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SOME COMPUTABILITY-THEORETICAL ASPECTS OF REALS AND

RANDOMNESS

RODNEY G. DOWNEY

Abstract. We study computably enumerable reals (i.e. their left cut is computably

enumerable) in terms of their spectra of representations and presentations. Then we study

such objects in terms of algorithmic randomness, culminating in some recent work of the

author with Hirschfeldt, Laforte, and Nies concerning methods of calibrating randomness.

x1. Introduction. We study reals �, 0 < � < 1, unless otherwise speci�ed
and for convenience no real will be rational. This convention allows us to give
uniform proofs of many results, which would otherwise split into cases of whether
the real at hand was rational or not. In particular if we have a sequence of ratio-
nals converging to a real � then this sequence will be in�nite, and furthermore
every such real will have a unique dyadic expansion.
Much of modern computability theory is concerned with understanding the

computational complexity of sets of positive integers, yet, even in the original
paper of Turing [58], a central topic is interest in e�ectiveness considerations for
reals. Of particular interest to computable analysis (e.g. Weihrauch [60], Pour-El
[46], Pour-El and Richards [47], Ko [33]), and to algorithmic information theory
(e.g. Chaitin [11], Calude [6], Martin-L�of [45], Li-Vitanyi [42]), is the collection
of computably enumerable reals. These are the reals � such the lower cut L(�)
consisting of rationals less than � forms a computably enumerable set.
The �rst part of these notes consists of an analysis of the basic ways that

we present reals, and to clarify the relationship between such presentations and
degree classes. In particular we will look at the recent work of Calude, Coles,
Hertling, Khoussainov, Downey [13], Downey and Laforte [17], Ho [28], and Wu
[62], as well as older of work of Soare [51] and others.
Our main goal is to look at algorithmic randomness, especially with respect

to computably enumerable reals. To this end we will next introduce the ba-
sic approaches to the study of algorithmic randomness, both topological, as in
Martin-L�of randomness, and compressibility notions such as Chaitin-Kolmogorov
randomness. We begin by looking at these notions for �nite strings and then
proceed to reals.

Research partially supported by the Marsden Fund of New Zealand. These notes are based

upon a short course of lectures given in the fall of 2000 at the University of Notre Dame. The

author thanks all the logicians there for their hospitality and support. He also thanks Andrew

Arana for his skillful note-taking.
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Finally, we will look at some recent material of the calibration of relative ran-
domness using notions such as Solovay reducibility and some new reducibilities
rH and sw reducibilities.
Notation is more or less standard and follows Soare [55]. As these notes

are aimed at graduate students, and one learns from actively engaging in the
material, we will not always provide complete proofs, but will always provide
sketches, referring the reader to the appropriate paper when necessary.
Of course, we identify reals with their characteristic functions when considered

as dyadic expansions. (Remember, no real is rational.) Hence, if I write � = :A,
I mean that � = �n2A2

�n
:

x2. Reals, computable or otherwise. What is a real? Our �rst view of
this question is that a real is a cut. Let � be a real. Then by L(�) we mean the
left cut of �;

L(�) = fq 2 Q : q < �g:

We may approximate � via a Cauchy sequence, viz � = lims qs.
What is a computable real? Here are three guesses based on the Cauchy

de�nition.

(i) � is the limit of a computable sequence of rationals.
(ii) � is the limit of a computable monotone increasing sequence of rationals.
(iii) � = :A for some computable set A. (Here we consider A as identi�ed with

its characteristic function so that this is the dyadic expansion of �.)

Now it is a fact that (iii) ! (ii) ! (i) but none of the implications can be
reversed. If (iii) holds, (and note that we could equally have used a decimal

expansion), then there is an algorithm M allowing us to compute L(�); namely,
given n, we can compute qn = :A � n+1 so that j�� qnj < 2�n, so that given q
we can calculate qn's till either q appears in L(�) or it becomes bounded away
from �. We cannot guarantee this in either (i) or (ii) since we and e�ective
radius of convergence. Suppose that we call a real � = :A a computable real, if
A is a computable set. The following is implicit in Turing's original paper.

Theorem 1 (Turing). � is a computable real i� it is the limit of a computable

sequence of rationals qi : i 2 B and there is a computable algorithm M so that

for all n,

j�� qM(n)j < 2�n:

The proof is left as an exercise, with the hint for the only if direction being that
since the real is not rational there is always another 0 in its dyadic expansion.
Note that we have not actually proved that (ii) and (iii) are di�erent yet, only
that they seem di�erent. We look at this now.

Definition 1. We call a real � computably enumerable (also sometimes, left

computable, left c.e. semi-computable in the literature) i� L(�) is computably

enumerable.

We will need a technical notion whose use is crucial in later investigations,
especially in terms of randomness. A set A � 2<! of strings is called pre�x free

i� for all � 2 A, and all � with � an initial segment of � , � 62 A. Pre�x free sets
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are considered for technical reasons since if a set A is pre�x free then, as we soon
see, by Kraft's inequality, we know that �n2A2

�jnj converges and conversely.

Theorem 2 (Calude, Khoussainov, Hertling, Wang [8], Soare [51] ). The fol-

lowing are equivalent.

(i) � is the limit of a computable enumerable monotone increasing (in the real

ordering) sequence of rationals.

(ii) � is computably enumerable.

(iii) There is an in�nite computably enumerable pre�x free set A with � =

�n2A2
�jnj

:

(iv) There is a computable pre�x free set A such that � = �n2A2
�jnj

:

(v) There is a computable function f(x; y) of two variables, such that

(va) If, for some k; s we have f(k; s + 1) = 0 yet f(k; s) = 1 then there is

some k0 < k such that f(k0; s) = 0 and f(k0; s+ 1) = 1.
(vb) � = �a1a2::: is a dyadic expansion of a with ai = lims f(i; s).

(vi) There is a computable increasing sequence of rationals with limit �.

The reader should be aware of the two orderings at work here. In (i) the
rationals are coded and the sequence of codes computably enumerable. It is
possible to have the sequence \increasing" as a sequence of rationals in the real
ordering yet as codes they could be decreasing. For (v) we mean that there
is a computable function g : ! 7! Q with � = lims g(s) and the range of g a
computable set of (codes of) rationals.
It is important that the reader realize that we are not de�ning a c.e. real to

be :A for some c.e. set A. De�ne a real � to be strongly c.e.g if there is a c.e.

set A such that � = :A. It is easy to use the characterization above (speci�cally

(iv)) to construct a c.e. real that is not strongly c.e. (a theorem of Soare [51]).
Speci�cally, we need to satisfy the requirement

Rj : � 6= :We:

The idea is very simple. Devote positions 2e and 2e + 1 to Re. We initially

set A(2e + 1) = 1; A(2e) = 0: If ever 2e + 1 2 We, make A(2e + 1) = 0 and

A(2e) = 1:
Notice that every strongly c.e. real is c.e. but that if A is c.e. and not com-

putable, then � = :A is c.e. and cannot be computable.

The sets A which have enumerations satisfying (v) we call nearly c.e.g and
occupy a special place in our investigations.
None of the proofs are diÆcult. Why does (ii) imply (vi)? we need to replace

q0; q1; � � � with a computable enumeration with the same limit. Let <R denote
the real ordering. We simply �nd a sequence of rationals with qn <R rn <R qn+1
and such that the code of rn+1 exceeds that of rn, which is possible by the density
of the rationals. The sequence rn so obtained has the same limit as the qi and
is increasing in G�odel number. All of the remaining implications are left to the
reader, save the ones involving pre�x free sets. For these results, we use a very
important theorem called Kraft's inequality.

Theorem 3 (Kraft). (i) If A is pre�x free then
P

n2A
2�jnj � 1.

(ii) (sometimes called Kraft-Chaitin, or Chaitin simulation) Let d1; d2; � � � be a

collection of lengths, possibly with repetitions, Then �2�di < 1 i� there is
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a pre�x free set A with members �i and �i has length di. Furthermore from

the sequence di we can e�ectively compute the set A.

Proof. The proof of Kraft's inequality comes from the topological corre-
spondence 0 7! [0; 1=2); 1 7! [1=2; 1); 00 7! [0; 1=4); 01 7! [1=4; 1=2); etc with, in
general � 7! I� , the interval representing the cone above �, which has measure
2�j�j. The crucial fact is that if �j� then I� \ I� = ;: Then if A is pre�x free,
the I� for � 2 A form a disjoint set of intervals in the interval [0; 1): Hence

�n2A2
�jnj � 1. Part (ii) comes from e�ectively reversing this idea and is left for

the student. Alternatively the reader can consult Li-Vitanyi. a

One way to think of the e�ective version of Kraft's inequality, the so-called
Kraft-Chaitin theorem, is the following.
We are e�ectively given a set of \requirements" hnk; �ki for k 2 ! with

�k2
�nk � 1: Then we can (primitive recursively) build a pre�x free machine

M and a collection of strings �k with j�k j = nk and M(�k) = �k.

It is an interesting exercise to see how to use the Kraft inequality in, for
example, the proof of the Calude, et al. result. For instance, if � is c.e. then
it can be constructed as a computable sequence of dyadic rationals �s so that
�s+1��s is of the form �j2Bs2

�j and we can have that � 2 Bs implies that � has

length less than or equal to s. Thus �s+1 � �s = p(s)2�(s+1). Hence by Kraft's

inequality we can �nd a As of strings of length s+1 with �s+1��s = ��2As2
�j�j,

and so that A = [sAs is pre�x free. (Speci�cally, we would enumerate p(s) many
requirements hs+ 1; �i.) The beauty of the Kraft inequality is that we need only

make sure that the lengths work and then the pre�x free set is implicitly given

without any calculation being necessary.

x3. Other classes of reals. One interesting and basically unexplored class
of reals is the the class of d.c.e. reals. These are de�ned, perhaps unfortunately,
as those reals � for which there exist c.e. reals � and  such that � = ��: They
are interesting since the class of c.e. reals is certainly not closed under operations
such as di�erence. Perhaps slightly surprisingly, the d.c.e reals form a �eld.

Lemma 4 (Ambos-Spies, Weihrauch, Zheng [3]). � is d.c.e. i� there exists a

constant M and a computable sequence of rationals qn with limit � such that

�1
j=0jqj+1 � qj j < M:

Proof. (only if) Let x be d.c.e. and x = y � z with y; z c.e. reals. Let
y = lims ys; and z = lims zs, and put xs = ys � zs. Then �1

n=0jxn+1 � xnj =
�1
n=0j(yn+1 � zn+1) � (yn � zn)j � �1

n=0jyn+1 � ynj + �1
n=0jzn+1 � znj� (y �

y0) + z � z0:

(if) Let �1
n=0jxn+1 � xnj be bounded, then de�ne y; z as limits as follows.

yn = x0 +�n
i=0(xi+1 �� xi); zn = �n

i=0(xi �� xi+1):

Then the limits exist because of the bounds on the sums, and one can readily
verify that x = y � z. a

Question 1. Characterize the computable g such that � is d.c.e. i� �(i) =
lims g(i; s) in the sense of (iv) of the Calude et al. theorem above.
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Theorem 5 (Ambos-Spies, et al. [3]). The d.c.e. reals form a �eld.

Proof. Rearranging shows closure under addition and subtraction and mul-
tiplication. (e.g. (x � y)(p � q) = (xp + yz) � (yp + xz):) Division: suppose
that xn ! x; yn ! y with x; y d.c.e. and that �1

n=0jxn+1 � xnj;�
1
n=0jyn+1 �

ynj; jxnj; jynj;
1
yn
< M . Now

�1
n=0j

xn+1

yn+1
�
xn

yn
j = �1

n=0j
ynxn+1 � yn+1xn

ynyn+1
j

� �1
n=0j

ynxn+1 � ynxn + ynxn � yn+1xn

ynyn+1
j � 2M4

:

a

Question 2. Say something else about this �eld. For instance, what degrees

do you get? Also what about its analytic properties such as real closure? Finally,

what about its randomness properties.

One could also ask what about other classes of reals. For instance, we have
seen that if we have a monotone increasing computable sequence of reals we
get a c.e. real. What happens if we weaken the condition that the sequence be
monotone as reals? As we have seen if the jumps are bounded, then we get d.c.e.
reals. In general, we get the following.

Theorem 6 (Ho [28]). A real � is of the form :A for A a �0
2 set i� � is the

limit of a computable set of rationals.

Proof. This uses another padding+density argument, as in the Calude, et
al. result, and is left as an exercise. a

We remark that it is not diÆcult to show that there are d.c.e. reals that are
not c.e. Here is a proof. Notice that if D is a d.c.e. set (that is D = A � B for
c.e. sets A and B) then :D is a d.c.e. real.

Theorem 7 (Ambos-Spies, et al.). There is a d.c.e. set B such that :B is not

a left nor right computable real.

Proof. Let C and D be c.e. Turing incomparable sets. De�ne the d.c. set B
as follows.

