaxis, and angiogenesis.\(^10\)\(^6\)\(^\)\(^11\)\(^2\) Interestingly, excessive levels of ROS can cause tissue injury and sensitize cells to oxidants, resulting in oxidative damage to cellular protein and DNA, which over time induces cell death via apoptosis and necrosis.\(^11\)\(^3\)\(-\)\(^11\)\(^5\)

The primary role of ROS is to eliminate micro-organisms by oxidative killing, while superoxides break down bacterial membranes and leucocytes produce hydrogen peroxide.\(^11\)\(^6\) Previous in vivo studies have demonstrated that high-dose oxygen (inspired oxygen concentration \([\text{F}O_2]\) 80%) intraoperatively and postoperatively (between 2 and 4 hours) reduces the rate of surgical
site infection (SSI) when compared with controls (FiO₂ 30%). The rate of SSI has an inverse relationship with subcutaneous wound oxygen tension.

Several systematic reviews indicate that perioperative oxygen has antibacterial effects. Supplemental oxygen for more than 48 hours postoperatively reduces isolated groin incision SSI in lower limb vascular bypass. Furthermore, supplemental oxygen works synergistically with antibiotics, specifically aminoglycosides.

Hyperbaric oxygen therapy (HBOT) has been used to deliver 100% oxygen at a pressure of 2.5 atm for durations of around 90 minutes per day. Systematic reviews suggest that while there is weak evidence that HBOT reduces the need for amputation in patients with diabetic foot ulcers (DFUs), it can be used as an adjunct in selected cases.

Oxygen and angiogenesis

Neoangiogenesis is regulated by and dependent on growth factors such as VEGF and hypoxia-inducible factor 1 (HIF-1). These factors are in turn promoted by ROS, hypoxia, tissue oxygen tension, and lactate. Hypoxia also induces VEGF receptor activity. As for synthesis of collagen and ROS, hypoxia initiates neovascularisation, but oxygen is required for continual release of VEGF.

Tissue oxygen tension reflects the balance between tissue oxygen perfusion and consumption, and is in the range of 0–20 mmHg at the wound centre and 60–70 mmHg at the wound periphery. Arterial oxygen tension (partial pressure of oxygen in the blood) is typically around 100 mmHg. This gradient promotes diffusion of oxygen from the surrounding normal tissue to the hypoxic tissue. HIF-1α is the regulatory part of the HIF-1α/β heterodimer. It acts as a transcription factor and enters the cell nucleus. HIF-1 binds to hypoxia response elements in gene promoter regions. HIF-1α also upregulates genes involved in glucose metabolism, erythropoiesis, iron transport, control of vessel tone, and angiogenesis. Further, HIF-1 regulates homeostasis of oxygen in wound tissue.

However, the above theory has been somewhat refuted by HBOT studies, which hypothesise that wound hypoxia is detrimental throughout all phases of wound healing, whereas hyperoxia confers benefits of increased neovascularisation, faster epithelialisation, and more rapid wound closure. Supplemental oxygen (normobaric or hyperbaric) increases ROS, which
have been shown to upregulate VEGF expression in chronic wounds in animals.113,147 One explanation for this is that VEGF is induced when normoxia is destabilised and re-establishes higher oxygen tensions no matter how VEGF is induced initially.140,148

Oxygen and growth factors

Production of growth factors is upregulated by both hypoxia and hyperoxia. Secretion of TGF-β1 mRNA and TGF-β1 by fibroblasts, and therefore expression of the procollagen-1 gene COLA1, is increased by a low oxygen tension and lactate.149,150 However, chronic hypoxia slows cell proliferation and release of TGF-β1 mRNA.151 In addition, ROS induces FGF-2 and is necessary for the function of growth factors, such as EGF.142,152,153 Hypoxia decreases the production of IL-2 and IL-8, which play a role in activating neutrophils, macrophages, T-cells, and endothelial cells.102 Oxygen is also mandatory for synthesis of IGF-1.

Keratinocytes promote re-epithelialisation and increase expression of lamellipodia proteins, which are involved in cell motility. MMP-1 is an interstitial collagenase required for migration of keratinocytes on type I collagen, while MMP-9 is a type IV collagenase.154 In keratinocytes, hypoxia induces MMP-1 and MMP-9, tissue inhibitors of metalloproteinase, and TGF-β1 receptors, all of which promote motility of keratinocytes and re-epithelialisation.155-157

![Figure 1.6. Oxygen, the substrate for collagen synthesis.](image-url)
Oxygen and collagen

Oxygen is required during biosynthesis of collagen for 3-hydroxylases and 1-oxidases to bind oxygen and insert an oxygen atom in the proline and lysine residues that form the cross-links of collagen (Figure 1.6). The function of the enzymes responsible for hydroxylation of proline (prolyl 4-hydroxylase) and lysine is also directly proportional to tissue oxygenation. When the hydroxyproline level is low, the under-hydroxylated pro-α-peptide chains fail to form a triple helix. This causes collagen to unwind. If this collagen is exported out of the endoplasmic reticulum of the fibroblast, it becomes a non-functional protein.

Oxygen may also play a role in wound contraction by triggering the differentiation of fibroblasts into myofibroblasts. Fibroblasts need an oxygen tension of 30–40 mmHg to deposit collagen effectively. Excessive hyperoxia can be detrimental to proliferation of fibroblasts and synthesis of collagen, possibly because of its toxicity to cells.

Early animal studies by Niinikoski showed that inhalation of 35%–70% oxygen significantly increases the tensile strength of healing wounds. In vitro studies found reduced production of collagen by fibroblasts and increased MMP-1 in hypoxic wounds, whereas hyperoxia accelerated synthesis of collagen in proportion to the arterial oxygen tension and oxygen gradient. This implies that oxygen inhibits MMP-1, promoting wound healing.

HBOT for 4 weeks has been shown to enhance infiltration of fibroblasts and deposition of collagen in wounds. It is unknown if similar findings would be obtained in patients with vascular disease and acute wounds with a high concentration of normobaric oxygen in or wounds with enhanced tissue perfusion.

In summary, while a degree of tissue hypoxia is required in certain parts of the wound healing cascade, enhancing tissue perfusion can amplify production of granulation tissue. However, tissue perfusion can be compromised by peripheral vascular disease (PVD) and diabetes and by disrupted capillary vasculature or relative hypoxia due to increased oxygen demands and cell metabolism.
1.5 Perioperative adjunctive treatments

Three perioperative adjuncts considered for investigation in this thesis that could be applied effectively to promote wound healing and peripheral oxygenation by influencing oxygen delivery, chemical and thermal vasodilation were: supplemental normobaric oxygen, extended active warming, and prostacyclin (prostaglandin [PGI₂]).

Perioperative supplemental oxygen

A pilot study in our vascular unit at Waikato in 2006 showed that high-dose oxygen (Fİ₂ 80%) resulted in increased tissue oxygenation in terms of transcutaneous partial pressure of oxygen (TcpO₂) over an area of the ankle in patients with PVD following infra-inguinal bypass (IIB) surgery.166 This study won an award at the annual Australasian Vascular Conference in 2007.

Perioperative use of 80% Fİ₂ reduced the rate of SSI by 54% following colorectal surgery when compared with standard 30% oxygen. Analysis of collagen deposition in a subset of these patients revealed no significant change in hydroxyproline.118 122 Supplemental perioperative oxygen during lower limb vascular surgery also reduced the risk of SSI.125 However, the randomised PROXI trial in 2012 that investigated SSI and high-dose perioperative oxygen in abdominal surgery showed no difference in SSI or pulmonary complications between the treatment group and the control group, but did show increased long-term mortality in the high-dose oxygen group. However, on further investigation, this was only the case for patients undergoing surgery for cancer.167 168

Extended perioperative warming

Inadequate thermoregulation occurs in half of all major surgical procedures because of exposure to the cold environment of the operating theatre, heat loss via the incisional wound, and anaesthesia-induced thermoregulatory impairment, resulting in decreased production of metabolic heat and redistribution of heat from the central to the peripheral compartment.169 Peripheral vasoconstriction via the sympathetic nervous system occurs with a fall of core temperature as minor as 0.2°C.169 This decreases tissue oxygen tension, causing hypoxia and a suppressed inflammatory response to wound healing. This results in impaired production of collagen.163 Hypothermia also lowers resistance to infection and increases the risk of coagulopathy and myocardial ischaemia.170 Active systemic and local warming decreases the risk of SSI, intraoperative blood loss, duration of hospital stay, and total hospital costs.171
Applying extended systemic warming 2 hours preoperatively and postoperatively, as well as intraoperatively, increases deposition of collagen at the surgical wound site and reduces the risk of SSI in colorectal surgery.172 173 Local radiant heating to 38°C at the acute wound site increases the subcutaneous tissue oxygen tension in healthy volunteers, but collagen deposition is not increased.174 The degree of heat loss and tissue hypoxia and its consequences is probably greater for a peripheral leg incision than for a central site on the abdomen, especially in patients with PVD.

Perioperative Ilomedin®

Ilomedin® is an intravenous medication that contains iloprost, the first synthetic analogue of prostacyclin, which originates principally from the vascular endothelium (Figure 1.7). Iloprost is a potent vasodilator, platelet suppressant, and mediator between the endothelium, platelets, and leucocytes in the blood vessel wall.175 176

![Figure 1.7. Structural comparison of iloprost and prostacyclin. Sourced from Bayer Schering Pharma AG, 2009.](image)

Microcirculatory disease is caused by an imbalance between prostacyclin, which has dilatory and antiplatelet effects, and thromboxane, which acts as a vasoconstrictor and platelet activator (Figure 1.8). Microcirculatory ischaemia can result from long-standing macrocirculatory disease, from arterial stenosis, or from vasospastic attacks in small vessels. This low tissue perfusion pressure and decreased microcirculatory flow precipitating cellular and biochemical changes can be reversible initially. However, when severe ischaemia, intercurrent infection, or minor injury is superimposed, capillary plugging can occur at the capillary bed as a result of vasoconstriction triggered by endothelial damage via release of
thromboxane A2, endothelium-derived constricting factors, endothelins, PDGF, and serotonin. In addition, fibrinolytic activity is impaired by inappropriate release of tissue-type plasminogen activator and plasminogen activator inhibitor. This can result in pain, ulceration, and gangrene.

Figure 1.8. Effects of critical limb ischaemia on the microcirculation. Sourced from Bayer Schering Pharma AG, 2009.

Figure 1.9. Effects of iloprost on the microcirculation. Sourced from Bayer Schering Pharma AG, 2009.
Iloprost activates PGI$_2$ receptors, stimulating release of adenylate cyclase, and thus cellular production of cyclic adenosine monophosphate$^{178-180}$ (Figure 1.9). This induces vasodilation and decreases peripheral resistance, thereby inhibiting platelet activation, repairing and protecting the endothelium, activating endogenous fibrinolysis, and correcting imbalances in the cytokine network.181,182 Iloprost has cytoprotective effects that enhance tissue resistance to ischaemia.$^{183-185}$

Vasodilation

Iloprost acts on arterial smooth muscle cells in vascular beds, counteracting thromboxane A2, leukotrienes and endothelium-derived constricting factor, and promoting release of endothelium-derived relaxing factor and endothelium-derived hyperpolarizing factor.$^{186-190}$ Endothelium-derived relaxing factor releases NO, and endothelium-derived hyperpolarizing factor acts on the muscle cell membrane, leading to selective opening of potassium channels. The overall effect is vasodilation (Figure 1.10).

Platelet inhibition

Iloprost binds to PGI$_2$ receptors on platelets, thereby inhibiting activation, changes in shape, adhesion, and aggregation of platelets, and release of mitogenic factors. This reduces the deposition of platelets on the arteriosclerotic vessel wall.

Vascular endothelium protection

Iloprost has immunomodulatory and anti-inflammatory effects, including inhibition of leucocyte adhesion and accumulation. It also regulates synthesis of TNF-α at both the transcriptional and post-transcriptional levels. Reduced release of TNF-α and intracellular adhesion molecule protects the endothelium. Iloprost restores the permeability of the endothelium by reversing the effects of serotonin and histamine. Iloprost also interacts with macrophages, reducing the release of mitogens and preventing proliferation of smooth muscle cells, thereby inhibiting atherosclerosis.

Iloprost increases urokinase activity by inhibiting tissue plasminogen activator inhibitors, thus enhancing endogenous fibrinolytic and ECM activity. This may reduce the growth and size of thrombi.191
Figure 1. Effect of prostaglandin I$_2$ (iloprost) on vascular smooth muscle. Sourced from Bayer Schering Pharma AG, 2009. Abbreviations: AA, arachidonic acid; cAMP, cyclic adenosine monophosphate; COX, cyclooxygenase; ET, endothelin; EDHF, endothelium-derived hyperpolarizing factor; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; PG, prostaglandin

Clinical studies of iloprost

Intra-arterial or intravenous ilomedin enhances tissue oxygenation. Its half-life and haemodynamic effects in terms of blood pressure, peripheral resistance, and blood flow are around 30 minutes. For patients with end-stage PVD, diabetic angiopathy, or thromboangiitis obliterans (Buerger’s disease), where revascularisation would not be indicated, meta-analyses suggest treatment with intravenous iloprost for 2–4 weeks can improve outcome in terms of ulcer healing, relief of rest pain, limb salvage for at least 3–6 months, and survival with both limbs at 6 months (65% versus 45% [placebo], p<0.05).

A randomised controlled trial (RCT) using a single intra-operative bolus infusion of iloprost 3,000 ng as an adjunct to IIB, such as femoral-distal bypass, showed improved graft patency at one month and increased survival at 3 months. However, a meta-analysis by Watson et al from the Iloprost Bypass International Study Group concluded that there was limited level
2 evidence due to poor study designs and a lack of RCTs.193,204,205 Irrespective of whether a single bolus dose was administered intraoperatively or a short course was given postoperatively, there was no difference in 12-month patency or limb salvage. The only positive finding was improved patency during the first 3 days in femoral-distal bypasses, especially for prosthetic grafts.206

Further investigations of the haemodynamics of bypass grafts identified the “low reflow” phenomenon. This exists postoperatively with low graft velocity during the acute phase and increased thrombogenicity and resistance in the distal vascular bed.205 Low reflow might be a result of increased infiltration of white cells and vascular swelling in the microcirculation because of ischaemia either preoperatively or intraoperatively from arterial clamping. The effects of Ilomedin theoretically minimise this and improve early patency. There is no research on the relationship between Ilomedin and deposition of collagen. Iloprost is also used in patients with Raynaud’s phenomenon and pulmonary hypertension.

The cost of iloprost administration in a hospital setting is NZD $185 per day, at a ward cost of NZD $330 per day.207
1.6 Infra-inguinal bypass surgery

For the purposes of this thesis, the incisional wound at the knee during IIB surgery was examined to determine if the afore-mentioned perioperative adjuncts can improve tissue oxygenation and wound healing.

At Waikato Hospital in 2007, 97 IIB procedures were performed, accounting for 25% of all major vascular surgery procedures. Of these, 43 were femoral-popliteal bypasses and 25 were femoral-distal bypasses.

Poor wound healing following IIB increases morbidity, limb loss, and mortality. The incidence of wound complications can be as high as 44%, especially in the case of distal incisional wounds and if there is pre-existing infection in the same limb extremity or comorbidities that impair wound healing.\(^{208}\)\(^{209}\) The most feared complications are wound dehiscence and infection, which can potentially expose and infect the graft, rendering the surgery a failure and leading to limb loss. Up to 40% of these wound complications are considered significant, with threatened or actual graft exposure.\(^{210}\) A fifth of these patients require at least one readmission as a result of wound complications, adding further burden to the health system of more than USD $700 per patient with wound complications.\(^{208}\)\(^{211}\)
1.7 Peripheral vascular disease

The term "peripheral vascular disease" is often used when referring to atherosclerosis resulting in stenosis or obstruction of the main arteries to the lower extremities and causing inadequate flow of blood supplying oxygen and nutrients to the end organs to sustain their normal functions.

Patients with PVD can be broadly subdivided into three groups according to severity, i.e., those who are asymptomatic, those who have intermittent claudication, and those with critical limb ischaemia (CLI). Accepted classifications include those derived by Fontaine or Rutherford (Appendix A1.2; Figure 9.1)

Asymptomatic PVD is defined as a resting ankle-brachial index (ABI) of ≤0.90 in patients who do not experience symptoms. The ABI is a ratio of systolic blood pressure (SBP) of the pedal vessels at the ankle to that of the brachial artery in the upper arm. A resting or exercising ABI ≤0.90 may indicate haemodynamically significant arterial stenosis.

Symptomatic PVD includes patients with intermittent claudication or with CLI. The prevalence of intermittent claudication is about 10% in those aged over 70 years. Most patients with intermittent claudication are managed by lifestyle modification, antiplatelet and statin therapy, and exercise to enhance formation of collateral vessels around the stenoses. Only 5%–10% of cases require surgical intervention to restore the blood supply.

CLI is limb-threatening and the most common presentation in admissions for vascular surgery. It is defined as chronic ischaemic rest pain of the foot lasting for more than 2 weeks and requiring analgesia, or as ischaemic skin lesions (either ulcers or gangrene) with an ankle systolic BP <50 mmHg, a toe systolic BP <30 mmHg, or TcpO₂ at the foot <40–50 mmHg. The diagnosis should be flexible depending on the nature of the disease; for example, in patients with ulcers of mixed aetiology or diabetic neuropathy with reduced pain perception.

The incidence of CLI is 220 per year per million population. Independent risk factors associated with a worse outcome are also the major culprits for development of atherosclerosis (i.e. smoking, diabetes, dyslipidaemia, male sex, and older age).

The pathophysiology of PVD is slightly different between patients with and without diabetes. In patients with CLI and diabetes, the occlusive lesions are typically more diffuse and distally
located, and in particular affect the infragenicular arteries (below the knee) including the plantar arch and influencing different angiosomes in the foot. This is different from the occlusive lesions that occur in patients without diabetes, such as heavy smokers, where the lesions are focal, multi-segmental, and proximal. Diffuse distal vessel disease described in the former group is associated with an unfavourable outcome due to “poor run-off”. Collateral formation around the larger arteries is impaired in patients with diabetes, causing tissue downstream to be more susceptible to ischaemia. Moreover, diabetic patients with CLI often have poor cardiac output and present late as they have been “asymptomatic” for years (or rather their occlusive symptoms have been masked by diabetic neuropathy). The relationship between diabetes and PVD is discussed in more detail later.

Figure 1.11. Prognosis of patients with peripheral vascular disease. Sourced from Trans-Atlantic Inter-Society Consensus guidelines, 2009.

Up to 90% of patients with CLI undergo revascularisation to prevent major amputations. The prognosis of CLI is poorer than that for intermittent claudication and is associated with a 25% risk of mortality and a 30% major amputation rate at one year. This translates to 45% of patients being alive with both legs after one year (Figure 1.11).
The incidence of major amputations is 500 per year per million population. Primary amputation (without previous revascularisation) can be as high as 25% for patients with CLI. These patients usually have non-salvageable disease, with overwhelming infection, uncontrollable rest pain, and/or extensive necrosis that has destroyed the foot, or are unsuitable for revascularisation because they have no “run-off” or are unsafe for anaesthesia. Secondary amputation is indicated when revascularisation options are no longer applicable or when the limb continues to deteriorate despite successful restoration of distal perfusion.

The fate of an amputee is bleak. Only around two thirds of major amputees are fitted with a prosthesis, with a variable number of these patients (16%–96%) successfully achieving independent ambulation by 6–12 months. Moreover, 30% of the amputees who manage to walk at this time no longer use their prostheses by 2 years. Only 60% of below-knee amputations heal by primary intention and 30% of these patients die within 2 years (Figure 1.12). Three quarters of amputees over 75 years of age are unable to return home following surgery, and require additional financial and social support. Initial rehabilitation usually requires at least 9 months and survival is 70%–80% at 2 years.

Figure 1.12. Two-year prognosis following below-knee amputation. Sourced from Trans-Atlantic Inter-Society Consensus guidelines, 2009.

Tissue Oxygenation and Wound Healing in Vascular Surgery

1.8 Management of infra-inguinal occlusive disease

In CLI, stenoses of the infra-inguinal vessels are more common than aorto-iliac lesions. Nevertheless, treatment of a critical aorto-iliac lesion, if present, should be prioritised to maximize the “inflow” (i.e., the feeding vessels).

Successful revascularisation depends on the extent of disease in the subjacent arterial tree (i.e., inflow, outflow, and severity of disease in the affected segment), the degree of systemic disease (e.g., cardiac output), and the type of procedure performed. Before selecting from the treatment options, the location and morphology of the infra-inguinal lesion should be evaluated.

Figure 1.13. Trans-Atlantic Inter-Society Consensus classification of femoral-popliteal lesions. Sourced from the Trans-Atlantic Inter-Society Consensus guidelines, 2009.213
The Trans-Atlantic Inter-Society Consensus (TASC) classification helps to predict the outcome of revascularisation. A lesion in the femoral-popliteal artery is classified by its severity and length (Figure 1.13). Type A lesions have a better prognosis than type D lesions. There is no classification for the infragenicular arteries (below the knee). Revascularisation of these distal vessels is associated with poor patency, so is typically reserved for limb salvage purposes where a poor outcome is expected.

Surgical interventions for femoral-popliteal lesions can be broadly categorised as endovascular or open surgical bypass procedures. Endovascular treatment of infra-inguinal disease in the form of percutaneous transluminal angioplasty (PTA) and/or stenting usually targets TASC A or B lesions according to the recommendations of the TASC Document on Management of Peripheral Arterial Disease. Compared with bypass surgery, PTA is less invasive with lower morbidity and mortality risks, and has excellent technical and clinical success rates in excess of 95%.\(^{224}\) PTA and/or stenting of femoral-popliteal lesions achieves acceptable patency rates of approximately 75% at one year, 60% at 3 years, and 50% at 5 years.\(^{224-227}\)

RCTs comparing PTA versus bypass surgery in infra-inguinal PVD are rare. One of the reasons for this is that the indications for bypass surgery and PTA are different. A Cochrane review in 2008 compared PTA with bypass surgery based on four landmark trials, including BASIL and the Veterans Study.\(^{228-231}\) Essentially, there was insufficient evidence to suggest superiority of one intervention over the other with regard to outcome parameters, including mortality, limb salvage, or complication rates. Patients who underwent bypass surgery had a higher 12-month primary patency rate (odds ratio 0.62). This benefit did not last beyond 4 years, according to the findings of the Veterans Study.

BASIL was a landmark RCT comparing the “bypass first” and “angioplasty first” approaches in patients with severe limb ischaemia. The initial paper in 2005 did not suggest any difference in clinical outcome between the two treatment arms. However, a second paper was published in 2010 with a longer follow-up of 3 years;\(^{229}\) although 56% of the study participants had died and there was no difference between the treatment groups in terms of overall survival or amputation-free survival, those who underwent bypass surgery first and survived for at least 2 years had significantly better overall survival (an additional 7.3 months) and showed a trend towards improved amputation-free survival. Therefore, for severe PVD and CLI (TASC C or
D), bypass surgery appears to achieve better primary patency and possibly a more favourable long-term outcome.

When planning for IIB surgery, patent and uncompromised inflow and outflow to the foot is ideal. The quality of outflow is a more important determinant of patency than the level of the distal anastomosis. Common proximal anastomotic sites are the common femoral artery and superficial femoral artery, whereas distal anastomoses usually involve the above-knee popliteal artery, below-knee popliteal artery, tibial or peroneal vessels, or plantar arteries.

The conduit used is also an independent prognostic factor. Veins (reversed, non-reversed, or in situ) typically have better long-term patency than prosthetic grafts, other than in bypass to above-knee vessels where the two conduits have near-equivalent early patency. Polytetrafluoroethylene (PTFE) grafts to the infra-popliteal arteries are less successful, with a primary patency rate of 30.5% and a secondary patency rate of 39.7% at 5 years.232 This patency may be improved by adding a “cuff” or a hood of vein at the distal anastomosis below the knee.233,234 The consequences of a prosthetic graft occlusion are more sinister than those of a vein graft occlusion.235 This does not include the prosthetic material becoming infected, which may require the prosthesis to be explanted, thereby increasing morbidity and mortality. PTFE grafting is reserved for when there are no suitable veins available, including contralateral leg veins, arm veins, or even composite and spliced veins.

In general, a quarter of infra-inguinal bypasses need revision within the first year, and the limb salvage rate can be as low as 85% at one year.208 About three-quarters of patients are still living independently at home at 3 years following surgery and a similar proportion remains ambulatory.236 Should the bypass graft occlude or fail to re-establish patency, limb salvage rates at 2 years are 100% for a bypass constructed for claudication, 55% for a bypass for rest pain, and only 34% for tissue loss. Early occlusion of a graft (≤30 days) is associated with a poor 2-year limb salvage rate of 25%.237
1.9 Peripheral vascular disease in New Zealand

PVD is especially problematic in New Zealand and places a significant burden on quality of life, the workforce, the health system, and society. This burden is expected to worsen as the population ages.

New Zealand is the third most obese nation worldwide, and has the fourth highest rate of diabetes per capita. More than 25% of the population is considered to be obese (body mass index >30). In 2013, there were 245,000 people with diabetes in New Zealand, and the prevalence of the disease was 7.0%. Diabetes is the main reason for lower limb amputation in this country.

Our indigenous Māori population, which makes up 20% of the total population, is at higher risk of atherosclerotic disease than Whites. Māori and Pacific Islanders have a higher prevalence of diabetes (diagnosed or undiagnosed) and related risk factors (e.g., obesity, physical inactivity, insulin resistance, and metabolic syndrome) when compared with Whites. The prevalence of diabetes is higher among the obese population at 14.2% and Māori (7%) and Pacific Islanders (8.1%) than in other ethnic groups (4.9%). There is conflicting evidence regarding the relationship of smoking in the Māori population. Two studies reported low cigarette smoking rates, but another study reported a higher prevalence of smoking among Māori with diabetes than in their non-Māori counterparts (35% and 13%, respectively).

Diabetes-related complications are over-represented in Māori when compared with Whites. The age-adjusted mortality rates for diabetes-related illnesses, including cardiovascular disease, cancer, and renal disease, are higher in Māori, in particular Māori women. Diabetes accounts for 20% of all deaths among Māori as compared with 4% in other New Zealanders.

Compared with Whites, the Māori and Pacific Island populations are at increased risk of diabetic foot, with a higher prevalence, a younger age at presentation than Whites (53 and 56 years versus 69 years, respectively), and a worse outcome. The relative risk for diabetes-related amputation is 6-fold higher for Māori than for non-Māori. Māori have been reported to be less likely to comply with diabetes-related medical care due to poor perception of risk. With the Māori and Pacific Islanders in New Zealand living in an environment of tobacco use and socioeconomic disparity, and the latter leading to poor compliance and
inadequate access to medical attention, there is a major threat to their feet despite primary and secondary prevention measures, including education, diabetic screening, and podiatry cares.253 254

The economic cost of managing DFU is high. Payne et al found that hospital admissions for diabetic foot are increasing in New Zealand and have a longer hospital stay when compared with other vascular admissions, with NZD $10–11 million spent on inpatient management of DFU in 1993 alone.255 Further, in a report from Wellington, Scott et al estimated hospital costs of NZD $13.1 million for admissions with CLI and prostheses, and a cost of NZD $2.8 million for loss of output or productivity in 1994.207 Thirty-two percent of patients requiring amputations in New Zealand are in the working age group.207 Thompson et al calculated the average inpatient cost per diabetic foot admission at Middlemore Hospital, Auckland, in 1993 to be $12,500, with a total annual cost of over $600,000.251 The cost of a PTA is $10,000, a bypass surgery costs $20,000, and an amputation costs $25,000.207 213 The total cost per patient should be multiplied by a factor of 2 to 4 to account for further procedures, complications, and rehabilitation.
1.10 Tissue perfusion

Patients with PVD typically have impaired oxygen uptake and delivery mechanisms, and may have concomitant cardiorespiratory disease, peripheral neuropathy, an impaired vasomotor response, arteriovenous (AV) shunting, and/or dysfunctional thermoregulation.

Microcirculation in the skin tissue involves a complex system of microvascular flow regulation and is a defence mechanism. It is composed of terminal arterioles, capillaries, venules and lymphatic capillaries. The arterioles (10–100 µm) are surrounded by innervated smooth muscles. Capillaries (5–8 µm in diameter) have no smooth muscle and venules (10–200 µm) have little smooth muscle. The microcirculation includes extrinsic neurogenic mechanisms (actions of noradrenaline and adrenaline at alpha and beta adrenergic receptors) and intrinsic local mediators, and is modulated by factors circulating in the humoral pathway or bloodstream (e.g., renin-angiotensin and vasopressin). The endothelium participates in regulation of capillary flow by releasing vasodilatory mediators (e.g., prostacyclin and NO) and contractile factors (e.g., endothelins). In normal individuals, only 15% of total blood flow in the foot is required to provide adequate capillary exchange for oxygen and nutrients in tissues. The remaining blood flow has a thermoregulatory function.

Patients with CLI develop microcirculatory defects, including endothelial dysfunction, altered thrombotic function, macrophage activation, and inflammation. This causes maldistribution of the microcirculation as well as a reduction in total blood flow. TcPO₂ in the lower extremity is less in patients with PVD than in healthy individuals.

Therefore, while the primary aim of treatment for CLI is to correct the pathology of the macrocirculation (i.e., circulation of blood to the organs), it is equally important to assess and normalise microcirculatory changes in the tissue.
1.11 **Assessment of tissue oxygenation**

Measurement of tissue oxygenation is a component in the evaluation of PVD to determine the severity of tissue hypoxia and predict tissue viability. There is no gold standard for its assessment. Most clinicians use their clinical judgement at the bedside. Various modes of arteriography (e.g., duplex ultrasound, computed tomographic angiography, magnetic resonance angiography, and digital subtraction angiography) can be used to outline the major vessels that are patent and can identify stenotic or occlusive lesions within the vessel that may contribute to tissue hypoxia, but offer no indication of the adequacy of microvascular perfusion.

Measurement of toe pressure

Toe pressures measure systolic BP of the toe arteries by applying a miniature cuff at the base of the toe. Systolic BP >45 mmHg is a good predictor of wound healing, even in patients with diabetes and renal disease. Nevertheless, the reproducibility of toe pressure measurements varies in the literature; vascular patients frequently present with necrotic toe ulcers or previous toe amputations, rendering toe pressures a difficult marker to analyse in studies.

Laser Doppler flowmetry

Laser Doppler flowmetry measures haemodynamics and quantifies blood flow in human tissues, including skin. A low-power laser diode generates light of wavelength 780 nm that penetrates a small area of skin up to 0.5–1 mm in depth. The beam is scattered with a Doppler shift by haemoglobin and returns to be concentrated by a detector. However, laser Doppler flowmetry is not readily available.

Laser angiography

Indocyanine green (ICG) is a fluorescent cyanine dye with a peak spectral absorption at about 800 nm and a half-life of 150–180 seconds. It binds tightly to plasma proteins and is confined to the vascular system. ICG is used as a marker in assessment of tissue perfusion. Near-infrared light generates excitation of the fluorescence. A digital video camera allows absorption of the ICG fluorescence to be recorded in real time. ICG angiography has been used in patients with vascular disease to predict tissue viability and assess perfusion before and after vascular intervention. ICG is administered intravenously and patients can experience side effects. The SPY camera system is not readily available and expensive.
Transcutaneous oximetry measurement

Transcutaneous oximetry measurement (TCOM) is well established in certain clinical settings, including paediatric intensive care, respiratory, anaesthesiology, and hyperbaric medicine, and is regarded as a useful tool for assessing the peripheral circulation in vascular and plastics surgery.

TCOM measures oxygen tension (partial pressure) on the skin surface under an electrode. Invasive electrodes were first pioneered by Clark and then miniaturised by Silver. Fifty years ago, Hunt was the first to describe measurement of tissue oxygenation in humans. A decade later, “non-invasive” TCOM probes were developed that required physical contact between the skin and a probe. A plastic ring filled with a layer of contact fluid is placed over an area of interest and the electrode is placed into the ring. Nowadays, TCOM can cater for both transcutaneous partial pressure of oxygen (TcpO₂) and transcutaneous partial pressure of carbon dioxide (TcpCO₂). TCOM estimates tissue oxygenation by measuring the diffusion of extracellular oxygen and carbon dioxide into a heated sensor on the skin.

Tissue oxygenation of a limb responds to clinical situations, e.g., positional changes, with increases in TcpO₂ in a dependent position and decreases with elevation. TcpO₂ also falls when the skin is undermined and stretched. TcpO₂ increases significantly in normal subjects when breathing an F\textsubscript{O₂} of 100% oxygen. In individuals with PVD, TcpO₂ falls during and after exercise. Similarly, a TcpO₂ of <30 mmHg despite breathing 100% normobaric oxygen is consistent with severe PVD. Many TCOM studies are based on HBOT. In some patients, HBOT is the only method that can increase TcpO₂ for healing. TcpO₂ increases with the partial pressure of arterial oxygen (P\textsubscript{a}O₂) which is in turn increased by the partial pressure of inspired oxygen (P\textsubscript{i}O₂) when oxygen is delivered at greater than 1 atm.

In patients with severe ischaemia, TcpO₂ is more sensitive than the ABI in those with renal disease and/or diabetes, because it detects impaired blood flow from both macrovascular and microvascular disease. TCOM also has better predictive capability than laser Doppler flowmetry or segmental pressure.

Lower extremity TcpO₂ is sometimes used clinically to assess wound healing potential and to review therapeutic results in ischaemic legs. Tissue hypoxia (TcpO₂ <30 mmHg) disrupts all phases of wound healing, leading to anaerobic metabolism, which creates acidosis and results
in inadequate production of adenosine triphosphate to maintain cellular function.127 Wounds with a TcpO\textsubscript{2} >40 mmHg generally heal.280-282 The predictive index has a sensitivity and specificity of 85% and 92%, respectively.282 Patients with diabetes and renal failure may require a higher TcpO\textsubscript{2} of >50 mmHg for successful healing.283,284 An increase in TcpO\textsubscript{2} of >40 mmHg after revascularisation is indicative of significant improvement.285 TcpO\textsubscript{2} (or TcpCO\textsubscript{2}) is also used as an indirect measurement of the P\textsubscript{a}O\textsubscript{2}, (or P\textsubscript{a}CO\textsubscript{2}) of arterial blood, whether dissolved or bound to haemoglobin.

There are limitations with TCOM. Wound TcpO\textsubscript{2} measured by TCOM is the oxygen tension in the skin surrounding the wound and is not a direct measurement of wound oxygen tension (P\textsubscript{w}O\textsubscript{2}). Wound oxygen tension is likely to be lower than the TcpO\textsubscript{2} adjacent to the wound. Moreover, TCOM measures TcpO\textsubscript{2} at a single site the size of an electrode (about 1 cm in diameter). Mean TcpO\textsubscript{2} values from two or more adjacent sites in a wound are better predictors of healing potential than single site values. However, assessment of multiple sites can be impractical and time-consuming, given that a single reading may take up to 20 minutes.286 Intra-operator variability with TCOM is 10% for TcpO\textsubscript{2} and 5% for TcpCO\textsubscript{2}.287,288

Guidelines have been published for the use of TCOM.289-291 Most aspects are adequately described. Landmark papers on TCOM have been published by Sheffield \textit{et al}, Smart \textit{et al}, and Fife \textit{et al}, who have provided comprehensive literature reviews of its use, reference ranges for normal and diseased individuals, and previous research findings, such as its value for predicting amputation and wound healing.

However, there are no recommendations regarding the length of time that the probe is required to be in contact with the skin in order to achieve reliable absolute measurements. A reason for this is that TCOM is usually used for continuous measurements to detect unexpected changes in oxygenation in patients with sleep apnoea and in neonates to monitor oxygen levels without needing to perform regular arterial blood gas measurements. Some authors have described recording measurements at periods “between 10 and 20 minutes” when the gas exchange between the probe and skin reaches equilibrium; while others have taken recordings only when measurements cease to fluctuate. Recording when measurements cease to fluctuate is not precise.

The only documentation in the guidelines regarding the duration required for the electrode to reach equilibrium was found in Sheffield \textit{et al}.273 This was suggested to be around 10–15
minutes in subjects with normal perfusion and 15–20 minutes in those with a compromised circulation. This is referenced to a “personal communication” with Vesterager et al. The relationship between TcpO₂ and time taken to reach equilibrium of the electrode was also discussed. A typical dip in measurements at around 8 minutes was described, where TcpO₂ reached the lowest value and subsequently rebounded to equilibrium at around 15 minutes (Figure 1.14). Again, exact referencing was not found, and this appeared to be based on a “drawing” by Vesterager et al as part of their “personal communication”.

Sheffield et al observed that “TCOM is much an art than science”. Technical limitations were also described. The issues described included how time-consuming, labour-intensive, and operator-dependent TCOM was in terms of achieving consistent results. Sheffield et al recommended 45 minutes of reading per limb, and performed leg elevation and oxygen challenge tests to determine if the hypoxia was due to large or small vessel disease and if perfusion would respond to hyperoxaemia, such as HBOT. With the newer TCOM4 model, simultaneous measurements can be taken using a solo monitor to reduce the time needed to complete the procedure.

Sheffield et al also commented that “No single value can be specified ‘normal’ oxygen tension for all tissue. Rather there exists a series of gradients, the steepness of which varies with arterial oxygen tension, type of tissue, inter-capillary distance and cellular metabolic rate.”. TcpO₂ values vary according to the patient population being studied, the technique used, the site of measurement, the position of the limb, and the therapeutic intervention applied. This
variability can be as high as 10%. TCOM measurements are considered reproducible because this variability does not appear to affect decisions in clinical practice.

Some authors recommend use of a reference point to interpret TCOM readings, for example, on the chest to calculate the regional perfusion index (RPI) or comparing the affected limb with its contralateral partner to determine the bilateral perfusion index (BPI). Using a reference point could reduce bias from central or external causes when interpreting changes in peripheral perfusion. Chest readings are not significantly different from leg oxygenation in the healthy population.

However, the measurement error can be doubled when a reference point is used. Smart, Sheffield and Fife advocated interpreting the raw actual values rather than the relative values when predicting healing potential. Others demonstrated incongruence between values for the lower limb and those for the chest. Theoretically, RPI can determine whether tissue hypoxia is due to arterial hypoxaemia. However, use of a chest reference value is unreliable and abnormally low in certain patients, such as those with previous sternotomy. This can create a spuriously high RPI, rendering it unhelpful in patients with vascular disease.

TCOM technology

Figure 1.15. A schematic diagram demonstrating how a transcutaneous oximetry measurement electrode works. Sourced from Smart et al, 2006.
The TCOM system contains a thermostatically controlled heating element with a preset temperature range of 37.0°C–45.0°C (Figure 1.15). The electrode can combine a pO₂ sensor (Clark-type) and a pCO₂ sensor (Stow-Severinghaus). A Clark electrode is composed of a platinum cathode and a silver anode immersed in an electrolyte solution with an overlying oxygen-permeable membrane. Molecular oxygen is reduced at the cathode. With voltage applied between the anode and cathode, the current generated by oxygen reduction is proportional to the TcpO₂. The electrode measures the TcpO₂ in a sealing ring chamber which reaches equilibrium with TcpO₂ at the skin surface over time. The Severinghaus electrode calculates the pCO₂ electrochemically by a change in pH of the electrolyte solution. Additionally, a temperature correction is used to address the epithelial carbon dioxide produced by heating the skin.

Several factors can influence readings, and include:

- \(P_{aO_2} \) (or \(P_{aCO_2} \))
- Capillary blood flow in the skin under the electrode
- Oxygen consumption and carbon dioxide production by the skin
- Oxygen consumption by the electrode
- Temperature gradients in the skin
- Structural and diffusive properties of the skin (e.g., skin thickness, oedema, and inflammation).

Imprecision of TCOM values may also be due to “electrode drift” caused by wear and tear of the electrode membrane, variations in pressure on the electrode (such as direct pressure on the electrode), and skin properties.

TCOM electrodes are heated during measurement because the technique:

- Induces capillary hyperperfusion of the skin under the electrode in both the stratum papillare and the deeper dermal microcirculation, which has multiple arterial and venous plexuses. This reduces the arteriovenous differences in TcpO₂ and TcpCO₂ and provides more accurate values for true \(P_{aO_2} \) or \(P_{aCO_2} \).
- Lowers blood solubility of oxygen and carbon dioxide.
• Causes a right shift in the oxygen-haemoglobin dissociation curve, lowering the haemoglobin-oxygen affinity and increasing dissociation of carbonic acid. This increases \(P_aO_2 \) or \(P_aCO_2 \) in the heated blood and therefore increases \(TcpO_2 \) and \(TcpCO_2 \).
• Increases gas diffusion through the skin due to enhanced solubility of the lipid layer of the epidermis.
• Increases oxygen consumption and carbon dioxide production (metabolic rate) at the skin by 4%–5% per degree Celsius.\(^{294}\)

OxyVu™

OxyVu™, a hyperspectral transcutaneous oxygenation (HTCOM) measurement system, uses “hyperspectral technology” to deliver a two-dimensional, colour-coded map of “oxygen anatomy” over regions of interest in a non-invasive manner. This two-dimensional region can vary from as large as for the entire foot or be as specific as for an ulcer at the toe.

![OxyVu™ System](http://www.hypermed-inc.com)

Figure 1.16. Photograph of the OxyVu-2™ system. (Retrieved from http://www.hypermed-inc.com)
The OxyVu (HyperMed Inc, Boston, MA, USA) was released in 2006, and is a mobile integrated computer with a camera device (Figure 1.16). A “target”, i.e., a small sticker, is placed at the region of interest, such as the sole of the foot. The mounted camera produces two red dots that allow the target to be focussed on at a fixed focal distance of 12 inches. The camera then produces light at various wavelengths that penetrates the skin to a depth of 1–2 mm to obtain information from the subpapillary plexus (Figure 1.17). The computer software detects the presence of chromophores (“fingerprint of colour”) that are uniquely specific to oxyhaemoglobin and deoxyhaemoglobin. This process is repeated at each pixel of the digital picture with a resolution of 90 µm, producing a spectrum of colours around the regions of interest that correlates with the density of oxyhaemoglobin and deoxyhaemoglobin that can then be quantified. The hyperspectral image provides quantitative values for transcutaneous oxyhaemoglobin (HT-Oxy) and deoxyhaemoglobin (HT-Deoxy) within 15 seconds. The OxyVu also measures skin temperature using a remote infrared temperature sensor on the imaging unit, adding a new dimension to analysis of tissue oxygenation. Currently, no other devices provide the information gleaned by OxyVu.

