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Abstract

The Bayes factor is a common method for statistical model selec-

tion. The computation of such factor is based on the marginal like-

lihood, an integral that can be hard to estimate depending on the

model complexity. The models employed in phylogenetic inference

are of very high complexity. In this case, a direct computation of the

Bayes factor is infeasible, and numerical methods or approximations

are needed for its estimation. Model selection is an integral part of

this field, but it tends to be obstructed by the requirements of the es-

tablished marginal likelihood estimation methods, such as generalized

steppingstone sampling. In this work, we introduce nested sampling

to phylogenetics, a Bayesian algorithm which provides the means to

estimate the marginal likelihood, and simultaneously sample from the

posterior distribution. We study the behaviour of nested sampling for

several statistical and phylogenetic scenarios and compare its perfor-

mance to established estimation methods like steppingstone sampling.

We introduce and discuss extensions to the initial algorithm, allow-

ing for variable tree topology, estimating Bayes factor directly, and

using importance sampling approaches to further improve its perfor-

mance. Nested sampling has been shown to work in situations where

most MCMC methods fail, e.g., if the true distribution is a mixture

of quite distinct distributions. We show that the algorithm and its

extensions offer a relatively cheap alternative to estimate, in a single

run, the marginal likelihood together with its uncertainty, unlike es-

tablished methods. It also permits us to sample from the posterior

distribution at no extra cost. Overall, we establish nested sampling

as a valuable alternative in Bayesian phylogenetics, in particular for

model selection and parameter inference.
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Chapter 1

Introduction

Using as a cornerstone the basic premise that the diversity of species can be ex-

plained by descent with modification [Darwin, 1859], phylogenetics is the study of

evolutionary relationships among groups of organisms, based typically on molec-

ular sequencing data. Among its multiple practical applications, we can highlight

the identification of mutations likely to be associated with disease [Fleming et al.,

2003], the reconstruction of ancient proteins [Chang et al., 2002] or the generation

of legal evidence in a trial [Metzker et al., 2002].

Advancements in sequencing technologies have led to the accumulation of

large datasets, allowing for the usage of increasingly complex statistical models

to investigate patterns of evolution. The concurrent advancements in computer

hardware and software provide the means to actually analyse these complex mod-

els. Reconstruction methods for phylogenetic trees come in various guises, from

distance-based, over implicitly parametric (maximum parsimony) to explicitly

parametric or model-based methods (maximum likelihood, Bayesian methods).

Distance-based methods first transform the sequence data into a distance

matrix, representing the evolutionary distances between pairs of species. Such

methods include least-squares [Cavalli-Sforza and Edwards, 1967], minimum evo-

lution [Desper and Gascuel, 2002; Rzhetsky and Nei, 1992], and neighbour-joining

[Saitou and Nei, 1987]. These methods have the advantage of being relatively fast

and performing well when the divergence between the sequences is low. However,

it has been shown that the transformation to distances loses information [Steel

et al., 1988], and that this loss can lead to systematic error in the estimation [e.g.,
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Chapter 1. Introduction

Gascuel and Steel, 2006].

Maximum parsimony [MP; Fitch, 1971b] minimizes the number of mutations

needed to explain a site pattern on a given tree, and selects the tree with the

overall smallest number of mutations. Its principal advantage is the speed for

the analyses of hundreds of sequences. However, it possesses some well-known

drawbacks. For instance, it does not take into account unseen events (e.g., if

the ancestral nucleotide state of G was an A, MP assumes that the mutation

occurred directly from A → G, rather than a transitory mutation, e.g., T, in

between to mutate to G, such as A → T → G). So, it underestimates the actual

number of mutations. The method makes implicit model assumptions as most

non-parametric approaches do. This constitutes a weakness because it makes it

difficult to incorporate a formal structure to explain the data. Further, MP is

sensitive to long branch attraction which can lead to systematically inferring the

wrong topology (branching pattern of the tree) when highly divergent species are

included in the dataset [Felsenstein, 1978].

Maximum likelihood (ML) was introduced to phylogenetics by Felsenstein

[1981]. Since then, it has become the most popular method of parametric in-

ference thanks to efficient implementations like phyML [Guindon and Gascuel,

2002], RAxML [Stamatakis et al., 2005], or GARLI [Zwickl, 2006]. This method

selects a “best” model from a predetermined set of models, making it possible to

model, understand and assess evolutionary processes in more detail. Under this

framework, model assumptions are explicit and consequently they can be evalu-

ated and improved. This is a very useful property which MP lacks. The selection

of the best model is assessed by maximizing the likelihood, i.e., the probability

of observing the data given the model parameters. Thus, the model is selected

according to how well it predicts the observed data. The point in the parameter

space which maximizes the likelihood function is called the maximum likelihood

estimate (MLE). If we are given the tree topology, then finding the MLE reduces

to a continuous optimization problem for branch lengths and substitution param-

eters. This estimate is asymptotically unbiased, consistent and efficient. All of

them are desirable statistical properties. However, if we include the topology into

the optimization process, these asymptotic properties of the MLE do not apply

anymore because, statistically, the tree is a model rather than a parameter [Yang,

2



Chapter 1. Introduction

1996c, 2006].

In practice, the tree topology is commonly found by using less computationally

demanding methods, such as parsimony [Fitch, 1971b] or neighbor joining [Saitou

and Nei, 1987], and then —implicitly assuming that this tree is the maximum

likelihood tree for every candidate model of evolution—the MLE is calculated for

each proposed model for this tree, including branch lengths. Thus, the models can

be compared in order to select the best among the competing ones. Posada and

Crandall [2001] argued, based on their simulations, that the initial phylogeny used

to select the model of evolution does not have a major impact on model selection

unless it is a randomly chosen tree. Once the model is selected, a search of the tree

space is performed to find the MLE of the tree which includes topology, branch

lengths and parameters related to the model of evolution. Finding this estimate

involves a high computational effort and unfortunately the existing optimization

algorithms are not guaranteed to solve the problem. However, the method works

quite well for simple evolutionary models [Rogers and Swofford, 1998].

One maximum likelihood run is computationally intensive and it is only exe-

cuted to identify a single point in the parameter space. One run does not provide

any information about the uncertainty of the estimate. To account for it, Felsen-

stein [1985] proposed the use of bootstrapping techniques. The non-parametric

bootstrap generates samples by drawing with replacement from the data until

the sample has the same dimension as the original data. Then, the MLE is in-

ferred from the bootstrap samples, which permits us to assess the uncertainty

and robustness of our MLE. This method is widely used by the phylogenetic

community, however, it has several limitations of which the users are not always

aware. For instance, there is no consensus about the interpretation of bootstrap

proportions [Yang, 2006; Yang and Rannala, 2005]; it cannot address systematic

errors stemming from an inappropriate model choice [Holland, 2013]; and a more

evident limitation is that it may require a huge computational cost.

Model choice under a ML framework is restricted to stationary, homogeneous,

and reversible Markov processes to be able to execute the optimization. A vio-

lation of these assumptions further reduces the chance of finding the MLE. To

summarize, ML is an often-used way of inferring a (potentially) best model for

a given sequence alignment. However, its model choices are limited, and the

3



Chapter 1. Introduction

computational cost of doing an inference are massive.

The increase in computational power and the development of Markov chain

Monte Carlo (MCMC) approaches have led to the rise of Bayesian methods. The

concept was introduced to phylogenetics in the 1990s [Larget and Simon, 1999;

Rannala and Yang, 1996; Yang and Rannala, 1997], and has gained popularity

because of its flexibility when dealing with complex models and large datasets,

contrary to ML [Lartillot and Philippe, 2004; Nylander et al., 2004]. Its pop-

ularity was further increased by state-of-the-art implementations of the models

in programs like MrBayes [Huelsenbeck and Ronquist, 2001], BEAST [Bouckaert

et al., 2014; Drummond and Rambaut, 2007], or PhyloBayes [Lartillot et al.,

2009]. The ultimate target of a Bayesian inference is the posterior distribution,

which assesses the probability of a model given the data. This distribution is

derived as the normalized product of the likelihood of the data given the model

and the prior distribution for the model. The prior allows for the incorporation

of information, available before collecting the data, into the inference, a feature

which can greatly improve model fit. However, the dependency of the analysis

on this distribution is also one of the major criticisms of Bayesian methods, since

the use of prior information might be considered to imply subjective choices and

lead consequently to biased inferences. To face these criticisms, there have been

some attempts to permit the inclusion of objective or non-informative priors,

such as Jeffreys [Jeffreys, 1946] or Reference priors [Berger and Bernardo, 1989;

Bernardo, 1979]. These are rarely found in phylogenetics, because they require

tractable likelihood functions, which are uncommon in the field. Nevertheless,

there have been empirical attempts which have allowed to have reasonable non-

informative priors in the field. Overall, the impact of priors on the inference has

not been fully understood in phylogenetics and poses an interesting challenge.

Bayesian analysis often dispenses trying to find an explicit form of the pos-

terior distribution. Instead, the posterior is approximated by MCMC methods.

This procedure raises the query about the quality of the approximation. This

issue is addressed in terms of the convergence of the chain towards the posterior

distribution. In order for the MCMC to provide a reasonable approximation it

might need to run for a large amount of time, which can lead to a high compu-

tational cost. However, this cost is offset by a wide variety of insights one can

4



Chapter 1. Introduction

gain from the posterior distribution. For one, the resulting distribution provides

a description of the parameter space and its uncertainty instead of a simple snap-

shot as provided by ML. The output is natural and easy to interpret, contrary to

bootstrap proportions. And because no optimization is necessary, more complex

models and datasets can be assessed [Holder and Lewis, 2003; Huelsenbeck et al.,

2001; Yang and Rannala, 2012]. Finally, for comparable problems the richer out-

put of a Bayesian method can be obtained in approximately the same time as the

output of an ML method with bootstrapping estimation.

Similar to other fields, model selection plays an integral part in phylogenetic

inference. A wide variety of different criteria are available for this task, such

as the Likelihood Ratio Test (LRT), the Akaike Information Criterion (AIC),

the Bayesian Information Criterion (BIC) and Bayes factor (BF). Among the

available methods, the hierarchical likelihood ratio tests (hLRTs) are the most

popular. This method usually consists of a specific sequence of pairwise likeli-

hood ratio tests performed until a final model cannot be rejected. A number

of computational packages allow the pairwise comparison using this test, such

as PAUP [Swofford, 2003], PAML [Yang, 2007] and the R package APE [Paradis

et al., 2004]. Despite its popularity, Sanderson and Kim [2000] and Posada and

Buckley [2004] pointed out that there are several reasons to explore new methods

as alternatives.

For instance, a single optimal model might not exist, the probability of reject-

ing the null hypothesis when it is true (type I error) increases with the number

of tests performed, the outcome of this method could be affected by the starting

model, the best model could not be selected, it relies on large sample asymp-

totics, it does not allow the incorporation of phylogenetic uncertainty and the

comparison of different topologies. Also, the LRT is limited to the comparison

of nested models, cases in which pairs of models can be classified as submodel

(its parameters are all also in the other model) or supermodel (it contains all the

parameters of its submodel and a few more), and tends to favor parameter-rich

models. This might have a negative effect on the analysis of real datasets, in

particular when suitable models are not nested.

AIC [Akaike, 1974] is an asymptotically unbiased estimator of the expected

relative Kullback-Leibler information quantity [Kullback and Leibler, 1951]. It
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depicts the amount of information lost when the proposal model is used to ap-

proximate the true model. Hence, the model with the smallest AIC is selected.

On the other hand, BIC [Schwarz, 1978] is a rough approximation to the natu-

ral log-marginal likelihood (normalizing constant in the posterior distribution).

Thus, the difference between two BIC values can be considered as a rough approx-

imation of the Bayes factor. Unlike AIC, known for preferring complex models,

BIC penalizes parameter rich models more severely [Kass and Raftery, 1995].

Posada and Buckley [2004] argued that BIC (and Bayesian methods) and AIC

approaches have significant advantages compared with the hLRTs for model selec-

tion. These advantages include the use of these methods in nested or nonnested

models, the inclusion of uncertainty in model selection and the allowance for

model averaged-inference. Also, they are straightforward to calculate from the

maximum likelihood estimate. Despite of their advantages over hLRTs, they also

have some weak points. For instance, they are based on a point estimate and are

not able to take into account uncertainty in topology [Bollback, 2002]. As with

the LRT, they also rely on large sample asymptotics. Furthermore, BIC does not

take into account the prior distribution and the same applies to AIC and LRT.

Xie et al. [2011] described two primary reasons to consider the prior distribution

in Bayesian model selection: first, the prior could prevent the model from fitting

the data well, and second, it penalizes the inclusion of a new parameter when the

marginal likelihood is used to assess model performance. An alternative which

takes into account these considerations is the Bayes factor.

The Bayes factor [BF; Kass and Raftery, 1995] is the Bayesian analog of the

likelihood ratio test under the classical paradigm. Unlike the model selection

methods discussed above, which are based on a point estimate, BF accounts for

the uncertainty in the parameters of the model. This method has the flexibility

of not requiring alternative models to be nested, unlike LRT, and it embodies

the desirable property of following Occam’s razor. In other words, this model

selection criterion prefers simpler models over complex models if they fit the

data similarly well, or in a phylogenetic context, the tree that requires fewer

mutations to explain the observed data. This criterion was used implicitly by

Darwin, in the Origin of species, to construct evidence supporting his theory1.

1Darwin studied pigeons under domestication to support his theory of common descent.
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Another interesting feature is that Bayes factor can be used without conditioning

on a specific topology [Holder et al., 2014; Huelsenbeck et al., 2004; Suchard

et al., 2001; Wu et al., 2014]. It is also useful for guiding evolutionary model-

building processes [Kass and Raftery, 1995], because it can deal with non-nested

hypotheses, a fitting feature for evolutionary models. Furthermore, the Bayes

factor assesses the evidence provided by the data in favor of a hypothesis, a

natural scientific question which can be hard to answer under the frequentist

paradigm.

The Bayes factor is based on the marginal likelihood, also called evidence,

being obtained by integrating the product of the prior and the likelihood over

the parameter space. In the case that the phylogeny is unknown, the sum over

the tree space is included. In general, even for simple phylogenetic models, this

quantity does not have an analytic solution, and has to be estimated. Different

numerical methods have been proposed to estimate the Bayes factor directly.

Suchard et al. [2001] used the Savage-Dickey ratio to approximate it for nested

models. This method can only be applied to a family of models, a limitation

shared by hLRTs. Huelsenbeck et al. [2004] used reversible jump Markov chain

Monte Carlo, including all possible time-reversible models. Nevertheless, the

comparison is restricted to the particular group of models included in the system.

The incorporation of a new model would require a change on the design of the

MCMC proposal which allows jumps between the models. Both methods of BF

estimation allow the incorporation of the uncertainty about the topology.

Methods which aim to estimate the marginal likelihood have also been devel-

oped. These represent a more general alternative because the marginal likelihood

of a model calculated today will be available for the comparison of other models

in future studies. The most common of these methods is an importance-sampling

approach known as the harmonic mean (HM) method [Newton and Raftery,

1994]. Even though its calculation is straightforward, this estimator has several

He believed that the great diversity of breeds had the rock-pigeon as common ancestor. This
was a common opinion among naturalists at that time. According to his reasoning, if it were
not true, they should have descended from at least 7 different aboriginal stocks. Also, they
should have been selected and successfully domesticated by half civilized-man. Moreover, these
species should have all become extinct or unknown. Using his own words: “so many strange
contingencies seem to me improbable in the highest degree.”
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widely known drawbacks. For instance, it is biased, overestimates the true value,

in many situations its variance is not finite, and it leads to a strong overestimation

of the marginal likelihood as the model increases its dimension, favoring parame-

ter rich-models [Baele et al., 2016; Lartillot and Philippe, 2006; Xie et al., 2011].

An extension of the HM is the inflated density ratio [IDR; Arima and Tardella,

2014; Petris and Tardella, 2007]. This method relies on an auxiliary distribution,

which is a perturbed version of the target distribution such that its total mass has

a known functional relation to the marginal likelihood being estimated. Unlike

HM, IDR avoids the infinite variance problem under fairly general conditions, but

it keeps its simplicity.

Far more accurate than HM is path sampling (PS), or also known in physics

as thermodynamic integration (TI), introduced into phylogenetics by Lartillot

and Philippe [2006]. This method requires several Markov chains from a specific

sequence of transition functions (probability distributions), which define a path

between the prior and posterior distribution, in order to estimate the marginal

likelihood. This leads to a much higher computational cost in comparison to HM.

However, PS allows the direct BF estimation.

Another importance sampling approach is steppingstone sampling (SS), pro-

posed by Xie et al. [2011]. This method performs similarly to TI, but requires

slightly less computational effort. SS makes use of importance sampling to esti-

mate a series of ratios of normalizing constants, taken from a sequence of tran-

sitional functions, like the ones defined for TI. It works in a very similar way

to annealed importance sampling [AIS; Neal, 2001]. SS also allows for the di-

rect estimation of the Bayes factor [Baele et al., 2013]. This method has gained

popularity in phylogenetics due to its availability in many software packages (see

Table 1.1). The performance of the method relies mainly on the path between

the prior and the posterior. If these distributions are quite different, the method

might require more samples to reduce its estimation error. Its extension, known

as generalized steppingstone sampling [GSS; Fan et al., 2011], works by using a

reference distribution to shorten the path, which leads to a more accurate es-

timate of the marginal likelihood. GSS has also been extended to account for

uncertainty in topology [Baele et al., 2016; Holder et al., 2014].

GSS is a highly accurate method, widely used in phylogenetics. However, some
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Software Marginal likelihood estimation method

Bayou(R-package) GSS
BEAST HM, PS, SS, and GSS
MrBayes HM and SS
PhyloBayes PS under normal approximation
Phycas HM, PS, and GSS
TESS(R-package) PS and SS

Table 1.1: Marginal likelihood estimation methods currently implemented in
Bayesian phylogenetic software packages.

considerations, vaguely discussed in the literature, should be taken into account

when using it. First, the method requires a minimum number of specifications

to yield reliable estimates, which have to be found by guesswork [Drummond

and Bouckaert, 2015, Chapter 9]. This point is shared by PS, SS and AIS. On

the other hand, its performance depends mainly on the reference distribution,

which should optimally be an approximation of the posterior. In the case in

which the posterior is a difficult distribution to sample from, the method could

fail. This situation could occur, for instance, when the likelihood, a function that

is not completely understood in phylogenetics, contains phase transitions (see

Example 3.5.1 for more information). Therefore, in the meanwhile, methods of

general applicability and more friendly for the users are needed.

A more general algorithm is nested sampling [NS; Skilling, 2006]. This method

addresses many of the issues of the previously introduced methods while retaining

their abilities. It does not depend on many specifications; it provides a measure of

the uncertainty of the estimate in a single run; it can deal with phase transitions in

the likelihood; it yields posterior samples. NS was developed in physics, but it has

spread across different disciplines due to its properties. It has been used mainly

for marginal likelihood estimation, but its applications also include parameter

inference [e.g., Aitken and Akman, 2013; Pullen and Morris, 2014].

NS works by exploring the parameter space according to the prior when start-

ing. Then, it progressively moves towards the areas of high likelihood. The

sampled points can be reused as a posterior sample, if appropriate weights are

assigned. The particular way of getting the points for the estimation might make

9
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NS require many iterations to reach the areas which actually have a greater con-

tribution to the marginal likelihood estimation. The trajectory explored by NS

can be shortened by an importance sampling distribution. This approach is called

nested importance sampling [NIS; Chopin and Robert, 2010; Skilling, 2006], re-

quires less iterations and has a lower uncertainty in comparison to NS.

This thesis concerns principally the discussion of a variety of methods to es-

timate the Bayes factors in a phylogenetic context. The discussion is from a

statistical point of view. Thus, first of all, we start giving a complete definition

of phylogenetic models and their components in Chapter 2. This definition also

includes a review of the prior distributions currently in use in Bayesian phylo-

genetic analysis. This chapter lays the groundwork of the phylogenetic concepts

used throughout this thesis.

In Chapter 3, we describe and discuss a subset of methods to estimate the

marginal likelihood and the Bayes factor. This includes the aforementioned HM,

PS, SS, AIS, GSS, NS, and NIS. The NS method, originally developed for marginal

likelihood estimation, is extended to allow the direct estimation of the Bayes fac-

tor. The methods are tested in statistical models, which represent challenging

scenarios. They are also tested in a phylogenetic context assuming a fixed topol-

ogy, and in the case of direct BF estimation.

Chapter 4 concerns the extension of NS to allow variable tree topology. The

method is assessed in marginal likelihood estimation and also in parameter infer-

ence, especially for the tree topology. NS is also extended to allow the incorpo-

ration of an importance sampling distribution (NIS) for the tree topologies. This

results in a decrease of the uncertainty related to the estimate and an acceleration

in convergence.

Finally, in Chapter 5 we give a summary, conclusion, and discussion about

the material presented in this thesis. We also discuss the potential future work

that emerged from this thesis.
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Chapter 2

Phylogenetic models

2.1 Introduction

A phylogenetic model is composed of two components: a tree and a model of

evolution. The tree model describes the genealogical relationship among a group

of sequences or organisms, whereas the substitution model describes the evolu-

tionary process in sequence data along the branches of the tree. The latter is

usually referred to as the model. Both play an important role in phylogenetic

inference and the preference of one over another will depend on the goals of the

study. For example, in the study of the evolution of biological molecules, the

focus is on substitution patterns and therefore on the model of evolution.

Both evolutionary and tree models are characterized by a mathematical struc-

ture composed by parameters, which are the target of any statistical analysis.

When the genealogical relationship among the taxa is unknown, the tree is con-

sidered as another parameter of the model. Under a Bayesian approach, the

parameters are treated as random variables and thus are inferred as probability

distributions, known as the posterior. This allows their estimation together with

the corresponding uncertainty. However, this approach requires the inclusion of

additional information about the parameters via prior distributions, before col-

lecting the data.

The next two sections of this chapter aim to provide the basis of all the phy-

logenetic concepts required in the remaining chapters of this thesis. We describe
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the components of the phylogenetic model, the phylogeny and the evolutionary

model, and their related concepts, followed by a discussion about the prior dis-

tributions used currently in Bayesian phylogenetic analysis.

2.2 Tree model

The tree model represents the evolutionary histories of a group of biological

species or organisms. It provides a concise way to visualize and summarize how

the taxa have evolved from a common ancestor. This concept was sketched by

Darwin (Figure 2.1) in 1837 and subsequently developed formally and backed

with evidence in On the Origin of Species by Means of Natural Selection. The

generalization of this concept, embodying all living things together, even extinct,

forms a vast evolutionary phylogeny which is known as the Tree of Life.

As any statistical model, the tree model is a simplification of reality and it is

consequently subject to error. However, it seems a reasonable assumption since it

is backed by many kinds of data that support an evolution that seems to be tree-

like [Archie, 1989; Holland et al., 2004; Maturana R., 2017; Penny et al., 1982].

For instance, Archie [1989] analysed 28 datasets, based on quantitative morpho-

logical characters published at that time, by using randomization tests, and found

that all of them contained phylogenetic information; Penny et al. [1982] analysed

5 sequence data from 11 species by using maximum parsimony, resulting in very

similar trees from the individual and combined sequences, i.e., they contained

similar evolutionary information supporting the existence of a phylogenetic tree.

Even though in certain cases a network might be a better option [see, for instance,

Hernández-López et al., 2013], the tree model is a practical and useful model.

2.2.1 Definition

A phylogenetic tree is a branching diagram that depicts the evolutionary rela-

tionship among a set of taxa Λ. Formally, a tree is a pair τ = (N ,V), where

N is a set of nodes, and V is a set of branches. In the mathematical literature,

they are known as vertices and edges, respectively. Each branch t ∈ V is a pair

of nodes (vi, vi+1), with vi and vi+1 ∈ N . Every pair of nodes in N is connected
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Figure 2.1: Charles Darwin’s 1837 sketched visualizing the idea of descent from
common ancestry. The upper text reads, “I think. Case must be that one gener-
ation then should be as many living as now. To do this & to have many species
in same genus (as is) requires extintion.” The lower text reads, “Thus between A
& B immense gap of relation. C & B the finest gradiation, B & D rather greater
distinction.”

by a unique path in τ , which does not admit cycles, in other words, every path

(v1, v2, . . . , vn), which is an ordered set of distinct nodes, fulfils the condition

v1 6= vn. The tree is a particular case of what, in mathematics, is defined as a

graph.

2.2.2 Concepts

2.2.2.1 Topology and nodes

The order of the nodes, or the branching pattern, is called the topology of the

tree and it is used to describe the shape of the tree regardless of the branch
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Figure 2.2: The evolutionary relationship among 5 members of the primate family.
From the top: macaque, guereza, orangutan, chimpanzee and human. These
species are related via common ancestry which is explained by the tree. The
branch lengths of the phylogram stand for the expected number of mutations per
site.

lengths. The topology stands for the evolutionary relatedness of the sequences,

organisms or species. A tree with only information about its topology is called

a cladogram, whereas with the additional information about its branch lengths

is called a phylogram. An example of these two trees is displayed in Figure 2.2.

Both phylogenies show the evolutionary relationship among 5 members of the

primate family. However, phylogeny 2.2a only contains this information, i.e., it

is a cladogram, whereas the one in 2.2b includes information about the expected

number of substitutions per site through the branch lengths, i.e., it is a phylogram.

In the case that the branch lengths represent time, the tree is called an ultrametric

tree or chronogram. In such a tree, the distance from the root (the ancestor of

all the sequences) to the leaves are the same.

A node is classified according to its degree, which is defined as the number

of branches connected to it. In this way, two kinds of nodes are distinguished:

external and internal. An external node has degree equal to 1 and is called a

leaf. It represents a taxon, typically an extant species (or sequences). On the

other hand, an internal node has degree greater than 1 and represents a common
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ancestor for which generally there is no information available. In the case of

having information (DNA or similar), it can also be considered as a taxon [Semple

and Steel, 2003].

If an internal node has degree 3, excluding the root node, it is said to be

resolved. When this is the case for all of them in a given tree and in addition the

root node has degree 2, the tree is said to be fully resolved. This characteristic

defines a special class of trees called binary or bifurcating trees. In this case,

all speciation events produce just two descendants from one ancestor. This is

the most common kind of topologies used in phylogenetics, as it is unlikely that

an ancestral lineage diverges into more than 2 descendants simultaneously, even

though it is still possible [Baum and Smith, 2012]. In this particular case in

which a node has degree larger than three, i.e., more than two descendants,

the node is called polytomy or multifurcation. A polytomy representing truly

simultaneous divergence is called hard polytomy. However, polytomies most of

the time represent uncertainty about the correct branching pattern in a tree, in

which case they are called soft polytomies.

2.2.2.2 Rooted and unrooted trees

The common ancestor of all taxa in a tree is called the root and it is the most

recent common ancestor (MRCA) of the phylogeny. If this is specified, the tree

is called a rooted tree. In this case, time is represented by a single direction.

For instance, the root in the trees displayed in Figure 2.2, which is the leftmost

node, is the common ancestor of the 5 primates and establishes the direction of

evolution. In a rooted binary tree, the root has degree 2, i.e., it produces two

direct descendants.

On the other hand, if the root is not specified or unknown, the tree is called

an unrooted tree. In this case, the tree is drawn without reference to the direction

of time, i.e., ancestry cannot be identified among the internal nodes of the tree.

2.2.2.3 Clades and splits

Information about the direction of the evolutionary process in a phylogeny, granted

by the root, provides the means to classify taxa. This information is of crucial
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importance in taxonomy, the research field that deals with description, identi-

fication and classification of living things. Actually, it is widely accepted that

phylogeny should be the basis of taxonomic classifications [Yang, 2014]. The

evolutionary direction allows us to identify the ancestors in the phylogeny and

consequently define groups according to them. These groups form part of phy-

logenetic and taxonomic nomenclature. This is the case of a monophyletic group

or better known in phylogenetics as a clade, which is the group composed of all

the descendants from a common ancestor. The taxa which comprise this group

are closely related. They have more recent common ancestors than any other

outsider taxa. This concept is based on the time of divergence of the taxa and

not on the sequence distance (sum of the branch lengths which connect the two

taxa). For instance, two taxa which belong to the same clade will not necessarily

have the smallest sequence distance. Two clades are said to be sister clades if

they descend directly from the same ancestor. Analogously, if two species share

a direct common ancestor, they are said to be sister species.

The use of these terms necessarily requires a rooted phylogeny. However, for

the case of unrooted trees, groups can be still generated by cutting an internal

branch which defines a split or bipartition. Formally, for a set of taxa Λ, a split

A|B is a partition of Λ, i.e., A∪B = Λ and A∩B = ∅. The split divides the set of

taxa into two mutually exclusive groups or clans where at least one of them must

be a clade. In the case that the split is assertively made on the internal branch

which should truly contain the root of the unrooted tree, the two partitions are

clades.

2.2.2.4 Rooting techniques

Most of the tree reconstruction approaches do their searches over the unrooted

tree space, producing consequently unrooted trees. This is only based on compu-

tational/mathematical convenience, which is granted by assuming reversibility on

the model of evolution, an assumption examined below in Section 2.3.1.4. As was

discussed above, the root provides information which is essential to answer ques-

tions related to the evolutionary process. However, in practice, the root can be

identified and allocated in an unrooted tree in different ways. The most common
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method is known as outgroup rooting. The method consists of using an external

group, which must be known to be outside of the group which is being analysed,

the ingroup. Thus, the root is allocated between the outgroup and the ingroup.

Another method, known as molecular clock rooting, relies on the assumption

that there is a constant rate of evolution over time and among evolutionary

lineages in order to determine the root of the tree. This assumption, known as

molecular clock [Zuckerkandl and Pauling, 1965], is valid when the taxa are closely

related or in the presence of low divergent sequences. Another alternative to root

a tree, referred as mid-point rooting, is to estimate an unrooted tree and then

calculate the distance between each pair of sequences. This distance is calculated

by summing the branch lengths which connect the sequences. Then, the root

is allocated to the middle point of the path that connects the two sequences

which have the biggest distance. This method also relies on the molecular clock

assumption since it assumes that the two most divergent sequences have evolved

at equal rates, but it is a weaker assumption than the previous method. Finally,

a Bayesian analysis can be carried out to infer the root of a tree [Huelsenbeck

et al., 2002]. This procedure works on a fixed unrooted tree where the root is

allocated along its branches according to the posterior distribution of the root.

The analysis can be performed by using either the outgroup method, or the

molecular clock assumption. This alternative has the attribute of assessing the

uncertainty associated with the potential roots.

Even though unrooted trees do not contain as much information as rooted

trees, they are crucial in phylogenetic analysis. Most of the reconstruction ap-

proaches, such as parsimony, maximum likelihood, and Bayesian methods, work

over the unrooted tree space. Therefore, unrooted trees play an essential role

behind the scenes in the computation of rooted trees. They can also address

questions about the relationships among the taxa or represent clusters of related

sequences. They are also useful tools when we try to establish diversity among

the taxa.
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2.2.2.5 Consensus trees and networks

In the scenario of having a collection of phylogenetic trees, a natural situation

in Bayesian analysis (which is usually based on a tree sample from the posterior

distribution), or in bootstrap analysis, it is essential to have a mechanism which

allows to summarize the topological information contained in it. One alternative

is through a single representative tree, known as a consensus tree. This tree

summarizes the common characteristics among the collection of trees.

Consensus trees can be defined in many ways (see Bryant [2003] for a complete

review). One of the most popular is the majority-rule consensus tree. This tree

contains only those clusters or splits which appear in at least ϑ% of the times in

the set of trees. This percentage varies usually between 50% and 100%. For a

conservative ϑ = 100%, this approach is known as the strict consensus tree. Those

splits which do not appear the minimum percentage of times are collapsed into

a soft polytomy. This represents phylogenetic uncertainty about the relationship

among those particular groups.

Another alternative is to summarize the collection of trees through a consen-

sus network [Holland and Moulton, 2003; Holland et al., 2004]. This approach is

a generalization of consensus trees. Instead of only depicting splits which appear

at least half of the time in the set of trees, the consensus network allows us to

visualize other competing splits with lower frequency according to certain thresh-

old. Thus, it allows for the visualization of conflicting evolutionary hypothesis

simultaneously. The conflicting splits are represented by high-dimensional hyper-

cubes. In the particular case of two conflicting splits, they are represented by a

box (see Figure 2.3e). Hence, the consensus network displays more information

about the set of trees than the consensus trees.

To illustrate the methodology, consider a collection of 1,000 trees composed

of two different phylogenies which are displayed in 2.3a and 2.3b. They appear

with frequency 600 and 400, respectively. We identify two incompatible splits,

i.e., they appear in only one of both trees, namely, AB|CDE and AC|BDE. The

set of trees is summarized by using the consensus trees and network discussed

above.

Figure 2.3c displays the strict consensus tree. This contains the splitDE|ABC,
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Figure 2.3: Tree 1 and Tree 2 compose a collection of trees. Their frequency
is 600 and 400, respectively. This set of trees is summarized by the strict and
middle-rule consensus tree and the consensus network.

since it appears in both trees, i.e., 100% of the time, but displays a polytomy for

the subset (A,B,C) which is described in two different ways in the set of trees.

Figure 2.3c shows the majority-rule consensus tree. This is identical to Tree 1

since it represents 60% of the set of trees, higher than the threshold of 50%. Fig-

ure 2.3e displays the consensus network. This shows clearly the two conflicting

splits. The edge with the proportion 0.6 and its parallel edge stand for the split

AB|CDE, whereas the edge with the proportion 0.4 and its parallel edge depicts

the split AC|BDE.

Note that the consensus trees provide a summary of the collection of trees, but

they lose information, as none of them provide information about the competing

splits. On the other hand, the consensus network allows for the visualization of

the two competing incompatible splits simultaneously.
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2.3 Model of evolution

A model of evolution is a set of assumptions about the evolutionary process of a

certain characteristic. It describes the different flows and probabilities of change

from one state to another. Unlike non-parametric methods, such as parsimony,

the model can incorporate explicit assumptions about the underlying evolutionary

process, which can be tested and improved. This model is as important as the

tree model. For instance, if the model of evolution assumed fits the data poorly, it

could lead to incorrect phylogenies and inconsistency in the phylogenetic methods

[Bruno and Halpern, 1999; Felsenstein, 1978; Gaut and Lewis, 1995; Hoff et al.,

2016; Huelsenbeck and Hillis, 1993]. Hence, it is an essential part of phylogenetic

inference.

Frequently in molecular phylogenetic analyses, a taxon is identified by DNA

sequences which are composed by four basic molecules called nucleotides. These

are adenine (A), cytosine (C), guanine (G), and thymine (T), which are linked

together in a long chain. Thus, a DNA sequence is a character list with each

state taking either A, C, G or T. According to their chemical structure, adenine and

guanine are classified as purines (R), and cytosine and thymine as pyrimidines (Y).

Each site in a sequence is assumed to be the outcome of the evolutionary process

along the underlying tree. Thus, in order to reconstruct the tree the representative

sequences are aligned to reflect the process, i.e., a position in one sequence is

matched to another if the assumption can be made that they share a common

ancestry. This assumption is known as homology. All alignment algorithms have

been designed to produce homologous alignments. In this work, we assume that

the sequences are perfectly aligned, that is, we do not consider the uncertainty

in the alignment. Figure 2.4 shows an extract of 5 aligned mitochondrial DNA

sequences from members of the primate family. Each position of the alignment,

represented by the columns of the molecular data matrix, is called a site. In the

example, 19 sites are displayed.