B = f4n : n 2 Cg [ f4n+ 1 : n 2 Cg [ f4n+ 2 : n 2 Dg [ f4n+ 3 : n 2 Dg:

Using the Calude et al. characterization of c.e. reals, because of the 4x; 4x + 1
part, ��B cannot be left computable, lest C �T D, and similarly by the obvious
modi�cation to part (iva) above (reversing), the same shows that ��B is not right
computable lest D �T C. For instance, if ��B is left computable, let f be the
strongly �0

2 approximation given in (iv) of the Theorem. Note that we can run
the approximations to C and D and f so that at each stage we can have things
looking correct. That is, we can speed the enumeration so that for all s and all
n � s, n 2 Cs i� f(4n+ 1; s) = 1 and f(4n; s) = 0, n 62 Cs i� f(4n; s) = 1 and
f(4n + 1; s) = 0, and similarly for Ds, since this must be true for C;D and f
in the limit. Assume that we have such enumerations. We claim that C �T D

contrary to hypothesis. Suppose inductively we have computed C up to n � 1.
Let s > n be a stage where the current approximation f(i; s) : i � 4n + 3
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correctly computes C � n�1; Note this is okay by the induction hypothesis, and
means that Cs � n � 1 = C � n� 1, D � n = Ds � n using the D-oracle, and as
above, f appears correct for Cs and Ds up to n. Then it can only be that n 2 C
i� n 2 Cs. (The point is that if n later enters C at t > s then since f(4n; t) must
become 0 something must enter B smaller than 4n + 1. But this is impossible
since we have C � n � 1 = Cs � n � 1, and D � n = Ds � n:) The non-right
computability is entirely analogous. a

x4. Degree-theoretical aspects of representations.

Definition 2. We say that a c.e. sequence of rationals fqi : i 2 !g with

monotonic limit � represents �.

Representations were �rst e�ectively analyzed by Calude, Coles, Hertling and
Khoussainov [7]. We have seen that if a real is c.e. then it has a computable
representation. If a real is computable then every representation must be com-
putable (exercise). Suppose that a c.e. real is noncomputable. What else can
be said about its representations? For instance, the natural degree of a c.e. real
is the degree of its left cut: degL(�). Does � always have a representation of
degree degL(�)? of other degrees?

Theorem 8. (i) (Calude, Coles, Hertling, Khoussainov) � has a represen-

tation of degree degL(�).
(ii) (Soare [51]) If B = fqig is a representation of � then B �T L(�) and in

fact B �wtt L(�) where wtt denotes weak truth table reducibility1.

(iii) (Calude, et al. )Every representation of � is half of a c.e. splitting of L(�):

The theorem above extends earlier work of Soare who examined, in particular,
the relationship between L(a) and deg(B) for a = �n2B2

�n. In [51], Soare
observed that L(a) �T B and B �tt L(a). However, he also proved that there
are strongly c.e. a, as above, with L(a) 6�tt B.
Evidently (iii) implies (ii). Clearly, if A represents � then Amust be an in�nite

c.e. subset of L(�). The thing to note is that L(�)�A is also c.e. _Given rational
q, if q occurs in L(�), we need only wait till either q occurs in A or some rational
bigger than q does.
Note that this means that if � is computable then every representation of �

is computable. Also note that the proof actually gives that if A represents �,
A �wtt L(�): (It is interesting to note that strong reducibilities often play a
large role in e�ective mathematics since reducibilities that occur naturally tend
to be stronger than �T . For instance in a �nitely presented group, the word
problem tt-reduces to the conjugacy problem ([30]), algebraic closure is related
to Q-reducibility ([5, 18, 44, 63]) and wtt-degrees characterize the degrees of
bases of a c.e. vector space (Downey-Remmel [23]).)
We would like to prove that if A is half of a splitting of L(�) then A represents

�. But it is not diÆcult to prove that this is not true. We know that if A

1We say that A �wtt C i� there is a Turing procedure � and a computable function  such

that for all x,

�(C;x) = A(x); and u(�(C;x)) � (x):
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represents � then there needs to be a computable function g with range A so
that, as reals, g(i) < g(i+ 1): It is easy to construct splittings of some � where
no such g exists by a simple diagonalization argument. Calude et al. did �nd
that the converse of (iii) did happen in some cases.

Theorem 9 (Calude et al. [7]). Let A be a representation of �. For subsets

B of A, the following are equivalent.

� B represents �.

� B is half of a splitting of A.

The proof of this result is straightforward and is left to the reader. Calude et
al. [7] also obtained a partial degree theoretical converse to (iii). Namely, they
showed that (i) � has a representation of degree deg(L(�)), and (ii) every repre-

sentation can be extended to one of degree deg(L(�)). In Downey [13], Downey
improved the Calude et al. [7] result, and obtained a complete characterization
of the representations of a real x in terms of the m-degrees of splittings of L(x).

Theorem 10 (Downey). The following are equivalent

� b is the m-degree of a splitting of L(x).

� b is the weak truth table degree of a representation of x.

Proof. To prove Theorem 10, we need only show that if L(x) = C tD is any

c.e. splitting of L(x) then there is a representation bC = fcig of x of wtt degree
that of C. (Without loss of generality, we suppose that C is noncomputable.)
We do this in stages. At each stage s, we assume that we have enumerated Cs
and Ds so that L(a)s = Cs t Ds, where L(a)s is the collection of rationals in
L(a) by stage s, including all those of G�odel number � s. Additionally we will
have a parameter m(s). At stage s+ 1 compute Cs+1 and Ds+1. Find the least
rational, q 2 Cs+1, by G�odel number, if any, such that q > m(s):
If no such q exists, set m(s+ 1) = m(s); and do nothing else.
If one exists, put all rationals with G�odel number below s + 1, in increasing

real order, into bCs+1 and reset m(s+1) to be the maximum rational (as a real)
in L(x)s+1.

To verify the construction, �rst note that bC is an increasing sequence of ra-
tionals. Its limit will be a provided that it is in�nite, because of the use of
m(s).
First we claim that m(s) !1. Suppose not, so that there is an s such that,

for all t � s, m(s) = m(t): Then we claim that C is computable, this being a
contradiction. To decide if z 2 C, go �rst to stage s0 = s + g(z), where g(z)
denotes the G�odel number of z. If z 62 Cs0 , then either z > m(s), or z 2 Ds0 . In

either case, z 62 C. Hence m(s)!1.

Note that bC �m C. Only numbers entering C enter bC and can do so only at
the same stage. Given q go to a stage s bigger than the G�odel number of q. If
q is below m(s) then, as before, we can decide computably if q 2 C. Else, note

that q 2 C i� q 2 bC . The same argument shows that C �m bC: a

We remark that many of the theorems of Calude et al. [7] now come out as
corollaries to the characterization above, and known results on splittings and wtt
degrees. Notice that by Sacks splitting theorem every noncomputable c.e. real
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x has representations in in�nitely many degrees. >From known theorems we get
the following.

Corollary 11. There exist computably enumerable reals ai such that the col-

lection of T -degrees of representations R(ai) have the following properties.

(i) R(a1) consists of every c.e. (m-) degree

(ii) R(a2) forms an atomless boolean algebra, which is nowhere dense in the

c.e. degrees.

For the proofs see Downey and Stob [24].
We also remark that the above has a number of other consequences regarding

known limits to splittings. For instance;

Corollary 12. If a c.e. real a has representations in each T -degree below

that of L(a) then either L(a) is Turing complete or low2.

This follows since Downey [12] demonstrated that a c.e. degree contains a set
with splittings in each c.e. degree below it i� it was complete or low2. It is not
clear if every nonzero c.e. degree contains a c.e. real that cannot be represented
in every c.e. degree below that of L(�).

x5. Presentations of reals. The Calude et al. theorem gave many possible
ways of representing reals, not just with Cauchy sequences. We explore the other
methods with the following de�nition.

Definition 3. Let A � f0; 1g�: We say that A is a presentation of a c.e. real

x if A is a pre�x free c.e. set with

x = �n2A2
�jnj

:

Previously we have seen that x has representations of degree L(x). However,
presentations can behave quite di�erently.

Theorem 13 (Downey and LaForte [17]). There is a c.e. real � which is not

computable, but such that if A presents � then A is computable.

Proof. We briey sketch the proof, details being found in Downey and
LaForte [17]. We must meet the requirements below.

Re : We presents � implies We computable.

We build a computable presentation
P

�2A
2�j�j of �, via the nearly c.e. def-

inition. That is, we have an approximation � = �a0;s::: and obey the conditions
that if ai;s = 1 and ai;s+1 = 0 then aj;s+1 becomes 1 for some j < i. To make �
noncomputable, we must also meet the requirements:

Pe : For some i; i 2We i� ai = 1:

(Thus �We 6= �.) The strategy for Pe is simple. We must pick some i to follow
it, and initially make it 0. At some stage s, if we see i enter We, then we must
make ai;t = 1 for some t � s.
To make this cohere with the Re we need a little work. First, we need to

surround i with some 0's so that there is little interference from the other re-
quirements, modulo �nite injury. However, more importantly, we need to also
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make sure that for those Rk of higher priority if Wk presents � then Wk is
computable.
Associated with Rk will be a current \length of agreement".

`(k; s) = maxfn : �s ���2Wk;s
2�j�j > 2�ng;

We can assume that �s > ��2Wk;s
2�j�j since if a stage t occurs where this is

not true, we would have �t���2Wk;t
2�j�j > 2�d for some d, and simply win by

keeping �s � �t < 2�(d+2) for all stages s < t.
We promise that once `(k; s) > d, then no number of length � d can enterWk .
Now the idea is that when we see some Pe require attention for e bigger than k,

if i is smaller than `(k; s) (the interesting case), then we wish to put a relatively
big number into a, by changing position i for the sake of Pe, yet we wish to not
allow numbers of low length to enter Wk.
The idea is to slowly work backwards. So �rst we will make position `(k; s) +

1 = 1 by adding something of length 2�(`(k;s)+1) into As+1:
We then do nothing untilWk responds by giving us a stage t > s with `(k; t) �

`(k; s).
Note thatWk can only change on strings of long length, since we only changed

A slightly. Now we repeat, adding another string of the same length 2�(`(k;s)+1)

into At+1: Again we wait for another expansion stage. Note that this next
addition changes things at position `(k; s) or earlier. We can continue in this

way at most 2`(k;s)�i many times till we get to change position i. Note that
we will - by restraining `(k; s) from growing - temporarily refrain from declaring
that we knowWk for strings of length above `(k; s) until a stage t is found where
we win Pe. This delay is �ne since if Wk actually presents �, we will eventually
get enough recovery stages that we will meet the Pe.
The reader should think of this as a cautious investor wishing to sell of some

shares, but not allowing the market to realize this, so they drip feed the shares
into the market each time the price recovers.
Now there are two outcomes. Either at some stage, we don't get recovery, so

that Wk does not present �, or Wk responds at each stage and we get a change
only on long strings. This means that we can compute Wk .
Now to deal with more than one Rk, say Rk and Rj , with j < k we must use a

tree of strategies argument. The strategy for Rk guessing that `(j; s) 6! 1 will
be to believe that the current `(j; s) is its limit. Thus it believes that Wj will
not present � and cannot recover to its previous best length of agreement. This
version of Rk acts as in the basic module, but Pe working with this version of
Rj must ensure that the total amount they could add to ���s is < 2�(`(j;s)+2).
The version of Rk guessing that `(j; s)!1 needs to nest its expansion stages

in Rj 's. The problem is that Rj can recover at many stages before Rk does.
During such stages, we cannot delay allowing Rj to increase `(j; t), making the
allowable \quanta" even smaller. For suppose that the Pe below both of these
versions of Rj and Rk wishes to add 2�i to �s. We begin this process by adding
some quanta 2�n good for both j and k at some stage s0.
At some stage s1 we might see Rj recovery, but not have had Rk recovery. We

cannot add another 2�n to �s1 until we get this Rk recovery. On the other hand
this recovery might not happen. Hence we cannot delay the extension of the
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de�nition of Wj to wait for this recovery. Thus we will allow `(j; s) to increase,
lowering the quanta allowable by Rj . Now at stage s2, after perhaps many j-
expansionary stages we also get Rk recovery. At this stage, Rk would allow us
to put in 2�n but now Rj only allows 2�m for some m >> n.
The solution is that we won't allow another Rk expansionary stage until we

have had enough j-expansionary stages that we could (using increments of 2�m)
put in 2�n. During this time we will not allow the de�nition ofWj to be extended.
The depth d strategies are similar. There are d strategies S1; � � � ; Sd in de-

creasing order of priority. At some stage we wish to change � while cooperating
with these d strategies. We put some small quanta in. While we are waiting for
recovery of all the d strategies, we would allow the de�nitions of their Wjd

to
change, so for S1; � � � ; Sd�1, the allowable quanta will be reduced. At recovery,
we might wish to put 2�n into � but this must now be put in in quanta which is
acceptable to S1; � � � ; Sd�1. While we are doing this we delay any further work
on Sd until this is ful�lled. Then, like the tower of Hanoi, the same problem
propogates upwards. But the whole process is well-founded so that eventually
progress is made. Further details can be found in Downey-Laforte [17]. a

We remark that Downey and Laforte demonstrated that degrees contain-
ing such \only computably presentable" reals can be high. But if a degree is
promptly simple then every c.e. real of that degree must have a noncomputable
c.e. presentation. Using a 0000 argument, Wu [60] has constructed a c.e. noncom-
putable degree a 6= 0 such that, if � is any c.e. noncomputable real of degree
below a then � has a noncomputable presentation.
As with many structures of computable algebra and the like, the classi�cation

of the degrees realized as presentation seems to depend on a stronger reducibility
than �T . In this case, the relevant reducibility seems to be weak truth table
reducibility.
The following is easy.