Figure 1.17. Diagram illustrating how the OxyVu™ works. (Retrieved from http://www.hypermed-inc.com).
Hyperspectral technology
Hyperspectral technology is a complicated process. Essentially, light rays hitting human skin are reflected back to a camera depending on the refraction index between air and the stratum corneum. This phenomenon of light reflecting off two discrete interfaces is called Fresnel reflection. However, some of this light energy is absorbed by chromophores in the dermis and the epidermis, or scattered. The primary chromophores in the skin showing peaks within the visible light spectrum are oxyhaemoglobin, deoxyhaemoglobin, and melanin. The sum of light energy observed by the detector is that of Fresnel reflection and diffuse reflectance. The latter corresponds to light that enters the tissue and re-emerges out of the tissue toward the detector. If skin is illuminated by polarised light, the light reflected by the surface remains polarised (diffuse reflectance). However, the re-emerging light is depolarised due to scattering in the tissue (Fresnel reflection).

According to previous work on reflectance spectroscopy, the spectral molar absorption coefficients of oxyhaemoglobin and deoxyhaemoglobin are fixed and different. Deoxyhaemoglobin has a single absorption peak around 554 nm, whereas oxyhaemoglobin shows absorption peaks around 542 nm and 578 nm (Figures 1.18 and 1.19).

OxyVu exploits this uniqueness and uses hyperspectral imaging to detect diffuse reflectance. OxyVu records a series of two-dimensional images at 15 equally spaced and specific wavelength points (\(\lambda\)) between 500 nm and 660 nm. Seven broadband visible light-emitting diodes (LEDs) with collimating wide lenses are radially arranged around and cross-polarised relative to the collection optics. The Fresnel reflection in the image is eliminated by placing a linear polariser film set between two acrylic sheets in front of the LED assembly. The detection system is designed to have a 12-inch focal length and a spatial resolution of 100 µm.
Figure 1. 18. OxyVu™ using different wavelengths to detect specific chromophores. (Retrieved from http://www.hypermed-inc.com).301

Figure 1. 19. Graph demonstrating the chromophores of oxyhaemoglobin and deoxyhaemoglobin. (Retrieved from http://www.hypermed-inc.com).301

With sophisticated computer software, OxyVu transforms each pixel of the picture into a three-dimensional “hypercube” where the x and y axes are the two spatial coordinates and λ is the spectral coordinate. Analysis of the hypercube can reveal the local concentration of tissue chromophores.
With further mathematical modelling and scaling the oxyhaemoglobin concentration (HT-Oxy) to be 50 based on the average for a population of healthy subjects, HT-Oxy(x,y), HT-Deoxy(x,y), and HT-melanin(x,y) can be estimated in arbitrary units (AU), as well as the total haemoglobin concentration (HT-Sum) and oxyhaemoglobin saturation (HT-Sat) where HT-Sum = HT-Oxy + HT-Deoxy and HT-Sat = HT-Oxy/HT-Sum, respectively. Figure 1.20.

The readings do not account for melanin concentration, epidermal thickness, or the scattering properties of the tissue. Another advanced mathematical model is used to refine these diffuse reflectance measurements and simultaneously determine HT-Sat, blood volume fraction, melanin concentration, and the tissue scattering coefficient. Several assumptions are made, including the epidermis being a plane-parallel slab supported by a semi-infinite layer of dermis and the tissue scattering coefficient being identical for the dermis and epidermis. The spectral absorption coefficient of the dermis is determined by the absorption of blood and tissue, which depends on the blood volume fraction and the concentrations of oxyhaemoglobin and deoxyhaemoglobin. This coefficient is successfully applied to reflectance measurements in different levels of pigmented skin. This results in consistent measurements irrespective of the racial groups, anatomical location, and tanning status.
Previous clinical studies with OxyVu

OxyVu was validated against high-resolution spectrometry at eight different anatomical sites before and after pressure cuff-induced ischaemia in 19 healthy subjects. The findings showed good congruence when comparing OxyVu and high-resolution spectrometry, with correlation coefficients of 0.86 and 0.88, respectively. OxyVu recorded improved tissue oxygenation of the lower limb following IIB surgery and was used to predict the optimal level of major lower limb amputations.

When this thesis was started in 2008, there were two clinical research papers that used HTCOM, both of which were published by the same research group. Khaodhiar et al in The Lancet (2005), showed a difference in HT-Sat at the forearm and foot in 108 patients with no diabetes and in patients with diabetes with and without neuropathy. These investigators showed that tissue oxygenation was worst in terms of low HT-Oxy, HT-Sat, and high HT-Deoxy in patients with diabetic neuropathy. There was also an increase in HT-Sat when tissue was vasodilated by iontophoresis.

Khaodhiar et al (2007) performed a similar study, but compared ten patients with type 1 diabetes and ulcers, 13 patients with type 1 diabetes without ulcers, and 14 healthy patients. The patients with ulcers were monitored for 6 months to determine healing potential. HTCOM was also compared with TCOM, laser Doppler flowmetry, and ABI. HTCOM was the only method that showed lower HT-Oxy and HT-Deoxy surrounding the ulcer. HT-Oxy at the metatarsal site of the plantar foot was lower in patients with diabetes and ulcers than in controls, but no difference was demonstrated for HT-Deoxy. The HT-Healing Index was also defined based on DFU healing at 6 months. Greenman et al concluded that the OxyVu has a sensitivity and specificity of 93% and 86%, respectively, for predicting DFU healing based on readings from the first visit. Of note, patients with severe PVD requiring surgical intervention, heart failure with lower extremity oedema, a history of a non-resolved cerebrovascular event, uncontrolled hypertension, end-stage renal failure, or any other chronic illness or medications that affect wound healing were excluded from the study.

By 2014, six further clinical studies using HTCOM were identified. Nouvong et al (2009) extended the pilot study conducted by Khaodhiar et al to a study that included 73 DFUs in 54 patients with type 1 or type 2 diabetes. Again the study derived the HT-Healing Index, with a sensitivity, specificity, and positive predictive value of 86%, 88%, and 96%, respectively. HT-
Oxy and HT-Sat at the ulcer border were lower in ulcers that did not heal in 6 months than in those that healed during this time. No differences in HTCOM at the dorsum of the foot were found between the two groups. This study differed from the pilot study in that OxyVu readings were taken from the dorsum of the foot.

Neville et al (2009) studied normative perfusion values at eleven separate anatomical regions in 194 subjects without PVD using the OxyVu. While HT-Oxy, HT-Deoxy, and HT-Sat varied according to anatomical location, the plantar and palmar surfaces demonstrated the highest baseline perfusion. Although not a statistically significant finding, men had higher HT-Oxy, HT-Sat, and lower HT-Deoxy. Insignificant differences were found in measurements 8 hours apart. Ischaemia induced by cuff inflation revealed a decrease in HT-Oxy and an increase in HT-Deoxy. After release of the ischaemic cuff, rebound perfusion increased HT-Oxy to above baseline while HT-Deoxy returned to baseline levels with reperfusion. The pattern of HT-Sat followed that of HT-Oxy. Similar findings were reported by Nagaoka et al when the brachial artery was compressed and oxygenation measurements were made at the middle finger.

Jafari-Saraf et al (2010) compared hyperspectral readings with the ABI in 85 limbs, of which 53 had ABI ≥0.9, 22 had ABI 0.45–0.9, and 10 had ABI ≤0.45. Those with non-compressible ABIs were excluded. HT-Oxy and HT-Sat were measured at three points on the dorsum of the foot as well as on the ipsilateral forearm. Readings at the ipsilateral forearm was used as the reference point. The validity of this method is not certain. HT-Oxy, HT-Sat, and their “normalised” values by comparison with the forearm measurement did not correlate with ABI in any of the three categories described or as a continuous variable.

Jafari-Saraf et al (2012) compared HTCOM with TCOM in 23 sections of the foot (dorsal and plantar) and wrist (volar) in four healthy volunteers. They compared oxygenation of these sites when baseline probe temperature was fixed at 37°C, then at 41°C and 45°C. HT-Oxy, HT-Sat, and HT-Sum increased with increasing temperature up to 45°C. HT-Deoxy did not vary with temperature. Only HT-Sat showed a difference between baseline and at 37°C. At 37°C, TcpO₂ correlated with HT-Oxy (R=0.35), HT-Deoxy (R=0.63), and HT-Sum (R=0.60). As temperature increased to 45°C, this correlation progressively weakened or disappeared. At 45°C, TcpO₂ only correlated significantly with HT-Sat (R=0.28), with no association at 37°C. Interestingly, TcpO₂ tended to correlate positively with HT-Deoxy, meaning that as oxygen tension increased, so did deoxyhaemoglobin.
Chin et al (2011) investigated the relationship between HTCOM and the severity of PVD in 46 patients (92 limbs) without PVD and 65 patients (130 limbs) with PVD. The definition of PVD was based on ABI and Doppler waveforms qualified by four vascular technicians. The presence of PVD was defined based on Doppler waveforms, i.e., triphasic, biphasic and monophasic. It was unclear if their patients with PVD were symptomatic or if their Doppler findings were regulated by two or more technicians. Hyperspectral readings (HT-Oxy, HT-Deoxy, and skin temperature) were made at nine different sites on each limb at the calf, ankle, heel, and the dorsal and plantar foot. These nine sites were angiosomes of specific vascular beds supplied by major named arteries as described by Galiano et al. Hyperspectral oxygenation was also recorded with the participant lying on a bed with the head of the bed elevated to 45°. It is assumed that ABI was measured supine.

HT-Deoxy at the plantar metatarsal, arch, and heel was significantly lower in the PVD group (monophasic or biphasic flow) than in the non-PVD group (triphasic flow). When HT-Deoxy at the three sites was compared with ABI using linear regression, there was a significant correlation but in an inverse direction to their other findings, suggesting that as ABI increased, HT-Deoxy decreased. HT-Oxy was not sensitive to the presence or severity of PVD or ABI. Of interest, Chin et al also compared hyperspectral readings with the toe pressure index, and showed a correlation with HT-Oxy at the plantar metatarsal ($R=0.31$, $p=0.001$). No correlations were detected with skin temperature.

Raju et al utilised OxyVu to demonstrate differences in tissue oxygenation (HT-Sat) at different parts of the body, from the forehead to the ankle, in healthy volunteers standing erect or lying supine. Their sample size was not stated, and the number of patients scanned per location varied from 10 to 29. It showed higher HT-Sum from the ankles to the xiphisternum in the erect position when compared with the supine position, indicating an increased microvascular volume resulting from congestion. HT-Sat was also lower between the ankles and the mid abdomen in the erect position. Calf pump action did not affect tissue oxygenation.
1.12 Diabetic foot

Diabetes mellitus is a common disease that affects 194 million people globally, and this figure is expected to increase to 344 million by the year 2030. Diabetic foot is defined as the foot of a diabetic patient with ulceration, infection, and/or destruction of the deep tissues associated with neurological abnormalities and various degrees of PVD in the lower limb. Diabetic foot problems account for nearly 50% of all diabetes-related hospital days. DFUs are one of the most common and serious sequelae of diabetes, alongside neuropathy, angiopathy, retinopathy and nephropathy.

The prevalence of DFU in developed countries is approximately 4%–10%, with an annual incidence of 2.2%–5.9%. The lifetime risk of developing DFU could be as high as 25%. The prevalence of DFU is higher (5%–10%) in older individuals with type 2 diabetes and in Whites than in Indian Asians. PVD is twice as common in diabetic patients when compared with their nondiabetic counterparts. For every 1% increase in glycated haemoglobin (HbA1c), there is a 26% increased risk of PVD. PVD is more aggressive in patients with diabetes. DFUs are often located on the plantar aspect of the toes or foot. If left untreated, foot ulcers may lead to infection and deep tissue necrosis. Between 14% and 24% of patients with DFU require an amputation. The rate of lower limb amputation is 15 times higher in diabetic patients than in individuals without diabetes. Eighty-five percent of diabetes-related amputations are preceded by a gangrenous or infected foot ulcer. The incidence of major amputation is 1% per year for patients with diabetes who are older than the age of 65 years. The annual rate is higher in type 2 diabetes (5%). Survival following amputation does not seem to be worse for those with diabetes. Up to 85% of these amputations could be prevented.

Therefore, treatment of diabetic foot is a high priority when attempting to prevent limb loss. Adequate glucose control, local wound care, relief of pressure using appropriate footwear, evaluation of the vascular supply and subsequent revascularisation, and appropriate antibiotic therapy are critical. Despite adequate revascularisation and foot care, the ulcer may not heal due to extensive infection or irreversible ischaemia. Surgical debridement of the ulcer or distal amputation may be required to save the foot. Methods to enhance the healing process in the acute wound may improve limb salvage and survival.
Pathophysiology of DFU

Increased production of advanced glycation end products and vascular superoxide from hyperglycaemia, thereby causing endothelial toxicity and inactivating nitric oxide (NO), has been hypothesised to contribute to vascular dysfunction of the vessels and nerves. This results in atherosclerosis, thickening of the basement membranes of capillaries, hardening of arteriolar walls, and endothelial proliferation, which have been implicated in the pathogenesis of diabetic complications.320

The concept of predisposing, precipitating and aggravating factors in the development of diabetic foot problems has important implications for management of patients with predisposing factors. Foot lesions will not develop unless exposed to a precipitating factor, and even at this stage, resolution of the problem can be expected if the effects of the potential aggravating factor can be avoided.256

Predisposing factors

- Vascular disease
 - Atherosclerosis: This is the most important factor in about half of DFU cases. If the blood supply is inadequate, minor wounds will not heal and there may be ischaemic rest pain. Neuropathy frequently co-exists and masks the pain, but tissue damage and infection may progress unnoticed.
 - Calcification of arteries: This typically occurs in the tunica media and intima (Monckeberg’s arteriosclerosis). This is an indicator of a prolonged diabetic metabolic disturbance but there is no direct evidence that it causes foot problems.
 - Microangiography: Ischaemic lesions could develop in the event that local blood flow is reduced. The rigidity of the vessel walls might decrease the ability of the microcirculation to respond to injury and mount an adequate inflammatory response.
- Neuropathy
 - Loss of pain perception (sensory): loss of sensation and ischaemia are the two most important factors in the development of DFU. Impaired pain perception leads to loss of tissue initiated by small unrecognised lesions. There is no direct evidence that neuropathy increases the risk of infection.
Paralysis of the intrinsic muscles of the foot (motor): This results in an imbalance between the flexor and extensor mechanisms, toe clawing, increased prominence of the metatarsal heads, and a decreased effective weight-bearing area under the forefoot. These abnormal forces may cause soft tissue and bony deformity.

Autonomic neuropathy:
- Failure of reflex dilation in response to local injury.
- Abnormal vasoconstriction in response to cold.
- Loss of sweat and sebaceous gland functions leading to dry skin which predisposes to skin cracks, fissures, and infection.
- Increased AV shunting. This requires a greater increase in tissue perfusion to maintain intact skin and healing.

- Increased risk of infection
 - Decreased immune resistance.\(^{332}\)

Precipitating factors

- Physical injury
 - A puncture wound or localised pressure areas arising from, e.g., tight shoes.

- Mechanical trauma
 - e.g., from walking. Progressive atrophy of connective tissue in the skin as a result of decreased proliferation of fibroblasts in patients with diabetes is the critical intermediate event leading to formation of a DFU.\(^{333}^{334}\)

- Heat
 - If there is reduced perception of temperature and loss of pain sensation.

- Chemical
 - Application of corrosive substances, e.g., those found in corn plasters.

Aggravating factors

- Infection
 - Causes more damaged tissue, possibly because of:
 - Abnormal cellular and humoral responses to inflammation
 - Decreased efficiency of repair mechanisms, in particular collagen formation
 - An environment being created that allows growth of anaerobic bacteria.
• Ischaemia
 o Also acts as an aggravating factor because healing is impaired by an inability to increase the local blood supply; ischaemia also promotes spread of infection.

• Neuropathy.
 • Loss of pain sensation acts as an aggravating factor by increasing the risk of mechanical injury and allowing infection to continue unnoticed. Over time, a limb-threatening condition called Charcot neuropathic osteoarthropathy can develop; this is a condition involving the interaction of several components (diabetes, neuropathy, trauma, and metabolic abnormalities of bone) affecting the bones, joints, and soft tissues of the foot and ankle, and results in an acute localised inflammatory condition that may lead to bone destruction, subluxation, dislocation, and deformity. The hallmark deformity is midfoot collapse with a “ rocker bottom” foot.

Other risk factors associated with DFU include nephropathy, retinopathy, plantar callus formation, history of ulceration or amputation, old age, a long history of diabetes, poor glucose control, peripheral oedema, low socioeconomic status, poor health care, and low educational status.

In general, approximately 20% of patients with DFU primarily have inadequate arterial blood flow, while 50% primarily have neuropathy, and approximately 80% have both conditions.

Vascular disease and neuropathy cannot be reversed, although their development may be delayed. The precipitating factors are preventable, e.g., by rigorous avoidance of physical trauma.

Diabetic angiopathy is typically described as a diffuse disease affecting the large, medium and small vessels. The term “small vessel disease” may have several meanings:

1. Disease of the arterioles and capillaries (i.e., “microangiopathy”).
2. Disease of the tibial arteries; to vascular surgeons, this is “small vessel disease” that typically occurs in patients with diabetes and has prognostic features.
3. The metatarsal and digital arteries are also affected by diabetes in a way that resembles atherosclerosis.

The microangiopathy associated with diabetes can cause haemodynamic changes at the level of the arteriolar and capillary vessels. An increase in blood flow is characteristically found early
in diabetes, resulting in capillary hypertension and damage to the microvascular endothelium. Factors that contribute to this microangiopathy include:

1. An increased metabolic rate in poorly controlled diabetes, causing more heat to be lost from the skin.
2. A chronic increase in the plasma and extracellular fluid volume, causing capillary leakage.
3. Alterations in the action of vasoactive substances.
 a. Decreased plasma renin activity
 b. Decreased sensitivity of blood vessels to angiotensin II
 c. Decreased responsiveness to noradrenaline.
4. Increased production of vasodilator substances (prostacyclin and prostaglandin E).
5. Hyperglycaemia and increased glucagon and growth hormone levels, causing vasodilatation.
6. Precapillary sphincter dysfunction.
7. Tissue hypoxia, causing local vasodilatation.
8. Denervation as a result of autonomic neuropathy, also causing vasodilatation.

It is probable that increased blood flow via AV shunting is an important mechanism for hyperperfusion in the limbs. AV shunts are present in the digits and plantar surfaces of the feet. They are 20–70 microns in diameter and when open provide a low resistance pathway between the small arteries and veins. Their diameter is controlled by the sympathetic nervous system. In the setting of neuropathy, autonomic control of the vascular sphincter mechanisms regulating flow through these shunts is lost. An increase in blood flow through the AV shunt has important effects on capillary function, i.e., a reduction in capillary blood flow due to stealing of blood by the shunt and increased pressure in the post-capillary venules, which would decrease the perfusion pressure. This impairs diffusion of oxygen, migration of leukocytes, and capillary permeability. The latter also causes oedema. Paradoxically, increased blood flow via AV shunting can result in a relatively warm foot, which can falsely reassure the clinician.
1.13 Local wound management

Providing there is adequate blood supply to a wound, the main objective in terms of management would be to apply appropriate wound dressings dictated by the condition of the wound. Local wound care requires cleansing, irrigation, debridement of the wound and surrounding tissues, and application of appropriate wound dressings. Surgical wound debridement with removal of surface debris and necrotic material is considered the most effective method; however, this may require anaesthesia. Other methods are:

- mechanical (wet-to-dry gauze dressings, Mesalt®, irrigation, pulsatile lavage)
- autolytic (moist interactive dressings, i.e., hydrogels, alginates, and hydrocolloids)
- enzymatic (collagenase, papain, urokinase).

Relief of pressure (mechanical off-loading) at the wound site is equally important. Total contact casts for patients with DFU appear to be the most efficacious.338

Dressings cover the wound and insulate it from the environment. Ideally, they should:

- maintain humidity at the wound/dressing interface to provide a moist environment that optimizes wound regeneration and repair
- remove exudates and toxic components
- allow gas exchange
- provide thermal insulation
- prevent secondary infection
- be able to be removed without trauma at dressing changes
- allow monitoring of the wound
- be comfortable and easy to use
- be small enough to allow use of footwear.

No single dressing meets all the above requirements. Choice between the types of dressing available for the various wounds is an art and varies between hospitals and surgeons. Available dressing materials are broadly classified into films, foams, hydrogels (Intrasite®), hydrocolloids (Duoderm®), alginates (Kaltostat®), hydrofibres (Aquacel®), cadexomer dressings with iodine (Iodosorb®), and medicated dressings. Use of local growth factors has produced some early promising results, in particular becaplermin (recombinant PDGF).339
Hydrogels and hydrofibres are commonly used at our institution. They have wound debriding properties and provide an ideal wound environment when used appropriately. Hydrogels provide moisture at the wound site, whereas hydrofibres absorb the excess exudate and stimulate proliferation of keratocytes as well as immobilising bacteria and delaying bacterial growth. The presence of ionic silver in these dressings can also reduce the bacterial load.340 Saline-soaked dressings are deemed obsolete at our institution.

Vermuelen \textit{et al} published a Cochrane systematic review in 2005 addressing the evidence for use of topical dressings for surgical wound healing.341 They found no difference between the alginate, hydrocolloid and gauze dressings in terms of wound healing rates, that gauze dressings were more painful and associated with less patient satisfaction, and that the cost of a dressing change was not cheaper than other modalities. There has been limited research compared modern traditional dressings with gauze for surgical wound healing. It is hypothesised that gauze dressings can prolong the inflammatory phase of wound healing, induce localised hypothermia, and increase the risk of infection.342

Over the last decade, there has been increasing use of topical negative pressure (TNP) therapy, which substitutes for traditional dressings. This treatment has seen a paradigm shift in the management of many types of wound in hospitals worldwide. However, the clinical efficacy of TNP remains debatable. Systematic reviews have concluded that there is no evidence, especially at a scientific level, of TNP being of benefit for vascular wounds, where the potential for healing is often compromised.343-345
1.14 Topical negative pressure therapy

In recent years, wound management has become more refined, with innovative strategies now available to target the various stages of wound healing. TNP therapy is one of these strategies. Historically, TNP is well known to cause tissue hyperaemia, and has been used for this purpose in Chinese medicine for thousands of years.\(^\text{346}\)

In 1993, Fleischmann \textit{et al} applied TNP to wounds via a foam dressing for an extended period in patients with open fractures and suggested that TNP promotes production of granulation tissue in healing wounds and reduces the risk of infection.\(^\text{347}\) Negative pressure was achieved using a wall suction apparatus or surgical vacuum bottle, which proved cumbersome and restricting, and negative pressure levels were difficult to control.

![Image](image_url)

Figure 1.21. Application of VAC® foam. Sourced from Bovill \textit{et al}, 2008.\(^\text{348}\) **Abbreviations:** PU, polyurethane; TNP, topical negative pressure.

The Vacuum-Assisted Closure (VAC®) device is a form of TNP therapy that was pioneered by Argenta and Morykwas in 1997\(^\text{349}\) (Figure 1.21). It has gained popularity in many wound care settings, including chronic wounds, diabetic wounds, pressure ulcers, skin grafts, and acute surgical wounds. This technique involves application of a polyurethane or PVA foam dressing with large open pores (400–600 µm) that maintain porosity over the wound. The foam dressing is connected to a suction device delivering a uniform controlled negative pressure of –50 to –125 mmHg either continuously or intermittently across the wound bed. Examples of other TNP therapy systems are Wound Assist™, Renasys™, Exsudex™, and Venturi™. The majority of clinical studies, however, have used the VAC device.
The negative pressure applies mechanical forces to the wound known as macro-strain (visible stretch) and micro-strain (micro-deformation at the cellular level causing cell stretch).350 The effect is a sophisticated, sterile, closed dressing that provides a moist healing environment and alters the physiological and chemical environment.

Figure 1.22. Effects of topical negative pressure therapy. Source from Banwell et al, 2004.351

TNP is thought to promote healing by:

- Increasing local blood flow and tissue perfusion
- Reducing oedema
- Stimulating formation of granulation tissue
- Stimulating cell proliferation
- Removing soluble inhibitors of healing from the wound
- Reducing bacterial load
- Contracting the edges of the wound
- Preventing wound infection by avoiding handling (Figure 1.22).352
Enhanced formation of granulation tissue

Morykwas *et al* compared the efficacy of TNP therapy with that of standard saline-soaked gauze in a porcine model and measured the correlation between change in wound volume over time and rate of formation of granulation tissue. Enhanced formation of granulation tissue was observed with continuous and intermittent application of TNP (63% and 103%, respectively). Intermittent treatment (5 minutes on and 2 minutes off) is more effective than continuous treatment because wound cells can become acclimated to the constant physical forces applied with continuous therapy, whereas intermittent therapy increases tissue perfusion by inactivating capillary autoregulation, which prevents vasoconstriction and allows proliferating cells time to rest between cell cycles. Constant stimulation with negative pressure can also switch off the mitotic process. Many clinicians use continuous pressure for the first 48 hours before switching to the intermittent mode.

Increased tissue perfusion and less oedema

TNP at –125 mmHg increases capillary blood flow by up to four-fold. Malmsjo *et al* published several papers relating to microvascular blood flow at the wound edge during TNP as measured by laser Doppler flowmetry in pigs with no vascular disease. In summary, cutaneous blood flow nearly doubled at 2.5 cm from the skin edge, but was halved at 0.5 cm from the skin edge as a direct result of negative pressure. The degree of reduction was proportional to the increase in pressure applied and it was found that cutaneous blood flow increased at a low pressure. This is one of the reasons why intermittent suction is considered superior to continuous suction for TNP. Excessive negative pressure of >400 mmHg has an opposite effect, inhibiting flow and leading to capillary distortion. Tissue perfusion is increased directly by negative pressure and indirectly by removing interstitial fluid and influencing vasomotor tone and vasoactive mediators; however, the latter would be difficult to quantify experimentally, so is theoretical only.

Different types of wound fillers for TNP (e.g., black polyurethane foam, white PVA foam, green foam, gauze-based filler, and pathogen-binding mesh) were also compared. Polyurethane foam was more effective than PVA foam because of the relatively smaller pore size in the PVA product. Cutaneous blood flow and wound contraction were similar. Wound fluid was more efficiently removed when pathogen-binding mesh was used.
Stimulation of cell proliferation

Mechanical stress on the ECM induces cell proliferation and cell division. Negative pressure induces tissue micro-deformations within the wound. Mechanical stretching of the cells alters the cytoskeleton, thereby disrupting the integrin bridges and upregulating the release of intracellular secondary messengers, which in turn stimulate cell proliferation, angiogenesis, and epithelialisation. In addition, the vacuum created causes the foam to shrink, which draws the wound margins to the centre, facilitating wound closure.

Removal of wound exudate and interstitial fluid

Optimal wound healing depends on the balance between positive growth factors and inhibitory inflammatory cytokines. Many up and coming medical products that target chronic wound healing, in particular topical growth factor products, support this concept. TNP therapy may induce an interstitial fluid gradient, thereby reducing oedema, indirectly stimulating perfusion by decompressing small capillaries, and directly removing harmful components (such as cytokines and matrix MMPs), ultimately promoting secondary intention healing.

Animal studies have compared cytokine and growth factor levels in wounds treated with TNP and those in wounds treated with traditional dressings. The evidence is mixed, but suggests growth factors are upregulated and levels of inhibitory cytokines are decreased, thereby promoting healing.

One study showed decreased levels of TGF-β, TNF-α, and IL-8 in the TNP group, which healed more rapidly. Although the absolute TGF-β level was lower in the TNP group, the TGF-β to TNF-α ratio was much greater. Another animal study showed increased VEGF and FGF-2 in the TNP group. VEGF and IL-8 levels were higher when human traumatic wounds were treated with TNP. In 2014, Yang et al reported a study that found upregulation of FGF-2 and extracellular signal-regulated kinase (ERK) 1/2 in human diabetic foot wounds.

Removal of bacterial load

Morykwas et al demonstrated that TNP decreased the bacterial load in a porcine wound model by a factor of 10^3 over 5 days compared with the control, especially following inoculation with Staphylococcus aureus and Staphylococcus epidermidis. The mechanism may involve increased blood flow supplying oxygen and leucocytes, decreased interstitial oedema, and
removal of bacterial by-products, such as harmful enzymes (elastase and collagenase), from the wound bed.

Clinical evidence for TNP
Several systematic reviews published in recent years have yielded inconclusive evidence for the superiority and widespread use of TNP in vascular foot wounds. The authors of these reviews have criticised the lack of quality level 2 evidence for effects on wound healing and called for further controlled trials. Most of these reviews were based on a small number of RCTs and examined time to complete healing, the proportion of wound tissue healed, time to secondary closure, wound complications, two-dimensional size in terms of surface area or depth, survival, quality of life, and/or economic costs.

When determining the clinical effectiveness of TNP therapy, the rate of production of granulation tissue is the most relevant and sensitive surrogate marker. Only four RCTs investigated change in wound size over time, and yielded mixed results. The studies were too heterogeneous to analyse. McCallon *et al.* focused on reduction in surface area and time taken for the ulcer to heal, and did not show a significant difference between the treatment and control groups.\(^{372}\) In contrast, in a study by Etoz *et al.* that included 24 patients with DFU, reduction in wound surface area and time taken for the wound bed to be covered with granulation tissue were more rapid in the TNP group than in the group treated with saline gauze dressings.\(^{373}\)

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of patients</th>
<th>Control</th>
<th>Time</th>
<th>Results</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford et al.(^{391})</td>
<td>28</td>
<td>HP</td>
<td>6 weeks</td>
<td>Mean reduction in wound volume: VAC 51.8%; HP 42.1%</td>
<td>p = 0.46</td>
</tr>
<tr>
<td>Joseph et al.(^{392})</td>
<td>24</td>
<td>WM</td>
<td>6 weeks</td>
<td>Decrease in wound volume/depth: VAC 76%; WM 30%</td>
<td>Volume p = 0.008; depth p < 0.00001</td>
</tr>
<tr>
<td>McCallon et al.(^{390})</td>
<td>10</td>
<td>WM</td>
<td>Not recorded</td>
<td>Surface area decrease: VAC 26.4 ± 24.3%; WM 9.5 in 16.9% increase</td>
<td>No statistical significance</td>
</tr>
<tr>
<td>Edington et al.(^{393})</td>
<td>6</td>
<td>WM</td>
<td>4 weeks</td>
<td>Decrease in wound volume/depth: VAC 50%; WM 0%</td>
<td>Volume p > 0.05; depth p < 0.05</td>
</tr>
</tbody>
</table>

\(\text{HP} = \text{Healthpoint}^\circ\text{ system of wound gel products}; \text{WM} = \text{wet to moist saline dressing}\).

Table 1. Summary of clinical studies on topical negative pressure therapy and wound dimension assessment
Sourced from Venturi *et al.*, 2005.\(^{392}\)
Most wounds are three-dimensional and irregular in shape. Deposition of granulation tissue starts at the wound base and leads to changes in depth prior to contraction of the wound edges. Therefore, measurement of volume is more reliable in evaluation of wound healing. Ford et al., Joseph et al., and Eginton et al. investigated wound volume and the results are summarised in Table 1.1.

Eginton et al. compared TNP with hydrocolloid wound gel and gauze dressings in diabetic foot wounds. Only 6 of their 10 patients (representing 7 wounds) completed the study. All wounds were randomised to TNP for the first 2 weeks followed by traditional dressings for another 2 weeks or vice versa. Wound dimensions were recorded using computerised planimetry from digital photographs on a weekly basis for 4 weeks. According to their protocol, wounds were subjected to continuous negative pressure of -125 mmHg. Whilst TNP was shown to decrease wound volume and depth to a significantly greater degree than moist gauze dressings, all wounds received 2 weeks of TNP and traditional dressings.

Joseph et al. studied 36 wounds that were not arterial in nature. Eighty percent were pressure wounds, and the remaining 20% included venous ulcers, dehisced wounds, traumatic wounds, and post-radiation wounds. Eighteen of the wounds were treated with saline-soaked gauze dressings three times a day and the remainder were randomised to TNP therapy. It appeared that the same type of wound dressing was used throughout the study. Wound volumes were assessed by volume displacement of alginate impression moulds. Volume reduction was greater in the TNP group at 3 and 6 weeks. Punch biopsies were taken for histology. The chief characteristic of the TNP group was formation of granulation tissue, whereas inflammation and fibrosis were seen in wounds treated by gauze dressings. Further, there were more complications, including infection and fistulae, in the control group.

A randomised study by Ford et al. included 35 pressure wounds, 8 of which were located below the ankle. For wounds allocated to traditional dressings, those with substantial exudate received Iodosorb® or Iodoflex®, whereas the others were treated with Panafil®. Panafil is a topical dressing containing papain and urea, both of which break down proteins and debride wounds. Wound volumes were measured by volume displacement of plaster impressions. Tissue biopsy and wound assessments were conducted at 3 and 6 weeks. One 6-week trial of treatment was completed in three wounds followed by a second 6-week trial of the alternative treatment. The mean reduction in volume displacement was not different between
the groups (52% in the TNP group versus 42% in the control group; \(p=0.46 \)). There was also no difference in the numbers of polymorphonuclear leucocytes or lymphocytes present.

Of note, the wounds were assessed by independent investigators in a “blinded” fashion in these studies. However, it would not be difficult to differentiate between wounds dressed by TNP and those dressed using traditional methods.

Noble-Bell et al focused on TNP therapy for DFUs in their systematic review,\(^{345}\) and concluded that “… while all the studies included in the review indicated that TNP therapy is more effective than conventional dressings, the quality of the studies were weak and the nature of the inquiries in terms of outcome and patient selection divergent …”. Ubbink et al and Vikatmaa et al also commented on DFUs in their systematic review, but their conclusion concerning the effectiveness of TNP was more reserved.\(^{343}\)\(^{377}\) The criticism in all the reviews was the presence of only one study that investigated postoperative TNP therapy in partially amputated diabetic foot wounds, which are the most clinically relevant in vascular surgery. Armstrong et al compared TNP with modern moist wound treatment in 162 patients with transmetatarsal amputation wounds. More patients in the TNP group achieved 100% re-epithelialisation than in the control group (56% versus 39%, respectively, \(p=0.04 \)) and within a shorter time period.\(^{378}\)

Following these reviews, Paola et al completed two RCTs of the treatment of diabetic foot wounds post debridement (one studying the time to secondary closure and the other healing by secondary intention).\(^{379}\) The latter study compared TNP with modern (non-gauze) dressing in 130 patients, with the endpoints of time needed for complete coverage of exposed bone with granulation tissue, healing time, and number of surgical procedures. While TNP was superior, the endpoints were arguably weak and prone to bias.

There were five studies identified in a 2013 Cochrane systematic review that evaluated TNP in the treatment of post-amputation wounds in patients with diabetes and debrided DFU wounds.\(^{380}\) Again, although there was a suggestion that TNP was better than traditional dressings (both gauze and non-gauze) in terms of wound healing, the studies were weak, small, and at risk of performance bias.

As a result of the inconsistent evidence, the clinical use of TNP therapy varies amongst institutions and surgeons. Some do not favour TNP therapy because they assume it to be costly; the TNP suction device and its related products are expensive, but systematic reviews
did not reveal a difference in cost.343,381,382 Vuerstack \textit{et al} suggested that TNP therapy is less costly than conventional dressings ($3881 and $5452, respectively; \textit{p}=0.001).383 Further Driver \textit{et al} deduced that TNP is more cost-effective than traditional dressings regardless of whether the wound heals ($1227 versus $1695, respectively, per 1 cm2 of wound closure) or does not heal ($1633 versus $2927 per 1 cm2 of wound closure).384
1.15 Assessment of wound dimensions

Wound healing rates should be assessed objectively and quantitatively. The clinical tools most commonly used to measure wound dimensions include wound tracing and width and length measurements, which lack accuracy, and the image of the wound in three-dimensional form is often misrepresented.

Previously validated methods for wound volumetric measurements include formation of wound moulds (a “plastic” mould used to fill a wound that can then be removed to determine wound volume) and fluid installation (volume of saline injected over a wound, enclosed by cling-film). These are crude, messy, impractical, and labour-intensive, and often involve contact with the wound, thereby increasing the risk of infection. A three-dimensional (Kundin) wound gauge assumes the wound to conform to a cone and cylindrical contour, and thus neglects the irregular nature of wounds.

Stereophotographic and optoelectric systems use cameras to reconstruct the shape of the wound in a three-dimensional space without contacting the wound. Early models were inaccurate and subjective, as well as being bulky, heavy, and expensive. With evolving technology that uses cubic spline interpolation to interpret the curvature of the wound and a digital photography system, wound surfaces can be meticulously reconstructed, with volumetric measurements being more objective and reproducible.

Computed tomography (CT) is considered to be the gold standard for assessment of wound dimensions. Wound volume and depth are calculated via three-dimensional reconstruction without contrast. However, CT scanning would be impractical and resource-consuming for longitudinal wound monitoring, with adverse effects from radiation exposure.

The ARANZ Medical Silhouette Mobile™ (SM) (Figure 1.2) is an innovative hand-held personal digital assistant (PDA)-based wound imaging and documentation device that combines a digital camera and structured lighting in the form of two laser beams to automatically correct for image scale and skin curvature, allowing quantitative, objective, rapid, and noncontact measurements of the wound surface area and cross-sectional depth. The SM correlates these measurements with past and present measurements to give a statistical, graphical, and photographic representation of the progress of the wound. The
scanner has been used in clinical trials in patients with leg ulcers; however there is limited evidence of its accuracy and reliability.

The FastSCAN Cobra® (FS) (Polhemus Inc, Colchester, VT, USA) is another non-invasive hand-held laser scanner (Figure 1.24) combined with tracking software that has been recently introduced. The PS was also developed by ARANZ in New Zealand. It uses a built-in “class A” laser line scanner (“laser wand”) that sweeps repeatedly over the object, and a miniature hand-piece camera registers the three-dimensional spatial coordinates of the surface points by utilising electromagnetic fields, enabling reconstruction of an exact three-dimensional digital surface map of the ulcer and wound edge contour in real time. Advanced computer software, known as Delta®, can then quantify the wound volume from the wound profile. This appears to be the most practical, modern, and reliable device available for objective wound volume measurement that has been validated, albeit not in human wounds.387 Based on a small study of 30 upper limbs in healthy volunteers, inter-operator reliability was up to 95% and intra-operator reliability was 72%; the latter was thought to be due to poorer quality scans and the fact that the entire upper limb, including the hand, was imaged rather than targeting a smaller wound volume. The FS also appeared to overstate volume when compared with the fluid displacement method.388 The significance of this is unclear because fluid displacement is a crude method for assessment of volume.
Figure 1. 23. Image of the Silhouette Mobile™. (Retrieved from http://www.aranzmedical.com)

Figure 1. 24. Image of the FastScan™.
2 Objectives

2.1 Aims

The main goal of this thesis was to provide a scientific basis for the various clinical practices used to improve the microcirculation and wound healing in patients with peripheral vascular disease (PVD) by influencing oxygen delivery to peripheral areas of the wound, which is believed to be key to the potential for the wound to heal. This could be achieved by supplemental oxygen, supplying more oxygenated blood to the wound as a result of either chemical or thermal vasodilation, or by drawing blood to the wound by negative pressure. The aspects of clinical practice and adjuncts investigated were high-dose oxygen, Ilomedin, and active warming during IIB surgery, and TNP therapy in diabetic foot wounds.

Because various innovative devices (i.e., OxyVu™, FS, and SM) were used to measure tissue oxygenation and rate of wound volume reduction, the reliability and feasibility of these instruments needed to be determined to be able to explore their potential in the field of research.
2.2 Summary of studies

Four key studies were included:

1. **Validation of OxyVu™: a hyperspectral transcutaneous oxygenation measurement device**

This was an observational study comparing the OxyVu with TCOM, the ABI, and severity of PVD, and assessing their correlations. The intra-operator and inter-operator reliability of the OxyVu were also evaluated. HT-Sat was hypothesised to be the most sensitive marker of tissue oxygenation because it accounts for both oxyhaemoglobin (oxygen delivery) and deoxyhaemoglobin (oxygen consumption).

2. **Effects of peri-operative Warming, Oxygen and Ilomedin (PGI-2) on Oxygenation and Wound Healing in Infrainguinal Bypass Surgery (WOIOW study)**

An RCT of the effects of supplemental oxygen and thermal and chemical vasodilation on tissue oxygenation and wound healing was performed in patients undergoing revascularisation surgery to elucidate the roles of key molecular markers of wound healing, i.e., hydroxyproline, growth factors in the wound healing cascade, and their mRNAs in relation to perturbations of oxygenation and vascular perfusion.

The hypothesis was that perioperative high-dose oxygen (inspired oxygen of 80%), extended warming (2 hours before, during, and 2 hours after surgery), and perioperative Ilomedin would improve tissue oxygenation and wound healing following IIB surgery.

3. **Validation of FastScan™ and Silhouette Mobile™: portable wound volumetric measurement devices**

An observational study was performed in vascular patients with open wounds and ulcers of the lower limb to assess the correlation of FS and SM measurements with those from three-dimensional computed tomography reconstruction, as well as intra-operator and inter-operator reliability.
4. Effects of TNP therapy on tissue oxygenation and wound healing in diabetic foot wounds

A randomised controlled trial comparing TNP therapy with traditional wound dressings was performed in patients with acute diabetic foot wounds to investigate the molecular mechanisms of TNP therapy, focusing on healing rate, change in collagen deposition, the balance between growth factors and inhibitory cytokines, and tissue oxygenation.