Statistically, substitution and mutation are synonymous. However, in biology

a mutation is a random event whereas a substitution is the outcome of selective

pressure. Mutations can be lost while substitutions are supposed to be fixed.

There is a phenomenon where the number of substitutions appears more numerous
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Human C C T A A A A C C C G C C A C A T C T

Chimpanzee C T T A A A A C C C T C C A C T T C A

Orangutan C C T A A A A C C C T C C A C A T C A

Guereza C T C A A A A C C C G C A A C C T C C

Macaque C T T G A A A C C C T C A A C A T C C

Figure 2.4: Extract of mitochondrial DNA for 5 species of primates. The rows of
of this nucleotide matrix represent the species and each column a site.

in “young” sequence alignments, when it actually just shows a lot more mutations.

Mutations in the purine group or in the pyrimidine group, i.e., G↔A or T↔C, are

called transitions, whereas mutations between the groups, i.e., G↔C, G↔T, T↔A

or T↔G, are called transversions. The sequences are subject to additional kinds

of mutations, such as deletions and insertions. These are represented as gaps in

an alignment. Most processes cannot distinguish between deletions nor insertions

and most inference processes remove gappy sites and their neighbours to avoid

bias in the inference due to alignment error.

Figure 2.5 shows an example of the evolution of 3 DNA sequences which

contain 6 sites. The sites which have mutated are highlighted with a box around

the corresponding nucleotide. The sequence on the top of the tree (ACCTGG) stands

for the root from which the 3 sequences (named “Seq1”, “Seq2” and “Seq3” in the

Figure) have been generated. “Seq1” and “Seq2” share a common ancestor which

has suffered a mutation in the second site (C → T). These sequences have kept

this mutation but have also experienced their own in the sixth and third sites,

respectively. “Seq3”, which has descended directly from the root of the phylogeny,

has also experienced substitutions in the first, third and fifth sites. Note that this

evolutionary process could also contain silent mutations. For instance, a mutation

could have occurred on the second position of sequence 3 of the type C→ T→ C,

which is not visible.

The nucleotide substitution process in DNA sequences is generally described

using Markov models. Throughout this section, we will discuss this kind of model,

in particular, for DNA sequences. However, the extension to other character

datasets, such as morphological, amino acids or any other molecular characteris-
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Figure 2.5: Evolution of 3 DNA sequences. The boxes around the nucleotides
indicate where a mutation has happened.

tics, is analogous. Deletions and insertions are not accommodated by the models

examined here.

2.3.1 Markov models of sequence evolution

Let S̃ be a countable state space and let s̃ = |S̃| be its dimension. For instance,

for DNA sequences S̃ = {A, C, G, T}, for RNA S̃ = {A, C, G, U}, or for proteins

S̃ is composed of 20 amino acids. The number of mutations N(t) at time t

can be characterized by a Poisson process with mean µt (µ > 0 and t ≥ 0).

The mutations occur with rate µ per unit of time t. Thus, the probability of k

mutations at time t is given by

P(N(t) = k) =
(µt)k

k!
e−µt, k = 0, 1, . . .

In a Poisson process, the time between mutation events follows an exponential

distribution. If these times are ignored, a mutation event can be characterized by

a discrete-time Markov chain {En}n∈N0 with transition probabilities Rxy, which

denote the probability of changing to state y given that the current state is x,

with x and y ∈ S̃. This value represents the probability of a single event. Given

that redundant mutations are allowed, Rxx > 0. Thus, En denotes the state of

the site of the sequence in the nth substitution. For a DNA sequence, for instance,

E3 = A stands for the nucleotide at the third mutation.

Note that the Poisson process does not discriminate among the kind of muta-
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tions, but it considers all of them as equal. It only counts the number of mutations

at time t. On the other hand, the En process stands for the current state after n

mutations, but without considering the elapsed time t.

Assuming that En and N(t) are independent, the process {X(t)}t≥0, with

X(t) = EN(t), (2.1)

defines a continuous-time Markov chain and generalizes the Poisson process. It

is known as a uniform Markov jump process with subordinated chain {En} and

clock N(t). This stochastic process embodies the current state through En, and

the elapsed time through N(t). The elements of its transition probability matrix

Pxy(t) are derived as follows:

P(X(t) = y|X(0) = x) = P(EN(t) = y|E0 = x)

=
∞∑
k=0

P(Ek = y,N(t) = k|E0 = x)

=
∞∑
k=0

P(Ek = y|E0 = x)P(N(t) = k)

=
∞∑
k=0

Rk
xy

(µt)k

k!
e−µt,

for t ≥ 0, x, y ∈ S̃, where Rk
xy is the corresponding element of Rk which denotes

the kth power of the matrix R and is known as the k−step transition matrix.

Thus, the transition probability matrix is given by

P(t) =
∞∑
k=0

(Rk)
(µt)k

k!
e−µt. (2.2)

This probability matrix contains the probabilities of change at time t summed

over all the possible number of mutation events k.

This matrix (2.2) can be rewritten as

P(t) = e−µt
∞∑
k=0

(µtR)k

k!
= eµt(R−Is̃) = etQ, (2.3)
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where Is̃ is the s̃ × s̃ identity matrix, and etQ is the exponential matrix, with

Q = µ(R−Is̃). The exponential matrix is considered notoriously difficult for some

Markov jump models with many states. The Q matrix is called the instantaneous

rate matrix and plays an important role in evolution models (it will be discussed

in detail in 2.3.1.1).

The P(t) matrix satisfies the conditions:

s̃∑
j=1

Pij(t) = 1, with Pij > 0 for t ≥ 0, (2.4)

P(t+ δ) = P(t)P(δ), with t, δ ≥ 0, (2.5)

P(0) = Is̃. (2.6)

Condition (2.4) states that the probability of staying or leaving the current

state i is 1 a time t later. For this, the rows of P(t) represent the current state and

the columns the next state. Condition (2.5), known as the Chapman-Kolmogorov

equations, states that the probability at any time can be split up into 2 time in-

tervals and calculated taking into account all the intermediate states at these

times. This is due to the transition probabilities only depending on the elapsed

time. Condition (2.6) depicts the transition probabilities at time 0 which would

be the case of no evolution. Naturally, the probability of staying at the same

state is 1 and leaving is 0 when time has not elapsed.

The construction of the Markov model has been presented in a general way.

Thus, the procedure can be used for any kind of data with categorical variables. In

practice, the features of the transition rate matrix Q are determined empirically.

For instance, for DNA data, it is well known that transitions occur with more

frequency than transversions. Therefore, we could introduce parameters in Q

which take into account this feature and thus model separately these kind of

mutations.

2.3.1.1 Instantaneous rate matrix

The Q matrix defined in (2.3) plays a key role in models of sequence evolution

characterizing the process to be modeled. Its parametric structure defines the
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transition probabilities on P(t). Depending on the Q matrix, the model adopts

a distinctive name in phylogenetics as is discussed below.

The off-diagonal elements qij represent the instantaneous substitution rate

from state i to state j, in other words, how often the substitution from i to

j occurs with respect to other possible substitutions. Its diagonal elements qii

depict the total flow that leaves the state i, for this reason they are negative.

Thus, they are defined as

qii = −
s̃∑
i 6=j

qij,

with qij > 0.

For DNA sequences, the nucleotide substitutions are modeled by a 4-state

Markov process, which instantaneous transition rate matrix in its most general

form is defined by

Q =

F
ro

m

To

A C G T


A − µrACπC µrAGπG µrATπT

C µrCAπA − µrCGπG µrCTπT

G µrGAπA µrGCπC − µrGTπT

T µrTAπA µrTCπC µrTGπG −

, (2.7)

where the diagonal elements are chosen to make the rows to sum to zero; the

parameters rij ≥ 0 for i, j = A, C, G, T, with i 6= j; µ ≥ 0; and the equilibrium

distribution is π = (πA, πC, πG, πT ) under the constraint
∑

i πi = 1 with πi > 0 for

i = A, C, G, T. The rows of Q represent the current state of the nucleotide whereas

the columns represent the potential nucleotide at time t.

The factor µ, which represents the expected number of substitutions per unit

of time, is called the mean of the substitution rates and is defined as

µ = −
s̃∑
i=1

πiqii. (2.8)
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The relative rate parameters rij describe the relative rate of substitution with

respect to any other possible substitution. These parameters weight the rate of

change µ constituting the rate parameter (µ × rij). This product is a kind of

breakdown of the average number of mutations according to each potential mu-

tation.

It is important to mention that t and µ cannot be separated in the probability

matrix P(t) = etQ. Note that t is multiplying each element of Q, which are

composed in part by µ. As a result, they cannot be estimated separately but

only through their product, number of substitutions up to time t, unless a perfect

molecular clock is assumed in which case Q is the rate of substitution per unit

of time. This prevents us from knowing the exact cause of the branch length.

For instance, a long branch could be due either to a long period of evolutionary

time t or a high mean substitution rate µ. A common practice to deal with this

problem is to set to 1 the mean substitution rate of change µ. This is done by

scaling the Q matrix by µ−1. This transformation does not alter the relation of

the substitution rates and as a result, the branch length t turns into the expected

number of substitutions per site along the branch of the tree model.

2.3.1.2 Stationary distribution

The Markov process defined above assumes that when t goes to infinity, the

probability that a site is in state y is non-zero, and that it is independent of its

initial state. Such a Markov process is called ergodic. In mathematical terms,

there is a s̃-dimensional vector π = (π1, . . . , πs̃), with πi > 0 for all i, and∑
i∈S̃ πi = 1, such that

lim
t→∞

Pxy(t) = πy,

for all x, y ∈ S̃. This row vector π is said to be the stationary distribution and

satisfies

π = πP(t),
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for all t > 0. This is equivalent to satisfying to all y

πy =
∑
x∈S̃

πxPxy(t).

This property means that if a state is sampled from the stationary distribution

and the process is executed for time t, then the distribution of the final state

will be equal to the stationary distribution. Equivalently, it can be read as the

probability of starting from any state and ending in y is πy. This property can

also be expressed in terms of the stationary rate matrix as 0 = πQ, where 0 is

an s̃-dimensional vector which contains only zeros.

2.3.1.3 Assumptions

The Markov process defined in (2.1), which models the mutation events, involves

the following assumptions:

• Memoryless. At any site, the next state only depends on the current state.

• Homogeneity. Substitution rates remain constant over time, i.e., the sub-

stitution probabilities remain constant in different parts of the tree.

• Stationarity. The relative frequencies are in equilibrium, i.e., they remain

constant over time.

Although these assumptions might not be valid in biological processes, in

practice, these models have proved to be good tools to explain these processes.

The assumptions are just the cost of a simplified representation of reality and

obey mathematical convenience. Models which relax the last two are discussed

in Section 2.3.5.

2.3.1.4 Time reversibility

Time reversibility means that the process will look the same whether it is consid-

ered forward or backward in time. It is an assumption commonly used in practice.

Even though there is no biological argument for this assumption, it is supported

27



Chapter 2. Phylogenetic models

by a practical reason: it reduces the complexity of the model, facilitating sig-

nificant calculations. For instance, it makes easier to calculate the exponential

matrix in the transitional probability matrix (2.3) and the likelihood on a tree,

which under this assumption becomes independent of the location of the root.

More advantages of time-reversibility are discussed in Keilson [1979].

The use of unrestricted models (without the reversibility restriction) compli-

cates calculations and might not be worthwhile attempting. One of these com-

plications is that they could involve complex numbers in the calculation of the

probabilities. Yang [1994a] presented some cases where the unrestricted models

yield similar estimated rate matrices to those obtained from the general time re-

versible models. Hence, the cost could be unjustified. Actually, Yang suggested

that reversibility does not sacrifice biological reality.

Reversibility states that sampling x from the stationary distribution and going

to state y is equivalent to sampling y from the stationary distribution and going

to state x. In probabilistic terms, this assumption is given by

πxPxy(t) = πyPyx(t),

for x, y ∈ S̃, and t ≥ 0. This means that the probability of observing X(t) = y

and X(0) = x is identical to the probability of observing X(t) = x and X(0) = y.

In a nucleotide sequence, the probability of observing the mutation A → G is

equivalent to the probability of observing G → A. In other words, the process of

substitution between time 0 and t remains the same whether it is considered for-

ward or backward in time. Note that time reversibility does not imply symmetry

in the transitional probability matrix P(t). This restriction can be imposed by

considering equal relative rate parameters in the instantaneous rate matrix. This

is equivalent to considering

πxqxy = πyqyx.

For DNA sequences, the Q matrix defined in (2.7) is restricted to rAC = rCA,

rAG = rGA, rAT = rTA, rCG = rGC, rCT = rTC, and rGT = rTG. Thus, the most
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general time-reversible model, known as GTR, can be represented by

Q =



A C G T

A − µrACπC µrAGπG µrATπT

C µrACπA − µrCGπG µrCTπT

G µrAGπA µrCGπC − µrGTπT

T µrATπA µrCTπC µrGTπG −

. (2.9)

Most of the most popular nucleotide substitution models rely on the time

reversibility assumption. These models differ basically in the parametric structure

of their instantaneous transition rate matrix. Naturally, they have chronologically

evolved from the simplest to more general models due to the advancement of new

methodologies and technology. Their evolution has been accompanied by the

development of new statistical methods which have allowed their tractability.

In general, they were initially developed for genetic distances for 2 sequences

and then their application was extended to the evolutionary reconstruction for

multiple sequences. Some of these models are discussed below.

2.3.1.5 The JC69 model

The JC69 model [Jukes and Cantor, 1969], or simply JC, is the simplest possible

model of evolution. It assumes that each nucleotide has the same probability of

mutation and when this occurs, the nucleotide changes to one of the three other

possible nucleotides with equal probability. Even though its assumptions could

be considered unrealistic, it was essential as a starting point to generate more

complex models. As an anecdote, this model had to be included just as a part of

a large empirical paper in order to be published and not rejected by the editors

[Felsenstein, 2001]. This model has gradually been acquiring more complexity

and thus flexibility generating new models.

This model sets the relative rate parameters to 1.0. In other words, it as-

sumes that there is no difference between the occurrence of the different kinds

of mutations (rAC = rAG = rAT = rCG = rCT = rGT = 1.0). Also, it as-
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sumes equal frequencies, i.e., the nucleotides occur with the same frequency

(πA = πC = πG = πT = 1/4). These restrictions yield the following rate ma-

trix

Q =


-3µ/4 µ/4 µ/4 µ/4

µ/4 -3µ/4 µ/4 µ/4

µ/4 µ/4 -3µ/4 µ/4

µ/4 µ/4 µ/4 -3µ/4

 ,

which characterizes JC69. After some matrix algebra, the substitution probabil-

ities of this model are given by

Pxy(t) =

{
1/4 + 3/4 e−µt, if x = y,

1/4− 1/4 e−µt, if x 6= y.

The rate and the frequencies are usually combined into a single parameter

α = µ/4, which reduces the instantaneous rate matrix to

Q =


-3α α α α

α -3α α α

α α -3α α

α α α -3α

 ,

and consequently, the substitution probabilities to

Pxy(t) =

{
1/4 + 3/4 e−4αt, if x = y,

1/4− 1/4 e−4αt, if x 6= y.

As it was discussed before, the mean substitution rate is usually set to 1. This

transforms the branch length t into the number of substitutions per site. This

is done by scaling Q by its inverse mean rate, which for this model is (3µ/4)−1.

Thus, the average rate of substitutions at equilibrium is 1.
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2.3.1.6 The K80 model

The K80 model [Kimura, 1980], also called K2P model, differs from the previous

one by introducing a parameter to account for the kind of mutations. This is done

by considering a different rate parameter for transitions and transversions (rAG =

rCT and rAC = rAT = rCG = rGT ). This consideration is consistent with reality,

since, as is well known, transitions occur more frequently than transversions,

even though the latter can happen in more ways (G↔C, G↔T, T↔A or T↔G). The

nucleotides are assumed equally frequent (πA = πC = πG = πT = 1/4).

The transversion rate is set to 1.0 in order to leave the transition rate measured

with respect to it (rAC = rAT = rCG = rGT = 1.0). Thus, the rate matrix for this

model is given by

Q =


-µ(b+ 2)/4 µ/4 b µ/4 µ/4

µ/4 -µ(b+ 2)/4 µ/4 b µ/4

b µ/4 µ/4 -µ(b+ 2)/4 µ/4

µ/4 b µ/4 µ/4 -µ(b+ 2)/4

 ,

where b = rAG = rCT . This model can also be found in the literature with different

parametrization. For instance, setting the transition rate to α = b µ/4 and the

transversion rate to β = µ/4, the rate matrix can be rewritten as

Q =


−α− 2β β α β

β −α− 2β β α

α β −α− 2β β

β α β −α− 2β

 .

Note that if α/β, which represents the transition bias, is equal to 1, the model

reduces to the JC69 model. This means that there is no preference for transitions.

The K80 model assigns different probabilities for transition and transversion

mutations as well as for no substitutions. These probabilities are given by

Pxy(t) =


1/4 + 1/4 e−µt + 1/2 e−µt((b+1)/2), if x = y,

1/4 + 1/4 e−µt − 1/2 e−µt((b+1)/2), if x 6= y, transition

1/4− 1/4 e−µt, if x 6= y, transversion
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In order to make the expected flux of the model equal to 1, the instantaneous

rate matrix must be scaled by (µ(b+ 2)/4)−1, which is the inverse mean rate.

2.3.1.7 The F81 model

The F81 model [Felsenstein, 1981] is another extension of the JC69 model. As

its predecessor, this model considers equal relative parameter rates, but it differs

by allowing the incorporation of different parameters for the frequencies. This

flexibility is realistic since, in general, the overall DNA frequencies will not be

equal, namely, the frequencies of A and T are approximately equal as well as the

frequencies of C and G.

Its rate matrix is given by

Q =


-µ(πG + πY ) µπC µπG µπT

µπA -µ(πT + πR) µπG µπT

µπA µπC -µ(πA + πY ) µπT

µπA µπC µπG -µ(πC + πR)

 ,

where πY = πC + πT and πR = πA + πG are pyrimidine and purine frequencies,

respectively. In order to make the mean rate equal to 1, the instantaneous rate

matrix must be multiplied by
(
2µ(πAπG + πCπT + πY πR)

)−1
, which is the inverse

mean rate.

After some matrix algebra, the probability matrix can be described by

Pxy(t) =

{
πy + (1.0− πy) e−µt, if x = y,

πy(1.0− e−µt), if x 6= y.

2.3.1.8 The HKY85 model

The HKY85 model [Hasegawa and Kishino, 1984; Hasegawa et al., 1985], or sim-

ply HKY, generalizes the K80 and F81 model allowing a different relative rate

for transitions and transversions and different frequencies. This model merges

the attributes of both models into one. A model with the same features was

independently implemented in PHYLIP computer package [Felsenstein, 1989]. It

is called the F84 model and has a slightly different parametrization. This model
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is formally described in Kishino and Hasegawa [1989].

The instantaneous rate matrix for HKY85 is given by

Q =


-µ(b πG + πY ) µπC b µπG µπT

µπA -µ(b πT + πR) µπG b µπT

b µπA µπC -µ(b πA + πY ) µπT

µπA b µπC µπG -µ(b πC + πR)

 ,

where πY = πC + πT and πR = πA + πG. By multiplying this matrix by its inverse

rate mean
(
2µ(b(πAπG +πCπT )+πY πR)

)−1
, the mean substitution rate is set to 1.

The HKY85 model assigns different probabilities to transitions, transversions,

and no substitutions. These probabilities are given by

Pxy(t) =


πy + πy(1/π

∗
y − 1)e−µt +

(
(π∗y − πy)/π∗y

)
e−µtρ, if x = y,

πy + πy(1/π
∗
y − 1)e−µt −

(
πy/π

∗
y

)
e−µtρ, if x 6= y, transition,

πy(1− e−µt), if x 6= y, transversion,

where ρ = 1 + π∗y(b − 1), with π∗y = πA + πG if base y is a purine (A or G), and

π∗y = πC + πT if base y is a pyrimidine (C or T) [Swofford et al., 1996].

2.3.1.9 The GTR model

The general time-reversible model (GTR) [Lanave et al., 1984; Tavaré, 1986],

or also called the general reversible process model [REV; Yang, 1994a], is the

most general model in its class. It allows the modeling of different relative tran-

sition and transversion rates and frequencies. Its instantaneous rate matrix is

defined in (2.9). It was originally applied to sequence distance calculation and

subsequently to substitution pattern estimation [Yang, 1994a]. Even though this

model does not have explicit transition probabilities, unlike the other ones de-

scribed above, they can be computed by numerical calculation of the eigenval-

ues and eigenvectors of its instantaneous rate matrix Q (see, for instance, Yang

[1994a]).

Allowing the six relative rates to vary and scaling the transition rate matrix,

leads to a problem known as nonidentifiability [Zwickl and Holder, 2004]. This

phenomenon happens when the model has two or more values for its parameters
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which produce the same distribution for the data. In other words, the data cannot

discriminate between some parameter combinations. One common solution to

this problem is to set one of the rates to 1. Thus, if the TG substitution rate is set

to 1, the rest of rates are measured relative to it. For instance, a AC substitution

rate value of 5.0 means that the AC mutations occurs 5 times more frequently

than TG mutations. Another solution is to force the six rates to sum to 1 and

as the previous approach, there are five free parameters but with a different

interpretation. For instance, if the TG rate parameter is 0.20, then 20% of all

mutations are expected to be between T and G. The former solution is known as

5RR and the latter one as ST1 [Zwickl and Holder, 2004].

2.3.2 Likelihood calculation

The Markov process defined previously describes an evolutionary course along

a single edge, which represents a time of length t, of a phylogeny τ . In the

same way, this process can be applied to each branch of a phylogeny in order to

describe the evolution of multiple sequences along the full tree. The substitution

process, defined as the random variable X, assigns to each vertex in τ an element

of the set of states S̃ following a Markov process on τ . Thus, the evolution of a

character from one node to another can be described in probabilistic terms and

the probability of the tree can be calculated.

The likelihood represents the probability of observing the data given the pa-

rameters and the model. Since the data are fixed in the analyses, the likelihood

is considered as a function of the parameters given the data and the model. This

explains why it does not integrate to 1 over the parameter space, but it does over

the sample space.

The dataset consists of s aligned homologous sequences with m sites each

and is represented by an s × m matrix X = {xij}. Each column xh of this

matrix represents a site. For instance, the second site in the example presented

in Figure 2.4 is x2 = (C, T, C, T, T). Each element of this vector determines a

character ∈ S̃ on the leaves of the tree. The sites are usually assumed to be

evolving independently of the remaining sites. The evolution in one lineage is

also assumed independent of the other lineages.
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Figure 2.6: Trees for 4 species. Assuming reversibility, both trees have the same
likelihood. The arrow on the right is used as reference in the molecular clock
assumption, under which we have t∗1 = t1 = t2, t3 = t4, and t∗0 = t5 = t3 − t1.

Assuming independence between sites, i.e., between the columns of X, the

likelihood for a given rooted tree is defined as

L(θ) = L(X|θ, τ) =
m∏
h=1

L(xh|θ),

which is the product of the probabilities for each site L(xh|θ). Therefore, the

log-likelihood is given by

l(θ) =
m∑
h=1

logL(xh|θ).

As the likelihood is extremely small in most cases in phylogenetics, it is preferable

to work with its log version instead.

In general, the states of the leaves are all the available information about

the evolutionary process of the taxa being analysed. In other words, the states

of the internal nodes, which usually represent extinct ancestors, are commonly

unknown. Therefore, to calculate the probability of a site L(xh|θ), it is necessary

to sum over all possible states of the internal nodes of the tree.
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We illustrate the calculation of the probability of a site in the 4 taxon phy-

logeny displayed in Figure 2.6a. But first, this unrooted tree needs to be rooted.

By the time reversibility assumption, the root can be allocated arbitrarily at any

internal node without affecting the likelihood, i.e., the latter is independent of the

root position. This property is called the pulley principle [Felsenstein, 1981]. This

principle allows to define a class of rooted trees which have the same likelihood

and which are compatible with a single unrooted tree. This explains the reason

behind the inability of likelihood-based methods in estimating rooted trees under

the time reversibility assumption. In our example, we root the phylogeny at x6

and the resulting tree is displayed in Figure 2.6b. Thus, the likelihood calculation

procedure is described jointly for the unrooted and rooted trees and its extension

to a larger phylogeny is analogous.

The vector xh, which represents the states of the leaves of the tree in the

hth site, contains the states x1, x2, x3 and x4. The internal states (x5 and x6),

which represent the states of the ancestors, are unknown. Thus, to calculate the

probability for xh we must sum over all possible states of x5 and x6.

The calculation starts with the probabilities on the root which are given by

the stationary distribution π. From it, the probabilities are calculated along the

tree. All of them are contained in the probability matrix P(t) which only varies

according to the branch length t. Thus, the probability for a site is given by

L(xh|θ) =
∑
x6

∑
x5

πx6Px6x5(t5)Px5x1(t1)Px5x2(t2)Px6x3(t3)Px6x4(t4)

=
∑
x6

πx6Px6x3(t3)Px6x4(t4)
∑
x5

Px6x5(t5)Px5x1(t1)Px5x2(t2), (2.10)

where Pxixj(t) are the entries of the probability matrix P(t) = etQ.

This calculation involves a very large number of terms which increases expo-

nentially with the number of taxa. Nevertheless, there are some considerations

that allow considerable time saving. First, the probability calculation can be

carried out over descendant nodes and then over ancestral nodes. This is illus-

trated in (2.10) where the summation sign has been moved to the right which

reduces the calculations. This simplification is known as the pruning algorithm

[Felsenstein, 1973, 1981]. Second, if two or more sites have the same pattern,
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then they have the same probability. Therefore, their probability just needs to

be calculated once and multiplied by their frequency. Finally, the probability

matrix is calculated only once per branch and remains constant across sites.

Under the assumption of molecular clock, i.e., the substitution rates remain

constant across the lineages in the phylogeny, the number of branch length pa-

rameters decreases. For a binary tree of s taxa, there will be s− 1 internal nodes

and consequently s−1 branch lengths (the height of each node). This assumption

allows the identification of the root and measures the branch lengths according

to it.

In our previous example, we identify two branch lengths which are depicted

by the vertical line in the phylogeny displayed in Figure 2.6b. First t∗0, which is

defined from the functional root x6 to the internal node x5, and second t∗1, which

is defined from x5 to its descendants x1 or x2. Considering these restrictions, the

probability at a site assuming molecular clock becomes

L(xh|θ) =
∑
x6

πx6Px6x3(t
∗
0 + t∗1)Px6x4(t

∗
0 + t∗1)

∑
x5

Px6x5(t
∗
0)Px5x1(t

∗
1)Px5x2(t

∗
1).

2.3.3 Variable substitution rate across sites

The Markov models presented previously assume that all sites evolve at the same

rate through the transition rate matrix Q. This assumption is violated in many

real cases and it has been well documented in the literature [e.g., Hodgkinson

and Eyre-Walker, 2011]. In these cases, its omission can lead to wrong conclu-

sions [Gaut and Lewis, 1995; Sullivan and Swofford, 2001; Yang, 1996a]. For

instance, Gaut and Lewis [1995] studied a simulated dataset in the presence of

rate variation across sites and showed that maximum likelihood (ML) inference

can be inconsistent under models which ignore this variability. As the length of

the sequence increased, ML methods converged to the wrong tree.

Early methods dealt with this problem by keeping a portion of invariable sites

and the rest varying at the same rate [e.g., Hasegawa and Kishino, 1984; Hasegawa

et al., 1985]. This idea has been extended considering different categories or rate

classes for the variable sites. This allows the use of different substitution rates

for groups of sites according to their category. This method is known as the
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discrete-rate model.

As it is unknown to which category each site belongs, the probability for a

given site is calculated as a weighted average which is composed by the prod-

uct of the probability that the site belongs to the category and the probability

of the site given the rate of that category. Thus, for k categories, where the

rates are r1, . . . , rk, with corresponding probabilities p1, . . . , pk, respectively, the

probability of a site is given by

L(xh|θ) =
k∑
i=1

piL(xh|ri,θ),

where xh is the site, θ the parameter vector and L(xh|r,θ) the probability of

observing the data xh under the rate r. This latter term corresponds to the

probability of the site under the one-rate model and its calculation is carried out

by multiplying each branch length by the rate r. In the previous example (2.10),

this would be

L(xh|r,θ) =
∑
x6

πx6Px6x3(rt3)Px6x4(rt4)
∑
x5

Px6x5(rt5)Px5x1(rt1)Px5x2(rt2).

Another similar approach is to assume that the rates over sites are random

variables which follow a continuous distribution. Thus, the probability for a site

is given by the integral of the likelihood of the site over the distribution of the

rates, that is,

L(xh|θ) =

∫
g(r)L(xh|r,θ)dr,

where g(r) is the probability density of the rates r. Again, due to the lack of

information about the relationship between the site and the rate, the likelihood

for the site is calculated as its expected probability with respect to the rate. This

is similar to the discrete rate model, but in the continuous case.

Yang [1993] proposed the gamma distribution to model the rate parameter

and it has become the most used. The choice is based on practical rather than

theoretical considerations; it had already been used in the study of evolutionary
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Figure 2.7: Gamma densities for different shape parameters.

divergence [e.g., Golding, 1983; Nei and Gojobori, 1986]. Its density is given by

g(r) =
βλ

Γ(λ)
rλ−1e−βr, 0 < r <∞, (2.11)

with λ, β > 0, shape and rate parameters, respectively, mean E[r] = λ/β and

Var(r) = λ/β2. To reduce the number of parameters, it is usual to set λ = β. As

a result, the expected value of r is 1 and its variance 1/λ. Thus, the distribution

is centered at 1 and shaped by λ, and is displayed in Figure 2.7 for different λ

values. For small values (≤ 1), the distribution is positively skewed (L-shape).

This reflects the common scenario [e.g., Yang, 1996a] where most sites have very

low rates (no substitutions) or are practically invariable, with a few sites having

very high rates (lots of substitutions). For large λ values, the probability mass

is concentrated symmetrically around 1 and the distribution is approximately

normal. This describes the situation of weak rate heterogeneity.

The use of the gamma parameter to scale the rates of the model is repre-
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sented by adding the suffix “+Γ” to the corresponding model. For instance, the

general time reversible model with a gamma stochastic component in its rates is

represented by GTR+Γ.

The calculation of the probability for a site becomes exponentially expensive

as the number of taxa increases. Note that this calculation involves an integral,

and the function under the integral is polynomial in the number of taxa. Also,

the calculation has to be applied to each different site in order to evaluate the

likelihood function. This makes the approach impractical for a large number of

taxa. A common practical solution is to discretize the gamma distribution. This

approach is explained below.

2.3.3.1 Discrete gamma model

The most common method by far was proposed by Yang [1994b] and consists of a

discretization of the continuous gamma density. The distribution is divided into

k categories which have equal probabilities 1/k. The rates are calculated as the

expected values of the corresponding categories. Thus, the average rate for the

ith category is given by

ri = E
[
r|r ∈ [a, b]

]
=

∫ b

a

rg(r)dr

/∫ b

a

g(r)dr

= k
βλ

Γ(λ)

∫ b

a

rλe−β/rdr,

where a and b are the cutting points of this category such that P(a < r < b) =

1/k. Like the continuous case, the parameters are usually set to λ = β, leaving

only one free parameter. In general, 4-8 categories are enough to obtain a good

approximation of the continuous function [Yang, 1994b].

After calculating the rates, the probability for each site can be obtained as in

the discrete-rate model discussed before, that is,

L(xh|θ) =
1

k

k∑
i=1

L(xh|r = ri,θ).

The single rate model is obtained when k = 1, while the continuous gamma
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model is equivalent to k = ∞. The discrete gamma model is analogous to the

discrete-rate model, but its rates are defined by the gamma distribution. The

notation for this model with k rate categories is characterized by adding the suffix

“+Γk” to the corresponding model. For instance, the JC69 model with a gamma

parameter for the rates across sites, with k categories, is represented by JC69+Γk.

A generalization of this approach was proposed by Mayrose et al. [2005], who

instead of using a single gamma distribution, proposed a gamma mixture model.

This approach allows greater flexibility in the shape of the distribution of the

rates. The authors showed that this model better describes the evolutionary

process for proteins.

2.3.4 Invariable sites

As was discussed previously, the assumption of equal rates of substitution across

sites is often violated in practice. One alternative is to divide the sites into

categories which are characterized by particular rates, namely, the discrete-rate

model. Along these lines, Hasegawa and Kishino [1984] considered a category

with invariable sites, i.e., a proportion of sites is assumed to have substitution

rate equal to 0. Later, Gu et al. [1995] considered a proportion of invariable

sites in addition to the gamma distribution for the rate across sites. This model

assumes that a proportion of sites in the sequences are invariant whereas the

remaining ones follow a gamma distribution. Such models are labeled by the

suffix “Γ+I”, where “I” denotes the invariant sites. For instance, a GTR model

with a gamma parameter for the rates across sites and in addition, invariable

sites, is represented by GTR+Γ+I. In short, it is known as a gamma-invariable

mixture model and it has been widely used in phylogenetic analysis.

The probability density of the rates for Γ+I models is given by

g(r) = p0g0(r) + (1− p0)g(r),

where g is the gamma distribution defined in (2.11), g0 is the delta function at 0,

i.e., g0 = 1 if r = 0, otherwise g0 = 0, and p0 is the proportion of invariable sites.

The other proportion of sites 1−p0 are drawn from the gamma distribution. The
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mean and variance of r are given by

E(r) = (1− p0)
λ

β
and Var(r) =

1

β2

(
λ(1− p0)(1 + p0λ)

)
.

The mean is fixed at 1, thus β = (1− p0)λ and the variance reduces to

Var(r) =
1 + p0λ

(1− p0)λ
.

Even though this kind of model is commonly used in phylogenetic analysis,

there are some controversies about its use. Yang [2014] cataloged this model

as pathological since the gamma parameter for λ < 1 already accommodates

sites with very low rates [Golding, 1983]. As a result, there is a strong correlation

between λ and p0 which causes problems to get reliable estimates [Gu et al., 1995;

Sullivan et al., 1999]. Another disadvantage is the dependence of p0 on the number

and divergence of the sequences in the data. The proportion of invariable sites

p0 is never larger than the observed proportion of constant sites, which decreases

with the inclusion of highly divergent sequences. As a result, p0 estimate tends

to decrease too [Yang, 2014]. In fact, both parameters (λ and p0) are highly

sensitive to taxon sampling [Sullivan et al., 1999; Yang, 1996a]. In addition, Jia

et al. [2014] found that p0 is highly sensitive to the number of rate categories in the

popular discrete gamma. In conclusion, Yang [2014] recommended avoiding Γ+I

models and using Γ models instead. In fact, Jia et al. [2014] showed that discrete

gamma models with between 6 and 10 rate categories is enough to achieve a

balance between model complexity, computational cost, and parameter estimation

in interspecific data. Additionally, Lemmon and Moriarty [2004] showed that

GTR+Γ works quite well in terms of bipartition posterior probability, branch

length and other model parameter estimates, under data simulated from a GTR+

Γ+I.