Theorem 14. Let � be a computably enumerable real, with � = :�A for some

set A. Suppose that B is any presentation of �. Then B �wtt A with use

function the identity.

The proof is left as an exercise. What is interesting is that there is a sort of
converse to this result.

Theorem 15 (Downey and Laforte [17]). If A is a presentation of a c.e. real

� and C �wtt A is computably enumerable, then there is a presentation B of �

with B �wtt C.

Proof. Suppose �(X) is a computable functional with a computable use
function  such that �(A) = C. We can assume  is monotonically increasing.
Let hn;mi : N � N ! N be a computable one-to-one function such that for all
n, m, maxfn;mg < hn;mi. (Adding 1 to the usual pairing function gives such a
function.) Notice that, since A presents �, using the Chaitin-Kraft theorem we
can enumerate strings of any length we wish into B[s] at as long as we ensureX

�2B[s]

2�j�j �
X
�2A[s]

2�j�j:
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We �x enumerations of �, C and A so that at each stage s, exactly one element
enters C and for every x < s, �s(As;x) = Cs(x). We may assume A is in�nite,
since there is nothing to prove if A is computable. We construct B in stages,
using the function hn;mi as follows.
At stage 0, let B[0] = ;.
At stage s+ 1, we �rst �nd the unique number ns entering C and all strings

� that enter A at stage s + 1. For each j�j < (ns), we enumerate 2
hj�j;nsi�j�j

strings of length hj�j; nsi into B[s + 1]. For each j�j � (ns), we enumerate

2hj�j;j�j+si�j�j strings of length hj�j; j�j+ si into B[s].
This ends the construction of B.
Notice that all of the actions taken at stage s+ 1 serve to ensure thatX

�2B[s+1]

2�j�j =
X

�2A[s+1]

2�j�j;

hence, we always have enough strings available to keep B pre�x-free.
Suppose n 2 N. Let s(n) be least so that B[s(n)] agrees with B on all strings

less than or equal to length h(n); ni. Now, suppose there exists t > s(n) such
that n 2 C[t] � C[t� 1]. In this case, because for every s and x < s, C(x)[s] =
�(A;x)[s], there must be some � with j�j < (n) which enters A at t. By

construction, then, since n = nt, we have 2hj�j;nti�j�j > 1 strings of length
hj�j; nti entering B at stage t > s(n), which is a contradiction. Hence we can
compute C(n) from B(n) with a use bounded by the number of strings of length
less than or equal to h(n); ni, which is a computable function. This gives
C �wtt B.
Next consider any binary string � . Using the computability of hi; ni and the

fact that maxfi; ng < hi; ni we can ask whether there exist i and n such that
j� j = hi; ni. If not, then � 62 B. In this case, let t(n) = 0. Otherwise, suppose
j� j = hi; ni. If i � (n), then � can only enter B at stage s if s = n� i. If, on the
other hand, i < (n). Then if � enters B at stage s+1, this can only be because

j� j = hj�j; nsi for some � entering A at s, and we enumerate 2hj�j;nsi�j�j strings
of length hj�j; nsi into B[s+1]. In either case, if we let t(n) be the least number
greater than n � i so that C[t(n)] �n+1= C �n+1, we have B(�) = B(�)[t(n)].
Since n is computable from j� j, B �wtt C, as required. a

Note that one corollary is that a strongly c.e. real � = :A with the degree of A
wtt-topped2, has the property that it has presentations in every T degree below
that of A.
Note the following.

Lemma 16. Suppose that A and B present �. Then there is a presentation of

� of wtt degree A�B.

The proof is to note that C = f0� : � 2 Ag [ f1� : � 2 Bg is pre�x free, as
both A and B are, and presents �.
It follows that the the wtt-degrees of c.e. sets presenting � forms a �0

3 ideal. Re-
cently, the question of which �0

3 ideals can represent c.e. reals was investigated by
Downey and Terwijn. They combined the drip feed strategy of Downey-Laforte,
a coding technique, and approximarion techniques to prove the following.

2That is, for all c.e. B �T A, B �wtt A
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Theorem 17 (Downey and Terwijn [25]). Suppose that I is any �0
3 ideal in

the computably enumerable wtt degrees. Then there is a c.e. real � whose degrees

of presentations are exactly the members of I:

Downey and Terwijn also proved a sort of Rice's theorem for the index sets.
Note that if � is a c.e. real which has a wtt-complete presentation, then for
any e, � has a presentation of the same wtt degree as We. Thus thwe index set
I(�) = fe : We has the same wtt degree as a presentation o f �g is simply !.
Downey and Terwijn showed that this is the only clase where this can happen.
They showed that if � is not wtt-complete, then the indices in the set I(�) is
�0
3 complete.

x6. Kolmogorov Complexity. This is a theory of randomness for �nite
strings. In another section (Section 8) we will look at the in�nite case. The
main idea is that a string is random if it is \incompressible". That is, the
only way to generate the string � is to essentially hard-wire the string into the
algorithm, so that the description of a program to generate � is essentially the
same size as � itself. (For instance, 010000000 can be described by saying that we
should repeat 0 10000000 times. This can easily be described by an algorithm
shorter than 10000000.)
We formalize this notion, �rst due to Solomono� [54], but independently to

Kolmogorov and Chaitin, as follows. Let f : 2<! 7! 2<! be a partial computable
function. Then we can denote the Kolmogorov complexity of a string � with
respect to f via

Kf (�) = minf1; jpj : f(p) = �g:

Then relative to f , we say that � is random3
Kf (�) � j�j.

We get rid of the dependence of f . If we choose a universal Turing machine
U there is a p so that U(y; p) = f(y) for all y, then we can de�ne g via

g(0jpj1py) = U(y; p):

For this g we see that

Kg(x) � Kf (x) +O(1):

Note that the constant O(1) is 2jpj+1. Hence g is (up to an additive constant),
the minimal complexity measure.
Trivial Facts:
(1) K(x) � jxj+O(1):
(2) K(xx) � K(x) +O(1):
(3) If h(x) is any total computable function, then K(h(x)) � K(x) +O(1):
We would likeK(xy) � K(x)+K(y)+O(1): But this is not true. The problem

is that we can't decide where x �nishes and y starts. We get
(4) K(xy) � K(x) +K(y) + 2 log jxj+O(1):
This uses the \self-delimiting" trick used in the de�nition of g above for the

universal machine. Actually we can replace 2 log jxj by 2 logK(x).

3There are two traditions of notation. One is to use C for Kolmogorov complexity, and K

for the pre�x-free (disturbingly referred to as pre�x complexity) complexity in the next section.

The other is to use K for standard Kolmogorov complexity, and to use H for the pre�x free

complexity of the next section. We adopt the latter and hope that it causes no confusion.
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Theorem 18 (Solomono�, Kolmogorov). For all n there exists x with jxj = n

and K(x) � n.

Proof. Count the number of strings of size n. a

Notice that actually for any k,

jfx 2 2<! : K(x) � jxj � kgj � 2n(1� 2�k):

For instance, if jxj = 1000; and k = 500, then the number of strings of length
1000 that are \half way random" (K(x) > 500 is at least 21000(1�2�500)): That
is, almost every string.
Here is a simple application of the \incompressibility method."
How large is the n-th prime? Let m be a binary number and pi the largest

prime divisor of m. To describe m we need only hpi;
m

pi
i. In fact we need only

the pair i, m
pi

(+O(1)): Hence

K(m) � 2 log jij+ jij+ j
m

pi
j+O(1):

The if m is a random number, we see

jmj � 2 log jij+ jij+ j
m

pi
j+O(1):

Hence

logm � 2 log log i+ log i+ logm� log pi +O(1):

Thus

log pi � 2 log log i+ log i+O(1):

Hence pi � O(i log2 i): This is pretty close to the real answer of i log i.
Another classical application of Kolmogorov complexity is the construction of

an immune set. Let

A = fx : K(x) �
jxj

2
g:

Then A is immune. Suppose that A has an in�nite c.e. subset C. Let h(n) be
de�ned as the �rst element of C to occur in its enumeration of length above n.
Then

K(h(n)) � jh(n)j=2 � n=2; but,

K(h(n)) � K(n) +O(1) � jnj+O(1):

For large enough n this is a contradiction.
I should remark that there is a very well-developed theory of Kolmogorov

complexity and its applications. I urge the reader to refer to Li-Vitanyi [42],
especially for applications, and to refer to van Lambalgen [59] for a thorough
discussion of the foundations of the subject.
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x7. Pre�x-free complexity. The main motivation for this section will be to
develop a nice complexity measure for developing complexity on reals. However,
Chaitin and Levin argued that pre�x-free complexity (the notion we look at
here) is the correct complexity even for �nite strings.
Their argument for the inadequacy of classical Kolmogorov complexity is the

following. The intentional meaning, it is claimed, is that the complexity shortest
string � computing �, ought to indicate that the bits of � containing all the
information necessary to get � from �. However, they argue that the universal
machine M might �rst scan � just to get its length, and only then read the bits
of �. In this way the � actually represents j�j+ log j�j many bits of information.
If one accepts this argument then one ought to circumvent this. Both Levin [41]
and Chaitin [11] suggested pre�x free machines to circumvent this.
It has also been pointed out that one can circumvent this by asking that the

complexity measure be continuous. This gives rise to the notion of uniform
complexity, which we will not deal with here. (The uniform complexity of a
string � = a1 � � � an is the minimum length of a string � such that the universal
machine U with oracle � and argument m computes a1 � � � am for all m � n.)

We refer the reader to Li-Vitanyi [42] and Barzdin [4] for more details.
A pre�x-free machine is one whose domain is pre�x-free. It is usual to take

the machine as \self delimiting" which means that it has a one way read head
which halts when the machine accepts and has accepted the string described by
the read head up to its present position. This is a purely technical device that
forces the machine to have a pre�x free domain.
Facts:
(1) If ' is a partial computable function with pre�x free domain, then there

is a pre�x free (self-delimiting) machine M such that M agrees with '.
(2) There is a universal (self-delimiting) pre�x free machine.
The reader should prove these not altogether obvious results. The reason we

want pre�x free machines is that we will be looking at reals (eventually) and
we wish to apply Kraft's inequality. So the domains will need to be pre�x free.
Let H(x) denote the pre�x free Kolmogorov complexity of x. The counting
arguments of the previous section demonstrate that:

H(x) � jxj+ 2 log jxj+O(1);

H(x) � jxj+H(jxj) +O(1):

We remark that this is tight. A counting argument shows that there are many
x with H(x) > jxj + log jxj: (The reader is advised to prove this for themself4.
In fact for �nite strings this would be the typical notion of randomness used if
we demanded pre�x free complexity.) There is one good trade-o�, namely now
H(xy) � H(x) +H(y) +O(1): For these and other facts we refer the reader to
Li-Vitanyi [42] or Fortnow [26].)
The actual relationships between K and H are

H(x) = K(x) +K(K(x)) +O(K(K(K(x))):

4Suppose that for all x, H(x) � jxj+log jxj. Then ��2��2�H(�) � ��2��2�(j�j+log j�j) �

�n�j�j=n2
�(n+log n)� �n2n(2�(n+log n)) � �n1=n =1, a contradiction, since ��2�H(�) <

1:
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K(x) = H(x)�H(H(x)) +OH3(x):

These are due to Solovay in the 1975 manuscript, and are nontrivial.

x8. Complexity of reals. Our �rst attempt to de�ne a random real would
be to de�ne � = :A to be random i� there was a constant O(1) such that, for
all n, K(A � n) +O(1) > n: Unfortunately no real satis�es this condition.
To see this, we know that for all k there is an n such that n is a program for

A � k. Let c be the �xed constant with K(x) � x+ c. Then

K(A � n) � K(A � n� k) � n� k + c:

Here we are explicitly using tha fact that the length n of A � n gives additional
information. This can easily be improved upon. For instance, it can be shown
that K(A � n) � n� logn in�nitely often. (See Li-Vitanyi [42], p138)
However, all problems are removed if we use H in place of K.

Definition 4 (Chaitin). A real � = :A is Chaitin random if there is an O(1)
such that, for all n

H(A � n) � n�O(1):

It can be shown that if

K(A � n) � n�O(1) for in�nitely many n;

(this being called Kolmogorov random) then the real � is Chaitin random. Unfor-
tunately Schnorr [50] proved that the converse does not hold. (It can, however,

be shown that the set of languages which are Chaitin random but not Kol-
mogorov random has measure zero.) There are reals that are K-random but not
Chaitin random. Before we prove the existence of such a real, we look at other
(and earlier) topological views of randomness.
The main idea is that a real would be random i� it had no rare properties.

Using measure theory, this translates as no \e�ectively null" properties.
We de�ne c.e. open set to be a c.e. collection of open rational intervals. The

�rst guess one might make for a random real is that
\a real x is random i� for all computable collections of c.e. open sets fUn :

n 2 !g, with �(Un)! 0, x 62 \nUn:"
This is a very strong de�nition, and is stronger than the most commonly

accepted version of randomness. Let's call this strong randomness5. The key is
that we wish to avoid all \e�ectively null" sets. Surely an e�ectively null set
would be one where the measures went to zero in some computable way. Such
considerations lead to the de�nition of Martin-L�of randomness below.