The hypotheses were:

- TNP would enhance the rate of healing of acute arterial wounds in terms of wound volume and hydroxyproline levels when compared with traditional dressings. Volumetric reduction was the primary outcome
- TNP would alter the balance of growth factors and cytokines in the wound environment, thereby promoting formation of granulation tissue
- TNP would enhance the dynamics of blood flow around the wound to a greater extent than traditional dressings.
3 Methods

3.1 Validation of OxyVu™

Ethical approval to carry out this study was obtained from the local Northern Y ethics committee (NTY/08/08/082). The study was divided into three stages.

1. **Comparing OxyVu™ with TCOM, ABI, and severity of PVD**

Healthy volunteers and patients with or without PVD of the lower limbs and admitted to the vascular unit at Waikato Hospital, New Zealand, were recruited. Exclusion criteria included age under 18 years, cellulitis or ulcers on the skin overlying the head of the first metatarsal bone (region of interest in this study), a history of major amputation, lymphoedema of the lower limb, severe dementia, or methicillin-resistant *Staphylococcus aureus*.

Patient demographics, severity of PVD, hyperspectral oxygenation (OxyVu™), TcpO₂ and TcpCO₂ (TCOM3), and ankle-brachial index (ABI) were recorded using hand-held Doppler devices.

The Rutherford classification was used to assess the severity of PVD. As per the TASC II guidelines, category 5 was defined as minor tissue loss, i.e., ischaemic ulceration not exceeding ulceration of the digits of the foot, and category 6 was defined as major tissue loss with severe ischaemic ulcers or frank gangrene. The volunteers were asymptomatic and therefore scored zero. To assist with the statistical analyses, Rutherford categories 1, 2, and 3 were grouped into “claudicants” and similarly Rutherford categories 4, 5, and 6 into “critical limb ischaemia” (CLI). For the purposes of the study, this classification was called the Simplified Severity Score (SSS), whereby a scoring system of 0, 1, and 2 was applied, with 0 being “volunteers” (i.e., asymptomatic), 1 being “claudicants”, and 2 being “critical limb ischaemia”.

Hyperspectral oxygenation, TcpO₂, and TcpCO₂ were measured in both lower limbs at a standardised point over the head of the first metatarsal on the plantar aspect. Relative values from the mirror image site on the opposite limb were used to calculate the bilateral perfusion index (BPI) by comparing readings from the diseased limb with those of the contralateral limb, as described by Sheffield *et al* and Fife *et al*. For the purpose of the study, the left limb of the healthy volunteers was considered “diseased”. Due to limited resources at the start of
this research it was not until the second stage of the study that there were two functioning TCOM electrodes to allow simultaneous recordings, thereby reducing the duration of each study session. The additional electrode enabled chest measurements to be recorded to define the regional perfusion index, i.e., the limb-to-chest ratio.

Oxygenation measurements were recorded with each participant lying in a supine position on a flat bed in a room set at a fixed ambient temperature. Detailed operating manuals for the OxyVu, TCOM and ABI are described in sections 3.7.1 to 3.7.3.

TCOM measurements were recorded at 15-minute intervals. There are various guidelines for the use of TCOM. However, no clear recommendations exist regarding the duration needed for the electrode to equilibrate in order to obtain recording values. A sub-study was conducted as part of this thesis for standardisation of the contact time for the electrodes to facilitate interpretation and minimise error (Chapter 10). After studying minute-by-minute TCOM measurements in the 82 limbs, the difference in proportional change of TcpO$_2$ between minutes 14 and 15 was 0.8% and that for TcpCO$_2$ was 2.9%. Therefore, 15 minutes were set as the duration required for the electrode to equilibrate.

The correlations between OxyVu and TCOM, ABI of the diseased limb, and severity of PVD were evaluated.

2. Evaluation of inter-operator variability

OxyVu readings were recorded by two trained operators. Recordings by the two operators were made within a 2-minute period. The operators were blinded to the location of the “target” placed by the other operator, which was set at the head of the first metatarsophalangeal joint. The operators placed the target sticker themselves to imitate clinical settings and eliminate bias. The intraclass correlation coefficient (ICC) was used to determine inter-operator variability. Reliability of a measurement is defined as the ratio of the variance of the “true” values between individuals to the variance of the observed values, which is a combination of the variation between individuals and measurement error. The ICC has a range from 0 to 1. The latter indicates complete reliability with no measurement error.
3. *Evaluation of intra-operator variability*

Hyperspectral readings were measured consecutively over 36 minutes at 2-minute intervals for two patients (one patient with PVD and the other with no known PVD). The target sticker and camera were fixed and not moved during the assessment to eliminate operator bias. The within-subject coefficient of variance described by Bland *et al*[^391] was used to define the intra-operator variability.
3.2 Wound healing and oxygenation in IIB surgery

Study design

The hypotheses were tested within an overall framework of a randomised controlled trial. Ethical approval were obtained from the local Northern Y ethics committee (NTY/08/04/032). As shown in Table 3.1, participants were randomly allocated to one of four groups:

- An oxygen group (FiO$_2$ 80% without extended warming and Iloomedin®)
- An Iloomedin group (FiO$_2$ 30% with Iloomedin intraoperatively and postoperatively, without extended warming)
- A temperature group (FiO$_2$ 30% with preoperative and postoperative active systemic warming and without Iloomedin)
- A control group (FiO$_2$ 30% without extended warming or Iloomedin, i.e., current practice)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>OXYGEN</th>
<th>ILOMEDIN</th>
<th>TEMPERATURE</th>
<th>CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiO$_2$</td>
<td>80%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Warming (during surgery)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Warming (2 hours before and after surgery)</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Iloomedin®</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Table 3.1. Interventions received in each study arm.

Each treatment group was designed to control variables other than the treatment tested in that arm. Randomisation codes were formulated by Statistical Package for the Social Sciences (SPSS) software on a 1:1 basis. Participants were blinded as to their group allocation, although concealment was difficult in the temperature group.

Main outcome

The primary endpoint was wound healing, assessed by incorporation of hydroxyproline (OHP) into embedded implants.

Secondary endpoints included levels of growth factors, including TGF-β, FGF-2, and VEGF, and their mRNA expression in the wound tissue, and tissue oxygenation of the acute surgical wound and foot for up to 30 days postoperatively as measured by OxyVu and TCOM.
Sample size calculation

Goodson and Hunt39 studied 40 ePTFE implants in 30 healthy participants. Accumulation of OHP was found to start as early as 8 hours and to increase slowly over 5 days. After day 5, it increased exponentially. At day 5, there was significant accumulation of OHP and the standard deviation was the smallest ($0.30 \pm 0.08 \mu g$ OHP per cm tubing) at this time when compared with day 7 and beyond.

A minimum of 100 patients was required, with 25 participants in each group, to detect a mean increase of $0.075 \mu g$ OHP per cm tubing on day 5 in each treatment group when compared with controls, with a power of 90\% and a significance level of 5\%. A 25\% absolute increment in OHP content was deemed to be clinically significant. In 2007, the throughput of eligible patients in the unit where this research was conducted was around 70 per year. Assuming a 60\% recruitment rate, a recruitment period of 24 months was allocated.

Patient selection and exclusion criteria

Patients undergoing IIB surgery at Waikato Hospital were considered. Patients were excluded if they had untreated critically stenotic lesions proximally, chronic obstructive pulmonary disease with retention of carbon dioxide, a history of previous exposure to bleomycin, use of Ilomedin, corticosteroids, or immunosuppressants in the 4 weeks prior to surgery, sensitivity to Ilomedin, or a history of methicillin-resistant \textit{S. aureus}.

Preoperative period

The necessary information regarding the study was provided to the surgical team, anaesthetic team, and the nursing staff caring for the patients to ensure that the study protocol was adhered to and to assure quality control. Relevant demographic information was collected, including age, comorbidities, severity of PVD, pre-existing infections, cardiovascular risk factors, ABI, body mass index, and drug history, in particular use of steroids and any recent Ilomedin administration.

The number of patent crural vessels, or “run-offs”, was determined using preoperative imaging either in the form of digital subtraction arteriography (DSA), magnetic resonance angiography (MRA), computed tomographic angiography (CTA), or arterial duplex scan. In settings where more than one modality of imaging was available, the most accepted imaging method was
used. This was in the specific order listed above, with DSA set as the gold standard and duplex being the least reliable. The score was out of 3, i.e., 1 per crural vessel. A score of 1 was defined as a patent vessel without critical stenosis; 0.5 as a vessel with one or more critical stenoses; and zero as a vessel with any length of chronic total occlusion regardless of the length or presence of collateral flow. Rutherford’s recommended “run-off” weighting was not applied because it was difficult to assess the exact degree of stenosis or length of occlusion. \(^{392}\)

Each patient was randomly allocated to one of four groups. Randomisation were generated electronically. The results were placed in an envelope and sealed by a person not connected with the study. The envelope was opened by the anaesthetist at least 2 hours prior to induction of anaesthesia.

HTCOM, TCOM and ABI were recorded at least 2 hours prior to surgery as described in sections 3.7.1 to 3.7.3. The locations of the lower limb measurements were standardised at the medial aspect of the knee where the distal skin incision would lie and the plantar foot over the head of the first metatarsal. The BPI was the ratio between oxygenation of the “diseased” foot (the side of the surgical bypass) and the contralateral foot.

A forced-air warming device (Bair Hugger®) was used to cover the body from the neck to the toes on each patient in the temperature group and set at 38°C (“medium”) 2 hours prior to induction of anaesthesia. Core temperature was monitored using a tympanic thermometer every 30 minutes in this group.

Perioperative period

Anaesthesia was induced in the manner preferred by the anaesthetist. Corticosteroids were not administered. Chlorhexidine and alcohol (Chloraprep®) were used as skin preparation in all patients, along with a standard protocol for antibiotic prophylaxis at induction. The antibiotic prophylaxis was to continue for 24 hours (1g cefazolin intravenously or erythromycin if contraindicated). Surgery was performed in the manner preferred by the surgeon.

A Bair Hugger® set at 38°C was placed on all participants intraoperatively irrespective of the allocation group from the neck to the level of the umbilicus and including both upper limbs, unless arm veins were to be harvested. The theatre environment was standardised by a room temperature set at 21°C and warmed intravenous fluids. FiO\(_2\) was set at 30% or 80% as
determined by randomisation and maintained throughout surgery after induction of anaesthesia.

For patients in the Ilomedin group, 50 µg of Ilomedin was prepared with 250 mL of normal saline; 3,000 ng of Ilomedin in 15 mL of the mixture was slowly infused intra-arterially into the bypass graft intraoperatively using an 18 gauge cannula once the anastomoses of the graft were completed. The remaining Ilomedin was infused intravenously, starting immediately postoperatively whilst in recovery, at a rate of 10–40 mL per hour as tolerated for 6 hours according to the unit's protocol (Appendix A.5). If the core temperature exceeded 38°C during surgery, the temperature of the Bair Hugger® could be turned down.

Prior to skin closure, an ePTFE tube (Maquet™, Hudson, NH, USA) 5 cm in length, 2 mm in diameter, 1 mm in thickness, and a pore size of 60 µm, as well as a 1 cm³ cubed-shaped viscose cellular sponge were implanted subcutaneously parallel to the wound incision with the proximal end flush with the skin (Figure 3.1). The location was standardised at the incision close to the knee. A 3/0 nylon suture was placed at one end of the implant to act as a marker and to aid removal at a later stage. Another 3/0 nylon stitch was secured to cover the end of the ePTFE tube with the surrounding skin to minimise the risk of infection.

Intraoperatively, the anaesthetist provided appropriate inspired concentrations of oxygen under general anaesthesia. Changes in FiO₂ were allowed at completion of the operation when the anaesthetic was reversed. During the first 2 hours postoperatively, FiO₂ was maintained at 30% or 80% according to the randomisation protocol.

Postoperatively, or if regional anaesthesia was used, a high-concentration non-rebreather oxygen mask (Salter Labs, Arvin, CA, USA) at a total flow rate of 16 L/min was used with a Bird® oxygen blender (BD, Franklin Lakes, NJ, USA) to provide the desired oxygen concentration. After 2 hours, all patients could breathe room air or supplemental oxygen as required to maintain oxygen saturation above 92%.

Core temperatures were monitored before, immediately after, and at 30-minute intervals following surgery for 2 hours using a tympanic thermometer. Intraoperative temperatures were also recorded at 30-minute intervals while the patient was anaesthetised using a nasopharyngeal temperature probe that allowed continuous monitoring. Each patient in the
temperature group had a Bair Hugger® placed over the entire body and set at 38°C for 2 hours postoperatively.

The estimated blood loss, duration of surgery, and V-POSSUM (Vascular-Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity) score were recorded. Fluids and pain management were prescribed at the discretion of the anaesthetist. V-POSSUM estimates patient morbidity and is a predictor of mortality. The physiological score and operative score were recorded prospectively by the anaesthetists intraoperatively. A summary of the scores is shown in Appendix A.1.3. (Figure 9.2 and 9.3)

Significant oxygen toxicity may occur after 12 hours of FiO₂ at 100%, 24 hours at 80%, and 36 hours at 60%. Patients undergoing operations lasting more than 10 hours were excluded from the study, and those requiring intraoperative changes in FiO₂ to maintain oxygen saturation that deviated from the study protocol by greater than 10% were also excluded.

Postoperative management

| Graft implanted subcutaneously along the wound with the end flushed to the skin. A 3/0 nylon suture is used to close the skin over the implant. | On day 5, the nylon suture is cut, the skin released, and the proximal end of the graft with the “marker” nylon suture exposed to aid its extraction. | The ePTFE tube is extracted with care under sterile technique and local anaesthesia. The implants were placed in a sterile pot and stored in -80°C. |

Figure 3.1. Illustration of implanting and explanting the expanded polytetrafluoroethylene tubing from the surgical wound.

Using sterile technique under local anaesthesia with EMLA® 5% cream (lignocaine and prilocaine; AstraZeneca, Cambridge, UK), the embedded implants were harvested on day 5. The nylon suture was cut to expose the end of the expanded PTFE tube. The implants were extracted by applying gentle pressure on the nylon suture acting as a “marker”. These were then transferred to a sterile pot, and immediately stored below –80°C in the laboratory at Waikato Hospital. The open wound was closed with 3/0 nylon, and this suture was removed.
at the day 14 wound assessment visit. Day 5 was chosen for harvesting the embedded implants to balance the risk of wound complications or graft infections and the benefit of accumulating more OHP.

Analysis of OHP (expressed in \(\mu g/cm \) of tubing) was carried out for a 4.0 cm segment of the 5 cm expanded PTFE implants. The granulation tissue in the remaining 1.0 cm was used to quantify mRNA expression of relevant growth factors by polymerase chain reaction (PCR).\(^{394}\)

To ensure reproducibility and consistent quantification, the PTFE tubes were cut 4 cm from the start from the suture marker end in a standardised manner. Wound fluid from the viscose sponge was analysed for growth factors.\(^{395}\) The methods used for these analyses are described in sections 3.6.1 to 3.6.3.

Tissue oxygenation was measured using OxyVu on days 1 and 3 postoperatively. Transcutaneous oxygenation at the incision site on the knee was measured at six areas surrounding the site of the ePTFE implant. Two of the “targets” were placed anteriorly, two posteriorly, one superiorly, and another inferiorly (Figure 3.2). The average of these measurements was used for the analyses. A complete scan using OxyVu, TCOM3 oxygenation measurement, and calculation of ABI were performed on days 5, 14, and 30 in the follow-up clinic.

Postoperative management was provided in the usual fashion without prejudice for participation. Surgical wounds were assessed for complications during hospitalisation. Patients were followed up on days 14 and 30 by the author and beyond at the discretion of the clinical team. The duration of participation in this study was 30 days postoperatively. Bypass vein grafts were routinely surveyed at 6-monthly intervals for 2 years. Clinical notes were retrospectively reviewed in June 2013. Graft blockage, failure, re-interventions, limb loss, and deaths were recorded.
Figure 3.2. Location of the expanded polytetrafluoroethylene implant along surgical wound (red) and sites where oxygenation was measured using OxyVu™ (blue).
3.3 Validation of FastScan™ and Silhouette Mobile™

This study was approved by the local Northern Y ethics committee (NTY/09/08/080).

A pilot study was conducted in vascular patients with wounds or ulcers of the lower limbs. Wound dimensions were measured using the FS and SM, and the readings were compared with those obtained by three-dimensional CT reconstruction, which was assumed to be the gold standard. Patients with wounds or ulcers were recruited irrespective of aetiology from the ward and from the outpatient diabetic foot clinic. Patients with known methicillin-resistant S. aureus were excluded.

Consented participants underwent a targeted CT scan of the lower limb focusing around the region of the ulcer(s) or wound(s). Wound dressings were removed, and the wound was then cleaned and covered in transparent cling-film. The cling-film technique was adopted because packing and wound dressings would have disrupted the wound-surface interface on CT imaging. The film also protects such wounds and prevents desiccation as a result of prolonged exposure to air.

Immediately following CT, the wounds were scanned using the laser devices. The relevant protocols are found in sections 3.7.4 and 3.7.5. Each wound was scanned by three different operators using the FS and SM. Each operator scanned the same wound three times. Surface area, maximum depth, and volume measurements were obtained from the FS and SM images. These were compared with similar measurements obtained from CT images using three-dimensional reconstruction software (Siemens) by a single operator. The same single operator measured the dimensions of each wound three times, and the average values were used for analyses. Details on the application of the reconstruction software can be found in Section 3.7.6. The maximum depth was chosen to be the comparative measure rather than the “average depth”. Three depth measurements were taken per reading, and were averaged to give one maximum depth figure. No wounds were debrided significantly during the scanning process.
3.4 Wound healing and tissue oxygenation in TNP therapy

Study design

Ethical approval was secured from the Northern Y ethics committee (NTY/08/11/104).

The inclusion criterion was an acute surgical wound of the lower extremity:

- Following surgical debridement or minor amputation (defined as any amputation below the level of the ankle joint)
- With an adequate blood supply and not requiring a further revascularisation procedure
- Deemed suitable for TNP therapy.

Exclusion criteria were:

- Treatment with corticosteroids, immunosuppressive drugs, chemotherapy, TNP therapy, hyperbaric medicine, growth factors, or other bioengineered tissue products in the previous 30 days
- An acute wound with signs of infection or osteomyelitis, or necrotic tissue that would not be suitable for TNP therapy
- Known ankle pressure <50 mmHg or toe pressure <30 mmHg
- Being unsuitable for the trial in the opinion of the operating surgeon.

Consented patients were randomly allocated to a treatment group (to receive TNP as per routine practice) or to a control group (to receive regular modern topical dressings). Randomisation codes were formulated by SPSS software on a 1:1 basis. Neither the author nor the patients were blinded; however, the outcomes were objectively measured.

Main outcomes

The primary endpoint was volumetric assessment of the wound at 2 weeks using FS. Secondary endpoints included biochemical analyses of OHP levels, growth factors, including TGF-β, FGF-2 and VEGF, and inhibitory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-8, at baseline and on day 14. Tissue oxygenation surrounding the wound as measured by OxyVu was compared between baseline and day 14. Limb loss rates were recorded at 3 months.
Sample size calculation

A minimum of 64 patients was required (n=32 in each group) to be able to detect more rapid wound healing in the TNP group at 2 weeks with an absolute mean difference of 20% in wound volume when compared with the control group. This was set at 80% power and a significance level of 5%. Patient recruitment was planned to last for 18 months.

Protocol

On day 0, relevant demographic information was collected, including age, comorbidities, cardiovascular risk factors, ABI, body mass index, and drug history, in particular use of steroids.

The wound was presented within 48 hours of surgical debridement and cleaned appropriately to prepare for dressing application as per routine management. Light debridement over the wound surface was permitted to remove debris or slough if necessary. Dimensions of the ulcer was measured using FS at baseline as per Section 3.7.4. Three punch needle biopsies were extracted from the centre of the wound using a 3 mm punch needle under aseptic technique. “Urogel” containing lignocaine was applied topically if required. Tissue samples were placed in a sterile test tube and placed in a freezer at −80°C for analysis of OHP. Two tissue oxygenation measurements were obtained (one from each end of the wound) using OxyVu as described in Section 3.7.1. TCOM was not used because it would have added an additional 45 minutes to the assessment and aired the wound unnecessarily.

In the treatment group, TNP was applied in the usual fashion by ward nurses. The settings were set at continuous suction (~125 mmHg) for the first 24 hours and for intermittent suction thereafter. In the control group, modern traditional dressings were applied: typically topical hydrofibre or hydrogel dressings guided by the condition of the wound. Dressings were changed every 48 hours in each group unless advised by the surgeon or the wound care nurse specialists.

On day 2, the entire wound dressing or foam sponge was extracted. No fluids (e.g., local anaesthetics or saline) were infiltrated into the dressing. A section of the dressing or foam that was in direct contact near the centre of the wound bed was sampled. The sample was inserted into a test tube and then placed into a centrifuge to be spun at 4,000 rpm for 10 minutes at
4°C to drain the wound fluid. The fluid was pipetted across to a sterile test tube and snap-frozen at –80°C for measurement of growth factors and cytokines.

This was an intention-to-treat study. TNP was switched to traditional dressings before day 14 if the surgeon could no longer justify its use clinically, such as when the wound was filled with significant granulation tissue, to imitate “real-world” clinical decision-making. Patients were allowed to be discharged prior to day 14 with wound dressings changed by district nurses or the ward nurses if an arrangement was made. Patients were excluded if the study protocol was violated or if the wound required significant debridement or failed to progress during the study period. Participants were required to attend the wound assessment clinic on day 14 to complete the study. Delayed skin closure with split skin grafts to the acute wound was not a common practice in the unit.

On day 14, wound dimension measurements were repeated using FS. Wound fluid was extracted from the wound dressings. Three punch needle biopsies at the centre of the wound bed were taken for assessment of OHP. Tissue oxygenation measurements around the wound were recorded.

Patients were either reviewed in the outpatient clinic at 12 months or were followed up by telephone to record the progress of the wound.

Biochemical analyses were conducted as per sections 3.6.1 to 3.6.3. Each wound imaging using FS was repeated three times and the mean values were used for analyses. Wound dimensions were quantified using the Delta software. Measurable outcomes included: wound “body” surface area (area of the wound surface); wound “cap” surface area (area of the wound defect at the skin surface); maximum depth; mean depth; and volume.
3.5 Statistical methods

Data were collected in Excel®. Statistical analyses were performed using SPSS version 22 software (IBM Corporation, Armonk, NY, USA). A type I error of 5% ($P \leq 0.05$, two-tailed) was considered to be statistically significant.

Descriptive statistics were described in terms of the range, mean or median and standard deviation. Kurtosis and skewness were evaluated for continuous variables. The coefficient of kurtosis measures the spread of values. For a normal distribution, the coefficient of kurtosis would be less than 3. If the distribution is more spread out, the coefficient would be greater than 3.390 For a symmetrical distribution, the coefficient of skewness would be zero; positive values correspond to a right-skewed distribution and vice versa.

When comparing the means of two groups of continuous variables, parametric analysis (the Student’s t-test) was used assuming the data followed a normal distribution. Bonferroni correction was applied in the WOIOW study where there were multiple “hypotheses” with three comparison groups (i.e., three treatment arms and one control). In the setting of comparing means for discrete variables, Chi-squared and Fisher’s Exact tests were applied depending on the size of the sample. Analysis of variance (two-way repeated measures) or the Kruskal-Wallis test was used to compare the means of more than two groups. The latter was used in the WOIOW study to test for any potentially significant difference in basic demographics between the groups.

Pearson’s and Spearman’s correlation tests were used to test for an association between variables depending on whether they were continuous or ordinal-scale (ranked; such as the severity of PVD using the SSS scale in the Validation of OxyVu study).

A logistic regression model was used to perform multivariate analysis and to detect confounding factors. The regression model was also used to determine the gradient of change in core temperature for patients in the “temperature” group in the WOIOW study.

Kaplan-Meier plots were used for the survival analyses, such as for graft patency, limb survival and patient survival.

Random systematic errors in assessing the reliability of the devices were expressed as a ratio of total variance to calculate the intraclass correlation coefficients (ICCs). These coefficients
determine how strongly repeated measurements relate to each other. ICCs and the Bland-Altman test were used to assess inter-operator and intra-operator variability. The within-subject coefficient of variation defined the intra-operator reliability in the Validation of OxyVu study.

A single ICC would indicate the reliability of one operator, whereas the average ICC would indicate the reliability when recordings were made by two or more operators (or attempts). The latter would be a higher value and hence more “reliable”.

Inter-operator variability could be the result of errors on the part of the instrument (e.g., OxyVu) or the operator. Systematic bias is a tendency to overestimate or underestimate the “true value”. By studying the mean difference in OxyVu measurements between the two operators (A and B), such bias could be detected.

A receiver operating characteristic (ROC) curve was used as part of the Validation of OxyVu study described in Appendix 6.4 to determine the sensitivity and specificity of using HT-Sum to diagnose anaemia.

Power and sample size calculation was evaluated using an interactive software program designed by Dupont and Plummer (PS: Power and Sample Size Calculation). The program can be downloaded from:

http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize
3.6 Laboratory investigations

3.6.1 Hydroxyproline assays
These assays were completed under the supervision of Dr Christina Buchanan, a post-doctoral research fellow in the Department of Molecular Medicine and Pathology at the University of Auckland, who has previous experience in OHP assays. The protocol used is described below; it was based on key OHP studies by Chiariello et al and Jorgensen et al.,\(^{14}\) and was validated in a further study at the University of Auckland recently published by Dr Buchanan.\(^{398}\)

Protocol

1. All tissue samples were placed in a plain test tube and snap-frozen at \(-70^\circ\text{C}\) to \(-80^\circ\text{C}\) as soon as they were harvested from the study participants. The samples were placed in a freezer in the clinical laboratory at Waikato Hospital.
2. The test tubes were thawed on the day of analysis.
3. The dimensions of the samples were quantified. For those in the ePTFE tube, the length of the tube was measured. For the tissue biopsy samples, the dried weight of the tissues was measured.
4. Each sample was placed in a 100 mm length borosilicate Kimax®-capped culture tube (the tissues could be spliced into smaller pieces).
5. The tissues were hydrolysed with 1 mL of 6 M hydrochloric acid; the culture tubes were placed in an oven set at 105°C overnight (for at least 16 hours), ensuring that the tubes were well-secured with the cap (Figure 3.3)
6. Each solute containing the OHP was carefully pipetted out in a fume hood into a 1 mL microtube without a cap
7. The microtubes were placed in the SpeedVac® which dried the solvent at 40°C under constant sub-atmospheric pressure. (Figure 3.4)
8. The solvent containing the OHP was completely crystallised. This process could take up to 24 hours depending on the number of samples placed in the SpeedVac.
Figure 3.3. Expanded polytetrafluoroethylene tube hydrolysed in 6 M hydrochloric acid (right), hydroxyproline solute in microtube (centre), and expanded polytetrafluoroethylene tube following hydrolysis (left).

Figure 3.4. Photograph of the SpeedVac®.

9. The crystals were dissolved into 1 mL of sterile Milli-Q™ water.
10. This was then neutralised with 45 µL of 5 M sodium hydroxide and the pH was adjusted to around 6.
11. 1 mL of isopropanol (isopropyl alcohol [IPA]) was added.
12. The microtube was centrifuged at 2,000 rpm for 5 minutes.
13. Various reagents were prepared:
 a. Acetate/citrate buffer in IPA
 Mix 200 mL of Milli-Q water with the following:
i. 0.7 M of sodium acetate (molecular weight 82) – 11.48 g
ii. 0.2 M of trisodium citrate (molecular weight 294) – 11.76 g
iii. 0.045 M citric acid (molecular weight 210) – 1.89 g
iv. Dilute six parts of the above solution to four parts of IPA before use.

b. Chloramine T (oxidative agent for OHP)
Prepare 300 mM in 10 mL of acetate/citrate buffer in IPA (molecular weight 228) – 0.684 g of salt

c. Ehrlich’s reagent (stains the oxidised OHP compound)
Prepare 3.5 M in 100 mL of 72% perchloric acid (molecular weight 149.19) – 5.22 g.
Store solution in the dark and wrap the storage tube in aluminium foil.
Dilute one part of the above solution in four parts of IPA before use.
Store in the dark as above.

d. Half-strength IPA
Add one part of IPA to one part of Milli-Q water.

14. The standards were prepared:
a. Formulate 100 µg/mL of OHP.
 i. 0.00965 g of pure OHP in 1 mL of Milli-Q water (9,650 µg/mL).
 ii. Mix 10 µL of the pure OHP solution in 955 µL of half-strength IPA.
b. 1:1 serial dilution
 i. 100 µg/mL → 50 → 25 → 12.5 → 6.25 → 3.125 → 1.56 → 0.78 → blank.

15. 120 µL of tissue sample were taken from step 12 into a new 1 mL microtube for OHP assay.
16. 280 µL of acetate/citrate/IPA buffer was added.
17. 100 µL of chloramine T was added.
18. Microtubes were incubated for 5 minutes at room temperature to allow OHP to oxidise.
19. 1.3 mL of Ehrlich’s reagent were added into each microtube.
20. Microtubes were placed in a hot water bath set at 60°C for 30 minutes.
21. The tubes were cooled for 5 minutes.
22. The content of OHP (µg/mL) was quantified using spectrometry to measure absorbance at 558 nm. This was performed in bulk using a 96-microwell plate with 100 µL of the sample solution from step 21 (Figure 3.5). Spectrometric analyses should not be delayed as Ehrlich’s reagent continues to react over time.
23. A standard curve was generated using the readings from standards.
24. OHP levels (µg/mL) were interpreted using the gradient of the standard curve (y=mx + c) multiplied by the volume of sample (mL) per well.
25. Measurements were divided by weight (or length of tubing) to obtain absolute OHP levels per weight or cm of tubing. To determine the amount of collagen, OHP levels were multiplied by 7.46 because collagen consisted of approximately 13.4% OHP.399
3.6.2 Analysis of growth factors and cytokines

This section was conducted at the Auckland Cancer Society Research Centre at the Grafton Campus, University of Auckland, under the supervision of Dr Sofian Tijono.

Preparation of wound fluid sample (WOIOW study)

1. Wound fluid saturated in a 1 cm3 PVA sponge was stored in a 1.7 cm3 sterile microtube when harvested from patients.
2. Samples were snap-frozen in a freezer at –80°C.
3. Prior to thawing on the day of analysis, the tip of each microtube was carefully cut, producing a small opening at the tip.
4. Once thawed, each microtube was placed in the neck of a narrow 5 cm3 plastic test tube.
5. Each microtube with a plastic test tube sitting in situ was centrifuged at 4,000 rpm and 4°C for 10 minutes.
6. Microtubes with a desaturated sponge were discarded.
7. Wound fluid drained into the 5 cm3 plastic test tube was pipetted into a new microtube.
8. Re-freezing wound fluid was avoided, with the analysis performed on the same day. Multiple freeze/thaw cycles could have impaired the quality of the sample.

Preparation of wound fluid sample (TNP study)

1. A section of the wound dressing or foam was sampled from the patient during their “dressing change” in the ward.
2. This dressing sample was placed into a 5 mL sterile capped plastic pot.
3. This pot was placed into a specially designed 20 mL test tube. The cap of the tube was modified to snugly fit the pot and secured by the cap of the pot.
4. This combination device was centrifuged at 4,000 rpm and 4°C for 10 minutes.
5. The wound fluid drained into the plastic test tube was pipetted into a new microtube.
6. This was then snap-frozen at –80°C.
Analysis of TGF-β1
An enzyme-linked immunosorbent assay (ELISA) technique was used for quantitative detection of human TGF-β1. A detailed protocol is provided in the analysis kit for eBioscience® Platinum ELISA. The principles of ELISA were as follows:

- TGF-β1 in the wound fluid was bound to the anti-TGFβ1 coating antibodies adsorbed to the microwells.
- Biotin-conjugated anti-TGFβ1 antibody was added to bind to the human TGF-β1 captured by the first antibody. Unbound biotin-conjugated anti-TGFβ1 was washed out.
- Streptavidin-horseradish peroxidase was added to bind to the biotin-conjugated anti-TGFβ1 antibody. Unbound streptavidin-horseradish peroxidase was washed out.
- A substrate solution reactive with horseradish peroxidase (tetramethyl-benzidine) was added. A coloured product was formed in proportion to the amount of human TGF-β1 in the sample. The reaction was terminated by addition of 1 M phosphoric acid.
- Absorbance was measured at 450 nm using spectrometric analysis. The concentration of TGF-β1 in each sample was determined from the standard curve prepared from seven standard dilutions.

Analyses of VEGF, FGF-2, IL-8 and TNF-α
Milliplex® is based on Luminex® technology that performs bioassays on the surface of fluorescent-coded beads known as microspheres. When an analyte is captured by the bead, a biotinylated detection antibody is introduced. The reaction mixture is then incubated with streptavidin-phycerothyrin conjugate, the reporter molecule, to complete the reaction on the surface of each microsphere. The microspheres are allowed to pass rapidly through a laser which excites the internal dyes marking the microsphere set. A second laser excites phycoerthyrin, the fluorescent dye on the reporter molecule. Finally, digital signal processors identify each individual microsphere and quantifies the result of the bioassays based on fluorescent reporter signals.

The ability to add multiple conjugated beads to each sample enabled multiplexing of many types of bioassay from a single sample of 25 μL, which is critical in studies with a small sample volume. Unfortunately, TGF-β1 is not available in Milliplex® so was performed using the traditional ELISA technique. The immunoassay procedure was followed as per the protocol produced by Millipore®.
3.6.3 Analysis of growth factor mRNA

This was conducted in the Department of Molecular Genetics at the University of Waikato under the supervision of Dr Ray Cursons. There was an option to process the tissues using development kits produced by various companies. However, it was more cost-effective to analyse the samples using conventional methods. In addition, this would allow better preservation of DNA quality and thus more accurate results.

Isolation of RNA from tissue

1. 1 cm of the ePTFE tube was cut when the implant was harvested from the patient.
2. This was then placed in a 1 cm³ microtube soaked with 0.5 mL of RNA Later® to cover the ePTFE tube.
3. The sample was snap-frozen at –80°C.
4. On the day of analysis, tissue samples were thawed from the freezer.
5. The RNA Later was pipetted out of the microtube.
6. 500 μL of 5 M guanidine thiocyanate (GITC) was added to the microtube and left overnight. Tissue were flushed out of the tube with the GITC. Tissue was homogenised if needed. GITC is a strong denaturant and inhibits RNase. This provides a purer sample in aqueous form.
7. 50 μL (1/10 of volume) of 2 M sodium acetate at pH 4.0 was added and shaken gently. This made the RNA soluble and separated it from DNA.
8. 500 μL of phenol at pH 4.3 was added and shaken gently. Cell membranes were destroyed and dissolved.
9. The microtube was placed in a rotator wheel for 5 minutes.
10. 200 μL of chloroform was then added, and the debris precipitated in the interface.
11. The microtube was placed on ice and then centrifuged at 4°C for 10 minutes.
12. The top aqueous layer containing the GITC was extracted. Total RNA was dissolved in GITC.
13. Steps 8–12 were repeated to further purify the total RNA.
14. 500 μL (1 mL/mL) of IPA was added to precipitate the tRNA.
15. The microtube was placed in a freezer at –20°C for one hour to intensify the precipitation process.
16. The microtube was centrifuged at 4°C for 20 minutes.
17. The IPA was gently tipped out, leaving behind the precipitated RNA.
18. 1 mL of 70% ethanol was added to dissolve the precipitated RNA.
19. The microtube was centrifuged at 4°C for 5 minutes.
20. The ethanol was tipped out to remove unwanted salts.
21. The microtube was centrifuged at 4°C for 10 seconds.
22. The remaining ethanol was pipetted out. RNA pellets were sometimes visible at this stage.
23. Ethanol was left to dry in a fume cupboard for about 15 minutes.
24. 15 μL of TRIS manganese and 1 μL of DNase were added.
 - TRIS acted as a buffer and made the RNA sensitive.
 - DNase broke down the DNA.
25. The microtube was placed in a vortex machine and spun rapidly for 10 seconds.
26. The microtube was placed on a ThermoMixer™ set at 800 rpm for 30 minutes at 37°C.
27. 1.5 μL of DNase stop solution was added.
28. The microtube was placed in a vortex machine and spun rapidly for 10 seconds.
29. The microtube was placed on a ThermoMixer at 65°C set at 800 rpm for 10 minutes.
30. 2 μL of the sample was used for Nanodrop® spectrometry. (Figure 3.6)
 - Nanodrop was used to test the purity and concentration of the mRNA sample.
 Absorbance 260/280 (a260/280) should be more than >1.6.
 - More than 1 μg of mRNA was required for production of cDNA.

Figure 3. 6. An example of a Nanodrop® report for an RNA sample from one of the study participants.
Production of cDNA from mRNA

1. MasterMix A and B were prepared.
 a. MasterMix A:
 - "n" μL of total RNA (to make approximately 1 μg of RNA)
 - 1 μL of oligo DDT (16 Ts)
 - Treated H₂O to make up 10 μL
 b. MasterMix B:
 - 4 μL of 5× buffer (37°C)
 - 1 μL of reverse transcriptase (RT)
 - 1 μL DTT (catalyst for RT)
 - 1 μL 10 mM dNTPs (substrates)
 - Treated H₂O to make up 10 μL

 o In total RNA, only 5% is mRNA; 12% is transfer RNA and 80% is ribosomal RNA. mRNA has a specific marker at 3' that has 30 AAAAA. Therefore, oligo DDT acts as an mRNA primer that targets mRNA.

2. In an ultraviolet light box, Mastermix A was added into a microtube. This was shaken and flushed several times.
3. The sample was incubated in the DNA Engine at 70°C for 5 minutes.
4. The sample was then cooled on ice for 10 minutes.
5. Mastermix B was added to the microtube. This was shaken and flushed several times.
6. The sample was incubated in the DNA Engine at 50°C for 60 minutes.
7. The sample was incubated in the DNA Engine at 85°C for 10 minutes.
Preparation of primers

1. “n” μL of TE was added to the primer powder. “n” was defined as 10× the concentration of primer powder (nmole). The sequences are described in Table 3.2.

2. This was then diluted with TE by 1/10 (i.e., 10 μL of primer and 90 μL of TE).

<table>
<thead>
<tr>
<th>GENE</th>
<th>PRIMER SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGFB_F</td>
<td>5’-GCA GAA GTT GGC ATG GTA GC-3’</td>
</tr>
<tr>
<td>TGFB_R</td>
<td>5’-CCC TGG ACA CCA ACT ATT GC-3’</td>
</tr>
<tr>
<td>VEGF_F</td>
<td>5’-GCT ACT GCC ATC CAA TCG AG-3’</td>
</tr>
<tr>
<td>VEGF_R</td>
<td>5’-GGT GAG GTT TGA TCC GCA TA-3’</td>
</tr>
<tr>
<td>FGF-2_F</td>
<td>5’-CCT TCT CCT GCC CAT CCA C-3’</td>
</tr>
<tr>
<td>FGF-2_R</td>
<td>5’-CCT TCA TAG CCA GGT AAC GG-3’</td>
</tr>
<tr>
<td>TBP_F (house-keeping gene)</td>
<td>5’-GTT CTG AAT AGG CTG TGG GG-3’</td>
</tr>
<tr>
<td>TBP_R</td>
<td>5’-ACA ACA GCC TGC CAC CTT AC-3’</td>
</tr>
</tbody>
</table>

Table 3.2. Code for relevant primers.

RT-PCR procedure

1. 20 μL of PCR Mastermix, 0.1 μL Taq™ Hot Firepol™ polymerase, 0.5 μL of forward primer and 0.5 μL of reverse primer were added to 1 μL of cDNA (20 μL reaction).

2. This was then shaken well and placed in a vortex for 10 seconds.

3. The mixture was placed in a DNA engine to commence PCR.
 a. 95°C for 3 minutes (to denature or unravel cDNA)
 b. 95°C for 20 seconds
 c. 55°C for 20 seconds (for primers to attach onto genes)
 d. 72°C for 30 seconds [for Hot FirePol polymerase to optimize productivity (thermophilic)]
 e. The above three steps were repeated for 39 cycles.
 f. The mixture was kept at 68°C for 5 minutes (to extend remaining cDNA).

4. 50 mL of 2% agarose gel was prepared by heating 1 g of agarose to 50 mL of Tris acetate EDTA; 2% is optimum for target DNA around 100–200 kb.
5. 3 μL of ethidium bromide was added to the gel solution. Ethidium bromide binds to “minor grooves” of DNA and reacts to ultraviolet light to enable reading.
6. The gel solution was poured onto a plate and allowed to settle for 30 minutes.
7. 10 μL of cDNA mix was mixed with 2 μL of blue dye.
8. 10 μL was pipetted into a well on the gel plate.
9. 6 μL of 100 bp DNA ladder was added into each row of the well. This would derive the unit of measurement.
10. Electrophoresis was commenced at 100 V for 30 minutes.
11. The gel was read on an ultraviolet light box and a photograph was taken (Figure 3.7).

Figure 3.7. An example of gel electrophoresis following reverse-transcriptase polymerase chain reaction of a sample from four of the study participants.