2.3.5 More complex models

In general the Markov models used to describe evolutionary processes assume

stationarity, homogeneity and reversibility. The stochastic description is applied
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along each branch and thus along the entire phylogeny at each site. Therefore,

the conditions are assumed on 2 levels: local and global. The first level refers to

the assumptions in a branch, whereas the second level refers to the full phylogeny.

For instance, homogeneity means that the instantaneous transition rate matrix is

constant over a branch (local homogeneity) and over the entire tree, i.e., all the

branches of the tree (global homogeneity). These assumptions can be violated,

increasing the probability of incorrect phylogenetic results [Jayaswal et al., 2005].

Examples of these kinds of evolutionary processes abound in the literature; see

for instance Jayaswal et al. [2005]; Yang [1994a].

Barry and Hartigan [1987] proposed a general Markov model (GMM), which is

the most general model of evolution. This model does not make the assumptions

of stationarity, homogeneity (local and global) and reversibility. Their proposed

model considered different instantaneous rate matrices Q, which do not require

the reversibility assumption, for each branch of the phylogeny, assuming indepen-

dent and identically distributed sites. If the evolutionary process is not stationary

and homogeneous, the phylogeny obtained by using this general nonhomogeneous

model may differ from that obtained by using standard time-reversible models

[Jayaswal et al., 2005].

Sumner et al. [2012b] studied a case where the evolutionary process along

a branch occurs according to two different GTR models. This process is rep-

resented in Figure 2.8, where the evolution occurs firstly according to Q1 and

then finishes according to Q2. It emulates the case of violation of the assumption

of homogeneity. They showed that a single GTR model is not able to estimate

reasonably an average of the two instantaneous matrices involved in the data gen-

erating process, i.e., an approximation of the instantaneous rate matrix Q̂, where

e(t1+t2)Q̂ = et1Q1et2Q2 . The approximation becomes worse as the process becomes

more heterogeneous, in other words, when the discrepancy between Q1 and Q2 in-

creases. The biological reality is likely to be time-dependent and lineage-specific;

thus a homogeneous Markov model is only a simplification of this reality. One

would expect an “average” of the true heterogeneous effects from these models.

This desirable property is not met by GTR, the most popular model of evolution

used in phylogenetic analyses.

A nonhomogeneous process can be approximated by a homogeneous one if

43



Chapter 2. Phylogenetic models

• et1Q1
// • et2Q2

//

• e(t1+t2)Q̂
//

Figure 2.8: The upper evolutionary process is nonhomogeneous. Below, this

process is approximated by a homogeneous one, where e(t1+t2)Q̂ = et1Q1et2Q2 .

the models possess the property of multiplicative closure [Sumner et al., 2012a].

A Markov model M is said to be multiplicative closed if and only if for all

et1Q1 , et2Q2 ∈ M, the condition et1Q1et2Q2 ∈ M is met. In this case, the transition

rates of the heterogeneous process can be approximated by a kind of average of

their effects. The product of two GTR substitution matrices does not produce

another GTR matrix, i.e., this model does not meet the multiplicative closure

property. Sumner et al. [2012a] discussed about how to generate models which

fulfill this mathematical property, a group referred as “Lie Markov models”. They

showed that GMM belongs to this class of models.

Other assumptions used in phylogenetic analyses are related to the likelihood

calculation presented above in Section 2.3.2. It is often assumed that the sites are

independent and identically distributed under the same Markov model. These are

very usual assumptions, which reduce the calculations significantly, but do not

necessarily conform to biological reality. Different techniques have been proposed

in order to relax these assumptions.

With respect to the independence among sites, Yang [1995] and Felsenstein

and Churchill [1996] relaxed this assumption by allowing correlated rates at ad-

jacent sites. Thus, the sites in the sequence are assumed to evolve over time.

Their models are extensions of the among-site rate variation models presented

in Section 2.3.3, in which the rates differ among sites and the relative rates of

change at the individual sites are unknown, but they are not correlated. The

first proposal considers a discretized bivariate gamma distribution, leading to an

auto-discrete-gamma model, to describe the autocorrelation of substitution rates

at adjacent sites. The transition from one rate class to another along the sequence

is described by a hidden Markov chain, which introduces the dependence. Thus,

the correlation of the rates at sites is modeled. The second approach also makes
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use of a hidden Markov model in order to describe the belonging of a site to a

given finite pool of categories, for which the probabilities are assumed known a

priori. This Markov process introduces the dependence between adjacent rates

in the clustering of the sites. The analyses of real data suggest a high degree of

correlation among the rates, however, it seems that its omission does not affect

the parameter estimates of the models significantly [Yang, 2014].

In these models, which include different rates among sites and eventually

correlation between them, the relative rates are applied to the entire phylogeny.

In other words, the evolutionary rates are allowed to vary along the molecule, but

not along the tree, i.e., they are kept constant over time. For instance, slow and

fast evolving sites keep their condition throughout every lineage of the phylogeny.

However, this assumption might be violated in reality, where the rates can vary in

time. The covarion models [for COncomitantly VARIable codON; Fitch, 1971a;

Fitch and Markowitz, 1970] relax this assumption. These models allow each site

to vary according its own evolutionary rate process by switching between being

free to evolve in some taxa and being fixed in others [Penny et al., 2001]. Thus,

covarion models allow the rate to vary among lineages as well. Extensions of

these models have been studied in the literature, see for instance Galtier [2001];

Tuffley and Steel [1998].

With respect to the other assumption in the likelihood calculation, which says

that the sites are identically distributed, it could be biologically unrealistic be-

cause it does not take into account compositional variation across the alignment.

For instance, it is known that the third codon1 evolves faster than the other two,

or the assumption could be not met in the case of analysing multiple genes si-

multaneously. Two approaches can be considered to account for this variation

among sites. If it is known a priori which sites are evolving in certain way, the

data can be partitioned according to it. Then, the data can be analysed by using

partition models, which use combined Markov processes applied to the different

sections of the alignment. On the other hand, if it is not possible to make the

partitions, a probability distribution can be assumed to model the heterogeneity

of the data. These models are called mixture models. It is also possible to com-

1sequence of 3 nucleotides that translates to a particular genetic code in a RNA or DNA
molecule.
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bine both approaches into one model called a mixed-effect model. These models,

which allow heterogeneity in the data, have been used widely in the literature,

see for instance Fan et al. [2011]; Lartillot and Philippe [2004]; Nylander et al.

[2004]; Yang [1996b]; Yang et al. [1995].

The compositional variation can also occur across the lineages, for instance,

when distantly related species are compared. In this situation, it is impossible

to approximate the evolutionary process by any time-reversible Markov model

[Jermiin et al., 2008]. Actually, this variation can be modeled basically by assign-

ing different Markov processes along the phylogeny, which can be time reversible

models (local assumptions), but the evolutionary process as a whole is not re-

versible (global assumption). Different approaches have been implemented to

model heterogeneity across the sequences with the aim of finding a trade-off be-

tween simplicity and accuracy, see for instance Blanquart and Lartillot [2006];

Foster [2004]; Heaps et al. [2014]; Yang and Roberts [1995].

Models which take into account compositional heterogeneity, either across

sites and/or lineages, are often referred as heterogeneous models, whereas those

ones which make use of a single Markov process are called homogeneous models.

A practical discussion about the analysis of molecular data and the use of these

kind of models can be found in Moran et al. [2015].

2.4 Prior distributions

A model is a structure composed of parameters which aims to describe the data-

generating process. As was discussed above, the models differ in which aspects

of the evolutionary process they allow to vary. This variation is described by the

parameters. The way of dealing with these parameters leads to two statistical

approaches: frequentist and Bayesian. The frequentist approach assumes fixed

but unknown values for the parameters and its inferences about them are valid

in repeated sampling, whereas the Bayesian approach considers them as random

variables, which allows the use of probability distributions to represent their un-

certainty. For the former, an optimization algorithm is required to estimate the

parameters. However, for the latter, it is compulsory to add extra information

about them via prior distributions before starting the analysis.
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The prior distribution represents our knowledge about the parameters before

collecting and analysing the data. This is a natural way of incorporating avail-

able information about them before the study, but it could also represent our

ignorance. In these cases, the prior is called informative and non-informative,

respectively. The combination of this information, through the prior distribution,

and the information contained in the data, through the likelihood, composes the

posterior distribution which is the core of Bayesian inference.

The inclusion of researcher’s belief into the analysis through the prior distri-

butions is one of the main sources of criticism in Bayesian analysis, because it

allows the researcher include subjective information which could potentially lead

to biased conclusions. However, there are priors which allow the representation

of our knowledge more objectively. Furthermore, it is possible to incorporate

reasonably our lack of it (a good review is given in Kass and Wasserman [1996]),

i.e., we can consider priors with a small effect on the conclusions of the study.

Many of these priors consist in analytical approaches, for instance, Jeffrey’s priors

[Jeffreys, 1946], which are based on the Fisher information. However, they are

rarely used in phylogenetics because they require tractable likelihood functions,

which might not be feasible for complex models or multiple sequences [Wang and

Yang, 2014]. Nevertheless, empirical attempts have been carried out to generate

these kinds of priors. These aim to let the results of the analysis be dominated by

the likelihood and consequently reduce the impact of the prior on the posterior

distribution. In this section, we discuss mainly these kinds of prior distributions

and those ones used so far in phylogenetics.

2.4.1 Tree

The most common practice is the use of a discrete uniform prior distribution

over all the topologies [Holder et al., 2014; Huelsenbeck et al., 2004; Huelsenbeck

and Ronquist, 2001; Jow et al., 2002; Suchard et al., 2001]. This is calculated by

taking the inverse of the number of possible trees. For instance, for the unrooted

binary tree case, each phylogeny τ has a prior probability given by

P(τ) =
1∏s

i=3(2i− 5)
=

2s−3(s− 3)!

(2s− 5)!
,
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where s is the number of taxa.

However, this apparently natural way of representing ignorance about the

tree topologies indirectly introduces information about other aspects of the tree.

Pickett and Randle [2005] pointed out that this prior distribution induces a non-

uniform prior distribution over clades. In fact, it tends to assign high prior

probabilities to small and large clades. The authors exemplified this problem

considering a set of 5 taxa (A-E) in the rooted tree case. The total number of

trees is 105. The clade containing taxa A, B and C has a prior probability of

9/105 = 0.086 and the one which contains taxa A and B has a prior probability

of 15/105 = 0.14. The smallest clade has highest probability. To sum up, the

uniform prior assigns unequal probabilities on the clades. This phenomenon is

didactically illustrated by Alfaro and Holder [2006] who considered the example

of wanting to estimate the number of beans in a jar. In this case, we could

assign equal probability to each possible value. However, we could not expect

that this prior distribution assigned equal probabilities to hypothesis such as

“the number of beans divisible by two” or “the number of beans divisible by

three”, even though it could be desirable to express our ignorance about them.

Analogously, the discrete uniform prior assigns non-equal probabilities over the

different clades, preventing us from introducing our lack of knowledge about them.

In this respect, Steel and Pickett [2006] pointed out that no matter what kind

of prior is assigned to the tree topology, it is impossible to assign uniform priors

on clades. In practice, if the data are informative enough, these unequal clade

probabilities are not a real problem [Brandley et al., 2006].

2.4.2 Branch length

The branch lengths are parameters of vital importance in phylogenetic infer-

ence. The inadequate incorporation of prior information (often unintentionally)

can lead to, for instance, problems in the tree topology estimation. In this re-

gard, Yang and Rannala [2005] showed that the posterior distribution for the tree

topologies is sensitive to branch length prior specifications, in particular, to those

for the internal branch lengths.

It is usual to consider independent and identically distributed priors on the
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branch lengths, even though they are not independent. One of these priors is the

Uniform(0,m) distribution, where m is the upper bound. This alternative is not

recommended since it tends to overestimate the branch lengths and consequently

the tree lengths (sum of all branch lengths) [Rannala et al., 2011; Wang and Yang,

2014]. For instance, Wang and Yang [2014] showed that for s = 100 and m = 100,

the 95% prior interval for the tree length is 9850±794.2, which is an unreasonable

assumption since branch lengths are frequently small and consequently the tree

length too. Moreover, this prior distribution with m = 10 or 100, often called

non-informative, causes inflated clade probabilities [Yang and Rannala, 2005].

The exponential prior with a rate parameter λ is another alternative commonly

used [see, for instance, Holder et al., 2014]. The default λ value in MrBayes

[Huelsenbeck and Ronquist, 2001] is 10 which leads to a prior branch length mean

of 0.1. However, this distribution also leads to an overestimation [Brown et al.,

2010; Marshall, 2010; Rannala et al., 2011; Wang and Yang, 2014]. The posterior

distributions for the branch lengths and tree length are extremely sensitive to the

specification of λ. Therefore, this prior distribution is also not recommended.

An alternative to deal with the problems discussed above is to incorporate a

hyperparameter in the exponential distribution. Suchard et al. [2001] assigned

an inverse-gamma as a hyperparameter on the mean. This proposal is given by

ti|µ∗ ∼ Exp(1/µ∗), for i = 1, . . . , 2s− 3,

µ∗ ∼ Inverse-Gamma(α∗, β∗),

with

f(ti|µ∗) =
1

µ∗
e−ti/µ

∗
and f(µ∗) =

β∗α
∗

Γ(α∗)
µ∗−α

∗−1e−β
∗/µ,

where α∗ and β∗ are the shape and rate parameters. The authors recommended

α∗ = 2.1 and β∗ = 1.1, which makes µ have an expectation of 1.0 and variance

of 10 and consequently a prior mean branch length of 1.0. These specifications

lead to fairly diffuse priors for the branch lengths. Since this prior mean seems

large, Rannala et al. [2011] suggested another parametrization of the inverse-

gamma distribution with α∗ = 3 and β∗ = 0.2, which leads to a prior mean for
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the branch length of 0.1. These specifications could prevent overestimation. The

authors showed that the exponential prior with a hyperparameter on its mean

performs much better than the uniform and exponential priors.

A more robust alternative is the compound Dirichlet prior proposed by Ran-

nala et al. [2011]. This is constructed by first defining a prior distribution on the

total tree length and then partitioning it into the branch lengths according to a

Dirichlet distribution. The authors proposed a gamma distribution for the tree

length T , defined by

f(T ) =
βαT

T

Γ(αT )
TαT−1e−βTT ,

with mean αT/βT and variance αT/β
2
T , where αT and βT are the shape and rate

parameters, respectively. Following the suggestion of Yang and Rannala [2005],

in order to reduce the high posterior probabilities for trees and clades, Rannala

et al. defined different priors for the s− 3 internal and s external branch lengths.

Thus, the ith branch length is defined as ti = vi×T , for i = 1, . . . , (2s−3), where

v = {vi}, which describes the distribution from which branch lengths are chosen,

such that they have a fixed sum, has the Dirichlet distribution

f(v) =
Γ(sαv + (s− 3)αvc)

Γ(αv)sΓ(αvc)s−3

s∏
j=1

vαv−1
j

s−3∏
h=1

vαvc−1
h ,

with the subscripts j and h representing external and internal branches (in the

original article these appear incorrectly in the other way around), respectively,

vj, vh > 0 with

2s−3∑
i=1

vi =
s∑
j=1

vj +
s−3∑
h=1

vh = 1,

and c the ratio of the mean internal/external branch lengths, which in general

should be less than 1.0 in order to assign smaller values for the internal branches

as Yang and Rannala [2005] suggested to control high posterior probabilities for

trees and clades.
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Thus, the joint prior distribution for the 2s− 3 branch lengths is given by

f(t) =
βαT

T

Γ(αT )
e−βTTTαT−1 Γ(sαv + (s− 3)αvc)

Γ(αv)sΓ(αvc)s−3

s∏
j=1

tαv−1
j

s−3∏
h=1

tαvc−1
h

T−αvs−αvc(s−3)+1,

where T =
2s−3∑
i=1

ti is the tree length.

For the particular case of considering a uniform Dirichlet for the propor-

tions vi, i.e., αv = 1, and no distinction between internal an external branch

lengths (c = 1), the joint prior distribution for the 2s− 3 branch lengths is given

by

f(t) =
βαT

T

Γ(αT )
e−βT TαT−1(2s− 4)!T−2s+4.

Yang and Rannala [2005] showed that this approach, with αT = βT = 1,

αv = 1 and c = 1, performs much better than the other prior distributions. Wang

and Yang [2014] tested this prior for different parameterizations of the gamma

distribution assigned to the tree length and keeping the remaining specifications

fixed, namely, βT equals to 0.1, 0.01 and 0.0001, and αT = αv = c = 1. Their

results confirmed the initial conclusions about the robustness of the compound

Dirichlet prior for the branch lengths with a gamma distribution for the tree

length, and also the unreasonable large tree lengths yielded by the uniform and

exponential prior distributions.

Alternatively, Yang and Rannala [2005] also considered an inverse-gamma

distribution for the tree length. This distribution also has a robust behavior,

in other words, it did not affect the posterior distribution of the tree length

drastically.

2.4.3 Relative rates

The substitution rate matrix Q = qij, with i, j = A, C, G, T, contains the instan-

taneous rate of substitutions from nucleotide i to nucleotide j, for i 6= j. Each

element consists of the product of the relative rate rij, the frequency of the state
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πj and the mean instantaneous substitution rate µ. The instantaneous transi-

tion rate matrix Q for the GTR model is defined in (2.9) where, for instance,

qAC = rACπCµ. It is usual to rescale this matrix by the factor 1/µ (µ is defined

in (2.8)), so that the mean rate of change is µ = 1. Therefore, we only estimate

the relative rates (rij), to which we need to allocate prior distributions, and not

the absolute rates (µrij). Additionally, this allows us to interpret the branch

length as the expected number of substitution per site.

Zwickl and Holder [2004] discussed and tested different prior distributions on

the relative rate parameters in the GTR model. The proposals were focused on

two parameterizations of it: 5RR and ST1. The former approach sets one of the

substitution rates to 1.0 arbitrarily, and allows the rest of the parameters to vary

with respect to the one that is fixed. Usually, rTC is the one chosen as reference.

The latter forces the rates to sum to 1.0.

The authors found that a uniform prior on 5RR parametrization tends to over-

estimate the true value. In contrast, an exponential prior with a hyperparameter

on its mean, that is,

rij|φ ∼ Exp(φ) with φ ∼ Exp(1),

where

f(rij|φ) = φe−rijφ and f(φ) = e−φ,

appears to perform well.

For the ST1 parameterization, the authors proposed a Dirichlet distribution.

They tested a Dirichlet(α, α, α, α, α, α), with α = 1.0 and 0.5, and both distribu-

tions performed similarly well. The latter is the Jeffrey’s prior when the likelihood

is a multinomial distribution with 6 categories [Zwickl and Holder, 2004]. Both

distributions have equal expectations of 0.17 for all the substitution rates, but

they differ in their variance. For the former it is 0.07 and for the latter 0.17. This

means that the first prior penalizes, in a greater degree, the models of evolution

in which the rates are not similar.

For evolutionary models with fewer relative rate parameters alternative admis-
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sible prior distributions are the exponential with a hyperparameter or a gamma

distribution [Wang and Yang, 2014].

2.4.4 Frequencies

The most common prior assigned on the nucleotide equilibrium frequencies is

naturally a Dirichlet(αA, αC, αG, αT ) distribution. Usually, it is simply a Dirich-

let(1,1,1,1) (see, for instance, Suchard et al. [2001]). A common practice, aiming

to reduce the number of free parameters, is the use of empirical frequencies, which

are based on a simple average. However, they might be quite different from the

estimated ones and thus have different effects on the likelihood values [Yang,

1994a].

2.4.5 Heterogeneous substitution rate among sites

The most common method to introduce different heterogeneous substitution rates

among sites is via a discrete gamma distribution [Yang, 1994b]. As was discussed

previously, the gamma distribution used in this approach usually depends only

on its shape parameter λ. Therefore, this parameter needs a prior distribution.

One common practice is to consider a Uniform(0,m) distribution (see, for

instance, Huelsenbeck et al. [2004]; Jow et al. [2002]). To the best of our knowl-

edge, its impact has not been studied yet, in contrast to its performance as prior

distribution for the branch length and relative rate parameters. Interestingly, it

has been implemented in MrBayes with a default value m = 200, which indicates

almost a homogeneous model.

The exponential distribution is perhaps the most common prior for this pa-

rameter. This prior, with mean 1.0, is used by default in MrBayes and BEAST.

It seems more reasonable than the uniform since most estimates of λ from real

datasets are small. In fact, less than 1.0 [Yang, 1996a].

A more flexible alternative is the gamma distribution which actually embodies

the exponential prior. This better accommodates the inclusion of additional

information into the model. Its density is given by

f(λ) =
1

Γ(α)βα
λα−1e−λ/β, with λ > 0,
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where α and β are the shape and scale parameters, respectively.

2.4.6 Invariable sites

The invariable site parameter p0 is the proportion of sites, i.e., it lies between

0 and 1. The most natural prior distribution for such parameters is the Beta

distribution. It permits great flexibility, containing the Uniform(0,1) distribution

as a special case, where α = β = 1. The uniform is the most popular option

in the phylogenetic literature [e.g., Holder et al., 2014] and the default choice in

MrBayes. Yang [2014] pointed out that it would be a better option to consider

a prior which accommodates the correlation between p0 and the gamma shape

parameter λ.

2.5 Summary

This chapter gives an overview of some of the main components and concepts

involved in Bayesian phylogenetic analysis, which will be used throughout this

thesis. This was carried out mainly by defining and discussing the parts which

compose a phylogenetic model and the prior distributions for its parameters.

A phylogenetic model is actually composed of two elements: a tree model and

a model of evolution. The tree model deals with the evolutionary relationship

among the taxa. It is formally defined as a set of nodes and branches which

connect the nodes without loops. This model describes the relatedness among

the taxa through the branching pattern, called topology, and their distance via

the branch lengths.

The direction of the evolutionary process on a phylogeny is granted by the

root, which is the most recent common ancestor to all the taxa at the leaves. For

the case in which this is specified, the tree is referred to as a rooted tree. However,

many algorithms, including likelihood-based methods, produce unrooted trees,

i.e., without specifying the root. This is due to the mathematically convenient

assumption of reversibility on the model of evolution. In practice, these trees

are rooted using different mechanisms, such as outgroup rooting, molecular clock

rooting, mid-point rooting or Bayesian analysis.
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The model of evolution explains the mutation process for a sequence site.

It is usually defined by a Markov model which relies on 3 assumptions: mem-

orylessness, homogeneity and stationarity. This model is characterized by its

instantaneous transition rate matrix, which defines the rates of flow of the possi-

ble substitutions and consequently their probabilities. The different evolutionary

models used in phylogenetics differ basically in the parametric structure of this

matrix. Depending on it, the model adopts a distinctive name. A common prac-

tice is to assume a symmetrical structure for it, i.e., equal rates to describe the

substitution flow from one state to another and for its inverse. This assumption

generates a class of models called time reversible models. Some of them were

discussed in this chapter for the particular case of DNA sequences, but their

extension to other data is analogous.

The Markov process is applied from node to node along the phylogeny. This

is carried out for each site of the sequences which are usually assumed to have

evolved independently. To make it more flexible and in agreement with reality, the

transition rates can be scaled by a random variable, usually following a gamma

distribution, in order to allow the modeling of different rates across sites. In

addition, a proportion of invariable sites can also be considered. Therefore, the

substitution process defined on the phylogeny allows the calculation of the tree

likelihood. We have presented this calculation in a four taxon case, which allowed

to illustrate the methodology that can be easily extended to larger phylogenies.

Additionally, we presented its calculation under the molecular clock assumption,

i.e., when the lineages are assumed to have evolved at equal rates.

The models of evolution have also been extended to allow the modeling of

more complex evolutionary processes. One aspect is the relaxation of the as-

sumptions of homogeneity and reversibility. Allowing different Markov processes

along the phylogeny and across segments of sites can deal efficiently with the

modeling of groups of taxa with different evolutionary histories and sites with

nonhomogeneous behaviors, respectively. The extensions of these models also

include the relaxation of the independence among sites.

Both components of the phylogenetic model attempt to describe the data

generating process through their parametric structure, which involves generally

several parameters. In Bayesian statistics, these models require additional speci-
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fications about their parameters, before collecting and analysing the data. These

specifications are incorporated into the model through prior distributions. If the

phylogeny is unknown, it is treated as any other parameter of the model. We

have critically discussed about the use of prior distributions in phylogenetics for

their respective parameters.
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Estimating the marginal

likelihood

3.1 Introduction

In phylogenetics, as in any other field, there are a great variety of models, aiming

to describe the evolutionary processes that generate the data to be analysed.

Hence, the natural and crucial question is: which of the available models offers the

best description? Ideally, the chosen model should be as simple as possible, but

without sacrificing the predictive power. It has to be noted that even though the

inclusion of a parameter increases the fit, it also adds uncertainty to the estimates;

and that simplistic models could lead to erroneous inferences. A Bayesian model

selection criterion which takes these considerations into account is the Bayes

factor (BF). This criterion performs model selection through the comparison of a

quantity that is unique to each model, called the marginal likelihood (a component

of the Bayes’ theorem). This chapter principally concerns the estimation of the

marginal likelihood and the Bayes factor.

Bayes’ theorem, in a phylogenetic context, is given by

p(θ|X,M, τ) =
L(X|θ,M, τ)π(θ|M, τ)

m(X|M, τ)
, (3.1)

where θ ∈ Θ is the parameter vector, X is the data, M is the substitution model,
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τ ∈ T is a given tree, p(θ|X,M, τ) is the posterior probability distribution of θ,

L(X|θ,M, τ) is the likelihood function, π(θ|M, τ) is the prior distribution of θ,

and m(X|M, τ) is the marginal likelihood defined by∫
Θ

L(X|θ,M, τ)π(θ|M, τ)dθ. (3.2)

The parameter vector θ contains all the model parameters, such as branch lengths,

frequencies, gamma shape parameter and rate parameters. The tree topology τ

is assumed to be fixed throughout this chapter. Thus, the parameter space Θ is

continuous. Variable tree topology case is addressed in Chapter 4.

The prior distribution represents our previous knowledge of the parameters

which is updated after taking into account the data and is reflected in the posterior

distribution. The likelihood function represents the probability of the data given

the parameters and the phylogenetic models (M, τ). The marginal likelihood

is the probability of the data under the model and plays a key role in model

selection. Indeed, this quantity is used to select among models. Because of this,

it is also called evidence [MacKay, 2002]. To understand its role, note that the

posterior distribution for the model M is given by

p(M |X, τ) =
m(X|M, τ)π(M |τ)

m(X|τ)
,

where m(X|M, τ) is the marginal likelihood as defined in 3.2, π(M |τ) is the

prior probability for the model, and m(X|τ) is the probability of the data given

the tree. The marginal likelihood will also be denoted by “z” henceforth. The

assumed phylogeny τ will be omitted in the definition of the marginal likelihood

estimation methods.

The Bayesian comparison of two models M0 and M1 can be carried out by

comparing their posterior probabilities. This comparison is done through the

ratio of their probabilities which represents the plausibility of one model over

another and is defined as follows:

p(M1|X, τ)

p(M0|X, τ)
=
m(X|M1, τ)

m(X|M0, τ)

π(M1|τ)

π(M0|τ)
,

posterior odds = Bayes factor× prior odds.
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2 log
(
BF10

)
BF10 Evidence against M0

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

Table 3.1: Categories for Bayes factor interpretation taken from Kass and Raftery
[1995].

The ratio of marginal likelihoods, the first ratio on the right side, is called the

Bayes factor [Kass and Raftery, 1995]. If we have no preference for any model,

i.e., each model is assigned the same prior probability, the priors are canceled

and the posterior odds is only given by ratio of likelihoods, which are marginal

likelihoods. A qualitative interpretation of this quantity is given in Table 3.1.

The Bayes factor (BF) is of particular interest as it provides many advantages

over other methods of model selection: it allows comparison of nested and non-

nested models, it is not based on a point estimate in parameter space since it

averages over parameter space, and it embodies Occam’s razor, i.e., it implicitly

penalizes for parameter-rich models. Here lies its importance. Its properties have

made it become a standard approach for performing model selection in a Bayesian

phylogenetic framework. However, it is based on the marginal likelihood, a diffi-

cult multidimensional integral.

The marginal likelihood is often ignored at the inferential stage, but it plays a

key role in model selection: it is a measure of the goodness of fit. In fact, it is the

probability of the data given the model, i.e., it is by definition a measure of model

fit. Thus, models with larger marginal likelihoods fit the data better and conse-

quently are preferred over models with smaller marginal likelihoods. However, it

is a difficult multidimensional integral of the prior distribution times the likeli-

hood function over the parameter space. This quantity acts as the normalization

constant in the posterior distribution, making it a probability density function.

MCMC methods used for parameter estimation within a model use only ratios

of posterior densities, and are therefore unable to measure its normalization in

general.

Unlike maximum likelihood, which represents the model fit at a single point,
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this quantity stands for an average of how well the model fits the data. By being

an average of the likelihood function with respect to the prior, the model with the

greatest evidence might be different from the model with the highest likelihood

because the prior could downweight some regions of parameter space. Also, the

marginal likelihood is sensitive to the size of the region over which the likelihood

is high. As a result, both methods could favour different models. Despite its

important role in model selection, the marginal likelihood is usually analytically

intractable and has to be approximated by numerical methods.

In phylogenetics, the marginal likelihood is in general not analytically avail-

able due to the complexity of the models. However, many techniques to estimate

it have been studied and are available in computational packages (see Table 1.1).

The most common ones are harmonic mean and steppingstone sampling. Many

of the estimation methods have also been extended to estimate the Bayes factor

directly. This alternative has the potential of leading to lower uncertainty [Baele

et al., 2013].

This chapter focuses on the estimation of the marginal likelihood and the

direct estimation of the Bayes factor. A subset of all available numerical methods

is discussed including the uncertainty associated with them. The estimation

process is carried out for a given topology. The direct Bayes factor estimate

allows the direct comparison of two distinct phylogenies. The methodologies are

applied in 4 scenarios. First, a statistical model that includes a phase transition is

analysed. This phenomenon causes problems for many algorithms. The methods

that reach success in this scenario are assessed in terms of their uncertainty.

Second, these methods are assessed in a variant of the statistical model that even

causes problems to those methods that use reference distributions to make more

efficient the estimation process. Third, nested sampling (NS) is used to carry out

model selection in a dataset, which contains 10 taxa. Then, estimation methods

are assessed in their performance under different prior specifications. Finally, a

simulation study in the four taxon case is carried out to assess direct Bayes factor

estimation.
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3.2 Importance sampling approaches

Importance sampling is a general technique to study the properties of a particular

distribution based on samples of a reference distribution. This technique uses a

trial density which should be easier to sample from than the original one for

estimating the expectation of a function. Thus, it can be used in the context

of marginal likelihood estimation, which can be seen as computing an expected

value.

Noting this, the marginal likelihood defined in (3.2) can be expressed equiva-

lently as

z =

∫
Θ

L(X|θ,M)
π(θ|M)

g(θ)
g(θ)dθ

= Eg
[
L(X|θ,M)w(θ)

]
,

where g(θ) is the importance sampling distribution, Eg[·] denotes the expectation

with respect to g, and w(θ) = π(θ|M)/g(θ) is the importance weight. The

weights calibrate the estimation due to the fact that the sampling is from another

distribution.

For a completely known trial density g(θ), i.e.,
∫

Θ
g(θ)dθ = 1, the Monte

Carlo estimator is given by

ẑ =
1

n

n∑
i=1

L(X|θi,M)w(θi),

where θ1, . . . ,θn are drawn from g(θ).

More generally, for an unnormalized g(θ), the marginal likelihood can be

written as

z =

∫
Θ
L(X|θ,M)w(θ)g(θ)dθ∫

Θ
w(θ)g(θ)dθ

=
Eg
[
L(X|θ,M)w(θ)

]
Eg
[
w(θ)

] . (3.3)
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Its corresponding Monte Carlo estimator is

ẑ =

∑n
i=1 L(X|θi,M)w(θi)∑n

i=1 w(θi)
.

The performance of the method relies directly on the choice of the importance

function. First, the accuracy of ẑ depends on the variability of the importance

weights, and these depend directly on the relationship between the target and

importance distributions. If the latter emphasizes points that have more impact

on the marginal likelihood, the error can be reduced. And second, the importance

function can speed up as well as slow down the estimation process. A poor choice

could require a huge number of samples. In general, the importance sampling

function should have heavier tails than the target distribution, the posterior in

this case, to get reliable estimates [MacKay, 2002].

3.2.1 Arithmetic mean

If the prior is used as the importance distribution, the method is usually known

as arithmetic mean [AM; Lartillot and Philippe, 2006; Xie et al., 2011]. It is

worth mentioning that the mean of the likelihoods of parameter values sampled

from the posterior [Aitkin, 1991] is also sometimes called arithmetic mean [Baele

and Lemey, 2014]. We refer to the former as the arithmetic mean in this thesis.

AM produces an unbiased estimate of the marginal likelihood. However, the

region of high likelihood is usually very concentrated making the method require

an enormous sampling effort to estimate the marginal likelihood. In practice, the

sample drawn from the prior is unlikely to contain enough points from this area,

leading to poor estimates [Lartillot and Philippe, 2006]. As a result, this method

is rarely used, especially in phylogenetics.

3.2.2 Harmonic mean

Harmonic mean [HM; Newton and Raftery, 1994] is the most common and sim-

plest method to estimate the marginal likelihood and has been used extensively in

phylogenetics [see for instance Jia et al., 2014; Nylander et al., 2004; Pagel et al.,

2004]. Its popularity can be explained by the simplicity of its estimation and that
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it only requires samples from the posterior, which can be recycled from a stan-

dard Bayesian phylogenetic analyses. Therefore, its calculation does not entail a

significant extra cost. Also, this method has been implemented in many phylo-

genetic software packages, most notably, Mr BAYES [Huelsenbeck and Ronquist,

2001] and BEAST [Drummond and Rambaut, 2007]. However, it is well-known

that it suffers from several disadvantages, which will be discussed below.

HM utilizes the posterior distribution p(θ|X,M) as importance sampling dis-

tribution g(θ) in equation (3.3). This yields the identity

z = Ep

[
1

L(X|θi,M)

]−1

,

where Ep[·] is the expectation over the posterior p. Equivalently, this result can

be obtained through the harmonic mean identity [Raftery et al., 2007]. Its Monte

Carlo approximation is given by

ẑ =

(
1

n

n∑
i=1

1

L(X|θi,M)

)−1

(3.4)

where θ1, . . . ,θn are drawn from the posterior distribution p(θ|X,M).

An approximation of its variance can be derived using the delta method

[Oehlert, 1992]. For this, consider W = 1/z and f(W ) = 1/W . The method

states that the variance of the latter transformation is given by Var[f(W )] ≈
(f ′(E[W ]))2 × Var[W ], where f ′(E[W ]) is the first derivative of f with respect

to E[W ]. Thus, the variance for the HM estimate has the form of Var[ẑ] =

Var[f(Ŵ )]. The expected value of each value L(X|θi,M)−1 is given by

Ep[L(X|θ,M)−1] =

∫
Θ

1

L(X|θ,M)

L(X|θ,M)π(θ|M)

z
dθ =

1

z
.

and consequently, the expected value of W has the following form

E[Ŵ ] = E

[
1

ẑ

]
=

∫
Θ

1

n

n∑
i=1

1

L(X|θi,M)
p(θ|X,M)dθ

=
1

n

n∑
i=1

∫
Θ

1

L(X|θi,M)
p(θ|X,M)dθ

63



Chapter 3. Estimating the marginal likelihood

=
1

n

n∑
i=1

E[L(X|θ,M)−1]

=
1

z
.