Definition 5 (Martin-L�of, [45]). We say that a real is Martin-L�of random or

1-random i� for all computable collections of c.e. open sets fUn : n 2 !g, with
�(Un) � 2�n, x 62 \nUn:

5This notion has been examined. It is equivalent to A is in every �0
2 class of measure 1.

Kurtz and Kautz call this notion weakly �0
2-random It was also used by Gaifman and Snir.

The reader is referred to Li-Vitanyi, [42], p164, where they call it �0
2-randomness



16 RODNEY G. DOWNEY

We call aa computable collection of c.e. open sets a test, and ones with �(Un) �
2�n for all n, a Martin-L�of test. The usual terminology is to say that a real is
Martin-L�of random if it passes all Martin-L�of tests. Of course a real passes the
test if it is not in the intersection.
We remark that while strong randomness clearly implies Martin-L�of random-

ness, the converse is not true. This is an observation of Solovay. Later we show
that there are c.e. reals that are Martin-L�of random. Hence the inequivalence
of strong randomness and Martin-L�of randomness will follow by showing that
no strong random real is c.e.. The following proof of this observation is due to
Martin (unpublished).
Let � = lims qs as usual, and de�ne

Un = fy : 9s � n[y 2 (qn; qn + 2(qs � qn))]g:

Then �(Un) ! 0, yet � 2 \nUn. (Actually this shows that � cannot even be
�0
2.)
In a famous unpublished manuscript, Solovay proposed a alternative notion of

randomness.

Definition 6 (Solovay [55]). We say that a real x is Solovay random i� for

all computable collections of c.e. fUn : n 2 !g such that �n�(Un) < 1, x is in

only �nitely many Ui.

The reader should note the following alternative version of De�nition 6.
A real is Solovay random i� for all computably enumerable collections of ra-

tional intervals In : n 2 !, if �njInj <1, then x 2 In for at most �nitely many

n.

Again, we can de�ne a Solovay test as a collection of rational intervals fIi : i 2
!g, with

P
i
Ii < 1: Then a real is Solovay random i� it passes every Solovay

test, meaning that it is in only �nitely many Ii. Clearly if x is Solovay random,
then it is Martin-L�of random. The converse also holds.

Theorem 19 (Solovay [55]). A real x is Martin-L�of random i� x is Solovay

random.

Proof. Suppose that x is Martin-L�of random. Let fUng be a computable
collection of c.e. open sets with �n�(Un) <1:We can suppose, by leaving some
out, that �n�(Un) < 1: De�ne a c.e. open set

Vk = fy 2 (0; 1) : y 2 Un for at least 2k Ung:

Then �(Vk) � 2�k and hence as x is Martin-L�of random, x 62 \nVn, giving the
result. a

It is also true that Chaitin random is equivalent to Martin-L�of random.

Theorem 20 (Schnorr). A real x is Chaitin random i� it is Martin-L�of ran-

dom.

Proof. (!) Suppose that x is Martin-L�of random. Let

Uk = fy : 9nH(y � n) � n� kg:

Recall that there is a C such that (for a �xed n),

�(fy : H(y � n) � H(n) + n� kg) � C2�k;
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and hence

�(fy : H(y � n) � n� kg � C2�H(n)�k

Now we can estimate the size of Uk:

�(Uk) � C2�k(�1
n=12

�H(n)) � 2�k:

Hence the sets fUk : k 2 !g form a Martin-L�of test, and if x is Martin-L�of
random x 62 \nUn. Thus there is a k such that, for all n, H(x � n) > n� k. a

The other direction of the proof is more diÆcult, and the most elegant proof
known to the author is the one of Chaitin [11]. This approach is slightly more
abstract since it is axiomatic and and stresses the minimality of H as a measure
of complexity. It is thus of interest in its own right.
Speci�cally, Chaitin de�ned an information content measure as any functionbH such that



bH
= ��22<!2

� bH(�)
< 1; and;

fh�; ki : bH(�) � kg is c.e.:

Naturally one can enumerate the information content measures fHk : k 2 !g6

and then de�nes

H(x) = min
k�0

fHk(x) + k + 1g:

Notice that by the universal Turing machine, fh�; ki : H(�) � kg is c.e.: Fur-
thermore,

��2
�H(�) = �k�12

�k(��2
�Hk(�)) < 1:

Notice that therefore for any information content measure

H(�) � Hk(�) +O(1):

Thus we see that (of course) H is the pre�x free Kolmogorov complexity, and
this information content measure is minimal among all such measures. Before
we turn to the proof of the other direction of Schnorr's theorem, here's one
application of this idea. We prove that

H(x) � jxj+H(jxj) +O(1):

This result was mentioned before, but we only alluded to a proof suggesting that
it was merely a counting argument. Here's Chaitin's proof.

1 > 
 = �x22<!2
�H(x) = �n2N[2

�n�jxj=n2
�H(x)]; (that same trick),

= �n�jxj=n2
�(n+H(x)) = �x22<!2

�(jxj+H(jxj))
:

Thus H(x) � jxj+H(jxj) +O(1), as H is minimal.
The reader should think of proofs like this as using the minimality of H to

avoid explicit mention of Kraft-Chaitin. Now to the proof of Schnorr's Theorem:

6It is easy to spot when the measure threatens to exceed 1, at which point one would stop

enumerating a bad M
k
.



18 RODNEY G. DOWNEY

Proof. (cont'd) This time suppose that x is not Martin-L�of random. We
prove that x is not Chaitin random. Thus we have fUng with x 2 \Un and

�(Un) � 2�n. We note that �n2
�n

2+n converges, and indeed, �n�32
�n

2+n
< 1:

Notice that

�n�3��2U
n2
2�(j�j�n) � �n�32

n
�(Un2) � �n�32

�n
2+n

< 1:

Thus by the minimality of H , � 2 Un2 and n � 3 implies that H(�) � j�j � n+
O(1): Therefore, as x 2 \Un2 for all n � 3 we see that H(x � k) � k�n+O(1),
and hence it drops arbitrarily away from k. Hence, x is not Chaitin random. a

If the reader wished to reinstate Kraft-Chaitin here, then the argument above
is roughly the following. Since x 2 Un2 (or any reasonable function of n, 2n

would probably be enough), since the measure is small (< 2�n
2

), we can use
Kraft-Chaitin to enumerate a machine which maps strings of length k � n to
initial segments of length k of strings in Un2 . Speci�cally, as we see strings �
with I(�) 2 Un2 and length at least n2, then we could enumerate a requirement
j�j � k; �. (The total measure will be bounded by 1 and hence Kraft-Chaitin
applies.)
We note that at this stage, we have not yet any examples of random reals.

Here is one due to Chaitin. Fis a universal pre�x free machine M .


M = �M(�#)2
�j�j

:

Note that 
 is a c.e. real. As we see in the next section, it is random, and
amongst c.e. reals, in some sense the only random real.

x9. Relative randomness. We wish to look at reals, especially c.e. reals
under notions of relative randomness. Ultimately, we would seek to understand
�H and �K reducibilities, for instance, where for E = H or K, we have

� �E � i� 8n[E(� � n) � E(� � n) +O(1)]:

There are a number of natural reducibilities which imply �E. One was intro-
duced by Solovay, and some are more recent. In this section we will look at some
recent material on such reducibilities.

Definition 7 (Solovay [55]). We say that a real � is Solovay reducible to �

(or � dominates �), � �S � i� there is a constant c and a partial computable

function f , so that for all q 2 Q; with q < �,

c(� � q) > �� f(q):

The intuition is that a sequence of rationals converging to � can be used to
generate one converging to � at the same rate. The point is that if we have a c.e.
sequence fqn : n 2 !g of rationals converging to � then we know that f(qn) # :
Notice that if rn ! � then for all m there is some k such that � > rk > f(qm).
(The reals are not rational.) Noticing this yields the following characterization
of Solovay reducibility.

Lemma 21 (Calude et al. [7]). For c.e. reals, � �S � i� for all c.e. qi ! �

there exists a total computable g, and a constant c, such that, for all m,

c(� � qm) > �� rg(m):
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Another characterization of �S is the following:

Theorem 22 (Downey, Hirschfeldt, Nies [15]). For c.e. reals, � �S � i� for

all c.e. sequences fqi : i 2 !g such that � = �iqi; there is a computable function

� : ! 7! [0; 1] and a constant c, such that,

� = c(�i�(i)qi):

Hence � �S �, i� there exists a c and a c.e. real  such that

c� = �+ :

Proof. (if) One direction is easy. Suppose that c and � exist. Notice that

c(� � �n
i=1qi) > �� �n

i=1�(i)qi:

Hence � �S �: a

For the other direction, we need the following Lemmas. The �rst is inplicit in
Solovay's manuscript, but is �rst proven in [20].

Lemma 23. Let � and � be c.e. reals, and let �0; �1; : : : and �0; �1; : : : be

computable increasing sequences of rationals converging to � and �, respectively.

Then � �S � if and only if there are a constant d and a total computable function

f such that for all n 2 !,

� � �f(n) < d(� � �n):

The proof is straightforward and is left as an exercise.

Lemma 24 (Downey, Hirschfeldt, Nies [15]). Let � �S � be c.e. reals and let

�0; �1; : : : be a computable increasing sequence of rationals converging to �.

There is a computable increasing sequence �̂0; �̂1; : : : of rationals converging to

� such that for some constant c and all s 2 !,

�̂s � �̂s�1 < c(�s � �s�1):

Proof. Fix a computable increasing sequence �0; �1; : : : of rationals converg-
ing to �, let d and f be as in Lemma 23, and let c > d be such that �f(0) < c�0.

We may assume without loss of generality that f is increasing. De�ne �̂0 = �f(0).

There must be an s0 > 0 for which �f(s0)��f(0) < d(�s0��0), since otherwise
we would have

� � �f(0) = lims �f(s) � �f(0) � lims d(�s � �0) = d(� � �0);

contradicting our choice of d and f . It is now easy to de�ne �̂1; : : : ; �̂s0 so that

�̂0 < � � � < �̂s0 = �f(s0) and �̂s � �̂s�1 � d(�s � �s�1) < c(�s � �s�1) for all
s � s0. For example, if we let � the minimum value of d(�s � �s�1) for s � s0

and let t be least such that �̂0 + d(�t � �0) < �f(s0) � 2�t� then we can de�ne

�̂s+1 =

8><
>:
�̂s + d(�s+1 � �s) if s+ 1 < t

�f(s0) � 2�(s+1)� if t � s+ 1 < s0

�f(s0) if s+ 1 = s0:

We can repeat the procedure in the previous paragraph with s0 in place of 0

to obtain an s1 > s0 and �̂s0+1; : : : ; �̂s1 such that �̂s0 < � � � < �̂s1 = �f(s1) and

�̂s � �̂s�1 < c(�s � �s�1) for all s0 < s � s1.
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Proceeding by recursion in this way, we de�ne a computable increasing se-

quence �̂0; �̂1; : : : of rationals with the desired properties. a

We are now in a position to prove Lemma 22 for the other direction.

Proof. Suppose that � �S �. Given a computable sequence of rationals
a0; a1; : : : such that � =

P
n2!

an, let �n =
P
i�n

ai and apply Lemma 24 to

obtain c and �̂0; �̂1; : : : as in that lemma. De�ne "n = (�̂n � �̂n�1)a
�1
n
. NowP

n2!
"nan =

P
n2!

�̂n � �̂n�1 = �, and for all n 2 !,

"n = (�̂n � �̂n�1)a
�1
n

= (�̂n � �̂n�1)(�n � �n�1)
�1

< c:

a

What has this to do with Kolmogorov complexity? The following lemma of
Solovay is the decisive fact we use for this (and other) reducibilities.

Lemma 25 (Solovay). For all k there is a constant ck depending on k alone,

such that for all n, j�j = j� j = n and j� � � j < 2k�n, then for E = H or K,

E(�) � E(�) + ck:

Proof. Here is the argument for K. We can write a program depending on
k which, when given �, reads the length of � then computes the � such that �
has the same length as � and j� � �j < 2k�n: Then, given a program for �, all
we need to generate � is to use the program for the �'s and compute which �
is � on the list. This is nonuniform, but only needs about log k many bits since
the size of the list depends on k alone.
The argument for H is similar. Suppose that we have a pre�x free M . When

we see some � withM(�) = �, then we can enumerate a requirement j�j+2k+1; �
for each of the 2k � with j� � � j < 2k�n: Now apply Kraft-Chaitin. a

Now we use Lemma 25 to relate Solovay reducibility to complexity.

Theorem 26 (Solovay). Suppose that � �S �. Then for E = H or K, � �E
�:

Proof. Suppose that � �S � via c < 2k, f . Notice that

�� f(� � (n+ 1)) < 2k(� � � � (n+ 1)):

In particular,

� � n� f(� � (n+ 1)) � n < 2k�n;

and we can apply Lemma 25. a

It is natural to try to understand the nature of Solovay reducibility on the c.e.
reals and how precisely it relates to �H and �K .
First Solovay noted that 
 was Solovay complete. (Be aware that this means

for all c.e. reals (not just c.e. sets) �, � �S 
: This is obvious from the def-
inition. Furthermore if 
 �S �, for any (not necessarily c.e.) real � then �

must be random. This follows by the Chaitin de�nition of randomness and by
Theorem 26. Finally Ku�cera and Slaman showed that domination provides a
precise characterization of randomness.