Quantitative PCR procedure

1. All wells on a 32-well PCR plate were labelled.
2. 1 μL of cDNA, 20 μL of PCR Mastermix, 0.1 μL of Taq Hot Firepol polymerase, 0.5 μL of forward primer and 0.5 μL of reverse primer were added into each well.
3. The plate was placed into the quantitative PCR machine for analysis.
4. Interpret result to quantify cDNA levels.
3.7 Operating devices

3.7.1 OxyVu™

1. Subjects were imaged lying supine on a standard flat examination bed.
2. They were requested to rest and become acclimatised on the bed for 15 minutes prior to measurements in a small quiet room with room temperature set at 20°C–23°C using air conditioning.
3. A target (plastic sticker) was placed near the centre of the imager’s region of interest (e.g., a foot)
4. OxyVu was turned on and set at the appropriate settings and labels.
5. To normalise and correct for spectral variation in illumination intensity and collector sensitivity, the hyperspectral imager was calibrated to a well-characterised highly and diffusely reflecting standard known as a “Check Pad” prior to imaging each new subject.
6. Subjects were required to lie still during the 15 seconds of hypercube acquisition to prevent movement. For each measurement site, OxyVu would collect two hypercubes corresponding to either background or LED-illuminated conditions. The spectral separator was tuned to 15 equally spaced wavelengths between 500 nm and 660 nm, while the camera measured the tissue reflectance to determine the absorbance of the tissues. The LEDs were switched off and on to produce both illumination conditions. Acquisition at each wavelength lasted for approximately one second.
7. Hyperspectral oxygenation values were calculated by the OxyVu over a fixed area of 204 mm² 1 cm around a “target” in a doughnut contour. Oxyhaemoglobin, deoxyhaemoglobin, and oxyhaemoglobin saturation, along with skin temperature values, were provided for each image (Figures 3.8 and 3.9).
8. It was important that the OxyVu readings were recorded prior to TCOM measurements because the latter involved heating the skin at the region of interest to 44°C for more than 15 minutes.
Figure 3.8. Example of an OxyVu™ reading.

Figure 3.9. Operating the OxyVu™. The region of interest (i.e., the foot) was imaged from the camera box attached to the OxyVu machine. This was then processed and displayed on the screen as per Figure 3.8, providing oxygenation measurements. The patient was placed supine in a small quiet room with the temperature set at 20°C–23°C.
3.7.2 Transcutaneous oxygenation measurement
The TCOM protocol described below was derived from the manufacturer’s manual for the TCM3 transcutaneous pO$_2$ monitoring system (Radiometer Medical ApS, Brønshøj, Copenhagen) and the TCOM guidelines published in the literature.273 400

1. Subjects were imaged lying supine on a standard flat examination bed.
2. They were requested to rest and be acclimatised on the bed for 15 minutes prior to measurement in a small quiet room with room temperature set at 20°C–23°C using air conditioning.
3. All devices were switched on and connected appropriately.
4. The electrode membrane was kept relatively fresh.
5. Electrode calibrations were performed immediately before use. Any fluid droplets on the outer surface of the electrode membrane were removed before calibration. Calibration was done using a certified gas mixture with known fractions of oxygen (20.9%) and carbon dioxide (5%), balanced with nitrogen. At a sea level atmospheric pressure of 101 kPa (approximately 760 mmHg), this would correspond to a pO$_2$ of 159 mmHg and a pCO$_2$ of 38 mmHg. A stable calibration value should be attained within 3–10 minutes. When this was completed, pO$_2$ and pCO$_2$ values displayed on the machine should not drift for more than 1% per hour. This phenomenon, called the “electrode drift” rate, might indicate wear and tear of the membrane or the electrode.
6. The electrode was heated to and maintained at 44°C from calibration and throughout the duration of measurement. The temperature used is recommended by the TCOM guidelines for combined TcpO$_2$ and TcpCO$_2$ electrodes$^{289-291}$ to optimise the skin condition for measurement without the side effects of skin burns. Deviation from 44°C could lead to a bias of 4% error per degree Celsius. The probe temperature should not deviate by more than 0.6°C for longer than 20 seconds.
7. Optimal measuring conditions should be obtained in skin areas with a high density of capillaries, ample capillary blood flow, a thin epidermis, and little or no fat deposits. The plantar aspect of the foot over the head of the first metatarsophalangeal joint and the sternum of the chest were chosen. Body hair was removed to ensure better adhesion. The skin was cleaned with alcohol swabs prior to application of a self-adhesive fixation ring. One to two drops of contact fluid was placed within the fixation ring. This thin layer of glycerol fluid prevents the presence of air between the electrode
and the skin and improves the accuracy of the sensor and makes the diffusion of gases more efficient.

8. The electrode was then snap-fixed onto the ring in direct contact with the skin area of interest to commence TCOM. The ring must create enough of a seal to prevent leaks or formation of air bubbles, as ambient air reaching the sensor would affect measured values (Figure 3.10).

9. When equilibrium was reached and measurements were recorded at minute 15, the electrode was removed from the ring. It could be replaced into another fixation ring that was moistened with contact fluid at another area of interest if the last calibration was less than 4 hours earlier.

10. If OxyVu and TCOM measurements were required at the same site; OxyVu had to precede TCOM because tissue oxygenation might be affected by the rise in skin temperature caused by the heated TCOM probes.

Figure 3. 10. Transcutaneous oxygenation measurement monitor.
3.7.3 Ankle-brachial pressure index
Systolic pressures in the arteries at the ankle level are measured routinely in patients with PVD. A common method of measurement is to use a sphygmomanometer cuff placed just above the ankle with the patient supine. A hand-held Doppler instrument was used to measure the systolic pressure of the posterior tibial and dorsalis pedis arteries of each leg. These pressures were then “normalised” to the higher brachial pressure of either arm to form the ABI (Figures 3.11 and 3.12).

The ABI is a good indicator of the severity of PVD. The systolic BP of the lower limb should be similar to that of the upper limb in healthy individuals, who have an ABI between 0.9 and 1.3. An ABI between 0.4 and 0.9 is considered to indicate mild or moderate PVD. An ABI of <0.4, where the systolic BP of the lower limb is markedly less than that of the upper limb, is indicative of severe PVD.401

In individuals with symptomatic PVD, an ABI of <0.90 is 95% sensitive in detecting arteriogram-positive lesions and almost 100% specific in identifying individuals without PVD.213 In claudicants, an ABI of <0.50 is associated with twice the mortality of that associated with an ABI of >0.50.402 Based on the Edinburgh Artery Study, ABI is a good predictor of nonfatal and fatal cardiovascular events as well as total mortality. Each decrease in ABI of 0.10 is associated with a 10% increase in relative risk for a major cardiovascular event.403 An ABI of ≤0.90 doubles the 10-year mortality rate, risk of cardiovascular mortality, and major coronary event rates.404 In patients with type 2 diabetes, a low ABI correlates with a high 5-year risk of a cardiovascular event.405

The ABI does have some shortcomings. Again, it is an assessment of the macrovascular circulation of the pedal arteries; it does not account for microvascular disease and does not provide information about the effects of an arterial obstruction in specific tissue regions. More importantly, systolic BP is a measurement when the artery is fully compressed by the cuff at a certain pressure. In elderly patients and in those with diabetes or renal disease, the artery walls are often heavily calcified, so the ankle vessels are difficult to compress or are not compressible at cuff pressures >300 mmHg. This leads to a false interpretation of the elevation of ankle pressure with an ABI of >1.3.
Figure 3.11. Measurement of ankle-brachial pressure index.

Figure 3.12. Image explaining measurement of the ankle-brachial pressure index. Sourced from Norman et al, 2004.)
3.7.4 FastSCAN™

1. The wound was exposed entirely with the patient in the supine or prone position depending on the location of the ulcer.

2. The laptop computer connected to the FS device was turned on with the imaging software uploaded.

3. A calibrating device was attached firmly on the skin near the region of interest. This was scanned by the laser scanner, which marked the “zero axis”.

4. Once calibrated, the laser scanner swept across the wound repeatedly until a clear three-dimensional image of the wound was produced on the computer screen. To achieve this successfully, the “brightness” dial might need to be adjusted. The difference in colour of the skin and of the wound interface, as well as the surrounding light ambience can affect the quality of the image.

5. “Stylus” markers were then placed on the wound edge, again using a laser pen. These styluses would only be visible on the screen and were used to aid volumetric measurements later.

6. The images were then saved and opened in a separate software programme (Delta®) where the images were cropped and fashioned appropriately to be used for volumetric measurements.

7. Dimensional measurements were provided using the FastScan Volumator designed by ARANZ (Figure 3.13).

Figure 3.13. Example of wound dimension analysis using the FastScan Volumator.
3.7.5 Silhouette Mobile™

1. With the patient in the supine or prone position depending on the location of the ulcer, the wound was exposed entirely.
2. The SM laser and camera device was attached to the PDA and switched on (Figure 3.14).
3. Data including demographic details were entered into the built-in software at the patient's bedside. Wound data including site, aetiology, and wound bed characteristics could also be recorded.
4. The operator then captured an image of the wound by placing the region of interest in between the two laser lines provided by the device. This measured the length and width of the wound.
5. Settings were then changed to measure depth where another image marked by one laser line across the plane of maximum depth was captured. This was repeated three times to record depth at three different planes of the wound.
6. Its confines were determined using a stylus pen on the PDA touch screen.
7. The software would automatically generate wound measurements of surface area, depth and volume, and wound edge contour. The image was then saved and could be correlated with previous images to produce a graphical report of wound progress.

Figure 3.14. Image of Silhouette Mobile™ (retrieved from http://www.aranzmedical.com)
3.7.6 Three-dimensional CT reconstruction
Volumetric measurement software provided by Siemens was used. This was accessible at the Department of Radiology, Waikato Hospital.

Protocol

1. Open the CT images of the wound.
2. Adjust the upper Hounsfield unit (HU) value to 160 and lower HU value to −1,024 (to cancel excluded air).
3. Click the Applications tab > Volume.
4. Target the wound surfaces by adjusting the axial, coronal and sagittal planes.
5. Outline the wound margin in the three-dimensional planes.
6. After finishing the manipulation, click START EVALUATION to measure dimensions for the reconstructed wound.
4 Results: Validation of OxyVu™

Evaluating inter-operator reliability

One hundred and twenty limbs in 62 patients were studied. Thirty patients presented with symptoms of PVD; the remainder were patients with no known PVD (11 vascular patients admitted for reasons other than PVD, and 21 preoperative patients undergoing elective cardiothoracic surgery). The vascular and cardiothoracic departments shared the same ward in the hospital.

Figures 4.1–4.4 show the correlation of the various OxyVu measurements between the two operators for the 120 limbs. When the measurements were paired, the ICC could be derived by the Pearson coefficient (R), with each pair assessed twice, once in the reversed order.

Figure 4.1 Scatter plot showing the variation in HT-Oxy measurements between the two operators.
Figure 4. 2. Scatter plot showing the variation in HT-Deoxy measurements between the two operators.

Figure 4. 3. Scatter plot showing the variation in HT-Sat measurements between the two operators.
Figure 4.4. Scatter plot showing the variation in skin temperature measurements between the two operators.

The single-measure ICC and average ICC of the four OxyVu measurements are listed in Table 4.1. Overall, inter-operator reliability when recordings were made by a single operator ranged from 86% to 94%.

<table>
<thead>
<tr>
<th>SINGLE ICC (95% CI)</th>
<th>AVERAGE ICC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-Oxy</td>
<td>0.86 (0.80–0.90)</td>
</tr>
<tr>
<td>HT-Deoxy</td>
<td>0.94 (0.91–0.96)</td>
</tr>
<tr>
<td>HT-Sat</td>
<td>0.86 (0.81–0.91)</td>
</tr>
<tr>
<td>Skin temperature</td>
<td>0.94 (0.91–0.96)</td>
</tr>
</tbody>
</table>

Table 4.1. Summary of ICC values and 95% CIs for OxyVu™ measurements. **Abbreviations**: ICC, intraclass correlation coefficient; CI, confidence interval
Figure 4.5 is a Bland-Altman plot showing the difference in HT-Oxy measurements between operators A and B plotted against the mean HT-Oxy for the two operators. The three horizontal lines represent the mean ± 2 SE. The results show that HT-Oxy measured by operator A was on average 0.87 arbitrary units higher than that measured by operator B, which is insignificant. The mean difference in measurements for the other variables between the two operators is described in Table 4.2.

Table 4.2. Summary of mean differences in OxyVu™ measurements between the two operators. Abbreviation: SE, standard error
Evaluating intra-operator reliability

Consecutive OxyVu foot measurements were recorded for two volunteers (individuals A and B) at 2-minute intervals for 36 minutes. The numerical difference between a reading and that from 2 minutes earlier was used to calculate variation. This was equivalent to 36 comparisons ([36 minutes/2 minutes] * 2 limbs). The mean difference in the comparisons for each variable (e.g., HT-Oxy\textsubscript{1} – HT-Oxy\textsubscript{t-2}, where “t” is time) was not statistically significant (Table 4.3).

<table>
<thead>
<tr>
<th>HT-OXY (AU)</th>
<th>HT-DEOXY (AU)</th>
<th>HT-SAT (%)</th>
<th>TEMP (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.44</td>
<td>−0.44</td>
<td>0.08</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 4.3. Summary of mean differences in OxyVu measurements for each comparison. **Abbreviation:** AU, arbitrary units

Figures 4.6-4.7 show the mean ± 95% CI for each of the OxyVu variables in individuals A and B. The variation over 36 minutes was small as indicated by the small 95% CI.

Figure 4.6. Error bar graph showing the mean ± 95% CI of HTCOM readings in the lower limb of individuals A and B. **Abbreviation:** CI, confidence interval.
The within-subject coefficient of variation defined the intra-operator reliability. The intra-operator reliability of the hyperspectral oxygenation measurements ranged from 92% to 94% (Table 4.4).

<table>
<thead>
<tr>
<th></th>
<th>HT-OXY</th>
<th>HT-DEOXY</th>
<th>HT-SAT</th>
<th>SKIN TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>0.92</td>
<td>0.94</td>
<td>0.94</td>
<td>0.990</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.89–0.95</td>
<td>0.92–0.96</td>
<td>0.92–0.96</td>
<td>0.986–0.993</td>
</tr>
</tbody>
</table>

Table 4.4. Summary of CV and 95% CI for OxyVu™ measurements. Abbreviations: CI, confidence interval; CV, coefficient of variation.
Comparing HTCOM to TCOM, skin temperature, ABI and severity of PVD

One hundred and fifty patients with PVD of the lower limbs and 20 healthy volunteers participated in this research. The volunteers were mainly medical and nursing staff members in the ward who did not have a history of PVD. Basic demographic data were gathered from patient histories and medical records (Table 4.5). Figure 4.8 shows the distribution of the participants according to Rutherford classification. More than three-quarters (115/150) of the patients with PCD had CLI with rest pain and ulcers. Study sessions typically took 45 minutes to complete. The OxyVu measurement component would not have taken more than one minute. Most of the time was spent operating the TCOM device and taking measurements for both feet.

<table>
<thead>
<tr>
<th></th>
<th>VASCULAR (N=150)</th>
<th>VOLUNTEERS (N=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range)</td>
<td>72 (35–91)</td>
<td>36 (23–65)</td>
</tr>
<tr>
<td>Male</td>
<td>101 (67%)</td>
<td>7 (35%)</td>
</tr>
<tr>
<td>Whites</td>
<td>128 (85%)</td>
<td>13 (65%)</td>
</tr>
<tr>
<td>Active smoker</td>
<td>28 (19%)</td>
<td>5 (25%)</td>
</tr>
<tr>
<td>Ex-smoker (>6 months)</td>
<td>85 (57%)</td>
<td>2 (10%)</td>
</tr>
<tr>
<td>Diabetes on medications</td>
<td>52 (35%)</td>
<td>0</td>
</tr>
<tr>
<td>Previous angioplasty</td>
<td>58 (39%)</td>
<td>0</td>
</tr>
<tr>
<td>Previous IIB</td>
<td>49 (33%)</td>
<td>0</td>
</tr>
<tr>
<td>Previous minor amputation</td>
<td>20 (13%)</td>
<td>0</td>
</tr>
<tr>
<td>Renal disease (eGFR <60)</td>
<td>22 (15%)</td>
<td>0</td>
</tr>
<tr>
<td>ESRF on dialysis</td>
<td>6 (4%)</td>
<td>0</td>
</tr>
<tr>
<td>Hypertension</td>
<td>122 (81%)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>Dyslipidaemia</td>
<td>111 (74%)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>IHD</td>
<td>71 (47%)</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>Previous CABG</td>
<td>24 (16%)</td>
<td>0</td>
</tr>
<tr>
<td>TIA/CVA</td>
<td>40 (27%)</td>
<td>0</td>
</tr>
<tr>
<td>COPD</td>
<td>14 (9%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5. Basic demographics of participants. **Abbreviations:** eGFR, estimated glomerular filtration rate; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident; ESRF, end-stage renal failure; IIB, infra-inguinal bypass; IHD, ischaemic heart disease; TIA, transient ischaemic attack.
Figure 4.8. Distribution of the study population according to severity of peripheral vascular disease.

Estimation of kurtosis and skewness for the variables
Table 4.6 describes the kurtosis and skewness of each of the continuous measurements. TcpCO₂ had a kurtosis coefficient of 8.0, suggesting it did not follow the normal distribution, which has a positive skewness of 2.3. On further interrogation of the data, there was an anomaly with one of the patients in Rutherford category 5 who had a TcpCO₂ of 120 mmHg and an ABI of 0.5 (Figure 4.9). When the data for this patient were removed, the coefficient of kurtosis readjusted to 2.2 with a positive skewness of 1.3.

Figure 4.9. TcpCO₂ in the diseased limb for all patients including the outlier.
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>SKEWNESS</th>
<th>KURTOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-1.12</td>
<td>1.14</td>
</tr>
<tr>
<td>Diseased limb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Oxy</td>
<td>0.27</td>
<td>0.19</td>
</tr>
<tr>
<td>HT-Deoxy</td>
<td>1.04</td>
<td>1.50</td>
</tr>
<tr>
<td>HT-Sat</td>
<td>-0.99</td>
<td>1.06</td>
</tr>
<tr>
<td>Contralateral limb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Oxy</td>
<td>0.24</td>
<td>-0.32</td>
</tr>
<tr>
<td>HT-Deoxy</td>
<td>0.62</td>
<td>0.84</td>
</tr>
<tr>
<td>HT-Sat</td>
<td>-0.59</td>
<td>0.19</td>
</tr>
<tr>
<td>Chest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Oxy</td>
<td>0.75</td>
<td>0.35</td>
</tr>
<tr>
<td>HT-Deoxy</td>
<td>1.40</td>
<td>2.95</td>
</tr>
<tr>
<td>HT-Sat</td>
<td>-0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseased limb</td>
<td>0.01</td>
<td>-0.73</td>
</tr>
<tr>
<td>Contralateral limb</td>
<td>-0.03</td>
<td>-0.69</td>
</tr>
<tr>
<td>Chest</td>
<td>-0.88</td>
<td>1.50</td>
</tr>
<tr>
<td>ABI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseased limb</td>
<td>0.40</td>
<td>0.11</td>
</tr>
<tr>
<td>Contralateral limb</td>
<td>0.40</td>
<td>0.60</td>
</tr>
<tr>
<td>Diseased limb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TcpO₂</td>
<td>-0.38</td>
<td>0.06</td>
</tr>
<tr>
<td>TcpCO₂</td>
<td>2.27</td>
<td>7.95</td>
</tr>
<tr>
<td>Contralateral limb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TcpO₂</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>TcpCO₂</td>
<td>-0.04</td>
<td>0.58</td>
</tr>
<tr>
<td>Chest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TcpO₂</td>
<td>-0.28</td>
<td>0.22</td>
</tr>
<tr>
<td>TcpCO₂</td>
<td>0.62</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table 4.6. Summary of skewness and kurtosis for all continuous variables.
OxyVu™ measurements in diseased limb and contralateral limb

In the 150 patients with PVD, HT-Deoxy was higher and HT-Sat was lower in the diseased limb, while there was no difference in HT-Oxy (Table 4.7). Skin temperature in the diseased limb was also lower.

<table>
<thead>
<tr>
<th></th>
<th>MEAN</th>
<th>RANGE</th>
<th>SD</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-Oxy (diseased)</td>
<td>76.4</td>
<td>11–145</td>
<td>24.4</td>
<td>0.31</td>
</tr>
<tr>
<td>HT-Oxy (contralateral)</td>
<td>77.7</td>
<td>26–123</td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td>HT-Deoxy (diseased)</td>
<td>80.9</td>
<td>40–144</td>
<td>19.8</td>
<td><0.001</td>
</tr>
<tr>
<td>HT-Deoxy (contralateral)</td>
<td>74.1</td>
<td>32–124</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>HT-Sat (diseased)</td>
<td>47.8</td>
<td>11–62</td>
<td>10.6</td>
<td>0.007</td>
</tr>
<tr>
<td>HT-Sat (contralateral)</td>
<td>50.6</td>
<td>24–66</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Temperature (diseased)</td>
<td>28.9</td>
<td>23.7–34.6</td>
<td>2.6</td>
<td>0.036</td>
</tr>
<tr>
<td>Temperature (contralateral)</td>
<td>29.4</td>
<td>23.6–35.2</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.7. Summary of OxyVu™ findings in patients with peripheral vascular disease. Abbreviation: SD, standard deviation.

<table>
<thead>
<tr>
<th></th>
<th>MEAN</th>
<th>RANGE</th>
<th>SD</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxy-BPI</td>
<td>1.00</td>
<td>0.19–2.13</td>
<td>0.26</td>
<td><0.001</td>
</tr>
<tr>
<td>Deoxy-BPI</td>
<td>1.12</td>
<td>0.63–2.88</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Sat-BPI</td>
<td>0.957</td>
<td>0.21–1.94</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Temp-BPI</td>
<td>0.985</td>
<td>0.73–1.23</td>
<td>0.081</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.8 Summary of OxyVu™ findings with regard to BPI in vascular patients. Abbreviations: BPI, bilateral perfusion index; SD, standard deviation.

In healthy individuals, the bilateral perfusion index (BPI) for HT-Oxy (Oxy-BPI) and BPI for HT-Deoxy (Deoxy-BPI) should be 1. In patients with PVD, Oxy-BPI would be expected to be less than 1, whereas Deoxy-BPI would be more than 1. In our PVD cohort, Oxy-BPI was 1, but Deoxy-BPI was 1.12. BPI for HT-Sat (Sat-BPI) was 0.96 (Table 4.8). The mean Oxy-BPI and Deoxy-BPI values were significantly different. Meanwhile, no difference was found in OxyVu measurements between the left and right limbs in the volunteer group (Tables 4.9 and 4.10).
These findings suggest that the OxyVu is able to detect a difference in tissue perfusion between a diseased limb and the contralateral limb.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>MEAN</th>
<th>RANGE</th>
<th>SD</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-Oxy (left)</td>
<td>100</td>
<td>49–160</td>
<td>31.3</td>
<td>0.19</td>
</tr>
<tr>
<td>HT-Oxy (right)</td>
<td>97.1</td>
<td>56–149</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>HT-Deoxy (left)</td>
<td>71.2</td>
<td>49–101</td>
<td>13.2</td>
<td>0.43</td>
</tr>
<tr>
<td>HT-Deoxy (right)</td>
<td>70.4</td>
<td>46–100</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>HT-Sat (left)</td>
<td>56.9</td>
<td>41–68</td>
<td>8.4</td>
<td>0.28</td>
</tr>
<tr>
<td>HT-Sat (right)</td>
<td>56.7</td>
<td>43–69</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Temperature (left)</td>
<td>30.4</td>
<td>25.1–35.0</td>
<td>2.3</td>
<td>0.32</td>
</tr>
<tr>
<td>Temperature (right)</td>
<td>30.5</td>
<td>24.4–35.35</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. 9. Summary of OxyVu findings in volunteers. Abbreviation: SD, standard deviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>MEAN</th>
<th>RANGE</th>
<th>SD</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxy-BPI</td>
<td>1.02</td>
<td>0.87–1.24</td>
<td>0.11</td>
<td>0.25</td>
</tr>
<tr>
<td>Deoxy-BPI</td>
<td>1.02</td>
<td>0.76–1.19</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Sat-BPI</td>
<td>1.00</td>
<td>0.87–1.26</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Temp-BPI</td>
<td>1.01</td>
<td>0.97–1.09</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. 10. Summary of OxyVu BPI findings in volunteers. Abbreviations: BPI, bilateral perfusion index; SD, standard deviation
Comparing OxyVu™ measurements of lower limb to the chest

OxyVu measurements for the chest were carried out in 71 (47%) of the 150 patients with PVD and were used as a reference point for calculation of RPI. No chest readings were taken from volunteers. Seventy-six percent of study participants with chest recordings had CLI (54/71; Figure 4.10); the 150 vascular patients contained a similar proportion of patients with CLI.

Table 4.11. Hyperspectral readings at the chest. Abbreviation: SD, standard deviation

<table>
<thead>
<tr>
<th>CHEST READINGS</th>
<th>MEAN</th>
<th>RANGE</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-Oxy</td>
<td>47.1</td>
<td>16–114</td>
<td>21.4</td>
</tr>
<tr>
<td>HT-Deoxy</td>
<td>48.2</td>
<td>27–106</td>
<td>14.9</td>
</tr>
<tr>
<td>HT-Sat</td>
<td>47.8</td>
<td>14–69</td>
<td>10.0</td>
</tr>
<tr>
<td>Skin temperature</td>
<td>33.7</td>
<td>29.8–35.9</td>
<td>1.15</td>
</tr>
</tbody>
</table>
Although the mean Oxy-RPI was 2.04, suggesting that the amount of oxyhaemoglobin in the diseased limb was approximately twice that in the chest due to the complex plantar capillary plexus, this was offset by a higher level of deoxyhaemoglobin in the diseased limb (Deoxy-RPI 1.84), giving a mean Sat-BPI of 1.05 (Table 4.12). Nevertheless, BPI correlated with RPI, in particular for HT-Oxy, HT-Sat, and skin temperature (Table 4.13).

<table>
<thead>
<tr>
<th>RPI</th>
<th>MEAN</th>
<th>RANGE</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxy RPI</td>
<td>2.04</td>
<td>0.19–6.7</td>
<td>1.19</td>
</tr>
<tr>
<td>Deoxy RPI</td>
<td>1.84</td>
<td>0.72–3.3</td>
<td>0.55</td>
</tr>
<tr>
<td>Sat RPI</td>
<td>1.05</td>
<td>0.21–1.9</td>
<td>0.31</td>
</tr>
<tr>
<td>Temp RPI</td>
<td>0.85</td>
<td>0.69–1.03</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Table 4.12. Summary of OxyVu™ findings with regard to RPI in vascular patients. **Abbreviations**: RPI, regional perfusion index; SD, standard deviation

<table>
<thead>
<tr>
<th>OXY BPI</th>
<th>DEOXY BPI</th>
<th>SAT BPI</th>
<th>TEMP BPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxy RPI</td>
<td>(R) 0.32</td>
<td>(p) 0.007</td>
<td></td>
</tr>
<tr>
<td>Deoxy RPI</td>
<td>(R) 0.22</td>
<td>(p) 0.07</td>
<td></td>
</tr>
<tr>
<td>Sat RPI</td>
<td>(R) 0.28</td>
<td>(p) 0.02</td>
<td></td>
</tr>
<tr>
<td>Temp RPI</td>
<td>(R) 0.32</td>
<td>(p) 0.007</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.13. Correlation between RPI and BPI describing correlation coefficients and p-values. **Abbreviations**: BPI, bilateral perfusion index; RPI, regional perfusion index
Correlation between OxyVu™ readings and severity of PVD

When the study population was subdivided according to Rutherford classification, it was expected that HT-Oxy, HT-Sat, and skin temperature would show a downward trend in the diseased limb and that HT-Deoxy should show an opposite trend. This pattern should also be true for the corresponding BPI measurements.

These trends are not apparent in Figures 4.11 and 4.12, possibly because of the small number of patients with Rutherford 1, 2, and 3 disease and the fact that the Rutherford scoring system is not entirely ranked. The degree of ischaemia in patients with a Rutherford classification of 5 or 6 and tissue loss is not necessarily worse than that in patients with ischaemic pain at rest but no ulcers (Rutherford 4). In fact, HT-Oxy and HT-Sat, and their corresponding BPIs were lowest in patients with a Rutherford classification of 4, while HT-Deoxy was highest.

When the study population was re-categorised using the SSS into “volunteers”, “claudicants” and those with CLI, the trends for OxyVu readings and BPI were clearer (Figures 4.13 and 4.14).

Figure 4.11. OxyVu™ measurements in the diseased limb according to Rutherford classification.
Figure 4.12. Bilateral perfusion index in the diseased limb according to Rutherford classification.

Figure 4.13. OxyVu™ readings in the diseased limb according to severity of peripheral vascular disease.
Figure 4.14. Bilateral perfusion index in diseased limb varied according to severity of peripheral vascular disease.

From this point onwards, the SSS was used as the measure of PVD severity. Hyperspectral readings correlated with SSS, in particular HT-Oxy and HT-Sat (Table 4.14). Absolute HTCOM values correlated better with PVD than with BPI, perhaps due to the presence of PVD in the contralateral limb or compounding of random errors from BPI calculations.

<table>
<thead>
<tr>
<th>DISEASED LIMB</th>
<th>HT-OXY</th>
<th>HT-DEOXY</th>
<th>HT-SAT</th>
<th>TEMP</th>
<th>OXY BPI</th>
<th>DEOXY BPI</th>
<th>SAT BPI</th>
<th>TEMP BPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSS (R)</td>
<td>–0.29</td>
<td>0.08</td>
<td>–0.29</td>
<td>–0.11</td>
<td>–0.05</td>
<td>0.16</td>
<td>–0.15</td>
<td>–0.09</td>
</tr>
<tr>
<td>SSS (p)</td>
<td>0.0001</td>
<td>0.29</td>
<td>0.0001</td>
<td>0.17</td>
<td>0.56</td>
<td>0.04</td>
<td>0.046</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 4.14. Spearman’s rank correlation coefficients and p-values comparing OxyVu™ readings for the diseased limb with severity of peripheral vascular disease. **Abbreviations:** BPI, bilateral perfusion index; SSS, Simplified Severity Score.

HTCOM was tested in the contralateral limb. Table 4.15 shows that HT-Oxy and HT-Sat were influenced by the severity of PVD, indicating that OxyVu was able to detect the presence of co-existing PVD in the contralateral limb. It was also able to distinguish the “diseased” limb from the “contralateral” limb on the basis that the degree of reduction in HT-Sat was greater in the former than the latter as the severity of PVD increased. Due to the small sample size available for analysis of RPI, the relationship between RPI and severity of PVD was not investigated.
Table 4.15. Spearman’s rank correlation coefficients and p-values comparing OxyVu™ readings for the contralateral limb with severity of peripheral vascular disease. Abbreviation: SSS, Simplified Severity Score

Correlation between hyperspectral measurements and skin temperature

The mean skin temperature of the diseased limb was lower than that of the contralateral limb (28.9°C versus 29.4°C; p=0.036, Table 4.7). However, neither absolute skin temperature nor Temp-BPI was sensitive to the severity of PVD (Table 4.14). Despite this, skin temperature and Temp-BPI were lower in the diseased limb in patients with PVD than in the left limb of the volunteers, which was assumed to be the “diseased” limb (p=0.013 for skin temperature, p=0.007 for Temp-BPI; Tables 4.7–4.10). Skin temperature did not differ between the two feet in volunteers (p=0.32).

Skin temperature and Temp-BPI correlated with HTCOM and their BPIs (Table 4.16). Absolute values for skin temperature had the strongest correlation with HT-Sat (R=0.56).

Table 4.16. Summary of Pearson’s correlation coefficients and p-values comparing skin temperature with OxyVu™ measurements in the diseased limb. Abbreviation: BPI, bilateral perfusion index.
Correlation between hyperspectral measurements and Doppler ABI

The ABIs in the diseased limb and the contralateral limb are described for all 170 study participants in Table 4.17. Figure 4.15 demonstrates that a small proportion of patients had a falsely elevated ABI of >1.3 due to calcified arteries. Using the SSS, there was a downward trend of ABI in the diseased limb as the severity of PVD increased, especially when patients with falsely elevated ABI were excluded ($R = -0.37$, $p=0.0001$, Table 4.18). Similarly, when subjects with incompressible vessels were excluded, the ABI in the contralateral limb also trended with the SSS, indicating co-existing PVD ($R = -0.19$, $p=0.02$).

<table>
<thead>
<tr>
<th></th>
<th>DISEASED LIMB</th>
<th>CONTRALATERAL LIMB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volunteers</td>
<td>Claudicants</td>
</tr>
<tr>
<td>Mean</td>
<td>1.03</td>
<td>0.74</td>
</tr>
<tr>
<td>Range</td>
<td>0.9–1.2</td>
<td>0.00–1.6</td>
</tr>
<tr>
<td>SD</td>
<td>0.10</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Table 4.17. Descriptive summary of ABI in the diseased and contralateral limb according to severity of vascular disease using the Simplified Severity Score. Abbreviations: CLI, critical limb ischaemia; SD, standard deviation.

Figure 4.15. Scatter plot of the ankle-brachial pressure index in the diseased limb and contralateral limb according to the Simplified Severity Score. Abbreviation: CLI, critical limb ischaemia.
ABI correlated with HTCOM in the diseased limb, in particular for HT-Sat and its indices. This relationship was even stronger when the falsely elevated ABI values (i.e. ABI >1.3) were excluded (Table 4.19). ABI was most strongly associated with Sat-RPI (R=0.45), perhaps because a reference point on the upper body was chosen for both variables without association with possible PVD in the contralateral limb.

Table 4.18. Summary of Spearman’s rank correlation coefficients and p-values when comparing ABI with severity of peripheral vascular disease. **Abbreviations**: ABI, ankle-brachial pressure index; SSS, Simplified Severity Score

<table>
<thead>
<tr>
<th></th>
<th>All participants</th>
<th>ABI <1.3</th>
<th>All participants</th>
<th>ABI <1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI (DISEASED LIMB)</td>
<td>n=170</td>
<td>n=158</td>
<td>n=170</td>
<td>n=154</td>
</tr>
<tr>
<td>ABI (CONTRALATERAL LIMB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSS (R)</td>
<td>-0.29</td>
<td>-0.37</td>
<td>-0.11</td>
<td>-0.19</td>
</tr>
<tr>
<td>SSS (p)</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.17</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Correlation between hyperspectral and TCOM measurements

TcpO2 and TcpCO2 were measured for both limbs in all 170 study participants. The patient with abnormally high TcpCO2 was removed from the statistical analysis in this section. The TcpCO2 variable is therefore assumed to follow a “normal” distribution.

Chest TcpO2 and TcpCO2 were recorded in 68 and 30 patients with PVD, respectively. No chest measurements were collected from the volunteers. Due to the small sample size, there was no analysis of RPI for TCOM.
Table 4.20 lists the means ± standard deviation for TcpO₂ and TcpCO₂ in the diseased limb and the respective BPI values. These measurements were also categorised according to the severity of PVD. As with HTCOM, it was expected that TcpO₂ and its BPI would decrease as the severity of PVD increased and that TcpCO₂ and its BPI would show the opposite trend. This pattern was more apparent for TcpCO₂ and its BPI. In fact, TcpCO₂ linked more strongly with the severity of PVD than TcpO₂ (Table 4.21).

<table>
<thead>
<tr>
<th>DISEASED LIMB</th>
<th>TCPO₂</th>
<th>TCPCO₂</th>
<th>TCPO₂ BPI</th>
<th>TCPCO₂ BPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volunteers</td>
<td>Mean</td>
<td>79.3</td>
<td>26.4</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>13.9</td>
<td>12.8</td>
<td>0.15</td>
</tr>
<tr>
<td>Claudicants</td>
<td>Mean</td>
<td>84.2</td>
<td>28.3</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>17.9</td>
<td>7.9</td>
<td>0.14</td>
</tr>
<tr>
<td>CLI</td>
<td>Mean</td>
<td>75.8</td>
<td>36.0</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>22.8</td>
<td>14.5</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Table 4.20. TCOM readings of the diseased limb according to severity of peripheral vascular disease using the Simplified Severity Score. Abbreviations: CLI, critical limb ischaemia; SD, standard deviation; BPI, bilateral perfusion index; TCOM, transcutaneous oxygenation measurement.

<table>
<thead>
<tr>
<th>DISEASED LIMB</th>
<th>TCPO₂</th>
<th>TCPCO₂</th>
<th>TCPO₂ BPI</th>
<th>TCPCO₂ BPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSS</td>
<td>(R)</td>
<td>-0.11</td>
<td>0.31</td>
<td>-0.14</td>
</tr>
<tr>
<td>SSS</td>
<td>(p)</td>
<td>0.14</td>
<td>0.0001</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Table 4.21. Spearman’s rank correlation coefficients and p-values when comparing transcutaneous oxygenation measurement readings for the diseased limb with the severity of peripheral vascular disease using the SSS. Abbreviations: BPI, bilateral perfusion index; SSS, Simplified Severity Score

TCOM values for the reference points, (i.e., the contralateral limb and chest) are described in Table 4.22. The TcpCO₂ of the contralateral limb correlated with the SSS, indicating co-existing disease in the contralateral limb and that TcpCO₂ may be more sensitive than TcpO₂ in detecting PVD.
REFERENCE POINTS	CONTRALATERAL LIMB	CHEST
Volunteers | Mean | 79.0 | 24.8 | SD | 13.7 | 6.9 | Mean | 83.5 | 26.4 | 66.6 | 41.0 | SD | 23.9 | 7.9 | 13.2 | 10.5 | Mean | 79.2 | 29.2 | 60.9 | 39.5 | SD | 21.2 | 6.8 | 11.0 | 7.6 | (R) | -0.03 | 0.18 | (p) | 0.74 | 0.02

Table 4.22. Transcutaneous oxygenation measurements for reference points according to severity of peripheral vascular disease using the SSS. **Abbreviations:** CLI, critical limb ischaemia; SSS, Simplified Severity Score; SD, standard deviation.

<table>
<thead>
<tr>
<th>DISEASED LIMB</th>
<th>HT-OXY</th>
<th>HT-DEOXY</th>
<th>HT-SAT</th>
<th>OXY-BPI</th>
<th>DEOXY-BPI</th>
<th>SAT-BPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcpO₂</td>
<td>(R)</td>
<td>0.02</td>
<td>0.19</td>
<td>0.77</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>TcpCO₂</td>
<td>(R)</td>
<td>0.28</td>
<td>-0.26</td>
<td>0.0001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>TcpO₂-BPI</td>
<td>(R)</td>
<td>-0.04</td>
<td>-0.01</td>
<td>0.60</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>TcpCO₂-BPI</td>
<td>(R)</td>
<td>0.33</td>
<td>-0.20</td>
<td>0.0001</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.23. Pearson’s correlation coefficients and p-values when comparing transcutaneous oxygenation measurements in the diseased limb with OxyVu™ readings. Full details of correlation coefficients can be found in Appendix A.6.1. **Abbreviation:** BPI, bilateral perfusion index.

Table 4.23 shows the correlation coefficients (R) and p-values for the comparison of TCOM and HTCOM. TcpCO₂ and its BPI correlated with HT-Deoxy and HT-Sat. No relationships
were found between TcpO₂ and HT-Oxy or their respective BPIs. The TCOM of the contralateral limb was also compared with the hyperspectral readings (Appendix A6.2). Relationships similar to those in the diseased limb would be expected. Only TcpCO₂ and HT-Deoxy in the contralateral limb showed a correlation ($R=0.19$, $p=0.02$).

Correlation between hyperspectral oxygenation and demographics

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>LIMB</th>
<th>HTCOM</th>
<th>P-VALUE</th>
<th>NON-STANDARDISED COEFFICIENTS (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin colour</td>
<td>Diseased</td>
<td>HT-Oxy</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>(Coloured, 1)</td>
<td></td>
<td>HT-Deoxy</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>(White, 0)</td>
<td></td>
<td>HT-Sat</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contralateral</td>
<td>HT-Oxy</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Deoxy</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Sat</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Diseased</td>
<td>HT-Oxy</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>(Male, 1)</td>
<td></td>
<td>HT-Deoxy</td>
<td>0.003</td>
<td>-9.1</td>
</tr>
<tr>
<td>(Female, 0)</td>
<td></td>
<td>HT-Sat</td>
<td>0.03</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>Contralateral</td>
<td>HT-Oxy</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Deoxy</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Sat</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Diseased</td>
<td>HT-Oxy</td>
<td>0.004</td>
<td>-0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Deoxy</td>
<td>0.02</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Sat</td>
<td>0.002</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>Contralateral</td>
<td>HT-Oxy</td>
<td>0.046</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Deoxy</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Sat</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Summary of p-values from linear regression investigating how race, sex, and age affected OxyVu™ findings.
Hyperspectral technology measures the intensity of colour chromophores. One hundred and forty-one (83%) of the 170 participants were Whites and 29 had “coloured skin”. With adjustment for the severity of PVD, multi-variate analysis using linear regression (analysis of variance) did not show “colour of the skin” to be a factor in HT-Oxy, HT-Deoxy, or HT-Sat of the diseased and contralateral limbs (Table 4.24).

Sex, age, history of diabetes, renal disease, smoking history, and number of pack-years were also tested. Age and sex were confounding factors for HTCOM. The non-standardised coefficient, B, provided a “gradient”, i.e., the degree of variation of HTCOM with, for example, increasing age. For instance, age was a confounding factor in HT-Sat of the diseased limb, with a B= –0.18. This means that HT-Sat decreased by a factor of 0.18 with each increasing year of age despite adjustment for severity of PVD. The HT-Sat of the diseased limb appeared to be 3.8 times higher in men than in women. The p-values for the other factors are presented in Appendix A.6.3.