Hence, assuming that the points have been independently sampled, the variance

can be approximated by

Var[ẑ] ≈ z4 · Var

[
1

ẑ

]
= z4 · Var

[
1

n

n∑
i=1

1

L(X|θi,M)

]

=
z4

n
· Var

[
1

L(X|θ,M)

]
=
z4

n

(
Ep

[
1

L(X|θ,M)2

]
− Ep

[
1

L(X|θ,M)

]2
)

=
z4

n

(
1

z

∫
Θ

1

L(X|θ,M)
π(θ|M)dθ − 1

z2

)
. (3.5)

However, the integral in this expression might not be finite because the likelihood

in general takes small values with respect to the prior. This would not happen if

the likelihood were more diffuse than the prior, a condition that is rarely met in

practice.

Not only does the HM estimator often have infinite variance, but has several

other drawbacks, which have been widely documented in the literature [Baele,

Lemey, Bedford, Rambaut, Suchard, and Alekseyenko, 2012; Baele, Lemey, and

Suchard, 2016; Baele, Lemey, and Vansteelandt, 2013; Lartillot and Philippe,

2006; Newton and Raftery, 1994; Xie, Lewis, Fan, Kuo, and Chen, 2011]. One of

them can be noticed directly from the structure of its estimate defined in (3.4),

which reveals that the estimate is extremely sensitive to points with small likeli-

hood values. This is a potential cause of instability in the estimate.

Another drawback is its lack of sensitivity to prior distributions. The HM

just takes into account the prior knowledge through the posterior samples, but

usually, the posterior is much narrower than the prior distribution. Consequently,
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the prior distribution is not well represented in the posterior sample, leading to

the estimate being relatively insensitive to prior specifications. The consequences

of this feature of the HM can be noticed considering the following example. In

the case of quite informative data, two Bayesian models that differ in their priors

might have similar HM estimates. This makes the method fail to fairly penalize

the complexity of a model [Xie et al., 2011], which is induced by the prior. In

a model selection context, the capacity of penalizing unnecessary complexity is

crucial and HM might not provide the means to include it.

Another consequence of the usual relationship between the posterior and the

prior (the former is much more constrained than the latter) is that the HM

tends to overestimate the marginal likelihood. This phenomenon is due to un-

derrepresentation of those areas of low likelihood in the posterior sample and is

exacerbated as the model becomes higher in dimension. Thus, the method can

fail in high dimensional problems, a common situation in phylogenetics.

Finally, the last shortcoming listed in this thesis is related to the sample size

required by the HM method. Even though the law of large numbers guarantees

that the estimate is consistent, in practice, the number of required samples to

obtain an estimate close to the true value is non-viable. This is caused by the

almost null representation in the posterior sample of those areas of low likelihood

values. Even a posterior sample of an astronomical size would not be sufficient

for the method to work [Lartillot and Philippe, 2006].

To sum up, HM is poor in accuracy, has an unstable behavior, is insensitive

to prior specifications, overestimates the true value, and may not work in high

dimensional models. Therefore, since it yields unreliable estimates, it is not

recommended. In his blog, Neal [2008] has described HM as the “worst Monte

Carlo method ever”. Many of these drawbacks discussed above are illustrated in

the Application section 3.5.

3.2.2.1 Direct Bayes factor estimation

It is possible to estimate directly the Bayes factor based on the HM structure. For

this, consider two models M0 and M1 to be compared, with marginal likelihoods

z0 and z1, respectively. Also, θ0 ∈ Θ0 and θ1 ∈ Θ1 are their respective parameter
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vectors which are merged into θ = (θ0,θ1) ∈ Θ. For instance, if θ0 = (a, b, c) and

θ1 = (c, d), then θ = (a, b, c, d). This is the most general case, when the models

are defined on different parameter spaces, but the methodology is also valid for

the particular case when the parameter space is the same for both models.

The Bayes factor can be expanded as follows

BF10 =
z1

z0

=

∫
Θ1
L(X|θ1,M1)π(θ1|M1)dθ1∫

Θ0
L(X|θ0,M0)π(θ0|M0)dθ0

=

∫
Θ
L(X|θ,M1)π(θ|M1)π(θ|M0)dθ∫

Θ
L(X|θ,M0)π(θ|M0)π(θ|M1)dθ

.

Note that the integrals in the numerator and denominator in the last identities

are equivalent since the prior distributions must be proper. The subscripts in

θ0 and θ1 have been omitted since θ is the common parameter vector. The

parameters in θ which do not correspond to the model have no participation on

the computation of the likelihood and prior functions. We define an instrumental

function

g1(θ) =
L(X|θ1,M1)π(θ1|M1)

z1

π(θ0|M0),

which is a probability density function on Θ, that is, g1(θ) > 0 and
∫

Θ
g1(θ)dθ =

1. Equivalently, it could be defined based on the posterior of model 0 and the

prior distribution of model 1. This density is used as an importance sampling

function in the Bayes factor yielding, after some calculations, the following

BF10 =

∫
Θ
L(X|θ,M1)π(θ|M1)π(θ|M0)

g1(θ)
g1(θ)dθ∫

Θ
L(X|θ,M0)π(θ|M0)π(θ|M1)

g1(θ)
g1(θ)dθ

=
1∫

Θ
L(X|θ,M0)
L(X|θ,M1)

g1(θ)dθ

= Eg1

[(
L(X|θ,M1)

L(X|θ,M0)

)−1
]−1

.

This procedure can be seen as the identity studied by Meng and Wong [1996].
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An estimator of Bayes factor is

B̂F10 =

(
1

n

n∑
i=1

L(X|θi,M0)

L(X|θi,M1)

)−1

,

constructed using samples θ1, . . . ,θn from g1(θ). This function can be seen

as a pseudo-posterior distribution and L(X|θ,M1)/L(X|θ,M0) as a pseudo-

likelihood function from a HM perspective. This estimate is also valid when

both models are defined on the same parameter space. In the particular case

that both models have the same priors, the auxiliary function is given by

g1(θ) =
L(X|θ,M1)π(θ)

z1

.

An approximate of the variance of this estimator can be obtained using the

delta method [Oehlert, 1992] similarly to the approximated variance for the HM

case presented before. Now, consider W = BF−1
10 = z0/z1 and f(W ) = 1/W =

BF10. The expected value of the inversed pseudo-likelihood function is given by

Eg1

[
L(X|θ,M0)

L(X|θ,M1)

]
=

∫
Θ

L(X|θ,M0)

L(X|θ,M1)

L(X|θ,M1)π(θ|M1)

z1

π(θ|M0)dθ

=
z0

z1

,

and the expected value of Ŵ assumes the form

Eg1 [Ŵ ] =

∫
Θ

1

n

n∑
i=1

L(X|θi,M0)

L(X|θi,M1)
g1(θ)dθ

=
1

n

n∑
i=1

∫
Θ

L(X|θi,M0)

L(X|θi,M1)
g1(θ)dθ

=
1

n

n∑
i=1

Eg1

[
L(X|θ,M0)

L(X|θ,M1)

]
=
z0

z1

.

67



Chapter 3. Estimating the marginal likelihood

Thus, an estimate for the variance is given by the following derivation

Var[B̂F10] = Var[f(Ŵ )]

≈ f ′(E[Ŵ ])2 · Var[Ŵ ]

=

(
z1

z0

)4

· Var

[
1

n

n∑
i=1

L(X|θi,M0)

L(X|θi,M1)

]
=

(
z1

z0

)4
1

n2

n∑
i=1

Var

[
L(X|θ,M0)

L(X|θ,M1)

]
=

(
z1

z0

)4
1

n
Var

[
L(X|θ,M0)

L(X|θ,M1)

]
=

(
z1

z0

)4
1

n

{
Eg1

[(
L(X|θ,M0)

L(X|θ,M1)

)2
]
− Eg1

[
L(X|θ,M0)

L(X|θ,M1)

]2}
=

(
z1

z0

)4
1

n

{∫
Θ

(
L(X|θ,M0)

L(X|θ,M1)

)2

g1(θ)dθ −
(
z0

z1

)2}
=

(
z1

z0

)4
1

n

{
1

z1

∫
Θ0

L(X|θ0,M0)2π(θ|M0)dθ0×∫
Θ1

1

L(X|θ1,M1)
π(θ|M1)dθ1 −

(
z0

z1

)2}
.

These calculations are valid if and only if the points are truly independent from

the posterior distribution.

Unfortunately, this variance may not be finite. The integral that embodies the

inversed likelihood for model 1 multiplied by the prior could be infinite, unless

the likelihood was more diffuse than the prior. In general, however, this does not

happen.

The variance of the estimation of the BF via two independent HM estimates

involves two potential sources of infinity. This is because the approximation of

this quantity is equal to the sum of the two variances defined in (3.5), each one

being potentially infinite. On the other hand, the direct BF estimation via HM

involves only one potential source of infinity. Hence, this method could be a valid

alternative if, at most, one of the estimated variances is infinite. In this case, the
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one with estimated infinite variance should not be allocated in model 1.

3.3 Path sampling approaches

Path sampling methods are based on a series of transitional distributions which

connect the prior with the posterior, or in their generalized form, a reference

distribution to the posterior. These distributions form a path which serves to

refine the marginal likelihood estimate. A particular case is bridge sampling,

which only uses a single transitional function. In general, these methods yield

reliable estimates and are far more stable and accurate than importance sampling

methods. Their positive attributes have allowed them to be implemented in

different popular software packages such as BEAST [Drummond and Rambaut,

2007], gaining popularity.

3.3.1 Path sampling

Path sampling (PS) or thermodynamic integration (TI) is a natural generalization

of importance sampling [Gelman and Meng, 1998]. It was introduced into phy-

logenetics by Lartillot and Philippe [2006], although it was originally proposed

by Gelman and Meng [1998] to estimate the ratio of marginal likelihoods, but its

connections could be traced back further [Ogata, 1989]. Also, it was proposed

independently by Friel and Pettitt [2008], who called it method of power posteri-

ors. This method is far more accurate than importance sampling methods, but

it requires a much higher computational cost. However, it provides more reliable

estimates across diverse scenarios, most notably, in high dimensional problems,

which is a typical situation in phylogenetics.

Consider two unnormalized density functions q0(θ) and q1(θ) defined on the

same parameter space Θ. The full probability densities are given by

pj(θ) =
qj(θ)

zj
, j = 0, 1.

In a Bayesian context, zj =
∫

Θ
qj(θ)dθ is the normalizing constant or marginal

likelihood, qj(θ) = L(X|θ,Mj)π(θ|Mj) and pj(θ) = pj(θ|X,Mj) is the posterior.
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In order to perform a numerical evaluation of the log-ratio log(z1/z0), it is always

possible to construct a continuous and differentiable path
(
qβ(θ)

)
0≤β≤1

to link the

unnormalized functions. This concept defines a set of transitional distributions

which form the path as

pβ(θ) =
qβ(θ)

zβ
, 0 ≤ β ≤ 1,

where zβ =
∫

Θ
qβ(θ)dθ. In a marginal likelihood estimation context, the most

popular is the geometric path, also known as power posterior density, and is

defined by

pβ(θ) =
L(X|θ,M)βπ(θ|M)

zβ
. (3.6)

Note that for β = 0 the power posterior is equivalent to the prior distribution

and for β = 1 is equivalent to the posterior distribution. Their corresponding

normalizing constants are z0 = 1 and z1 = z, respectively. Figure 3.1 displays

how the geometric path between a Uniform(−6, 6) and N(0, 1) distribution, as

prior and posterior respectively, looks like for 6 transitional distributions with

β values uniformly spaced. This is assuming a likelihood N(µ, 1) with a single

observation x = 0.

Assuming the legitimacy of interchange of integration with differentiation, the

basic identity for PS is given by

∂ log zβ
∂β

= Epβ

[
∂ log qβ(θ)

∂β

]
= Epβ

[
U(θ, β)

]
, (3.7)

where Epβ depicts the expectation with respect to the sampling distribution pβ(θ)

and U(θ, β) = ∂
∂β

log qβ(θ). For the power posterior case, we have that U(θ, β) =

U(θ) = logL(X|θ,M). This function no longer depends on β.

The aim is to compute the ratio of normalizing constants, which under the
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Figure 3.1: Geometric path between a prior Uniform(−6, 6) and posterior N(0, 1).
The likelihood is N(µ, 1) with one observation x = 0.

log-transformation, is given by

log z = log

(
z1

z0

)
= log z1 − log z0.

Considering the previous results, this log-ratio can be expressed equivalently as

log z =

∫ 1

0

∂ log zβ
∂β

dβ =

∫ 1

0

Epβ

[
U(θ, β)

]
dβ. (3.8)

PS relies on this integral to calculate the marginal likelihood. Its key idea is that

for any value β between 0 and 1, a Markov chain Monte Carlo (MCMC) can be

run to approximate the expected value by using qβ as sampling distribution. This

process produces a sample from pβ. Thus, Epβ
[
U(θ, β)

]
can be approximated

taking the average over this sample as

Û(θβ) =
1

n

n∑
i=1

U(θiβ, β), (3.9)

71



Chapter 3. Estimating the marginal likelihood

where θβ ∼ pβ and θiβ is a sample point from it for i = 1, . . . , n. This proce-

dure can be done for a series of K + 1 values of β and then the expectation

for each sample can be calculated. The generated set of expectations is used to

approximate the integral defined in (3.8).

The discretization of the interval [0, 1], domain of β, implies sampling different

power posterior densities induced by βk, with k = 0, . . . , K. In particular, we

have that β0 = 0 and βK = 1. These samples can be obtained by the quasistatic

method which yields a great accuracy [Lartillot and Philippe, 2006]. The method

consists of equilibrating a MCMC under β = 0, then smoothly increasing the

value of β, by adding a constant ∆β, until β = 1 is reached. Along the process,

a certain number (N) of points θβ are stored before each update of β. Using the

trapezoidal rule, an estimate of log z is given by

̂log z =
K−1∑
k=0

(βk+1 − βk)
Û(θβk+1

) + Û(θβk)

2
(3.10)

=
1

2

{
β1Û(θβ0) +

K−1∑
k=1

(βk+1 − βk−1)Û(θβk) + (βK − βK−1)Û(θβK )

}
,

for β0 = 0 < β1 < · · · < βK−1 < βK = 1. The procedure of moving from β = 0 to

β = 1 is known as annealing scheme. Equivalently, one could start from β = 1

and progressively decrease to β = 0. This procedure is known as melting scheme.

Lartillot and Philippe [2006] proposed to spread the β values regularly spaced

between 0 and 1. But since often most of the variability of the expected values

is concentrated for β near 0, some authors have proposed to place more compu-

tational effort in that place. This phenomenon is illustrated in Figure 3.2 where

can be noticed that most of the Û variability is concentrated for β < 0.2. In this

context, Lepage et al. [2007] used a sigmoidal function to estimate the Bayes fac-

tor; Friel and Pettitt [2008] proposed βk = x4
k, where x-values are equally spaced

between 0 and 1; and Xie et al. [2011] advocated spreading the values according

to evenly spaced quantiles of a Beta(α, 1), with α = 0.3, and showed that the

efficiency of PS can be dramatically improved. This approach is displayed in

Figure 3.2.

The precision of PS is directly proportional to the number of transitional dis-
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Figure 3.2: Estimated expectations Û over pβ for different β values which together
makes up the PS estimate. These estimates have been taken from the data
analysed in example 3.5.2.1.

tributions connecting the prior with the posterior, in other words, as K increases,

the accuracy increases. This also reduces the bias introduced by the numerical

approximation. This bias can also be reduced by using more accurate numerical

integration techniques.

The Monte Carlo standard deviation is given by the square root of the variance

given by

Var
[̂log z

]
=

1

4

{
β2

1Var
[
Û(θβ0)

]
+

K−1∑
k=1

(βk+1 − βk−1)2Var
[
Û(θβk)

]
+

(βK − βK−1)2Var
[
Û(θβK )

]}
where the variances are defined as

Var
[
Û(θβ)

]
=

1

n
Var
[
U(θ, β)

]
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=
1

n

(
Epβ
[
U(θ, β)2

]
− Epβ

[
U(θ, β)

]2)
.

The first expectation can be approximated by

Epβ
[
U(θ, β)2

]
≈ 1

n

n∑
i=1

U(θiβ, β)2 =
1

n

n∑
i=1

logL(X|θiβ,M)2

where θiβ are sampling points from pβ. The last identity corresponds to the power

posterior case. The approximation for the second expectation is given in (3.9).

The total uncertainty estimation has two sources of error: the sampling error,

explained above, and the error induced by the discretization of the integral defined

in (3.8). In general, the later is ignored since it diminishes proportionally as the

number of transitional distributions increases.

PS performance can be improved by shortening the path between the dis-

tributions. This can be done by replacing the prior by a reference distribution

which should optimally approximate the posterior [Lefebvre et al., 2010]. This

extension has the potential of improving its performance significantly [Arima and

Tardella, 2014]. The same concept is used by generalized steppingstone sampling

which is discussed in 3.3.3.

3.3.1.1 Direct Bayes factor estimation

When the difference between the logarithm of the marginal likelihoods of two

models is small compared to these two values, the Bayes factor estimate could

be poor [Lartillot and Philippe, 2006]. In this situation, it would be preferable

to estimate the difference directly, unless the precision of each marginal likeli-

hood estimate is very high. So, instead of defining a path between the prior

and the posterior, it could be better to define a path directly between the two

models. This scheme is known as model-switch path sampling or thermodynamic

integration.

Consider the two models M0 and M1 defined on the parameter space Θ0

and Θ1, respectively. Also, consider θ = (θ0,θ1) ∈ Θ, where θ0 ∈ Θ0 and

θ1 ∈ Θ1. These two latter parameter vectors have been merged into one, as

defined in Section 3.2.2.1. This is the most general case discussed by Lartillot and
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Philippe when both models (or part of them) are defined on different parameter

spaces. Analogously to the power posterior defined previously in (3.6), now the

unnormalized transitional distributions qβ and the normalized density pβ are given

by

qβ(θ) =
(
L(X|θ,M0)π(θ|M0)

)1−β(
L(X|θ,M1)π(θ|M1)

)β
pβ = qβ/zβ

with 0 ≤ β ≤ 1, and normalizing constant zβ. Note that when β = 0, this

function represents the case of model 0 and when β = 1 the case of model 1.

Thus, this power posterior density bridges the two models. Under this scheme,

for U in (3.7) it then holds that

U(θ, β) = logL(X|θ,M1) + log π(θ|M1)− logL(X|θ,M0)− log π(θ|M0)

Once this quantity and the power posterior are defined, the log-Bayes factor

estimate is equivalent to that one described in (3.10).

3.3.2 Steppingstone sampling

Steppingstone sampling [SS; Xie et al., 2011] is a method to estimate the marginal

likelihood which gathers ideas of importance sampling and path sampling. This

method uses importance sampling method to estimate each element of a telescope

product of ratios of normalizing constants of the transitional distributions. This

approach has the advantage of requiring fewer path steps than PS to estimate

accurately the marginal likelihood and yielding a less-biased estimator. Since

its publication, it has been implemented in many phylogenetic software packages

(see Table 1.1).

Consider the power posterior density defined in (3.6). The marginal likeli-

hood can be expanded as a product of K ratios of normalizing constants of their

transitional distributions as follows

z =
z1

z0

=
zβ1
zβ0

zβ2
zβ1

. . .
zβK−1

zβK−2

zβK
zβK−1

=
K∏
k=1

zβk
zβk−1

=
K∏
k=1

rk, (3.11)
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where β0 = 0 < β1 < · · · < βK−1 < βK = 1 and rk = zβk/zβk−1
.

The direct estimate of this ratio of marginal likelihoods z1/z0 is not easy

because the distributions involved in the numerator and denominator (posterior

and prior, respectively) are, in general, quite different. To solve this problem,

SS expands this ratio in a series of ratios. These ratios are individually easier to

estimate because the involved distributions on the top and bottom are now quite

similar. In this situation importance sampling method works well.

SS estimates each ratio rk by importance sampling using pβk−1
as importance

sampling distribution. This is a suitable distribution because it has heavier tails

than pβk which leads to an efficient estimate of rk. In this manner, it avoids esti-

mating from the posterior distribution, making it slightly less expensive compu-

tationally than PS for the same number K of path steps. Each ratio is estimated

based on the identity

rk =
zβk
zβk−1

=

∫
Θ

qβk(θ)

qβk−1
(θ)

pβk−1
(θ)dθ

= Epβk−1

[
qβk(θ)

qβk−1
(θ)

]
. (3.12)

Thus, an unbiased MC estimator of rk is given by

r̂k =
1

n

n∑
i=1

qβk(θ
i
βk−1

)

qβk−1
(θiβk−1

)

=
1

n

n∑
i=1

L(X|θiβk−1
,M)βk−βk−1 ,

where θ1
βk−1

, . . . ,θnβk−1
are drawn from pβk−1

and k = 1, . . . , K. To improve its

numerical stability, it has been proposed to factorize by the largest sampled like-

lihood Lkmax. Thus, an estimate of z is given by

ẑ =
K∏
k

r̂k =
K∏
k=1

1

N

(
Lkmax

)βk−βk−1

n∑
i=1

(
L(X|θiβk−1

,M)

Lkmax

)βk−βk−1

.
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In a log scale, this could be written as

log ẑ =−K logN +
K∑
k=1

(βk − βk−1) logLkmax

+
K∑
k=1

log
n∑
i=1

exp
{

(βk − βk−1)(logL(X|θiβk−1
,M)− logLkmax)

}
.

Although ẑ is unbiased, the log transformation introduces a bias which can be

alleviated by increasing K.

The MC sampling error of each ratio r̂k is given by SD[r̂k] = Var[r̂k]
1/2 with

estimated variance

Var[r̂k] = Var

[
1

n

n∑
i=1

qβk(θ
i
βk−1

)

qβk−1
(θiβk−1

)

]

=
1

n2

n∑
i=1

Var

[
qβk(θ

i
βk−1

)

qβk−1
(θiβk−1

)

]
=

1

n
Var

[
qβk(θ)

qβk−1
(θ)

]
≈ 1

n2

n∑
i=1

(
qβk(θ

i
βk−1

)

qβk−1
(θiβk−1

)
− r̂k

)2

=
1

n2

n∑
i=1

(
L(X|θiβk−1

,M)βk−βk−1 − r̂k
)2

,

as r̂k is an unbiased estimator of rk. Hence, the standard deviation for the SS

estimate is given by SD[ẑ] = Var[ẑ]1/2, where

Var[ẑ] = Var

[
K∏
k=1

r̂k

]

=
K∏
k=1

(
Var[r̂k] + E[r̂k]

2
)
−

K∏
k=1

E[r̂k]
2

≈
K∏
k=1

(
Var[r̂k] + r̂2

k

)
−

K∏
k=1

r̂2
k
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=
K∏
k=1

(
Var[r̂k] + r̂2

k

)
− ẑ2.

Based on the delta method, the sampling variance of the estimated log-marginal

likelihood can be approximated as

Var[log ẑ] ≈
K∑
k=1

1

r̂2
k

Var[r̂k]

=
1

n2

K∑
k=1

n∑
i=1

(
L(X|θiβk−1

,M)βk−βk−1

r̂k
− 1

)2

All this is valid only if the samples are truly independent from their respective

densities pβ.

SS possesses important characteristics which have allowed it to gain popularity

in the phylogenetic community. The most important advantage is that it requires

a lower number of transitional distributions than PS to yield a reliable estimate.

Furthermore, SS seems to be less sensitive to the choice of β values than PS. For a

moderately positively skewed distribution of β, there is no significant difference in

root mean square error (RMSE) between the methods. However, SS outperforms

PS significantly when the β values tend to be equally spaced [Xie, Lewis, Fan,

Kuo, and Chen, 2011].

3.3.2.1 Direct Bayes factor estimation

Similarly to model-switch PS defined in Section 3.3.1.1, SS can be adapted to

directly estimate the Bayes factor [Baele et al., 2013]. In general, the model-

switch SS estimate has a lower variance than the one obtained via the ratio of

two independent SS estimates, especially if the two priors are the same. This

method is carried out by defining a path that directly connects the two models in

the space of unnormalized densities. The two competing models can be defined

on different parameter spaces. Again, the path can be geometrically constructed

as

qβ(θ) =
(
L(X|θ,M0)π(θ|M0)

)1−β(
L(X|θ,M1)π(θ|M1)

)β
,
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where 0 ≤ β ≤ 1 and θ ∈ Θ. The full density is pβ(θ) = qβ(θ)/zβ, where zβ is

its normalizing constant.

Each ratio in (3.11) is defined following the identity (3.12) which yields

rk = Epβk−1

[(
L(X|θ,M1)π(θ|M1)

L(X|θ,M0)π(θ|M0)

)βk−βk−1

]
,

where β0 = 0 < β1 < · · · < βK−1 < βK = 1 and k = 1, . . . , K. A natural

estimator of this ratio is

r̂k =
1

n

n∑
i=1

(
L(X|θiβk−1

,M1)π(θiβk−1
|M1)

L(X|θiβk−1
,M0)π(θiβk−1

|M0)

)βk−βk−1

,

where θiβk−1
are samples from the power posterior distribution pβk−1

, for i =

1, . . . , n. This density has the potential of being a good importance distribution

because it is slightly different from pβk . Numerical stability can be improved by

factoring out the largest sampled term

ηk = max
1≤i≤n

{
L(X|θiβk−1

,M1)π(θiβk−1
|M1)

L(X|θiβk−1
,M0)π(θiβk−1

|M0)

}
.

Thus, an estimate of log r is given by

log B̂F10 =
K∑
k=1

log r̂k

=−K log n+
K∑
k=1

(βk − βk−1) log ηk

+
K∑
k=1

log
n∑
i=1

(
1

ηk

L(X|θiβk−1
,M1)π(θiβk−1

|M1)

L(X|θiβk−1
,M0)π(θiβk−1

|M0)

)βk−βk−1

.

The log-transformation induces a bias which can be minimized by increasing K.

In addition, Baele et al. [2013] showed that doing this reduces the bidirectional

error. The authors also noticed that the number of transitional distributions (K)

has a higher impact on this error than the number of MCMC iterations (n) run

per distribution.
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3.3.3 Generalized steppingstone sampling

The generalized steppingstone sampling method [GSS; Fan et al., 2011] is a gen-

eralization of SS and is potentially more efficient. Inspired by the geometric path

taken by Lefebvre et al. [2010] in a path sampling context, its main idea is to

find a path shorter than the one between the posterior and prior by replacing the

latter by a reference distribution. This strategy has the potential of leading to

remarkable improvements in comparison to the original SS and PS, namely, less

tuning parameters, lower variance, avoidance of numerical instabilities, reduction

in the computational time, and it is more accurate in case of very diffusive priors

[Baele et al., 2016]. This method also has the potential of dealing well with par-

tially convex likelihoods (as functions of the cumulative prior probabilities, see

more details in Section 3.4), unlike its predecessor and many other methods, but

if and only if adequate reference distributions are used.

Consider the unnormalized density function qβ, the normalized density pβ

with its normalizing constant zβ:

qβ(θ) =
(
L(X|θ,M)π(θ|M)

)β
π0(θ|M)1−β,

pβ(θ) =
qβ(θ)

zβ
,

zβ =

∫
Θ

qβ(θ)dθ,

where 0 ≤ β ≤ 1 and π0(θ|M) is the reference distribution. This is assumed to

be proper, i.e.,
∫

Θ
π0(θ|M)dθ = 1. When β = 0, pβ is equivalent to the posterior

distribution and when β = 1, it is equivalent to the reference distribution. Note

that when the prior is used as reference distribution, the original SS is recovered.

The method bypasses sampling near the prior, which could be difficult when this

is diffuse (a common case), through the insertion of the auxiliary distribution.

Similar to the original SS method, the marginal likelihood is expanded as the

product of ratios of normalizing constants rk, as it is defined in (3.11). Now,

following the identity (3.12), each ratio is given by

rk = Epβk−1

[ (
L(X|θ,M)π(θ|M)

)βkπ0(θ|M)1−βk(
L(X|θ,M)π(θ|M)

)βk−1π0(θ|M)1−βk−1

]
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= Epβk−1

[(
L(X|θ,M)π(θ|M)

π0(θ|M)

)βk−βk−1

]

where β0 = 0 < β1 < · · · < βK−1 < βK = 1 and k = 1, . . . , K. An estimator of

this ratio is given by

r̂k =
1

n

n∑
i=1

(
L(X|θiβk−1

,M)π(θiβk−1
|M)

π0(θiβk−1
|M)

)βk−βk−1

,

where θiβk−1
are drawn from pβk−1

, for i = 1, . . . , n. Numerical stability can be

improved by factoring out the largest sampled term

ηk = max
1≤i≤n

{
L(X|θiβk−1

,M)π(θiβk−1
|M)

π0(θiβk−1
|M)

}
.

Thus, taking the logarithm and summing over all K ratios, an estimator for log z

is given by

log ẑ =
K∑
k=1

log r̂k

=−K log n+
K∑
k=1

(βk − βk−1)ηk

+
K∑
k=1

log
n∑
i=1

(
1

ηk

L(X|θiβk−1
,M)π(θiβk−1

|M)

π0(θiβk−1
|M)

)βk−βk−1

. (3.13)

The choice of the reference distribution is essential to guarantee a good per-

formance of the method. Lefebvre et al. [2010] showed that this should be close

to the posterior in the Kullback-Leibler sense. In this sense, the prior distribution

is a poor option since the prior and the posterior are generally quite different.

In theory, the optimal choice of reference distribution is the posterior, but it is

not possible in practice because it is not completely known. In fact, it is possible

to show that replacing the reference distribution by the posterior in (3.13) yields

the equality log ẑ = log z. Instead, these authors proposed the use of posterior

samples to construct a density approximation of the posterior distribution. Fol-
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lowing this line, Fan et al. [2011] proposed the use of matching the moments,

for instance, the marginal posterior sample mean and variance, to parameterize

a reference distribution for a parameter or block of parameters. This procedure

leads to much more stable and efficient estimators. In practice, the priors can

be parametrized by posterior samples following this approach. Baele et al. [2016]

proposed to use kernel density estimation to construct this working distribution,

in particular, the normal kernel.

This generalization of SS also leads to fewer tuning parameters. The original

version defines a path between the prior and the posterior. The prior is, in general,

very different from the posterior, which is much constrained than the former.

This causes the estimated ratios near the prior to present more variability. The

consensus solution is to put more effort in that area. In other words, the β values

should follow a right skewed distribution which has to be specified. On the other

hand, GSS defines a path between a reference and the posterior distribution.

Optimally, these distributions should be similar. As a result, the estimated ratios

near the reference distribution will not have as much variability as when the prior

is used. The distributions involved in the numerator and denominator in each

ratio will not be so different, yielding less variability in their estimation. Thus,

the β values do not require to be positively skewed to increase the precision,

but these can be equally spaced [Fan et al., 2011]. This means one less tuning

parameter.

Finally, GSS requires less computational effort to achieve the same accuracy

as PS and SS. This is a consequence of using the reference distribution which

approximates the posterior. As a result, the path between these distributions is

shorter than the one between the prior and the latter. Thus, it can be described

in less steps leading to require less β values to achieve the same precision as

PS and SS. This path also avoids numerical instabilities as the estimator moves

towards the working distribution (in the case of melting scheme) and not the prior

which can be very diffusive in practice. Consequently, GSS drastically reduces

computation time [Baele et al., 2016].
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3.3.4 Annealed importance sampling

Annealed importance sampling [AIS; Neal, 2001] is a method to estimate expec-

tations, especially for those cases in which these are with respect to complex

distributions, such as the marginal likelihood. Actually, the method allows the

sampling from this distribution and consequently can produce an estimate of an

expected value. It is especially suitable to deal in the case that multimodality

may be a problem, but it allows general scenarios of estimation. The method uses

an annealing scheme to adaptively define an importance sampling distribution to

approximate the posterior. The author proposed the power posterior distribu-

tion as annealing scheme. Thus, the method produces a sample of points with

corresponding weights which are averaged to estimate the marginal likelihood.

In a general case, suppose that an expectation of some function of θ with

respect to a probability density pβK (θ) is required. Also, consider the sequence of

distributions pβ0(θ) up to pβK−1
(θ) with their corresponding proportional func-

tions qβ(θ) ∝ pβ(θ) and normalizing constants zβ. Again, these functions define

a path between pβ0(θ) and pβK (θ). This sequence can be specially constructed

to solve a particular problem. In the same way as for the other path sampling

methods described before, the geometric sequence is often a useful option and is

defined as

qβ(θ) = q0(θ)1−βqK(θ)β,

where 0 ≤ β ≤ 1. The unnormalized densities q0 and qK are a distribution easy

to sample from and the one of interest, respectively.

AIS operates as the usual importance sampling method generating a sample

of points with their corresponding weights to approximate the target distribution

pβK . This is done via a Markov chain transition kernel, e.g., by using Metropolis-

Hasting or Gibbs updates, at θβk−1
(starting value). The algorithm to generate

the nth point, for i = 1, . . . , n, is given by

• Sample θiβ0 from pβ0

• Sample θiβ1 from pβ1 at θiβ0

83



Chapter 3. Estimating the marginal likelihood

...

• Sample θiβK−2
from pβK−2

at θiβK−3

• Sample θiβK−1
from pβK−1

at θiβK−2

The last sampling point θiβK−1
is a point from the target distribution if we consider

its corresponding weight

wi =
qβ1
(
θiβ0
)

qβ0
(
θiβ0
) qβ2(θiβ1)
qβ1
(
θiβ1
) . . . qβK−1

(
θiβK−2

)
qβK−2

(
θiβK−2

) qβK
(
θiβK−1

)
qβK−1

(
θiβK−1

)
=

K∏
k=1

qβk
(
θiβk−1

)
qβk−1

(
θiβk−1

) ,
where β0 = 0 < β1 < · · · < βK−1 < βK = 1. Thus, this procedure produces

independent samples from the target distribution by using a sequence of points

from an approximating distribution which are weighted to compensate the use

of the wrong sampling distribution. The average of these importance weights

converges to the ratio of normalizing constants and defines an estimator

z =
zβK
zβ0
≈ 1

n

n∑
i=1

wi, (3.14)

where zβK =
∫
qβK (θ)dθ and zβ0 =

∫
qβ0(θ)dθ. The method is still valid even

when the starting values θiβ0 at each iteration are not independent [Neal, 2001].

Even in the case that MCMC steps are far from equilibrium, AIS is unbiased,

though poor mixing will not make the method outperform standard importance

sampling [Murray, 2007].

The ratio defined in (3.14) will be an estimate of the marginal likelihood when

qβ0 and qβK are proportional to the prior and posterior, respectively. In this case,

the geometric sequence of unnormalized densities is given by

qβ(θ) = L(X|θ,M)βπ(θ|M),
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leading consequently to weights

wi =
K∏
k=1

L(X|θiβk−1
,M)βk−βk−1 .