Theorem 27 (Ku�cera and Slaman [38]). Suppose that � is random and c.e..

Then for all c.e. reals �, � �S �.
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Proof. Suppose that � is random and � is a c.e. real. We need to show that
� �S �. We enumerate a Martin-L�of test Fn : n 2 ! in stages. Let �s ! � and
�s ! � computably and monotonically. We assume that �s < �s+1: At stage s
if �s 2 F

s

n
, do nothing, else put (�s; �s+2�n(�s+1��s)) into F

s+1
n

: One veri�es
that �(Fn) < 2�n: Thus the Fn de�ne a Martin-L�of test. As � is random, there
is a n such that for all m � n, � 62 Fm. This shows that � �S � with constant
2n: a

So we see that Solovay reducibility is good with respect to randomness. Notice
that Ku�cera and Slaman's theorem says something very strong. Consider a
random c.e. real x. Then for e.g. H , we know that

H(x � n) � n+O(1):

However we also know that

H(�) � j�j+ 2 log(j�j) +O(1):

It would seem that there could be random y and random x where for in�nitely
many n, x � n had H-complexity n+logn, yet y had H-complexity n. Why not?
After all the the complexity only needs to be above n to \qualify" as random,
and it certainly can be as large as n+ logn.
However, Ku�cera and Slaman's theorem says that this is not so. All random

c.e. reals have \high" complexity (like n + logn) and low complexity (like n) at

the same n's! Similarly, for K, a real x is random i�

K(x � n) � n+O(1)

in�nitely often. This de�nition is enough to guarantee that the reals have the
same K-complexity for all n, a remarkable fact.
Before we turn to the structure of the Solovay degrees of c.e. reals, we mention

that we know of no characterization of this (or any of the other reducibilities we
examine) in terms of test sets. What we are thinking here is that � � � i� every
test failed by � is failed by �, or something. This, of course is not correct since
� and � will no doubt be di�erent rational intervals. But there should be some
computable map, perhaps from test sets to test sets, like an m-reduction which
will be along these lines.

x10. The structure of Solovay degrees of c.e. reals. Despite the many
attractive features of the Solovay degrees of c.e. reals, their structure is largely
unknown. Recently progress has been made.

Theorem 28 (Downey, Hirschfeldt and Nies [15]). The Solovay degrees of c.e.

reals

(i) forms a distributive upper semilattice, where the operation of join is induced

by +, arithmetic addition (or multiplication) (namely [x] _ [y] �S [x+ y].)
(ii) is dense,

(iii) If a is incomplete and b <S a, then there exist a1jSa2 such that b < a1; a2;

and a = a1 _ a2. That is every incomplete degree splits over all lesser ones.

(iv) If [
] = a _ b then either [
] = a or [
] = b:
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Proof. We will sketch the proof of some of the above. We begin with (i). We
will be applying Theorem 22, but for convenience will write �i instead of �(i):
Suppose that � �S �0 + �1. Let a00; a

0
1; : : : and a

1
0; a

1
1; : : : be computable

sequences of rationals such that �i =
P
n2!

a
i

n
for i = 0; 1. By Lemma 22, there

are a constant c and a computable sequence of rationals "0; "1; : : : < c such that
� =

P
n2! "n(a

0
n
+ a

1
n
). Let �i =

P
n2! "na

i

n
. Then � = �0 + �1 and, again by

Lemma 22, �i �S �i for i = 0; 1. This establishes distributivity.
To see that the join in the Solovay degrees is given by addition, we again apply

Lemma 22. Certainly, for any c.e. reals �0 and �1 we have �i �S �0 + �1 for
i = 0; 1, and hence [�0 + �1] �S [�0]; [�1]. Conversely, suppose that �0; �1 � �.
Let a0; a1; : : : be a computable sequence of rationals such that � =

P
n2!

an.
For each i = 0; 1 there is a constant ci and a computable sequence of rationals
"
i

0; "
i

1; : : : < ci such that �i =
P
n2!

"
i

n
an. Thus �0 + �1 =

P
n2!

("0
n
+ "

1
n
)an.

Since each "0
n
+ "

1
n
is less than c0 + c1, a �nal application of Lemma 22 shows

that �0 + �1 �S �. Multiplication is similar.
Now we turn to the density properties. The proof that if � <S 
 then there

is a � with � <S � <S 
 is a relatively straightforward �nite injury argument,
based especially on the fact that we don't need to actually build the reduction
� � 
. We omit this proof. The argument every incomplete degree splits over
all lesser ones has some novel features.
We will prove the following.
Let  <S � <S 
. There are �0 and �1 s.t.  <S �

0
; �

1
<S � and �0+�1 = �.

Recall: � �S � iff there are a computable f and a constant d such that
�� �f(n) < d(� � �n) for all n.

We want to build �0 and �1 such that

� �
0
; �

1 �S �,
� �

0 + �
1 = �, and

� the following requirement is satis�ed for each e; k 2 ! and i < 2:

Ri;e;k : �e total) 9n(�� ��e(n) � k(�i � �
i

n
)):

The argument is �nite injury, however, there are several problems with the im-
plementation. It suÆces to discuss a two-requirement scenario.

� R0 : � total ) 9n(�� ��(n) � k(�0 � �
0
n
))

� R1 : 	 total ) 9n(�� �	(n) � l(�1 � �
1
n
))

Naturally, we will be measuring whether � and 	 are total and only work
when this appears so. Thus, without loss of generality, we will assume that �
and 	 are total. The reader should imagine the construction as follows. There
are

� two containers, labeled �0 and �1, and
� a large funnel, through which bits of � are being poured.

As with any priority argument, R0 and R1 �ght for control of the funnel. In
particular, bits of � must go into the containers (because we want �0 + �

1 = �)
at the same rate as they go into � (because we want �0; �1 �S �). However,
each Ri wants to funnel enough of � into �1�i to be satis�ed.
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As R0 is stronger, it could potentially put all of � into �1, but that would
leave R1 unsatis�ed. The trouble comes from trying to recognize when enough
of � has been put into �1 so that R0 is satis�ed.

Definition 8. R0 is satis�ed through n at stage s if �(n)[s] # and �s �
��(n) > k(�0

s
� �

0
n
).

To achieve satisfaction, the idea is that R0 sets a quota for R1 (how much may
be funneled into �0 from that point on). If the quota is 2�m and R0 �nds that
either

� it is unsatis�ed or
� the least number through which it is satis�ed changes,

then it sets a new quota of 2�(m+1) for how much may be funneled into �0 from
that point on.

Lemma 29. There is an n through which R0 is eventually permanently satis-

�ed, that is,

9n; s 8t > s (�t � ��(n) > k(�0
t
� �

0
n
)):

Proof. (of Lemma) Suppose not. Then R1's quota! 0, so �0 is computable.
Also, 8n; s 9t > s [�t���(n) � k(�0

t
��0

n
)]. So 8n [����(n) < (k+1)(�0��0

n
)].

Thus � �S �
0 is computable. Contradiction. a

Thus the strategy above yields a method for meeting R0. At the end of this
process, R0 is permanently satis�ed, and R1 has a �nal quota 2�m that it is
allowed to put into �0.
Now we hit the crucial problem, precisely where we need incompleteness for

�. If R1 waits until a stage s s.t. ���s < 2�m then it can put all of ���s into
�
0 and t will, in turn, be satis�ed.
The problem is that R1 cannot tell when such an s arrives. If R1 jumps the

gun, it may �nd itself unsatis�ed and unable to do anything about it since it will
have used all of its quota before s arrives.
The key new idea is that
R1 uses 
 as an investment advisor.

Let s be the stage at which R1's �nal quota of 2
�m is set. At each stage t � s,

R1 puts as much of �t+1 � �t into �
0 as possible so that the total amount put

into �0 since stage s does not exceed 2�m
t. The total amount put into �0

after stage s is � 2�m
 < 2�m, so the quota is respected. We �nish the proof
with the following Lemma

Lemma 30. There is a stage t after which R1 is allowed to funnel all of ���t
into �0.

Proof. It is enough that 9u � t � s 8v > u (2�m(
v � 
t) � �v � �t).
Suppose not. Then 8u � t � s 9v > u [
v � 
t < 2m(�v � �t)]. Thus
8t � s [
� 
t � 2m(� � �t)]. So there is a d s.t. 8t [
 � 
t < d(� � �t)], and
hence 
 �S �. Contradiction. a

Finally, we turn to the last part of the theorem. That is, we wish to prove
that
If � and � are c.e. reals and �+ � is random then at least one of � and � is

random.
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This fact will follow easily from a stronger result which shows that, despite the
upwards density of the Solovay degrees, there is a sense in which the complete
Solovay degree is very much above all other Solovay degrees. We begin by noting
the following lemma, which gives a useful suÆcient condition for domination.

Lemma 31 (Downey, Hirschfeldt, Nies [15]). Let f be an increasing total com-

putable function and let k > 0 be a natural number. Let � and � be c.e. reals

for which there are in�nitely many s 2 ! such that k(� � �s) > � � �f(s), but

only �nitely many s 2 ! such that k(�t ��s) > �f(t)� �f(s) for all t > s. Then

� �S �.

Proof. By taking �f(0); �f(1); : : : instead of �0; �1; : : : as an approximating
sequence for �, we may assume that f is the identity.
By hypothesis, there is an r 2 ! such that for all s > r there is a t > s

with k(�t � �s) � �t � �s. Furthermore, there is an s0 > r such that k(� �
�s0) > � � �s0 . Given si, let si+1 be the least number greater than si such that
k(�si+1 � �si) � �si+1 � �si .
Assuming by induction that k(�� �si) > � � �si , we have

k(���si+1) = k(���si)� k(�si+1 ��si) > �� �si � (�si+1 ��si) = ���si+1 :

Thus s0 < s1 < � � � is a computable sequence such that k(���si) > � � �si for
all i 2 !.
Now de�ne the computable function g by letting g(n) be the least si that is

greater than or equal to n. Then � � �g(n) < k(� � �g(n)) � k(� � �n) for all
n 2 !, and hence � �S �. a

We �nish the proof of Theorem 28 (iv) by establishing the following.

Theorem 32 (Downey, Hirschfeldt, Nies [15]). Let � and � be c.e. reals, let f

be an increasing total computable function, and let k > 0 be a natural number. If

� is random and there are in�nitely many s 2 ! such that k(���s) > ���f(s)
then � is random.

Proof. (sketch) By taking �f(0); �f(1); : : : instead of �0; �1; : : : as an approx-
imating sequence for �, we may assume that f is the identity. If � is rational then
we can replace it with a nonrational computable real �0 such that �0��0

s
� ���s

for all s 2 !, so we may assume that � is not rational.
We assume that � is nonrandom and there are in�nitely many s 2 ! such that

k(���s) > ���s, and show that � is nonrandom. The idea is to take a Solovay
test A = fIi : i 2 !g such that � 2 Ii for in�nitely many i 2 ! and use it to
build a Solovay test B = fJi : i 2 !g such that � 2 Ji for in�nitely many i 2 !.
Let

U = fs 2 ! : k(�� �s) > � � �sg :

It is not hard to show that U is �0
2, except in the trivial case in which � �S �.

Thus a �rst attempt at building B could be to run the following procedure for
all i 2 ! in parallel. Look for the least t such that there is an s < t with s 2 U [t]
and �s 2 Ii. If there is more than one number s with this property then choose
the least among such numbers. Begin to add the intervals

[�s; �s + k(�s+1 � �s)]; [�s + k(�s+1 � �s); �s + k(�s+2 � �s)]; : : :(1)
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to B, continuing to do so as long as s remains in U and the approximation of �
remains in Ii. If the approximation of � leaves Ii then end the procedure. If s
leaves U , say at stage u, then repeat the procedure (only considering t � u, of
course).
If � 2 Ii then the variable s in the above procedure eventually assumes a

value in U . For this value, k(� � �s) > � � �s, from which it follows that
k(�u � �s) > � � �s for some u > s, and hence that � 2 [�s; �s + k(�u � �s)].
So � must be in one of the intervals (1) added to B by the above procedure.
Since � is in in�nitely many of the Ii, running the above procedure for all

i 2 ! guarantees that � is in in�nitely many of the intervals in B. The problem
is that we also need the sum of the lengths of the intervals in B to be �nite, and
the above procedure gives no control over this sum, since it could easily be the
case that we start working with some s, see it leave U at some stage t (at which
point we have already added to B intervals whose lengths add up to �t�1��s),
and then �nd that the next s with which we have to work is much smaller than
t. Since this could happen many times for each i 2 !, we would have no bound
on the sum of the lengths of the intervals in B.

This problem would be solved if we had an in�nite computable subset T of
U . For each Ii, we could look for an s 2 T such that �s 2 Ii, and then begin
to add the intervals (1) to B, continuing to do so as long as the approximation
of � remained in Ii. (Of course, in this easy setting, we could also simply add
the single interval [�s; �s + k cardfIg] to B.) It is not hard to check that this
would guarantee that if � 2 Ii then � is in one of the intervals added to B, while
also ensuring that the sum of the lengths of these intervals is less than or equal
to k cardfIig. Following this procedure for all i 2 ! would give us the desired
Solovay test B. Unless � �S �, however, there is no in�nite computable T � U ,
so we use Lemma 31 to obtain the next best thing.
Let

S = fs 2 ! : 8t > s(k(�t � �s) > �t � �s)g :

If � �S � then � is nonrandom, so, by Lemma 31, we may assume that S is
in�nite. Furthermore, S is co-c.e. by de�nition, but it has the additional useful
property that if a number s leaves S at stage t then so do all numbers in the
interval (s; t).
To construct B, we run the following procedure Pi for all i 2 ! in parallel.