Correlation between HT-Sat and TcpO₂

![Oxygen-haemoglobin dissociation curve](https://en.wikipedia.org/wiki/Oxygen%E2%80%93hemoglobin_dissociation_curve)

Figure 4.16. Oxygen-haemoglobin dissociation curve. (Retrieved from https://en.wikipedia.org/wiki/Oxygen%E2%80%93hemoglobin_dissociation_curve)

The oxygen-haemoglobin dissociation curve is a well-known physiological concept that compares oxyhaemoglobin saturation with partial pressure of oxygen in the blood (Figure 4.16). It is an important tool for understanding oxygen transport and delivery, specifically the affinity of oxygen for haemoglobin.
HT-Sat is the saturation of oxyhaemoglobin (%) and TcpO₂ reflects PaO₂. Figure 4.17 compares HT-Sat and TcpO₂ for the diseased limb and the contralateral limb (n=340). Using the regression model for curve estimation, several shapes of curves were tested. The sigmoid-shaped curve linked most strongly to the data when compared with linear, logarithmic, logistic, exponential and quadratic models. Although the R square coefficient was small (R²= 0.036), the fitness of an S-shaped curve did not happen by chance (p=0.001). The R² statistic is a measure of the strength of association between observed and model-predicted values for the dependent variable.

![An S-curve relationship between HT-Sat and TcpO2](image)

Figure 4.17. Scatter plot with an S-curve showing the association between HT-Sat and TcpO₂.

The purpose of this exercise was to demonstrate that OxyVu could perform and produce variables in the way it was designed for. HTCOM was also used to detect the presence of anaemia. The results are shown in Appendix A.6.4.
5 Results: WOIOW study

Patient recruitment and demographics

![Flow diagram showing patient recruitment.](image)

Patient recruitment commenced in January 2009 and ended in July 2011. One hundred and five consecutive patients underwent infrainguinal bypass (IIB) requiring a knee incision (Figure 5.1). Eighty-five of these patients were invited to participate in this study. Those who failed to meet the inclusion criteria or where the decision to perform bypass surgery was only made intraoperatively were not invited to participate. The most common reason for exclusion was a history of methicillin-resistant *Staphylococcus aureus*. Eighty patients were consented for the study; nine patients were subsequently excluded in the course of the study (three did not have the proposed IIB, three had bypass graft revisions before day 5, and two violated the protocol by having higher FiO₂ than prescribed by the study). One patient allocated to the oxygen group had a cardiac arrest and died on day 1. There was no complications as a direct result of the study. Seventy-one patients completed the study on day 5, when the PTFE implant was removed to evaluate the primary outcome. Recruitment was slower than anticipated.
<table>
<thead>
<tr>
<th>GROUP</th>
<th>CONTROL</th>
<th>OXYGEN</th>
<th>ILOMEDIN</th>
<th>TEMPERATURE</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>17</td>
<td>0.99</td>
</tr>
<tr>
<td>Male</td>
<td>11</td>
<td>14</td>
<td>10</td>
<td>12</td>
<td>0.74</td>
</tr>
<tr>
<td>Mean age, years (range)</td>
<td>71 (47–86)</td>
<td>69 (35–83)</td>
<td>67 (50–87)</td>
<td>74 (58–85)</td>
<td>0.19</td>
</tr>
<tr>
<td>Whites</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>0.32</td>
</tr>
<tr>
<td>BMI (SD)</td>
<td>26 (6)</td>
<td>27 (4)</td>
<td>27 (4)</td>
<td>27 (4)</td>
<td>0.96</td>
</tr>
<tr>
<td>Acute presentation</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>0.35</td>
</tr>
<tr>
<td>Rutherford 2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.77</td>
</tr>
<tr>
<td>Rutherford 3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rutherford 4</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Rutherford 5</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Rutherford 6</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Active smoker</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>0.89</td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Pack-years (SD)</td>
<td>36 (37)</td>
<td>30 (29)</td>
<td>45 (37)</td>
<td>44 (38)</td>
<td>0.62</td>
</tr>
<tr>
<td>Diabetes (DM)</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>0.59</td>
</tr>
<tr>
<td>DM on insulin</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.74</td>
</tr>
<tr>
<td>Previous plasty</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>9</td>
<td>0.62</td>
</tr>
<tr>
<td>Previous BPG</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>0.83</td>
</tr>
<tr>
<td>Previous BPG (Ipsilateral)</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>0.69</td>
</tr>
<tr>
<td>Prev AKA/BKA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>Previous minor amputation</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0.29</td>
</tr>
<tr>
<td>AAA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.29</td>
</tr>
<tr>
<td>Renal impairment</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0.58</td>
</tr>
<tr>
<td>ESRF</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>13</td>
<td>18</td>
<td>13</td>
<td>15</td>
<td>0.20</td>
</tr>
<tr>
<td>Dyslipidaemia</td>
<td>13</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Page 131
Table 5.1. Basic demographics of study participants. **Abbreviations**: AAA, abdominal aortic aneurysm; AKA, above-knee amputation; BKA, below-knee amputation; CABG, coronary artery bypass grafting; CEA, carotid endarterectomy; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident; ESRF, end-stage renal failure; IIB, infrainguinal bypass; IHD, ischaemic heart disease; TIA, transient ischaemic attack.

<table>
<thead>
<tr>
<th>IHD</th>
<th>8</th>
<th>8</th>
<th>6</th>
<th>12</th>
<th>0.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous CABG</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.83</td>
</tr>
<tr>
<td>TIA/CVA</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.32</td>
</tr>
<tr>
<td>Previous CEA</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>COPD</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.37</td>
</tr>
<tr>
<td>Preoperative warfarin</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0.11</td>
</tr>
<tr>
<td>Preoperative aspirin</td>
<td>14</td>
<td>18</td>
<td>13</td>
<td>14</td>
<td>0.67</td>
</tr>
<tr>
<td>Preoperative statins</td>
<td>14</td>
<td>16</td>
<td>13</td>
<td>12</td>
<td>0.91</td>
</tr>
<tr>
<td>Postoperative heparin</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0.28</td>
</tr>
<tr>
<td>On antibiotics</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>0.41</td>
</tr>
</tbody>
</table>

There were no differences in patient demographics between the four groups (Table 5.1). Sixty-two of the 71 participants (87%) were Whites, eight were Maori, and one was Fijian Indian. Fifty-five (77%) patients had rest pain or ulcers (Rutherford 4, 5, or 6). Twenty-four patients (34%) had diabetes. Thirty-five patients had undergone previous endovascular interventions in the form of angioplasty and/or stenting, and 28 patients had previous lower limb bypasses, 16 of which were for the diseased limb. The risk factors are defined in Appendix A.1.1.

Operative findings are shown in Table 5.2. There were no differences between the groups. The most common site of proximal anastomosis was the common femoral artery (79%), while the below-knee popliteal artery was the most common outflow vessel (65%). A minority of patients had revisions to the previous bypass graft with interposition grafts where the anastomoses were at the previous saphenous vein graft. The great saphenous vein was the preferred bypass conduit (48%). Twenty-eight (39%) patients received PTFE grafts. In these settings, a Miller cuff with a vein was routinely formed at the distal end. The proportions of patients receiving therapeutic heparin and antibiotics in the recovery phase were similar.
Table 5.2. Operative findings in the participants. **Abbreviations:** AK, above knee; AT, anterior tibial artery; BK, below knee; BPG, bypass graft; GA, general anaesthetics; OS, operative score; PS, physiological score.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>CONTROL PS (SD)</th>
<th>OXYGEN OS (SD)</th>
<th>ILOMEDIN TEMP PS (SD)</th>
<th>TEMP PS (SD)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-POSSUM</td>
<td>22 (6)</td>
<td>22 (8)</td>
<td>22 (5)</td>
<td>24 (7)</td>
<td>0.83</td>
</tr>
<tr>
<td>Run-offs (SD)</td>
<td>11 (2)</td>
<td>11 (2)</td>
<td>10 (1)</td>
<td>11 (2)</td>
<td>0.76</td>
</tr>
<tr>
<td>Duration of surgery</td>
<td>1.6 (0.7)</td>
<td>2.1 (0.9)</td>
<td>1.9 (0.8)</td>
<td>1.9 (0.7)</td>
<td>0.22</td>
</tr>
<tr>
<td>Min (SD)</td>
<td>235 (62)</td>
<td>214 (56)</td>
<td>224 (79)</td>
<td>243 (89)</td>
<td>0.64</td>
</tr>
<tr>
<td>GA</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>0.56</td>
</tr>
<tr>
<td>Proximal</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.40</td>
</tr>
<tr>
<td>External Iliac</td>
<td>16</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>anastomosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFA</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SFA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PFA</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GSV BPG</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Distal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK pop</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0.52</td>
</tr>
<tr>
<td>BK pop</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>anastomosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TPT</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Peroneal</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GSV BPG</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Conduit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSV</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>0.31</td>
</tr>
<tr>
<td>Cephalic</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Basilic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Composite</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PTFE + vein cuff</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Heparin</td>
<td>After surgery</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>After surgery</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.78</td>
</tr>
</tbody>
</table>
Systemic effects of perioperative adjuncts
Arterial blood gases were routinely sampled intraoperatively. The arterial partial pressure of oxygen (PaO₂) was significantly higher in the oxygen group than in the other three groups (p=0.0001; Table 5.3).

<table>
<thead>
<tr>
<th>GROUP</th>
<th>CONTROL</th>
<th>OXYGEN</th>
<th>ILOMEDIN</th>
<th>TEMP</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial pO₂ mmHg (SD)</td>
<td>115 (32)</td>
<td>249 (64)</td>
<td>120 (29)</td>
<td>103 (22)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mean core temperature °C (SD)</td>
<td>At incision</td>
<td>35.9 (0.4)</td>
<td>36.0 (0.5)</td>
<td>36.2 (0.5)</td>
<td>36.2 (0.4)</td>
</tr>
<tr>
<td>After surgery</td>
<td>36.7 (0.7)</td>
<td>36.6 (0.5)</td>
<td>36.6 (0.4)</td>
<td>37.1 (0.9)</td>
<td>0.09</td>
</tr>
<tr>
<td>2 hours after surgery</td>
<td>36.4 (0.6)</td>
<td>36.4 (0.7)</td>
<td>36.6 (0.4)</td>
<td>36.6 (0.5)</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Table 5.3. Influence of supplemental oxygen and active warming on arterial oxygenation and core temperature.

![Figure 5.2](image_url)
Figure 5.2. Change in core temperature over time with active warming in the preoperative period. **Abbreviation:** SD, standard deviation.
In the temperature group, active warming with a Bair Hugger® was commenced 2 hours prior to “knife-to-skin”. This could only be an estimate, taking into account the duration of induction of anaesthesia and preparation of the operating theatre and staff. Mean core temperature was recorded at 30-minute intervals during the preoperative phase. All patients had a minimum of 2 hours of preoperative warming that did not exceed 150 minutes. Five patients had to go to the bathroom or for a short break from warming.

Core temperature increased with active warming in the first 90 minutes. This decreased by the time of “knife-to-skin” despite receiving active warming throughout the transit from the ward to the preoperative bay and theatre (Figure 5.2). The gradient of change in core temperature in the first 90 minutes for each patient in the “temperature” group was calculated using logistic regression. All 17 patients had a positive gradient, with a mean increase of 0.4°C per hour and a standard deviation of 0.24 (range 0.06°C–1.2°C). The drop in core temperature between 90 and 120 minutes was perhaps due to an interruption from transferring from a warm bed to a cooler operating table, a change in ambient temperature from the ward to the operating theatre, or the side effects of the anaesthetic agents used. The application of a Bair Hugger® 2 hours prior to surgery had a significant effect on core temperature (36.1°C at baseline 2 hours previously, 36.2°C at “knife-to-skin”; \(p \leq 0.0001 \)).

Pre and post warming did not have an effect on core temperature at the time of skin incision or after surgery, although the patients in the temperature group appeared to have a higher core temperature immediately following surgery \((p=0.09) \).

Accumulation of hydroxyproline

The primary outcome was accumulation of hydroxyproline (OHP) on day 5. There were no statistically significant differences between the four groups when each treatment arm was compared with the control group (Student’s t-test; Table 5.4). P-values are shown in Appendix A.7.1. There appeared to be more collagen deposition in the control group than in the three treatment arms.

Accumulation of OHP did not correlate with intraoperative \(\text{PaO}_2 \) (Pearson’s correlation; \(p=0.84 \)), core temperature at the time of skin incision \((p=0.19) \), or core temperature at 2 hours postoperatively \((p=0.90) \).
Balance between growth factors and cytokines

In congruence with the primary outcome, there was no difference in the biochemical marker levels detected in wound fluid from the knee between the treatment arms and the control group on day 5 (Student’s t-test; Table 5.4 and Appendix A.7.1). The only growth factor that correlated with OHP was FGF-2 (Pearson’s $r=0.38$, $p=0.001$). Despite employing different methods of analysis, TGF-β (enzyme-linked immunosorbent assay) correlated with FGF-2 (Milliplex®) with a Pearson’s correlation coefficient of 0.49 ($p<0.0001$). The ratios of TGF-β to TNF-α and FGF-2 to TNF-α were not different between the groups (p-values not shown).

Analyses of mRNA

Despite using validated methods to purify the mRNA in a supervised environment, the quality of the tissue samples was suboptimal. Most samples yielded undetectable levels, and there were insufficient samples remaining to repeat the purification process. Nanodrop™ is an RNA quality control system that assesses the purity of RNA in a preparation. Using spectrophotometry, the ratio of absorbance at 260 nm and 280 nm of pure RNA (A260/280) should be >2.1. Most protocols would accept values of 1.8–2.0. The average level of proteins extracted from the 71 samples was 266 (51–654) ng/µL; however, that of A260/280 was 1.43 (1.19–1.69) ng/µL, implying significant impurity.
Assessments of tissue oxygenation

Postoperative recordings of ABI, TCOM, and OxyVu were compared with recordings made prior to surgery.

Tissue oxygenation at the surgical wound

![Graph showing changes in HT-Sat at the surgical wound over time.](image)

Figure 5.3. Changes in HT-Sat at the surgical wound over time. **Abbreviation:** SD, standard deviation.

Oxygenation at the surgical wound site was measured by OxyVu to determine if production of OHP was related to peri-wound oxygenation. In all patients, the HT-Sat of the wound at day 5 was compared with the baseline HT-Sat prior to surgery to provide a ratio. The mean of this ratio was 1.51, implying that the saturation of oxyhaemoglobin increased by 51% on day 5 after surgery. In fact, the ratio for HT-Sat was 1.67 on day 1, 1.51 on day 5, and 1.23 on day 30. Similarly, the ratio for HT-Sum was 1.52 on day 3, 1.47 on day 5, and 1.39 at the end of the study. Changes in HT-Sat and HT-Sum amongst the four groups were plotted against time (Figures 5.3 and 5.4).
Tissue oxygenation at the foot showed similar changes to that at the wound site following surgery. When all patients were included, HT-Sat increased by 4.8% by day 5. The BPI for HT-Sum at the foot increased by 20% on day 3 when compared with before surgery and decreased to 11% on day 5. At day 30, the increase in haemoglobin at the foot was 7% compared with baseline. BPI for HT-Sat showed a similar pattern, with a 25% increase on day 3, but this decreased to 20% on day 5 and 11% on day 30. Figures 5.5 and 5.6 show the changes in BPI for HT-Sum and HT-Sat over time in the four groups.

On average, the ABI of the diseased foot increased by 94% on day 5, and continued to increase slowly by another 35% (to 129%) by day 30. In contrast, minimal variation was observed in the ABI of the contralateral limb, justifying the use of BPI to demonstrate changes in perfusion over time (Figure 5.10). TcpO₂ in the diseased foot showed a similar pattern, where the BPI for TcpO₂ increased by 7.1% on day 5 and continued to be steady at 7.3% on day 30. Conversely, TcpCO₂ decreased postoperatively by 3% at day 5, 7.7% at day 14 and 9.1% at day 30.

Tissue oxygenation at the foot

Figure 5.4. Changes in HT-Sum at the wound over time. **Abbreviation:** SD, standard deviation.

![Figure 5.4](image-url)
Figure 5.5. Changes in HT-Sum BPI in the diseased foot over time. **Abbreviations**: BPI, bilateral perfusion index; SD, standard deviation.
Figure 5.6. Changes in HT-Sat BPI in the diseased foot over time. **Abbreviations:** BPI, bilateral perfusion index; SD, standard deviation.
Figure 5.7. Changes in ABI for the diseased limb over time. **Abbreviations:** ABI, ankle-brachial index; SD, standard deviation.
Figure 5.8. Changes in TcpO2 BPI for the diseased foot over time. Abbreviations: BPI, bilateral perfusion index; SD, standard deviation.

Figure 5.9. Changes in TcpCO2 BPI for the diseased foot over time. Abbreviations: BPI, bilateral perfusion index; SD, standard deviation.
Figure 5.10. Changes in ABI in the contralateral limb over time. **Abbreviations**: ABI, ankle-brachial index; SD, standard deviation.

Tissue oxygenation at the foot

When changes in skin perfusion at the wound site and foot indicated by TCOM and OxyVu readings (absolute values and BPI) in each treatment group were compared with those in the control group, there were several statistically significant differences (Student’s *t*-test; Figures 5.3–5.9). Descriptive statistics and p-values for all variables are not described here. Table 5.5 details differences that are statistically significant at *p*<0.05. Of note, the p-values were not corrected for multiple comparisons. Care should be taken when interpreting these p-values, given that this study failed to meet the primary outcome measure. Peripheral blood flow to the foot on day 5 appeared to be increased following a course of Ilomedin. Oxygenation at the foot appeared to be better in the control group than in the oxygen and temperature groups. There was also a significant decrease in HT-Sat in the temperature group for up to 14 days.

Accumulation of OHP was not influenced by transcutaneous oxygenation at the surgical incision site (Pearson’s correlation; p-values not shown).
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>GROUP</th>
<th>DAY</th>
<th>TREATMENT ARM (%)</th>
<th>CONTROL (%)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-Deoxy</td>
<td>Oxygen</td>
<td>5</td>
<td>0</td>
<td>-18.1</td>
<td>0.037</td>
</tr>
<tr>
<td>HT-Sum</td>
<td>Ilomedin</td>
<td>5</td>
<td>0</td>
<td>-14.6</td>
<td>0.045</td>
</tr>
<tr>
<td>HT-Deoxy</td>
<td>Temperature</td>
<td>5</td>
<td>-2.2</td>
<td>-12.2</td>
<td>0.039</td>
</tr>
<tr>
<td>HT-Sat</td>
<td>Temperature</td>
<td>1</td>
<td>-1.4</td>
<td>10.0</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-1.9</td>
<td>8.3</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-7.7</td>
<td>5.3</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>-12.8</td>
<td>2.2</td>
<td>0.007</td>
</tr>
<tr>
<td>HT-Sat BPI</td>
<td>Temperature</td>
<td>14</td>
<td>-3.6</td>
<td>14.9</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Table 5.5. Summary of statistically significant changes in OxyVu™ readings at the foot in the treatment arms versus the control group.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>CONTROL</th>
<th>OXYGEN</th>
<th>ILOMEDIN</th>
<th>TEMPERATURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSI</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>Major SSI</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Dehiscence</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Major dehiscence</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Lymphatic Complications</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>ACS</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>LRTI</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 5.6. Summary of postoperative complications. **Abbreviations**: SSI, surgical site infection; ACS, acute coronary syndrome; LRTI, lower respiratory tract infection.
Complications

Wound complications (such as surgical site infection and dehiscence) and systemic complications (such as acute coronary syndrome and lower respiratory tract infection) within 30 days following surgery are described in Table 5.6. Surgical site infections were defined as per the criteria set by the Centers for Disease Control and Prevention. Major complications were defined as those requiring hospitalisation for intravenous antibiotics or surgical intervention. One patient in the oxygen group had a PTFE bypass graft explanted within 30 days secondary to infection. There was no difference in prevalence of complications between the treatment arms and the control group (Fisher’s Exact test; p-values not shown).

<table>
<thead>
<tr>
<th>GROUP</th>
<th>CONTROL</th>
<th>OXYGEN</th>
<th>ILOMEDIN</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary patency rate (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>89</td>
<td>84</td>
<td>94</td>
<td>88</td>
</tr>
<tr>
<td>12 months</td>
<td>47</td>
<td>51</td>
<td>40</td>
<td>58</td>
</tr>
<tr>
<td>Secondary patency rate (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>94</td>
<td>89</td>
<td>100</td>
<td>94</td>
</tr>
<tr>
<td>12 months</td>
<td>58</td>
<td>61</td>
<td>53</td>
<td>81</td>
</tr>
<tr>
<td>Limb salvage (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>72</td>
<td>95</td>
<td>82</td>
<td>94</td>
</tr>
<tr>
<td>Overall survival (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>89</td>
<td>95</td>
<td>95</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 5.7. Patency, limb salvage, and mortality rates in the four groups.

Patients were followed until June 2013, with a mean follow-up period of 1,035 days. Patency rates (primary and secondary), limb salvage rates, and mortality rates were determined using Kaplan-Meier survival analysis and are shown in Table 5.7. Overall primary and secondary patency rates at 12 months were 53% and 67%, respectively, while the limb salvage rate at 12 months was 86%. There was no difference in these rates between the treatment arms and the control group (p-values not shown). While the secondary patency rate at 12 months in the
control group (58%) appeared to be lower than in the temperature group (81%), the difference was not statistically significant (p=0.22). Similarly, the limb salvage rate at 12 months in the control group (72%) was not significantly different from that in the oxygen group or the temperature group (95% and 94%; p=0.78 and p=0.23, respectively).
6 Results: Validation of FastScan™ and Silhouette Mobile™

Patient recruitment
This study included 16 wounds in 11 patients with vascular disease. Nine patients were White and two were Maori. The median age was 77 (range 57–86) years. The majority of wounds were diabetic or pressure ulcers (Figure 6.1), with some open postoperative wounds from amputations and infected surgical wounds (Figures 6.2–6.5). Wound locations included the toe (n=4), foot (n=5), calf (n=3), Achilles tendon region (n=1), heel (n=1), open sites at the knee stump following a major amputation (n=1), and the medial thigh (n=1). The average volume and depth measured by computed tomography (CT) were 4.63 (0–23.5) cm3 and 1.28 (0–4.9) cm, respectively.

Figure 6.1. Image of several lower limb diabetic ulcers from the Silhouette Mobile™.

Figure 6.2. Image of an infected surgical wound on a lower limb from the Silhouette Mobile™.
Figure 6.3. Image of an infected surgical wound on a lower limb from the FastScan™. The blue stylus points give an outline of the wound boundary.

Figure 6.4. Image of an open foot wound following digital amputation from the Silhouette Mobile™.

Figure 6.5. Image of an open foot wound following digital amputation from FastScan™.

Sixteen sets of wound measurements were analysed by Silhouette Mobile™ (SM) and three-dimensional CT reconstruction. Only eleven sets of wound measurements were compared between FastScan™ (FS) and CT because of suboptimal imaging in the remaining five sets. This occurred particularly in small and superficial wounds or when too few stylus laser points (i.e., blue dots in Figure 6.3) were used to outline the wound with the FS. The stylus points impact the ability to carry out the necessary calculations using the Delta software.
Evaluation of intra-operator and inter-operator reliability

<table>
<thead>
<tr>
<th>SILHOUETTE MOBILE™</th>
<th>INTRA-ICC (AVERAGE)</th>
<th>INTER-ICC (AVERAGE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.97 (0.99)</td>
<td>0.97 (0.99)</td>
</tr>
<tr>
<td>Depth</td>
<td>0.97 (0.99)</td>
<td>0.94 (0.98)</td>
</tr>
<tr>
<td>Surface area</td>
<td>0.99 (1.00)</td>
<td>0.99 (1.00)</td>
</tr>
</tbody>
</table>

Table 6.1. Intra-operator and inter-operator reliability of Silhouette Mobile™. Abbreviation: ICC, intraclass coefficient

<table>
<thead>
<tr>
<th>FASTSCAN™</th>
<th>INTRA-ICC (AVERAGE)</th>
<th>INTER-ICC (AVERAGE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.96 (0.99)</td>
<td>0.97 (0.99)</td>
</tr>
<tr>
<td>Depth</td>
<td>0.95 (0.98)</td>
<td>0.98 (0.99)</td>
</tr>
<tr>
<td>Surface area</td>
<td>0.99 (1.00)</td>
<td>0.99 (1.00)</td>
</tr>
</tbody>
</table>

Table 6.2. Intra-operator and inter-operator reliability of the FastScan™. Abbreviation: ICC, intraclass coefficient

Intraclass correlation coefficients of at least 0.94 indicated excellent intra-operator and inter-operator reliability for the SM and FS in assessing the surface area, depth and volume, as shown in Tables 6.1 and 6.2. The depth varied slightly more than the other measures.

Correlation between SM and FS versus CT reconstruction

The mean values of the three repeated FS and SM readings from the three operators were compared (16 comparisons for SM and eleven for FS). Table 6.3 shows the mean differences and standard deviations for surface area, maximum depth, and volume measurements when comparing the different measurement modalities. Surface area was not able to be measured using the three-dimensional CT reconstruction software.

Ideally, the mean difference in a measurement obtained by two different recording devices (e.g., SM volume and CT volume) should be zero with a standard deviation of zero, and there should not be a statistically significant difference using the Student’s t-test. There was
statistically significant difference in SM volume when compared with CT volume, and for FS depth and FS volume when compared with CT depth and CT volume. Depth measurements using SM were significantly smaller than those using CT (−0.65 cm; p=0.04). SM appeared to be consistently underestimating the wound dimensions produced by CT, whereas FS tended to overestimate them. While surface area measurements obtained by SM and FS were not compared with those obtained by CT, they were compared with each other. Surface areas measured by SM were on average underestimated by 1.6 cm² (p=0.02).

<table>
<thead>
<tr>
<th>COMPARISONS</th>
<th>MEAN DIFFERENCE</th>
<th>SD</th>
<th>P-VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM volume – CT volume</td>
<td>-0.93</td>
<td>4.0</td>
<td>0.37</td>
</tr>
<tr>
<td>SM depth – CT depth</td>
<td>-0.65</td>
<td>1.2</td>
<td>0.040</td>
</tr>
<tr>
<td>FS volume – CT volume</td>
<td>14.0</td>
<td>48.7</td>
<td>0.36</td>
</tr>
<tr>
<td>FS depth – CT depth</td>
<td>0.77</td>
<td>3.2</td>
<td>0.45</td>
</tr>
<tr>
<td>SM volume – FS volume</td>
<td>-16.0</td>
<td>50.9</td>
<td>0.32</td>
</tr>
<tr>
<td>SM depth – FS depth</td>
<td>-1.3</td>
<td>3.5</td>
<td>0.26</td>
</tr>
<tr>
<td>SM SA – FS SA</td>
<td>-1.64</td>
<td>2.0</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 6.3. Depth and volume measurements using the SM compared with those obtained by CT. **Abbreviations:**
SM, Silhouette Mobile™; CT, computed tomography; SA, surface area; SD, standard deviation

Although no differences were detected when comparing the CT volume and the SM volume with the FS volume, the mean differences suggested that the FS volumes were overestimated by 14 cm³ and 16 cm³, respectively, with a large standard deviation. In patient 10, the volumes measured by FS were about 10 times larger than measured by CT. This did not appear to be a technical error, because the FS recordings in this patient were similar to the repeated measurements taken by the three operators. If patient 10 was excluded from the analysis, the
difference in mean volume between FS and CT was -0.66 cm^3 (standard deviation 1.2; \(p=0.10\)), and that between SM and FS was -0.70 cm^3 (standard deviation 2.0; \(p=0.30\)).

Bland-Altman plots were used to compare SM and FS with three-dimensional CT reconstruction. The x-axis represents the average measurements for depth or volume produced by CT and the FS or by CT and the SM. The y-axis plots the subtracted difference in values between CT and FS or between CT and SM, and therefore the error.

Figure 6. Bland-Altman plot showing the difference in volume measurements between the Silhouette Mobile™ and CT. **Abbreviation:** CT, computed tomography
Figure 6.7. Bland-Altman plot showing the difference in depth measurements between the Silhouette Mobile™ and CT. Abbreviation: CT, computed tomography

Figure 6.8. Bland-Altman plot showing the difference in volume measurements between the FastScan™ and CT. Abbreviation: CT, computed tomography
Bland–Altman plot show the difference in depth measurements between the FastScan™ and CT.

Abbreviation: CT, computed tomography.

The primary observation was that a negative difference in SM volume and depth existed for CT (Figures 6.6 and 6.7). This implies that most CT measurements were higher than those obtained by SM. A systematic bias could be deduced from this pattern of underestimation from SM. For FS, in contrast, a pattern of overestimation was observed, with most points lying above the zero line in the Bland-Altman plots (Figures 6.8 and 6.9).

Ideally, the SM and FS outcomes should be the same as the CT outcomes (Pearson's correlation coefficient 1). Table 6.4 shows a strong linear correlation for SM depth and SM volume when compared with CT, with Pearson’s correlation coefficients (r) of 0.81 and 0.88, respectively. Neither volumetric nor depth assessments with FS were significantly consistent with CT. However, if the correlation tests for volume were repeated without patient 10, they yielded strong correlations between FS and CT ($r=0.99; p≤0.0001$) and between FS and SM ($r=0.99; p≤0.0001$).
<table>
<thead>
<tr>
<th>SYSTEMS</th>
<th>MEASUREMENTS</th>
<th>CORRELATION COEFFICIENTS (R)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM versus CT</td>
<td>Volume</td>
<td>0.81</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>0.88</td>
<td><0.0001</td>
</tr>
<tr>
<td>FS versus CT</td>
<td>Volume</td>
<td>0.45</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>0.54</td>
<td>0.09</td>
</tr>
<tr>
<td>SM versus FS</td>
<td>Volume</td>
<td>0.19</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>0.65</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Surface area</td>
<td>1.00</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Excluding patient 10

| FS versus CT| Volume | 0.99 | <0.0001 |
| SM versus FS| Volume | 0.99 | <0.0001 |

Table 6.4. Summary of Pearson’s correlation coefficients when comparing measurements for the Silhouette Mobile™, FastScan™, and CT. **Abbreviation:** CT, computed tomography
7 Results: Wound healing and tissue oxygenation in TNP therapy

Patient recruitment and demographics

Figure 7.1. Flow diagram detailing the recruitment process.

Recruitment commenced in March 2010 and ended in June 2011. Twenty-two patients completed the study (12 in the treatment arm and ten in the control arm; Figure 7.1). On average, TNP was used for 10.6±3.7 days in the treatment group. Fourteen patients (63.6%) were men and seven (31.8%) were Maori. The mean patient age was 61.5±13 (range 41–83) years. Twenty patients (86.4%) had diabetes and 14 of these were on insulin. Twelve (54.5%) had renal impairment and nine were dialysis-dependent. The two patients who did not have diabetes had end-stage renal failure. Table 7.1 details the basic demographic and clinical characteristics of the two arms. There were no differences between the two groups for wound location, past history of major and minor amputations, or ankle-brachial pressure index. The erroneously “normal” ankle-brachial pressure index was probably reflective of the stiff calcified vessels that can be found in patients with diabetes and/or renal disease. Definitions of these variables are found in Appendix A.1.1.
<table>
<thead>
<tr>
<th></th>
<th>CONTROL GROUP (N=10)</th>
<th>TNP GROUP (N=12)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>6</td>
<td>8</td>
<td>0.75</td>
</tr>
<tr>
<td>Maori</td>
<td>3</td>
<td>4</td>
<td>0.87</td>
</tr>
<tr>
<td>Age, years</td>
<td>62.0</td>
<td>61.0</td>
<td>0.86</td>
</tr>
<tr>
<td>BMI</td>
<td>27.1</td>
<td>27.4</td>
<td>0.93</td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>Active smoker</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>10</td>
<td>10</td>
<td>0.24</td>
</tr>
<tr>
<td>On insulin</td>
<td>7</td>
<td>7</td>
<td>0.61</td>
</tr>
<tr>
<td>Renal impairment</td>
<td>4</td>
<td>8</td>
<td>0.24</td>
</tr>
<tr>
<td>ESRF</td>
<td>3</td>
<td>6</td>
<td>0.41</td>
</tr>
<tr>
<td>IHD</td>
<td>8</td>
<td>7</td>
<td>0.28</td>
</tr>
<tr>
<td>COPD</td>
<td>3</td>
<td>3</td>
<td>0.79</td>
</tr>
<tr>
<td>Hypertension</td>
<td>10</td>
<td>12</td>
<td>1.00</td>
</tr>
<tr>
<td>Dyslipidaemia</td>
<td>7</td>
<td>10</td>
<td>0.46</td>
</tr>
<tr>
<td>Previous amputations</td>
<td>6</td>
<td>7</td>
<td>0.94</td>
</tr>
<tr>
<td>Location of wound</td>
<td></td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td>Toe</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Forefoot</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Heel</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ABI</td>
<td>1.21</td>
<td>1.18</td>
<td>0.93</td>
</tr>
<tr>
<td>On antibiotics</td>
<td>8</td>
<td>6</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 7. 1. Basic patient demographic and clinical characteristics. **Abbreviations:** ABI, ankle-brachial index; BMI, body mass index; COPD, chronic obstructive pulmonary disease; ESRF, end-stage renal failure; IHD, ischaemic heart disease; TNP, topical negative pressure.
Changes in wound dimensions

<table>
<thead>
<tr>
<th></th>
<th>CONTROL GROUP</th>
<th>TNP GROUP</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN (SD)</td>
<td>MEAN (SD)</td>
<td></td>
</tr>
<tr>
<td>“Body” surface area (cm²)</td>
<td>32.9 (16.2)</td>
<td>38.8 (16.6)</td>
<td>0.41</td>
</tr>
<tr>
<td>“Cap” surface area (cm²)</td>
<td>27.0 (14.9)</td>
<td>29.5 (13.2)</td>
<td>0.69</td>
</tr>
<tr>
<td>Maximum depth (mm)</td>
<td>14.0 (5.1)</td>
<td>13.6 (6.4)</td>
<td>0.89</td>
</tr>
<tr>
<td>Mean depth (mm)</td>
<td>2.9 (1.6)</td>
<td>2.7 (2.0)</td>
<td>0.85</td>
</tr>
<tr>
<td>Volume (cm³)</td>
<td>7.1 (4.6)</td>
<td>6.3 (4.3)</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Table 7.2. Summary of wound dimensions at day 0.

On day 0, there was no difference in wound surface area, depth, or volume between the TNP group and the control group (Student’s t-test; Table 7.2). The “body” surface area (surface area of the wound) was often irregular, with variable wound contour and areas of concavity and convexity. Therefore, this was larger than the “cap” surface area (surface area of the wound at the skin surface) that was assumed to have a flat surface by the computer software.

Figure 7.2. Error bar graph showing the mean ± 95% CI of the relative reduction of various wound dimensions between the two groups. **Abbreviations:** CI, confidence interval; SA, surface area; TNP, topical negative pressure
Table 7.3. Summary of absolute and relative reduction in wound dimensions between the two treatment groups.

Abbreviations: SD, standard deviation; TNP, topical negative pressure

Table 7.3 shows the degree of reduction of wound dimensions as a result of the specific wound dressing regimes used and describes the absolute and relative reductions. While the primary outcome of the study in terms of wound volume reduction at day 14 did not yield statistically significant results with regard to either absolute or relative reduction to suggest that TNP therapy would expedite wound healing, there were constant trends indicating that TNP enhanced reduction in wound surface area, depth, and volume when compared with traditional dressings (Student’s t-test). Wound volume reduction in the TNP group appeared to be twice that in the traditional dressing group (44.2% versus 20.9%; p=0.15). The relative maximum reduction in depth in the TNP group was significantly greater than in the control group (39.0% and 17.4%, respectively; p=0.03).

<table>
<thead>
<tr>
<th></th>
<th>CONTROL GROUP (SD)</th>
<th>TNP GROUP (SD)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute reduction from day 0 to day 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Body” surface area (cm²)</td>
<td>2.7 (7.1)</td>
<td>7.0 (9.7)</td>
<td>0.24</td>
</tr>
<tr>
<td>“Cap” surface area (cm²)</td>
<td>1.6 (5.7)</td>
<td>2.2 (3.9)</td>
<td>0.77</td>
</tr>
<tr>
<td>Maximum depth (mm)</td>
<td>2.3 (2.6)</td>
<td>4.9 (4.0)</td>
<td>0.09</td>
</tr>
<tr>
<td>Mean depth (mm)</td>
<td>0.5 (0.8)</td>
<td>1.2 (1.2)</td>
<td>0.11</td>
</tr>
<tr>
<td>Volume (cm³)</td>
<td>1.5 (2.8)</td>
<td>3.2 (3.3)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Relative reduction from day 0 to day 14			
“Body” surface area (%)	7.9 (17.7)	18.7 (20.8)	0.20
“Cap” surface area (%)	5.7 (15.2)	10.7 (15.9)	0.46
Maximum depth (%)	17.6 (17.7)	36.0 (18.5)	0.03
Mean depth (%)	17.4 (35.7)	39.0 (32.8)	0.16
Volume (%)	20.9 (36.1)	44.2 (36.6)	0.15
While there were no statistically significant differences in wound location between the groups, there appeared to be more wounds in the TNP group at the forefoot and the heel (n=7) than in the control group (n=3). It could be argued that the findings in Table 7.3 represent “false positives” because the healing potential at the two sites might be different. Therefore, wound healing rates at the toes and above the toes (forefoot and heel) were compared.

Table 7.4. Wound dimensions at day 0 for wounds at the toe and those at forefoot/heel. **Abbreviation:** SD, standard deviation

<table>
<thead>
<tr>
<th></th>
<th>TOE (SD)</th>
<th>FOREFOOT/HEEL (SD)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Body” surface area (cm²)</td>
<td>26.8 (14.7)</td>
<td>47.3 (10.1)</td>
<td>0.001</td>
</tr>
<tr>
<td>“Cap” surface area (cm²)</td>
<td>20.9 (13.5)</td>
<td>37.3 (7.2)</td>
<td>0.002</td>
</tr>
<tr>
<td>Maximum depth (mm)</td>
<td>13.6 (4.6)</td>
<td>13.9 (7.1)</td>
<td>0.91</td>
</tr>
<tr>
<td>Mean depth (mm)</td>
<td>3.3 (1.7)</td>
<td>2.2 (1.9)</td>
<td>0.18</td>
</tr>
<tr>
<td>Volume (cm³)</td>
<td>6.1 (3.4)</td>
<td>7.3 (5.2)</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Table 7.5. Absolute and relative reductions in wound dimension between wounds at the toes and those at the forefoot and heel. **Abbreviation:** SD, standard deviation

<table>
<thead>
<tr>
<th></th>
<th>TOE (SD)</th>
<th>FOREFOOT/HEEL (SD)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute reduction from day 0 to 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Body” surface area (cm²)</td>
<td>5.1 (6.3)</td>
<td>5.0 (11.3)</td>
<td>0.98</td>
</tr>
<tr>
<td>“Cap” surface area (cm²)</td>
<td>2.7 (4.6)</td>
<td>1.0 (4.9)</td>
<td>0.41</td>
</tr>
<tr>
<td>Maximum depth (mm)</td>
<td>4.4 (3.9)</td>
<td>2.9 (3.3)</td>
<td>0.32</td>
</tr>
<tr>
<td>Mean depth (mm)</td>
<td>1.0 (1.1)</td>
<td>0.7 (1.0)</td>
<td>0.58</td>
</tr>
<tr>
<td>Volume (cm³)</td>
<td>2.4 (2.6)</td>
<td>2.5 (3.8)</td>
<td>0.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>TOE (SD)</th>
<th>FOREFOOT/HEEL (SD)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative reduction from day 0 to 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Body” surface area (%)</td>
<td>17.7 (19.3)</td>
<td>9.0 (20.2)</td>
<td>0.32</td>
</tr>
<tr>
<td>“Cap” surface area (%)</td>
<td>11.7 (15.7)</td>
<td>4.4 (14.8)</td>
<td>0.28</td>
</tr>
<tr>
<td>Maximum depth (%)</td>
<td>31.4 (19.4)</td>
<td>23.1 (20.8)</td>
<td>0.35</td>
</tr>
<tr>
<td>Mean depth (%)</td>
<td>31.5 (30.8)</td>
<td>26.5 (41.2)</td>
<td>0.76</td>
</tr>
<tr>
<td>Volume (%)</td>
<td>37.7 (32.7)</td>
<td>28.7 (43.7)</td>
<td>0.60</td>
</tr>
</tbody>
</table>
As expected, the mean surface area of the toe wounds at day 0 was smaller than those of wounds at the forefoot and heel; however, depth and volume measurements were similar between the two groups (Student's t-test; Table 7.4). Wound healing rates at the toes were not different from those at the forefoot and heel (Student's t-test; Table 7.5). This would suggest that the trends observed in Table 7.3 comparing healing potential between the TNP group and the control group were not influenced by location of the wounds.

Changes in collagen content of granulation tissue
The OHP content in tissue biopsies sampled from the wound beds on days 0 and 14 was analysed and expressed in micrograms of collagen per milligram of granulation tissue. There was no difference in OHP levels between the groups at baseline (Student's t-test; Table 7.6). Irrespective of the type of dressing used, the mean increase in OHP over 14 days was 0.62 ±1.02 µg/mg and this was statistically significant (Student's t-test; p=0.01). Relative changes measured from day 0 were calculated as percentages. At variance with the study hypothesis, 63% more OHP was found in the control group than in the TNP group (94.5% versus 58%, respectively; p=0.32; Student's t-test), although this finding was not statistically significant.

<table>
<thead>
<tr>
<th>Control Group (SD)</th>
<th>TNP Group (SD)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHP at day 0 (µg/mg)</td>
<td>1.29 (0.51)</td>
<td>1.97 (1.61)</td>
</tr>
<tr>
<td>OHP at day 14 (µg/mg)</td>
<td>2.25 (1.10)</td>
<td>2.32 (0.97)</td>
</tr>
<tr>
<td>Percent increase in OHP</td>
<td>94.5 (86.7)</td>
<td>58 (68)</td>
</tr>
</tbody>
</table>

Table 7.6. Summary of mean OHP findings at baseline and percentage increase at 14 days for the TNP group and the control group. Abbreviations: OHP, hydroxyproline; SD, standard deviation

Changes in growth factor and cytokine levels
Technical issues were encountered when performing the biochemical analyses for FGF-2, VEGF, IL-8, and TNF-a using Milliplex®. Wound fluids were difficult to extract from the dressings. Alginates and hydrofibres are absorbants designed to trap moisture. Despite aggressive centrifugation, many samples returned insufficient fluid. Similarly, most of the
wound fluid in the foam sponge in the VAC® was drawn into the sealed cylinder and emulsified with the gel inside the container. The wound fluid inside the sponge in contact with the wound bed was often minimal. Fluid trapped in the suction tube was also sampled to test the balance between levels of growth factors in wound fluid that was in direct contact with the wound and wound fluid that was suctioned. However, the fluid volume was again often inadequate. Wound fluid from the hydrogels was often contaminated with gel products that increased fluid viscosity. This, together with the fact that these fluids often contained blood, with infiltration of debris and protein, meant that many samples could not be analysed. Interrogation of the samples that were successfully processed did not yield reliable statistically significant results.