Alternatively, qβ0 could be chosen such that it defines a shorter path to the

posterior. Like in the GSS case, we could use a reference distribution which

approximates the posterior. This is potentially a more efficient way to estimate

the marginal likelihood. In this case, we will refer to the method as GAIS in

order to avoid confusion. We use AIS when qβ0 is proportional to the prior.

Analogously, the Bayes factor can be estimated defining a path between the

unnormalized posterior distributions of the two models.

For a sample of independent points from the transition distributions, an esti-

mate of the variance is

Var[ẑ] = Var

[
1

n

n∑
i=1

wi

]
=

1

n2

n∑
i=1

Var[wi]

=
1

n
Var[w]

≈ 1

n2

n∑
i=1

(wi − ẑ)2

=
1

n2

n∑
i=1

w2
i −

ẑ2

n
.

Based on the delta method, an estimate of the variance of the log-marginal like-

lihood is given by

Var[log ẑ] ≈ 1

ẑ2
Var[ẑ].

3.3.4.1 Link to SS

Even though AIS and SS were developed independently and published in 2001

and 2011, respectively, they are closely related. Both methods can be seen as

using the same telescope product of ratios of normalizing constants to estimate
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the marginal likelihood. SS relies directly on the identity

z =
z1

z0

=
zβ1
zβ0

zβ2
zβ1

. . .
zβK−1

zβK−2

zβK
zβK−1

=
K∏
k=1

zβk
zβk−1

=
K∏
k=1

rk,

where β0 = 0 < β1 < · · · < βK−1 < βK = 1. This method works by estimating

each ratio rk = zβk/zβk−1
via importance sampling. Thus, the estimate for the

marginal likelihood is given by

ẑSS =
K∏
k=1

1

n

n∑
i=1

L(X|θiβk−1
,M)βk−βk−1 .

On the other hand, AIS can be seen as an estimate of the same product of ratios

rk. But, instead of estimating each ratio separately, it uses estimates of the

whole product through importance sampling and then it averages them. Hence,

the estimate is given by

ẑAIS =
1

n

n∑
i=1

K∏
k=1

L(X|θiβk−1
,M)βk−βk−1 .

For K = 1, both methods are reduced to the arithmetic mean. When only one

point is sampled from each transition distribution (n = 1), both methods are

equivalent.

We could also see SS from an AIS point of view. If we expanded SS estimate,

we would notice that SS estimates the whole telescope ratio at once many times

(nK) and then takes its average in the same way as AIS. This is done by reutilizing

each sample point at least once, unlike AIS which uses each exactly once in the

estimation process. The former is an average of nK points whereas the latter is

only composed of n. Actually, a set of elements which composes the SS estimate is

the AIS estimate. We could also see SS estimate as an average of all the possible

AIS estimates obtained by combining the samples points.

To understand this, consider the case that n = 3 and K = 2. The elements

that do not depend on these specifications have been omitted for simplicity. In
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this particular case, AIS estimate is given by

ẑAIS =
1

2

(
L
(
θ1
β0

)β1−β0L(θ1
β1

)β2−β1 + L
(
θ2
β0

)β1−β0L(θ2
β1

)β2−β1+
L
(
θ3
β0

)β1−β0L(θ3
β1

)β2−β1),
and the SS estimate

ẑSS =
1

3

(
L
(
θ1
β0

)β1−β0 + L
(
θ2
β0

)β1−β0 + L
(
θ3
β0

)β1−β0)×
1

3

(
L
(
θ1
β1

)β2−β1 + L
(
θ2
β1

)β2−β1 + L
(
θ3
β1

)β2−β1).
To see this estimate as an average of the whole ratio of normalizing constants,

note that this last expression can be expanded as follows

1

9

(
L
(
θ1
β0

)β1−β0L(θ1
β1

)β2−β1 + L
(
θ1
β0

)β1−β0L(θ2
β1

)β2−β1 + L
(
θ1
β0

)β1−β0L(θ3
β1

)β2−β1+
L
(
θ2
β0

)β1−β0L(θ1
β1

)β2−β1 + L
(
θ2
β0

)β1−β0L(θ2
β1

)β2−β1 + L
(
θ2
β0

)β1−β0L(θ3
β1

)β2−β1+
L
(
θ3
β0

)β1−β0L(θ1
β1

)β2−β1 + L
(
θ3
β0

)β1−β0L(θ2
β1

)β2−β1 + L
(
θ3
β0

)β1−β0L(θ3
β1

)β2−β1).
From here, one sees that the diagonal terms of the broken equation above are

actually the elements which compose AIS estimate. One also sees that the sample

points are reutilized multiple times. For instance, θ3
β0

is used 3 times in the first

line of the equation. In general, each point is used N times.

The methods use the sample points in a different way to produce an estimate

of the marginal likelihood. This difference leads to different uncertainties in the

estimates. This aspect is studied in example 3.5.1. The results show that GSS

yields a lower uncertainty than GAIS under different specifications, even though

they are performed by using the same sample points.

Although PS and SS yield accurate estimates of the marginal likelihood, they

require several specifications depending on the problem. Firstly, an annealing

schedule (a number of β values) is required. A common practice is to try with

different numbers until the estimate is stable. This procedure is described in

Drummond and Bouckaert [2015] as follows: “run the path sampling analysis
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with a low number of steps (say 10) first, then increase the number of steps

(with say increments of 10, or doubling the number of steps) and see whether the

marginal likelihood estimates remain unchanged”. This could be impractical in

some situations, for instance, when flat priors are used, which would increase the

number of steps. Secondly, the path described by the β values has to be defined.

However, there is a consensus on putting more effort in the area around 0 see

[see Friel and Pettitt, 2008; Lepage et al., 2007; Xie et al., 2011]. Finally, these

methods require a number of samples from the power posterior for each β value.

Thus, the main problem is that optimal specifications vary from case to case.

The popularity of SS is due to its implementation in popular software such as

MrBayes [Huelsenbeck and Ronquist, 2001] or BEAST [Drummond et al., 2012].

However the mentioned specifications have to be defined by the user, or use some

predetermined parameters that might be unsuitable.

In this context, GSS, and also GAIS, require potentially less tuning parameters

for an appropriate reference distribution. Firstly, it requires an annealing/melting

scheme (a number of β values). The estimation can start from either the prior

or posterior distribution. However, the β values do not require to follow any

particular distribution to control effectively the uncertainty of the estimate as in

PS or SS, because of the similarity of the reference and posterior distributions

[Fan et al., 2011]. Thus, the values can be equally spaced between 0 and 1. Also,

GSS does not need as many transitional distributions as its original version and

it is more robust to prior specifications, i.e., the prior does not have a huge effect

on the method performance. Finally, the method requires a number of samples

from each transitional distribution.

PS and SS have usually been presented as methods of general applicability

[Arima and Tardella, 2014; Baele and Lemey, 2014; Baele et al., 2013; Xie et al.,

2011]. However, these methods only work when the shape of the likelihood, as a

function of the cumulative prior probabilities (see Figure 3.3), is concave. Partly

convex likelihood functions might need impractical computational effort or make

them fail outright. This phenomenon has been well studied in statistical physics

and is known as phase transition, a situation where a slight change in β leads to a

big change in the power posterior distribution. Thus, the transition distributions

are unable to mix between different phases of the likelihood function, resulting in
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a poor estimate. A more general method is nested sampling [Skilling, 2006], an

algorithm that measures the relationship between likelihood values and the prior

distribution, and uses this to compute the marginal likelihood. This characteristic

allows it to cope with partly convex likelihood functions. More importantly, unlike

PS, SS, AIS and GSS, NS requires less problem-specific tuning.

3.4 Nested sampling

Nested sampling [NS; Skilling, 2006] is a more general technique for the estimation

of the marginal likelihood. It requires less tuning, yields a measure of the uncer-

tainty of the estimate in a single run, and can deal with partly convex likelihood

(as a function of the cumulative prior probabilities) shapes. Its main feature is

the reduction of the multidimensional integral to a one-dimensional integral over

the parameter space. This technique, and several variants [e.g., Brewer et al.,

2011; Feroz et al., 2009; Handley et al., 2015] have been successfully applied to

fields like astronomy [Brewer and Donovan, 2015; Mukherjee et al., 2006] or sys-

tems biology [Aitken and Akman, 2013; Pullen and Morris, 2014] and shown great

promise in parameter inference and model selection.

To understand the key idea of the method, consider that for any positive

random variable Y , its expected value can be written as

E[Y ] =

∫ ∞
0

(
1− FY (y)

)
dy, (3.15)

where FY is the distribution function of Y . This integral depicts the area between

the distribution function of Y and 1. Similarly, the likelihood function L(X|θ,M)

can be seen as a positive random variable L which is a function of θ, i.e., L(θ),

where θ follows the prior distribution π(θ|M). Thus, the marginal likelihood can

be seen as the expected value of the likelihood function. NS takes advantage of

this approach and the property (3.15) to transform the multidimensional integral

defined in (3.2) into a one dimensional integral as follows

Eθ
[
L(X|θ,M)

]
≡ EL

[
L
]

=

∫ ∞
0

(
1− FL(l)

)
dl, (3.16)
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where Eθ[·] and EL[·] stand for the expectation with respect to the densities of

θ and L respectively, θ ∼ π(θ|M), L = L(θ) = L(X|θ,M) and FL(l) is the

cumulative distribution function of the likelihood defined by

FL(l) =

∫
· · ·
∫

L(X|θ,M)<l

π(θ|M)dθ.

Considering ξ(l) = 1−FL(l) = p, the proportion of prior mass with likelihood

greater than l, and taking its inverse, the evidence given in (3.16) is redefined as

z =

∫ 1

0

ξ−1(p)dp. (3.17)

This is the integral used by nested sampling, and is displayed in Figure 3.3.

ξ−1 is the likelihood function but with a different domain. Its arguments are

cumulative prior probabilities, unlike L(θ) which has parameter vectors as argu-

ment. Its codomain is naturally composed of likelihood values. Mathematically

speaking, ξ−1(p) = l is that likelihood l such that P(L(θ) > l) = p. For instance,

ξ−1(0.95) = 0.02 can be read as 95% of draws θ from the prior will have likeli-

hoods greater than 0.02. In general, ξ−1 is highly right skewed, concentrating its

mass near 0 because the posterior is usually located in a small area of the prior.

Note that this function is a monotonically decreasing function which reaches its

highest point at p = 0 and its lowest point at p = 1 (see Figure 3.3).

The following example in the discrete case helps to understand how NS works.

Consider the two-dimensional parameter space on the 4 × 4 grid displayed in

Figure 3.4 (on the left). The values of each quadrant stand for the likelihood.

Also, each cell is assumed to have equal prior probability 1/16. NS sorts the

likelihood values in an increasing order and relates them with their cumulative

prior mass. Actually, this is what the integral 3.17 represents. Figure 3.4 (on

the right) shows this procedure (from right to left). The relationship between

the values can be read as 38% of the points drawn from the prior will have a

likelihood greater or equal than 11 or 6% will be greater or equal to 42. The

area covered by the bars is equivalent to the marginal likelihood, i.e., the sum of

the heights times the widths of each bar or equivalently, the likelihood times the
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0 1

ξ−1
(p

)

p

Area z

Figure 3.3: Sorted likelihood function with respect to the prior distribution with
area z. ξ−1 is the likelihood function with cumulative prior probabilities as its
argument.

prior. Thus, its calculation is given by

z =
1

16
(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 13 + 38 + 40 + 41 + 42)

= 15.

In this toy example is quite easy to associate the likelihood to the prior mass

and consequently estimate the marginal likelihood. However, this is rarely possi-

ble in a multidimensional and continuous parameter space, but feasible in prin-

ciple.

In general, if a decreasing sequence of p-values and an increasing sequence

of L-values (ξ−1(p)) is available, the marginal likelihood can be approximated

numerically by the basic standard quadrature method

ẑ =
k∑
i=1

wiLi, (3.18)
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Parameter space
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Figure 3.4: On the left: likelihood values in the parameter space. On the right:
sorted likelihood.

where wi = pi−1 − pi (or wi = (pi−1 − pi+1)/2 for the trapezoidal rule) and

Li = ξ−1(pi). How to generate these sequences is described below.

Sequence of L-values

Nested sampling maintains a set of N active points θ1, . . . ,θN (with respective

associated likelihood values L(θ1), . . . , L(θN)) to generate the ith likelihood value

required in (3.18). Initially they are drawn from the prior distribution, π(θ).

From this set, the method requires selecting the point θl, where l ∈ {1, . . . , N},
with the lowest likelihood value. This value contributes to the estimation as a

summand in (3.18). Then, the point θl is discarded from the active points and

replaced by a new point θ sampled from the prior, but constrained to have a

greater likelihood value than the point being replaced, i.e., L(θ) > L(θl). This

procedure shrinks the parameter space according to the likelihood restriction. The

process is repeated until a given stopping rule is satisfied (more information on

this will follow later). Thus, a sequence of increasing likelihood values (L1, . . . , Lk)

and discarded points (θ1, . . . ,θk) are generated. The discarded points are the ones

that contribute to the estimate of the marginal likelihood through their respective

likelihoods.
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Sequence of p-values

The discarded points generate an increasing sequence of likelihoods, which are

known precisely. An important insight of Skilling [2006] is that the corresponding

p values, while they cannot be measured precisely, can be estimated from the

nature of the NS procedure. Nested sampling explores the prior distribution

geometrically as follows

p1 = u1, p2 = u1u2, . . . , pk =
k∏
i=1

ui,

where ui = pi/pi−1 ∈ [0, 1], for i = 1, . . . , k, with p0 = 1. This variable follows a

Beta(N, 1) distribution. This is because at the ith iteration, NS takes N points

xi1, . . . , x
i
N which follows a Uniform(0, pi−1). These values are cumulative prob-

abilities and consequently have a uniform distribution. Their maximum value

is pi which is related to the minimum likelihood value (note that ξ−1(pi) is a

non-increasing function). Since the distribution of xij/pi−1 is a Uniform(0, 1),

for j = 1, . . . , N , their maximum value pi/pi−1 follows a Beta(N, 1) distribution.

Skilling [2006] defined two schemes for estimating the p-values: stochastic and

deterministic.

• Stochastic: the ui values are generated randomly from the Beta(N, 1) dis-

tribution, for i = 1, . . . , k.

• Deterministic: the ui values are fixed by using their expectations as follows:

– Considering its arithmetic mean, ui = N/(N+1), approximate p-values

would be given by

pi =

(
N

N + 1

)i
.

– Considering its geometric mean, ui = e−1/N , the estimated prior mass

would be

pi = e−i/N .

Thus, a sequence of p values can be generated and used in (3.18). The use of

the geometric mean seems more reasonable given that the prior mass exploration
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is geometric. This scheme is considered for our examples, and is the one recom-

mended by most authors. However, the arithmetic mean allows nested sampling

to be connected to rare event simulation [Walter, 2017], and allows for an alter-

native version of NS with unbiased estimates of z.

Sampling

The highest cost of nested sampling is in sampling from the restricted prior distri-

bution (due to the condition that the likelihood needs to increase). Skilling [2006]

suggested to use a Metropolis-Hastings algorithm as usual, to explore the prior

with the additional condition of rejecting the proposal points which do not fulfill

the likelihood restriction. As a starting value, a point from the sequence of active

points can randomly be selected at each iteration of NS, as all of them meet the

likelihood condition by definition. Several other efficient methods have also been

proposed [Brewer et al., 2011; Feroz et al., 2009; Mukherjee et al., 2006]. We use

Skilling’s method to generate the restricted prior samples in our application with

proposal moves as described in Brewer and Donovan [2015], which are discussed

in Section 4.4.

The amount of information provided by the data about the parameters plays

a key role in NS. It helps to define the uncertainty of the estimate and also a

termination criterion. This concept is explained below.

Information

The idea of how much we have learned from the data is quantified through the

notion of entropy. The measure of information [Knuth and Skilling, 2012; Sivia

and Skilling, 2006] is given by the negative relative entropy

H =

∫
P (θ) log

(
P (θ)

π(θ)

)
dθ,

where P (θ) is the posterior distribution. This quantity represents the amount of

information in the posterior with respect to the prior, after acquiring the data.

By definition, it can be seen as the expected value H = EP [log(P (θ)/π(θ))]. Its
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approximation is given by

H ≈
∑
i

wiLi
z

log

(
Li
z

)

with wi = pi−1− pi [Sivia and Skilling, 2006]. The following property of expected

values is useful to understand the use of this concept. If GY is the geometric

mean of Y , we have that

log GY = E[log Y ]⇔ GY = eE[log Y ]. (3.19)

According to this property, e−H is a measure of central tendency or a typical

value of π(θ)/P (θ). This value can be seen as the bulk of the posterior mass that

occupies the prior. This idea helps to define a termination condition for nested

sampling which will be described later.

Note that a prior distribution which is consistent with the likelihood function,

namely, they support the same parameter values, has a lower information than

a likelihood function which is in contradiction with the prior, i.e., their mass is

concentrated in different places. In other words, if the previous belief changes a

lot after acquiring the data, more information has been gained from the data.

Uncertainty

The numerical uncertainty associated with the NS estimation of z comes from

two sources: i) approximating the prior volume (wi = pi−1 − pi), and ii) the

error imposed by the integration rule. However, the total uncertainty is usually

dominated by the first. Actually, the second is at most O(N−1) and O(N−2) for

the simple standard quadrature and trapezoidal methods, respectively, and thus

negligible in comparison to the first source [Skilling, 2006].

In a such a way, the uncertainty in log ẑ depends directly on the uncer-

tainty in
∑k

i=1 log pi. Noting that − log pi ∼ Exp(N), and that consequently

−
∑k

i=1 log pi ∼ Gamma(k,N), where k is the number of iterations required by

NS, we have that dev
[∑

log pi
]

=
√
k/N . Skilling [2006] argued that NS re-

quires around N × H steps to reach the posterior, therefore its uncertainty can

95



Chapter 3. Estimating the marginal likelihood

be approximated as

dev
[

log z
]

=

√
H

N
. (3.20)

The asymptotic variance of the nested sampling approximation grows linearly

with the dimension of θ and its distribution is asymptotically Gaussian [Chopin

and Robert, 2010].

Another way of calculating the uncertainty is by replicating the NS estimates

for different p-sequences, i.e., using the stochastic approach, but keeping the same

likelihood sequence. Thus, a distribution of log ẑ can be inferred. Note that this

represents a marginal computational cost since most of it is spent by generating

the likelihood sequence. This strategy can also be used similarly for parameter

inference.

Figure 3.5 shows the NS algorithm. The routine is repeated until a given

stopping criterion is satisfied. However, there is no rigorous criterion that guar-

antees that we have found most of the bulk of z. Nevertheless, some termination

conditions have been proposed [Skilling, 2006] and are described below.

Termination

The loop could continue until the potential maximum new contribution Liwi

represents a small fraction γ of the accumulated evidence, that is,

max
(
L(θ1), L(θ2), . . . , L(θN)

)
wi < γzi−1.

The algorithm stops when the potential maximum new contribution is not sig-

nificant.

Another criterion is based on the concept of information defined before. Typ-

ically, the likelihood values L start dominating the prior mass w, so the contribu-

tion Lw increases at the beginning until the prior mass dominates this quantity.

After reaching a maximum, theses values start to decrease. The peak of this

function is reached in the region of p ≈ e−H , when most of the posterior mass in

the prior has been found. Given that pi ≈ e−i/N , a natural termination condition
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Nested sampling algorithm:

1. Sample N points θ1, . . . ,θN from the prior π(θ);
2. Initialize z0 = 0 and p0 = 1;
3. Repeat for i = 1, . . . , k;

i) out of the N live points, take the one with the lowest
likelihood which we call θl with corresponding likelihood
Li = L(θl);

ii) set pi = exp(−i/N);
iii) set wi = pi−1− pi (or wi = (pi−1− pi+1)/2 for the trape-

zoidal rule);
iv) update zi = wiLi + zi−1; and
v) update the set of active points θ1, . . . ,θN replacing θl

by drawing a new point θ from the prior distribution
restricted to L(θ) > L(θl).

Figure 3.5: Description of NS algorithm. It iterates until a stopping criterion is
satisfied.

to estimate the log-evidence would be to stop the loop when i/N significantly ex-

ceeds H, i.e., when the posterior mass has been explored completely. In practice,

NS can be stopped when the number of iterations exceeds 2×N×H, where H is

estimated inside the loop at each iteration.

There is no guarantee in general that these termination conditions will work

perfectly. L might start increasing at a greater rate in the future, overwhelming

the points that currently have high weights. In specific cases where the maxi-

mum likelihood value is known or can be roughly anticipated, it is possible to be

confident that this will not happen.

Posterior samples

NS yields posterior samples at no extra cost, if we assign appropriate weights to

the discarded output points. In each iteration, NS has taken out a point from the

active points generating a sequence of discarded points θ1,θ2, . . . ,θk. These dis-

carded points have contributed to the estimation of the marginal likelihood with

their respective weights wL which are proportional to the posterior distribution,

i.e., prior multiplied by likelihood. Thus, the sequence of discarded points can
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be sampled according to these weights in order to get a posterior sample. The

effective sample size is related to the entropy of the posterior weights as

M = exp

(
−

k∑
i=1

p̃i log p̃i

)
, where p̃i =

wiLi
z

.

3.4.1 Direct Bayes factor estimation

The NS algorithm can also be extended to estimate the Bayes factor directly.

Assume, one wants to compare models M0 and M1 defined on the parameter

spaces Θ0 and Θ1, respectively. The marginal likelihood is denoted by zj for Mj,

with j = 0, 1. The Bayes factor has the form of

BF10 =

∫
Θ1
L(X|θ1,M1)π(θ1|M1)dθ1∫

Θ0
L(X|θ0,M0)π(θ0|M0)dθ0

,

where θ0 ∈ Θ0 and θ1 ∈ Θ1. We merge these parameter vectors into one as

θ = (θ0,θ1) ∈ Θ, such that, for instance, if θ0 = (a, b, c) and θ1 = (c, d), then

θ = (a, b, c, d). It is feasible to rewrite the Bayes factor expression as

BF10 =
1

z0

∫
Θ

L(X|θ,M1)π(θ|M1)π(θ|M0)dθ

=
1

z0

∫
Θ

L(X|θ,M1)π(θ|M1)π(θ|M0)

g0(θ)
g0(θ)dθ

=

∫
Θ

L(X|θ,M1)

L(X|θ,M0)
g0(θ)dθ

=

∫
Θ

Ψ(θ)g0(θ)dθ

where g0 is an instrumental density defined by

g0(θ) =
L(X|θ0,M0)π(θ0|M0)

z0

π(θ1|M1)

and Ψ(θ) = L(X|θ1,M1)/L(X|θ0,M0). The parameters in θ which do not cor-

respond to the model have no participation on the computation of the likelihood

and prior functions. In the simplest case that both models are defined on the
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same parameter space and with same priors, the instrumental function is given

by

g0(θ) =
L(X|θ,M0)π(θ)

z0

.

Now, the Bayes factor can be seen as the expected value of a pseudo-likelihood

Ψ with respect to a pseudo-prior g0. In other words, it has been rewritten in a

way NS can deal with. Actually, any extension of NS can be applied to this

expression.

Noting that the ratio of likelihoods Ψ is a positive random variable (see prop-

erty (3.15)), BF10 can take the form of

Eθ
[
Ψ(θ)

]
≡ EΨ

[
Ψ
]

=

∫ ∞
0

(
1− F (ψ)

)
dψ

=

∫ 1

0

ξ−1(p)dp

where Eθ and EΨ depict expected values with respect to the densities of θ and Ψ

respectively, θ ∼ g0(θ), F (ψ) is the distribution function of Ψ given by

F (ψ) =

∫
· · ·
∫

Ψ(θ)<ψ

g0(θ)dθ,

and ξ−1 is the inversed function of ξ(ψ) = 1−F (ψ) = p, i.e., ξ−1(1−F (ψ)) = ψ.

With the pseudo-likelihood Ψ and the pseudo-prior g0 defined, NS follows

its normal course. It starts with a set of N active points sampled from g0. It

initializes BF0 = 0 and p0 = 1. At the ith iteration, the point with the lowest ratio

of likelihoods θl contributes to the estimation as BFi = (pi−1− pi)Ψ(θl) + BFi−1,

where pi = exp(−i/N). Then, it is replaced by a new point θ sampled from g0

restricted to Ψ(θ) > Ψ(θl). The algorithm is repeated until a given stopping

criterion is satisfied.

When both models are defined on the same parameter space and considering

same priors, the algorithm yields posterior samples for model 1 at no extra cost.

The procedure is analogous to that for the original algorithm defined above.

Analogously to the original algorithm, the standard deviation of the estimate
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depends on the information and the number of active points. This is

SD[log(BF10)] =

√
H

N
.

The pseudo-posterior distribution for this case is given by

P (θ) =
Ψ(θ)g0(θ)

BF10

=
L(X|θ1,M1)π(θ1|M1)

z1

π(θ0|M0) = g1(θ).

Thus, the information takes the form of

H =

∫
Θ

g1(θ) log

(
g1(θ)

g0(θ)

)
dθ.

For the most general case, when the models are defined on different parameter

spaces, the information is given by

H = H1 +

∫
Θ0

π(θ0|M0) log

(
π(θ0|M0)

p(θ0|X,M0)

)
dθ0,

where H1 is the information for model 1. The second term is the Kullback-Leibler

divergence KL(π0, p0) between the prior and posterior of model 0. This quantity

can be seen as the capacity of the posterior to approximate the prior. However, in

general, the posterior is much more constrained than the prior. The prior could

allow for values that are hard to generate by the posterior. Thus, the integral

may be undefined.

For the particular case where both models are defined on the same parameter

space with the same priors, the information is given by

H = H1 −
∫

Θ

p1(θ|X,M1) log

(
p0(θ|X,M0)

π(θ)

)
dθ.

The calculation of the Bayes factor by using independent marginal likelihood

estimates via NS leads to the following variance

Var

[
log

(
z1

z0

)]
= Var[log z1] + Var[log z0] =

H1

N
+
H0

N
. (3.21)
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This variance differs only in the second term in comparison to our proposal. For

the case that both models have the same parametric support and priors, the

direct estimation of the Bayes factor could lead to a smaller uncertainty (see

example 3.5.2.2).

3.4.2 Nested importance sampling

Nested importance sampling (NIS) is an extension of NS which gathers the idea of

importance sampling methods making use of an auxiliary function to potentially

make the estimation process more efficient. This idea was briefly discussed by

Skilling [2006] and subsequently in more depth by Chopin and Robert [2010] and

Feroz et al. [2013].

The marginal likelihood can be rewritten as

z =

∫
Θ

L(θ)π(θ)

g(θ)
g(θ)dθ, (3.22)

=

∫
Θ

Ψ(θ)g(θ)dθ,

where Ψ(θ) = L(θ)π(θ)/g(θ), with g(θ) the importance sampling density. The

functions g(θ) and Ψ(θ) play the role of a pseudo-prior and pseudo-likelihood,

respectively. Ψ can be seen as a positive random variable since it is a product of

positive functions. Thus, considering the properties of this kind of variables (see

property (3.15)), the integral can be seen as follows

Eθ
[
ω̃(θ)

]
≡ EΨ

[
Ψ
]

=

∫ ∞
0

(
1− F (ψ)

)
dψ

=

∫ 1

0

ξ−1(p)dp,

where Eθ() and EΨ stand for expectations with respect to the densities of θ and

Ψ respectively, θ ∼ g(θ), ψ is a value from the random variable Ψ, F (ψ) is the

cumulative distribution function of the pseudo-likelihood defined as

F (ψ) =

∫
· · ·
∫

Ψ(θ)<ψ

g(θ)dθ,
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and ξ(ψ) = 1−F (ψ) = p with inverse function ξ−1(p) = ψ. Note that ξ−1 has as

domain cumulative pseudo-prior probabilities and as codomain pseudo-likelihood

values.

After defining the pseudo-prior and the pseudo-likelihood functions, NIS works

in the same way as NS. In each iteration it requires the identification of θl with

the lowest pseudo-likelihood value Ψ(θl). Then, a new point θ has to be sampled

from the pseudo-prior g(θ) restricted to have a greater pseudo-likelihood value,

i.e., Ψ(θ) > Ψ(θl). The rest of the algorithm does not change.

The performance on NIS depends on the choice of the auxiliary distribution

g(θ). A good choice could dramatically improve the performance in comparison

to the original algorithm. This would yield an estimate with lower uncertainty

and with less computational effort. On the other hand, a bad choice could lead to

the opposite scenario. Theoretically, the optimal choice of the auxiliary density

is the posterior distribution. In this case, it is straightforward to show that the

integral defined in (3.22) is reduced to the marginal likelihood z. Or equivalently,

it is easy to show that the information H, defined as

H =

∫
P (θ) log

(
P (θ)

g(θ)

)
dθ, (3.23)

is 0 when the g(θ) is the posterior distribution P (θ). Consequently, the uncer-

tainty of the estimate, SD
[

log z
]

=
√
H/N , is equal to 0. However, this density

is not feasible in practice. When the importance sampling function is the prior,

it is easy to see that the integral (3.22) becomes the definition of the marginal

likelihood, so the original NS algorithm is recovered. However, this is a poor

choice since the prior and posterior are generally very different.

In practice, the auxiliary density should approximate the posterior distribu-

tion as much as possible. For the path sampling case, Lefebvre et al. [2010]

suggested to use posterior samples to calibrate an auxiliary density. For instance,

Fan et al. [2011] proposed to parameterize the prior density by marginal posterior

samples for the generalized steppingstone sampling method. In practical terms,

this choice represents a viable and efficient alternative in a nested importance

sampling context (see example 3.5.1.1 and 3.5.2.1). The variable tree topology

case in which a reference distribution for phylogenies is required is discussed in
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the next chapter.

Even though NIS requires an additional computational effort of sampling the

posterior in order to parametrize the reference distribution, this effort is compen-

sated by allowing an easier sampling distribution and requiring less iterations to

get a stable estimate.

NS requires independent points from the prior restricted to the likelihood.

This is particularly hard for non-informative priors or when this is in contradic-

tion with the likelihood. In these cases, low prior volume is assigned to where

the likelihood is densely concentrated. Thus, the points generated from the prior

will be situated in areas with high likelihood values with a small probability.

This problem is exacerbated over time, when the sampling distribution gets more

constrained. On the other hand, NIS requires independent points from the in-

strumental distribution restricted to the pseudo-likelihood. This sampling distri-

bution is potentially much easier and more efficient to sample from. Note that

the pseudo-prior is ideally an approximation of the posterior and consequently

provides information about the posterior range. This gives us an idea of the

length of the proposals to get a good acceptance probability. Thus, we expect

the sampling to be much easier.

In these situations NS will require a high number of iterations to find the

posterior mass and then yield an estimate of the marginal likelihood. On the

other hand, NIS will require much lower number of iterations for this task. This

can be understood by noting that the integral for z is dominated by wherever

the bulk of the posterior mass is to be found [Skilling, 2006], and it is actually

where the pseudo-prior distribution optimally allocates its probabilities. In other

words, the posterior probability mass has already been found at the beginning of

the estimation process because NIS starts with an approximation of it. Thus, NIS

would require less iterations than NS to completely explore the posterior bulk,

independently of the kind of priors used.

Another positive attribute of NIS is its potential of possessing a lower un-

certainty than NS. For both methods, the standard deviation of the estimates

depends directly on the information H, which is a kind of measurement of the

dissimilarity between the prior and the posterior in the NS case, or the reference

distribution and the posterior in the NIS case. The higher the information is, the
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higher the uncertainty. In general, the prior is much more different from the pos-

terior, which generates higher information in the NS case. In other words, after

acquiring the data, our prior beliefs will change a lot, which can be seen as a high

amount of information gained from the data. On the other hand, the informa-

tion associated with NIS is with respect to the reference distribution, which is an

approximation of the posterior. Therefore, this artificial information gained from

the data is naturally smaller than in the NS case. It can be noticed from (3.23)

that the information tends to 0 as the approximation of the reference distribution

to the posterior improves. Thus, NIS uncertainty is potentially smaller than NS

uncertainty.

Finally, NIS provides posterior samples at no extra cost, like NS. The proce-

dure is analogous to the original algorithm. The samples can be drawn from the

discarded points according to the corresponding pseudo-posterior weights Ψigi

with i = 1, . . . , k. Note that these weights are indeed proportional to posterior

weights because they are equivalent to Liπi (likelihood × prior).

3.5 Application

The methods described previously are performed in two different contexts. First,

they are applied to two statistical scenarios where many methods are unable to

estimate the normalizing constant accurately. Second, the methods are evaluated

in two phylogenetic situations: i) a real dataset is analysed to select among diverse

evolutionary models and then, with the chosen model, we test the sensitivity of the

estimation methods to different prior specifications; and ii) a simulated dataset

in the four taxon case is analysed in order to detect the true phylogeny by using

direct Bayes factor estimation.

3.5.1 Statistical example

Skilling [2006] pointed out that path sampling does not work when the likelihood,

as a function of the cumulative prior probabilities, is not concave (see Figure 3.8).

Such a problem seems like it ought to be easy to solve, but it can be intractable

for PS. Actually, these problems are intractable for most known methods based
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on power posteriors in their simple form (path connecting the prior and poste-

rior), including steppingstone sampling or annealed importance sampling. In this

situation, a slight change in β (see the definition of the power posterior density

in (3.6)) leads to a big change in the distribution, phenomenon known as phase

transition. We study Skilling’s example referred as Model 1 and also a variant

of it, named Model 2. The latter model presents problems to even generalized

forms of power posterior methods, but not for nested sampling.

3.5.1.1 Model 1

Consider the d-dimensional parameter vector θ with a uniform prior in the unit

cube [−0.5, 0.5]d, and likelihood function

L(θ) =
d∏
i=1

1

v
√

2π
exp

(
− θ2

i

2v2

)
+ 100

d∏
i=1

1

u
√

2π
exp

(
− (θi − µ)2

2u2

)
. (3.24)

Skilling [2006] considered the following values: d = 20, µ = 0, v = 0.1 and

u = 0.01. The likelihood function is the sum of two Gaussians (3.24): the first is

a Gaussian of width 0.1 and the second Gaussian has a factor of 100 and a width

0.01 that is superposed on the first one. The likelihood function is a relatively

flat density with a spike in its center. An unscaled representation of this function

in one-dimension is shown in Figure 3.6. Independently of the dimension d, the

center peak µ and the variances u and v, the marginal likelihood is 101. Skilling

assessed this problem analytically whereas we do it in a practical way.

We assess the marginal likelihood estimation by using the methods presented

in this chapter: HM, PS, SS, AIS, GSS, GAIS, NS and NIS. The power posterior

methods in their simple form are assessed under an annealing (PSa, SSa and AISa)

and a melting (PSm, SSm and AISm) scheme. Their generalizations are evaluated

under the latter (GSS and GAIS). The estimation process is replicated 1,000

times for each method. In addition, we assess the uncertainty of the methods

which succeed in this situation.

To be fair in the comparison, we use around 100,000 samples for each method.

For the HM, after a burn-in period of 500, a sample is taken every 100 iterations

in a Markov chain of length 10,000,000. The slice sampling algorithm [Neal, 2003]
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Li
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θ

Figure 3.6: Likelihood function with two phases: a plateau and a spike. The
plot is not–scaled but it represents, didactically, the likelihood function in one
dimension of the model defined in (3.24).

is used for this procedure. Thus, a total of 100,000 points are used per estimate.