Note that B is a multiset, so we are allowed to add more than one copy of a
given interval to B.

1. Look for an s 2 ! such that �s 2 Ii.
2. Let t = s+ 1. If �t =2 Ii then terminate the procedure.
3. If s =2 S[t] then let s = t and go to step 2. Otherwise, add the interval

[�s + k(�t�1 � �s); �s + k(�t � �s)]

to B, increase t by one, and repeat step 3.

This concludes the construction of B. It is not hard to show that the sum of
the lengths of the intervals in B is �nite and that � is in in�nitely many of the
intervals in B. a

(sketch)
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So we �nally get to prove Theorem 28 (iv) that if �0 and �1 are c.e. reals such
that �0 + �

1 is random then at least one of �0 and �1 is random.
Let � = �

0 + �
1. For each s 2 !, either 3(�0 � �

0
s
) > � � �s or 3(�1 �

�
1
s
) > � � �s, so for some i < 2 there are in�nitely many s 2 ! such that

3(�i � �
i

s
) > � � �s. By Theorem 32, �i is random. a

We point out that Theorem 28 only applies to c.e. reals. Consider, for instance,
if 
 = :a0a1:::: then if we put � = :a00a20a40 : : : and � = :0a10a30 : : : , then
clearly neither � nor � can be random yet �+ � = 
, but they are not c.e..
Before we leave the Solovay degrees of c.e. reals, we note that the structure

must be very complicated.

Theorem 33 (Downey, Hirschfeldt, Laforte [21]). The Solovay degrees of c.e.

reals have an undecidable �rst order theory.

The proof of theorem 33 uses Nies's method of interpreting e�ectively dense
boolean algebras, together with a technical construction of a certain class of
(strongly) c.e. reals. Calude and Nies [9] have proven that the random reals are
all wtt-complete. Very little else is known about the Solovay degrees of c.e. reals.

x11. Other measures of relative randomness. A reducibility � on reals
is a measure of relative randomness if it satis�es the Solovay property :

If � � � then 9c (8n (H(� � n) � H(� � n) + c)).

This can also be expressed for K in place of H . S-reducibility is a measure of
relative randomness, but not the only one, and it has some problems.

� Restricted to c.e. reals.
� Too �ne.
� Too uniform.

For instance, one can easily construct a real � which is d.c.e. and is not S
above any c.e. real.
To see this, imagine you are building a real �, making sure that it is non-

computable, and trying to defeat all 'e; ce potential Solovay reductions. We are
slowly making �s > �t for s > t. Additionally, we are building a computable
nonrational real � = lims �s. At some stage s, we get that 'e;s(�t) #, and

ce(�s � �t) > �s � 'e;s(�t):

Then at stage s+ 1, we simply make �s+1 suÆciently close to �t to make

ce(�s+1 � �t) < �s � 'e;s(�t):

Thus at the very �rst place it can, Solovay reducibility fails to be useful for
classifying relative complexity.
Even on the c.e. reals Solovay reducibility fails badly to encompass relative

complexity. In [20], Downey, Hirschfeldt, and Laforte introduced another mea-
sure of relative complexity called sw-reducibility (strong weak truth table re-
ducibility):

Definition 9. � �sw � if there is a functional � such that �� = � and the

use of � is bounded by x+ c for some c.
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It is easy to see that by Lemma 25, for any (not necessarily c.e.) reals � �sw �,
for all n, and E = H or E = K,

E(� � n) � E(� � n) +O(1):

The sw degrees have a number of nice aspects, and �sw agrees with �S on
the strongly c.e. reals. Furthermore if � is a c.e. real which is noncomputable,
then there is a noncomputable strongly c.e. real � �sw �, and this is not true in
general, for �S. We have the following theorem.

Theorem 34 (Downey, Hirschfeldt, Laforte [20]). There is a noncomputable

c.e. real � such that all strongly c.e. reals dominated by � are computable.

Proof. Recall that if we have c.e. reals � �S � then there are a c.e. real 
and a positive c 2 Q such that � = c� + .
Now let � be the noncomputable c.e. real � such that if A presents � then A

is computable. We claim that, for this �, if � �S � is strongly c.e. then � is
computable.
To verify this claim, let � �S � be strongly c.e.. We know that there is a

positive c 2 Q such that � = c� + . Let k 2 ! be such that 2�k � c and let

Æ =  + (c� 2�k)�. Then Æ is a c.e. real such that � = 2�k� + Æ.
It is easy to see that there exist computable sequences of natural numbers

b0; b1; : : : and d0; d1; : : : such that 2�k� =
P
i2!

2�bi and Æ =
P
i2!

2�di . Fur-

thermore, since � is strongly c.e., so is 2�k�, and hence we can choose b0; b1; : : :
to be pairwise distinct, so that the nth bit of the binary expansion of 2�k� is 1
if and only if n = bi for some i.
Since

P
i2!

2�bi +
P
i2!

2�di = 2�k� + Æ = � < 1, Kraft's inequality tells us
that there is a pre�x-free c.e. set A = f�0; �1; : : : g such that j�0j = b0, j�1j = d0,

j�2j = b1, j�3j = d1, etc.. Now
P
�2A 2

�j�j =
P
i2! 2

�bi +
P
i2! 2

�di = �, and
thus A presents �.
By our choice of �, this means that A is computable. But now we can compute

the binary expansion of 2�k� as follows. Given n, compute the number m of
strings of length n in A. If m = 0 then bi 6= n for all i, and hence the nth bit
of binary expansion of 2�k� is 0. Otherwise, run through the bi and di until
either bi = n for some i or dj1 = � � � = djm = n for some j1 < � � � < jm. By the
de�nition of A, one of the two cases must happen. In the �rst case, the nth bit of
the binary expansion of 2�k� is 1. In the second case, bi 6= n for all i, and hence
the nth bit of the binary expansion of 2�k� is 0. Thus 2�k� is computable, and
hence so is �. a

We remark that sw reducibility is also bad in many ways, too. For instance,
the sw-degrees of c.e. reals do not form a semilattice! (Downey, Hirschfeldt,
Laforte [20]) It is unknown if 
 is sw-complete (for c.e. reals), that being the
analog of Slaman's theorem. Furthermore sw and S are incomparable.
We would like a measure of relative randomness combining the best of S-

reducibility and sw-reducibility.
Both S-reducibility and sw-reducibility are uniform in a way that relative

initial-segment complexity is not. This makes them too strong, in a sense, and
it is natural to wish to investigate nonuniform versions of these reducibilities.
Motivated by this consideration, as well as by the problems with sw-reducibility,
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we introduce another measure of relative randomness, called relative H reducibil-
ity, which can be seen as a nonuniform version of both S-reducibility and sw-
reducibility, and which combines many of the best features of these reducibilities.
Its name derives from a characterization, discussed below, which shows that there
is a very natural sense in which it is an exact measure of relative randomness.

Definition 10. Let � and � be reals. We say that � is relative H reducible
(rH-reducible) to �, and write � �rH �, if there exist a partial computable

binary function f and a constant k such that for each n there is a j � k for

which f(� � n; j)#= � � n.

Clearly �rH is transitive. It might seem like a weird de�nition at �rst, but
the actual motivation came from the consideration of Lemma 25. There we
argued that if two strings are very close and of the same length then they have
essentially the same complexity no matter whether we use H or K. Note that
sw reducibility gives a method of taking an initial segment of length n of � to
one of length n�c of �. However, it would be enough to take some string k-close
to an initial segment or � to one similarly close to one of �. This idea gives a
notion equivalent to rH reducibility and leads to the de�nition above.
There are, in fact, several characterizations of rH-reducibility, each revealing

a di�erent facet of the concept. We mention three, beginning with a \relative
entropy" characterization whose proof is quite straightforward. For a c.e. real
� and a �xed computable approximation �0; �1; : : : of �, we will let the mind-
change function m(�; n; s; t) be the cardinality of

fu 2 [s; t] j �u � n 6= �u+1 � ng:

Lemma 35 ([20]). Let � and � be c.e. reals. The following condition holds if

and only if � �rH �. There are a constant k and computable approximations

�0; �1; : : : and �0; �1; : : : of � and �, respectively, such that for all n and t > s,

if �t � n = �s � n then m(�; n; s; t) � k.

The following is a more analytic characterization of rH-reducibility, which clar-
i�es its nature as a nonuniform version of both S-reducibility and sw-reducibility.

Lemma 36 ([20]). For any reals � and �, the following condition holds if and

only if � �rH �. There are a constant c and a partial computable function '

such that for each n there is a � of length n + c with j� � � j � 2�n for which

'(�)# and j� � '(�)j � 2�n.

Proof. First suppose that � �rH � and let f and k be as in de�nition 10. Let
c be such that 2c � k and de�ne the partial computable function ' as follows.
Given a string � of length n, whenever f(�; j) # for some new j � k, choose a
new � � � of length n + c and de�ne '(�) = f(�; j). Then for each n there is
a � � � � n such that '(�) #= � � n. Since j� � � j � j� � � � nj � 2�n and
j� � � � nj � 2�n, the condition holds.
Now suppose that the condition holds. For a string � of length n, let S� be

the set of all � for which there is a � of length n+ c with j� � � j � 2�n+1 and
j��'(�)j � 2�n+1. It is easy to check that there is a k such that cardfS�g � k

for all �. So there is a partial computable binary function f such that for each �
and each � 2 S� there is a j � k with f(�; j)#= �. But, since for any real  and
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any n we have j�  � nj � 2�n, it follows that for each n we have � � n 2 S��n.
Thus f and k witness the fact that � �rH �. a

The most interesting characterization of rH-reducibility (and the reason for its
name) is given by the following result, which shows that there is a very natural
sense in which rH-reducibility is an exact measure of relative randomness. Recall
that the pre�x-free complexity H(� j �) of � relative to � is the length of the
shortest string � such that M�(�) #= � , where M is a �xed self-delimiting
universal computer. (Similarly for K.)

Theorem 37 ([20]). Let � and � be reals. Then � �rH � if and only if there is

a constant c such that H(� � n j � � n) � c for all n. (And K(� � n j � � n) � c.)

Proof. We give the argument for H . First suppose that � �rH � and let f
and k be as in de�nition 10. Let m be such that 2m � k and let �0; : : : ; �2m�1 be
the strings of length m. De�ne the pre�x-free machine N to act as follows with
� as an oracle. For all strings � of length not equal to m, let N�(�)". For each
i < 2m, if f(�; i)# then let N�(�i)#= f(�; i), and otherwise let N�(�i)". Let e
be the coding constant of N and let c = e+m. Given n, there exists a j � k for
which f(� � n; j)#= � � n. For this j we have N��n(�j)#= � � n, which implies
that H(� � n j � � n) � j�j j+ e � c.
Now suppose that H(� � n j � � n) � c for all n. Let �0; : : : ; �k be a list of all

strings of length less than or equal to c and de�ne f as follows. For a string �
and a j � k, if M�(�j)# then f(�; j)#=M

�(�j), and otherwise f(�; j)". Given
n, since H(� � n j � � n) � c, it must be the case that M��n(�j) #= � � n for
some j � k. For this j we have f(� � n; j)#= � � n. Thus � �rH �. a

An immediate consequence of this result is that rH-reducibility satis�es the
Solovay property.

Corollary 38. If � �rH � then there is a constant c such that H(� � n) �
H(� � n) + c for all n.

It is not hard to check that the converse of this corollary is not true in general,
but the following question is natural.
Question Let � and � be c.e. reals such that, for some constant c, we have

H(� � n) � H(� � n) + c for all n. Does it follow that � �rH �? Does it even

follow that � �T �? (See Theorem 41)

We will look at this very interesting question in the next section.

Theorem 39 ([20]). Let � and � be c.e. reals. If � �S � or � �sw �, then

� �rH �.

Corollary 40. A c.e. real � is rH-complete if and only if it is random.

Despite the nonuniform nature of its de�nition, rH-reducibility implies Turing
reducibility.

Theorem 41 (Downey, Hirschfeldt, Nies [20]). If � �rH � then � �T �.

Proof. Let k be the least number for which there exists a partial computable
binary function f such that for each n there is a j � k with f(� � n; j)#= � � n.
There must be in�nitely many n for which f(� � n; j) # for all j � k, since



30 RODNEY G. DOWNEY

otherwise we could change �nitely much of f to contradict the minimality of
k. Let n0 < n1 < � � � be an �-computable sequence of such n. Let T be the
�-computable subtree of 2! obtained by pruning, for each i, all the strings of
length ni except for the values of f(� � ni; j) for j � k.
If  is a path through T then for all i there is a j � k such that  extends

f(� � ni; j). Thus there are at most k many paths through T , and hence each
path through T is �-computable. But � is a path through T , so � �T �. a

Notice that, since any computable real is obviously rH-reducible to any other
real, the above theorem shows that the computable reals form the least rH-
degree.
Structurally, the rH-degrees of c.e. reals are nicer than the sw-degrees of c.e.

reals.