Analysis of TGF-β by enzyme-linked immunosorbent assay was more successful. Baseline levels on day 2 were not significantly different between the groups (Student’s t-test; Table 7.7). The relative percent increase in TGF-β in the control group was 106% but was 89.5% in the TNP group; again, there was no statistically significant difference between the two groups, and the pattern of change was similar to that for OHP.

<table>
<thead>
<tr>
<th>CONTROL GROUP (SD)</th>
<th>TNP GROUP (SD)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF-β at day 0 (ng/mL)</td>
<td>503 (287)</td>
<td>647 (507)</td>
</tr>
<tr>
<td>Percent increase in TGF-β</td>
<td>106 (281)</td>
<td>89.5 (359)</td>
</tr>
</tbody>
</table>

Table 7.7: Mean TGF-β findings at baseline and mean percentage increase at 14 days for the TNP group and the control group. Abbreviations: SD, standard deviation; TGF-β, transforming growth factor beta

Changes in skin perfusion

Skin perfusion was determined by OxyVu at baseline and on day 14. There were no statistically significant differences between the groups at these two time points, although it appeared that wound oxygenation in the TNP group decreased to a lesser degree (Student’s t-test; Table 7.8). When all patients in both groups were considered together, HT-Oxy, HT-Sat, and HT-Sum had decreased significantly by the end of the study when compared with baseline (Student’s t-test; Table 7.9). This indicates that oxygen saturation and blood flow around the wound decreased as the wound healed.
Table 7.8

<table>
<thead>
<tr>
<th></th>
<th>CONTROL GROUP (SD)</th>
<th>TNP GROUP (SD)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>At baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Oxy (AU)</td>
<td>83.5 (23.0)</td>
<td>82.3 (22.4)</td>
<td>0.92</td>
</tr>
<tr>
<td>HT-Deoxy (AU)</td>
<td>62.3 (15.8)</td>
<td>60.7 (19.1)</td>
<td>0.86</td>
</tr>
<tr>
<td>HT-Sat (%)</td>
<td>56.1 (2.9)</td>
<td>56.9 (6.5)</td>
<td>0.71</td>
</tr>
<tr>
<td>HT-Sum (AU)</td>
<td>146 (38.3)</td>
<td>143 (35.4)</td>
<td>0.89</td>
</tr>
<tr>
<td>Percent change at day 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Oxy</td>
<td>-28.4 (31.0)</td>
<td>-22.4 (33.4)</td>
<td>0.79</td>
</tr>
<tr>
<td>HT-Deoxy</td>
<td>-25.0 (20.4)</td>
<td>-4.2 (19.4)</td>
<td>0.21</td>
</tr>
<tr>
<td>HT-Sat</td>
<td>-19.4 (28.3)</td>
<td>-12.0 (20.0)</td>
<td>0.70</td>
</tr>
<tr>
<td>HT-Sum</td>
<td>-27.3 (25.0)</td>
<td>-15.3 (24.9)</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Table 7.8. OxyVu™ findings at baseline and mean percentage increase at 14 days in the TNP group and the control group. **Abbreviations**: SD, standard deviation; TNP, topical negative pressure

Table 7.9

<table>
<thead>
<tr>
<th></th>
<th>MEAN DIFFERENCE (SD)</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 14 – day 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Oxy</td>
<td>-22.1 (29.4)</td>
<td>0.02</td>
</tr>
<tr>
<td>HT-Deoxy</td>
<td>-7.2 (13.7)</td>
<td>0.10</td>
</tr>
<tr>
<td>HT-Sat</td>
<td>-8.2 (12.3)</td>
<td>0.04</td>
</tr>
<tr>
<td>HT-Sum</td>
<td>-29.3 (38.2)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 7.9. Comparison of OxyVu™ findings at baseline and day 14, showing mean differences and their p-values. **Abbreviation**: SD, standard deviation

Clinical outcome

Wound failure-free, major amputation-free survival, and overall survival rates were examined using Kaplan-Meier survival analysis. Wound failure was defined as requirement for further
surgical debridement or distal or major amputations after day 14. The overall wound failure-free rate was 95.5% at one month and 45.7% at 12 months; limb salvage rates were 95.5% at one month and 60.3% at one year; and overall survival at one month was 95.5% and that at 12 months was 72.7%. Survival analyses comparing the three outcomes between the two groups did not show significant differences (Table 7.10 and Figure 7.2).

<table>
<thead>
<tr>
<th></th>
<th>CONTROL GROUP</th>
<th>TNP GROUP</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At 1 month</td>
<td>At 12 months</td>
<td>At 1 month</td>
</tr>
<tr>
<td>Wound failure-free (%)</td>
<td>80</td>
<td>40</td>
<td>91.7</td>
</tr>
<tr>
<td>Amputation-free (%)</td>
<td>100</td>
<td>70</td>
<td>91.7</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>100</td>
<td>70</td>
<td>91.7</td>
</tr>
</tbody>
</table>

Table 7.10. Comparison of survival analysis outcome between TNP group and control group. Abbreviation: TNP, topical negative pressure.

Figure 7.3. Kaplan-Meier curve showing wound failure-free survival between the two groups.
8. Discussion

8.1 Key findings

Validation of OxyVu™

Inter-operator reliability ranged from 86% to 94% across the four OxyVu™ outputs, whilst intra-operator reliability ranged from 92% to 94%. HT-Oxy, HT-Sat, TcpCO₂ and ABI in the diseased limb correlated significantly with the severity of PVD. HT-Sat significantly correlated with TcpO₂ (R=0.19), TcpCO₂ (R= -0.26), ABI (R=0.19), and skin temperature (R=0.56). HT-Deoxy also correlated with TcpCO₂ (R=0.27). Using reference points such as the contralateral limb (i.e., BPI) did not appear to offer better correlations than absolute values. Hyperspectral oxygenation correlated with other modalities, and may be a superior method for assessment of tissue oxygenation in appropriate clinical settings, given that it was easy to operate and provided immediate non-invasive measurements. The results of the validation study justified use of the OxyVu to assess tissue oxygenation in the subsequent studies.

WOIOW study

Whilst the intra-operative arterial partial pressure of oxygen was higher in the oxygen group and the core temperature immediately after surgery appeared to be higher in the temperature group than in the control group (37.1°C versus 36.7°C, respectively; p=0.09), no differences were demonstrated when the treatment arms were compared with the control group in terms of the primary outcome of hydroxyproline (OHP), growth factor and cytokine levels, or change in tissue oxygenation at the site of the surgical incision on the knee and foot. The OHP level correlated with the amount of FGF-2 at the site of the surgical wound (Pearson’s r=0.38, p=0.001). There were no differences in primary and secondary patency, limb salvage, SSI, or mortality rates between the treatment groups. The perioperative adjunctive treatments examined did not dramatically improve wound healing or tissue oxygenation.

Validation of FastScan™ and Silhouette Mobile™

Volumetric measurements using the FS and SM were not significantly different from those using CT. However, due to systematic bias, the SM consistently underestimated wound volume and depth compared with CT scanning. A pattern of overestimation was observed for the FS. Volume measurements in one patient were anomalous, being ten times larger than
those measured by CT. When the measurements for that patient were excluded, there was a much stronger correlation in wound volume for SM and CT ($r=0.81$; $p\leq0.0001$), for FS and CT ($r=0.99$; $p<0.001$), and for SM and FS ($r=0.99$; $p\leq0.0001$). The intra-operator and inter-operator reliability values for volume recordings were 0.97 and 0.97, respectively, for the SM, and 0.96 and 0.97 for the FS.

Wound healing and tissue oxygenation in TNP therapy

All 22 patients had a past medical history of either diabetes mellitus or dialysis-dependent renal failure. No statistically significant difference in wound volume reduction was found between the two groups on day 14 (44.2% for TNP versus 20.9% for the control; $p=0.15$). Nevertheless, there was a trend towards a better healing rate in the TNP group in terms of surface area, depth, and volume. The relative reduction in maximum wound depth was statistically significant (36.0% for TNP versus 17.6% for the control; $p=0.03$). No differences were found with regard to changes in OHP levels, growth factors or cytokines, or in tissue oxygenation at day 14. There was no significant difference in wound failure-free rate, amputation-free rate, or survival rate at 12 months. Applying TNP to acute vascular foot wounds improved the wound healing rate, and in particular decreased the relative wound depth. Tissue oxygenation and OHP levels were not improved, suggesting the difference in healing rate might have been a result of macro-strain effects from contracting wound edges and decreasing tissue oedema.
8.2 Validation of OxyVu™

To date, this study is the largest and most extensive series validating hyperspectral oxygenation in patients with PVD. Various modalities were used for comparisons, including severity of PVD, skin temperature, ABI, and TCOM measurements. Hyperspectral oxygenation correlated with each one of these to some extent, indicating that the OxyVu was fulfilling the role that it was designed for, i.e., quantifying oxygenation. Unfortunately, even though TCOM has been considered to be most sensitive technique in the clinical setting for the last three decades because its TcpO₂ and TcpCO₂ measurements take into account both the macrocirculation and the microcirculation, it is not the gold standard and the OxyVu cannot be tested for superiority over other modalities. However, with the advantages described earlier, from a practical perspective it may be time now for a paradigm shift in support of the use of OxyVu in the clinical setting for diagnosis of PVD and assessment of its severity, prediction of wound healing, detecting a change in oxygenation following revascularisation, evaluation of the potential for hyperbaric oxygen therapy, and differentiation between ischaemic and neurogenic claudication, as well as in the many other settings where TCOM is currently used.

As hypothesised, HT-Sat was the most sensitive of the HTCOM measurements used, because it takes into account both the concentration of oxyhaemoglobin (oxygen delivery) and deoxyhaemoglobin (oxygen consumption) in a region of interest. HT-Sat was the only marker that correlated significantly with SSS (R=–0.29), ABI (R=0.19), skin temperature (R=0.56), TcpO₂ (R=0.19), and TcpCO₂ (R=–0.26). Other findings of interest included HT-Deoxy correlating with TcpCO₂ (R=0.27), HT-Oxy with SSS (R=–0.29), Sat-BPI with ABI (R=0.21), skin temperature with HT-Oxy (R=0.41), and skin temperature with HT-Deoxy (R=–0.40).

While there were associations between BPI from HTCOM and other oxygenation measurement methods, the correlation coefficients overall did not appear to be significantly higher than when comparing actual values. Theoretically, BPI would be useful when examining oxygenation at different time points, assuming there would be no relative change in oxygenation in the contralateral limb. Relative measurements such as BPI and RPI are prone to inaccuracies due to doubling of the operator variability, which was quantified in this study. Inter-operator reliability ranged from 86% to 94%, whereas intra-operator reliability ranged from 92% to 94%.
To some extent, the findings of this study are in contrast with those of the study by Chin et al discussed in Section 1.11.314 HT-Oxy and HT-Sat correlated with the severity of PVD and HT-Deoxy did not. The ABI had no relationship with HT-Deoxy or HT-Oxy but did correlate with HT-Sat; the latter variable was not described by Chin et al.

While TcpO\textsubscript{2} can predict wound healing,290 this study did not show an interaction between TcpO\textsubscript{2}, HT-Oxy, and/or the severity of PVD. Figure 8.1 shows TcpO\textsubscript{2} values according to the severity of PVD. Mean TcpO\textsubscript{2} was higher in the claudicant group than in the control group; despite the mean TcpO\textsubscript{2} being lowest in patients with CLI, the range and variance in the claudicant and CLI groups were larger than in the control group. This finding might be explained by the reactive hyperaemia that occurs in patients with PVD.

![Figure 8.1](image.png)

Figure 8.1. Error bar graph showing the mean ± 95% CI of TcpO\textsubscript{2} and TcpCO\textsubscript{2} in the diseased limb categorised according to severity of PVD. **Abbreviations:** CI, confidence interval; CLI, critical limb ischaemia; PVD, peripheral vascular disease; TCOM, transcutaneous oxygenation measurement.
In contrast, there was a relationship between TcpCO$_2$ and SSS ($R=0.34$; Figure 8.1). This was an unexpected finding, but not implausible. It was not only the quantity of oxygen delivered or available that was associated with tissue ischaemia, but also the accumulation of carbon dioxide in the tissue at the molecular level. This might be explained by the Bohr effect. The demand for oxygen is increased in ischaemic tissue, perhaps because of increased metabolism in non-healing ulcer tissue, which would produce more carbon dioxide. If there was an increase in TcpCO$_2$ in the ischaemic tissue, there would be a right shift in the oxygen-haemoglobin dissociation curve, promoting dissociation of oxygen from haemoglobin and maximising delivery of oxygen to the peripheral tissues. Simultaneously, the decrease in pH resulting from increased carbon dioxide and lactic acidosis, together with impairment of the peripheral sympathetic autonomic vasoregulation mechanism in the venoarterioles as a result of ischaemia or neuropathy, could cause reactive hyperaemia in an attempt to maximise blood flow from the microcirculation to the tissue and decrease capillary resistance.408 Despite this, the flow velocity might be low. This factor and perhaps increased production of carbon dioxide as a result of increased metabolism might affect the diffusion gradient transporting carbon dioxide out of the tissue. Previous studies in patients with vascular disease had mainly used TcpO$_2$ to evaluate wound healing. However, although information on its role in wound healing is limited, TcpCO$_2$ might be a more sensitive marker for determining the severity of PVD and predicting the outcome. It would be interesting to test the hypothesis that measuring TcpCO$_2$ in vascular patients during exercise testing can detect underlying PVD.

The only link yet to be explained here was why TcpCO$_2$ correlated with HT-Deoxy when HT-Deoxy did not correlate with the severity of PVD. In addition, HT-Oxy correlated with severity but did not correlate with TcpO$_2$. The latter could be explained by potential false-negative findings, or perhaps HT-Oxy was better than TcpO$_2$ for detection of PVD. Physiologically, HT-Deoxy and TcpCO$_2$ are two separate entities. HT-Deoxy reflects the amount of deoxyhaemoglobin in the tissue and TcpCO$_2$ quantifies the carbon dioxide concentration. An increase in the carbon dioxide level would not directly increase the deoxyhaemoglobin level. Perhaps HT-Deoxy is an indicator of tissue metabolism and, indirectly, blood outflow with prolonged capillary blood transit time for diffusion, where oxyhaemoglobin delivers oxygen for respiration and becomes deoxyhaemoglobin, and then exits via the venules into the veins. This study showed that, unlike HT-Oxy and HT-Sat, HT-Deoxy was not affected by PVD. This could mean that there is no relationship between tissue metabolism and the degree of tissue
ischaemia. As a result of all these findings, HT-Sat remained the only consistent marker for tissue oxygenation.

The SSS was introduced for the purposes of this study. One of the reasons for this was the relatively small patient numbers in Rutherford classifications 1, 2, and 3. Another reason was that the Rutherford classification is not a genuine rank-able score. The Rutherford 1, 2, and 3 classifications are subjective to some extent, and the Rutherford 5 and 6 classifications in patients with ulcers may not necessarily imply worse tissue oxygen tension than the Rutherford 4 classification in patients with rest pain. The findings of this study are consistent with that observation, with tissue perfusion in patients who have a Rutherford classification of 5 and 6 appearing to be better than in those with a Rutherford 4 classification (Tables 4.11 and 4.12). Fifty-two patients had diabetes, and 36 (69%) of these had ulcers (Rutherford classification 5 and 6). This number was proportionately higher than for Rutherford 0, 1, 2, 3, and 4 patients (p≤0.0001, Fisher’s Exact test). Patients with diabetes often have neuropathy, which impairs the sympathetic tone to the arterial vessels, causing impaired vasoconstriction and relative hyperaemia from arteriovenous shunting, and this could be a further reason for the higher oxygenation in patients classified as Rutherford 5 or 6.

Several limitations were identified in this study:

- The sample population was skewed towards patients with CLI. This might have affected the sensitivity of oxygenation measurements to the severity of PVD. Only two target points were chosen, one at the planter aspect of the first metatarsophalangeal joint of the diseased foot and the other on the contralateral limb. Each target covered a fixed area of 204 mm² 1 cm around a “target” in a doughnut contour. The average TcpO₂ values from two or more adjacent sites of an area are better predictors of healing potential than single site values. Sheffield et al typically assessed tissue oxygenation at six different sites simultaneously. One of the advantages of the OxyVu is that even when oxygenation is measured at a target point in a region of interest, the OxyVu software has the capability to quantify hyperspectral oxygenation beyond this point for an area of any size visible on the photograph by selecting the boundary on the computer touchscreen to detect potential ischaemic areas. The standardised method used in this study, even though it assessed a relatively small area, eliminated systematic bias attributable to the operator.
• The plantar angiosome chosen at the first metatarsophalangeal joint is covered by glabrous skin that is rich in arteriovenous anastomoses. This skin tissue has more oxygenation and is more reactive to changes in oxygenation than skin on other parts of the body. It is also a point that is easier to identify than, for example, the plantar arch or between the second and third metatarsophalangeal joints. However, the skin in this area can be particular thick. In some individuals, this skin can be pathologically hypertrophic, taking the form of calluses or corns. Calluses are common in patients with diabetic neuropathy because of continuous friction and are associated with less tissue oxygenation and a predisposition to formation of ulcers. OxyVu typically assesses skin 1–2 mm in depth, and how this might have affected the findings of the validation study is unknown.

• Although many of the correlation analyses were significant at \(p < 0.05 \), their clinical significance is unclear, given the relatively low correlation coefficient values.

• Patients with leg oedema were not excluded from the study. A skin surface with underlying leg oedema typically has less tissue oxygenation, precipitating the development of ulcers. There were few, if any, study participants with significant leg oedema. Therefore, leg oedema can be assumed not to be a confounding factor when comparing oxygenation values in this study.

• Hyperspectral oxygenation was not compared with laser angiography or laser Doppler flowmetry.
8.3 WOIOW study

This is the first study to investigate the effects of perioperative adjuncts in vascular surgery on tissue oxygenation and wound healing at a molecular level by analysis of OHP incorporation, growth factors, and trancutaneous oxygenation.

Despite evidence of the beneficial effects of high-dose oxygen and extended active warming on wound healing in abdominal surgery, no such evidence was found in this study. Was this due to a difference in microcirculation between vascular and non-vascular patients influencing wound healing potential and oxygen transport? Patients with vascular disease are prone to endothelial injury, which produces an imbalance in the release of thromboxane and leukotrienes. This imbalance, in turn, disrupts the local vasculature and impairs vasoregulation, causing capillaries to vasoconstrict irreversibly and become coagulopathic, resulting in “plugging”. In addition, patients with CLI often have peripheral neuropathy from ischaemia or diabetes. This might produce autonomic nerve dysfunction, where the capillaries fail to be vasoactive in response to tissue ischaemia, changes in temperature, and hostile conditions. The diseased capillaries remain “maximally dilated” as a compensatory response to the severity of ischaemia. Perhaps there is relative hypoxia secondary to increased oxygen demands and cell metabolism in patients with CLI? Or perhaps there is a difference in oxygen levels and redistribution of heat between the central and peripheral compartments?

Bair Hugger® devices were placed on all patients intraoperatively over the central compartment from the shoulders down the torso to the umbilicus, leaving the groins and lower limbs exposed. Heat loss is more significant in the peripheral compartments, including the lower limbs. The effects of such adjuncts may not enhance perfusion of the skin in the lower extremities in the intraoperative phase, which is considered to be the most important time in wound healing. Studying skin perfusion intraoperatively as part of this research would not have been possible for practical and sterility reasons.

Two major setbacks were encountered. First was the inability to complete the mRNA analyses for statistical analysis. In retrospect, it was an oversight that the methodology was not validated in the study design prior to patient recruitment. Purifying DNA from tissue samples was considered to be a well-established process and one that was carried out with appropriate supervision. Second, the study was underpowered, such that the target sample size of 100 patients with 25 patients in each arm was not achieved. This may have been due to a shift in
management of PVD at the unit where the research was carried out, whereby endovascular
interventions were becoming the first-line treatment, even for technically challenging lesions.
This was probably related to advances in technology, where products such as balloons and
stents are yielding increasingly promising results in terms of patency. Only 5 of the 85 patients
eligible for randomisation declined to participate in the study.

The sample size was calculated to detect a 25% absolute increase in OHP with 90% power at
a 5% level. The study did in fact achieve 80% power due to the small standard deviation in
the original study by Goodson and Hunt, where 12 patients would have been required in each
group. Aiming to detect a 25% absolute increase in OHP by day 5 in these treatment arms
could have been overly ambitious, and it may have been better to have focussed on one
treatment arm, ie, using one of the adjuncts alone or in combination. This would have provided
a better powered study, with more patients in each arm to reduce the risk of type 2 error. It
was believed that an absolute increase in OHP of 25% would have been a clinically realistic
endpoint to conclude improved wound healing as a result of the adjuncts used in this study.

There were some reasons why the adjuncts were ineffective. For example, even with a higher
circulating PaO₂ in the oxygen group during surgery, intraoperative arterial clamping may have
prevented the increased oxygen levels reaching the surgical wound site, which could result in
a prolonged period of ischaemia. Additionally, the warmed blood and intravenous fluid may
not have reached the lower limb during clamping. Perhaps the hypothesis of this study might
have been proven if the study population had included patients undergoing other vascular
procedures, such as major and distal amputations, which are also associated with a significant
incidence of wound complications but where the surgery does not involve arterial clamping.
Nonetheless, high-dose oxygen was applied throughout surgery and for 2 hours in recovery.
There was extended active warming 2 hours before and after surgery. Despite Ilomedin having
a short half-life of 30 minutes and haemodynamic effects of a similar duration, an infusion was
applied for 6 hours postoperatively. Considering the critical phase of wound healing is in the
immediate postoperative period, where accumulation of growth factors and cell proliferation
determine the potential for wound healing, the theoretical benefits of these adjuncts were not
invalid and, as mentioned previously, have benefited patients undergoing other types of
surgery.
While Goodson and Hunt demonstrated the presence of OHP on day 5, comparing OHP levels in this early period focussed on one single snapshot of the wound healing process, namely the inflammatory phase. The effects of these adjuncts might not have been significant until the proliferative phase, when there may be a higher type I to type III collagen ratio. However, implanting a prosthetic tube for a prolonged period of time would be ethically challenging in human clinical research because of the increased risk of wound and graft infections.

There appeared to be more OHP accumulation in the control group than in the treatment groups, although the difference was not statistically significant. This is not implausible, given that hypoxia induces angiogenesis and release of growth factors stimulating collagen synthesis, as well as release of reactive oxygen species during respiratory burst. An optimally balanced level of oxygen is then required to maintain this release, and a high level of oxygenation, such as in the setting of HBOT, enhances production of OHP. Future study of hypoxia-inducible factor 1 (HIF-1), a key growth factor in the regulation of oxygen homeostasis and cell metabolism in wound tissue, would provide insight into this.

Production of OHP was not influenced by transcutaneous oxygenation at the surgical incision site. This might have been because oxygenation measurements were made in the “peri-wound” area rather than inside the wound where granulation occurred. However, even though caution is needed when interpreting subanalyses of a secondary outcome, it was interesting to note that a pattern emerged with regard to change in tissue oxygenation in the foot and production of OHP. HTCOM at the foot (not the surgical wound) at day 5 appeared relatively more enhanced in the control group than in the oxygen and temperature groups, with a significant reduction in HT-Deoxy in the control group and in HT-Sat in the temperature group. This appeared to be consistent with the higher OHP and FGF-2 levels observed in the control group. The trends suggest that these adjuncts could in fact be harmful, at least in some patients.

Potential factors influencing production of OHP that were not standardised in this study include the patient’s hydration status, physical and mental stress levels, degree of wound inflammation (where there might be focal hyperaemia and vasodilation), degree of lymphatic injury causing tissue oedema, and the vasomotor response. Oxygen delivery can be affected by the vasomotor response. The length of the skin incision, the presence of “skin bridges”, and the placement of the conduit (subfascial or subcutaneous) should also have been compared.
OxyVu and TCOM were used to assess changes in transcutaneous oxygenation in the early postoperative phase. Oxygen saturation and blood flow in the lower limb increased after surgery, peaking around day 3; this was probably related to post-ischaemic hyperaemia and settled over time. The two systems measured two separate entities, i.e., OxyVu quantified oxyhaemoglobin and deoxyhaemoglobin, while TCOM measured TcpO$_2$ and carbon dioxide. It is important to note that technically these systems do not measure the wound oxygen tension but rather the oxygen tension in the skin surrounding the wound. This is a potential limitation, given that wound oxygenation is likely to be lower than that in the skin adjacent to the wound.

OxyVu was again shown to be an effective tool for assessing changes in skin perfusion and blood flow at the wound and foot in terms of post-revascularisation and comparison with TCOM and ABI. Despite this, the adjuncts do not appear to have provided added effects. Perhaps these adjuncts administered on day 0 should not be expected to have an effect on oxygenation at day 30.

Measuring changes in TcpO$_2$ before and after revascularisation can predict wound healing.285 A retrospective analysis was performed on the study data to determine the feasibility of utilising tissue oxygenation measurements following IIB surgery to predict vessel patency and limb loss. This can aid the decision as to whether revascularisation is adequate. Using receiver operating characteristic curve analyses, an HT-Deoxy level below 69.5 AU measured on day 5 could predict limb salvage with a sensitivity and specificity of 85.7% and 56.9%, respectively ($p=0.02$), while at the same level, it could predict secondary patency with a sensitivity of 70% and specificity of 59.5% ($p=0.03$). HT-Sum of more than 143.5 AU on day 5 could predict secondary patency with a sensitivity and specificity of 73.3% and 51.4%, respectively ($p=0.049$). These predictive abilities lacked specificity in this pilot study, and the model needs to be tested prospectively.

Wound complications following IIB remain a significant issue and a major cause of failed surgery. While the most influential period in terms of wound healing potential is the immediate perioperative phase, the three adjuncts used had neither beneficial nor detrimental effects on wound healing, tissue oxygenation, or clinical outcome. Perioperative high-dose oxygen and warming should still be used because of their benefits in terms of anaesthesia, maintaining normothermia, and coagulation, and to reduce the risks of SSI and cardiac events.160,358,359
8.4 Validation of FastScan™ and Silhouette Mobile™

Wound depth is an important factor in wound healing, such that a wound with a large surface area often has a better prognosis than a deep, small wound.410 This is why wound volume and depth measurements are considered to have merit. Current clinical methods for assessment of wound size, particularly depth, are often inadequate and inaccurate. Most clinicians prefer to use observational estimations or wound diameter measurements via tracing tools. FS and SM have been shown to be reliable in volumetric assessments.

Three-dimensional CT reconstruction has been considered the gold standard, partly due to the advantages of CT for visualisation of a wound in the sagittal plane, defining the air-wound interface, revealing bone erosion, and identifying the presence of undermined wound or inflammatory tissue below the peripheral border. The major limitations of CT relate to the quality of the reconstruction software and include the inability to obtain wound surface area measurements, inadequate capture of small and superficial wounds (Figures 8.2 and 8.3), and inaccuracies in assessment of wounds where the dimensions are affected by pressure or dependency. An example of this in the present study was patient 10, who had a large open wound on the stump following an above-knee amputation, where the wound was “squashed” when the patient was lying supine in the CT scanner (Figure 8.4). Scanning with the SM and FS was more flexible in that the patient could lie prone or in a lateral decubitus position, or the leg could be elevated by an assistant so the wound could lie freely.

While systematic bias appeared to exist for FS and SM measurements when compared to CT, the relevance of this is questionable. Systematic bias exists with all imaging modalities used in clinical practice, including CT, magnetic resonance imaging, and ultrasound. A consistent methodology in terms of the imaging modality used, steps in imaging acquisition, and patient positioning is critical when monitoring wound progression. The advantages and disadvantages of each system should be considered. Further validation studies should include measurement of cavities of known volumetric dimensions to reassess the accuracy of each device and the degree of systematic bias.
Figure 8. 2. Image from the Silhouette Mobile™ showing a small ulcer on the dorsal surface of the toe.

Figure 8. 3. Image from the Silhouette Mobile™ showing a small ulcer on the lateral dorsal surface of the foot.
Figure 8.4. Image from the Silhouette Mobile™ showing an open wound on an above-knee amputation stump.

The individual scanning times were fastest for CT and slowest for the FS. However, the data processing time was longest for CT and shortest for the SM. CT image measurements taken by more than one operator would have improved the quality control in this study.

This is the first study to validate use of the FS and SM in human subjects, and the first time that these devices have been used for research purposes. Some technical difficulties have been discussed already. A further difficulty was keeping patients still during the scanning procedure. Any patient movement would interfere with the final images, and therefore affect the measurements obtained.

The FS and SM were only useful for wounds that were not undermined, as deep wounds with small orifices could be underestimated using these devices. Further, the volume and depth measurements of the SM depended on the angles assumed by each operator, which varied according to the location of the wound. Wounds embedded in highly curved areas, e.g., a toe amputation stump or at the heel (Figure 8.4), were difficult to capture. The laser lines from the SM were often disrupted if there was no flat surface bordering the wound.

Several other factors might have affected the quality of the FS imaging:
1. The SM was more efficient than the FS for wound assessment because it produced surface area, volume, and depth measurements without the need for another programme or use of an external device (e.g., a computer), whereas the FS images had to be processed with the Delta software programme. This step itself added a new dimension of operator and/or software variability. Since the study was performed, ARANZ has made improved software available to the principal investigator for analysis of wound dimensions, so that images can be independently analysed in future studies.

2. The operators found it challenging to outline the wound boundary accurately using the optical stylus in the FS. This depended on the operator’s ability to maintain a steady hand and precisely click stylus points outlining the wound, which were visualised on the computer screen. The SM was more convenient because the wound boundary was outlined on the PDA screen. In the TNP study, the advice was to outline the wound completely with optical stylus points when using the FS, rather than using 6–8 landmarks. Because of inadequate stylus placements in the early scans, there were fewer FS images to analyse than those taken with the SM. This might also explain the difference in surface area measurements between the SM and FS. There was a definite learning curve for the operators. However, placing an excessive number of styluses around wounds could produce erroneous results, with the Delta software failing to accurately represent the wound edges.

3. Wounds containing blood and necrotic tissue appeared dark red, blue, or black in colour. The FS laser did not register black objects, resulting in “patches” and incomplete scans. Blood pooling within the wound would also lead to underestimation of wound depth and volume.

4. Metal interference from the electromagnetic transmitter-receiver field disrupted the final FS scans. All efforts were made to adjust for metal objects, mainly by using a wooden trolley to transport the FS unit. However, metal is found everywhere in a hospital environment, including in beds, trays, heaters, and various medical equipment. Despite this, the final images were not greatly affected, but ideally metal interference should be minimised to obtain the most accurate and consistent results.

5. Quality FS images required placement of the FS receiver for laser signals at a fixed point. Fastening the FS receiver in close proximity to the patient’s wound and finding a method to keep the receiver fixed onto the patient’s limb was difficult due to the delicate nature of the skin surrounding a wound. Scan quality also depended on the
lighting, the patient’s skin colour, and the laser speed, contributing to longer times being required to complete the scans.

The concepts behind FS appear to be technologically more advanced and accurate in assessing wound dimensions than CT or the SM. The entire wound bed was mirror-imaged in details of pixels from the wound boundary with the surrounding skin to the deepest crevices of the wound. The accompanying software could then assess the locations of each coordinate of the pixel, and from that, the dimensions of the cavity deficit could be extrapolated. This would appear superior to the SM, for which volumes were calculated from up to three “slices” of depth measurements across a wound, and the cavity was assumed to be of a conical shape. This might explain the consistent underestimation observed with the SM when compared with CT. Three-dimensional CT reconstruction is considered the “gold standard”, but its accuracy in assessing depth and volume depends on the thickness of the imaging slices, which was 1 mm in this study. FS imaging would appear to be more comprehensive. Perhaps FS assessments were more indicative of “true” volume than CT.

The ideal wound assessment device should provide quantitative, reproducible, and completely objective measurements. Both SM and FS provided quantitative recordings and proved to be reproducible with near-excellent operator reliability. Their measurements correlated strongly with those of CT if patient 10 was excluded from the analyses for FS. In the opinion of the operators, the discrepancy in depth measurement between FS and CT was an issue with CT rather than with FS.

CT, FS, and SM were all prone to subjective bias in their measurements. They are essentially three-dimensional imaging devices, and the operators had to actively outline the wound boundary over the computerised image. As discussed earlier, the quality of the measurements was software-dependent. All three modalities encountered a common problem that affected their accuracy, i.e., they all assumed that the skin surface of a healed wound would have a flat surface. This was commonly not the case, for example, at the heel, which has a semi-spherical surface, or the calf, which has a curved surface. However, this should not affect monitoring of the progress of wound healing.

Compared with the FS, the SM is possibly more cost-effective and time-efficient. The SM is also more portable than the FS, and the PDA can generate a report immediately without the need for further computer analysis. All data from the SM could be connected to the hospital
and/or Internet database, improving communication between clinicians. SM lasers were unaffected by metal objects, and the SM was slightly more precise and consistent than the FS when compared with CT. The relative values and digital images produced by the SM could indicate whether wounds were improving with treatment by generating graphical reports (Figure 8.5), whereas the FS could not. It is envisaged that the SM would be a helpful tool in podiatric clinics and hospital wards for wound monitoring and comparing wound intervention outcomes.

Use of CT as the gold standard for assessment of wound dimensions should be questioned. The FS and SM offered benefits as non-contact and effective portable devices for measuring wound dimensions without radiation risk, and convenience as a bedside technology. The SM is potentially more clinically valuable than the FS due to its lower cost. This study provides a basis for further research comparing the outcomes of interventions for wound healing. Since completion of the study, ARANZ has upgraded their SM model and named it Silhouette Star®.

Figure 8.5. Wound report using SM from one of the participants showing variation in volume over time.
8.5 Wound healing and tissue oxygenation in TNP therapy

Following the validation study of FS and SM, FS was chosen to assess the effects of TNP on wound healing rates. Technical issues using FS in the previous study were addressed to improve accuracy, and included placing multiple stylus points around the wound edges at the time of imaging. While the findings in the previous study suggested that the SM would be more practical at the bedside, the accuracy and reliability of the FS and SM were similar. In addition, the technology behind the FS was more advanced and more suited for this study.

This research became a pilot study rather than a powered randomised controlled trial as initially designed. Nevertheless, it represents the largest series of its type. Recruitment only lasted 12 months due to the time restraint on this project, and was slower than anticipated. Due to the relatively strict inclusion/exclusion criteria, there were significant numbers of dropouts and refusals to participate in the study.

However, this is the first clinical study in humans to investigate changes in wound volume following TNP therapy in vascular wounds over time using accurate and objective wound measurement devices like the FS. Compared with other volumetric studies of TNP therapy, this study compared TNP with modern traditional dressings such as hydrogels and hydrofibres rather than saline-soaked gauze dressings. It was not the intention of the study design to target diabetic foot wounds. All but two patients had a history of diabetes, while the remaining two had end-stage renal failure, which is associated with wound healing problems similar to those encountered in diabetes.

TNP therapy appeared to achieve a greater reduction in wound volume when compared with traditional dressings, although the difference was not statistically significant. TNP also achieved a greater relative reduction in maximum depth wound of 36% by day 14 compared with an 18% reduction using traditional dressings. As suggested in previous wound healing studies, “wounds heal from the bottom up”. Wound depth recovered at a faster rate than surface area. Volumetric findings in our study were similar to those of the four other studies described in Section 1.14.

Several patients had negative values for reduction in wound dimensions, implying an increase in wound size over time. In retrospect, the wound in one control patient was in fact “dying back” despite adequate proximal revascularisation, and the wound were surgically debrided
on day 17. Another patient in the TNP group had a forefoot wound that was over-granulating, rendering it difficult to interpret the wound dimensions when the skin surface extrapolated by the Delta software was constantly changing.

Biochemical analyses of granulation tissue and wound fluid provided an insight into the mechanisms behind TNP therapy at a molecular level. It appeared that more collagen and TGF-β were deposited in the wound bed on day 14 when compared with baseline in patients who had traditional dressings rather than TNP therapy. This might have important implications, and could suggest that while TNP therapy reduces the wound size at a greater rate, the reduction might not be a direct result of increased collagen deposition. Instead, it might be related to the macro-strain effects of TNP therapy, i.e., contracting wound edges and decreasing tissue oedema.

There were limitations to the biochemical analyses. Some of the technical issues encountered during the analyses of growth factors and cytokines were mentioned earlier. Even though assessment of accumulation of OHP as a surrogate marker of wound healing is a well-documented and validated technique, the method employed in this study was different, in that OHP levels were compared between day 0 and day 14. Implanting an ePTFE tube in a toe or forefoot wound over bony structures would have been impractical, especially when dressings were changed regularly.

It was hypothesised that optimal wound healing would rely on the balance between promoting growth factors and inhibitory cytokines based on previous animal studies. It was disappointing that biochemical analyses of VEGF, FGF-2, TNF-α, and IL-8 were not successful.

One of the shortcomings of the study design was that collection of wound fluid commenced on day 2 rather than on day 0. This was for quality control purposes. When designing the study, prior to encountering the issues with Milliplex®, the consensus was that the wound dressings on day 0 would usually be the dressings put on in theatre 24–48 hours earlier, typically an alginate dressing to complete haemostasis. This dressing might become saturated with clotted blood, contaminated with local anaesthetic agents or antiseptic solution, or infiltrated with tissue debris. Processing these dressings would not have provided a standardised sampling method for wound fluid to accurately assess wound healing dynamics at a molecular level.
Skin perfusion around the wound was not different between the two groups. However, skin perfusion in all patients decreased significantly by day 14. This is possibly a reflection of resolution of inflammation around the wound with less vasodilation. Again, this is another testament to the ability of OxyVu to detect changes in tissue oxygenation.

TNP therapy could be used for many wound types outside the field of vascular surgery. It is commonly used in plastics and burns surgery, as well as in abdominal surgery to facilitate wound closure and production of granulation tissue. It should be emphasised that this study focussed on patients who had compromised wound healing ability, including those with tissue ischaemia, those with diabetes, smokers, and patients with renal impairment.

This study provides some evidence that TNP therapy could enhance healing rates in diabetic foot wounds. While the study population might appear to have been heterogeneous in terms of comorbidities and location of the foot wound, it represented a realistic cohort of vascular patients, where evidence of added benefits in any part of the wound healing process would have a significant impact on morbidity, mortality, and cost to the health care system.
8.6 The future

This project has laid the foundations for larger studies that should be conducted in the future. Although quality human clinical studies were conducted, patient recruitment in both randomised studies was slower than expected, resulting in underpowered findings for the primary outcomes. While animal studies would have been a viable alternative, they would have been more costly to perform and their effects in animals could not be directly translated to humans.

It was difficult to obtain accurate estimates of the expected treatment effects from the previous published studies, and the patient groups were relatively heterogeneous. Because the treatments were quite labour-intensive, unless there was a large treatment effect (e.g., a 25% absolute increase in wound healing effects), the treatments would be unlikely to be of strong clinical interest, so these preliminary studies were powered accordingly. The practicalities of conducting research of this nature in a single centre were such that these studies should be viewed as novel pilot studies that can provide valuable information if further multicentre large-scale studies were to be planned to look for smaller treatment effects.

Although the WOIOW study was underpowered, the outcome demonstrated neither clinical nor non-clinical (e.g., biochemical) benefits from the interventions in terms of wound healing and tissue oxygenation. Thus, there seems little incentive to conduct a larger clinical trial of these quite costly and intensive treatments for only small benefit. Instead, further research should target a better understanding of the pathophysiology of wound healing, especially given that there was a trend of a better outcome in the control group.

If the two clinical studies in this thesis were to progress to adequately powered trials, sample size calculations should be revised. Again, power calculation would be difficult without adequate published work, but this could be achieved using data from this research. If one of the perioperative adjuncts were to be re-tested during IIB, or in combination, 224 patients would be required in each arm to test an absolute increase of 25% in OHP level at 80% power and a 5% significance level. Similarly, 106 patients would be required in each arm to test if TNP could reduce wound volume at 2 weeks by an additional 25% when compared with traditional dressings.
In the WOIOW study, although it was not significant, more collagen deposition was noted in the Ilomedin group than in the other treatment arms, suggesting that targeted intervention using Ilomedin could be investigated further. Given its multiple proposed roles in vasodilation, it is plausible that Ilomedin could improve perfusion, mediators of inflammation, and growth factors related to wound healing. The effects of extended active warming may also warrant further investigation, given the finding of a trend towards a higher graft patency rate at 12 months in comparison with the control group (81% vs 58%). While maintenance of graft patency involves many factors, some of which are related to postoperative care, there may be as yet unexplained effects related to perioperative active warming, such as reducing neointimal hyperplasia or a “low reflow” phenomenon.