For TI, 50 transition distributions and 2,000 samples from each of them are

taken. After a burn-in period of 500 in the prior or the posterior (β = 0 and

β1 = 1, respectively), every point is taken after 100 iterations using slice sampling

[Neal, 2003]. The final point at each level is taken as starting value in the sampling

of the next transition density. This yields a total of 100,000 samples for PS. The

β values follow a Beta(0.3, 1) distribution [Xie et al., 2011]. SS and AIS follow

the same design, but they do not require samples from the posterior. For GSS

and GAIS, we consider 48 transitional distributions and 2,000 posterior samples

to calibrate the reference distribution which is defined below. Their β values are

uniformly spaced. Thus, SS, AIS and their generalizations are assessed under

the same number of sample points. This number is slightly less than the total

number of samples used for HM and PS.

The performance of NS and NIS is assessed for 1300 and 4200 active points,

respectively. These values have been calculated by running NS methods and
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seeing if they converge before 100,000 samples. Thus, these specifications make

them require similar computational effort to the other methods evaluated. A more

formal way of finding the number of iterations required by NS is explained below.

Each proposal value from the restricted prior was drawn using the Metropolis

algorithm [Metropolis et al., 1953]. After randomly selecting a starting point

that meets the likelihood restriction, 100 iterations are run before choosing the

new value. For NIS, GSS and GAIS, the reference distribution is a uniform, like

the prior, but parametrized by a posterior sample. This is done by calculating

the absolute maximum value xM of 1,000 posterior samples and then using it

as the upper and in its negative form as the lower bound. Thus, the reference

distribution is a uniform prior in the unit cube [−xM, xM]20. This is updated in

each of the 1000 replications.

Figure 3.7 shows the box plots for the 1,000 estimates of the log-marginal

likelihood. The horizontal dotted line depicts the true value log(101) = 4.62.

HM overestimates the true value because the posterior distribution is dominated

by the spike, ignoring the flatter Gaussian. Under the annealing scheme, PS, SS

and AIS underestimate the evidence due to the nature of the power posteriors.

For some transition distributions, the power posterior consists of a mixture of the

narrow and the broad Gaussians where both components should contribute to

Epβ
[

logL(X|θ,M)
]
. However, the sampler gets trapped in the wide component

and cannot find the narrow component because its volume is so small. Something

similar happens with these methods under the melting scheme, but in this case

the sampler gets trapped in the spike making it unable to mix both components

well. As a result, the true value is underestimated and overestimated under the

annealing and melting schemes, respectively.

On the contrary, GSS, GAIS, NS and NIS work perfectly. For GSS and GAIS,

the reference distribution encapsulates the spike and concentrates its probability

mass around it. Thus the probability of going from the spike to the reference

distribution (under the melting scheme) increases, allowing the mixing of the two

components of the likelihood. On the other hand, NS uses the likelihood contours

regardless of their shape, allowing it to deal well with phase transitions. Figure 3.8

shows the relationship between the prior mass and the likelihood function esti-

mated by NS. The phase transition is clearly identified. NIS works similarly, but
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Figure 3.7: Performance of HM, PS, SS, AIS, GSS, GAIS, NS and NIS for the
partly convex likelihood function in the statistical example. The subscripts “a”
and “m” depict the annealing and melting scheme used by the power posterior
methods, respectively. The subscripts in NS methods depict the number of active
points. The horizontal dotted line stands for the true log-marginal likelihood
value.

it starts the exploration from the pseudo-likelihood which makes it require less

iterations and yield lower uncertainty. The exploration of the parameter space is

displayed in Figure 3.9. On the bottom right part of the graph, we can see that

the spike of the likelihood is found at the very beginning with only few iterations.

Even though it can be noted from Figure 3.7 that the NS and NIS estimates have

higher variabilities than the generalized power posterior methods, they only need

one single run to estimate also their uncertainty, unlike GSS or GAIS.

GSS and GAIS uncertainties

GSS and GAIS proved to be very accurate methods in this situation. However, it

is not possible to detect a difference in performance between them from Figure 3.7

due to the scale of the y-axis, so we assess it separately in this section. In
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Figure 3.8: Estimated log-prior mass vs log-likelihood under NS with only 16
active points.

particular, we evaluate their performance in terms of their uncertainty under the

same computational effort. The marginal likelihood is estimated 500 times for 4,

8, 16, 32 and 64 transitional distributions (K) with 1,000 samples (n) from each

of them. The same samples are used for both methods at each replication. Then,

the standard deviations of the estimates are calculated per each method.

The results are visualized in Figure 3.10. GSS yields clearly a lower uncer-

tainty than GAIS for all the different specifications, even though the same amount

of information is used. The difference between the standard deviations becomes

much smaller as the number of transitional distributions increases.

GSS has as tuning parameters the number of transition distributions K and

the samples from each of them n. These parameters have a different impact on

the uncertainty of the estimate. To study this, 500 log-marginal likelihoods are

estimated under different conditions by using GSS and then their standard devia-

tions are calculated. This procedure is carried out for all the combinations of the

following paired specifications: for K and n equal to 4, 8, 16, 32, 64, and 100, 200,
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Figure 3.9: Estimated log-pseudo-prior mass vs log-pseudo-likelihood under NIS
with only 16 active points.

400, and 1000, respectively. The results are presented in Figure 3.11. Evidently,

the increase in K makes the standard deviation decrease more significantly than

N . For instance, the pairs (K = 8, n = 100) and (K = 4, n = 200) have exactly

the same computational effort, but they possess different uncertainties. The first

pair has a standard deviation approximately 38% lower than the second one. The

first pair even has a lower standard deviation than the pair (K = 4, n = 400)

which has twice the computational effort. This pattern is observed for all the

combinations analysed, but the standard deviation differences decrease as the

computational effort increases.

NS, NIS and GSS uncertainties

NS, NIS and GSS can deal efficiently with the phase transition of this statistical

model. The two approaches carry out the estimation in a very different way

by construction. Putting them on the same ground, we study their performance

according to the number of likelihood evaluations required to obtain a determined
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Figure 3.10: Standard deviation of 500 log-marginal likelihood estimates for 4, 8,
16, 32 and 64 transitional distributions (K) with 100 samples (N) from each of
them. A continuous line is used to illustrate the trend. GSS has a lower standard
deviation than AIS despite the equal computational effort. The uncertainty and
the difference between the methods become smaller as the number of transitional
distributions increases.

standard deviation. The comparison is carried out by using GSS as reference. We

note that GSS outperforms GAIS in this settings, so it is excluded.

NS starts the exploration from the Uniform prior until it finds the spike. This

is done without being helped by any reference distribution, unlike NIS and GSS.

It can be noted from Figure 3.8 that NS requires around 100 times the number of

active points (N) iterations to explore the full parameter space. To understand

this, note that −i/N is the estimated log-prior mass explored at the ith iteration

which is represented at the horizontal axis of the plot. So, to equate this quantity

to -100, the position where the function gets stabilized from the right to the left

in Figure 3.8, we need to consider i = 100×N iterations. For instance, if we use

2 active points, 200 iterations will be enough to reach the log(p) = −100 area

in the horizontal axis of the plot. The larger the number of active points, the
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Figure 3.11: Standard deviation of 500 log-marginal likelihood estimates for dif-
ferent number of transition distributions K and samples from each of them n. It
seems that K has a higher impact on decreasing the uncertainty than n.

larger the number of iterations required by NS to reach that area. Analogously,

Figure 3.9 shows that NIS requires at most 70×N iterations to converge. This is

absolutely linked to the reference distribution used. Having all this information,

i.e., the number of iterations and active points, and the posterior samples required

by NIS, we can calculate the number of likelihood evaluations required by NS

methods.

We estimate the log-marginal likelihood by using GSS for K = 4, 8, 16, 32,

64 transitional distributions with 100 samples from each of them. We replicate

this analysis 500 times and then calculate the standard deviation for the different

specifications. This allows us to relate GSS uncertainty with the number of

likelihood evaluations.

Taking the GSS standard deviations as references we calculate the number of

likelihood evaluations required by NS and NIS to equate them. Then, we calculate

the odds of likelihood evaluations. The results are displayed in Figure 3.12. It is

clear that NS requires much more likelihood evaluations to equate GSS and NIS.

For instance, it needs 148 times more evaluations than GSS to get a standard

deviation of 0.076. NIS also requires more computational effort, but much less
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Figure 3.12: Ratio of NS and NIS standard deviations with respect to the one
obtained by using GSS.

than NS. In this case, it needs 21 times more evaluations than GSS to get that

standard deviation. The difference of likelihood evaluations between the methods

decreases as the standard deviation increases. We do have to highlight that

even though NS and NIS require more likelihood evaluations to obtain a similar

GSS uncertainty, they only require one single run to yield an estimate of their

uncertainty. In contrast, GSS uncertainty is estimated, in practice, by replicating

several times the estimation process, which can be carried out only after the

tuning parameters are found to yield reliable marginal likelihood estimates.

3.5.1.2 Model 2

In the previous model, GSS performs very well, despite not using an optimal

reference distribution. A tentative option had been the use of a Normal distribu-

tion. We test this alternative with 100 transitional distribution and 100 samples

from each of them. The estimation is replicated 1,000 times and the results are

displayed in Figure 3.13. Even though the estimates are fairly close to the true
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Figure 3.13: GSS estimates using 100 transitional distributions and 100 samples
from each of them. A normal distribution is used as reference distribution. The
dashed line at the top stands for the true value.

value, 0.01 away from it on average, GSS underestimates it. This can be ex-

plained by the fact that the reference distribution restricts the exploration of the

parameter space to its domain, around the peak. In general, this distribution is

approximately centered around 0 with a standard deviation of 0.01. So, 99.7% of

the samples are between -0.03 and 0.03. However, the plateau Gaussian allocates

its probability between -0.3 and 0.3 which is in part outside the range of the

reference distribution and eventually will be unexplored by it. As a result, the

reference distribution leaves some areas of low probability without consideration

in this model, which explains the underestimation.

This phenomenon leads to the natural question: what would happen if the

unexplored area had more probability? In order to study this situation, we con-

sider Skilling’s model but change the weight of the narrow Gaussian. As before,

consider the d-dimensional parameter vector θ with a uniform prior in the unit
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cube [−0.5, 0.5]d, but now a likelihood given by

L(θ) =
d∏
i=1

1

v
√

2π
exp

(
− θ2

i

2v2

)
+

d∏
i=1

1

u
√

2π
exp

(
− (θi − µ)2

2u2

)
, (3.25)

where v = 0.1, u = 0.01, µ = 0, and d = 20. This likelihood has a flat density

with a spike in its center. In Skilling’s model, the spike is 100 times over the

flat distribution, but in our model the spike is not as tall as in his model. Thus,

the tails contain more probability. Independently of µ, d, u, and v, the marginal

likelihood is 2.

We assess the marginal likelihood estimation by using GSS, NS and NIS. For

the first method, we use 1,000 posterior samples to parameterize the normal dis-

tribution, 100 transitional distributions and 100 samples from each of them. This

yields a total of 10,000 samples to calculate the GSS estimate. This is without

considering the initial posterior samples. We use slice sampling to generate the

samples. For NS, we use 99 active points which makes it require around 10,000

samples as well. This number is calculated as for the previous model. NIS is

performed by arbitrarily using 99 active points (following NS settings) and col-

lecting 1,000 posterior samples to calibrate its reference distribution. Also, we

include the NS estimate with only a single point to evaluate its performance in

the simplest condition. The estimations are replicated 1,000 times and the results

are shown in Figure 3.14.

The approximation of the reference distribution for this model is determined

by the starting point in the Markov chain. If it is around 0, the distribution

will be approximately a N(0, 0.01), but if it is a little distant from its center,

let’s say outside the approximated interval [−0.023, 0.023], the distribution will

be approximately a N(0, 0.1). Actually, they are the narrow and the plateau

normal distribution which compose the likelihood. In our analysis, we use 0 as

starting value as it is the center of the target distribution.

GSS underestimates the true value which is log(2) = 0.693. Its estimates are

around 0 with a standard deviation of 0.001. Its reference distributions are cen-

tered approximately around 0 with a standard deviation of 0.01. Consequently,

they restrict their samples to the interval [−0.03; 0.03] excluding those areas which
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Figure 3.14: GSS, NS and NIS log-marginal likelihood estimates. The first two
methods are assessed under approximately the same number of sampled points.
The subscript of NS methods depicts the number of active points. The right plot
shows NS performance with a single active point. The horizontal dashed lines
stand for the true value.

now have a significant amount of probability mass. This is clearly illustrated in

one dimension in Figure 3.15 (right graph). These significant areas are excluded

from the marginal likelihood estimation. This is the reason of the underestima-

tion which is now much more severe than in the previous model. NIS possesses

the same problem, since it also relies on a reference distribution. On the other

hand, NS estimates, with 99 active points, are around the true value with a sam-

ple standard deviation of 0.57. Even in its simplest case, with a single active

point, its estimates are around the true value with a sample standard deviation

of 5.85. NS also provides accurate posterior samples which cannot be obtained

by conventional MCMC methods (see Figure 3.15), such as Metropolis-Hasting

or slice sampling.

3.5.2 Phylogenetic analysis

We present the performance of the methods discussed in this chapter with two

phylogenetic examples. Firstly, we carry out model selection by using NS for a
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Figure 3.15: The histograms stand for 10,000 posterior samples for the first com-
ponent of θ by using nested sampling on the left, and a slice sampling on the
right. This behavior is similar in all the components of θ. The continuous lines
depict the true marginal density of Model 2.

real dataset of 10 green plants assuming a known phylogeny. Then, HM, PS, SS,

AIS, GSS, NS and NIS are evaluated in terms of their sensitivity under different

prior specifications. Furthermore, NS and NIS uncertainties are compared.

Finally, we present an example to illustrate the case of direct Bayes factor

estimation. For this, a simulated dataset for the four taxon case is used to

select between two phylogenies. The true tree is allocated in the Felsenstein

zone [Huelsenbeck and Hillis, 1993] generating a good scenario to assess method

performances. Model selection is carried out by using independent and direct

Bayes factor estimation via HM, SS and NS.

3.5.2.1 Marginal likelihood estimation

We studied a dataset previously analysed by Xie et al. [2011]. This dataset has

10 species of green plant and its phylogeny, shown in Figure 3.16, is uncontrover-

sial. The DNA sequences are from the chloroplast-encoded large subunit of the

RuBisCO gene (rbcL). We use NS to estimate the marginal likelihood for 6 dif-

ferent evolutionary models and select the best among them. For this, we consider
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50 active points for each estimation and use the termination criterion based on

the amount of information H. Finally, we assess the sensitivity of the reviewed

methods under 3 different priors: diffusive, in contradiction and in agreement

with the likelihood function.

Model selection

The 6 models of DNA evolution to be compared are: JC69, JC69+Γ4, HKY85,

HKY85+Γ4, GTR and GTR+Γ4. Regarding the prior distributions, we consider

the following hierarchical structure for the branch lengths:

ti|µ ∼ Exp(1/µ), for i = 1, . . . , 17,

µ ∼ Inverse-Gamma(α∗, β∗),

with µ a scale/mean parameter. Rannala et al. [2011] suggested α∗ = 3 and

β∗ = 0.2 in order to prevent an overestimation of the branch lengths. The

simplest model JC69 only has these free parameters. For the relative rates we

use

ri|φ ∼ Exp(φ),

φ ∼ Exp(1),

where φ is a rate parameter, i = 1 for the HKY85 models and i = 1, 2, 3, 4, 5

for the GTR models. The remaining parameters for each model are set to 1. A

Dirichlet(1,1,1,1) is selected for the joint prior of the four nucleotide frequencies

(πA, πC, πG, πT ) in the HKY85 and GTR models. Finally, we use a Gamma(α, β)

for the shape parameter (λ) of the four-category discrete gamma distribution

of rates across sites. We use α = 1 and β = 1000, which is equivalent to an

Exponential(0.001), as non-informative prior for λ in the JC69+Γ4, HKY85+Γ4

and GTR+Γ4 models. The densities are fully defined in Section 2.4.

The results are displayed in Table 3.2. The GTR+Γ4 model has the best fit

among the models compared. This conclusion is fairly reliable since this model

is around 15 standard deviations from the next competing model HKY85+Γ4.

These results also show the importance of considering heterogeneous substitution
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Model log ẑ SD

JC69 -7260.19 0.76
JC69+Γ4 -6903.39 0.84
HKY85 -7042.32 0.89
HKY85+Γ4 -6618.76 0.97
GTR -6982.79 0.99
GTR+Γ4 -6603.67 1.04

Table 3.2: Log-marginal likelihood and standard deviation estimates under differ-
ent substitution models for the green plant rbcL data. GTR+Γ4 has the highest
marginal likelihood.

rates among sites. For instance, the log-marginal likelihood increases drastically

from GTR to GTR+Γ4. We observe the same situation for JC69 and HKY85

models.

Taking advantage of the posterior samples yielded by NS analysis for the

GTR+Γ4 model, we estimate the branch lengths by using the marginal posterior

means. They are displayed in Figure 3.16. The proportions of the tree are very

similar to the one estimated by maximum likelihood presented in Xie et al. [2011].

Sensitivity

Xie et al. [2011] assessed the performance of HM, PS and SS under different prior

specifications for a given phylogeny. The marginal likelihood itself is sensitive to

the prior, in that it can depend strongly on the prior, so one would expect the

methods are too. In their study, they showed that PS and SS are sensitive to

prior specifications, unlike HM. In our study, we follow the same experimental

design by using the same different priors for the shape parameter of the discrete

gamma distribution of rates across sites, but considering a distinct evolutionary

model and prior distributions for the remaining parameters. We estimate the

marginal likelihood for the selected GTR+Γ4 model through HM, PS, SS, AIS,

GSS, NS and NIS.

The models are just differentiated by 3 prior distributions placed on the shape

parameter of the discrete gamma distribution of rates across sites. The remaining
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Nicotiana tabacum
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Figure 3.16: Tree topology for the rbcL data. The branch lengths are estimated
by using the posterior means under the GTR+Γ4 model.

priors are the same used in the model selection analysis presented before. The

3 priors are the following: Exponential(0.001) is the “vague” prior which has

variance 1 million; Gamma(10, 0.026) is the “good” prior which is centered around

its posterior mean, 0.26; and Gamma(148, 0.00676) is the “wrong” prior which is

centered arbitrarily at 1. The names “good” and “wrong” are just labels which

are related to the relationship between the information contained in the data and

in the prior. The “wrong” prior is in contradiction with the likelihood function

(i.e., the prior density and the likelihood function peak in different regions), unlike

the “good” prior. While the “vague” and the “wrong” priors seem qualitatively

different, whether a prior appears vague or wrong can depend on the coordinate

system. In any case, the “good” prior should lead to a better marginal likelihood.

Figure 3.17 illustrates the idea of the 3 different priors.

For HM, after a burn-in period of 2,000 cycles, we take a sample of 50,000

points. The samples are taken every 100 cycles. For PS, we use 50 transition dis-

tributions characterized by the β values which are chosen according to the evenly
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Vague

Likelihood
Prior               

Good Wrong

Figure 3.17: Three possible priors (dotted lines) in comparison with the likelihood
function (solid line). The “vague” is a flat density, the “good” is consistent with
the likelihood whereas the “wrong” is in contradiction with it.

spaced quantiles of a Beta(0.3, 1.0) distribution. For each of them, following a

burn-in period of 2,000 cycles, a chain is run for 100,000 in parallel. Samples are

taken every 100 cycles after the burn-in period. This gives a sample of 1,000 for

each transition distribution and 50,000 in total. Similarly, but without consid-

ering the posterior distribution, SS and AIS just use 49 transition distributions

making a total of 49,000 samples. For GSS, we follow the same design as for

SS and AIS, but the β values are equally spaced. The parametrization of its

reference distributions is described below together with those used by NIS.

The tuning parameters used in the power posterior methods could not be the

optimal ones, but it is the way to guarantee a reliable estimate. Thus, the main

purpose of these analysis, to test sensitivity of the methods to prior specifications,

can be carried out. On the other hand, we use 50 active points for NS and NIS

which are enough to yield reliable estimates in this case.

For NIS and GSS, the prior is parametrized by a pilot posterior sample of 1,000

points and used as an importance sampling distribution, as proposed by Fan et al.

[2011]. The marginal posterior sample means (µ̂θ) and variances (σ̂2
θ) are matched

to the respective prior parameters in order to calibrate the reference distributions.

The prior for each branch length is equivalent to a Gamma(1, µ) distribution

which is used as the density to be reparametrized. Hence, the mean E[t] = α̃β̃ and

variance Var[t] = α̃β̃2 (from t ∼ Gamma(α̃, β̃)) are matched to the posterior mean

µt and variance σ2
t , respectively, leading to a Gamma(µ̂2

t/σ̂
2
t , σ̂

2
t /µ̂t) as reference

distribution. For its hyperparameter µ, Inverse-Gamma(µ̂2
µ/σ̂

2
µ+2, µ̂µ(µ̂2

µ/σ̂
2
µ+1)),
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since E[µ] = β∗/(α∗ − 1) and Var[µ] = β∗
2
/
(
(α∗ − 1)2(α∗ − 2)

)
. For each rel-

ative rate parameter, the procedure is analogous to the one described for the

branch lengths. The reference is a Gamma(µ̂2
r/σ̂

2
r , σ̂

2
r/µ̂r) distribution, where µ̂r

and σ̂2
r are the mean and variance from the posterior sample of the corresponding

relative rate, respectively. Similarly, for its hyperparameter, the reference is a

Gamma(µ̂2
φ/σ̂

2
φ, σ̂

2
φ/µ̂φ) distribution, where µ̂φ and σ̂φ are the mean and variance

of the posterior sample of the hyperparameter φ, respectively. For the frequen-

cies, a Dirichlet(αA, αC, αG, αT ) is used. The means (µ̂A, µ̂C, µ̂G, µ̂T ) and variances

(σ̂2
A, σ̂

2
C, σ̂

2
G, σ̂

2
T ) of the sampled base frequencies are used to define αA = m̂µ̂A ,

αC = m̂µ̂C, αG = m̂µ̂G, αT = m̂µ̂T , with

m̂ =

∑
i∈B µ̂

2
i (1− µ̂i)2∑

i∈B σ̂
2
i µ̂i(1− µ̂i)

− 1, for B = {A,C,G, T},

where m̂ represents the least square estimate of the sum of all parameters [Fan

et al., 2011]. Finally, for the gamma shape parameter a Gamma(µ̂2
λ/σ̂

2
λ, σ̂

2
λ/µ̂λ) is

chosen, since E[λ] = αβ and Var = αβ2.

The marginal likelihood estimates under the 3 different priors are displayed in

Table 3.3. As expected, HM is not able to discriminate between the “vague” and

the “good” priors. Their influence is annulled by the sharp posterior distribution

from where the samples were taken to calculate the estimate. On the other hand,

PS, SS, AIS and GSS are capable to ponder these distributions adequately making

them sensitive to prior specifications. Like these power posterior methods, NS

and NIS also prove to be in accordance with them and consequently sensitive to

prior specifications.

Despite the high precision, it is noteworthy to highlight some disadvantages of

methods based on power posteriors in their simple form. The “vague” prior makes

these methods, in their simple form like SS and AIS, require a high number of β

values. For instance, 30 values are enough for the other priors, but this number

is not enough for the “vague” prior and in practice it must be estimated by

guesswork. This could make these methods impractical in many situations, e.g.

when just extremely diffuse prior distributions are considered. In this analysis, we

can rely on their estimates because they have been compared to those obtained

by using the other methods. However, these make the power posterior methods
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Method Prior model

Vague Good Wrong

HM -6560.6 (-0.1) (-35.7)
PS (-8.8) -6594.9 (-59.4)
SS (-8.6) -6594.7 (-59.4)
AIS (-8.4) -6594.9 (-59.0)
GSS (-8.3) -6594.7 (-59.1)
NS (-9.3) -6594.4 (-59.0)
NIS (-8.5) -6594.8 (-59.4)

Table 3.3: Estimated log-marginal likelihood values for the GTR+Γ4 model under
3 different priors. The highest marginal likelihood value is displayed whereas the
difference with the other models are shown in parenthesis.

depend on several replications in order to be confident about the reliability of the

estimate when they are used as the only method of estimation.

On the other hand, for NS we only need to specify the number of active points

and steps to generate the samples (also required by posterior sample methods)

in order to produce an estimate of the marginal likelihood. From the single run,

we also obtain their uncertainties which are displayed in Table 3.4. Even though

NIS requires posterior samples to calibrate its reference distributions, like GSS,

it produces lower uncertainties than NS. It also has a more stable behavior in

terms of its uncertainty along the 3 different priors.

The precision of their estimates depends exclusively on the number of active

points. The higher the number the more accurate the estimate. A pilot NS run

can also be used to get a controlled uncertainty in a new estimate. For instance,

for the “good” prior the estimated information is H = 44.72, so if we need to

derive the number N of active points to get an uncertainty of at most 0.5, we

need to solve
√
H/N = 0.5, which calculates the standard deviation. Thus, NS

requires N ≥ 179 active points to produce the desired uncertainty. Analogously,

NIS can be specified to produce an estimate with a determined precision.
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Prior

Method Vague Good Wrong

NS 1.04 0.95 1.25
NIS 0.29 0.30 0.28

Table 3.4: Estimated standard deviation for NS and NIS estimates under the
3 different priors. In terms of their uncertainty, NIS outperforms NS in all the
scenarios.

3.5.2.2 Bayes factor estimation

Long branch attraction is a systematic error which happens when two distantly

related taxa are incorrectly inferred to be closely related [Bergsten, 2005]. In such

cases, the rate of evolution has been accelerated for certain branches in different

clades. Several methods, most prominently maximum parsimony, tend to group

these branches together in a clade based on their amount of evolutionary change

instead of its descendant relationship. This makes them fail in identifying the

true phylogeny. Even under maximum likelihood or Bayesian approaches this

phenomenon can arise, for instance, when an inadequate evolutionary model is

used. The long branch attraction problem has been widely studied [Felsenstein,

1978; Gaut and Lewis, 1995; Huelsenbeck and Hillis, 1993]. In this context, we

assess HM, SS and NS performance by using marginal likelihood and direct Bayes

factor estimation in a simulation study for the 4 taxon case.

Consider the unrooted tree for 4 taxa given in Figure 3.18b named as Tree 1.

The two short external branches are separated by a short internal branch whereas

the long branches are in different clades. There are evident unequal rates of

change along different branches. This is the typical problem of long-branch at-

traction. A dataset that consists of four taxa with 10,000 sites is generated from

this phylogeny. The sequences are evolved along the branches on this fixed tree.

The short branches have length 0.02 (t1 = t3 = t5 = 0.02) and the long ones 0.74
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x3x1

x2 x4

(a) Tree 0.

x1 x3

x2 x4

(b) Tree 1.

Figure 3.18: Two phylogenies in the 4 taxon case. The data has been generated
from Tree 1.

(t2 = t4 = 0.74). The rate matrix is

R∗ =



A C G T

A −

C 1 −

G 7 2 −

T 2 8 1 −


The rates strongly favour transitions over transversions. The base frequencies

are equal (πA = πC = πG = πT = 0.25). Also, a variable rate across sites has

been considered which follows a Gamma distribution with shape 0.5 and scale

parameter 2.0. This leads to a mean of 1.0 and variance of 2.0.

Tree 1 (Fig. 3.18b), the model from where the data is generated, is compared

to Tree 0 (Fig. 3.18a). Many methods incorrectly infer Tree 0. They group the

long branches together into a clade because just by chance the same mutation

will occur on both terminal branches and is considered a shared trait.

We carry out model selection via Bayes factor. This (BF10) will show evidence

in favour of Tree 1 if it is positive. The strength of the evidence can be categorized

according to Table 3.1. The GTR+Γ4 model is used for the analysis of the

dataset with the following priors: (v1, v2, v3, v4, v5) ∼ Dirichlet(1, 1, 1, 1, 1) and

125



Chapter 3. Estimating the marginal likelihood

Method log ẑ1 log ẑ0 dif log
(
B̂F10

)
HM -33785.20 -33790.04 4.84 5.16
SS -33824.78 -33829.15 4.37 4.46
NS -33824.11 -33827.19 3.08 4.04

Table 3.5: Independent and direct Bayes factor estimation via HM, SS and NS.
“dif” depicts the independent Bayes factor estimate, i.e., the difference between
the log-marginal likelihood for Tree 1 and Tree 0.

T ∼Gamma(1, 1) which combined generate the prior for the branch lengths ti =

viT , for i = 1, 2, 3, 4, 5, where T is the tree length, Dirichet(1, 1, 1, 1, 1, 1) for the

joint prior on the six GTR relative rates, Dirichet(1, 1, 1, 1) for joint prior on

the four nucleotide frequencies, and Gamma(1, 1) for the shape parameter of the

four-category discrete gamma distribution of rates across sites. We assume same

priors for both phylogenies.

For HM, 50,000 samples are considered. For SS, we consider 500 transitional

densities with 100 points from each of them. Thus, both methods are using the

same number of samples. For NS, we use 100 active points and the termination

criterion based on the information H.

The results presented in Table 3.5 show that all the methods infer correctly

Tree 1. According to the criterion given in Table 3.1, all of them detect at least

strong evidence against Tree 0, with exception of the direct Bayes factor estimate

via HM, which yields very strong evidence against Tree 0. This method also

produces much higher marginal likelihoods than SS and NS. However, the differ-

ence of these estimates, the log-Bayes factor, is coincidently quite close to those

yielded by SS and NS. Even though the marginal likelihood estimate produced

by NS for Tree 0 is slightly higher than the SS, the resulting evidence against this

model falls into the same category, strong evidence. In general, these methods

produce similar results.

The amount of information H for Tree 1 and Tree 0 are 45.98 and 44.25,

respectively. The amount of information in the direct BF estimation is 12.37.

The information values involved in the single estimates are higher than the one

for the direct estimate. Having these values, we calculate their respective standard

deviations for the BF estimate. Following equation (3.21), the standard deviation
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for the BF estimate using independent NS estimates is
√

(45.98 + 44.25)/100 =

0.95. On the other hand, the direct Bayes factor estimation via NS yields 0.35

which is a lower uncertainty using the same number of active points.

3.6 Discussion and conclusions

Bayes factor (BF) is one of the most popular methods for model selection under

a Bayesian perspective. This quantity depends on a ratio of multidimensional

integrals called marginal likelihoods. In general, but especially in phylogenetics,

these integrals involve high complexity requiring numerical approximations. This

chapter presented several methods to estimate the Bayes factor in phylogenetics.

The discussion was mainly centered in the independent estimation of the marginal

likelihood and the direct estimation of the Bayes factor, given an evolutionary

tree.

Among the methods of estimation, we discussed the harmonic mean (HM),

path sampling (PS), steppingstone sampling (SS), generalized steppingstone sam-

pling (GSS), annealed importance sampling (AIS), nested sampling (NS) and

nested importance sampling (NIS). We evaluated their performance in statistical

settings and in phylogenetic scenarios. Especially, we assessed the performance

of NS algorithms in phylogenetics.

Even though AIS and SS were developed independently from different back-

grounds, they are closely related. Indeed, they are equivalent when only one

transition distribution (K = 1) or one single sample (n = 1) are considered. For

the former case, both methods reduce to the arithmetic mean. In a more general

scenario, we have shown that the SS estimate contains the AIS estimate as one

of its multiple components. Despite their similarity, they differ in their perfor-

mance. For instance, their estimates have different uncertainties in practice. We

illustrated this aspect in a statistical model with a phase transition presented in

3.5.1.1. Their generalizations GSS and GAIS, under exactly the same computa-

tional effort, yielded different standard deviations. GSS had a lower uncertainty

under a variety of specifications. More study is needed to be able to generalize

this observation.

Many of the methods currently used in phylogenetics, such as HM, PS and SS,
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do not work in some scenarios. The problems related to HM are well documented,

unlike those related to power posterior methods. In fact, these latter are often

presented as methods of general applicability [Arima and Tardella, 2014; Baele

and Lemey, 2014; Baele et al., 2013; Xie et al., 2011]. However, as Skilling [2006]

pointed out for the case of PS and AIS, they fail at mixing between the different

phases of the likelihood, leading to poor estimates. Example 3.5.1.1 illustrated

this problem and showed that SS fails in this situation. On the other hand,

it was shown that the generalized versions of SS and AIS can deal efficiently

with this likelihood shape by using an adequate reference distribution. Similarly,

NS versions also had no problems in this situation. These algorithms work by

tracking down the likelihood contours independently of its shape.

However, GSS and NIS performances are significantly determined by the ref-

erence distribution which is in practice constructed by posterior samples. In

the case that this distribution cannot be accurately estimated, the methods fail.

Example 3.5.1.2 illustrated this situation. In this scenario the posterior was dom-

inated by a spike around 0, but its tails had areas of significant probability which

could not be accessed via conventional MCMC methods. As a result, the poste-

rior samples were concentrated around its mean making the reference distribution

be constrained to the center of the posterior distribution (see Figure 3.15). This

prevented GSS and NIS from exploring those areas of the parameter space which

could contribute with probability to the marginal likelihood estimation. This ex-

plains why these methods underestimated the true value. On the other hand, NS

estimates were located around the true value. This even happened in the simplest

condition, that is, with one active point (N = 1). The method works by starting

the estimation from the prior toward those areas of high likelihood. These areas

are encapsulated according to the likelihood contours, not its shape. Thus, NS

was also able to yield posterior samples which are displayed in Figure 3.15. In

contrast to standard MCMC methods, the NS sample points were drawn from

both Gaussian components of the posterior distribution.

In general, the likelihood surface can be very complex, especially in phyloge-

netics. However, its nature in this field is still not sufficiently understood. To

provide an understanding of it, the work has been mainly oriented on finding mul-

tiple likelihood maxima [Rogers and Swofford, 1999; Steel, 1994]. For instance,
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Chor et al. [2000] described some situations, even biologically reasonable, where

the sequence data can lead to continuum of points, all of them with the same

maximum likelihood value. Another approach has been to investigate its shape

in the one dimensional case [Fukami and Tateno, 1989]. In this regard, Dinh

and Matsen [2015] proved that under simple evolutionary models (K80) the one

dimensional likelihood function may have multiple stationary points which indi-

cates that under advanced evolutionary models the shape can be more complex

than it is typically assumed.

The lack of understanding of the likelihood surface in phylogenetics is a po-

tential problem for statistical inference. We have shown that HM, even methods

which are believed to be of general applicability, such as PS and SS, can fail in es-

timating the marginal likelihood in presence of phase transitions in the likelihood.

The presence of this phenomenon has also been noticed in phylogenetics. Mossel

and Steel [2007] illustrated this situation in the case of estimating the root state

on a phylogenetic tree without enough information. They also indicated the rel-

evance to biology of these phase transitions, especially in recovering information

deep within the tree, from the character states observed at the leaves. We have

also shown that the calibration of the reference distribution can be badly affected

by a poor approximation of the posterior. This makes methods of high precision,

such as GSS or NIS, fail. Examples of complex posterior shapes can be found in

the literature, see for instance Nylander et al. [2004]. Hence, statistical inferential

methods must be general enough to deal with these, usually, hidden behaviors

in the parameter space. Especially, methods of marginal likelihood estimation

must be able to deal efficiently with these latent obstacles which can lead to poor

inferences.