Theorem 42 (Downey, Hirschfeldt, Laforte [20]). (i) The rH-degrees of c.e.

reals form an uppersemilattice with least degree that of the computable sets

and highest degree that of 
.
(ii) The join of the rH-degrees of the c.e. reals � and � is the rH-degree of �+�.
(iii) For any rH-degrees a < b of c.e. reals there is an rH-degree c of c.e. reals

such that a < c < b.

(iv) For any rH-degrees a < b < deg
rH

(
) of c.e. reals, there are rH-degrees c0
and c1 of c.e. reals such that a < c0; c1 < b and c0 _ c1 = b.

(v) For any rH-degrees a;b < deg
rH

(
) of c.e. reals, a _ b < deg
rH

(
).

Proof. We prove only (i), the remainder of the parts are proved by analogous
methods to those used for �S . All that is left to show is that addition is a join.
Since �; � �S � + �, it follows that �; � �rH � + �. Let  be a c.e. real such
that �; � �rH . Then Lemma 35 implies that �+� �rH , since for any n and
s < t we have m(�+ �; n; s; t) � 2(m(�; n; s; t) +m(�; n; s; t)) + 1. a

We remark that the remaining part of Theorem 28 was that �S is distributive
on the c.e. reals. This is open at present.
We see that rH-reducibility shares many of the nice structural properties of S-

reducibility on the c.e. reals, while still being a reasonable reducibility on non-c.e.
reals. Together with its various characterizations, especially the one in terms of
relative H-complexity of initial segments, this makes rH-reducibility a tool with
great potential in the study of the relative randomness of reals. As one would
expect, little else is known about the structure of rH degrees.
We remark that the methods of this section have been used by Downey,

Hirschfeldt and Laforte [20], to prove that the H-degrees of c.e. reals are dense.

x12. �H, �K and �T . Let return to the question below we deferred from
the last section.
Question Let � and � be c.e. reals such that, for some constant c, we have

H(� � n) � H(� � n) + c for all n. Does it follow that � �rH �? Does it even

follow that � �T �?
Although it might seem at �rst that the answer to this question should obvi-

ously be negative, at �rst glance, Theorem 43 would seem to indicate that any
counterexample would probably have to be quite complicated, and gives us hope
for a positive answer.
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Theorem 43 (Downey, Hirschfeldt, Laforte [20]). Let � and � be c.e. reals

such that lim infnH(� � n)�H(� � n) =1. Then � <sw �.

Proof. Let c�(n) be the least s such that �s � n = � � n, and de�ne c�(n)
analogously. Let M be a universal self-delimiting computer and de�ne the self-
delimiting computer N as follows. For each n, s, and �, if M(�)[s] #= �s � n

and N(�) has not been de�ned before stage s then let N(�) #= �s � n. Let e
be the coding constant of N . For each n, if c�(n) � c�(n) then 8�(M(�) #=
� � n ) N(�) #= � � n), which implies that H(� � n) � H(� � n) + e. Thus
our hypothesis implies that c�(n) < c�(n) for almost all n, which clearly implies
that � �sw �. We note that, � �sw �, so � <sw � a

Stephan [56] has shown that the Theorem above has limited use because it is
hard to satisfy the hypotheses of the Theorem. Let c� denote the computation
function of �: c�(x) is the least s � x with � � x = �s � x: The following lemma
is easy.

Lemma 44. Let A be a c.e. set (or c.e. real). Suppose that cA dominates all

partial computable functions. Then A is wtt-complete.

Theorem 45 (Stephan [56]). Suppose that � and � satisfy the hypotheses of

Theorem 43. Then � is wtt-complete.

Proof. Given M a pre�x free universal machine and ' a partial computable
function, de�ne

cM(a�) =

8><
>:
M(�) if a = 0;

�'(jM(�)j) � M(j� j) if a = 1;M(�) #; and '(jM(�)j) #;

" otherwise.

Then cM is also a pre�x-free universal machine. If c� does not dominate ',
then there are in�nitely many n with '(n) #> c�(n), and thus

H
cM
(� � n) = minfH

cM
(�) : j�j = ng:

That is, � � n has minimum H-complexity of all strings of length j� � nj = n.
Consequently,

H
cM
(� � n) � H

cM
(� � n);

for these n, and lim inf(H
cM
(� � n)�H

cM
(� � n) � 0:

So suppose that � is not wtt-complete. Then there is some partial computable
function not dominated by c�. So there is no � with

lim inf(H
cM
(� � n)�H

cM
(� � n) =1:

a

Stephan has clari�ed the situation for the relationship between �K and �T :

Theorem 46 (Stephan [56]). Suppose that we have c.e. �; � with � �K �:

Then � �T �:
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Proof. So we suppose that there is a c such that for all n,

K(� � n) � K(� � n) + c:

IF � �T ;
0, then there is nothing to prove. So we suppose that � <T ;

0. In that
case, for any total �-computable function g, we know

91x[x 2 K �Kg(x)]:

Let  (x) be the partial computable function of the least stage that x 2 Ks.

The there are in�nitely many x with  (x) #> g(x): So let g be the computation
function of �. Then there is an in�nite D �� with D � K and  (x) > g(x) for
all x 2 D.
For any x 2 D we have the following program:

'e(x) = � (x) � x:

For this set of x we have K(� � xjx) � e, and hence

K(� � xjx) � e+O(1):

Now relativizing Loveland's theorem below, we see that � �T �: a

The missing ingredient is an old result of Loveland: (actually this is stated in
slightly generalized form)

Theorem 47 (Loveland [43]). Suppose that there is e and an in�nite com-

putable set A such that for all x 2 A, K(� � xjx) � e: Then � is computable.

The proof is straightforward. The main observation is that, again, the pos-
sibilities for � can be used to form a �0

1 class with only �nitely many paths,
generated by the largest e0 � e such that K(� � xjx) = e

0 in�nitely often.
One of the keys to the above is the uniformity implicit in K(x � njy � n).

A much more interesting theorem is the following of Chaitin which indicates a
hidden uniformity in K.

Theorem 48 (Chaitin [11]). Suppose that K(� � n) � K(n) +O(1) for all n

(for an in�nite computable set of n), or K(� � n) � logn+O(1), for all n. Then
� is computable (and conversely). Furthermore for a given constant O(1) = d,

there are only �nitely many (O(2d)) such x.

The proof of Chaitin's theorem involves lemma of independent interest. The
proof below is along the lines of Chaitin's, but we hope that it is somewhat less
challenging than the original.
Let D : �� 7! �� be partial computable. Then a D-description of � is a

pre-image of �.

Lemma 49 (Chaitin [11]). Let f(d) = 2(d+c), c = cd;D to be determined. Then

for each � 2 ��,

jfq : D(q) = � ^ jqj � K(�) + dgj � fD(d):

That is, the number of D-descriptions of length � K(�) + d, is bounded by an

absolute constant depending upon d;D alone (and not on �)

Note that this applies in the special case that D is the universal machine.
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Proof. Let � be given, and k = K(�) + d. For each m there are at most
2k�m � 1 strings with � 2m D-descriptions of length � k, since there are 2k � 1
strings in total. Given k;m we can e�ectively list strings � with � 2m D-
descriptions of length � k, uniformly in k;m. (Wait till you see 2m q's of length
� k with D(q) = � and and then put � on the list Lk;m.) The list Lk;m has

length � 2k�m.
If � has � 2m D-descriptions of length � k, then it is given by

� m

� a string q of length 2k�m,

the latter indicating the position of � in Lk;m: This description has length
bounded by logm + k � m + c where c depends only upon D. If we choose
m large enough so that logm+ k�m+ c < k� d, we can then get a description
of � of length < k � d = K(�): If we let f(d) be 2n where n is the least m with
logm+ c+ d < m then we are done. a

The next lemma tells us that there are relatively few string with short descrip-
tions, and the number depends on d alone.

Lemma 50 (Chaitin [11]). There is a computable h depending only on d (h(d) =
O(2d)) such that, for all n,

jf� : K(�) � K(n) + dgj � h(d):

Proof. Consider the partial computable function D de�ned via D(p) is the
unary representation of U(p): Then let h(d) = fD(d), with f given by the pre-
vious lemma. Suppose that K(�) � K(n) + d, and pick the shortest p with
U(p) = �. Then p is a D-description of n and jpj � K(n) + d. Thus there at
most f(d) many p0s, and hence �'s. a

Proof. (of Theorem 48, concluded.) Let

= f� : 8p � �(K(p) � log jpj+ d)g:

If n is random then K(n) = logn + c, so that by the second lemma above, the
number of strings in T of length n is � h(d): Taking the maximum number
� h(d) attained in�nitely often, we can then construct a computable subtree of
the c.e. tree T , upon which x must be a path. Note that the number of paths is
bounded by h(d): a

It is still an open question whether, for c.e. reals, �K implies �rK ; although
the answer is \surely not".
The situation for �H is quite di�erent. The argument of Stephan above shows

that � �H � implies that for all x 2 D, H(� � xjx) � e, and hence H(� � x) �
e+H(x) +O(1); for this set of x. All would be sweet if the folowing statement,
true for K was also true for H : H(� � x) � H(x) +O(1) for all (a computable
set of) x, implied that � is computable. Chaitin observed using a relativized
form of Loveland's observation that

H(� � x) � H(x) +O(1) implies � �T ;
0
:

Surprisingly we cannot replace ;0 by ; for H. That is even though � looks

identical to ! we cannot conclude that � is computable even for strongly c.e.

reals �.
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This was proved by Solovay in his 1974 manuscript. The proof there is very
complicated and only constructs a �0

2 real. For the remainder of the section we
will prove a slight generalization of Solovay's theorem. In fact we will give two

proofs as the result is so interesting, and each proof yields a di�erent technique.
In particular, the second is a modi�cation of Solovay's original proof, which
contains an important lemma of independent interest. The �rst is short and
easy once you have found it. Both are due to Downey, Hirschfeldt and Nies.

Theorem 51 (Downey, Hirschfeldt, Nies, after Solovay [55]). There is a c.e.

noncomputable set A such that for all n

H(A � n) � H(n) +O(1):

Proof. While the proof below is easy, it is slightly hard to see why it works.
So, by way of motivation, suppose that we were to asked to \prove" that the set
B = f0n : n 2 !g had the same complexity as ! = f1n : n 2 !g. A complicated
way to do this would be for us to build our own pre�x free machine M whose
only job was to compute initial segments of B. The idea was if the universal
machine U enumerated h�; 1ni, then in our machine we would enumerate h�; 0ni:
Notice that, in fact, using Kraft-Chaitin it would be enough to buildM implicitly

enumerating the length axiom (or \requirement") hj�j; ni: We are guaranteed
that

��2dom(U)2
�j�j = ��2dom(M)2

�j� j
< 1:

Hence Kraft-Chaitin applies.
Note also that we could, for convenience, as we do in the main construction,

use a string of length j�j+ 1, in which case we would force

��2dom(M)2
�j� j

<
1

2
:

The idea is the following. We will build a noncomputable c.e. set A in place of
B and, as above, we will slavishly follow U on n in the sense that whenever U
enumerates, at stage s, a shorter � with U(�) = n, then we will, in our machine
M , enumerate h�; As � ni; where j� j = j�j + 1: To make A noncomputable, we
will also sometimes make As � n 6= As+1 � n. Then for each j with n � j � s,
we will for the currently shortest string �j computing j, we will also need to put
into M ,

h�j ; As+1 � ji:

This construction works by making this quantity small. We are ready to de�ne

A:

A = fhe; ni :We;s \As = ; ^ he; ni 2We;s^X
he;ni�j�s

2�H(j)[s] < 2�(e+1)g:

Then clearly A is c.e.. It is noncomputable since the H-complexity of Pn = fm :
m � ng tends to zero as n!1, and �nally, M is a Chaitin machine, since the

errors are bounded by �e2
�(e+1) (once for each e), whence

��2dom(M)2
�j�j

< ��2dom(U)2
j�j+1 +�e2

�(e+1)
<

1

2
+

1

2
= 1:

And by force we have for all n, H(A � n) � H(n) +O(1): a
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The second proof is a modi�cation of Solovay's. It is more complicated. The
basic idea is to try to let U do the work for us. Speci�cally, consider the task of
constructing a noncomputable � with H(� � n) � H(n) + O(1) for all n. The
natural idea would be that we would pick some diagonalization place i and wait
for i, keep it out of �s = :As until i appears in We;s for the requirement Re
saying A 6=We. Then one would put i into As+1.
Now this stage s could be very late. Furthermore we need that H(� � i) �

H(i) + O(1): In the one above we allow ourselves to do this provided that the
amount of damage we do is small. Solovay's idea is to only let ourselves do
this provided we can keep H(� � i) � H(i)[s]. The idea that we will let the
opponent do the work for us. Occasionally the opponent must drop the stage
s complexity of i to something lower. Our idea is that then at that very stage
we can change As(i) and the amount of entropy we need will simply follow the
universal computer on i. Thus the argument looks very easy.
There is a big problem, which necessitates all the following. Suppose that U

changes its current complexity on i at the stage t. At stage t, we have enumerated

A up to length t. Now if we change A on i, then for all t � n � i, we also change

A � n. Hence, for each of these A � n we also would need to also enumerate
some string � computing A � n of the same length as the one computing n, and
perhaps only i has a new string. Why should n?
The key idea of Solovay is that if one looks at appropriately sparse stages of

the construction, then one can prove that there will, in�nitely often, be stages
where all of the n � i get new shorter descriptions together. This is by no means
obvious. We turn to the formal proof.
Fix a universal pre�x-free machine U and de�ne H relative to U . We may

assume that H(n) � n+ 1 for all n, and hence we adopt the convention that if
there is no � such that j� j � n and U(�)[s]#= n then H(n)[s] = n+ 1.
Let A be any function with primitive recursive graph that dominates all prim-

itive recursive functions (e.g. Ackermann's function) and de�ne t0 = 0 and
tn+1 = A(tn). Let �(i) be the largest j � i such that H(n)[ti] = H(n)[ti+1].