One of the successes of this research is that it demonstrates the reliability of OxyVu in assessment of skin perfusion. In the absence of a gold standard and the technical challenges of other modalities, the OxyVu system could be developed further as a complementary diagnostic tool in the clinical setting. Larger-scale validation studies are needed to create a predictive model using ROC curve analysis. ABI is useful in patients with mild to moderate PVD, for differentiating between ischaemic and neurogenic claudication, and for assessment of changes in skin perfusion following revascularisation. However, it only provides information on the macrocirculation and may be unreliable in patients with calcified vessels. Toe pressure and TCOM can determine the potential for wound healing and whether hyperbaric oxygen therapy may be useful. However, these two methods (TCOM in particular) only afford a glimpse of the microcirculation, whereas the OxyVu has the advantage of being more flexible and practical in the way it gleaned the critical information required. Toe pressure measures skin perfusion of the toe as a surrogate marker of healing in the rest of the lower limb, while TCOM provides readings in an area the size of a ring. In contrast, the OxyVu produces instant quantitative readings and indicates specific regions of hypoperfusion in imaged areas of any size. Hypermed Inc., the manufacturer of the OxyVu, has now received FDA marketing approval for the HyperView™, which is the same system as the OxyVu but is designed to be more portable and user-friendly.

This research targeted arterial aspects of vascular surgery, such as infra-inguinal arterial bypass and management of arterial ulcers. However, there would be potential benefit in investigating tissue oxygenation and wound healing in venous disease. A recent summer studentship project supervised by the author investigated the effects of varicose vein surgery
(open surgery and laser therapy) and long-term compression therapy on tissue oxygenation in patients with chronic venous insufficiency, which was measured using the OxyVu. The findings were presented at the 2013 New Zealand Vascular Society meeting held in Auckland. The study showed an increased oxyhaemoglobin saturation (HT-Sat) following 28 days of compression stockings; this increase in HT-Sat in those who had compression alone was greater than those who had surgery alone. The benefits of varicose vein surgery and compression therapy for healing of venous ulcers can also be investigated using the FS and SM.
8.7 Conclusions

This thesis furthers our knowledge on tissue oxygenation and wound healing in vascular surgery. OxyVu is an innovative device that was used to measure a different component of tissue oxygenation. Its advantages were clear, i.e., its non-invasiveness, its flexibility in being able to image any area of the body, and its ability to provide instant real-time measurements within 15 seconds. Whilst the device has appeared promising since its release in 2006, there are limited studies on its use and reliability. This project purchased the first machine ever to be used outside the USA and validated its reliability, with promising results in determining tissue oxygenation in clinical settings.

Three perioperative adjuncts were studied during IIB surgery. The benefits of these adjuncts on wound healing and tissue oxygenation were not demonstrated.

The focus of this research was then shifted to studying wound volume, another marker of wound healing. Excellent inter-operator and intra-operator reliability was demonstrated for the FS and SM, with a strong correlation between these devices and CT.

Next, the effects of TNP therapy on tissue oxygenation and healing of diabetic foot wounds were investigated. While no differences were shown with regard to changes in OHP levels, growth factors, or tissue oxygenation, there was a significant reduction in maximum wound depth in patients who received TNP when compared with those who received traditional dressings at day 14, as well as a trend towards decreased wound volume and reduction in wound surface area. The impact of TNP in clinical practice would be significant. The findings of this research also support the concept of “wounds healing from the bottom up”, and therefore wound volume and depth should be a more important dimension for assessment than surface area. Although TNP is already widely used clinically for diabetic foot wounds, systematic reviews in the literature have concluded that there is insufficient scientific evidence of benefit and decisions to use TNP therapy by clinicians are often based on clinical equipoise.
9. Appendices

A.1 Definitions

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index (BMI)</td>
<td>Weight (kg)/Height(^2) (m(^2))</td>
</tr>
<tr>
<td>Acute presentation</td>
<td>Presented in emergency or semi-urgent settings (via emergency department or as an arranged admission (in contrast to an elective admission).</td>
</tr>
<tr>
<td>Active smoker</td>
<td>Someone who smoked >100 cigarettes in their lifetime and currently smokes at least monthly (as defined by the Ministry of Health, NZ)²⁴¹</td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>Someone who has smoked >100 cigarettes in their lifetime and does not currently smoke. (as defined by the Ministry of Health, NZ)²⁴¹</td>
</tr>
<tr>
<td>Non-smoker</td>
<td>Someone who has smoked <100 cigarettes in their lifetime and does not currently smoke. (as defined by the Ministry of Health, NZ)²⁴¹</td>
</tr>
<tr>
<td>Pack-years</td>
<td>One pack-year is the equivalent of 365.24 packs of cigarettes or 7,305 cigarettes. It is calculated by multiplying the number of packs of cigarettes smoked per day by the number of years the person has smoked.</td>
</tr>
</tbody>
</table>
| **Diabetes** | Diabetes mellitus is diagnosed by demonstrating any one of the following as per the WHO diagnostic criteria: **⁴¹¹**
 - Fasting plasma glucose level ≥ 7.0 mmol/l (126 mg/dl)
 - Plasma glucose ≥ 11.1 mmol/l (200 mg/dl) two hours after a 75 g oral glucose load
 - Symptoms of high blood sugar and casual plasma glucose ≥ 11.1 mmol/l (200 mg/dl)
 - HbA\(_{1C}\) ≥ 48 mmol/mol (≥ 6.5 DCCT %) |
| **Renal impairment** | eGFR<60ml/min/1.73m\(^2\) |
| **ESRF** | Patients with chronic kidney disease requiring renal replacement therapy (e.g. transplant or dialysis) |
| **Hypertension** | History of BP > 140/90mmHg on two occasions, or lower if on medication. |
| **Dyslipidaemia** | History of abnormal fasting lipid profile. |
| **Previous plasty** | Previous history of endovascular angioplasty +/- stenting |
Op length | Duration of surgery recorded in minutes
---|---
GA | General anaesthesia
ACS | Diagnosis of ST elevation myocardial infarction (STEMI), non-STEMI and unstable angina
LRTI | Lower respiratory tract infection.

A.1.2 Rutherford and Fontaine classifications

<table>
<thead>
<tr>
<th>Fontaine Stage</th>
<th>Clinical</th>
<th>Rutherford Grade</th>
<th>Category</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Asymptomatic</td>
<td>0</td>
<td>0</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>IIa</td>
<td>Mild claudication</td>
<td>I</td>
<td>1</td>
<td>Mild claudication</td>
</tr>
<tr>
<td>IIb</td>
<td>Moderate to severe claudication</td>
<td>I</td>
<td>2</td>
<td>Moderate claudication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>3</td>
<td>Severe claudication</td>
</tr>
<tr>
<td>III</td>
<td>Ischemic rest pain</td>
<td>II</td>
<td>4</td>
<td>Ischemic rest pain</td>
</tr>
<tr>
<td>IV</td>
<td>Ulceration or gangrene</td>
<td>III</td>
<td>5</td>
<td>Minor tissue loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III</td>
<td>6</td>
<td>Major tissue loss</td>
</tr>
</tbody>
</table>

Figure 9. 1. Rutherford and Fontaine classifications for peripheral vascular disease.

213
A.1.3 V-POSSUM

<table>
<thead>
<tr>
<th>Variable</th>
<th>One</th>
<th>Two</th>
<th>Four</th>
<th>Eight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td><60</td>
<td>61–70</td>
<td>>71</td>
<td>—</td>
</tr>
<tr>
<td>Cardiac status</td>
<td>Normal</td>
<td>Cardiac drugs or steroids</td>
<td>Odema, warfarin, borderline cardiomegaly</td>
<td>Increased JVP, cardiomegaly</td>
</tr>
<tr>
<td>Respiratory status</td>
<td>Normal</td>
<td>Dyspnoea on exertion; mild COPD</td>
<td>Limiting dyspnoea (one flight); moderate COPD</td>
<td>Dyspnoea at rest (RR > 30/min)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>110–130</td>
<td>131–170</td>
<td>>170</td>
<td><90</td>
</tr>
<tr>
<td>Pulse (b.p.m)</td>
<td>50–80</td>
<td>81–100</td>
<td>101–120</td>
<td>>120</td>
</tr>
<tr>
<td>Glasgow coma score</td>
<td>15</td>
<td>12–14</td>
<td>9–11</td>
<td><9</td>
</tr>
<tr>
<td>Haemoglobin (g/100 mL)</td>
<td>13–16</td>
<td>11.5–12.9</td>
<td>10.0–11.4</td>
<td><10.0</td>
</tr>
<tr>
<td>White cell count (x10^9)</td>
<td>4–10</td>
<td>10.1–20.0</td>
<td>20.0</td>
<td>—</td>
</tr>
<tr>
<td>Urea (mmol/L)</td>
<td><7.5</td>
<td>10.1–15.0</td>
<td>>15.0</td>
<td>—</td>
</tr>
<tr>
<td>Sodium (mmol/L)</td>
<td>136</td>
<td>131–135</td>
<td>126–130</td>
<td><126</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>3.5–5.0</td>
<td>3.2–3.4</td>
<td>5.4–5.9</td>
<td><5.9</td>
</tr>
<tr>
<td>Electrocardiogram</td>
<td>Normal</td>
<td>—</td>
<td>Atrial fibrillation (rate 60–90)</td>
<td>Any other abnormality</td>
</tr>
</tbody>
</table>

Figure 9.2. Physiological score for V-POSSUM.

<table>
<thead>
<tr>
<th>Variable</th>
<th>One</th>
<th>Two</th>
<th>Four</th>
<th>Eight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative severity</td>
<td>Minor</td>
<td>Intermediate</td>
<td>Major</td>
<td>Major+</td>
</tr>
<tr>
<td>Multiple procedures</td>
<td>1</td>
<td>2</td>
<td>>2</td>
<td>>1000</td>
</tr>
<tr>
<td>Total blood loss (mL)</td>
<td><100</td>
<td>101–500</td>
<td>501–999</td>
<td>Free bowel content, pus or blood</td>
</tr>
<tr>
<td>Peritoneal soiling</td>
<td>None</td>
<td>Minor (serous fluid)</td>
<td>Local pus</td>
<td>Distant metastases</td>
</tr>
<tr>
<td>Presence of malignancy</td>
<td>None</td>
<td>Elective</td>
<td>Nodal metastases</td>
<td>Emergency resuscitation of >2 h possible; operation < 24 h after admission</td>
</tr>
<tr>
<td>Mode of surgery</td>
<td>Elective</td>
<td>—</td>
<td>Emergency (immediate surgery <2 h needed)</td>
<td>—</td>
</tr>
</tbody>
</table>

Figure 9.3. Operative score for V-POSSUM.
A.2 Consent forms

A.2.1 Validation of OxyVu™

CONSENT TO RESEARCH STUDIES AND PROCEDURES

<table>
<thead>
<tr>
<th>Surname</th>
<th>Christian or given names</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHI No.</td>
<td>Sex</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I, ____________________________ (First/Last name)

have had explained to me by the investigator ____________________________ (or his/her representative) the nature and effects of the Research Study:

Validation of OxyVu™ - a Hyperspectral Transcutaneous Oxygenation Measurement System

- I have been provided with a Participant Information Sheet about the study which I have read and understood.
- I have understood and am satisfied with the explanations that I have been given and hereby consent to the participation in the above study.
- I understand that the study involves the following procedures:
 1. Brief history taking about general health
 2. A measurement of tissue oxygenation of both legs using OxyVu™ and TCM3 pO2 monitoring system in standardised conditions.
 3. Ankle Brachial Pressure Index and Pulse oximetry measurements on both limbs
 4. Your participation in the study ends following these measurements.
- I understand that the procedure may not be of any benefit to me, and that I may withdraw my consent at any stage without affecting my rights or the responsibilities of the investigator in any respect. I understand that should there be concerns regarding harms from participating from the study, I will be excluded from the study on the investigators' and/or doctors' advice.
- I understand the results of these studies may be published, but all the data is securely stored and my identity will be kept confidential. I understand that I can gain access to the results of the study by contacting my GP and/or Maori Health Advisors.
- I understand that the principal investigator will contact my GP informing him/her my participation in the study.
- I acknowledge that the trial has been approved by the Northern Y Ethics Committee (NTY/08/08/082)
- I declare that I am over the age of 18 years.

Signature: ______________________ Date: ______________________
Witness Signature: ______________________ Date: ______________________
Name of Witness: ______________________

13/03/2016 NTY/08/08/082 Version 1.0
A.2.2 WOIOW study

CONSENT TO RESEARCH STUDIES AND PROCEDURES

<table>
<thead>
<tr>
<th>Surname</th>
<th>Christian or given names</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHI No.</td>
<td>Sex</td>
<td>Age</td>
</tr>
</tbody>
</table>

I, __________________________ (First/ or Given names) __________________________ (Surname)
have had explained to me by the investigator __________________________ (or his/her representative) the nature and effects of the Research Study:

Effects of extended active Warming, high-dose peri-operative Oxygen and Ilomedin (PGI-2) on tissue Oxygenation and Wound healing. (WOIOW Study)

- I have been provided with a Participant Information Sheet about the study which I have read and understood.
- I have understood and am satisfied with the explanations that I have been given and hereby consent to the participation in the above study.
- I understand that the study involves the following procedures:
 1. Randomly allocated into one of four groups:
 a. Allocation to receive either 30% oxygen or 80% oxygen during my operation and for 2 hours afterwards via an oxygen mask.
 b. Allocation to receive either active warming during my operation and for 2 hours before and afterwards, or active warming during the operation alone.
 c. Allocation to receive iloprost during the operation and afterwards intravenously or a placebo solution.
 d. Allocation to our control group which is the settings of our current practice.
 2. A small ePTFE tube and a Cellstick® sponge will be implanted underneath the wound site during surgery, and be removed at day 5 following the operation.
 3. These implants will be stored in a refrigerator bank and sent anonymously to the biochemical department for analysis of wound healing.
 4. Review of surgical wounds in outpatient department by our team at 14 and 30-days.
 5. Your participation in the study ends 30 days after the operation.
- I understand that the procedure may not be of any benefit to me, and that I may withdraw my consent at any stage without affecting my rights or the responsibilities of the investigator in any respect. I understand that should there be concerns regarding harms from participating from the study, I will be excluded from the study on the investigators’ and/or doctors’ advice.
- I grant advance authorization for the storage and usage of my tissue specimen knowing this is solely for the purposes of the proposed study, with the understanding that their confidentiality nature will be fully protected.
- I understand the results of these studies may be published, but all the data is securely stored and my identity will be kept confidential. I understand that I can gain access to the results of the study by contacting my GP and/or Macot Health Advisors.
- I acknowledge that the trial has been approved by the Northern Y Ethics Committee (NTY/08/04/032)
- I declare that I am over the age of 18 years.

Signature: __________________________ Date: __________________________
Witness Signature: __________________________ Date: __________________________
Name of Witness __________________________

Version 1 11/03/2016 NTY/08/04/032
A.2.3 Validation of FastScan™ and Silhouette Mobile™

CONSENT TO RESEARCH STUDIES AND PROCEDURES

<table>
<thead>
<tr>
<th>Surname</th>
<th>Christian or given names</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHI No.</td>
<td>Sex</td>
<td>Age</td>
</tr>
</tbody>
</table>

I. ____________________________ ____________________________
(First/(or Given names) (Surname)

have had explained to me by the investigator ____________________________ (or his/her representative) the nature and effects of the Research Study:

Validation of Silhouette Mobile™ - A handheld wound measurement device.

- I have been provided with a Participant Information Sheet about the study which I have read and understood.
- I have understood and am satisfied with the explanations that I have been given and hereby consent to the participation in the above study.
- I understand that the study involves the following procedures:
 a. Measurement of wound dimensions using different methods
 b. I agree to undergoing one CT scan to measure the volume of the ulcer
 i. Yes (please circle)
 ii. No
 c. Your participation in the study ends following these measurements
- I understand that the procedure may not be of any benefit to me, and that I may withdraw my consent at any stage without affecting my rights or the responsibilities of the investigator in any respect. I understand that should there be concerns regarding harms from participating from the study, I will be excluded from the study on the investigators’ and/or doctors’ advice.
- I understand the results of these studies may be published, but all the data is securely stored and my identity will be kept confidential. I understand that I can gain access to the results of the study by contacting my GP and/or Maori Health Advisors.
- I acknowledge that the trial has been approved by the Northern Y Ethics Committee (NTY09/08/080)
- I declare that I am over the age of 18 years.

Signature: ____________________________ Date: ____________________________

Witness Signature: ____________________________ Date: ____________________________

Name of Witness ____________________________

Version 1 13/03/2016 NTY/08/04/032
A.2.4 Wound healing and tissue oxygenation in TNP therapy

CONSENT TO RESEARCH STUDIES AND PROCEDURES

<table>
<thead>
<tr>
<th>Surname</th>
<th>Christian or given names</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHI No.</td>
<td>Sex</td>
<td>Age</td>
</tr>
</tbody>
</table>

I, ____________________________
(First or Given names) (Surname)

have had explained to me by the investigator ____________________________ (or his/her representative) the nature and effects of the Research Study:

Volumetric and Growth Factors Assessment of Negative Pressure Wound Therapy

- I have been provided with a Participant Information Sheet about the study which I have read and understood.
- I have understood and am satisfied with the explanations that I have been given and hereby consent to the participation in the above study.
- I understand that the study involves the following procedures:
 1. Randomly allocated into one of two groups:
 a. Allocation to our treatment group where you will receive continuous VAC therapy until your wound has healed or when your surgeon or wound nurse specialist feel satisfied with the progress of the healing wound.
 b. Allocation to our control group where you will receive traditional wound dressings until your wound has healed or when your surgeon or wound nurse specialist feel satisfied with the progress of the healing wound.
 2. Your wound will be reviewed every 48 hours and wound volumes and tissue oxygenation measurements will be measured.
 3. Wound fluid from the dressings and the VAC machine will be collected.
 4. The fluid will be stored in a refrigerator bank and sent anonymously to the biochemical department for analysis of wound healing. This may be returned to you at your request should you decide to withdraw and the samples are not analysed.
 5. Review of surgical wounds in outpatient department by our team at day 14 if you are discharged before 14 days of dressings.
 6. Your participation in the study ends at 14 days.
- I understand that the procedure may not be of any benefit to me, and that I may withdraw my consent at any stage without affecting my rights or the responsibilities of the investigator in any respect. I understand that should there be concerns regarding harms from participating from the study, I will be excluded from the study on the Investigators’ and/or doctors’ advice.
- I grant advance authorization for the storage and usage of my tissue specimen knowing this is solely for the purposes of the proposed study, with the understanding that their confidentiality nature will be fully protected.
- I understand the results of these studies may be published, but all the data is securely stored and my identity will be kept confidential. I understand that I can gain access to the results of the study by contacting my GP and/or Maori Health Advisors.
- I acknowledge the trial is approved by Northern Y Ethics Committee (NTY/08/11/104)
- I declare that I am over the age of 18 years.

Signature: ____________________________ Date: ____________________________
Witness Signature: ____________________________ Date: ____________________________
Name of Witness: ____________________________

Version 1 13/03/2016 NTY/08/04/032
A.3 Study information sample (from WOIOW study)

A.3.1 Patient information sheet

Participant Information Sheet

Effects of extended active Warming, high-dose peri-operative Oxygen and liomedin (PGl-2) on tissue Oxygenation and Wound healing. (WOIOW Study)

Welcome

Thank you for your interest in participating in our study. We invite people like yourself who are about to undergo bypass surgery on the arteries of the legs. Your participation is entirely voluntary. You have the right to withdraw at any time. If you decide not to participate in the study, you can do so freely without fear of prejudice to future treatment.

What is the study about?

Poor wound healing can develop following the type of surgery you are about to undergo. Such complications can cause discomfort, pain, fever, graft infection, and can make you unwell resulting in longer hospital stay and an increased medical and financial input from our health system. This is why we should find ways to reduce wound complications.

Oxygen is the main nutrient for wound healing. It helps the enzymes that are responsible for wound healing, such as hydroxylase, function more efficiently. For some types of surgery, giving extra oxygen during surgery can reduce the chance of wound infections.

The environment for wound healing is as important as its nutrients. Ways to increase the blood supply to the wound can theoretically improve wound healing. Iloprost is a drug we give into the blood stream usually for people who has significant peripheral vascular disease like yourself, and sometimes during the operation you are about to have. It causes the little blood vessels around the wound to dilate increasing the blood supply.

We know body temperature is an important factor in wound healing too. A minor drop in temperature can cause your blood vessels to constrict, which delivers less oxygen to the wound. This may reduce the amount of granulation tissue produced in wound healing.

We know that we can measure the degree of wound healing by implanting a safe artificial material, such as an ePTFE tube, under the skin which can be removed at a later stage, for example 5 days. The amount of the granulation accumulated during this time can be analysed by measuring a marker called hydroxyproline.

Other ways to learn about the wound environment, such as examining tissue oxygenation and various growth factors, may provide us additional information about the wound healing process. This can be achieved by measuring the amount of oxygen supplying the wound tissue using a machine which takes an "oxygen-map" of your leg. We can also implant another safe artificial material, called Cellstick®, into the wound, which will collect the fluid accumulated around the wound. This fluid can be sent to the biochemical department to measure the growth factors from the healing tissues.

Version 1 11/03/2016
What is going to happen if I decide to participate?

If you decide to participate, we will collect some basic background information about yourself. We will also have to do some blood tests which are routine.

You will then be allocated to one of the treatment groups by a process called randomisation which will ensure that there is an equal chance of you being allocated to any of the four groups. You will not be told which group you have been placed.

The “control” group will follow current clinical standards. This group is designed to show what normally happens. You will receive 30% oxygen during the operation and for two hours afterwards. It is normal to give you more oxygen than what is in the air (21%) in order to make sure that you are getting enough. You will receive an air mattress called Bair Hugger® which pumps warm air at 40°c during the operation. You will also receive an extra drip of normal saline solution at the end of the operation that acts as a placebo.

The “oxygen” group will receive 80% oxygen during the operation and for two hours afterwards. This is a higher concentration of oxygen than normally given. We want to know whether this will improve wound healing. You will still receive the air mattress and the extra drip of placebo normal saline solution.

The “temperature” group will be given 30% oxygen. You will receive an air mattress 2 hours before and after the operation as well as during the operation. You will be given an extra drip of placebo normal saline solution.

The “iloprost” group will receive 30% oxygen and the air mattress during the operation. However, you will be given an injection of a small dose of iloprost into your new bypass graft during the operation. You will also receive some more iloprost after the surgery.

Before the end of your operation, we will place a small ePTFE tube and a small Cellstitch® sponge underneath the skin of your wound. We will remove these implants for you in 5 days either in the ward or in an outpatient clinic and place a suture on your skin to close this wound. These implants will be stored in a refrigerator anonymously and sent to the laboratory to analyse the wound fluid and granulation tissues. We can assure you the tissue samples will be used solely for the purposes of the study.

Our principal investigator will keep a close eye on your wound during your stay and in outpatient clinic on day 5, 14 days and 30 days. We will also remove the remaining suture on your wound during the clinic in 14 days. After the appointment at 30-days, you will reach the end of our study period and will be seen in outpatient clinics at the discretion of your treating surgeon.

If you notice a problem with your wound, you should see your GP at once who should contact the principal investigator immediately. A wound swab may be taken if it becomes infected. We may also have to remove the ePTFE implant if infection is close to its site.
What is your Cultural and Social Responsibility (Treaty of Waitangi)?

We welcome your participation in our study irrespective of your ethnicity and cultural backgrounds. We will assure all participants will be treated equally and their cultural beliefs will be respected and protected.

Is there any benefits or harm if I participate in the study?

Participating in this study may not specifically benefit you, but it would help us to provide evidence whether any of these treatments are beneficial. There should be no particular reasons for prolonging your stay in hospital from participating in our study.

It is important you are aware that the operation and all aspects of your care before and after the surgery will be conducted in the usual manner. The only differences are that if you decide to be involved in the study, you may receive either extra oxygen or warming during surgery and two hours after the surgery, or receive additional iloprost during and after the operation. In addition, we would implant a small ePTFE tube and a Cellstick® sponge underneath the skin of your wound during the operation and take it out in 5 days.

Is it safe for me to participate?

The concentrations of oxygen you will breathe for the duration of the operation and for 2 hours afterwards are not dangerous. There are no known side effects from oxygen inhalation at the levels used in this study. Long term exposure of more than 24 hours to very high concentrations of oxygen can have detrimental effects. You will not be given oxygen in a way to make you at risk of this type of damage, nor will you be given insufficient oxygen to place your health in danger. In fact, others who have researched on high dose oxygen therapy have shown that it may actually reduce nausea and vomiting as well as the amount of pain people experience following surgery. There is no known harm in giving you the extra warmth during surgery you are about to go through. You may however experience some side effects from the iloprost, in particular headache, nausea and a drop in blood pressure (please refer to Ilaprost leaflet.). You should let us know if you had any reactions to iloprost in the past.

We can also assure you that the implanted ePTFE and Cellstick® are safe and would be placed in and be removed in a sterile manner to prevent infections. The implants may, however, cause mild discomfort, possible reaction or infection at the surrounding tissue. Nylon sutures, which are used to close the wound following removal of the implants, are employed routinely for the purpose of skin closure.

In the event that complications occur as a direct result of the study, our surgical unit is responsible to provide the necessary medical care available to you under ACC.
Will my personal information be protected?

All data containing personal information will remain confidential and stored in a password-safe database programme with access only available to our research team. The information will be destroyed 10 years after the conclusion of the study. No information which could lead to identification of any individual will be released.

Is there anything else I should be aware of?

If you are participating in any other research study, you must inform us. In the event that you should need medical care or emergency surgery, your participation in our study must be disclosed to the doctor.

You may wish to contact your GP and/or your Maori Health Advisor if you would like to know about the result of our study. We shall post you a copy of our published paper once the study is complete.

The Northern Y Ethics Committee has approved this study on the XX/XX/2007.
(Reference: NTY/08/04/032)

If you have any questions or concerns about your rights as a participant in this research study, you can contact an independent health and disability advocate. This is a free service provided under the Health and Disability Commissioner Act.

Telephone (NZ wide): 0800 555 050
Fax (NZ wide): 0800 27877678 (0800 2 SUPPORT)
Email (NZ wide): Advocacy@hdc.org.nz.

Should you require further details about the study or if English is not your primary language, you may contact our principal investigator, Dr. Chiang, at the Vascular Surgical Unit in Waikato Hospital at:
Vascular Office, Level 4,
Waikato Hospital Campus,
Pembroke & Selwyn Sts,
Hamilton, New Zealand.
Phone: 07 839 8899
Email: N.chiang@doctors.org.uk

Thank you.

Yours Sincerely

Nathaniel Chiang
Lecturer in Surgery
Vascular Surgical Registrar
Waikato Hospital

Version 1 11/03/2016
A.3.2 For the control group

WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE WARD NURSES

Thank you for assisting in the WIOD study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery.

Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- "Oxygen" group (FiO₂ 80%),
- "Temperature" group (FiO₂ 30% with pre-operative and post-operative warming)
- "Iliomedin" group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

"Control Group"

Your role is to ensure:

- the instructions laid out below are followed,
- Bair Hugger® is NOT turned on prior surgery

Instructions

☐ All the pre-operative preparation is per usual for infra-inguinal bypass surgery.
☐ Please measure the height and weight of the patient and record below.

Height: _____cm Weight: _____kg

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE ANAESTHETIST

Thank you for assisting in the WIOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming)
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Control Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the oxygen is administered at 30%,
- Bair Hugger® and Fluid Warmer are only turned on during surgery
- Complete the datasheet on the other page.

Please contact us and exclude the patient if there is:

☐ history of or suspicions of COPD with CO₂ retention
☐ history of previous Bleomycin exposure
☐ use of corticosteroids or immunosuppressants 4 weeks prior surgery
☐ any reason that you feel the patient should not be recruited.

Instructions

☐ Anaesthesia should be induced in the usual manner.
☐ If possible, AVOID administering dexamethasone.
☐ FiO₂ should be set at 30% and maintained throughout surgery after anaesthesia.
☐ Standard antibiotics prophylaxis on induction and continue for 24 hours (1g i.v. Cephazolin b.d if MRSA).
☐ Bair Hugger® should be switched on at 43°C (Level "high") intra-operatively and all IV Fluids should be warmed.
☐ Surgery should be performed in the manner preferred by the surgeon.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
Tissue Oxygenation and Wound Healing in Vascular Surgery

Core temperature should be recorded every 30 minutes while the patient is anesthetised.

If the temperature exceeds 37.0°c, the Bair Hugger® should be turned down to maintain temperature less than 37.0°c.

Changes in FiO₂ will be allowed at the completion of the operation when the patient’s anaesthesia is reversed.

During the first two hours post-operatively, FiO₂ should be maintained at 30%.

Fluid and pain management should be given at your discretion.

Please deliver this datasheet to the recovery nurse to continue temperature recordings.

DATASHEET

Anaesthesia (Please circle)
- General / Regional

Before knife to skin:
- Pulse:
- Blood Pressure:
- Type of Antibiotic used:
- Dose:

Cardiac Status:
- Normal
- Cardiac drug or steroids
- Oedema, warfarin, borderline cardiomegaly
- Raised JVP, Cardiomegaly

Respiratory:
- Normal
- Dyspnoea on Exertion, Mild COPD
- Limiting SOB, Moderate COPD
- SOB at rest (RR >30/min)

<table>
<thead>
<tr>
<th>Core temperature</th>
<th>Before:</th>
<th>120 mins</th>
<th>150 mins</th>
<th>180 mins</th>
<th>210 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mins</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 mins</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 mins</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Length of Surgery:

Estimated Blood Loss:

Did the patient require FiO₂ >40% or <20% intra-operatively to maintain oxygen saturation (excluding during reversal)?

Yes / No

In Recovery

<table>
<thead>
<tr>
<th>Core temperature</th>
<th>Immediate after OT</th>
<th>90 mins</th>
<th>120 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mins after</td>
<td>°C</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>60 mins</td>
<td>°C</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE SURGEON

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infrainguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming),
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Control Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the ePTFE tubing and PVA sponge are implanted at the knee wound subcutaneously prior closure

Instructions

☐ Chloroprep (Chlorhexidine and alcohol) will be used as the standardised skin prep.

☐ Surgery should be performed in the usual manner.

☐ Prior to skin closure, a 5 cm length of 3mm diameter ePTFE tubing and 1 cm³ of viscose cellular sponge should be implanted entirely subcutaneously parallel to the wound incision. The location is standardised at the distal end of the incision close to the knee.

☐ A 3/0 ethilon suture should secure on the distal end of the implants. The ends of the suture should be left long and exposed on the skin with the entire implants buried subcutaneously. The ends should be taped onto the skin with steristrip.

☐ The wound at the knee should be closed in your preferred manner. However, leave a 5mm gap on the distal end of the wound which should be approximated by steristrip. The gap will be used later to extract the implant.

☐ DO NOT PULL ON THESE SUTURES OR REMOVE THESE IMPLANTS.

☐ Be aware the patient will undergo scans with the OxyVu machine and have their wounds reviewed every other day following surgery.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE THEATRE NURSE

Thank you for assisting in the WOLOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming)
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Control Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the PTFE tubing and PVA sponge is delivered,
- Bair Hugger® and Fluid Warmer are only turned on during surgery.

Instructions

☐ All preparation is as usual for infra-inguinal bypass surgery.

☐ Ensure the room temperature is set at 21°C.

☐ Ensure you have received one sterile 3mm x 5cm ePTFE tubing and a 1cm PVA sponge.

☐ Add an extra 3/0 ethilon suture and steristrip to the trolley. This will be used to secure the implants on the skin.

☐ The surgeon will use Chloroprep (Chlorhexadine with alcohol) as skin preparation. This has been agreed with all surgeons.

☐ Be aware that the patient has two implants placed underneath the skin wound around the knee secured by sutures and steristrip following surgery. DO NOT PULL ON THESE SUTURES OR REMOVE THESE IMPLANTS. These are to collect tissue for biochemical analyses.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE RECOVERY NURSE

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and iomiedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO2 80%),
- “Temperature” group (FiO2 30% with pre-operative and post-operative warming),
- “Iomedin” group (FiO2 30% with iomiedin injected endoluminally intra-operatively),
- Control group.

Your Patient has been allocated to the:
“Control Group”

Your role is to ensure:

- the instructions laid out below are followed,
- Ensure 30% of Oxygen is delivered via the Bird’s Blender during recovery.

Instructions

☐ Ensure a Bird’s oxygen Blender and a high concentration rebreather oxygen mask (Salter Labs) are available prior to patient arrival.

☐ Bird Blender should be set at 30% and maintained at this level for 2 hours. If the oxygen saturation drops <92%, seek medical help.

Commmenced: ________________ To Finish at: ________________

☐ Collect datasheet from the anaesthetist and continue measuring core temperature every 30 minutes for the first 2 hours using a tympanic thermometer.

☐ Ensure the Bair Hugger® and Fluid warmer is now turned off when arrive in recovery.

☐ Inform the post-operative ward nurses (commonly from HDU) that the patient is participating in the study and to turn off the Bird’s Blender after 2 hours.

☐ After two hours patients will breathe ambient room air or supplemental oxygen as required to maintain oxygen saturation above 92%.

☐ Leave information sheets and datasheets in the notes to be collected by the investigator.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
A.3.3 For the oxygen group

WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE WARD NURSES

Thank you for assisting in the WOICW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming)
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Oxygen Group”

Your role is to ensure:

- the instructions laid out below are followed,
- Bair Hugger® is NOT turned on prior surgery

Instructions

☐ All the pre-operative preparation is per usual for infra-inguinal bypass surgery.
☐ Please measure the height and weight of the patient and record below.

Height: _____ cm Weight: _____ kg

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE ANAESTHETIST

Thank you for assisting in the WOiOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming),
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively),
- Control group.

Your Patient has been allocated to the:

“Oxygen Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the oxygen is administered at 80%,
- Bair Hugger® and Fluid Warmer are only turned on during surgery
- Complete the datasheet on the other page.

Please contact us and exclude the patient if there is:

- history of or suspicions of COPD with CO₂ retention
- history of previous Bleomycin exposure
- use of corticosteroids or immunosuppressants 4 weeks prior surgery
- any reason that you feel the patient should not be recruited.

Instructions

- Anaesthesia should be induced in the usual manner.
- If possible, AVOID administering dexamethosone.
- FiO₂ should be set at 80% and maintained throughout surgery after anaesthesia.
- Standard antibiotics prophylaxis on induction and continue for 24 hours (1g i.v. Cephazolin 8 hourly or 1g i.v. Vancomycin b.d if MRSA).
- Bair Hugger® should be switched on at 43°C (Level “high”) intra-operatively and all IV fluids should be warmed.
- Surgery should be performed in the manner preferred by the surgeon.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
Core temperature should be recorded every 30 minutes while the patient is anesthetised.

If the temperature exceeds 37.0°C, the Bair Hugger® should be turned down to maintain temperature less than 37.0°C.

Changes in FiO₂ will be allowed at the completion of the operation when the patient’s anaesthesia is reversed.

During the first two hours post-operatively, FiO₂ should be maintained at 80%.

Fluid and pain management should be given at your discretion.

Please deliver this datasheet to the recovery nurse to continue temperature recordings.

DATASHEET

Anaesthesia *(Please circle)*: General / Regional

Before knife to skin:
- Pulse: ________ min
- Blood Pressure: ________ / ________
- Type of Antibiotic used: ________ Dose: ________

Cardiac Status: (Please tick)
- Normal
- Cardiac drug or steroids
- Oedema, warfarin, borderline cardiomegaly
- Raised JVP, Cardiomegaly

Respiratory:
- Normal
- Dyspnoea on Exertion, Mild COPD
- Limiting SOB, Moderate COPD
- SOB at rest (RR >30/min)

<table>
<thead>
<tr>
<th>Core temperature</th>
<th>Before:</th>
<th>120 mins</th>
<th>150 mins</th>
<th>180 mins</th>
<th>210 mins</th>
<th>240 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mins</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 mins</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 mins</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Length of Surgery: ________ mins

Estimated Blood Loss: ________ mls

Did the patient require FiO₂ >40% or <20% intra-operatively to maintain oxygen saturation (excluding during reversal)?

Yes / No

In Recovery

<table>
<thead>
<tr>
<th>Core temperature</th>
<th>Immediate after OT</th>
<th>90 mins</th>
<th>120 mins</th>
<th>240 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mins after</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td>60 mins</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE SURGEON

Thank you for assisting in the WOLOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- Oxygen group (FiO₂ 80%)
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming)
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the: “Oxygen Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the ePTFE tubing and PVA sponge are implanted at the knee wound subcutaneously prior closure

Instructions

☐ Chloroprep (Chlorhexidine and alcohol) will be used as the standardised skin prep.

☐ Surgery should be performed in the usual manner.

☐ Prior to skin closure, a 5 cm length of 3mm diameter ePTFE tubing and 1 cm² of viscose cellular sponge should be implanted entirely subcutaneously parallel to the wound incision. The location is standardised at the distal end of the incision close to the knee.

☐ A 3/0 ethilon suture should secure on the distal end of the implants. The ends of the suture should be left long and exposed on the skin with the entire implants buried subcutaneously. The ends should be taped onto the skin with steristrip.

☐ The wound at the knee should be closed in your preferred manner. However, leave a 5mm gap on the distal end of the wound which should be approximated by steristrip. The gap will be used later to extract the implant.

☐ DO NOT PULL ON THESE SUTURES OR REMOVE THESE IMPLANTS.

☐ Be aware the patient will undergo scans with the OxyVu machine and have their wounds reviewed every other day following surgery.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE THEATRE NURSE

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming)
- “Iloemedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Oxygen Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the PTFE tubing and PVA sponge is delivered,
- Bair Hugger® and Fluid Warmer are only turned on during surgery.

Instructions:

- □ All preparation is as usual for infra-inguinal bypass surgery.
- □ Ensure the room temperature is set at 21°C
- □ Ensure you have received one sterile 3mm x 5cm ePTFE tubing and a 1cm PVA sponge.
- □ Add an extra 3/0 ethilon suture and steristrip to the trolley. This will be used to secure the implants on the skin.
- □ The surgeon will use Chloroprep (Chlorhexadine with alcohol) as skin preparation. This has been agreed with all surgeons.
- □ Be aware that the patient has two implants placed underneath the skin wound around the knee secured by sutures and steristrip following surgery. DO NOT PULL ON THESE SUTURES OR REMOVE THESE IMPLANTS. These are to collect tissue for biochemical analyses.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFGRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE RECOVERY NURSE

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- "Oxygen" group (FiO₂ 80%),
- "Temperature" group (FiO₂ 30% with pre-operative and post-operative warming),
- "Ilomedin" group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively),
- Control group.

Your Patient has been allocated to the:

"Oxygen Group"

Your role is to ensure:

- the instructions laid out below are followed,
- Ensure 80% of Oxygen is delivered via the Bird’s Blender during recovery.

Instructions:

☐ Ensure a Bird’s oxygen Blender and a high concentration rebreather oxygen mask (Salter Labs) are available prior to patient arrival.

☐ Bird Blender should be set at 80% and maintained at this level for 2 hours. If the oxygen saturation drops <92%, seek medical help.

Commenced: ________________ To Finish at: ________________

☐ Collect datasheet from the anaesthetist and continue measuring core temperature every 30 minutes for the first 2 hours using a tympanic thermometer.

☐ Ensure the Bair Hugger® and Fluid warmer is now turned off when arrive in recovery.

☐ Inform the post-operative ward nurses (commonly from HDU) that the patient is participating in the study and to turn off the Bird’s Blender after 2 hours.

☐ After two hours patients will breathe ambient room air or supplemental oxygen as required to maintain oxygen saturation above 92%.

☐ Leave information sheets and datasheets in the notes to be collected by the investigator.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
A.3.4 For the Ilomedin® group

WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE WARD NURSES

Thank you for assisting in the WOICRN study which looks at the effects of peri-operative warming, high-dose oxygen and Ilomedin on tissue oxygenation and wound healing in infrainguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:
- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming)
- “Ilomedin” group (FiO₂ 30% with Ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Ilomedin Group”

Your role is to ensure:
- the instructions laid out below are followed,
- Bair Hugger® is NOT turned on prior surgery

Instructions

- All the pre-operative preparation is per usual for infra-inguinal bypass surgery.
- Please measure the height and weight of the patient and record below.

 Height: ______cm
 Weight: _____kg

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE ANAESTHETIST

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomédin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming),
- “Ilomédin” group (FiO₂ 30% with ilomédin injected endoluminally intra-operatively),
- Control group.

Your Patient has been allocated to the:

“Ilomédin Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the oxygen is administered at 30%,
- Bair Hugger® and Fluid Warmer are only turned on during surgery
- The remaining dose of the ilomédin is administered
- Complete the datasheet on the other page.

Please contact us and exclude the patient if there is:

- history of or suspicions of COPD with CO₂ retention
- history of previous Bleomycin exposure
- use of corticosteroids or immunosuppressants 4 weeks prior surgery
- any reason that you feel the patient should not be recruited.

Instructions

- Anaesthesia should be induced in the usual manner.
- If possible, AVOID administering dexamethasone.
- FiO₂ should be set at 30% and maintained throughout surgery after anaesthesia.
- Standard antibiotics prophylaxis on induction and continue for 24 hours (1g i.v. Cephazolin 8 hourly or 1g i.v. Vancomycin b.d if MRSA).
- Bair Hugger® should be switched on at 43°C (Level “high”) intra-operatively and all IV Fluids should be warmed.
- Surgery should be performed in the manner preferred by the surgeon.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
Core temperature should be recorded every 30 minutes while the patient is anesthetised.

- If the temperature exceeds 37.0°C, the Bair Hugger® should be turned down to maintain temperature less than 37.0°C.

- Commence intravenous infusion of the remaining ilomedin at 10ml/hr at the end of surgery.

- Changes in FiO₂ will be allowed at the completion of the operation when the patient’s anaesthesia is reversed.

- During the first two hours post-operatively, FiO₂ should be maintained at 30%. Fluid and pain management should be given at your discretion.

- Please deliver this datasheet to the recovery nurse to continue temperature recordings.