In example 3.5.2.1, we have assessed the performance of the different meth-

ods presented in this chapter in a phylogenetic context under a fixed topology.

The dataset contains 10 species of green plant and was previously used by Xie

et al. [2011]. We used NS to select among 6 evolutionary models. The marginal

likelihood estimates with their corresponding uncertainties provided all the in-

formation required to carry out model selection. Then, having chosen GTR+Γ

as evolutionary model, we tested the sensitivity of the estimation methods to 3

different prior specifications on the shape parameter of the discrete gamma distri-
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bution of rates across sites. These were: flat, in contradiction and in agreement

with the likelihood. In concordance with our expectations, we found that HM is

insensitive to these specifications, unlike PS and SS. Furthermore, we found that

GSS, AIS, NS and NIS are sensitive to this kind of priors.

All the methods discussed in this chapter allow direct Bayes factor estimation.

In general, this is a more efficient way of comparing two models in terms of un-

certainty [Baele et al., 2013; Lartillot and Philippe, 2006], because otherwise the

estimation must be carried out by estimating independently the marginal likeli-

hoods, which is consequently affected by two sources of error. For this purpose,

we have given an expression for its direct estimation via HM. This estimator

has the characteristic of reducing the potential sources of infinity of its variance

to only one. This represents a good alternative over independent HM estimates

when one of them has infinite variance. In addition, we have extended NS for the

direct BF estimation. In the case that the models are defined on the same param-

eter space, this method could potentially yield a much lower uncertainty than the

BF calculation by using independent estimates via the original algorithm. This

extension also represents an efficient alternative to the direct BF estimation via

SS, which is extremely sensitive to its specifications in terms of bidirectional error

[Baele et al., 2013].

We showed the performance of the direct Bayes factor estimation methods

in model selection through an example. This example (3.5.2.2) is a simulation

study that illustrated the case of topological comparison of two small trees of

four taxa. The methods were performed in the critical situation of long branch

attraction. All of them had a good performance detecting the correct phylogeny.

Again, HM overestimated the marginal likelihoods, but the resulting Bayes factor

was coincidently similar to those obtained via SS or NS. Its direct estimate also

was higher than the rest of the estimates. Our proposal, the direct BF estimate

by using NS, yielded a much lower uncertainty than the calculation through in-

dependent estimates via NS. It is worthwhile to highlight that these uncertainties

were calculated in a single run.

The applications presented in this chapter are limited to the case of fixed

topology. However, it could be of interest to incorporate phylogenetic uncertainty

into the model selection process. This extension is addressed in the next chapter.
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Variable tree topology nested

sampling

4.1 Introduction

Phylogenetic inference is commonly carried out under the frequentist approach

by finding a preliminary phylogeny using a fast tree-building approach, such as

neighour-joining or parsimony, as a first step. Then, the evolutionary model is

chosen based on this initial fixed topology. Finally, having chosen the model, the

parameter space is explored in order to find the maximum likelihood estimate.

This includes topology, branch lengths, and the parameters associated with the

evolutionary model. This practice has as an objective the reduction of computa-

tional time [Minin et al., 2003]. However, this model selection procedure leaves

out phylogenetic uncertainty.

For the model selection stage, there are many competing statistical tools, but

in particular the Bayes factor is one of the techniques that has become a standard

method in phylogenetics. It allows comparison of nested and non-nested models,

assessment of conclusions to prior distributions, and accommodation of topolog-

ical uncertainty. A set of algorithms to estimate this quantity through either

marginal likelihood or direct estimation was discussed in the previous chapter.

We included the most popular methods used in phylogenetics, such as harmonic

mean [HM; Newton and Raftery, 1994], thermodynamic integration [TI; Lartillot
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and Philippe, 2006], steppingstone sampling [SS; Xie et al., 2011] and generalized

steppingstone sampling [GSS; Fan et al., 2011]. Additionally, we evaluated nested

sampling [NS; Skilling, 2006] in a phylogenetic context. So far, these methods

were limited to the fixed topology case.

However, it might be unwise to base model comparison only on the merits of a

single phylogeny, even if it is the optimal one. This is a common practice under the

frequentist approach. Ideally, we would like to study molecular evolution while

at the same time incorporating inherent phylogenetic uncertainty. Actually, this

is one of the attributes of Bayes factor and should be exploited. On the other

hand, systematics, in general, use Bayesian inference methods to estimate the

tree topology and thus the evolutionary model should be selected by considering

phylogenetic uncertainty. Following this line, GSS has been extended to allow

variable tree topology [Holder et al., 2014] and also within a coalescent-based

framework [Baele et al., 2016].

In Chapter 3, nested sampling was introduced as a reliable method to estimate

the marginal likelihood, but it was also discussed how it can be utilized to sample

the posterior distribution. In this chapter, we take advantage of its properties to

use it in model selection and parameter inference allowing variable tree topology.

We also describe how an importance sampling distribution can be utilized in this

algorithm in order to improve its performance. The necessary elements required

to apply NS methods in this situation are discussed throughout this chapter.

The algorithms are performed in different situations, which are illustrated in the

application section.

4.2 Total marginal likelihood

The definition (3.2) of the marginal likelihood presented in Chapter 3 applies

to a continuous parameter space Θ. This is the case when the phylogeny is

fixed. However, when the tree topology is unknown, this is treated as any other

parameter. To account for this, the parameter space is additionally composed by
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a discrete part. In this case, Bayes’ theorem is given by

p(θ, tτ , τ |X,M) =
L(X|θ, tτ , τ,M)π(θ, tτ , τ |M)

m(X|M)
, (4.1)

where θ ∈ Θ is the parameter vector composed by elements such as frequencies,

gamma shape parameter and rates parameters, tτ ∈ Vτ is the set of branch lengths

of a tree topology τ ∈ T , X is the sequence data, M is the substitution model,

p(θ, tτ , τ |X,M) is the posterior distribution, L(X|θ, tτ , τ,M) is the likelihood

function, π(θ, tτ , τ |M) is the prior distribution and m(X|M) is the marginal

likelihood, which is defined as

m(X|M) =
∑
τ∈T

∫
Vτ

∫
Θ

L(X|θ, tτ , τ,M)π(θ, tτ , τ |M)dθdtτ . (4.2)

The marginal likelihood now incorporates the sum over the tree parameter space

and is known in this case as total marginal likelihood. This quantity can be seen

as an average of all possible marginal likelihoods corresponding to the different

topologies weighted by their tree prior probabilities. Hereafter, it will also be

denoted by “z”.

The posterior probability for a model M is given by

p(M |X) =
m(X|M)π(M)

m(X)
,

where m(X|M) is the marginal likelihood defined in (4.2) and plays the role

of likelihood in this posterior probability, π(M) is the prior probability for the

model, and m(X) is the probability of the data. This posterior probability for

the evolutionary model takes into account the phylogenetic uncertainty, since it

averages over the whole tree parameter space. This quantity is particularly useful

in the comparison of two models, which can be carried out by means of the ratio

of their posterior probabilities. This is

p(M1|X)

p(M0|X)
=
m(X|M1)

m(X|M0)

π(M1)

π(M0)

posterior odds = Bayes factor× prior odds.
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The ratio of marginal likelihoods is called the Bayes factor [Kass and Raftery,

1995]. This quantity depicts the strength of the evidence of model 1 over model

0. A qualitative interpretation for the evidence is given in Table 3.1.

Nested sampling (NS) is a Bayesian algorithm which is mainly addressed to

estimate marginal likelihoods but it also provides the means to sample the pos-

terior distribution. It transforms the multi-dimensional integral that defines the

marginal likelihood, into a one-dimensional integral which relates prior mass to

likelihood values. The estimation process is carried out by exploring the parame-

ter space from the prior distribution toward those areas of high likelihood values.

This algorithm is defined and explained in detail in Section 3.4. That definition

of the algorithm is also valid for this case of variable tree topology, which is the

central theme of this chapter. However, the extension of NS methods to this case

brings with it new challenges into Bayesian phylogenetics, such as, sampling a dy-

namic tree distribution, or the construction of a reference distribution for the tree

topologies for nested importance sampling (NIS). These subjects are addressed

below.

4.3 Nested importance sampling

NS starts the estimation process from the prior distribution and over time en-

capsulates those areas of high likelihood values. This could be computationally

expensive, especially in cases where the prior is vague or in contradiction with

the likelihood. In these scenarios in particular, an importance sampling distri-

bution can be used to make the estimation process more efficient. The resulting

algorithm is called nested importance sampling [NIS; Chopin and Robert, 2010;

Skilling, 2006] and has the potential of requiring less computational effort to

accurately estimate the marginal likelihood than NS.

Equivalently to definition (4.2), the total marginal likelihood can be reformu-

lated by adding an auxiliary distribution as follows

z =
∑
τ∈T

∫
Vτ

∫
Θ

L(X|θ, tτ , τ,M)π(θ, tτ , τ |M)

g(θ, tτ , τ |M)
g(θ, tτ , τ |M)dθdtτ (4.3)
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=
∑∫

Ψ(η)g(η|M)dη,

where η = (θ, tτ , τ) and Ψ(η) = L(X|η,M)π(η|M)/g(η|M), with g an impor-

tance sampling density. The functions Ψ and g play the role of pseudo-likelihood

and pseudo-prior, respectively.

The description of the NIS algorithm given in Section 3.4.2 is still valid when

investigating variable tree topologies. Extending to variable tree topologies in-

volves making NIS work on a parameter space that has both continuous and

discrete states. This extension requires the construction of an importance sam-

pling distribution for tree topologies. As was discussed in the previous chapter,

the reference distribution should be an approximation of the posterior [Lefebvre

et al., 2010]. Along these lines, Fan et al. [2011] proposed to calibrate an indepen-

dent reference distribution (for a parameter or block of parameters), for instance,

the prior, by matching its mean and variance to the corresponding ones obtained

from a pre-existing posterior sample. This is easily done for the continuous pa-

rameters (see its calculation in Example 3.5.2.1). However, such an approach

represents a challenge when it comes to tree topologies. In the next section, we

propose an efficient alternative to deal with this issue.

4.3.1 Tree reference distribution

Fan et al. [2011] proposed, in the context of GSS, to generate the reference dis-

tribution g by parameterizing the prior according to a pilot posterior sample.

This is done by matching the prior mean and variance with the ones obtained

from the posterior sample in order to get the parameter values for the reference

distribution. This procedure was used for GSS, AIS, and NIS in the Application

section 3.5 presented in the previous chapter and it proved to be an efficient way

of generating reference distributions. However, this method can only be used for

the continuous parameters θ and tτ , and it is not applicable for the tree reference

distribution, which is a nominal variable.

The tree reference distribution should be optimally a good approximation of

the marginal posterior of tree topologies, like for the rest of parameters. This dis-

tribution should be able to assign probability to even those topologies which were
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not visited in the posterior sample. In this sense, the sample relative frequencies,

typically used to approximate the posterior, are not adequate. One alternative

proposed by Holder et al. [2014], it is the use of a reference distribution which

assigns high probability to those trees containing splits considered important in

the posterior sample. The authors showed its good performance in a 6 taxon

example in the context of GSS. Here, we propose the use of conditional clade

distributions (CCDs) to approximate the tree posterior distribution [Höhna and

Drummond, 2012; Larget, 2013].

4.3.1.1 Conditional clade probability distribution

The simple relative frequency method assigns probability zero to those trees which

were not observed. Among them, we find trees which contain impossible phylo-

genetic combinations, and consequently with fair probability zero, but also those

ones which contain highly probable clades. This method allocates them all in the

same category. This phenomenon raised the idea of defining clade probabilities

in order to estimate tree probabilities more accurately.

The conditional clade probability distribution [CCD; Larget, 2013] provides

an accurate estimation of the true posterior distribution and can be used to cal-

culate the probability of any tree, whether or not it was included in the posterior

sample. The method is based on the assumption of conditional independence of

separated subtrees which is used to estimate the posterior probability of trees by

using conditional clade probability distributions. Roughly speaking, this method

considers the idea that clades in different parts of the phylogeny are approxi-

mately independent.

To understand how this method works, consider a dataset which contains 6

hypothetical taxa: A, B, C, D, E, and F. Also, a posterior sample which only

contains two different trees (Tree 1 and Tree 2) which are displayed in Figure 4.1.

The probability of the Tree 1 (τ1) can be fully described by its clades (C), as the

probability of the intersection of all its clades, that is,

P(τ1) = P(C2 ∩ C3 ∩ C4 ∩ C5)

= P(C2 ∩ C4)P(C5|C4 ∩ C2)P(C3|C2 ∩ C4 ∩ C5),
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where C1 has been omitted since it is the universe, the set of all taxa in the tree.

The latter expression is obtained by grouping the clades with their sister clades,

but omitting in the notation those clades which are a single taxon.

Conditional independence in this instance is described as the probability of

that any given clade with a set of taxa, a, only depends on the next smallest clade

with a given set of taxa, b, where a ∈ b and a 6= b. For instance, C5 only depends

on C4 and not on the rest (Figure 4.1). Assuming this conditional independence,

the probability of τ1 can be approximated as follows

P(τ1) ≈ P(C2 ∩ C4)P(C5|C4)P(C3|C2).

These probabilities are calculated by using the corresponding proportions from

the posterior sample. Note that, P(Ci|Cj) = P(Ci∩Cj)/P(Cj). Analogously, the

probability of Tree 2 (τ2) is approximated by

P(τ2) ≈ P(C2 ∩ C4)P(C7|C4)P(C6|C2).

More generally, all these probabilities are of the form

P(left subclade ∩ right subclade|clade).

Note that P(C2∩C4) = P(C2∩C4|C1), since C1 is certain for any tree with these

6 taxa; or P(C5|C4) = P(C5 ∩ F|C4), because the occurrence of clade C5, given

the restricted universe C4, implies that there is no other possible option for its

sister clade as it is the single taxon F.

Figure 4.1 also displays a third tree (τ3) which has not been observed in the

posterior sample. However, this tree shares clades with τ1 and τ2. For instance,

C4 is in τ1 and τ2, and C7 is only contained by τ2. Similar to the previous

calculations, the probability of τ3 is approximated by

P(τ3) ≈ P(C2 ∩ C4)P(C3|C2)P(C7|C4).

This approximation is composed by elements which constitute the calculation of

the probability of τ1 and τ2. Even though τ3 was not observed in the posterior
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A

B

C

D

E

F

C1

C2

C3

C4

C5

Posterior tree 1

A

C

B

D

F

E

C1

C2

C4

C6

C7

Posterior tree 2

A

B

C

D

F

E

C1

C2

C4

C3

C7

Tree 3
(Not observed)

Figure 4.1: Trees for 6 hypothetical taxa: A, B, C, D, E, and F. Tree 1 and Tree 2
were visited in the posterior sample, unlike Tree 3.

sample, its probability can still be calculated mixing the corresponding elements

from P(τ1) and P(τ2) approximations.

In general terms, this is how CCD works. The method has been described

for rooted trees, but its application to unrooted trees is invariant to the location

of the root. A computational algorithm to calculate it efficiently is described in

detail in Larget [2013].

4.3.2 Branch length reference distribution

Strictly speaking, each tree has a unique set of branches. Consequently, different

branch length reference distributions could be defined for each topology, analo-

gously as proposed by Fan et al. [2011] for the continuous parameters. Those

trees with low frequency in the posterior sample should be excluded and their

prior distribution should be considered as importance sampling density instead,

similarly to those which were not observed. This could prevent choosing a refer-

ence distribution in disagreement with the posterior caused by being constructed

based on a non-representative sample.

An alternative, which does not exclude non-observed trees, is the use of branch

length reference distributions according to subtrees. This method generates aux-
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iliary densities similarly to the previous proposal but for subtrees. This has the

potential of allowing the use of reference distributions even for some branches of

unobserved trees. In the CCD example, Tree 3 is not visited in the posterior sam-

ple, but the reference distributions for the branch lengths of its subtrees, which

contain C2 and C4, can be calibrated by using the corresponding branch lengths

of posterior samples τ1 and τ2, respectively. For the remaining branch lengths,

which cannot be matched to τ1 or τ2, the prior can be used.

More generally, for those subtrees which are contained in different trees of

the posterior sample, a common branch length reference distribution can be con-

structed according to the posterior samples. The construction of these distribu-

tions should start from smallest to the biggest subtree. Thus, if a subtree contains

another subtree with a reference distribution for its branch lengths already con-

structed, we only need to construct the reference distribution for its remaining

branch lengths. For the same reasons explained for the method above, those sub-

trees with low frequency in the posterior sample should be excluded.

In general, each topology would need its own branch length distribution. Con-

sidering the size of the space of topologies, this seems to be a huge endeavor. In

fact, exploring the space of tree topologies is the most complex process that

MCMC methods have to deal with, within a phylogenetic context. Not using a

reference distribution for the branch lengths seems to be a better strategy con-

sidering that the number of possible specifications outweighs the benefits.

4.4 Sampling

Skilling [2006] proposed a Metropolis-Hastings algorithm to sample the points

required by NS. This can be done by choosing one of the surviving points ran-

domly, namely, those that meet the likelihood restriction, as a starting value for

performing a Metropolis-Hastings algorithm. However, an additional likelihood

restriction is applied to this algorithm: the proposal point must have a likelihood

higher than the lowest one associated with the active points in the previous it-

eration. This procedure is used in this work for the continuous parameters and

also for the tree topologies. Special care must be taken in case of using NS to
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explore just the tree topologies for a fixed mutation model (Cf. p96-98 of Murray

[2007]).

For the continuous parameters, the proposal moves can be generated as in any

other statistical model where NS is applied. In this thesis, we use proposal moves

for single parameters as proposed in Brewer and Foreman-Mackey [2016]. The

new proposal is generated by adding a perturbation to the current value. This

perturbation is composed by the product of a measure of the prior width (or the

reference distribution in the case of NIS) and the random component 101.5−3|t|x,

where t has a student-t distribution with 2 degrees of freedom and x a standard

normal distribution. Thus, the proposal distribution has heavy tails, a condition

which makes the proposals as efficient as slice sampling [Neal, 2003], at least in

simple experiments [Brewer and Foreman-Mackey, 2016].

For the tree topologies, as far as we know, the particular kind of sampling

required by NS is a new way of exploring the tree parameter space and thus

makes the tree proposals face new challenges. These proposals, in general, deal

with the most difficult parameter space to sample from and affect the efficiency

of the sampling directly. Lakner et al. [2008] assessed the performance of many

of these mechanisms in standard Bayesian MCMC analysis. However, this study

was limited to the sampling of the posterior distribution, a case in which the tar-

get distribution is static over time. Unlike these proposal mechanisms in standard

MCMC methods, in NS these mechanisms have to deal with a variable target dis-

tribution over time. This is a new scenario for them and represents a challenge.

NS compresses the prior at each iteration, making it vary generally at an esti-

mated constant rate. Therefore, the proposals have to explore a quite wide area

at the beginning, but becomes constrained over time. Tree proposal mechanisms

should ideally be able to adapt to this sampling characteristic.

In practice, a uniform prior distribution is frequently assigned over the tree

parameter space, which is quite huge even for a few taxa. Initially, bold moves

would allow a better exploration requiring less steps than conservative ones. How-

ever, the acceptance probability would decrease drastically over time due to the

fact that the target distribution becomes constrained. On the other hand, con-

servative moves would require more steps to explore the prior distribution at the

beginning, but later on, the acceptance probability would be higher than for bold
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moves.

The boldest and the most conservative tree proposals examined by Lakner

et al. [2008] are Random Subtree Pruning and Regrafting (rSPR) and Stochastic

Nearest Neighbour Interchange (stNNI) methods, respectively. These methods

work with branch rearrangement moves, i.e., two subtrees simply trade places.

rSPR prunes a random subtree and regrafts it randomly into the remaining sub-

tree. stNNI works similarly, but the picked subtree is allocated randomly in one

of its nearest neighbors of the remaining tree. The Hastings ratio associated

with both proposals is one [Lakner et al., 2008]. These tree rearrangements are

illustrated in Figure 4.2.

To understand how these tree proposal mechanisms work, consider the 6 hypo-

thetical taxa A, B, C, D, E and F, which are related according to the phylogenetic

structure displayed in Figure 4.2a. We prune this tree generating the subtree

(E,F), which is shown on the right in Figure 4.2b. The remaining tree is shown

on the left, where the tree rearrangements allowed by its branches are indicated.

For instance, NNI allows to reallocate the subtree in the two adjacent branches,

which are indicated in the remaining tree. This movement is a particular case of

SPR and thus both methods are indicated in these branches (NNI/SPR). As an

example, we reallocate the subtree in the regrafting points which are pointed out

by the arrows. For NNI, the regrafting point is in the branch connecting node 1

and 2, whereas for SPR, it is in the branch which leads to taxon A. The resulting

trees are displayed in Figure 4.2c. The branch lengths are kept intact in our tree

proposals.

The behavior of the proposal mechanisms in a nested sampling context is

illustrated in Figure 4.3. This information has been obtained from the green

plant rbcL data analysed in 4.6.2. At early iterations, both methods yield similar

acceptance probabilities. However, the discrepancies are clear over time. From

around the 500th iteration, rSPR starts to have a lower acceptance probability

than stNNI. Even though their performance are different in terms of the accep-

tance probability, they behave very similarly in terms of convergence. We carried

out some analysis (not shown), without finding significant differences.

Ideally, the proposal mechanism should take into account this dynamical be-

haviour of the target distribution over time. But instead of trying to adapt the
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A
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C D

E

F

●

●●

● n4

n3n2

n1

(a) Tree to which the rearrangement movements are applied.

A

B C

D

●● n2n1 NNI/SPR

SPR

SPR NNI/SPR

idem

E

F

●n3

●n4

SPR

NNI

(b) The right subtree has been pruned from the original tree given in (a). The remaining
one, on the left, contains the kinds of movements allowed by its branches, to wit, NNI
and SPR. If the subtree is allocated in “idem”, the original tree is recovered. The arrows
indicate where the rearrangements are allocated to construct the trees displayed below.

A
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E F

C

D
NNI
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●
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n1
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(c) Trees obtained by using NNI and SPR rearrangements. The regrafting points are
indicated by the arrows in (b).

Figure 4.2: Tree rearrangement procedures in the 6 taxon case.
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Figure 4.3: Comparison of rSPR and stNNI in terms of the acceptance proba-
bility in NS. This performance corresponds to green plant rbcL data analysed in
Example 4.6.2.

proposal according to the restricted prior at each iteration, we propose to use

a mix between bold and conservative moves generated by rSPR and the stNNI

methods, respectively. Allowing bold movements over time could prevent the pro-

posal tree from being stuck in a tree island, an isolated area of the tree topology

space with a high probability mass. On the other hand, the conservative moves

allow the exploration of the near areas of the current tree state, making the ac-

ceptance probability increase and thus allowing a good mixing. This approach

can be seen as the recommended heavy-tailed proposals in the continuous case

[Brewer and Foreman-Mackey, 2016].

4.5 Posterior samples

Nested sampling discards a point from the set of active points at each iteration.

Thus, at the end of the estimation process, this method produces a sequence

of discarded points with corresponding posterior weights p̃i = Liwi/z (see Sec-

tion 3.4 for more details). The posterior sample can be drawn from this sequence

according to these weights. This procedure can also be applied likewise in NIS.
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NS offers an efficient way to carry out parameter inference. First, the posterior

samples can be obtained at no extra cost from the marginal likelihood estimation

process. Second, unlike MCMC approaches, NS does not require a burn-in period,

i.e., the sequence of samples generated before the Markov chain had reached

stationarity and subsequently discarded. These methods may require a long time

to converge and thus represent a significant computational cost. The length of this

period is not obviously determined and might be affected by many factors, such as

proposal mechanisms [e.g., Lakner et al., 2008] and/or starting values. A common

practice is to discard the first 10% of the chain as burn-in period [Huelsenbeck

et al., 2004; Rambaut et al., 2014], but it might not be enough in some situations.

Alternatively, a look at the trace plot might lead to a more informed when it comes

to the burn-in. But again, the length of the trace plot could affect the assessment.

Finally, NS allows the sampling of complex posterior shapes which could cause

problems to standard MCMC methods. See, for instance, the example given

in 3.5.1.2 in which some areas of the distribution are almost impossible to be

reached by the standard methods.

4.6 Application

NS has proven to be a competent algorithm to estimate the marginal likelihood

in the fixed topology case. We now assess it accommodating phylogenetic un-

certainty in model selection and parameter inference. Firstly, an analysis of a

dataset containing 3 species of primates is performed in order to assess the relia-

bility of NS. Secondly, the analysis of the green plant rbcL data in model selection

and sensitivity presented in the previous chapter is extended to the variable tree

topology case. Additionally, NS is assessed in parameter inference, compared to

NIS, and evaluated under the simplest specification in marginal likelihood esti-

mation. Finally, a dataset containing 47 species of the Laurasetherian group is

analysed to assess NS performance in parameter inference.
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Specifications

We use Metropolis-Hastings to sample from the restricted prior distribution. The

prior mass is estimated by using the geometric mean, the deterministic approach.

We use 50% of rSPR and 50% of stNNI rearrangements as tree proposals in NS,

NIS and GSS. The reference distribution for the tree topology is constructed by

using the CCD method for NIS and GSS. Regarding the prior distributions, we

consider the following hierarchical structure for the branch lengths:

ti|µ ∼ Exp(1/µ), for i = 1, . . . , n,

µ ∼ Inverse-Gamma(α̃, β̃),

where n is the number of branches for the particular tree topology, α̃ = 3 and

β̃ = 0.2. The JC69 model only has these free parameters. For the rate parameters

we use

ri|φ ∼ Exp(φ), with φ ∼ Exp(1),

where i = 1 for the HKY85 models and i = 1, 2, 3, 4, 5 for the GTR models. A

Dirichlet(1,1,1,1) is selected for the joint prior of the four nucleotide frequencies

in the HKY85 and GTR models and a Gamma(α, β) distribution for the gamma

shape parameter in the HKY85 + Γ4, JC69 + Γ4, and GTR + Γ4 models. The

parameters of the latter vary depending on the problem and are defined where

applicable. Finally, we use a discrete uniform for the tree topologies.

4.6.1 Three primates

We analyse a small dataset, assuming the GTR+Γ4 model, to evaluate NS per-

formance in a controlled situation. The dataset comprises 15,727 sites from the

mitochondrial DNA of 3 primates: human, chimpanzee and orangutan. This is a

subset of a dataset which was previously analysed in the literature [Roos et al.,

2011]. We use a Gamma(0.5, 1) distribution as prior for the shape parameter of

the gamma distribution of rates across sites. The analysis is carried out under

the molecular clock assumption.
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t1

t2

Tree 1 Tree 2 Tree 3

Figure 4.4: Three possible rooted trees for 3 primates species under molecular
clock assumption. According to Tree 1, the species, from left to right, are: human,
chimpanzee and orangutan.

Even though there is no analytical form of the total marginal likelihood for this

simple example, this can be estimated by averaging all the individual marginal

likelihood estimates of each possible topology. In general, this is not viable since

the number of trees increases drastically as a function of the number of taxa.

For 3 species, there are only 3 possible rooted trees. Figure 4.4 shows them with

labels corresponding to the example. This allows us to calculate their individual

marginal likelihoods and thus, estimate the total marginal likelihood. Therefore,

we can evaluate and compare it with the estimate obtained by using its direct

estimation via NS.

In this example, the estimated marginal likelihoods from the generalized step-

pingstone sampling of each phylogeny are used to calculate the total marginal

likelihood. This estimate is considered as reference value and used to compare

with the NS estimate. The 3 marginal likelihoods are estimated by using 500

samples from each of 200 transitional distributions. These specifications yield

fairly reliable estimates with a very small variation (analysis not shown). Thus,

the total marginal likelihood is calculated as a weighted average as follows

ẑ =
3∑
i=1

π(τi|M) ẑτi ,

where ẑτi is the marginal likelihood estimate for its respective tree τi, with prior

probability π(τi|M) = 1/3 for the given substitution model M = GTR+Γ4, with
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log ẑτ1 log ẑτ2 log ẑτ3 log ẑ

-33067.81 -33468.71 -33468.41 -33068.91

Table 4.1: Estimated log-marginal likelihoods per phylogeny by using generalized
steppingstone sampling. These values are used to estimate the log total marginal
likelihood log ẑ.

i = 1, 2, 3. The results are presented in Table 4.1.

The log-total marginal likelihood has also been directly estimated via NS

using 100 active points. The estimate is -33068.64 with estimated standard devi-

ation 0.60. This estimate is consistent with the reference value estimated by using

the 3 individual marginal likelihoods via GSS. Its uncertainty could be decreased

by increasing the number of active points. The evidence is in favor of Tree 1

which depicts a well known phylogenetic relationship among these species [Roos

et al., 2011].

4.6.2 Green plant rbcL

We study a dataset previously used by Xie et al. [2011] which contains 10 species

of green plant. The DNA sequences are from the chloroplast-encoded large sub-

unit of the RuBisCO gene (rbcL). This dataset was already used in the previous

chapter to evaluate mainly NS performance, and also other methods, in model

selection in the fixed topology case. The analysis also included an evaluation

of the sensitivity of the methods to prior specifications, as in Xie et al. [2011].

Here, we extend these analysis to the variable tree topology case. We also assess

NS ability to generate posterior samples for the tree topologies under different

models of evolution. Furthermore, we compare NS to NIS, and evaluate its per-

formance by using a single active point, which represents the case of its most

basic specification.

4.6.2.1 Model selection

We compare 6 models of DNA evolution: JC69, JC69+Γ4, HKY85, HKY85+

Γ4, GTR and GTR+Γ4. We consider a broad Gamma(1, 1000) distribution as

147



Chapter 4. Variable tree topology nested sampling

Model log ẑ SD

JC69 -7273.22 0.92
JC69+Γ4 -6917.18 1.00
HKY85 -7057.45 1.04
HKY85+Γ4 -6632.30 1.10
GTR -6996.82 1.11
GTR+Γ4 -6617.81 1.17

Table 4.2: Log-marginal likelihood and standard deviation estimates under dif-
ferent substitution models for the green plant rbcL data. GTR+Γ4 model has
the highest value.

prior for the gamma distribution shape parameter. The total marginal likelihood

estimation is carried out for each model via NS with 50 active points.

Table 4.2 shows the log-evidence estimates and their respective standard de-

viations for the 6 different evolutionary models. The uncertainties are relatively

small with respect to the marginal likelihood differences between the models.

Thus, for any model comparison, the decision in favor of the model with higher

marginal likelihood is quite reliable. The GTR+Γ4 has the highest log-evidence

value and consequently it fits the data better than the other models. Interest-

ingly, the HKY85+Γ4 has an evidence significantly higher than the GTR model,

which has 4 more rate parameters but it does not include a variable rate across

sites. This shows the importance of including a parameter that models the vari-

ability across sites for this dataset. The marginal likelihood estimates have been

additionally compared to GSS in order to corroborate the model selection anal-

ysis. All the estimate values are quite similar and thus, both methods are in

accordance (results not shown).

These results are consistent with those obtained in Section 3.5.2.1 (see Ta-

ble 3.2). In that analysis, we calculated the marginal likelihood for the same

models, but considering a fixed topology. If we ranked the evolutionary models

according to their marginal likelihoods, we would obtain the same order as that

obtained in this analysis, considering variable tree topologies. This might be ex-

plained by the fact that the phylogeny used in that analysis was the maximum

posterior tree, an optimal one, and as Posada and Crandall [2001] have shown
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in the maximum likelihood approach, model selection, for the fixed tree topology

case, is affected only when the phylogeny is randomly chosen. In this analysis the

standard deviation estimates are higher because the tree topology is included as

a parameter, which introduces more variability.

4.6.2.2 Phylogenetic inference

In this section, we assess the ability of nested sampling to sample the posterior

distribution of the parameters involved in a phylogenetic analysis. In particular,

we evaluate the posterior distribution for the tree topologies and the gamma shape

parameter. As described in Section 3.4, a posterior sample is easily obtained

from the discarded points generated at each iteration of NS, weighted by their

contribution in the estimated evidence. To this end, we can simply continue from

the model selection results in the previous section.

Phylogenetic reconstruction

The model selection procedure carried out previously via nested sampling left

available samples from the tree posterior distribution for the different models

of evolution evaluated in that analysis. We use them to study the capacity of

these models to reconstruct the tree topology. We carry out this analysis by

using consensus networks [Holland et al., 2004], method implemented in phangorn

[Schliep, 2011].

The simplest model, JC69, is not able to recover the topology yielded by the

more complex models. Its consensus network is displayed in Figure 4.5a. The

subtree, which contains Avena sativa, Iris unguicularis and Nicotiana tabacum,

groups these two last taxa into a single clade, unlike for the rest of the models.

The rest of the phylogeny is equivalent to that obtained from more complex

models. This behavior is repeated for JC69+Γ4 (consensus network not shown).

The rest of the models, that is, HKY, HKY+Γ4, GTR and GTR+Γ4, yields the

same consensus network. The one for the latter model is shown in Figure 4.5b.

All the consensus networks show no conflicting splits, so they are reduced to trees.
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(a) JC69 model.
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(b) GTR+Γ4 model.

Figure 4.5: Consensus networks for the rbcL data calculated from NS posterior
samples. They do not have conflicting splits, so they are reduced to trees.
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GTR+Γ model

Model selection analysis identified GTR+Γ4 as the evolutionary model best suited

for these data. From it, we make use of NS posterior samples to carry out

parameter inference. In particular, we focus on the tree topology and the shape

parameter of the gamma distribution for the rates across sites. We also compare

the posterior tree sample to another one which was obtained independently via

MCMC.

Furthermore, we assess the NS tree posterior sample by calculating its effective

sample size (ESS). This is a measure of the number of uncorrelated points which

are needed to obtain the same information about a parameter as the one obtained

from the MCMC. It is a very useful tool to assess the adequacy of posterior

samples taken via MCMC analysis. However, its calculation is not direct for the

tree sample. Lanfear et al. [2016] proposed to estimate it by randomly selecting a

focal tree (from the posterior sample) and calculating the path differences [Steel

and Penny, 1993] of the tree sample with respect to it. Thus, the topologies are

converted into a continuous parameter. Then, the ESS is calculated from these

distances. Replicating this procedure many times and registering the ESS values,

provides the means to calculate a confidence interval.

We do have to mention that the analyses proposed by Lanfear et al. were

addressed for the evaluation of tree samples obtained from standard MCMC

methods. To wit, these analyses treat the sample as a time series. However,

in NS case the sample points are not indexed by time, thus the appropriateness

of these analyses could be argued. Nevertheless, we still use the ESS to assess

the posterior sample with respect to this particular parameter.

NS analysis was performed with 50 active points and thus 4500 points were

required to get a stable marginal likelihood estimate. For this single run, the

maximum number of representative samples was 814. This represents 18% of the

samples from the restricted prior required by the algorithm.

These sampled trees are shown in the first row of Table 4.3, with their re-

spective proportions. This table also includes 1,000 posterior samples obtained

independently via MCMC. The proportions are fairly similar. Both methods are

in agreement inferring the posterior tree distribution. Tree 2, maximum posterior
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Tree 1 2 3 4 5

NS 0.045 0.942 0.001 0.007 0.004
MCMC 0.042 0.945 0.000 0.009 0.004

Table 4.3: Proportion comparison of a tree posterior sample obtained via NS and
MCMC methods.

tree topology, is equivalent to the consensus network displayed in Figure 4.5b.