Theorem 52 (Solovay). For any total computable function g there are in�n-

itely many i such that g(�(i)) < i.

Proof. Fix a total computable function g. Let G(n) be the least m such that
g(m) � n. To show that there are in�nitely many i such that g(�(i)) < i, it is
enough to show that there are in�nitely many i such G(i) > �(i). By increasing
g if necessary, we may assume that g has primitive recursive graph and that
g(n) � n for all n, which implies that G is primitive recursive.
For each k, let nk be the least n such thatX

G(n)�j�n

2�H(j)[tn] � 2�2k;

which exists since for any n we haveX
G(n)�j�n

2�H(j)[tn] <
X

j�G(n)

2�H(j);

and this last sum goes to 0 as n increases. Note that the graph of the function
k 7! tnk is primitive recursive.
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Consider the following enumeration of requirements. For each k > 0 and each
j 2 [G(nk); nk], enumerate the requirement hj;H(j)[tnk ]� ki. SinceX
k>0

X
G(nk)�j�nk

2�(H(j)[tnk ]�k) =
X
k>0

2k
X

G(nk)�j�nk

2�(H(j)[tnk ]) �
X
k>0

2k2�2k = 1;

the Kraft-Chaitin Theorem implies that there is a pre�x-free M satisfying these
requirements. Furthermore,M can be built to satisfy each requirement hj;H(j)[tnk ]�
ki in time primitive recursive in tnk , and hence before time tnk+1 for suÆciently
large k.
Thus, for all suÆciently large k, we have HM (j)[tnk+1] = H(j)[tnk ] � k

for all j 2 [G(nk); nk]. This means that, for all suÆciently large k, we have
H(j)[tnk+1] < H(j)[tnk ] for all j 2 [G(nk); nk], which implies that G(nk) >
�(nk). So there are in�nitely many n such that G(n) > �(n). a

We call a real � with H(� � n) � H(n) + O(1) for all n H-trivial. Now we
can de�ne two reals

� = �i2!2
�2(�(i))

;

�C = �f2�(2(�(i)
2+j) : i 2 ! ^ �(i)[ti+1] � i at least j timesg:

Then � and �C are H-trivial, and additionally, the latter is a strongly c.e. real.
(For instance, if we assume that � is computable, then the stage when the �rst
i bits of � stop moving allows us to de�ne a computable function g, after which
�(i) cannot drop below i, contrary to the Lemma. Also �(i) can drop below i

only i (in fact log i) times, and hence � exists.)
We remark that the �rst construction clearly combines with, for instance,

permitting: below any c.e. nonzero degree there is a noncomputable c.e. H-
trivial set. Also, one can use it to construct a promptly simple one, or a variant
to avoid a given low c.e. set, using the Robinson trick. However, we do not
know if there is a complete H-trivial set. An answer either way would be very
interesting. In the positive way it says that the relationship between �H and �T
fails as badly as it can. In the negative way, then the �rst proof above provides a
priority-free (or more precisely \injury-free") solution to Post's problem7. While
these are known, the construction we give is particularly simple. The Ku�cera-
Terwijn result of the next section is another example of this phenomenom.

x13. Other areas. Naturally in a short course such as this I cannot hope to
cover all areas falling under the umbrella of the intrinsic relationship between
computability and randomness. In this last section, I will point towards other
material of which I am aware, and direct the reader towards the literature. I
certainly do not claim completeness here. In particular, I will not even discuss
the rich area of resource bounded randomness. (See e.g. Ambos-Spies et al. [2])
Otherwise the reader has Ambos-Spies and Ku�cera [1], van Lambalgen [59], and
Li-Vitanyi [42] as general references.

7Downey, Hirschfeldt, Nies, and Stephan [16] have recently proven that an H-trivial set is

never T -complete, and hence the above is a priority-free solution to Post's Problem
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13.1. �0
1 classes. One natural direction is to examine not necessarily c.e.

reals, and perhaps the collection of all random reals. A counting argument
shows that the set of random reals has measure 1. Kurtz [40] and Kautz [31]
have a lot of material here. A nice observation more or less due to Martin-L�of
[45], is that the random reals form a �0

2 class: an e�ective union of �0
1 classes.

To see this let

Ck = fx 2 [0; 1] : 8nH(x � n) � n� kg:

Then evidently the Ck form �0
1 classes and x is random i� there is a k with

x 2 Ck .

RAND = [kCk:

s a consequence, all the apparatus of �0
1 classes apply. There are, for instance,

random reals of low degree by the low basis theorem. Ku�cera [35, 36] has a lot of
material here, additionally relating these notions to genericity and other notions
such as DNR functions.

13.2. Martin-L�of Lowness. One very interesting area comes from relativiz-
ing the notion of a test. We can de�ne the notion of a Martin-L�of test relative
to an oracle, and hence get the class RANDX . Van Lambalgen and Zambella
asked if there is a Martin-L�of low set X : a set X such that RANDX = RAND:

This question has an aÆrmative answer.

Theorem 53 (Ku�cera and Terwijn [37]). There is a c.e. set A that is Martin-

L�of low.

Proof. We give an alternative proof to that in [37]. It is clear that there
is a primitive recursive function f , so that UA

f(n) is the universal Martin-L�of

test relative to A. Let IA
n

denote the corresponding Solovay test. Then X

is A-random i� X is in at most �nitely many I
A

n
. We show how to build a

fJn : n 2 !g, a Solovay test, so that for each (p; q) 2 I
A

n
is also in Jn. This is

done by simple copying: if (p; q) < s is in [j�sI
As

j
is not in Ji : i 2 s, add it.

Clearly this \test" has the desired property of covering IA
n
. We need to make A

so that the \mistakes" are not too big.
The crucial concept comes from Ku�cera and Terwijn: Let Ms(y) denote the

collection of intervals fIAs
n

: n � sg which have As(y) = 0 in their use function.
Then we put y > 2e into As+1 �As provided that e is least with As \We;s = ;;
and

�(Ms(y)) < 2�e:

It is easy to see that this can happen at most once for e and hence the measure
of the total mistakes is bounded by �2�n and hence the resulting test is a Solovay
test. The only thing we need to prove is that A is noncomputable. This follows
since, with priority e, whenever we see the some y with �(Ms(y)) � 2�e, such y
will not be added and hence this amount of the A-Solovay test will be protected.
But since the total measure is bounded by 1, this cannot happen forever. a

There is no known characterization of the degrees of such sets. Clearly the
above argument permits and hence each nonzero c.e. degree has a nonzero
Martin-L�of low predecessor. Ku�cera and Terwijn show that each Martin-L�of
low set is in the class GL1: the sets A with A0 �T A� ;0:



38 RODNEY G. DOWNEY

Intriguingly, there is a complete characterization for the Schnorr low sets of
the next section.

13.3. Schnorr lowness. As noted in the earlier sections, the notion of Martin-
L�of randomness is by no means the only notion of algorithmic randomness. The
choice of it as the \correct" notion is as much philosophical as mathematical.
There are a number of competing notions. One that has much support is due to
Schnorr.

Definition 11. A real x is called Schnorr random i� it passes all Schnorr

tests. A Schnorr test is a Martin-L�of test fUn : n 2 !g such that for all n

�(Un) = 2�n:

Recall that the idea of a Martin-L�of test was to avoid all sets which were
e�ectively null. The di�erence between a Schnorr and a Martin-L�of test is the
relevant level of e�ectiveness demanded. There are no universal Schnorr tests.
Indeed, one can construct a computable real passing a given Schnorr test. Clearly
every Martin-L�of random set is Schnorr random. The converse fails.

Theorem 54 (Schnorr). There are c.e. reals that are Schnorr random but not

Martin-L�of random.

The idea of the proof is to build out real � and a Martin-L�of test fUi :
i 2 !g, by enumerating all partial Schnorr tests, and waiting till the opponent
enumerates a lot of his test, then building in the complement. (Thus we can
choose to pretend that a partial Schnorr test is not really one until he enumerates
to within � of the claimed measure of V1; V2:::Vn for some �xed n.)
Actually this theorem follows from some recent work of Downey and GriÆths

[14]. Downey and GriÆths have shown that every Schnorr random c.e. real is
of high c.e. degree. However, they also use a relatively diÆcult 000 agrument to
prove that there exist incomplete Schnorr random c.e. reals. Since all Martin-L�of
random c.e. reals are T -complete, such an incomplete Schnorr random c.e. real
cannot be Martin-L�of random. We refer the reader to Downey-GriÆths [14] for
this and other results here.
Little is known about the degrees of Schnorr random reals. There is no known

combinatorial characterization like Chaitin randomness for Schnorr randomness.
It seems to the author there is a whole constellation of questions about this and
other notions of randomness such as weak randomness of Kurtz [40], awaiting
the development of the appropriate technology.
One really nice aspect of Schnorr randomness is that there is a complete char-

acterization of Schnorr low sets. As usual, let Dx denote the x-th canonical �nite
set.

Theorem 55 (Terwijn and Zambella [57]). A set X is Schnorr low i� there is

a computable function p, such that, for all functions g �T X, there is a function

h where, for all n,

(i) jHh(n)j < p(n);
(ii) g(n) 2 Dh(n):

The proof is nontrivial. It relies in one direction, on ideas of Rasonnier [48] on
rapid �lters for the \mathematical" proof of Shelah's theorem that you cannot
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take the inaccessible cardinal away from Solovay's construction of a model where
every set of reals is Lebesgue measurable. Note that all such Schnorr low degrees
are hyperimmune free and hence are not below 00: This is quite di�erent from
the situation for Martin-L�of lowness as there the set constructed was c.e.. It is
unknown how the two notions relate. It is unknown if there is a similar charac-
terization for Martin-L�of lowness although one direction works. It is known that
not all hyperimmune free degrees are Schnorr low.

13.4. Computably enumerable sets. An important subtopic is the com-
plexity of strongly c.e. reals, that is, c.e. sets. We mention only one result here
but there are many more, and many open questions. As we have seen, the Kol-
mogorov complexity of a c.e. set A � n is bounded by 2 logn � O(1). Solovay
asked if this bound was attainable. Certainly for K-complexity no c.e. set has
initial segment complexity on length n always greater than 2 logn�O(1):
In a very interesting paper, Kummer [39] proved that there are c.e. complex

sets.

Theorem 56 (Kummer [39]). There is a set A such that there is a constant

c, with

K(A � n) � 2 logn� c

for in�nitely many n.

Proof. Kummer's proof runs as follows. First we have intervals de�ned via
t0 = 0, ti+1 = 2ti and then Ii = (ti; ti+1]: The Kummer de�ned

f(k) = �
tk+1

i=tk+1
(i� tk + 1);

g(k) = maxfd : 2d � 1 < f(k)g:

Note that f(k) asymptotically approaches 1=2t2
k+1 and g(k) approaches 2 log tk+1�

2: Then at stage s+ 1 our action is the following for k = 0; � � � s, if K(As � n) �
g(k) for all n 2 Ik, put the minimum element in As \ Ik into As+1:
Now suppose that K(A � n) � g(k) for all n 2 Ik. Then all of Ik is put into A.

For a �xed n there are at least n�tk+1 many strings � = A � n with j�j = n+1
andK(�) � g(k): Therefore there are at least f(k) many strings ofK complexity

at most g(k) and this contradict the fact that f(k) > 2g(k)+1 � 1: a

Actually Kummer classi�ed the degrees containing complex c.e. sets. >From
Downey, Jockusch, and Stob [22], a degree a is called array noncomputable i� for
all g �tt ;

0 there is a function h �T a not dominated by g. The anc degrees form
a upwards closed class of the c.e. degrees including some low degrees, but such
that each c.e. degree has a nonzero array computable predecessor. The array
noncomputable degrees capture a notion of \multiple permitting" common to a
number of degree constructions. For example, the are the degrees A � B such
that A and B are c.e. and have no complete separating set. Ishmukhametov [29]
has the following characterization of the (c.e.) array computable degrees.
a is array computable i� there is a computable function p such that, for all

g �T a, there is a computable function h such that

(i) jWh(n)j < p(n); and
(ii) g(n) 2Wh(n):
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The reader might like to compare this characterization with the one for Schnorr
low sets. Surely there must be some connection here! I remark that Ishmukhame-
tov [29] used this characterization to prove that the c.e. degrees with strong
minimal covers are exactly the array computable ones. Of interest to us here is
the following.

Theorem 57 (Kummer [39]). A c.e. degree contains a complex set i� it is

array noncomputable. Furthermore if the degree is array computable and A is

any c.e. set of the degree, then for any � > 1,

K(A � n) � (1 + �) logn+O(1):

Clearly there are other connections between degree, domination and complex-
ity.
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