Datasheet

Anaesthesia *(Please circle)*: General / Regional

Before knife to skin:
- Pulse: ___________ min
- Blood Pressure: ___________/__________
- Type of Antibiotic used: ___________ Dose: ___________

Cardiac Status: *(Please tick)*
- Normal
- Cardiac drug or steroids
- Oedema, warfarin, borderline cardiomegaly
- Raised JVP, Cardiomegaly

Respiratory: *(Please tick)*
- Normal
- Dyspnoea on Exertion, Mild COPD
- Limiting SOB, Moderate COPD
- SOB at rest (RR > 30/min)

<table>
<thead>
<tr>
<th>Core temperature</th>
<th>Before:</th>
<th>30 mins</th>
<th>60 mins</th>
<th>90 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td>120 mins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 mins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 mins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210 mins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Length of Surgery: ___________ mins

Estimated Blood Loss: ___________ mls

Did the patient require FiO₂ >40% or <20% intra-operatively to maintain oxygen saturation (excluding during reversal)?

Yes / No

In Recovery

<table>
<thead>
<tr>
<th>Core temperature</th>
<th>Immediate after OT</th>
<th>30 mins after</th>
<th>60 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td>90 mins</td>
<td></td>
<td>120 mins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120 mins</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE SURGEON

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming),
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:
“Ilomedin Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the ePTFE tubing and PVA sponge are implanted at the knee wound subcutaneously prior closure
- 3000ng of ilomedin is injected endoluminally during procedure

Instructions

☐ Chloroprep (Chlorhexidine and alcohol) will be used as the standardised skin prep.
☐ Surgery should be performed in the usual manner.
☐ At the end of anastomoses, inject 3000ng ilomedin endoluminally into the bypass graft using an 18 gauge cannula.
☐ Prior to skin closure, a 5 cm length of 3mm diameter ePTFE tubing and 1 cm³ of viscose cellular sponge should be implanted entirely subcutaneously parallel to the wound incision. The location is standardised at the distal end of the incision close to the knee.
☐ A 3/0 ethilon suture should secure on the distal end of the implants. The ends of the suture should be left long and exposed on the skin with the entire implants buried subcutaneously. The ends should be taped onto the skin with steristrip.
☐ The wound at the knee should be closed in your preferred manner. However, leave a 5mm gap on the distal end of the wound which should be approximated by steristrip. The gap will be used later to extract the implant.
☐ DO NOT PULL ON THESE SUTURES OR REMOVE THESE IMPLANTS.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE THEATRE NURSE

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming),
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Ilomedin Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the PTFE tubing and PVA sponge is delivered,
- Bair Hugger® and Fluid Warmer are only turned on during surgery.
- the ilomedin is prepared

Instructions

☐ All preparation is as usual for infra-inguinal bypass surgery.

☐ Ensure the room temperature is set at 21°C

☐ Ensure you have received one sterile 3mm x 5cm ePTFE tubing and a 1cm PVA sponge.

☐ Add an extra 30 ethilon suture and steristrip to the trolley. This will be used to secure the implants on the skin.

☐ Prepare 50μg (micrograms) ilomedin with 250ml normal saline. Titrate 3000ng (nanogram) ilomedin in 15ml normal saline with a separate syringe attached to a 18 gauge cannula. This is to be injected into the graft during surgery.

☐ DO NOT DISPATCH the remaining Ilomedin. It will be infused intravenously post-operatively.

☐ The surgeon will use Chloroprep (Chlorhexadine with alcohol) as skin preparation. This has been agreed with all surgeons.

☐ Be aware that the patient has two implants placed underneath the skin wound around the knee secured by sutures and steristrip following surgery. DO NOT PULL ON THESE SUTURES OR REMOVE THESE IMPLANTS. These are to collect tissue for biochemical analyses.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE RECOVERY NURSE

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming),
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Ilomedin Group”

Your role is to ensure:

- the instructions laid out below are followed,
- Ensure 30% of Oxygen is delivered via the Bird’s Blender during recovery,
- Administer the remaining of the Ilomedin.

Instructions

☐ Ensure a Bird’s oxygen Blender and a high concentration rebreather oxygen mask (Salter Labs) are available prior to patient arrival.

☐ Bird Blender should be set at 30% and maintained at this level for 2 hours. If the oxygen saturation drops <92%, seek medical help.

Commenced: _____________ To Finish at: _____________

☐ Continue intravenous infusion of the remaining Ilomedin until completion as per Ward 14 protocol which should be attached. Start at 10ml/hour and increase be 10ml/hr every 30 minutes.

☐ Collect datasheet from the anaesthetist and continue measuring core temperature every 30 minutes for the first 2 hours using a tympanic thermometer.

☐ Leave information sheets and datasheets in the notes to be collected by the investigator.

☐ Ensure the Bair Hugger® and Fluid warmer is now turned off when arrive in recovery.

☐ Inform the post-operative ward nurses (commonly from HDU) that the patient is participating in the study and to turn off the Bird’s Blender after 2 hours.

☐ After two hours patients will breathe ambient room air or supplemental oxygen as required to maintain oxygen saturation above 92%.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
A.3.5 For the temperature group

WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE WARD NURSES

Thank you for assisting in the WOICW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- **“Oxygen”** group (FiO\(_2\) 80%),
- **“Temperature”** group (FiO\(_2\) 30% with pre-operative and post-operative warming)
- **“Ilomedin”** group (FiO\(_2\) 30% with ilomedin injected endoluminally intra-operatively)
- **Control group.**

Your Patient has been allocated to the:

“**Temperature Group**”

Your role is to ensure:

- the instructions laid out below are followed,
- Bair Hugger® is turned on 2 hour prior surgery

Instructions

- ☐ All the pre-operative preparation is per usual for infra-inguinal bypass surgery. Other than the patient can be omitted from having a shower in the morning if he/she is first on the operating list.
- ☐ Ensure a Bair Hugger machine has been requested (usually by Nathaniel the day prior surgery).
- ☐ Please measure the height and weight of the patient and record below.

 | Height: | ______ cm | Weight: | ______ kg |
 |---|---|---|
 | | | |

- ☐ Bair Hugger® should be placed on the patients **two hours prior to transfer to theatre.** This should be **turned on at “medium”**. If Temperature more than 37°C, turn Bair Hugger down to “low”.
- ☐ Record Temperature every 30 minutes

<table>
<thead>
<tr>
<th>Time</th>
<th>0600</th>
<th>0630</th>
<th>0700</th>
<th>0730</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ☐ BairHugger will go down to theatre with patients.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE ANAESTHETIST

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming),
- “Iliomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively),
- Control group.

Your Patient has been allocated to the:

“Temperature Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the oxygen is administered at 30%,
- Bair Hugger® and Fluid Warmer are turned on during and after surgery
- Complete the datasheet on the other page.

Please contact us and exclude the patient if there is:

☐ history of or suspicions of COPD with CO₂ retention
☐ history of previous Bleomycin exposure
☐ use of corticosteroids or immunosuppressants 4 weeks prior surgery
☐ any reason that you feel the patient should not be recruited.

Instructions

☐ Anaesthesia should be induced in the usual manner.
☐ If possible, AVOID administering dexamethasone.
☐ FiO₂ should be set at 30% and maintained throughout surgery after anaesthesia.
☐ Standard antibiotics prophylaxis on induction and continue for 24 hours (1g i.v. Cephalosporin b.d or 1g i.v. Vancomycin b.d if MRSA).
☐ Bair Hugger® should be switched on at 43°C (Level “high”) intra-operatively and all IV Fluids should be warmed.
☐ Surgery should be performed in the manner preferred by the surgeon.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
Core temperature should be recorded every 30 minutes while the patient is anesthetised.

If the temperature exceeds 37.0°C, the Bair Hugger® should be turned down to maintain temperature less than 37.0°C.

Changes in FIO₂ will be allowed at the completion of the operation when the patient’s anaesthesia is reversed.

During the first two hours post-operatively, FIO₂ should be maintained at 30% and Bair Hugger® / Fluid warmer should be continued.

Fluid and pain management should be given at your discretion.

Please deliver this datasheet to the recovery nurse to continue temperature recordings.

DATASHEET

Anaesthesia (Please circle): General / Regional

<table>
<thead>
<tr>
<th>Before knife to skin:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse:</td>
<td>___________ min</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>___________ / ___________</td>
</tr>
<tr>
<td>Type of Antibiotic used:</td>
<td>___________ Dose: ___________</td>
</tr>
</tbody>
</table>

Cardiac Status: (Please tick)*
- Normal
- Cardiac drug or steroids
- Oedema, warfarin, borderline cardiomegaly
- Raised JVP, Cardiomegaly

Respiratory:
- Normal
- Dyspnoea on Exertion, Mild COPD
- Limiting SOB, Moderate COPD
- SOB at rest (RR >30/min)

<table>
<thead>
<tr>
<th>Core temperature</th>
<th>Before:</th>
<th>30 mins</th>
<th>60 mins</th>
<th>90 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td>120 mins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 mins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210 mins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Length of Surgery: ___________ mins

Estimated Blood Loss: ___________ mls

Did the patient require FIO₂ >40% or <20% intra-operatively to maintain oxygen saturation (excluding during reversal)?

Yes / No

In Recovery

<table>
<thead>
<tr>
<th>Core temperature</th>
<th>Immediate after OT</th>
<th>30 mins after</th>
<th>60 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°C</td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td>90 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE SURGEON

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO₂ 80%),
- “Temperature” group (FiO₂ 30% with pre-operative and post-operative warming)
- “Ilomedin” group (FiO₂ 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Temperature Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the ePTFE tubing and PVA sponge are implanted at the knee wound subcutaneously prior to closure

Instructions

☐ Chloroprep (Chlorhexidine and alcohol) will be used as the standardised skin prep.

☐ Surgery should be performed in the usual manner.

☐ Prior to skin closure, a 5 cm length of 3mm diameter ePTFE tubing and 1 cm³ of viscose cellular sponge should be Implanted entirely subcutaneously parallel to the wound incision. The location is standardised at the distal end of the incision close to the knee.

☐ A 3/0 ethilon suture should secure on the distal end of the implants. The ends of the suture should be left long and exposed on the skin with the entire implants buried subcutaneously. The ends should be taped onto the skin with steristrip.

☐ The wound at the knee should be closed in your preferred manner. However, leave a 5mm gap on the distal end of the wound which should be approximated by steristrip. The gap will be used later to extract the implant.

☐ DO NOT PULL ON THESE SUTURES OR REMOVE THESE IMPLANTS.

☐ Be aware the patient will undergo scans with the OxyVu machine and have their wounds reviewed every other day following surgery.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE THEATRE NURSE

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO2 80%),
- “Temperature” group (FiO2 30% with pre-operative and post-operative warming)
- “Ilomedin” group (FiO2 30% with ilomedin injected endoluminally intra-operatively)
- Control group.

Your Patient has been allocated to the:

“Temperature Group”

Your role is to ensure:

- the instructions laid out below are followed,
- the PTFE tubing and PVA sponge is delivered,
- Bair Hugger® and Fluid Warmer are only turned on during surgery.

Instructions:

☐ All preparation is as usual for infra-inguinal bypass surgery.

☐ Ensure the room temperature is set at 21°C

☐ Ensure you have received one sterile 3mm x 5cm ePTFE tubing and a 1cm PVA sponge.

☐ Add an extra 3/0 ethilon suture and steristrip to the trolley. This will be used to secure the implants on the skin.

☐ The surgeon will use Chloroprep (Chlorhexadine with alcohol) as skin preparation. This has been agreed with all surgeons.

☐ Be aware that the patient has two implants placed underneath the skin wound around the knee secured by sutures and steristrip following surgery. DO NOT PULL ON THESE SUTURES OR REMOVE THESE IMPLANTS. These are to collect tissue for biochemical analyses.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
WOUND HEALING AND OXYGENATION IN INFRAINGUINAL BYPASS SURGERY

INFORMATION SHEET FOR THE RECOVERY NURSE

Thank you for assisting in the WOIOW study which looks at the effects of peri-operative warming, high-dose oxygen and ilomedin on tissue oxygenation and wound healing in infra-inguinal bypass surgery. Your participation is crucial to ensure quality control.

Essentially, it is a randomised controlled study of four groups:

- “Oxygen” group (FiO2 80%),
- “Temperature” group (FiO2 30% with pre-operative and post-operative warming),
- “Ilomedin” group (FiO2 30% with ilomedin injected endoluminally intra-operatively),
- Control group.

Your Patient has been allocated to the:

“Temperature Group”

Your role is to ensure:

- the instructions laid out below are followed,
- Ensure 30% of Oxygen is delivered via the Bird’s Blender during recovery,
- Ensure Bair Hugger® and Fluid Warmer is continued to be applied for 2 hour following surgery.

Instructions

☐ Ensure a Bair Hugger®, Bird’s oxygen Blender and a high concentration rebreather oxygen mask (Salter Labs) are available prior to patient arrival.

☐ Bird Blender should be set at 30% and maintained at this level for 2 hours. If the oxygen saturation drops <92%, seek medical help.

Commenced: ________________ To Finish at: ________________

☐ Collect datasheet from the anaesthetist and continue measuring core temperature every 30 minutes for the first 2 hours using a tympanic thermometer.

☐ Ensure the Bair Hugger® and Fluid warmer is continued to be turned on when arrive in recovery.

☐ If the temperature exceeds 37.0°C, the Bair Hugger® should be turned down to maintain temperature less than 37.0°C.

☐ Inform the post-operative ward nurses (commonly from HDU) that the patient is participating in the study and to turn off the Bair Hugger® and Bird’s Blender after 2 hours.

☐ After two hours patients will breathe ambient room air or supplemental oxygen as required to maintain oxygen saturation above 92%.

☐ Leave information sheets and datasheets in the notes to be collected by the investigator.

Please contact Nathaniel (021 383 319) should there be any queries. Thank you.
A.4 Data collection sheet sample (from WOIOW study)

<table>
<thead>
<tr>
<th>Pre-operative Assessment</th>
<th>Serial Number: ____</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td></td>
</tr>
<tr>
<td>ETHNICITY</td>
<td>Caucasian / Maori /</td>
</tr>
</tbody>
</table>

Presenting Complaint
- **CLAUD DISTANCE**: meters
- **WOUND TYPE**: Arterial / Venous / Stump
- **NIGHT PAIN**: Yes / Sometimes / No
- **LOCATION**:
- **REST PAIN**: Yes / Sometimes / No
- **DURATION**:
- **Presentation**: Elective / Acute / Urgent
- **Type of BPG**: L / R
- **CELLULITIS**: Prior / Persisting / Never

Past Medical History
- **SMOKER**: Yes / Ex / Never
- **QUANTITY**: Cgs Yrs
- **RENAL**: ARF / CRF / ESRF / No
- **HYPERTENSION**: Control / Uncontrol / No
- **QUIT**: Hypercholester
- **IHD**: MI / AF / Angina / No /
- **DIABETIC**: Type 1 / Type 2 / No
- **CABG**: Yes / No
- **INSULIN**: Yes / Drug / Diet
- **YEARS**:
- **COPD**: Yes / No
- **CONTROLLED**: Yes / No
- **TIA / CVA**: Yes / No
- **PREV AMPUTATIONS**: Yes / No
- **CEA**: Yes / No
- **PREV BPG**: Yes / No
- **CANCER**: Yes / Nodal / Dist met / No
- **AAA**: Yes / No / Repaired
- **OTHER**:

Drug History
- **WARFARIN**: Always / Since Admis / No
- **ILOPROST**: Yes / No / Days
- **LIPID**: Always / Since Admis / No
- **ERYTHROMYCIN**: Yes / No
- **CARTIA**: Always / Since Admis / No
- **STEROIDS**: Yes / No
- **LIPEX**: Always / Since Admis / No
- **OTHER**:

Results
<table>
<thead>
<tr>
<th>ABI</th>
<th>Left</th>
<th>Right</th>
<th>Chest</th>
<th>Knee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/</td>
<td>/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Treadmill Test (15 min)**: / / /
- **HT-Oxy**: / / /
- **HT-DeOxy**: / / /
- **HT-Sat**: / / /
- **Temp (-c)**: / / /

WOIW0.doc 08/03/2016
Day 0 post – operation

<table>
<thead>
<tr>
<th>Allocated Group</th>
<th>Oxygen</th>
<th>Temperature</th>
<th>Iloprost</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>2 hrs prior</td>
<td>90 mins prior</td>
<td>60 mins prior</td>
<td>30 mins prior</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anaesthesia</th>
<th>General</th>
<th>Spinal</th>
<th>Regional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse</td>
<td>/min</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardiac Status</th>
<th>Normal</th>
<th>Cardiac drugs</th>
<th>Oedema, warfarin</th>
<th>Raised JVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td>Normal</td>
<td>Dyspnoea, Mild COPD</td>
<td>Moderate COPD</td>
<td>SOB on Rest</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Before(knife to skin):</th>
<th>°C</th>
<th>120 mins</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 mins</td>
<td>°C</td>
<td>150 mins</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>60 mins</td>
<td>°C</td>
<td>180 mins</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>90 mins</td>
<td>°C</td>
<td>210 mins</td>
<td>°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length of Surgery</th>
<th>Blood Loss (mls)</th>
</tr>
</thead>
</table>

Did the patient require FiO₂ >40% or <20% intra-operatively to maintain oxygen saturation (excluding during reversal)?

Yes / No

In Recovery

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Immediate after OT</th>
<th>°C</th>
<th>90 mins</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 mins after</td>
<td>°C</td>
<td>120 mins</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>60 mins</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Haemoglobin</th>
<th>White Cell Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urea</th>
<th>Albumin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sodium</th>
<th>Potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiple Procedures</th>
<th>Yes / No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anaesthetic Sheet Attached?</th>
<th>Yes / No</th>
</tr>
</thead>
</table>

WOIOW.doc 08/03/2016
Day 1 Post-operation

<table>
<thead>
<tr>
<th>Results</th>
<th>Left</th>
<th>Right</th>
<th>Chest</th>
<th>Knee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>/</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TpO2 / CO2 (15 min)</td>
<td>/</td>
<td>/</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>HT-Oxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-DeOxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (-c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prox</th>
<th>Ant Prox</th>
<th>Post Prox</th>
<th>Ant Distal</th>
<th>Post Distal</th>
<th>Distal</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-Oxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-DeOxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (-c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wound Assessment: AB, Anticoag,___________________________

Day 3 Post-operation

<table>
<thead>
<tr>
<th>Results</th>
<th>Left</th>
<th>Right</th>
<th>Chest</th>
<th>Knee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>/</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TpO2 / CO2 (15 min)</td>
<td>/</td>
<td>/</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>HT-Oxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-DeOxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (-c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prox</th>
<th>Ant Prox</th>
<th>Post Prox</th>
<th>Ant Distal</th>
<th>Post Distal</th>
<th>Distal</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-Oxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-DeOxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (-c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wound Assessment: AB, Anticoag,___________________________
Day 5 Post-operation

<table>
<thead>
<tr>
<th>Results</th>
<th>Left</th>
<th>Right</th>
<th>Chest</th>
<th>Knee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>/</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TpO2 / CO2 (15 min)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>HT-Oxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-DeOxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Day 14 Post-operation

<table>
<thead>
<tr>
<th>Results</th>
<th>Left</th>
<th>Right</th>
<th>Chest</th>
<th>Knee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>/</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TpO2 / CO2 (15 min)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>HT-Oxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-DeOxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wound Assessment: AB, Anticoag, ________________________________

WOIOW.doc

08/03/2016
Day 30 Post-Operation

<table>
<thead>
<tr>
<th>Results</th>
<th>Left</th>
<th>Right</th>
<th>Chest</th>
<th>Knee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>TpO2 / CO2 (15 min)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>HT-Oxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-DeOxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (°c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prox</th>
<th>Ant Prox</th>
<th>Post Prox</th>
<th>Ant Distal</th>
<th>Post Distal</th>
<th>Distal</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-Oxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-DeOxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (°c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wound Assessment: AB, Anticoag, __

Biochemical Analyses

Hydroxyproline

<table>
<thead>
<tr>
<th>Growth Factors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF-β</td>
<td>VEGF</td>
</tr>
<tr>
<td>B-FGF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mRNA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF-β</td>
<td>VEGF</td>
</tr>
<tr>
<td>B-FGF</td>
<td></td>
</tr>
</tbody>
</table>
A.5 Post-operative Ilomedin® protocol
Nursing Care Plan for ILOPROST Infusion Chart

Guidelines for the Administration of ILOPROST
Recommended administration guidelines for Iloprost 50 micrograms in 250mL of NaCl or Glucose 5% Injection via an infusion pump

- Commence next day's infusion rate at previous day's last tolerated finished rate

Day 1
Start infusion at 10 mL/hour for 30 minutes

If this dose has been tolerated, increase to 20 mL/hour for 30 minutes

If this dose has been tolerated, increase to 30 mL/hour for 30 minutes

Continue until the optimal rate is established for patient weight.
NB (For the majority of patients the rate will not exceed 40 mL/hour)

After 6 hours, stop the infusion

Start infusion at 5 mL/hour and titrate with care every 30 minutes, if tolerated, by 5 mL/hour increments. If not tolerated, decrease by 5 mL/hour
Maximum: 20 mL/hour

If unwanted effects occur, decrease to 10 mL/hour

If unwanted effects occur, decrease to 20 mL/hour, and thereafter to 10 mL/hour, if required

Once the patient has stabilised with no further unwanted effects, a stepwise dosage increase may be tried again

N.B. Monitor patients' BP & pulse before and after every rate increase then hourly once stable

STOP infusion and Contact medical staff if:
- BP falls by 50 mmHg or
- Systolic <90 mmHg
- Diastolic <50 mmHg
- Pulse >120 bpm or irregular
- Excessive adverse effects
- If infusion solution runs out prior to expected time frame
A.6 Additional tables from results: Validation of OxyVu™

A.6.1 Correlation between OxyVu and TCOM of the diseased limb

<table>
<thead>
<tr>
<th>PEARSON'S</th>
<th>HT-OXY</th>
<th>HT-DEOXY</th>
<th>HT-SAT</th>
<th>OXY-BPI</th>
<th>DEOXY-BPI</th>
<th>SAT-BPI</th>
<th>OXY-RPI</th>
<th>DEOXY-RPI</th>
<th>SAT-RPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcpO2</td>
<td>(r)</td>
<td>-0.26</td>
<td>0.19</td>
<td>0.04</td>
<td>-0.13</td>
<td>0.14</td>
<td>-0.05</td>
<td>-0.04</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.77</td>
<td>0.001</td>
<td>0.012</td>
<td>0.59</td>
<td>0.11</td>
<td>0.08</td>
<td>0.68</td>
<td>0.74</td>
</tr>
<tr>
<td>TcpCO2</td>
<td>(r)</td>
<td>-0.17</td>
<td>0.27</td>
<td>-0.35</td>
<td>-0.10</td>
<td>0.36</td>
<td>-0.33</td>
<td>-0.13</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.03</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.20</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.29</td>
<td>0.51</td>
</tr>
<tr>
<td>TcpO2-BPI</td>
<td>(r)</td>
<td>-0.10</td>
<td>0.10</td>
<td>-0.04</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.001</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.49</td>
<td>0.21</td>
<td>0.20</td>
<td>0.60</td>
<td>0.74</td>
<td>0.95</td>
<td>0.89</td>
<td>1.00</td>
</tr>
<tr>
<td>TcpCO2-BPI</td>
<td>(r)</td>
<td>-0.15</td>
<td>0.17</td>
<td>-0.27</td>
<td>-0.10</td>
<td>0.36</td>
<td>-0.28</td>
<td>-0.05</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.06</td>
<td>0.03</td>
<td>0.0001</td>
<td>0.21</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.70</td>
<td>0.62</td>
</tr>
<tr>
<td>TcpO2-RPI</td>
<td>(r)</td>
<td>-0.271</td>
<td>0.26</td>
<td>0.04</td>
<td>-0.13</td>
<td>0.06</td>
<td>0.03</td>
<td>-0.06</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.29</td>
<td>0.03</td>
<td>0.03</td>
<td>0.75</td>
<td>0.30</td>
<td>0.65</td>
<td>0.83</td>
<td>0.66</td>
</tr>
<tr>
<td>TcpCO2-RPI</td>
<td>(r)</td>
<td>0.02</td>
<td>-0.36</td>
<td>0.20</td>
<td>0.09</td>
<td>0.06</td>
<td>0.21</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.93</td>
<td>0.05</td>
<td>0.28</td>
<td>0.64</td>
<td>0.74</td>
<td>0.27</td>
<td>0.67</td>
<td>0.54</td>
</tr>
</tbody>
</table>
A.6.2 Correlation between OxyVu and TCOM of the contralateral limb and chest

<table>
<thead>
<tr>
<th>Contralateral</th>
<th>CONTRALATERAL LIMB</th>
<th>CHEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson’s</td>
<td>HT-Oxy</td>
</tr>
<tr>
<td>Contralateral</td>
<td>TcPO$_2$</td>
<td>(r)</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>TcPCO$_2$</td>
<td>(r)</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.84</td>
</tr>
<tr>
<td>Chest</td>
<td>TcPO$_2$</td>
<td>(r)</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>TcPCO$_2$</td>
<td>(r)</td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>0.85</td>
</tr>
</tbody>
</table>
A.6.3 ANOVA to determine confounding factors that affect OxyVu™

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>LIMB</th>
<th>HT-READINGS</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers</td>
<td>Diseased</td>
<td>HT-Oxy</td>
<td>0.82</td>
</tr>
<tr>
<td>(0, non)</td>
<td></td>
<td>HT-Deoxy</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>(1, ex)</td>
<td>HT-Sat</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>(2, active)</td>
<td>Contralateral</td>
<td>HT-Oxy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Deoxy</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Sat</td>
<td>0.29</td>
</tr>
<tr>
<td>Pack-years</td>
<td>Diseased</td>
<td>HT-Oxy</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Deoxy</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Sat</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>Contralateral</td>
<td>HT-Oxy</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Deoxy</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Sat</td>
<td>0.66</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Diseased</td>
<td>HT-Oxy</td>
<td>0.18</td>
</tr>
<tr>
<td>(0=No)</td>
<td></td>
<td>HT-Deoxy</td>
<td>0.10</td>
</tr>
<tr>
<td>(1=Yes)</td>
<td></td>
<td>HT-Sat</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Contralateral</td>
<td>HT-Oxy</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Deoxy</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Sat</td>
<td>0.77</td>
</tr>
<tr>
<td>Renal disease</td>
<td>Diseased</td>
<td>HT-Oxy</td>
<td>0.19</td>
</tr>
<tr>
<td>(0=No)</td>
<td></td>
<td>HT-Deoxy</td>
<td>0.64</td>
</tr>
<tr>
<td>(1=Yes)</td>
<td></td>
<td>HT-Sat</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Contralateral</td>
<td>HT-Oxy</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Deoxy</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HT-Sat</td>
<td>0.39</td>
</tr>
</tbody>
</table>
A.6.4 Correlation between hyperspectral oxygenation and haemoglobin

HT-Sum (arbitrary units) is the sum of oxyhaemoglobin and deoxyhaemoglobin and is assumed to be total haemoglobin. It is designed to indicate haemoglobin concentration and the microvascular volume of capillary density.

In the 150 patients with peripheral vascular disease (PVD), haemoglobin (g/L) was recorded within 12 hours before or after OxyVu™ readings. (Table 9.1) Haemoglobin correlated with the severity of PVD according to the Simplified Severity Score (SSS; Spearman’s $R= -0.24$, $p=0.003$; Figure 9.4).

<table>
<thead>
<tr>
<th></th>
<th>MEAN (RANGE)</th>
<th>SD</th>
<th>SKEWNESS</th>
<th>KURTOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-Sum diseased (AU)</td>
<td>159 (87–248)</td>
<td>32.8</td>
<td>0.41</td>
<td>-0.07</td>
</tr>
<tr>
<td>HT-Sum contralateral (AU)</td>
<td>154 (64–235)</td>
<td>30.3</td>
<td>0.19</td>
<td>0.05</td>
</tr>
<tr>
<td>Haemoglobin (g/L)</td>
<td>127 (74–170)</td>
<td>18.7</td>
<td>-0.11</td>
<td>-0.37</td>
</tr>
</tbody>
</table>

Table 9.1. Descriptive summary for HT-Sum and haemoglobin. Abbreviations: AU, arbitrary units; SD, standard deviation

![Figure 9.4](image)

Figure 9.4. Bar chart showing the variation in HT-Sum and haemoglobin according to severity of peripheral vascular disease using the Simplified Severity Score. Abbreviations: AU, arbitrary units; CLI, critical limb ischaemia; Hb, haemoglobin
With adjustment for the SSS, potential confounding factors that could affect haemoglobin, such as age, gender, race, diabetes, smoking, and cardiac history, were tested using logistic regression analysis. Table 9.2 shows only the relevant findings. Gender and age were confounding factors, whereby men had higher haemoglobin and haemoglobin decreased with increasing age.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>CONFOUNDING FACTORS</th>
<th>COEFFICIENT, B</th>
<th>P-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin (g/L)</td>
<td>Male sex</td>
<td>11.4</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>-0.35</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Smoking history</td>
<td>7.8</td>
<td>0.51</td>
</tr>
<tr>
<td>HT-Sum (diseased)</td>
<td>Haemoglobin</td>
<td>0.35</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Male sex</td>
<td>-12.2</td>
<td>0.053</td>
</tr>
<tr>
<td>HT-Sum (contralateral)</td>
<td>Diabetes</td>
<td>-14.4</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Male sex</td>
<td>-14.5</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 9.2. Summary of unstandardised coefficients and p-values using linear regression to identify confounding factors for haemoglobin and HT-Sum.

There was a downward trend of HT-Sum in both limbs as the SSS increased (Spearman’s $R=-0.19$, $p=0.01$ for the diseased limb; $R=-0.24$, $p=0.001$ for the contralateral limb). HT-Sum for the diseased limb was strongly associated with that for the contralateral limb (Pearson’s $R=0.73$, $p=0.0001$) with no statistically significant difference between HT-Sum of both limbs ($p=0.14$).

Haemoglobin was the only factor influencing the HT-Sum of the diseased limb when SSS was adjusted (Table 9.2). Haemoglobin, as well as diabetes and sex, were confounding factors for HT-Sum of the contralateral limb. In contrast with haemoglobin, HT-Sum was lower in men than in women, indicating haemoglobin in the peripheries was lower in men while “serum” haemoglobin was higher. Age and skin temperature had no influence on HT-Sum.

Overall, HT-Sum at the peripheries decreased bilaterally with haemoglobin as the severity of PVD increased. There might have been a “central” cause, such as anaemia or anaemia of
chronic disease. Haemoglobin did not correlate with HT-Sum for the diseased limb (Pearson’s $R=0.15$, $p=0.07$), but was associated with that of the contralateral limb ($R=0.22$, $p=0.007$).

HTCOM measurements to estimate haemoglobin level?

According to the World Health Organization, the haemoglobin threshold defining anaemia is 130 g/L in men and 120 g/L in non-pregnant women. Anaemia was defined as haemoglobin ≤ 125 g/L for this study.

A receiver operating characteristic (ROC) curve was used to determine if HT-Sum for the contralateral limb was an effective tool for diagnosing anaemia (Figure 9.5). The area under the ROC curve (AUC, 0.38) represented the probability that the HT-Sum value for a randomly chosen patient with anaemia (haemoglobin ≤ 125 g/L) would exceed the HT-Sum value for a randomly chosen negative case. The p-value was 0.01, indicating that interpreting the HT-Sum to diagnose anaemia was better than guessing. However, the ROC curve lay below the diagonal line. Therefore, HT-Sum was not an accurate tool for predicting anaemia.

Using linear regression to adjust for SSS, HT-Sum (contralateral) = $0.342 \times$ haemoglobin + 108.4. At a haemoglobin of 125 g/L, the HT-Sum was 151. An HT-Sum of 151 had a sensitivity of 40%, a specificity of 47%, a positive predictive value of 43%, and a negative predictive value of 44%. This was a pilot study, but if this hypothesis was to be tested further, inclusion of normal individuals without PVD and a larger sample size would be recommended.
Figure 9.5. ROC curve to determine if HT-Sum of the contralateral limb would be an accurate tool to diagnose haemoglobin. Abbreviation: ROC, receiver operating characteristic.
A.7 Additional results from the WOIOW study

A.7.1. P-values for hydroxyproline and growth factors in treatment arms versus the control group

<table>
<thead>
<tr>
<th>GROUP</th>
<th>OXYGEN</th>
<th>ILOMEDIN®</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHP</td>
<td>0.27</td>
<td>0.77</td>
<td>0.16</td>
</tr>
<tr>
<td>TGF-β</td>
<td>0.71</td>
<td>0.91</td>
<td>0.98</td>
</tr>
<tr>
<td>FGF-2</td>
<td>0.46</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>VEGF</td>
<td>0.74</td>
<td>0.93</td>
<td>0.72</td>
</tr>
<tr>
<td>TNF-α</td>
<td>0.21</td>
<td>0.67</td>
<td>0.15</td>
</tr>
<tr>
<td>IL-8</td>
<td>0.13</td>
<td>0.26</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Abbreviations: OHP, hydroxyproline; TGF-β, transforming growth factor beta; FGF-2, fibroblast growth factor 2; VEGF, vascular endothelial growth factor; TNF-α, tumor necrosis factor alpha; IL-8, interleukin-8
A.8 Additional results: Wound healing and tissue oxygenation in TNP therapy

A.8.1. Summary of kurtosis and skewness values on variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Body” surface area</td>
<td>1.35</td>
<td>4.01</td>
</tr>
<tr>
<td>“Cap” surface area</td>
<td>0.34</td>
<td>1.12</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>1.09</td>
<td>0.76</td>
</tr>
<tr>
<td>Mean depth</td>
<td>0.60</td>
<td>-0.44</td>
</tr>
<tr>
<td>Volume</td>
<td>0.62</td>
<td>-0.10</td>
</tr>
<tr>
<td>Pre OHP</td>
<td>1.43</td>
<td>0.93</td>
</tr>
<tr>
<td>Post OHP</td>
<td>0.72</td>
<td>0.26</td>
</tr>
<tr>
<td>Pre TGF-β</td>
<td>1.18</td>
<td>1.77</td>
</tr>
<tr>
<td>Post TGF-β</td>
<td>1.41</td>
<td>1.77</td>
</tr>
<tr>
<td>Pre HT-Oxy</td>
<td>0.15</td>
<td>-0.63</td>
</tr>
<tr>
<td>Pre HT-Deoxy</td>
<td>0.39</td>
<td>-0.04</td>
</tr>
<tr>
<td>Pre HT-Sat</td>
<td>0.17</td>
<td>-1.21</td>
</tr>
<tr>
<td>Pre HT-Sum</td>
<td>-0.11</td>
<td>-0.16</td>
</tr>
<tr>
<td>Post HT-Oxy</td>
<td>0.41</td>
<td>-0.62</td>
</tr>
<tr>
<td>Post HT-Deoxy</td>
<td>-0.36</td>
<td>-1.32</td>
</tr>
<tr>
<td>Post HT-Sat</td>
<td>-0.56</td>
<td>-0.67</td>
</tr>
<tr>
<td>Post HT-Sum</td>
<td>0.64</td>
<td>-0.74</td>
</tr>
</tbody>
</table>
10 Determining time duration for TCOM electrodes to reach equilibrium.

Background
TCOM measurements are applied in wound healing research to determine wound hypoxia; however, the methods are not standardised and clear descriptions are not readily available. Guidelines for the duration for the electrodes to reach equilibrium for measurements were difficult to find from the literature.

From our experience with TCOM3, measurements do not completely reach equilibrium, with a constant variation by a small percentage over the latter period of recording. This may be due to technical issues related to ongoing tissue demand from the capillary hyperperfusion caused by the heated electrode consuming oxygen and producing carbon dioxide within a closed chamber; or the contact fluid failing to provide the optimal diffusion barrier over time because it is dried up by the heat.

Aim
To determine a suitable duration for the TCOM electrode to reach equilibrium for reliable measurements to minimise errors and to standardise protocols for the other studies in this thesis.

Methods
Fifty patients were recruited by responding to an advertisement placed in the vascular ward between December 2008 and February 2009. Eighty-two sets of minute-by-minute TCOM readings for TcpO₂ and TcpCO₂ of the foot over the first metatarsal head at the plantar aspect were recorded over a 15-minute period. Of these, 25 sets of recordings were from hospitalised vascular patients with known PVD of the lower limb, 30 were from patients hospitalised within vascular or cardiothoracic subspecialties with no known PVD of the lower limb; and 27 were from healthy volunteers (i.e. medical and nursing staffs or students). Details on the application of the TCOM3 system are described in the manufacturer’s operating manual and in the literature. Ethical approval was secured from the local ethics committee (NTY/08/08/082).
Results

Demographics

Sixteen participants were vascular patients with known PVD, 18 were patients hospitalised with no known PVD; and 16 were from healthy volunteers. Background information were described in Table 10.1.

<table>
<thead>
<tr>
<th></th>
<th>KNOWN PVD</th>
<th>NO KNOWN PVD</th>
<th>VOLUNTEERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>16</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Age (SD)</td>
<td>70 (14)</td>
<td>52 (11)</td>
<td>36 (9)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>13 (81)</td>
<td>10 (56)</td>
<td>6 (38)</td>
</tr>
<tr>
<td>White (%)</td>
<td>13 (81)</td>
<td>17 (94)</td>
<td>9 (56)</td>
</tr>
<tr>
<td>Active smoker</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 10.1. Basic demographics of the three groups of patients

Quality of data

![Bar chart showing the total number of measurements per set of readings.](image-url)

Figure 10.1. Bar chart showing the total number of measurements per set of readings.
Eighty-two sets of readings were analysed. Missing data were present due to operator error. Figure 10.1 shows the range of the total number of measurements per set of readings. All sets had measurements at minutes 1 to 15. No sets of recordings were missing a measurement for intervals of longer than 2 minutes. Fifty-nine recordings (72%) had at least 13 of the 15 measurements.

Changes in measurements over time
The means of the absolute values were plotted of TcPO₂ and TcPCO₂ over the 15-minute period of 82 sets of readings against time (Figure 10.2). There were two curves showing a trend of the measurements reaching a plateau during the latter phase. Note the mean TcPO₂ at minute 15 is around 80mmHg and that for TcPCO₂ is around 25mmHg.

![Graph showing mean variation in TcPO₂ and TcPCO₂ over time.](image)

Figure 10.2. Line graph showing mean variation in TcPO₂ and TcPCO₂ over time.

The proportional change in percentages for TcPO₂ and TcPCO₂ over time are demonstrated in Figures 10.3 and 10.4, respectively. The curves showed reducing decrements in the latter period of recording of less than 3% change between minutes 14 and 15 for both measurements. The degree of change was less in the TcPO₂ measurements at 0.8% between minutes 14 and 15 and less than 5% between minutes 11 and 15. However, the mean TcPCO₂ value at minute 15 was around 25mmHg, and 3% of 25mmHg would be insignificant.
Figure 10. 3. Line graph showing proportional change in TcPO\textsubscript{2} over time.

Figure 10. 4. Line graph showing proportional change in TcPCO\textsubscript{2} over time.
The sets of recordings were subdivided for the three groups of study participants, i.e., those with PVD of the lower limb (PVD group), hospitalised patients without documented PVD of the lower limb (non-PVD group), and healthy volunteers (volunteer group). The trend of TcpO₂ and TcpCO₂ reaching equilibrium at around 15 minutes was still present and similar in pattern, with a less than 4% proportional change between minutes 14 and 15 (Figures 10.5 and 10.6).

![Figure 10.5](image1.png)
Figure 10.5. Line graph showing the proportional change in TcpO₂ in subgroups over time.

![Figure 10.6](image2.png)
Figure 10.6. Line graph showing the proportional change in TcpCO₂ in subgroups over time.
Even if the "diseased" limbs in the 16 patients with PVD were investigated separately, similar trends were shown in Figure 10.7.

Figure 10.7. Line graph showing the proportional change in TcpO\(_2\) and TcpCO\(_2\) over time in the 16 diseased limbs of patients with PVD.

Discussion

This study was the first series that targeted minute-to-minute variation in TcpO\(_2\) and TcpCO\(_2\) measurements obtained using the TINA TCOM3 device. Previous research studies used the recommendations of Sheffield et al regarding duration needed for the electrodes to reach equilibrium. However, these recommendations are based on beliefs rather than evidence. This study provided evidence that it is reliable to record TcpO\(_2\) and TcpCO\(_2\) readings at 15 minutes of monitoring when there is less than 3% variation between minutes 14 and 15 irrespective of the presence of PVD. Such findings can provide a more standardised and robust protocol, eliminating operator bias and avoiding waste of valuable time and resources. Interpreting these values prematurely can result in up to 10% variation. Based on the mean values of
TcpO₂ and TcpCO₂ at 15 minutes, this could lead to significant deviation of 80 +/- 8mmHg and 25 +/- 3mmHg respectively.

In this study, recordings in patients with PVD sometimes included the contralateral limb “without PVD”; similarly, participants in the non-PVD group or volunteer group might have had undiagnosed PVD. This heterogeneity was irrelevant to the aim of the study. Comparative studies of TcpO₂ and TcpCO₂ measurements in various subgroups have been described, for example, in normal individuals, claudicants, those with critical limb ischaemia, smokers, and diabetes. This study confirmed the reliability of recording TCOM measurements at 15 minutes, irrespective of whether the individual has PVD or is healthy.

As discussed in Section 1.14, Vesterager et al. described the relationship between TcpO₂ and time taken to reach equilibrium of the electrode. A typical dip in measurements at around 8 minutes was described, where TcpO₂ reached the lowest value and subsequently rebounded to equilibrium at around 15 minutes (Figure 1.14). This study failed to demonstrate such a pattern, despite consisting of a relative large sample size in the TCOM literature.

Conclusion

This study shows that the 15 minutes would be a reliable cut-off point when recording TcpO₂ and TcpCO₂. This benchmark was set in the other studies in terms of TCOM measurements. Setting such a benchmark would maintain quality assurance in research studies and in clinical practice.
References

143. Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 2004;19:176-82.

144. Wiesener MS, Maxwell PH. HIF and oxygen sensing; as important to life as the air we breathe? Ann Med 2003;35(3):183-90.