This is the one used in the previous chapter in the analysis under the fixed topol-

ogy (see Figure 3.16). This also was used by Xie et al. [2011], but in their analysis

was obtained by maximum likelihood method under the same evolutionary model.

In order to evaluate the quality of tree posterior samples obtained using NS,

we calculate a confidence interval for its effective sample size (ESS). For this, we

use 1,000 replications to generate it with a 95% of confidence. As a result, for

the 814 posterior samples of tree topologies, the confidence interval for its ESS

is [652− 725]. According to the usual criterion if ESS > 200 [Drummond et al.,

2006; Lanfear et al., 2016], the sample contains enough uncorrelated points to

estimate the posterior tree distribution, validating NS as an algorithm to perform

parameter inference.

Figure 4.6 displays the marginal posterior distribution for the shape parameter

of the gamma distribution of the rates across sites. This sampling distribution is

quite symmetric and centered around 0.26. This justifies the “good” prior defined

and used in the sensitivity analysis.

4.6.2.3 Sensitivity

Following the analysis carried out by Xie et al. [2011] to show that TI and SS

are sensitive to prior distributions in the fixed tree topology case, unlike HM,

we estimate the total marginal likelihood for the selected GTR + Γ4 model under

three different priors. The models are just differentiated by the prior distributions

placed on the shape parameter of the discrete gamma distribution of rates across

sites. These priors distributions are Exp(0.001) as the “vague”, Gamma(10,0.026)

as the “good”, and Gamma(148, 0.00676) as the “wrong”. This analysis is the

extension of the study carried out in Example 3.5.2.1, previous chapter, where
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Figure 4.6: Marginal posterior distribution for the shape parameter of the gamma
distribution of the rate across sites.

more information about these priors can be found.

For each of the three priors, we carry out marginal likelihood estimation al-

lowing variable tree topology via HM, GSS, NS and NIS. For estimating HM,

we use a single-chain MCMC sampler of 50,000 posterior samples. For GSS, we

use 100 transitional distributions with 500 samples from each of them. The path

connecting the distributions follows an annealing scheme. For NS and NIS, we

consider 50 active points. NS posterior samples are used to calibrate the refer-

ence distributions required by NIS and GSS [Fan et al., 2011]. For the continuous

parameters, the construction of the reference distributions is defined in Exam-

ple 3.5.2.1. This is with the exception of the branch lengths for which we have not

considered importance sampling distributions. For the tree reference distribution,

we use the CCD method described above.

Table 4.4 shows the log-marginal likelihood estimates for the different estima-

tion methods under the 3 prior distributions. As expected, HM does not discrim-

inate between the “vague” and the “good” priors. These priors are dominated
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Method Prior model

Vague Good Wrong

HM -6559.51 (-1.03) (-35.94)
GSS (-8.55) -6609.04 (-59.37)
NS (-8.42) -6609.39 (-58.23)
NIS (-8.36) -6609.21 (-58.86)

Table 4.4: Estimated log-total marginal likelihood values for the GTR+Γ4 model
under 3 different priors for the gamma shape parameter. The highest one for
each method is displayed whereas the difference with the other models are shown
in parenthesis.

by the area of highest likelihood, unlike the “wrong” prior, which prevents the

exploration of that place. On the other hand, GSS is sensitive to the prior speci-

fication. This method takes into account the prior information which is reflected

in the estimate. Like this power posterior method, NS and NIS are sensitive to

the prior choice, producing estimates for the “wrong”, “vague” and “good” priors

in this increasing order.

It is interesting to note that HM estimates are similar for the fixed and vari-

able topology case. For the former, see Table 3.3 in the previous chapter. This

phenomenon could be explained by the extremely sharp posterior tree distribu-

tion in the latter case. Most of the probability is concentrated in the tree used

in the fixed topology case. Thus, most of the posterior samples are from the

maximum posterior tree and they constitute the samples used in the fixed tree

case. These tree posterior probabilities are displayed in Table 4.3.

4.6.2.4 NS vs NIS

We take advantage of the previously executed analysis of sensitivity to prior

specifications in order to compare NS and NIS performance. The comparison is

carried out in terms of their uncertainty and convergence. Both methods were

performed with 50 active points, but NIS required additionally the posterior

samples to calibrate its reference distributions.

Table 4.5 shows the information and standard deviation of the estimates for
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NS NIS

Prior H SD H SD

Vague 68.00 1.17 27.86 0.75
Good 58.96 1.09 27.45 0.74
Wrong 95.53 1.38 26.83 0.73

Table 4.5: Information (H) and standard deviation (SD) estimates for NS and
NIS. The analysis is carried out for the 3 prior specifications used in the sensitivity
analysis: vague, good and wrong.

the different models. For NS, the information, a measure of how much we have

learned from the data, varies for the different priors. As expected, the wrong prior

has the highest one because the posterior distribution is much more different from

the prior. In other words, this is the case in which our prior beliefs have changed

more significantly after acquiring the data. The opposite case occurs with the

“good” prior. These values affect proportionally the standard deviation of the

estimates, which can consequently be ordered in an increasing order according

to the model as good, vague and wrong. For NIS, the information values are

smaller and more similar for the different priors and thus the standard deviations

are too. This is due to the similarity between the posteriors and the reference

distributions, which are independent of the priors. Unlike NS, NIS performance

does not depend on the prior specifications but only on the reference distributions,

making it a more stable method.

Another positive characteristic of NIS is its efficiency in terms of uncertainty.

Using the same number of active points, NIS uncertainties are much lower than

the ones obtained via NS. This happens because the uncertainties are propor-

tional to the information values, which are lower for NIS due to the similarity

between the posteriors and the reference distributions. In order to equate its un-

certainty, NS would require more active points. For the good, vague and wrong

prior cases, it would require approximately 108, 121 and 180 active points to

yield NIS uncertainty, respectively. These values were calculated by equating

NS standard deviation
√
H/N to the estimated NIS uncertainty, and solving for

N . On the other hand, the number of iterations required by NS to converge is

directly proportional to the number of active points. For instance, if we consider
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the usual termination criterion that states that the algorithm stops when the

number of iterations exceeds 2×N×H, the number of iterations increases from

5,896 to 12,736 for the good prior; from 6,800 to 16,456 for the vague prior; and

from 9,553 to 34,391 for the wrong prior. Using the same criteria, NIS requires

less than 2,790 iterations for all the models. Thus, increasing of the number of

active points to equate NIS in terms of uncertainty makes NS require a higher

number of iterations to converge and thus increase its computational cost.

Finally, NIS converges to the estimate faster than NS under the same number

of active points. Figure 4.7 shows the evolution of the log-estimate over time

for the wrong prior considering 50 active points for each method. It can be

noticed that NIS starts much closer to the marginal likelihood value than NS.

This happens because it starts the exploration of the parameter space from the

reference distribution, which is similar to the posterior. Since z is dominated

by the latter, whose mass has been located by the reference distribution, NIS

requires less time to estimate it. This behaviour is repeated for the rest of the

prior models, thus they are not included here. To summarize, NIS requires many

less iterations to converge than NS.

The good performance of NIS, in comparison to NS, is solely granted by the

reference distributions. Thus, those for the continuous parameters, but most

importantly for our analysis, the one for the tree topologies, constructed by the

CCD method, proved to be efficient methods to narrow the parameter space in a

NS context.

4.6.2.5 NS with a single active point

It is well known that under inadequate specifications, or even when the reference

distribution is based in a poor posterior sample as was shown in Example 3.5.1.2,

GSS performs poorly. This opens the question: how does nested sampling perform

in an analogous situation? Trying to answer this query, we test NS in the simplest

condition, that is, by using only a single active point. The idea is to assess NS

under the poorest specifications in a phylogenetic context by comparing their

estimates with an accurate one. We carry out the analysis by replicating the

estimation process via NS 500 times, for which we consider the good prior, and
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Figure 4.7: Evolution of NS and NIS estimates over time for the wrong prior.
The dotted line stands for the GSS estimate.

registering the estimates. The results are shown in Figure 4.8a.

The vertical dotted line stands for a consensus marginal likelihood estimate

calculated by averaging GSS, NIS and NS estimates displayed in Table 4.4. NS

estimates, with a single active point, are around this consensus value. The number

of samples to get these estimates are displayed in Figure 4.8b. These correspond

to the minimum number of samples from which the estimate does not increase

significantly, namely, |ẑi − ẑi−1| < 10−4. NS required around 80 sampled points

on average, and in general, less than 100. This computational effort represents

a small part of what GSS requires to yield an estimate around the true value.

Note that the rule of thumb to estimate the tree topology is an effective sample

size of at least 200 samples. This number allows to estimate appropriately the

tree reference distribution. Just then, GSS can start working properly, but under

unknown specifications, which must be found via guesswork. On the other hand,

NS, even with a single active point, yields estimates around the true value.

Another important feature of NS to highlight and be exploited is its ability of
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Figure 4.8: Nested sampling performance by using a single active point. The
vertical line in (a) stands for a consensus marginal likelihood value. Figure (b)
depicts the number of samples required to get a stable estimate.

producing simultaneously an estimate of the standard deviation associated with

the marginal likelihood estimate, even in these conditions. Therefore, we can

construct a confidence interval for the estimate in a single run. From the 500

replications, we build 3 different intervals which vary in their widths. These are

composed by the estimate plus or minus one, two and three standard deviations.

These intervals contain in 60.8%, 93.8% and 99.8% of the times the consensus

value, respectively. This suggests that a model selection analysis can be carried

out with NS with a single active point by using wide intervals. If two intervals

(from two models) overlapped, the analysis should be redone with more precision,

i.e., with more active points. This offers a very cheap alternative to carrying out

model selection via NS.

4.6.3 Laurasiatherian data

Laurasiatheria is a superorder of placental mammals which originated on the

northern supercontinent of Laurasia 99 million years ago. We chose a dataset

provided with the R-package phangorn [Schliep, 2011]. The dataset consists of 47
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Figure 4.9: Posterior weights for the Laurasiatherian data. The NS posterior
sample is taken according to these weights.

aligned mitochondrial RNA sequences of a total length of 3,179 sites.

This dataset presents two interesting and challenging characteristics which

provide a good scenario to assess the performance of nested sampling. Firstly,

the tree space contains around 3.5 × 1068 possible phylogenies that NS has to

potentially explore. Secondly, the posterior distribution is not dominated by a

single tree topology. This represents a challenge for MCMC methods.

Assuming a GTR + Γ4 model and a Gamma(2, 2.5) distribution as a prior

for the gamma shape parameter, we use NS with 50 active points in order to

sample the posterior distribution. Actually, we are only interested in studying

the tree posterior distribution. We assess this sample according to two analyses

proposed by Lanfear et al. [2016]. For the first analysis, we calculate the path

difference [Steel and Penny, 1993] between the tree samples and a focal tree.

We consider the tree with the highest frequency as the focal tree. Then, these

differences are visualized in a trace plot. For the second analysis, we estimate a

confidence interval for the effective sample size (ESS) as described in the previous
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(a) Visualization to compare it to trace plot of MCMC outputs.
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(b) Visualization to highlight the behaviour of path differences.

Figure 4.10: Path differences in nested sampling tree posterior sample with re-
spect to the maximum posterior tree for the Laurasiatherian data.

example.

We again point out that these analyses were proposed for the evaluation of

tree samples obtained from standard MCMC methods. However, in the NS case

the posterior samples are not indexed by time. For instance, the trace plot does

not convey the same information for NS compared to standard MCMC methods.

Nevertheless, it provides an insight into the tree posterior sample and is therefore

of use to us.

NS yielded, in this single run, a sample of 1,525 points. It required around

20,000 points to explore the parameter space to estimate the marginal likelihood.

The posterior weights of the discarded points are shown in Figure 4.9. This gives

a quick picture of the posterior density. The posterior is concentrated in a small

area of the prior (in around e−340 of its mass). This might be mainly caused by
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the uniform prior assigned to the huge tree space. The trace plot based on the

path differences is shown in Figure 4.10a. It shows that several trees were visited

in the NS posterior sample and that this sample is not only dominated by the

maximum posterior tree, since the trace does not stay continuously at 0. The

average path difference with respect to the maximum posterior tree is around 17.

Note that two or more different tree topologies can have the same path difference

with respect to the focal tree, which could potentially make the trace seem at

times constant despite having undergone a change in state.

To accommodate the fact that the samples are not indexed by time, we propose

a simple visualization of the NS path differences. Figure 4.10b shows a gap

between 0 and the next smallest value (9.49), a characteristic which cannot be

seen in the trace plot.

To estimate the confidence interval for the effective sample size (ESS) for the

tree topologies, we replicated 1,000 times its estimation under randomly chosen

focal trees. The 95% confidence interval is [1494, 1525]. A rule of thumb sug-

gests 200 to be a lower limit to accurately infer the tree posterior distribution

[Drummond et al., 2006; Lanfear et al., 2016]. Therefore, this interval indicates

the adequacy of the posterior sample obtained from NS.

4.7 Discussion

In this chapter, we have extended nested sampling algorithms to the variable

tree topology case. Their use involves new challenges in Bayesian phylogenetic

analysis. One of them is the construction of tree proposal mechanisms, which

have to deal with the dynamic behaviour of the target distribution over time,

unlike standard MCMC methods. Another one, which is not exclusive to NS but

to those methods which make use of importance sampling distributions, is the

construction of a reference distribution for tree topologies. This represents the

main challenge for the implementation of NIS. This chapter addressed mainly

these themes and the exploitation of NS in its full potential. The methodologies

have been tested through 3 phylogenetic examples of different complexities.

The inclusion of the tree topology as a parameter in the phylogenetic anal-

ysis brings with it the annexation of a huge parameter space which has to be
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explored. This can be a challenge for NS, which could require many iterations

to reach those areas of high likelihood values that represent the most signifi-

cant areas of contribution to the marginal likelihood estimation. The use of an

importance sampling approach can deal efficiently with this problem. We have

proposed the use of conditional clade distributions (CCD) in order to generate a

reference distribution for the tree topology. This method relies on the principle

of conditional independence of separated subtrees. Its logic has been explained

through a 6 taxon example. We have used this importance sampling distribution

for NIS and GSS methods.

The tree posterior distribution is usually the target of Bayesian phylogenetic

inference. The mechanisms to explore this parameter space have been widely

studied. However, in NS sampling, the target distribution is the prior distri-

bution, which gets constrained at each iteration according to the likelihood. In

other words, the target distribution has a dynamical behaviour over time, which

represents a new challenge, especially for the tree proposals. Instead of adapting

the proposals at each iteration, we have proposed the use of a mix between bold

and conservative branch rearrangements, namely, Random Subtree Prunning and

Regrafting (rSPR) and Stochastic Nearest Interchange (stNNI), respectively. We

have illustrated its performance through a didactical example.

To test the consistency of nested sampling in the variable tree topology case,

we applied it in a manageable case where the total marginal likelihood can be

estimated by brute force, i.e., as an average of all the marginal likelihoods of

the possible topologies. For this, we presented a 3 taxon example of the primate

family under the molecular clock assumption. We estimated the total marginal

likelihood through the individual marginal likelihood estimates via GSS. The

specifications considered were enough to get reliable estimates and thus, to have a

comparable total marginal likelihood value. NS was consistent with this estimate.

We have analysed a 10 taxon dataset of green plants in order to evaluate NS

in different scenarios. Firstly, we carried out model selection among 6 models

of evolution. We used 50 active points to estimate the marginal likelihood with

their corresponding uncertainties. This information allowed us to choose among

the models with certain degree of confidence. The selected model was GTR+Γ.

Secondly, taking advantage of the previous analysis, we tested the ability of the
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evolutionary models of reconstructing the tree topology. We found that the sim-

plest models JC69 and JC69+Γ yielded a clade in disagreement with more complex

models. For the selected model, we showed that the tree posterior samples ob-

tained via NS are similar to those obtained via an MCMC method. According to

the effective sample size criteria, this sample was adequate to estimate the tree

posterior distribution. Thirdly, we tested the sensitivity of NS to prior specifi-

cations and compared it to the established methods, such as, HM and GSS. For

this, we allocated three different prior distributions on the gamma shape param-

eter. NS was able to detect and estimate correctly the marginal likelihood, like

GSS, but in contrast to HM. Fourthly, we compared NIS to NS. We found that

NIS performance is independent of the prior distribution, unlike NS. It also yields

lower uncertainty. Also, we showed that NS would require a much higher compu-

tational cost to equate NIS in terms of uncertainty. This application allowed us to

evaluate the CCD method as a tool to build a reference distribution for the tree

topologies. It proved to be an efficient method. Finally, we tested NS under the

simplest specification, i.e., by using a single active point. Even in this scenario,

the method yields estimates around the consensus estimate. The effort required

in this analysis represents a small fraction of what GSS would require to start

to yield estimates around the true value. In addition, as NS is able to estimate

the uncertainty related to the marginal likelihood estimate and thus produce a

confidence interval, we tested this ability in terms of containing a fairly accurate

estimate obtained from the previous analysis. We found that in 500 replications,

the intervals of the form log ẑ ± 3× SD(̂log z) contained the accurate estimate in

all but a single case. This makes NS quite a cheap alternative to carry out model

selection, unlike established methods.

Finally, we tested NS as a means of sampling the tree posterior distribution in

a bigger phylogeny. The data contained 47 species of the Laurasiatherian group.

The posterior was concentrated in a small area of the prior distribution, but NS

was able to reach it. Using 50 active points, NS yielded 1,525 posterior samples

which were adequate according to ESS criteria. The sample consisted of a variety

of trees without being dominated by the one with maximum frequency.

We analysed the tree posterior samples obtained via NS using the proposals

made by Lanfear et al. [2016], but we were cautious about their applications.
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This is because these proposals are only valid for analysing samples obtained via

standard MCMC methods, in which case the samples are indexed by time. In the

NS case, this is not met, however, these analyses can still give an insight into the

tree posterior distribution. To accommodate the non-temporal link of samples,

we propose an analog visualization of the path difference for the NS case.

The gain of including topological uncertainty in Bayesian model selection is

still an open question. A common practice in phylogenetics is to select a phy-

logeny by using any fast tree building approach, then select an evolutionary model

for the previously chosen phylogeny, and finally the parameter space is explored to

get estimates of the involved parameters, including the phylogeny. Thus, the nat-

ural question that emerges is: Is model selection topology dependent on the initial

phylogeny? In this regard, Posada and Crandall [2001] argued, based on their

simulations, that the initial phylogeny does not affect model selection unless it is

a random chosen tree. Abdo et al. [2005] also showed, in a decision theory frame-

work, the little effect of the topology on model selection when an optimal tree

is used, even though they did not consider properly phylogenetic uncertainty in

their study. On the other hand, the topology dependence in parameter inference

is well known. Sullivan et al. [1996] showed that the transition/transversion rate

is topology dependent when among-site rate variation is accommodated. Yang

[1994b] also found that there is variation in estimates of the gamma distribution

shape parameter across topologies. This relationship between the phylogeny and

the parameter estimates could potentially lead to topology dependent in model

selection. All these studies have been addressed in a frequentist context. How-

ever, it could be interesting to study the topology dependence in model selection

in a Bayesian context.
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Conclusion

Bayesian methods have become a feasible and efficient alternative across different

disciplines, including phylogenetics. Especially in this field, these tools have

opened up the possibility of using more complex models and analysing large

datasets. However, this development has brought with it new challenges, some

of them belonging solely to phylogenetics. This thesis aimed to discuss, analyse,

compare, and extend Bayesian statistical methods, mainly in model selection, in

a phylogenetic context.

Commonly, statistical models are composed by a unique inseparable paramet-

ric structure. But this is not the case in phylogenetics. In this field, the model

is composed of two different elements: a tree and a model of evolution. The tree

stands for the evolutionary relationship among the analysed taxa. This is charac-

terized by the branching pattern, called topology, which shapes the relationship,

and the branch lengths, which may represent the amount of sequence divergence

or time elapsed. On the other hand, the model of evolution describes the changes

between nucleotides, or any other kind of data, over evolutionary time. Time

reversible Markov models are usually considered for this model. The models of

evolution only vary in the parametric structure of their transition rate matrix,

adopting distinctive names.

Bayesian analyses require the explicit definition of prior distributions for each

parameter. These should reflect our knowledge before collecting the data. In

phylogenetics, the model involves, in general, several parameters. The tree has the

topology and the branch lengths; on the other hand, the evolutionary model may
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contain frequencies, relative rates, heterogeneous substitution rate among sites,

and a proportion of invariable sites. In the case of wanting the prior to reflect our

complete ignorance about the values of the parameter, i.e., letting the analysis

be dominated by the likelihood, non-informative priors can be used. Against

the natural tendency of using a uniform distribution for this purpose, it has

been found that this does not work properly for many phylogenetic parameters.

In practice, these kind of distributions have been defined via trial and error in

phylogenetics, since, most of the time, the posterior does not have an explicit

form. We discussed the development of these kinds of distributions in Section 2.4.

Having a set of available models, it is necessary to determine which model is

best suited to the data. This procedure should be routine in any phylogenetic

analysis [Posada and Crandall, 2001]. There are many statistical tools to select

among models. In the context of Bayesian analysis, the Bayes factor has become

a standard method for this purpose. This quantity is composed by the product of

the ratio of the marginal likelihoods and prior probabilities of the models. In the

case of equal prior probability for the models, the Bayes factor (BF) is just the

ratio of marginal likelihoods. However, this quantity is, most of the time, a very

difficult multidimensional integral, namely, the integral of the likelihood times the

prior distribution over the parameter space. When the phylogeny is unknown,

this has to be considered as any other parameter, adding more complexity to the

calculation. Thus, the BF requires of a numerical approximation to be calculated.

Many methods have been proposed to estimate the Bayes factor. They work

by either estimating the marginal likelihoods, which is the most common practice,

or estimating it directly. In Chapter 3, we discussed several marginal likelihood

estimation methods, which also allow direct Bayes factor estimation. Among

them: harmonic mean (HM), path sampling (PS), steppingstone sampling (SS),

generalized steppingstone sampling (GSS), annealed importance sampling (AIS),

nested sampling (NS), and nested importance sampling (NIS).

HM has been the most popular method used in phylogenetics, most likely due

to its simplicity, to wit, it only requires samples from the posterior. However, its

drawbacks are well known and widely documented. For instance, it overestimates

the true value, which has been confirmed in our analysis, may have infinite vari-

ance, is insensitive to prior specifications, among many others. We included its
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inability of mixing phase transitions in the likelihood to its list of disadvantages.

We have also extended the HM method for estimating the Bayes factor di-

rectly. We provided an approximation of its variance, finding that this one con-

tains only one potential source of infinity. Thus, in the case that there is only

one model with associated infinite variance, this can be allocated appropriately in

the calculation in order to avoid the problem of infinite variance of the estimate.

Therefore, the direct estimation of BF via HM could outperform the one obtained

via independent HM estimates in terms of uncertainty.

PS and SS have a high accuracy and are available in different phylogenetic

software packages. However, they depend on many tuning parameters. In prac-

tice, the optimal values for these parameters vary from problem to problem. For

instance, vague priors might make these methods require more transitional dis-

tributions. The problem is that these specifications have to be set up by the user.

A bad choice could lead to poor estimates. A common practice is to try different

values until the estimate shows signs of stability. This could be impractical in

many situations, such as the analysis of large datasets. This disadvantage is also

shared by AIS.

Another disadvantage of these methods is their inability of dealing with phase

transitions in the likelihood. Actually, they would require non-viable computa-

tional effort to be able to explore the parameter space. This difficulty can be

overcome by using an importance sampling distribution. However, the quality of

the estimation will be determined by this distribution.

GSS makes use of that reference distribution in order to shorten the path be-

tween the prior and the posterior. This makes it require less computational effort

to accurately estimate the marginal likelihood than SS. This approach dispenses

with the distribution of the β values which characterize the transitional distribu-

tions, due to the similarity of the reference distribution and the posterior. Thus,

it requires less tuning parameters than SS. As was discussed above, GSS is able to

deal with phase transitions in the likelihood as long as the reference distribution

is a good approximation of the posterior, which could be very difficult in some

cases.

One interesting finding in this work was the relationship between AIS and

SS. Both methods were developed independently in different years, 2001 and
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2011, respectively, but they are closely related. These methods make use of a

telescope product to estimate the marginal likelihood, but they differ in the way

of how it is used. AIS estimates it directly, whereas SS estimates each factor

separately. For some particular specifications, they reduce to the same estimator.

In practical terms, they differ in the uncertainty associated with their estimates.

In our analysis, we found that SS has a lower uncertainty. However, more studies

are required to generalize this observation.

NS is another method that we have introduced to phylogenetics for model

selection and parameter inference, and also extended to allow variable tree topol-

ogy. We showed that this method offers a viable alternative for Bayesian phyloge-

netic analysis. However, its implementation brought new challenges to Bayesian

phylogenetic methods, which were discussed throughout this thesis, especially in

Chapter 4.

NS relies on a property of positive random variables in order to redefine the

marginal likelihood into a one dimensional integral. Thus, the prior mass is linked

to the likelihood values. The estimation is carried out by sampling the prior

distribution, which becomes constrained toward those areas of high likelihood

values at each iteration. This is an unusual scenario for standard MCMC methods

used in phylogenetics, which often deal with a static target distribution, and

represents a real challenge, especially for the tree topology. For this parameter,

we proposed the usual Metropolis algorithm with proposals composed by a mix

between conservative and bold branch-rearrangement of the tree topology. In our

analysis, this approach worked quite well.

The incorporation of the tree topology into the marginal likelihood estimation

increases the parameter space to be explored enormously. This could make NS

require a high number of iterations to reach the areas where the posterior distri-

bution is located, often in a very small portion of the parameter space. Mainly

to solve this problem, we proposed NIS, which makes use of a reference distribu-

tion to shorten the exploration. The challenge of this method is principally the

definition of this distribution for the tree topologies, which should optimally be

an approximation of the posterior. For this, we proposed the use of conditional

clade distributions [Larget, 2013]. In our analysis, in which we also used it for

GSS, it performed very well, making NIS outperform NS in terms of uncertainty
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and convergence.

Even though GSS, and other power posterior methods, are quite accurate, they

require several specifications, which affect and determine directly the estimate.

In practice, they vary from problem to problem and the optimal values must be

found by guesswork. NS does not suffer from this problem, being one of its main

advantages over these methods. This algorithm only requires the specification of

the number of active points, and also the number of steps to generate the new

point at each iteration, but which is also required by any other method relying

on MCMC. Even under the poorest specification, which corresponds to the case

of a single active point, the NS estimate will be around the true value. This

advantage is also valid for NIS.

Another good property of NS is its ability to generate posterior samples at

no extra cost. These can even be obtained from complex posterior distributions,

for instance, in the presence of phase transitions in the likelihood, in which case

standard MCMC methods face difficulties. Actually, this is a critical situation

for methods which rely on an importance sampling distribution, such as GSS or

NIS. In this case, they may fail in the marginal likelihood estimation, due to the

practical impossibility of sampling the posterior and consequently of constructing

their reference distribution adequately.

The property of dealing with phase transitions in sampling the posterior distri-

bution, and consequently in estimating the marginal likelihood, is granted by the

way NS explores the parameter space. This is carried out by sampling the prior

distribution according to the likelihood contours, independently of the likelihood

shape, unlike standard MCMC methods which depend on this latter. This dif-

ference makes NS be a more general method than established ones in estimating

marginal likelihoods and sampling the posterior.

The quality of an estimation is given by the degree of its uncertainty, which

should therefore accompany any estimate. This is one of the main attributes of

NS. This algorithm is also able to provide an estimate of its uncertainty in a single

run. This is an important difference in comparison to the established methods,

which have to be executed many times in order to provide a measure of their

uncertainty. Even though it could be argued that NS yields high uncertainties,

even in simple problems, this can be quantified in order to have an idea of the
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quality of the estimate.

We have also extended NS to estimate the Bayes factor directly. This approach

does not depend on any questionable annealing scheme, unlike, for instance, SS.

This estimate can potentially have a lower uncertainty than the one obtained

by using independent estimates via NS with the same number of active points.

We illustrated its performance in an example. Furthermore, this method can

yield, at no extra cost, posterior samples from one of the models. As Lartillot

and Philippe [2006] pointed out, this approach can be mainly useful when the

difference between the log-marginal likelihoods of the models is small with respect

to these values. In such case, the individual estimates should be highly accurate

to obtain a good BF estimate.

In this thesis, we have mainly introduced NS to phylogenetics and studied its

performance. The method proved to be an efficient way to carry out marginal

likelihood estimation. Actually, it represents a relatively cheap alternative for the

estimation. The method also proved to be more general than others considered

in this thesis. One could argue that extreme situations, as the ones presented in

this work (phase transitions), are not found in phylogenetics, however, the shape

of the likelihood is something not well understood in the field. There have been

some attempts, but they have not been definitive. Meanwhile, methods of general

applicability should be used, either for estimating the marginal likelihood or in

sampling the posterior distribution.

Model selection is a key part of phylogenetic inference, but it should not be

the last assessment of the selected model. After model comparison by using any

criterion, such as the Bayes factor, it is recommendable to evaluate model mis-

specifications. In other words, how well the model fits the data. For this purpose,

for instance, Bollback [2002] proposed the analysis of the posterior predictive dis-

tribution. This is carried out by comparing a single test statistic, calculated from

the data, to the distribution of the same measure obtained from simulations from

the posterior distribution. If the test indicates that the model does not fit the

data well, it could be that some relevant characteristics of the evolutionary pro-

cess have not been taken into account. A model, despite of being the best among

a pool of models, may not describe the information contained in the data about
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the underlying evolutionary process effectively. Thus, it is also necessary to test

its adequacy, even though it is rarely carried out [Gatesy, 2007].

Recently, we have implemented the nested sampling algorithm in the NS pack-

age for BEAST2 [Bouckaert et al., 2014], available from https://github.com/

BEAST2-Dev/nested-sampling under the LGPL licence. The NS package allows

for phylogenetic inference under any of the models available to BEAST.

5.1 Future work

The work developed throughout this thesis has given rise to different questions

and potential future works. Some of them are discussed below.

Uniform prior on the gamma shape parameter

The most tentative way of incorporating our ignorance with respect to a parame-

ter, but many times erroneously, is by using a uniform prior. As discussed before

in Chapter 2, this distribution may add information about the parameter, most

of the time, without this being the primary intention. For instance, it assigns

different probabilities on clades in the tree topology case; it has a huge impact

on the posterior distribution in the case of branch lengths, assigning ridiculous

probabilities to big tree length values.

Its impact has been discussed and well documented for some parameters in

phylogenetics. However, to the best of our knowledge, its impact on the shape

parameter of the gamma distribution for the rates across sites has not been yet

studied. Even though the exponential is the most popular prior for this parame-

ter, the use of the uniform can be found in the literature. Therefore, the impact

of this distribution on the inferences about this parameter should be understood

and documented.
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NS direct Bayes factor estimation

The use of a reference distribution can save considerable computational time in

estimating the marginal likelihood. This works by shortening the path between

the prior and the posterior distributions. For instance, this is how GSS and

NIS works mainly. In the case of estimating the Bayes factor directly, the path

connects the posterior distributions of the models instead. In this context, it

would be worthwhile to study how to incorporate, if it is possible, a reference

distribution in order to shorten the path between these posterior distributions in

the NS estimate.

Tree proposals in NS

NS brings with it new challenges for MCMC methods in phylogenetics. The

target distribution has a dynamical behaviour over time, namely, it is the prior

distribution which gets constrained toward those areas of high likelihood values at

each iteration. Thus, the proposal mechanisms have to be able to deal with this

characteristic, which is a new scenario for them, especially for the tree topologies.

As Lakner et al. [2008] showed, the tree proposals play a key role in the perfor-

mance of the MCMC methods. Actually, they must deal with the most difficult

parameter space exploration in most Bayesian MCMC phylogenetic analysis. The

authors studied two kind of proposal mechanisms: branch-change proposals and

branch-rearrangement proposals, finding that the latter perform better. In this

thesis, we took these results into account and proposed the use of a mix of two

proposals which are in this latter category. Our scheme is composed by a mix be-

tween conservative and bold tree proposals. This scheme performed quite well in

the examples. However, it could be worthwhile to study all branch-rearrangement

proposals studied in Lakner et al. [2008], even branch-change proposals, in a NS

context. Their performance could be different, since they were only studied in

standard MCMC context, where the target distribution is static. Hopefully, they

could help NS performance in terms of convergence.
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Effect of phylogenetic uncertainty in model selection

One of the positive features of Bayesian phylogenetic methods is the possibility of

incorporating uncertainty in tree topology simultaneously into the analysis. This

is one of the limitations of the frequentist approach, which bypasses this by fixing

the topology in model selection, and then carrying out the parameter estimation.

Supporting this practice, some studies have shown that the initial topology has

a small effect on model selection when this is not randomly chosen [Abdo et al.,

2005; Posada and Crandall, 2001]. However, to the best of our knowledge, this is

an aspect not well understood in a Bayesian context.

Systematics often aim to infer phylogenies, so it seems natural to consider a

model of evolution which has been selected according to its performance in the

tree parameter space. Bayesian methods allow to take into account phylogenetic

uncertainty, but this might represent a significant increase in computational cost.

Therefore, it would be interesting to carry out model selection in different scenar-

ios with different levels of complexity, and study the gaining of accommodating

phylogenetic uncertainty in order to determine if it is worth the computational

effort.

More complex models

In this work, the evaluation of NS in phylogenetics has been restricted to homoge-

neous models, namely, those ones which assume a single reversible Markov process

along the phylogeny and across sites. These models might fail in the description

of more complex evolutionary processes. In these situations, more general Markov

models, assigned across the lineages and/or sites in order to model compositional

variation in the data, can be utilized. The extension of NS to these scenarios is

part of our future work.

R package

All the analyses carried out in this thesis were implemented and performed in R

[R Core Team, 2015]. This included the implementation of the marginal like-
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lihood estimation methods, such as harmonic mean, path sampling, annealed

importance sampling, steppingstone sampling, generalized steppingstone sam-

pling, nested sampling, and nested importance sampling. The conditional clade

probability distribution was also implemented, which allows us to summarize tree

distributions. Part of the future work is to make all these methods available in

an R-package.
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Appendix 1

The marginal likelihood estimation analyses carried out in this work were all

performed in R Core Team [2015]. This includes the calculations and figures.

All the marginal likelihood estimation methods used in the phylogenetic anal-

yses were implemented in such a way that they work for any nucleotide dataset.

These implementations allow to use fix and variable tree topologies. The prior

distributions on the branch length, mean branch length, relative rate, gamma

shape parameters allow to specify different values for their parameters.

In these implementations, we took advantage of some functions already im-

plemented in phangorn [Schliep, 2011]. In particular, we used the pml function to

evaluate the likelihood at single points, rSPR to generate the tree proposals and

consensusNet to produce the consensus networks.

In the case of the direct Bayes factor estimation in the phylogenetic analysis,

we implemented some relevant functions in Rcpp [Eddelbuettel and François,

2011]. This R-package allows to build C++ functions which can be easily called

from R. In that analysis, we implemented these kind of functions for the likelihood

function, the proposal distributions and the nested sampling loop. Until the

completion of the R-package, code can be provided upon request.
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